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a b s t r a c t 

Technological breakthroughs and policy measures targeting energy efficiency and clean energy alone 

will not suffice to deliver Paris Agreement-compliant greenhouse gas emissions trajectories in the next 

decades. Strong cases have recently been made for acknowledging the decarbonisation potential lying in 

transforming linear economic models into closed-loop industrial ecosystems and in shifting lifestyle pat- 

terns towards this direction. This perspective highlights the research capacity needed to inform on the 

role and potential of the circular economy for climate change mitigation and to enhance the scientific 

capabilities to quantitatively explore their synergies and trade-offs. This begins with establishing concep- 

tual and methodological bridges amongst the relevant and currently fragmented research communities, 

thereby allowing an interdisciplinary integration and assessment of circularity, decarbonisation, and sus- 

tainable development. Following similar calls for science in support of climate action, a transdisciplinary 

scientific agenda is needed to co-create the goals and scientific processes underpinning the transition 

pathways towards a circular, net-zero economy with representatives from policy, industry, and civil so- 

ciety. Here, it is argued that such integration of disciplines, methods, and communities can then lead 

to new and/or structurally enhanced quantitative systems models that better represent critical industrial 

value chains, consumption patterns, and mitigation technologies. This will be a crucial advancement to- 

wards assessing the material implications of, and the contribution of enhanced circularity performance 

to, mitigation pathways that are compatible with the temperature goals of the Paris Agreement and the 

transition to a circular economy. 

© 2021 The Authors. Published by Elsevier B.V. on behalf of Institution of Chemical Engineers. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

While the global climate agenda has gone through differ- 

nt stages during the last decades, bold promises for future 

reakthroughs in energy technologies are often in the spotlight 

 McLaren and Markusson, 2020 ). Recent scientific and policy dis- 
mical Engineers. This is an open access article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.spc.2021.12.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/spc
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:anikas@epu.ntua.gr
https://doi.org/10.1016/j.spc.2021.12.011
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Nikas, G. Xexakis, K. Koasidis et al. Sustainable Production and Consumption 30 (2022) 269–277 

c

c

b

d

(

l

P

p

h

n

c

t

c

2

o

t

e

t

t

t

p  

a

t

e

fl

s

d

(

s

n

2

g

w

d

t

(

f

r

2

t

t

p

i

t

t

t

h

a

s

a

i

m

s

b

e

t

i

S

o

m

R

e

i

s

t

c

i

a

i

t

t

o

s

p

a

g  

2

f

d

r

t

f

2

2

m

fi

n

t

l

b

s

a

a

c

t

t

w

c

(

c

m

m

t

B

s

r

t

A

ourses are increasingly revolving around large-scale technologi- 

al interventions, including but not limited to the rapid decar- 

onisation of the power sector worldwide and the direct and in- 

irect electrification of all other economic and industrial sectors 

 Rogelj et al., 2018 ). amongst other social and economic chal- 

enges, the material implications of such a transition ( Capellán- 

érez et al., 2019 ), including for example for producing solar PV 

anels and wind turbines or batteries for storage and electric ve- 

icles ( Cronin et al., 2021 ), are generally overlooked; however, the 

eeds associated with the transition may not only compromise de- 

arbonisation efforts but also increase the rate of extraction and 

ransformation of basic materials ( Sovacool et al., 2020 ), and even 

ause geopolitical tensions over critical resources ( Vakulchuk et al., 

020 ). To accompany large-scale technological interventions with- 

ut compromising economic development, an increasing part of 

he literature highlights the potential lying in transforming linear 

conomic models into sustainable closed-loop industrial ecosys- 

ems ( Durán-Romero et al., 2020 ) and what is fundamentally being 

ermed as a transition to a circular economy. 

However, there currently is not only a lack of consensus on 

he conceptualisation and operationalisation of circularity princi- 

les and measures ( Reike et al., 2018 ), but also an absence of

 single commonly accepted concept of circularity in the litera- 

ure ( Kirchherr et al., 2017 ). Most definitions allude to resource 

fficiency as well as slowing, narrowing, and/or closing material 

ows for reduced material extraction and optimised use. But, de- 

pite the multitude of perspectives, a shared understanding lies in 

ecoupling natural resource consumption from economic output 

 McCarthy et al., 2018 ). Likewise, responding to the climate cri- 

is requires that economies achieve an absolute decoupling of eco- 

omic output and greenhouse gas (GHG) emissions ( Haberl et al., 

020 ). This shared goal of decoupling human activity, economic 

rowth, and well-being from broad environmental pressures, along 

ith the pivotal role of resource and energy efficiency in both 

ecarbonisation and circularity, constitute the crossroads of these 

wo seemingly separate yet in reality highly intertwined agendas 

 Hatfield-Dodds et al., 2017 ). 

The link between the two agendas is partly reflected in science; 

or example, in the essence of the ‘3Rs’ principle (reduce-reuse- 

ecycle) ( Yong, 2007 ) and its expanded scope ( Kirchherr et al., 

017 ), the aims of a transition to a circular economy are defined 

o also include the reduction of demand for scarce materials and 

he minimisation of GHG emissions related to material extraction, 

rimary production, and final use ( Hertwich et al., 2019 ). In pol- 

cy, one notable example can be found in the European Union: 

he impact assessment of its 2050 decarbonisation strategy showed 

hat circularity and behavioural changes could promote a rela- 

ively cheap and efficient 1.5 °C-compliant trajectory, compared to 

igh technological investments ( European Commission, 2018 ), as 

lso stressed by the private sector ( Energy Transitions Commis- 

ion, 2018 ). Following up, the European Green Deal now aims inter 

lia to carry out a series of initiatives amongst various policy areas 

n a shift from the traditional, take-make-waste, linear economic 

odel to a climate-neutral, circular economy ( European Commis- 

ion, 2020 ), with the region’s new circular economy action plan 

eing a core building block of the deal. This policy-level link is 

ven more pronounced in the increasing interest of tapping the po- 

ential of circular economy measures and decarbonisation policies 

n COVID-19 recovery packages ( Lewney et al., 2021 ; OECD, 2021a ; 

chröder and Raes, 2021 ). Nevertheless, there hitherto exists a lack 

f coordination and widespread synergies amongst climate change 

itigation and circularity in both modelling research ( Durán- 

omero et al., 2020 ) and policy ( Calisto Friant et al., 2021 ). 

Given the scope, speed, and timeframe in which the circular 

conomy is considered attributional to meeting various sustainabil- 

ty goals, this calls for researchers to come out of their disciplinary 
270 
ilos and work on a more integrative and holistic perspective of 

ransition options and their trade-offs and constraints. As the so- 

ial dimension is frequently missing ( Homrich et al., 2018 ), there 

s also a need for civil society and consumers, the private sector, 

s well as the policy framework within which it operates, to be 

ncluded. 

This perspective aims to reflect the common ground amongst 

he two agendas of circular economy and climate mitigation and 

heir respective research and practice communities. It then sets 

ut to explore how synergies can be established. It advocates for 

cience beyond disciplinary silos, based on interdisciplinary ap- 

roaches and transdisciplinary integration of voices from within 

nd outside the scientific community, in line with recent typolo- 

ies to bridge analytical approaches ( Geels et al., 2016 ; Hof et al.,

020 ), and to enable modelling representation of societal trans- 

ormations ( Nikas et al., 2020 ). To successfully integrate methods, 

isciplines, and bodies of knowledge, including a wide variety of 

etrospective and forward-looking perspectives with different foci, 

his perspective draws/adapts from recent literature on strategies 

or linking mitigation models and social sciences ( Trutnevyte et al., 

019 ), and proposes an outlook across three dimensions: 

• Exchanging concepts used by the different scientific communi- 

ties to reach a mutual understanding of circularity principles 

and measures and to identify the key sectors involved in cir- 

cularity processes and climate action alike, thereby laying the 

interdisciplinary groundwork necessary for developing the ca- 

pacity required to represent the circular economy in mitigation 

modelling (and vice versa). 

• Co-defining the goals of and roadmap to establishing links 

between climate action and circularity performance, by co- 

creating and entangling together qualitative storylines, knowl- 

edge, motives, and concerns of different actors (scientists, pol- 

icymakers, industries, citizens, etc.) into quantitative inputs, 

from a transdisciplinary perspective. 

• Translating and integrating these interdisciplinary and trans- 

disciplinary insights into new and/or structurally enhanced 

climate-energy-economy modelling capacity. 

. The common ground between circularity and climate action 

The link between circularity performance and climate change 

itigation is multi-dimensional. Both objectives may be largely de- 

ned, promoted, or hindered by similar socioeconomic and tech- 

ological trajectories, in which the envisaged decoupling transi- 

ions can unfold, and both transitions are assessed from similar 

enses and against similar criteria. Apart from energy efficiency 

eing a common denominator ( Jose et al., 2020 ), fossil fuels, ba- 

ic materials such as steel and cement, and biomass from forestry 

nd agriculture are vital reference points of decarbonisation and 

t the same time lie amongst the resources most emphasised in a 

ircular economy transition ( Mhatre et al., 2021 ). Conversely, sec- 

ors with significant potential for circularity—i.e., electronics, bat- 

eries and vehicles, packaging, plastics, textiles, construction, food, 

ater, and nutrients—also feature considerable potential for de- 

arbonisation, which is critical for a net-zero emissions economy 

 Mulvaney et al., 2021 ). Synergetic solutions to both objectives in- 

lude substituting the core group of basic materials that lead to 

ost industrial CO 2 emissions by secondary, less energy-intensive 

aterials ( Hertwich et al., 2019 ; IRP, 2020 )—e.g., cement by bioma- 

erials, such as wood in construction ( Hafner and Schäfer, 2017 ). 

etter circulation of materials as well as advances in efficiency and 

ubstitution are also necessary to cover the substantial material 

equirements for producing the energy technologies and storage 

o transition to a low-carbon economy ( Kouloumpis et al., 2015 ). 

ny interventions towards either goal can impact growth, employ- 
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ent, and social equity, as well as lead to new opportunities in 

pecific sectors and countries, allowing them to become frontrun- 

ers in, and exporters of, game-changing technologies and knowl- 

dge ( Johansson and Henriksson, 2020 ). In spite of this spectrum 

f linkages between the two objectives, circular solutions do not 

lways directly result in emissions reductions or increased overall 

ustainability ( Walzberg et al., 2021 ), much like frequently exam- 

ned mitigation strategies do not necessarily or explicitly account 

or improved circularity performance ( Pauliuk et al., 2017 ). 

This observed lack of mainstream synergetic measures for 

chieving both climate change mitigation and circularity perfor- 

ance can be traced back to the limited interaction between the 

cientific perspectives underpinning these fields and the different 

ethods and tools employed. 

Research in support of climate policymaking is heavily dom- 

nated by integrated assessment models (IAMs) ( Doukas and 

ikas, 2020 ), which allow to quantitatively assess interac- 

ions within the spectrum of the highly intertwined pil- 

ars of technology, economy, environment, policy, and society 

 Trutnevyte et al., 2019 ). Despite an emerging focus on Nexus ap- 

roaches ( Brouwer et al., 2018 ), IAMs typically include models that 

nalyse in detail specific high carbon value chains and their tech- 

ological solution strategies ( energy system and partial equilibrium 

odels ), including options that target both the carbon and mate- 

ial intensity of the represented value chain ( van Sluisveld et al., 

021 ). However, they tend to poorly represent resources and their 

ses. IAMs may also include macroeconomic models in a top- 

own approach that provide broader cross-/sectoral coverage with 

ess technological detail ( macroeconometric and general equilibrium 

odels ) ( Nikas et al., 2019 ). Such models typically used for climate

olicy analysis feature an aggregation of economic sectors that is 

oo high to provide valuable circularity insights in a systemic con- 

ext ( Winning et al., 2017 ), in particular related to primary and 

esource-intensive manufacturing sectors. Further, they mostly fo- 

us on flows, while disregarding material stocks. 

In contrast, as a circular economy can be implemented at 

he micro- (products, companies, and consumers), the meso–

eco-industrial parks) and the macro-level (cities, regions, na- 

ions), research endeavours to evaluate circularity performance 

ave adapted to all these levels. In particular, research in the 

road field of circular economy research has commonly orientated 

n life cycle assessment (LCA) ( Sassanelli et al., 2019 ) and agent- 

ased modelling (ABM) at the micro/ meso level, as well as envi- 

onmentally extended input-output analysis ( Donati et al., 2020 ; 

iebe et al., 2019 ), material flow analysis (MFA), and account- 

ng modelling ( Wiedenhofer et al., 2019 ) primarily at the macro 

evel ( Mayer et al., 2019 ). However, in contrast to models used 

or energy and climate policy analysis, resource flow models only 

onsider material energy carriers, with no explicit representation 

f the energy system. The use of economy-wide quantitative sys- 

ems modelling frameworks in circularity has also been gaining 

ttention ( McCarthy et al., 2018 ), as these can assess spillover ef- 

ects and interactions across sectors that are critical in the struc- 

ural shifts entailed in a transition to a circular economy. Nev- 

rtheless, such models employed in circularity research generally 

o not represent climate feedbacks nor climate-explicit policies 

 Pauliuk et al., 2017 ). 

This cultivates the need for an ambitious whole-system mod- 

lling approach ( Pye et al., 2021 ) to fully understand climate ac- 

ion in consideration of resource, material, monetary, and energy 

fficiency and stocks, as well as technical progress, demand shifts, 

ebound effects, and inter-, intra-, and cross-sectoral flows. The call 

or integration of disciplines for sustainability research is not novel 

e.g., Liu et al., 2015 ), and IAMs have in fact been viewed as a plat-

orm for breaking down disciplinary silos ( Hamilton et al., 2015 ). 

here have been attempts to establish links between material cy- 
271 
les and energy/emissions as early as decades back ( Giljum et al., 

008 ; Kram et al., 2001 ) or to describe material use and efficiency 

n relevant reference socioeconomic scenarios on which IAMs typ- 

cally anchor ( Pauliuk et al., 2021a ; Schandl et al., 2020 ). However,

he two modelling research communities remain fragmented, and 

heir tools detached. 

Another vital dimension of the circular economy lies in enhanc- 

ng effort s towards a less materialistic way of living ( Velenturf and 

urnell, 2021 ), with reduced consumption and improved produc- 

ion efficiency, where product recycling and reuse loops are geared 

owards waste prevention and efficient material flows and man- 

gement ( Bassi et al., 2021 ), in line with an industrial ecol- 

gy approach ( Saavedra et al., 2018 ). At the same time, em- 

owering both consumers and public buyers can enable long- 

asting lifestyle changes that affect individuals’ consumption habits, 

eading to whole-system changes that create a favourable en- 

ironment for the implementation of circular economy actions 

 Parajuly et al., 2020 ). Nonetheless, the role of the consumption 

ide in a circular economy remains a largely under-researched 

opic ( Georgantzis Garcia et al., 2021 ). This is also true for climate- 

conomy modelling practice: whatever their theory, structure, and 

overage, models tend to focus predominantly on the supply-side 

ction space ( Wilson et al., 2012 ), even though most scenarios for 

eeping temperature increase well below 2 °C describe transfor- 

ations in both energy supply and energy demand. This shared 

esearch gap requires going beyond the typical technocentric inter- 

retation of transitions in models as scenario assumptions narrated 

utside the vividly modelled systems of energy, environment, pol- 

cy, and economy ( Braunreiter et al., 2021 ; McCollum et al., 2020 ),

nd straying from the business-as-usual modelling focus on tech- 

ological options for energy efficiency improvements ( Wilson et al., 

018 ) or assumptions on the maximum potential of technological 

reakthroughs (e.g., Grubler et al., 2018 ). 

A shared research gap between the two communities can also 

e found in the assessment of action and actors involved at differ- 

nt scales: climate change mitigation and circularity performance 

re typically modelled at the global and/or national level; how- 

ver, both are a core theme of action plans and practice at the 

ocal level ( Kundzewicz et al., 2020 ; Petit-Boix and Leipold, 2018 ). 

ue to the complexity and interlinkages of global production and 

onsumption systems, there is a need to not only quantify the 

mpacts of implementing environmentally effective strategies at 

road geographical levels, but also with a sub-national granu- 

arity ( Hsu et al., 2019 ) to assess and upscale the impact on, 

nd potential of, local communities ( Christis et al., 2019 ; Gallego- 

chmid et al., 2020 ). 

Finally, despite climate action being a key goal of the 2030 

genda for Sustainable Development, circularity is only indirectly 

epresented via different Sustainable Development Goals (SDGs), 

n terms of responsible consumption and production, clean water 

nd sanitation, community sustainability, infrastructure resilience 

nd innovative industrialisation, etc. ( Schroeder et al., 2019 ). Nev- 

rtheless, much like responding to the climate crisis ( Cohen et al., 

021 ), the non-linear economic model has recently been described 

s a transformative mechanism that can aid in achieving overall 

ustainable development ( Millar et al., 2019 ). This requires view- 

ng the circular economy outside weak sustainability frames that 

rientate on resource efficiency ( Bimpizas-Pinis et al., 2021 ) and 

ubstitutability ( D’Amato et al., 2017 ), and considering the poten- 

ial, cross-cutting implications of competing sustainability goals 

 van Soest et al., 2019 ), rebound effects ( Zink and Geyer, 2017 ),

nd environmental or social trade-offs ( Harris et al., 2021 ). Much 

ike climate action ( Nikas et al., 2021 ), the transition to a circu- 

ar economy must thus be carefully but decisively reframed within 

he spectrum of sustainability, by investigating the trade-offs and 

ynergies between them ( Suárez-Eiroa et al., 2019 ). 
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It is, therefore, evident that the climate and circularity agendas 

hare similar goals, drivers, barriers, and potential implications; 

owever, their synergies remain underexplored, and their scien- 

ific common ground largely underexploited. Integrating the vari- 

us available research paradigms together into a single exercise is 

 step towards closing this gap. 

. Building conceptual bridges 

Systematically conceptualising and operationalising the various 

ircular economy measures in terms of mechanisms relevant to de- 

arbonisation remains a challenge, due inter alia to the diversity of 

eviews and debates around circularity ( Kirchherr et al., 2017 ) and 

he various interplays that must be considered in climate change 

itigation. Analysis of these interplays needs to be based on a 

lear definition of circularity and its shared goal with climate ac- 

ion, orienting on decoupling any human activity from pressures to 

he environment, and redirecting the socioeconomic system within 

lanetary boundaries ( Steffen et al., 2015 ). Moreover, beyond an 

dequate definition, the interconnection between circularity and 

itigation should be analysed in the context of economic territory 

ather than geographic territory. Currently, the environmental pres- 

ures related to climate change are observed from the perspective 

f the territorial limits of countries (partially based on data on en- 

rgy balances), whereas production and consumption activities, on 

hich actions related to circularity essentially revolve, are quanti- 

ed in the context of the limits of the economic territory (princi- 

le of residence according to the system of national accounts). This 

nconsistency not only makes it difficult to compare the progress 

ade by different economies on the circular economy and climate 

hange mitigation, but it also hinders the establishment of a solid 

nalytical foundation that would allow for an adequate linkage be- 

ween the two goals. Sectors with a high energy consumption pat- 

ern are at the same time the sectors where the greatest amounts 

f secondary products are used, while all productive activity is 

imed at satisfying final demand. Therefore, analysing and under- 

tanding the connection between mitigation and circularity cannot 

e independent of understanding the structural characteristics of 

nal use of products and services in each economy, which is de- 

ermined in turn by changes in consumption habits related to mo- 

ility, food and housing, and other human necessities. 

Clarifying the definitional boundaries of the circular economy 

nd outlining its interfaces with climate action are important pre- 

equisites to establishing a conceptual typology and mapping of 

ircular economy measures onto emissions profiles (e.g., product 

haracteristics and technical improvements ( Glöser-Chahoud et al., 

021 , 2019 )), considering also shifts in production or consump- 

ion patterns, changes in user behaviour (e.g., sharing/secondary 

arkets), and auxiliary parameters (e.g., surrounding energy sys- 

ems). This conceptual mapping between circularity and climate 

ction must be supplemented with a thorough understanding of 

he objectives and scale of existing models for climate change mit- 

gation and their advantages and limitations in measuring circu- 

arity performance and its interrelations with climate change (e.g., 

cCarthy et al., 2018 ). This process can help match conceptual as- 

ects with model parameters, as well as identify gaps between 

onceptual requirements for comprehensive modelling of the cir- 

ular economy in climate mitigation and existing modelling capa- 

ilities. 

Effectively im plementing circular economic measures and cli- 

ate action requires strong policy direction and monitoring. Sets 

f monitoring indicators have been recently proposed in the Eu- 

opean Union to assist member states in evaluating circularity 

erformance ( Eurostat, 2021 ), and by the OECD to assess effects 

f the circular economy on the environment, governance, econ- 

my and business, infrastructure and technology, and civil society 
272 
 OECD, 2021b ). To sufficiently understand the impact of circularity 

n climate change, and vice versa, as well as its broader sustain- 

bility implications, firm interconnections should be established 

mongst circularity criteria, emissions mitigation indicators, and 

ustainability criteria—for example, those defined for IAM analysis 

f SDG progress ( van Vuuren et al., 2021 ). Operationalising such a 

et of integrated indicators enables a better understanding of the 

ircular economy and decarbonisation and establishes a common 

anguage with integrated assessment modelling, allowing mem- 

ers of both communities to quantitatively assess future trade-offs 

nd synergies amongst circular economy and mitigation measures 

 Rodriguez-Anton et al., 2019 ) and collectively assess holistic sus- 

ainable development pathways ( Soergel et al., 2021 ). 

Transition pathways towards circular carbon neutrality usually 

tipulate a balanced interplay of environmental and economic sys- 

ems ( Ghisellini et al., 2016 ). Before implementing the policy mea- 

ures required to ensure this interplay, it is crucial to compre- 

end the most significant linkages between key manufacturing sec- 

ors and other economic activities. And, although the link between 

ritical sectors (steel, cement, and chemical industries, etc.) and 

ey demand sectors (transport, buildings, agriculture, power gen- 

ration, etc.) is typically understood, data availability for detailed 

ssessments remains limited while interlinkages with waste man- 

gement, recovery, repair, remanufacturing, leasing/rental, etc. are 

ess established. Integrating such processes in these conventional 

upply-demand ties, as well as coupling them with emissions re- 

oval activities through natural and synthetic processes, comes as 

 key challenge towards building feasible carbon-neutral and circu- 

ar transition pathways that consider implications for energy and 

aterial usage (e.g., Lee et al., 2017 ). 

Apart from technical improvements in the design of products 

nd production processes currently in use that aim at material 

fficiency, the transition to a circular economy also requires pro- 

ound transformations of both society and existing production sys- 

ems. Through this technical and socio-economic transformation, 

ll necessary systemic changes should be triggered to guide the 

hift to multi-sectoral meta-regimes based on updated global eco- 

omic models as part of a deep transition ( Kern et al., 2020 ). These

ransformations initially entail the diffusion of innovation that en- 

bles the transition from linear to circular models, with actor- 

ased approaches being key to enhance acceptability and uptake 

f radical and disruptive innovations. However, there is yet a lack 

f understanding on the core components of social innovation in 

he circular economy and the role of agency in multi-sectoral en- 

ironments, including actors’ decisions at the household and in- 

ustry level. This highlights that non-modelling developments and 

heir integration are also critical: although socio-political aspects 

re to some extent rooted in IAMs, a broad variety of socioe- 

onomic and political factors are not always represented well in 

odelling—e.g., distributional impacts, interaction with develop- 

ent priorities other than climate, structural inertia and path de- 

endencies, psychological and socio-cultural inertia, lack of infor- 

ation, etc. This limited representation of such factors points to 

he need for the modelling community to engage deeply with the 

road range of disciplines comprising social sciences and humani- 

ies ( Braunreiter et al., 2021 ; van Beek et al., 2020 ). Employing dif-

erent sustainability transition frameworks such as Systems of In- 

ovation, the Multi-Level Perspective, and Strategic Niche Manage- 

ent (and combinations of them; e.g., Koasidis et al., 2020 ) can 

ridge these gaps. It can also shed light on the impacts of lifestyle 

hanges related to the transition to a circular economy, including 

ocioeconomic, gender, and cultural dimensions as well as broader 

ehavioural shifts, such as dietary selections ( Mylan et al., 2016 ), 

nergy and material consumption profiles, investment decisions, 

nd choices with direct implications for circularity (reduction of 

ood waste and energy use, product reuse, etc.). Overall, sociotech- 
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ical analyses enable the establishment of realistic qualitative nar- 

atives that meaningfully inform research and quantitative systems 

odelling exercises ( Rogge et al., 2020 ; van Sluisveld et al., 2020 ),

nsuring that the bridges between circularity performance and cli- 

ate action are well tied with the societal implications of the tran- 

ition. 

. The critical role of non-scientists in science 

Designing and implementing effective strategies for a transi- 

ion to a circular, climate-neutral economy requires the partici- 

ation of multiple stakeholders, including policymakers, industry 

epresentatives, cities and local communities, and the wider pub- 

ic ( Stahel, 2016 ). Therefore, relevant research activities, includ- 

ng modelling, must be qualitatively guided, supported, and legit- 

mised through co-creation activities with all stakeholder groups, 

s broadly argued for all knowledge systems that are used to 

nform sustainable development ( Cash et al., 2003 ). For exam- 

le, policy makers can provide directions for the transition at a 

acro level, industry experts can provide on-the-floor knowledge 

nd tacit information on applicability at a meso level, and citi- 

ens can provide insights on their willingness to adopt different 

olutions at a micro level. Strategies for co-creation with diverse 

takeholder groups have been broadly framed as a way to increase 

he desirability and societal relevance of sustainability transitions 

 Nikas et al., 2020 ), based on transdisciplinary research processes 

nd methods ( Pohl et al., 2017 ) and innovation models ( Durán- 

omero et al., 2020 ). If not for co-production of knowledge and 

olicy, stakeholder involvement can at least act as a communica- 

ion channel and inform stakeholders about the benefits of circular 

nd climate-related interventions, thereby boosting the uptake of 

esearch outputs ( Galende-Sánchez and Sorman, 2021 ). 

In particular, when it comes to policy, discourses amongst high- 

evel policymakers and scientists are not uncommon in develop- 

ng national targets and policies for climate change, circular econ- 

my, and sustainability in general, but the different policy lev- 

ls remain fragmented (e.g., Calisto Friant et al., 2021 ). Multi- 

evel governance and deliberation can provide valuable insights 

n bridging the existing high-level targets with the capacities and 

eeds of countries and local communities, which can be pivotal 

n (the acceptability of) circular economy and climate mitigation 

nitiatives alike ( Fuso Nerini et al., 2019 ; Prendeville et al., 2018 ).

or instance, many European cities (e.g., Amsterdam, Brussels, and 

aris) have been at the forefront of such initiatives, focusing on 

aterial-related measures (like waste management and recycling), 

haring economy initiatives, and communication campaigns to pro- 

ote behavioural changes ( Fratini et al., 2019 ). Local governments 

nd decision-makers can also form a link between national and 

uropean policy, industry, and the wider public for actions tar- 

eting emissions cuts and circularity performance ( Petit-Boix and 

eipold, 2018 ). 

From an industrial perspective, existing climate and circular 

conomy policies have focused on technological solutions and in- 

ovations on the supply side ( O’Neill et al., 2020 ), mostly targeting 

 select few industries ( Durán-Romero et al., 2020 ). While some 

f these solutions include industrial symbiosis ( Petit-Boix and 

eipold, 2018 ), recent calls indicate the need for broader sup- 

ly and value chain transformations ( Mateus and Martins, 2020 ). 

n this direction, close collaboration amongst researchers, indus- 

rial partners, and policymakers is needed to develop and evaluate 

ransformation strategies for existing production sites and analyse 

he role of regional industrial clusters in future value chains and 

owards industrial symbiosis. Field studies in close collaboration 

ith industrial, research, and policy actors can offer insights to be 

ntegrated in the modelling frameworks used by researchers and 

olicymakers and facilitate a realistic and robust representation of 
273 
ndustrial transformations, while at the same time ensure the fea- 

ibility, ownership, relevance, and uptake of findings for industry 

 Okorie et al., 2021 ). 

On the demand side, citizens can be central in the effort s to- 

ards enhancing both decarbonisation effort s and circularity per- 

ormance, by changing lifestyles and energy/material use pro- 

les, thus complementing and legitimising technological and pol- 

cy change. The behavioural dimension relates not only to the con- 

umption rates that determine energy and material demand in 

he economy but also to cultural and habitual aspects that affect 

r block the uptake of material and energy reduction strategies 

 Ellen MacArthur Foundation, 2019 ). For example, the food sys- 

em constitutes one of the most salient sectors where behavioural 

hange directly impacts a transition to a circular economy (i.e., 

exitarian diets and food waste reduction) ( Springmann et al., 

018 ). Additionally, lifestyle changes have the potential to signif- 

cantly reduce both material use and emissions across the build- 

ngs and mobility sectors ( Christis et al., 2019 ; Petit-Boix and 

eipold, 2018 ), e.g., through sharing economy schemes that can 

ptimise the utilisation of cars, bikes, and building spaces. While 

ehavioural aspects have been introduced in macroeconomic and 

ntegrated assessment models ( Aguilar-Hernandez et al., 2021 ; 

iamir et al., 2020 ; van de Ven et al., 2018 ; van Vuuren et al.,

018 ), they remain largely underrepresented or merely represented 

s simplified exogenous assumptions for consumption rates and 

articipation in sharing activities ( McCarthy et al., 2018 ). How- 

ver challenging ( Sovacool et al., 2021 ), recent calls for a shift 

n the transitions research and policy agenda ( Nikas et al., 2020 ) 

ave argued for approaches to involving citizens in climate gov- 

rnance ( Dryzek and Niemeyer, 2019 ) and science ( Doukas and 

ikas, 2021 ), and the same has been argued for circularity research 

 Geissdoerfer et al., 2017 ). 

. Developing new modelling capacity 

Modelling the circular economy requires a comprehensive rep- 

esentation of end-to-end supply chains and a profound under- 

tanding of the physical and monetary flows throughout the econ- 

my ( Pauliuk et al., 2021b ). Although studies have begun assessing 

ircularity and its regional and global impacts on emissions and 

nergy demand (e.g., Hertwich, 2021 ), a more detailed and consis- 

ent quantitative and consistent investigation of impacts, costs, and 

olicies is still missing. Currently, models used to produce mitiga- 

ion pathways, such as IAMs and other macroeconomic models, do 

ot include a sufficiently detailed representation of the material 

ows throughout the entire product life cycle, nor do they portray 

aterial or product stocks, while the representation of secondary 

arkets and recycling tends to lack granularity ( McCarthy et al., 

018 ). Depending on the modelling structure, many key sectors 

re lacking detailed modelling or are absent in IAMs ( Keppo et al., 

021 )—e.g., the mineral extraction and food industries. In addition, 

any of the relevant products are too clustered to allow modelling 

ctivities associated with specific changes in the respective produc- 

ion and consumption pathways. Implications of increased digital- 

sation, electrification, and dietary and other behavioural changes, 

ith impacts on waste reduction and material reuse, require thor- 

ugh representation of production technologies and interlinkages 

mongst these sectors and products via global and regional supply 

hains. Additionally, some models have relatively detailed repre- 

entations of the industrial manufacturing sector (e.g., Fleiter et al., 

018 ; Nechifor et al., 2020 ) however, with few exceptions and 

o some extents (e.g., in the E3ME-FTT model, see Lee et al., 

018 ), there is usually no coupling to the energy sector to model 

ndogenously how energy technology deployment patterns will 

mpact the industrial manufacturing sector. Existing models may 

lso lack functionalities to endogenously represent how chang- 
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ng consumption patterns impact the industrial manufacturing of 

oods and business supply of services. Enhanced representation of 

hese interlinkages along with a shift from technology-rich to both 

echnology- and material-rich models are necessary steps towards 

xploring how increasingly resource-conserving, circular activities 

an contribute to emissions cuts. 

Both the models typically used for analysing climate-economy 

nteractions (e.g., IAMs) and those employed in circularity research 

ust, therefore, be enhanced to incorporate modelling features 

hat are currently missing. One such example is detailed represen- 

ation of economic activities related to enhanced circularity per- 

ormance (i.e., material recycling, repair, share, and re-use) in the 

orm of detailed bottom-up material flows, technological options, 

nd their costs. Via better representation of key technologies and 

roduction systems, scientists will be better equipped to quantify 

ow circularity performance contributes to energy, emissions, and 

aterial savings. For example, recent studies have shown that cir- 

ular economy strategies can yield promising results in the decar- 

onisation of steel ( Luh et al., 2020 ; Nechifor et al., 2020 ), cement

 Rehfeldt et al., 2020 ), and ammonia industries ( Budinis et al., 

020 ). Such developments enable better resolution of the produc- 

ion processes of product groups relevant to both production and 

onsumption activities that are central to the lifecycle impacts of a 

ow-carbon transition—e.g., recycling of batteries, renewable power 

omponents (wind turbines, solar panels), and electric infrastruc- 

ure (copper, etc.). 

Finally, model coupling can be used to further improve the rep- 

esentation of value chains in the various modelling frameworks 

sed to produce mitigation pathways. Establishing links between 

he various assessment tools will allow to expand current mod- 

lling capacities to thoroughly assess closed-loop economic sys- 

ems and interactions with the climate system ( Volkart et al., 

018 ). One example lies in reinforcing commonly used models 

or mitigation, based in general on monetary data of the global 

conomy, by hard-linking them to other datasets, representing 

conomic activities in physical terms. Such material and energy 

ows through the economy are normally presented in the form 

f (global, multi-regional) Physical Supply and Use Tables (PSUTs) 

f materials and energy or are compiled in the format of Physi- 

al Input-Output Tables (PIOTs). By means of linking both datasets 

he analytic possibilities are increased allowing hybrid analyses of 

conomy-environment interactions ( Schoer et al., 2013 ). This char- 

cteristic of the hybrid models—i.e., representation of material and 

nergy flows in a high sector and process resolution within the 

onetary datasets on the economy—improves the representation 

f relevant production and consumption activities in the models. 

ut it also allows reducing uncertainties in models, based on mon- 

tary data, caused by market prices distortions. This flexible repre- 

entation of flows is the first step for harmonising physical flows 

nd monetary databases to enable hard and soft linkages with cli- 

ate change mitigation models ( Pollitt et al., 2020 ). Global PIOT 

odels have recently been used to assess agriculture and food 

roducts ( Bruckner et al., 2019 ) as well as iron and steel ( Wieland

t al., 2021 ). 

However, there is still significant ground to cover other climate- 

ntensive metals, such as copper or aluminium, construction mate- 

ials such as cement, and biomass-related sectors such as textiles 

nd pulp/paper. Covering all international supply chains in physi- 

al terms will enable to significantly enhance the representation of 

aterial use in mitigation models ( Sun et al., 2019 ). Conversely, via 

 two-way integration of material and energy flows, physical tables 

n material flows can be extended with data on GHG emissions 

alculated using information on the physical energy flows for all 

rocesses and products, enabling higher-level mitigation potential 

ssociated with different types of materials and products. Coupling 

an also contribute to reducing epistemological uncertainties sur- 
274 
ounding the broader environmental pressures resulting from the 

iffusion of mitigation technologies, for instance via LCA-IAM links 

 Arvesen et al., 2018 ; Ichisugi et al., 2019 ; Mendoza Beltran et al.,

020 ). 

. Concluding remarks 

Even the most ambitious technological breakthroughs and con- 

entional top-down policies will be insufficient to deliver Paris- 

ompliant mitigation trajectories. The decarbonisation potential ly- 

ng in linear-to-circular economic model transformations and in 

ostering more sustainable lifestyle patterns has been increasingly 

aining attention; nevertheless, critical aspects remain underex- 

lored. This perspective has outlined key similarities between the 

limate and circular economy agendas, as well as highlighted the 

aps between their modelling communities and methodologies. 

hile calls to reconcile these modelling communities are not new, 

ur perspective outlines a novel paradigm to holistically inform the 

odelling integration through diverse inter- and transdisciplinary 

nteractions both amongst scientists and with non-scientific stake- 

olders. 

With a view to providing recommendations as key takeaways of 

his perspective, an outlook for future research is further suggested 

owards achieving the proposed integration. First, the different sci- 

ntific communities should build bridges with one another and 

dopt an interdisciplinary approach that draws from diverse meth- 

ds and models that are typically used independently to address 

uestions on circularity, climate action, and sustainability. Second, 

mploying a transdisciplinary paradigm, in which these communi- 

ies co-produce knowledge with non-scientific stakeholders (pol- 

cy, industry, and civil society), will allow to co-develop Paris- 

ompliant, circularity-enhanced scenarios to systematically assess 

he contribution of the circular economy to decarbonisation, while 

nhancing their scientific credibility and legitimacy. Third, the 

ntegrated assessment modelling community should then trans- 

ate these interdisciplinary and transdisciplinary insights into new 

odelling capabilities in the IAMs, which are typically used to 

roject human-earth interactions in response to climate and pol- 

cy shocks and to inform decision processes. This will allow policy- 

akers and scientists to explore mitigation pathways that lead to a 

ircular, net-zero economy with improved industrial value chains, 

hysical flows, and sectoral reconfigurations, energy-, material-, 

nd climate-conscious individual lifestyles and societal behaviours, 

nd broader sustainability. 

Considerable progress can be claimed for modelling research 

n sustainability transitions in the past decade. But, if circularity 

erformance and decarbonisation are to be viewed as two pieces 

tting together in the sustainability jigsaw, breaking down disci- 

linary silos must be the ambitious next step. 
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