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Abstract
The SubNiño4 index based on the subsurface potential temperature around the
thermocline beneath the west Pacific warm pool, the Niño 4 region, is examined
as a long-range indicator of the surface El Niño–Southern Oscillation (ENSO)
and ENSO-driven atmospheric response. The SubNiño4 index captures the evo-
lution of subsurface ocean heat content between the El Niño and La Niña phases
of the ENSO cycle, allowing it to serve as a long-range indicator of surface ENSO
and hence also many ENSO-driven atmospheric anomalies. The SubNiño4 index
has more temporally stable correlations with Niño 3.4 than the widely used west-
ern equatorial Pacific warm-water volume indicator. For a lead time of the order
of 12 months, Niño 3.4 correlations afforded by the lead observed SubNiño4
index become similar to and can exceed those produced by typical dynamical
ENSO predictions. The value and viability of the SubNiño4 index as a simple sta-
tistical long-range indicator of ENSO-driven atmospheric response is shown for
regional precipitation anomalies throughout the Tropics and fires in Continental
and Maritime Southeast Asia.
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1 INTRODUCTION

El Niño (La Niña) events refer to the warming (cooling)
of the equatorial Pacific Ocean sea-surface temperature
(SST: Timmermann et al., 2018; Wang, 2018). These con-
ditions are accompanied by a weakening (strengthening)
of the Pacific equatorial trade winds and other changes
in atmospheric and oceanic circulations (Timmermann
et al., 2018). The Southern Oscillation refers to the oscil-
latory behaviour of the sea-level pressure between the
tropical East and West Pacific (Wang, 2018). The warming
and cooling of the equatorial Pacific SST and the Southern
Oscillation are now understood as different manifestations

of the same basinwide climate phenomenon, termed
El Niño–Southern Oscillation (ENSO), which is driven
by coupled atmosphere–ocean processes (Timmermann
et al., 2018; Wang, 2018). ENSO affects global climate,
marine, and terrestrial ecosystems (Timmermann et al.,
2018). It dominates interannual climate variability and
affects seasonal precipitation, wind, and temperature
patterns over vast distances globally through dynamical
atmospheric processes (Davey et al., 2014; Timmermann
et al., 2018).

Bjerknes (1969) first proposed that El Niño is brought
to a mature state by a positive feedback between a warm
SST anomaly and westerly wind anomaly via the SST
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gradient, Walker circulation, and ocean circulation. Since
then, various negative feedback mechanisms have been
put forward to allow for the oscillatory behaviour of
ENSO, giving rise to four different self-sustained oscil-
lator models for ENSO: the delayed oscillator model
(Suarez and Schopf, 1988; Battisti and Hirst, 1989) based
on the reflection of westward-propagating downwelling
Rossby waves into eastward-propagating downwelling
Kelvin waves at the western boundary of the Pacific; the
recharge–discharge oscillator model (Jin, 1997a; 1997b)
based on the discharge and recharge of equatorial Pacific
Ocean heat content to and from higher latitudes via
Sverdrup transport; the western Pacific oscillator model
(Weisberg and Wang, 1997; Wang et al., 1999) based on
the upwelling Kelvin wave forced by wind anomalies in
the western Pacific; and the advective–reflective oscillator
model (Picaut et al., 1997) based on the anomalous zonal
current associated with the reflections of upwelling Rossby
(downwelling Kelvin) waves into upwelling Kelvin (down-
welling Rossby) waves at the western (eastern) bound-
ary of the Pacific and the mean zonal current. The uni-
fied oscillator model (Wang, 2001; 2018) summarises the
four self-sustained oscillator models nicely, suggesting that
all proposed negative feedback mechanisms are at work
together, with their relative importance varying with time.
It has been identified that a build-up of ocean heat con-
tent resulting from advective processes is necessary for
the onset of El Niño (Ramesh and Murtugudde, 2013;
Ballester et al., 2016; Timmermann et al., 2018). In particu-
lar, Ramesh and Murtugudde (2013) showed that a subsur-
face discharge of warm water always begins prior to an El
Niño event and can precede the peak by up to 18 months.
Thus, successful capturing of such processes holds the key
to long-range ENSO forecasts (McPhaden, 2004; McGre-
gor et al., 2012; Ramesh and Murtugudde, 2013; Ballester
et al., 2016; Petrova et al., 2017; Timmermann et al., 2018).

The incorporation of subsurface temperature into sta-
tistical ENSO oceanic surface state predictions has been
explored previously (e.g., Drosdowsky, 2006; Petrova et al.,
2017; 2020). Here we extend the idea, to study directly for
the first time the relationship between subsurface temper-
ature and atmospheric responses throughout the Tropics
identified to have a teleconnection with the ENSO oceanic
surface state. In particular, the western Pacific warm-water
volume (WWVW) has been used as a long-range predictor
for ENSO (e.g., Planton et al., 2018; Izumo et al., 2019; Zhao
et al., 2021). Here, we propose an index similar to WWVW
but based on the subsurface potential temperature (SubT)
around the thermocline. The SubNiño4 index is defined to
be the SubT anomaly averaged beneath the Niño 4 region
between depths of 100 and 300 m. Sparks and Toumi (2020)
first constructed a similar index, which they called the sub-
Niño4 index, as the mean June–August “subsurface ocean

temperature anomaly” averaged over the same region, and
showed that it is capable of predicting tropical cyclone
landfall in South China with a lead time of one year. They
attributed this success to the surfacing of the temperature
anomaly around the SubNiño4 region, establishing SST
patterns that influence atmospheric circulation patterns.

We show here that the SubNiño4 index captures the
subsurface heat advection around halfway between the
mature El Niño and La Niña phases of the ENSO cycle. The
lagged correlation between the observed SubNiño4 and
Niño 3.4 can exceed the simultaneous correlation between
the observed and predicted ENSO at a lead time of around
12 months. We also show that the SubNiño4 index may be
more reliable than the WWVW indicator. Using regional
precipitations and fires as examples, we demonstrate that
the SubNiño4 index can serve as a long-range indicator of
ENSO-driven atmospheric phenomena in many regions
of the Tropics.

2 DATA AND METHODS

2.1 Datasets

Both SST and SubT data were obtained from the UK
Met Office Hadley Centre observation datasets. SST data
were taken from the Hadley Centre Sea Ice and Sea Sur-
face Temperature dataset HadISST1 (Rayner et al., 2003).
SubT data were taken from the EN4 dataset (Good et al.,
2013); in particular, version EN.4.2.2 with Gouretski and
Reseghetti (2010) expendable bathythermographs (XBT)
and Gouretski and Cheng (2020) mechanical bathyther-
mographs (MBT) corrections was used. Here each SubT
data entry has an accompanying observation weight
between 0 and 1, which is the relative weighting given to
the observations compared with the background, with 0
meaning no observations.

Surface zonal wind stress data consist of the eastward
turbulent surface stress taken from the European Centre
for Medium-Range Weather Forecasts (ECMWF) ERA5
monthly averaged data on single levels from 1979 to the
present (Hersbach et al., 2019).

Two precipitation datasets were used in this study.
Global precipitation data were taken from the National
Oceanic and Atmospheric Administration (NOAA)
National Centers for Environmental Information Global
Precipitation Climatology Project (GPCP) Climate Data
Record (CDR) version 2.3 (Adler et al., 2016). Indian pre-
cipitation data were taken from the Indian Institute of
Tropical Meteorology (IITM) Indian regional/subdivi-
sional Monthly Rainfall dataset (IITM–IMR: Kothawale
and Rajeevan, 2017).

Fire data were obtained from the National Aeronautics
and Space Administration (NASA) Moderate Resolution
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Imaging Spectroradiometer (MODIS) Collection 6 Active
Fire Product (Giglio et al., 2016; 2020). Fire pixels recorded
in the gMCD14ML product by the Terra satellite were fil-
tered to keep only those classed as “presumed vegetation
fire” and with a detection confidence of at least 30%. These
pixels were then adjusted for the cloud coverage recorded
in the MOD14CMQ product according to Giglio et al.
(2006). The fire count over a region is the total number of
cloud-cover-adjusted pixels over that region.

The Canadian Forest Service Fire Weather Index Rat-
ing System (FWI) produced by the Copernicus Emer-
gency Management Service for the European Forest Fire
Information System (European Centre for Medium-Range
Weather Forecasts, 2019) was used in this study. It gives
the best dependence index skill score in Southeast Asia
among the three indices studied by Di Giuseppe et al.
(2016). The FWI depends on local noon relative humidity,
temperature, and wind speed among others.

2.2 Methods

To obtain the time series of the Niño 3.4 index, the
monthly average SST data were averaged over the Niño 3.4
region (170◦W–120◦W, 5◦S–5◦N) and then the seasonal
cycle computed from the 30-year period from 1986–2015
was removed. The time series of the SubNiño4 index was
obtained similarly from the monthly average SubT data,
averaging over the Niño 4 region (160◦E–150◦W, 5◦S–5◦N)
and between depths of 100 and 300 m. Monthly average
20 ◦C isotherm depth (Z20) profiles were determined by
interpolating the monthly average SubT data vertically.
The Niño4–Z20 anomaly time series was then obtained
from the monthly average Z20 profiles using the same
procedure as for the Niño 3.4 index, averaging over the
Niño 4 region. WWVW is the volume of water above the
20 ◦C isotherm within 120◦E–160◦W and 5◦S–5◦N and its
anomaly time series was obtained as above. The time series
of the surface zonal wind stress anomaly over the Niño 4
region was obtained similarly from the monthly average
surface zonal wind stress data.

To study the behaviour of the Niño 3.4 and Sub-
Niño4 time series, their three-month moving average time
series were considered. Their mean, standard deviation,
skewness, and excess kurtosis were computed. Discrete
Fourier transforms were performed on the time series to
obtain their frequency spectra. Peaks are considered signif-
icant if their amplitude is above the 95th percentile from
an ensemble of 10,000 first-order autoregression (AR(1))
model simulations. A subsurface warm (cold) episode is
defined to be the period when the SubNiño4 three-month
moving average time series exceeds 0.5 ◦C (−0.5 ◦C) for at
least five consecutive three-month periods.

To study the time evolution of the SubT anomaly
profile, the monthly average SubT data were averaged
between latitudes of 5◦S and 5◦N and linearly detrended.
The seasonal cycle computed from the 30-year period
from 1986–2015 was removed and the three-month mov-
ing average was considered. The peak of each subsur-
face warm and cold episode was identified and used as
anchor to align all episodes. The composite difference
between warm and cold episodes was taken during various
three-month periods before and after the peak for up to one
year and significance was determined by bootstrapping
with 5,000 resamples. Correlation analysis was performed
between the SubNiño4 index at the peak three-month
period and the processed subsurface profile with various
lead/lag for up to one year.

To investigate the connection between the surface and
subsurface, the lagged correlations between the SubNiño4
index and various surface variables, including the Niño 3.4
index, precipitation, and FWI, were computed.

The Niño 3.4 index and the global precipitation field
were averaged over the four main seasons of December–
February (DJF), March–May (MAM), June–August (JJA),
and September–November (SON). The Niño 3.4 index was
correlated with the SubNiño4 index and, for benchmark-
ing purposes, the WWVW anomaly in the 25 overlapping
three-month periods leading to each of the four main sea-
sons. The global precipitation field was correlated with
the SubNiño4 index in the three-month period exactly one
year before each of the four main seasons.

Precipitation over the Maritime Continent
(95◦E–150◦E, 12◦S–5◦N) DJF (King and Vincent, 2018),
Northeast Brazil (47◦W–35◦W, 10◦S–0◦) MAM (Folland
et al., 2001), Gulf of Guinea (20◦W–10◦E, 4◦N–8◦N)
and Sahel (20◦W–10◦E, 10◦N–20◦N) June–September
(JJAS) (Losada et al., 2012), South Africa (12.5◦E–42.5◦E,
35◦S–15◦S) December–March (DJFM) (Hoell et al.,
2017), and East Africa (30◦E–41.25◦E, 15◦S–5◦N)
October–December (OND) (Mutai et al., 1998) was cor-
related with the SubNiño4 index and, for benchmarking
purposes, the WWVW anomaly and Niño 3.4 index for
the 25 overlapping three-month periods leading to the
relevant precipitation season. The analysis was also per-
formed on the Maritime Continent over the remaining
three main seasons MAM, JJA, and SON; on East Africa
MAM; and on IITM–IMR JJAS.

The analysis described above for regional precipitation
was repeated for the FWI averaged over the most fire-active
part of Maritime Southeast Asia (95◦E–119◦E, 6◦S–7◦N)
for June–October (JASO) and Continental Southeast Asia
(100◦E–110◦E, 9◦N–17◦N) DJFM. The two regions were
chosen to capture most of the fire, and the peak season
for the FWI over the corresponding region was chosen for
study.
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All time series were linearly detrended before correla-
tion analysis. All correlation coefficients in this study are
Pearson correlation coefficients.

3 RESULTS

3.1 Connection between sea-surface
and subsurface temperatures

The Niño 3.4 and SubNiño4 time series between 1979 and
2020 are shown in Figure 1a. In general, the SubNiño4
index leads the Niño 3.4 index by a fairly constant time
of about 6–12 months. The subsurface warm and cold

episodes identified are shaded in pink and cyan, respec-
tively. Figure 1b shows the frequency spectra of the
Niño 3.4 and SubNiño4 time series, together with corre-
sponding benchmark amplitude from an AR(1) ensem-
ble. Both frequency spectra have significant peaks corre-
sponding to periods of 1.46 and 4.53 years. In between,
Niño 3.4 shows six more significant peaks, but only two
are matched by SubNiño4; just beyond the high-frequency
end, Niño 3.4 displays two more significant peaks, nei-
ther of which is matched by SubNiño4. The two frequency
spectra are similar overall, but SubNiño4 is less noisy.
Normalised histograms of the two indices are shown in
Figure 1c. The SubNiño4 index displays a higher mean,
lower standard deviation, and higher kurtosis than the

F I G U R E 1 (a) Time series of the SubNiño4 and Niño 3.4 indices. Subsurface warm (cold) events are indicated with pink (cyan)
shading. (b) Frequency spectra of SubNiño4 and Niño 3.4. The dashed lines indicate the 95th percentile amplitude from an ensemble of
10,000 AR(1) model simulations. (c) Normalised histogram of SubNiño4 and Niño 3.4 with mean (𝜇), standard deviation (𝜎), skewness (g1),
and excess kurtosis (𝛽2). (d) Same as (c) but for the Niño4–Z20 anomaly. (e) Same as (c) but for the surface zonal wind stress anomaly over
the Niño 4 region. (f) Observation weights for SubT at 27 different points within the SubNiño4 region (grey) and the average (pink). The red
line marks the beginning of 1979 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Niño 3.4 index. The SubNiño4 index is negatively skewed,
while the Niño 3.4 index is positively skewed, with the for-
mer having a higher absolute skewness. The normalised
histograms of the SubNiño4 index and the Niño4–Z20
anomaly resemble each other (Figure 1c,d). They are
highly correlated (r = 0.99, p < 0.01) and have similar
negative skewness. The normalised histogram of the sur-
face zonal wind stress anomaly over the Niño 4 region
is shown in Figure 1e. It is positively skewed and signif-
icantly correlated with the SubNiño4 index in December
(r = −0.34, p < 0.05) and January (r = −0.49, p < 0.01).
Figure 1f shows the SubT observation weights for 27 points
inside the SubNiño4 region and the region-averaged obser-
vation weight from 1960–2020. To ensure data quality,
only data from 1979 onwards are used in this study unless
otherwise specified.

Figure 2 shows the time evolution of the compos-
ite difference of the SubT profiles between subsurface
warm and cold episodes, aligned at their peaks with sig-
nificance determined by bootstrapping. Figure 3 shows
the correlation between the SubNiño4 index over the
anchor three-month period and the SubT profiles with
various lead/lag, with significance determined by p-value.

The patterns displayed in the two figures resemble each
other, revealing the spatio-temporal evolution of equato-
rial Pacific ocean heat content during a generic ENSO
cycle. The cycle begins around half a year before a sub-
surface warm/cold episode with a temperature anomaly
centred westwards of the SubNiño4 region and connected
to the surface. The temperature anomaly then extends into
the SubNiño4 region to establish a subsurface warm/cold
episode, while disconnecting itself from the surface. It then
propagates eastwards and upwards along the climatologi-
cal 20 ◦C isotherm fully decoupled from the surface. After
around half a year, the subsurface temperature anomaly
starts to leave the SubNiño4 region and spreads to the sur-
face. One year from the subsurface warm/cold episode,
the temperature anomaly becomes disconnected from the
isotherm and manifests itself as a purely surface tem-
perature anomaly, replacing the temperature anomaly of
opposite sign that existed there around two years ago.

Figure 4 shows the lagged correlations (r) of the Sub-
Niño4 index and the WWVW anomaly averaged over vari-
ous three-month periods, with the Niño 3.4 index averaged
over each of the four main seasons. For a broad time win-
dow one year ahead of each main season, the SubNiño4

F I G U R E 2 Composite difference of SubT profile averaged between 5◦S and 5◦N between subsurface warm and cold events with
various lead/lag times. Only differences deemed significant at 95% confidence or above by bootstrapping with 5,000 resamples are shown.
The dashed grey line and the black box indicate the climatological 20 ◦C isotherm and the extent of the SubNiño4 region, respectively.
Anchors for subsurface warm events: February 1981, May 1986, March 1989, October 1989, February 1997, July 2004, December 2007, August
2018; anchors for subsurface cold events: August 1983, July 1987, February 1992, May 1993, January 1995, December 1997, March 2010,
January 2016 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 3 Similar to Figure 2, but showing correlation (p < 0.05) between the SubNiño4 index and SubT profile averaged between 5◦S
and 5◦N with various lead/lag times from the peak of subsurface warm/cold events [Colour figure can be viewed at wileyonlinelibrary.com]

index is significantly correlated with the Niño 3.4 index
over the main season. This long-range correlation is robust
across the four main seasons and various lead times, with
the correlation coefficient generally staying above 0.4. The
correlation between the WWVW anomaly and Niño 3.4 is
less robust, especially at shorter lead times. It is, however,
similar to SubNiño4 at time-scales of about one year. Not
only does this show that SubT anomalies in the equatorial
West Pacific precede SST anomalies further east, confirm-
ing the delayed connection between the subsurface and
surface temperature anomalies hinted at in Figure 1a and
observed in the generic deseasonalised cycle shown in
Figures 2 and 3, but it also suggests that the SubNiño4
index is a simple indicator more robust with time than the
WWVW anomaly for ENSO and hence atmospheric phe-
nomena driven by it. We find very similar correlations for
SubNiño4 with Niño 3, Niño 3.4, and Niño 4 (e.g., 0.40,
0.46, and 0.48, respectively at 12 months lead time for
DJF).

3.2 Delayed teleconnections of
SubNiño4

3.2.1 Regional precipitation

The lagged correlation maps between precipitation in the
four main seasons and the SubNiño4 index one year ahead

of each are shown in Figure 5. The most conspicuous
feature is the year-round anticorrelation over Southeast
Asia. There is also a clear anticorrelation signal during
the boreal spring (MAM) in Northeast Brazil extending
eastwards into the Atlantic.

Figures 6–10 show the lagged correlation coefficients
(r2) between various regional precipitation values and the
Niño 3.4 and SubNiño4 indices and the WWVW anomaly,
to better exhibit, by removing the sign, the handover of
significant correlation with precipitation from the sub-
surface to the surface. Corresponding plots showing the
correlation coefficients without squaring are provided as
supporting information (Figures S2–S6).

Figure 6 shows the correlation coefficients (r2)
between the precipitation over the Maritime Continent
in the four main seasons and the Niño 3.4 and Sub-
Niño4 indices and WWVW anomaly in the 25 overlapping
three-month periods leading to the main seasons. Sub-
Niño4 becomes significantly correlated with precipitation
much earlier than Niño 3.4. The correlations between
SubNiño4 around 6–12 months ahead and precipitation
in all four main seasons stand at a level of around −0.4.
The WWVW anomaly in general gives weaker correlations
than SubNiño4 with precipitation in all four main sea-
sons. It fails to correlate significantly with precipitation in
MAM, while in the other three main seasons significance
is sustained over a much smaller window of lead times
compared with SubNiño4. Meanwhile, the simultaneous

http://wileyonlinelibrary.com
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F I G U R E 4 (a) Correlation, r, between Niño 3.4 in DJF and SubNiño4 (orange) and the WWVW anomaly (green) in the 25 overlapping
three-month periods immediately prior. (b) Same as (a) but for MAM. (c) Same as (a) but for JJA. (d) Same as (a) but for SON. (a–d)
Correlations with p < 0.05 are indicated with solid dot markers and connected with a solid line. Grey shading indicates correlation levels
with p ≥ 0.05 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 (a) Correlation (p < 0.05) between precipitation in DFJ and the SubNiño4 index 12 months prior. (b) Same as (a) but for
MAM. (c) Same as (a) but for JJA. (d) Same as (a) but for SON. (a–d) The black box indicates the extent of the SubNiño4 region [Colour figure
can be viewed at wileyonlinelibrary.com]

correlations between Niño 3.4 and precipitation in DJF,
JJA, and SON all go beyond r = −0.81 (p < 0.01) while
that in MAM is at r = −0.52 (p < 0.01). The simultaneous
correlation with Niño 3.4 in MAM is particularly low com-
pared with those in the other three main seasons, while
the lagged correlations with SubNiño4 are similar across
the four main seasons and are least robust in SON.

Figure 7 shows the correlation coefficients (r2)
between precipitation over Northeast Brazil and South

Africa in MAM and DJFM respectively and the Niño 3.4
and SubNiño4 indices and WWVW anomaly in the 25
overlapping three-month periods leading to the precipita-
tion seasons considered. In both cases, SubNiño4 becomes
significantly correlated with precipitation around 15
months ahead of the relevant precipitation season, half a
year earlier than Niño 3.4. At long lead times, the WWVW
anomaly is significantly correlated with precipitation over
Northeast Brazil in MAM from nearly two years earlier,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 6 (a) Correlation, r2, between Maritime Continent precipitation in DJF and SubNiño4 (orange), WWVW anomaly (green),
and Niño 3.4 (blue) in the 25 overlapping three-month periods immediately prior. (b) Same as (a) but for MAM. (c) Same as (a) but for JJA.
(d) Same as (a) but for SON. (a–d) Correlations with p < 0.05 are indicated with solid dot markers and connected with solid lines. Grey
shading indicates correlation levels with p ≥ 0.05 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 (a) Same as Figure 6a but for Northeast Brazil precipitation in MAM. (b) Same as (a) but for South Africa precipitation in
DJFM [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 (a) Same as Figure 6a, but for Gulf of Guinea precipitation in JAS. (b) Same as (a), but for Sahel precipitation [Colour
figure can be viewed at wileyonlinelibrary.com]

but then SubNiño4 has stronger correlations at around
one year’s lead. Only SubNiño4 shows robust significant
correlation with precipitation over South Africa in DJFM.
The simultaneous correlations between Niño 3.4 and

precipitation in Northeast Brazil and South Africa are
r = −0.66 (p < 0.01) and r = −0.69 (p < 0.01) respectively,
while the lagged correlations with SubNiño4 around a
year ahead stand at a level of about −0.35.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 9 (a) Same as Figure 6a, but for East Africa precipitation in OND. (b) Same as (a), but for MAM [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 10 (a) Same as Figure 6a, but for India precipitation in JJAS computed with data from 1960–2016. (b) Same as (a), but
computed with data from 1979–2016 [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 8 shows the correlation coefficients (r2)
between the precipitation over two regions in West
Africa—the Gulf of Guinea and Sahel—in JJAS and the
Niño 3.4 and SubNiño4 indices and WWVW anomaly in
the 25 overlapping three-month periods leading to the
precipitation season considered. In both regions, Niño 3.4
becomes significantly correlated with precipitation in JJAS
two months ahead and remains at a level of around −0.4.
Interestingly, for the Gulf of Guinea, the precipitation is
also significantly correlated with Niño 3.4 more than 19
months ahead at a level of around 0.4. Precipitation over
the Gulf of Guinea shows significant correlation with
SubNiño4 10–21 months ahead, ranging from r = −0.32
(p < 0.05) to r = −0.47 (p < 0.01). The correlation pattern
with the WWVW anomaly is similar to that of SubNiño4,
but shifted earlier by two months. Meanwhile, the pre-
cipitation over Sahel does not show robust significant
correlation with either SubNiño4 or the WWVW anomaly.

Figure 9 shows the correlation coefficients (r2)
between precipitation over East Africa during the so-called
short rains (OND) and long rains (MAM) seasons and
the Niño 3.4 and SubNiño4 indices and WWVW anomaly
in the 25 overlapping three-month periods leading to
the two precipitation seasons. For the short rains sea-
son, the simultaneous correlation between precipitation
and Niño 3.4 is r = 0.47 (p < 0.01). The precipitation
also shows significant correlation with SubNiño4 4–11
months ahead, ranging from r = 0.33 (p < 0.05) to r = 0.47

(p < 0.01), and with Niño 3.4 8–18 months ahead, rang-
ing from r = −0.32 (p < 0.05) to r = −0.42 (p < 0.01). The
correlation pattern with the WWVW anomaly is similar to
that of SubNiño4 but shifted earlier by two months. On
the other hand, there are no robust significant correla-
tions between long rains season precipitation and either
Niño 3.4, SubNiño4, or the WWVW anomaly.

Figure 10 shows the correlation coefficients (r2)
between the precipitation over India in JJAS and the
Niño 3.4 and SubNiño4 indices and WWVW anomaly in
the 25 overlapping three-month periods leading to the pre-
cipitation season considered, computed using data from
1960–2016 (Figure 10a) and 1979–2016 (Figure 10b). Since
the IITM–IMR dataset is only available up to 2016, it is
not possible to keep the same period of study as for the
other regional precipitation. With data from 1960–2016,
the simultaneous correlation between precipitation and
Niño 3.4 is r = −0.56 (p < 0.01). The precipitation also
shows significant correlation with SubNiño4 0–7 months,
ahead ranging from r = −0.27 (p < 0.05) to r = −0.31 (p <

0.05) and with Niño 3.4 10 to 15 months ahead rang-
ing from r = 0.27 (p < 0.05) to r = 0.37 (p < 0.01). The
WWVW anomaly gives significant correlation with precip-
itation at lead times of around 10 months. With data from
1979–2016, the simultaneous correlation between precipi-
tation and Niño 3.4 is slightly lower (r = −0.47, p < 0.01).
The correlations with SubNiño4, however, are similar to
those computed with data from 1960–2016. Nonetheless,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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they are not deemed statistically significant, mostly due to
a reduction in sample size.

In general, for all cases where there is significant simul-
taneous correlation between precipitation and Niño 3.4,
except for Sahel JJAS, the correlations between precipita-
tion and SubNiño4 become significant before Niño 3.4; as
we move closer to the precipitation seasons considered,
correlations with Niño 3.4 kick in, while those with Sub-
Niño4 fade. Around 6–12 months (or even further into the
past) prior to the precipitation seasons considered, corre-
lations with SubNiño4 are significant but not those with
Niño 3.4. The WWVW anomaly gives weaker, less robust,
and less reliable correlation with precipitation overall. It
leads earlier than SubNiño4 in some cases but can fail com-
pletely for some others. For consistency, we present results
for precipitation regions and seasons based on, if not taken
directly from, previous studies. We note here that both the
regions and seasons could be fine-tuned further to achieve
higher correlations with both surface and subsurface sig-
nals. Here our intention is to confirm the existence of basic
robust relationships.

3.2.2 Fires in Southeast Asia

We next explore the relationship of SubNiño4 with fire,
which has high impact and is partially linked to precipita-
tion. Figure 11a shows the average annual fire count from
2001–2018 over Southeast Asia. Continental and Maritime
Southeast Asia, with most of the fire captured by the red
and purple boxes respectively, have distinct fire seasonal
cycles. Since MODIS fire data only cover from 2001–2018,
to keep the period of study the same as that for precipita-
tion, we rely on the FWI, a fire-risk index, produced from
ERA5 data. The FWI seasonal cycles of Continental and
Maritime Southeast Asia peak in DJFM and July–October
(JASO), respectively. For the period when both MODIS
and FWI data are available, the fire count and FWI are
highly correlated: for Continental Southeast Asia (DJFM),
r = 0.88, p < 0.01 (r = 0.84, p < 0.01); for Maritime South-
east Asia (JASO), r = 0.89, p < 0.01 (r = 0.96, p < 0.01).

Figure 11b,c shows the correlation coefficients (r2)
between the FWI for Continental and Maritime Southeast
Asia in DJFM and JASO respectively and the Niño 3.4 and
SubNiño4 indices and WWVW anomaly in the 25 over-
lapping three-month periods leading to the fire seasons
considered. Here, r2 is again shown to exhibit more clearly
the handover of significant correlation from the subsur-
face to the surface than showing r as in the Supporting
Information (Figure S7). For Continental Southeast Asia,
the simultaneous correlation between Niño 3.4 and FWI
in DJFM is r = 0.53 (p < 0.01). The FWI also shows sig-
nificant correlation with SubNiño4 4–19 months ahead,

ranging from r = 0.32 (p < 0.05) to r = 0.44 (p < 0.01),
and with the WWVW anomaly at lead times of around 18
months at a lower level overall. For Maritime Southeast
Asia, the simultaneous correlation between Niño 3.4 and
FWI in JASO is r = 0.77 (p < 0.01). The FWI also shows
significant correlation with SubNiño4 2–20 months ahead,
ranging from r = 0.31 (p < 0.05) to r = 0.45 (p < 0.01) with
a break at 14 and 15 months ahead, and with the WWVW
anomaly 10 to 12 months ahead, again at a lower level
overall. Although the simultaneous correlation between
Niño 3.4 and FWI for Maritime Southeast Asia JASO is
much higher than that for Continental Southeast Asia
DJFM, the lagged correlations with SubNiño4 for the FWI
in both cases are at a similar level.

4 DISCUSSION

The SubNiño4 index, Niño4–Z20 anomaly, and WWVW
anomaly are essentially measures of the same state of the
ENSO cycle capturing the essential feature of the recharge
cycle, specifically in the subsurface equatorial West Pacific
on longer time-scales. Izumo et al. (2019) showed that
the variability of this state is primarily a consequence of
wind-forced slow Rossby waves. We see from Figure 1a
that the SubNiño4 index leads the Niño 3.4 index. This is
consistent with the lead relationship between the thermo-
cline and surface ENSO variabilities established through,
for example, studies of WWVW (Ballester et al., 2016;
Izumo et al., 2019). Figure 1a also shows that there is
interdecadal variability in the relationship. The amplitude
of the SubNiño4 index is much reduced post-2000, espe-
cially for cold anomalies, and has become less periodic
compared with pre-2000. Furthermore, after 2000 the war-
m/cold events on the surface follow those in the subsurface
less closely than before, as reported previously by Zhao
et al. (2021).

Composite analysis of subsurface warm and cold
episodes (Figures 2 and 3) reveals how the subsurface
temperature anomalies evolve to become surface temper-
ature anomalies after around 6–12 months. The evolution
of the subsurface temperature anomalies we observed fol-
lowing subsurface warm/cold episodes is consistent with
that during a generic ENSO cycle, as reported by others
(e.g., Timmermann et al., 2018; Lin and Qian, 2019). Such
delayed connection between the subsurface and surface
temperature anomalies is confirmed by correlation anal-
ysis between the SubNiño4 and Niño 3.4 indices shown
in Figure 4 and appears to be a robust year-round fea-
ture. Figure 4 also shows that the SubNiño4 index correla-
tions are more stable with lead time than the widely used
WWVW. In particular, they decrease much less quickly at
shorter lead times than WWVW. A further merit of the
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F I G U R E 11 (a) Annual mean fire count over Southeast Asia. The red and purple boxes are for Continental and Maritime Southeast
Asia respectively. (b) Same as Figure 6a but for Continental Southeast Asia FWI in DJFM. (c) Same as (b) but for Maritime Southeast Asia
FWI in JASO [Colour figure can be viewed at wileyonlinelibrary.com]

SubNiño4 index, or alternatively Niño4–Z20, over WWVW
is that, unlike the latter, the (Sub)Niño4 region is com-
pletely free of land, making it more directly relevant to the
ocean dynamics. The SubNiño4 index, or Niño4–Z, is a
practical and stable index that captures well-known ENSO
physics and can serve as a long-range indicator of surface
ENSO and thus atmospheric phenomena driven by it.

The Fourier spectrum we obtained for the Niño 3.4
index (Figure 1b) is consistent with that in Petrova et al.
(2017) for Niño 3.4 and those in Latif et al. (1998) and Ras-
musson and Carpenter (1982) for Niño 3. The dominant
quasi-quadrennial peak and the secondary quasi-biennial
peak are well-established features also present in our
SubNiño4 spectrum. The SubNiño4 index may be less
noisy than the Niño 3.4 index because of a lack of
direct atmospheric coupling of the subsurface compared
with the surface, making SubT less prone to influences
from high-frequency or stochastic atmospheric forcings
than the SST. The normalised histogram of the Sub-
Niño4 index resembles that of the Niño4–Z20 anomaly
(Figure 1c,d); the two have similar negative skewness
and are essentially interchangeable variables (r = 0.99,
p < 0.01), effectively being equivalent measures of the
thermocline–mixed-layer interface. The surface zonal
wind stress anomaly over the Niño 4 region is positively
skewed, with lower absolute skewness than the SubNiño4
index, and is significantly correlated with it in December
and January only. The reason why the SubNiño4 index
displays such pronounced (negative) skewness not exhib-
ited by the Niño 3.4 index is unclear to us, but the skewed
surface zonal wind stress anomaly (Planton et al., 2018)

and subsurface nonlinear dynamical heating (e.g., Hayashi
et al., 2020) may be contributing factors. Izumo et al. (2019)
also noted the importance of multimonth integrated wind
forcing, rather than just considering single-month correla-
tions.

Dynamical ENSO predictions show both interdecadal
(Barnston et al., 2012; Zhang et al., 2021) and seasonal (Jin
et al., 2008; Barnston et al., 2012; Sun et al., 2018) varia-
tions in predictive skill and different models are not always
available at lead times of more than 12 months. For those
that are, the typical correlation skill is at the level of 0.5
on average for 12-month forecasts. At such a long lead
time, ENSO correlation with the lead observed SubNiño4
index (Figure 4) is on par with the simultaneous correla-
tion from typical dynamical predictions. Together with the
established ocean heat content advective processes neces-
sary for the onset of El Niño (Ramesh and Murtugudde,
2013; Ballester et al., 2016; Timmermann et al., 2018),
this confirms that initialisation of the equatorial Pacific
SubT profile is a major source of long-range ENSO pre-
dictive skill from dynamical models. The importance of
the equatorial Pacific thermocline has been demonstrated
by data assimilation and ensemble prediction methods
that target optimal equatorial Pacific subsurface temper-
ature disturbances for dynamical ENSO prediction (e.g.,
Yang et al., 2008; O’kane et al., 2019). Furthermore, pre-
dictions of ENSO-driven atmospheric phenomena at such
lead times afforded by the observed SubNiño4 index can
be expected to be no worse than those by predicated SST
from dynamical models. Takaya et al. (2021) demonstrated
skilful long-range dynamical large ensemble monsoon

http://wileyonlinelibrary.com
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predictions. They attributed the skill to SST anomalies and
did not explore further the role of the Pacific subsurface
that we highlight here. It could be that their subsurface ini-
tialisation is the dominant factor for their long-range skill.
Here we demonstrated the potential of the SubNiño4 index
by finding robust lagged correlations with regional pre-
cipitation and fires. To evaluate its performance directly
against the dynamically predicted ENSO, we suggest com-
paring the mutual information between the atmospheric
response to predicted and lead observed SubNiño4 and
simultaneous dynamically predicted Niño 3.4 respectively,
provided that time series of predicted Niño 3.4 are avail-
able. This reveals the amount of information about the
atmospheric response to be predicted that can be learnt
from the two predictors respectively.

ENSO’s effects on precipitation have been studied on a
global scale in detail by Lenssen et al. (2020), Davey et al.
(2014), Ropelewski and Halpert (1987), Ropelewski and
Halpert (1989), and Kiladis and Diaz (1989), for example.
They mapped out regions around the globe where the pre-
cipitation over various time windows is correlated strongly
and coherently with ENSO. While we do not aim, nor
can we expect, that our correlation analysis with global
precipitation over the four main seasons and SubNiño4
with a very long lead time of 12 months (Figure 5) will
reproduce exactly the patterns identified by, say, Lenssen
et al. (2020), it suggests that the SubNiño4 index has
strong potential as a long-range predictor for ENSO-driven
precipitation.

The effects of ENSO on precipitations on a regional
level have also been extensively studied. Some of the
regions and seasons where ENSO is known to play an
important role in interannual precipitation variability are
summarised as follows. Over the Maritime Continent, the
precipitation and ENSO signal are anticorrelated through-
out the year (As-Syakur et al., 2016; Yanto et al., 2016;
King and Vincent, 2018); in Northeast Brazil, the precipita-
tion and ENSO signal are anticorrelated in the wet season
(MAM, see Folland et al., 2001; Andreoli and Kayano,
2006); in West Africa, the precipitation and ENSO signal
are anticorrelated in the wet season (JJAS, see Losada et al.,
2012; Srivastava et al., 2019); in South Africa, the precipita-
tion and ENSO signal are anticorrelated in the wet season
(DJFM, see Yuan et al., 2014; Hoell et al., 2017); in East
Africa, the precipitation and ENSO signal are positively
correlated in the so-called short rains season (OND) but
have insignificant correlation in the so-called long rains
season (MAM, see Mutai et al., 1998; Vigaud et al., 2017;
Vellinga and Milton, 2018; Park et al., 2020).

The simultaneous correlations between Niño 3.4 and
precipitation from our analysis agree with all these
reported ENSO–precipitation relationships. The lagged
correlations between SubNiño4 and precipitation have

the same sign as the simultaneous correlations with
Niño 3.4. As expected, the long-range correlation is gener-
ally smaller than that in-season, but it is significant over
many lead times. In some cases, the long-range correlation
is even as large as the in-season correlation.

It is worth noting that, for the Maritime Continent,
while the simultaneous correlation with Niño 3.4 in MAM
is particularly lower than those in the other three main
seasons, consistent with the northwards shift in ENSO
influence in the region observed by As-Syakur et al.
(2016), the lagged correlations with SubNiño4 are simi-
lar throughout the year and least robust in SON. For West
Africa JJAS, although the simultaneous correlations with
Niño 3.4 for both the Gulf of Guinea and Sahel are sim-
ilar, the SubNiño4 index as an indicator is much more
reliable and robust for the Gulf of Guinea than Sahel.
Although the correlation analysis performed by Losada
et al. (2012) employed Niño 3 and their period of study
stopped just before ours, the simultaneous correlations
between Niño 3.4 and precipitation in the Gulf of Guinea
and Sahel from our study agree with the values towards
the end of their study period. Losada et al. (2012) used
a Monte Carlo test to determine significance and, inter-
estingly, towards the end of their study period, although
the correlations between Niño 3 and precipitation in the
Gulf of Guinea and Sahel are at the same level, only the
former was deemed significant. As for East Africa, sig-
nificant simultaneous (lagged) correlations with Niño 3.4
(SubNiño4) are observed for the short rains season (OND)
but not for the long rains season (MAM) as expected,
indicating that the SubNiño4 index correlates only when
there is also significant simultaneous correlation with
Niño 3.4.

The correlation patterns of fire with Niño 3.4 and Sub-
Niño4 resemble those of precipitation. This verifies that
the SubNiño4 index is useful as an indicator not just of
precipitations but also other ENSO-driven anomalies in
general. Sparks and Toumi (2020) originally proposed the
subsurface heat content to be a predictor of South China
tropical cyclone landfall, because the index can antici-
pate changes in the steering-level winds. SubNiño4 as a
long-range predictor is therefore of potential interest for a
broad range of atmospheric phenomena.

The domains and seasons we chose to study Southeast
Asia fires do not correspond exactly to those used to study
Maritime Continent precipitation. In particular, Maritime
Southeast Asia represents only a small part of the Maritime
Continent and Continental Southeast Asia is completely
separate from the Maritime Continent. Nonetheless, the
correlation patterns for fires in both cases appear to be
consistent with those for precipitation. Maritime South-
east Asia fires are known to be strongly driven by local
precipitation and ENSO (Wooster et al., 2012; Liew, 2013;
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Fanin and Van Der Werf, 2017). However, there is a lack
of literature on the relations between Continental South-
east Asia fires, local precipitation, and ENSO. In a global
study on burnt-area forecast with SST by Chen et al.
(2016), among the 14 ocean climate indices considered,
ENSO-related ones are optimal for correlation with the
annual burnt area of six out of 12 hotspot regions identi-
fied. However, their clustering algorithm failed to capture
the most severely burnt region in Continental Southeast
Asia. Our study suggests that ENSO also plays a role in
the regulation of fire activity over Continental Southeast
Asia.

Compared with the SubNiño4 index, correlations of
the WWVW anomaly with the Niño3.4 index are sim-
ilar in strength and have similar long lead times, but
are less well sustained into shorter lead times. The Sub-
Niño4 index, Niño4–Z20 anomaly, and WWVW anomaly
all essentially capture of the same state of the ENSO cycle.
We are not proposing any novel fundamental aspects about
the dynamics of ENSO. However, the SubNiño4 index
has temporally more stable and sustained, and at times
stronger, correlations with the Niño3.4 index, while cover-
ing a smaller domain compared with the WWVW anomaly.
It may identify more precisely the critical point of action
of the subsurface branch of established ENSO dynamics.

We study in detail for the first time the implications
of the subsurface temperature anomaly on atmospheric
anomalies, in particular regional precipitation throughout
the Tropics and fires in Southeast Asia. The correlations of
the WWVW anomaly with the regional precipitation and
fire investigated are overall weaker, less robust, and sus-
tained over a narrower window of lead times compared
with the SubNiño4 index. In a few cases, the correlation
patterns resemble those of SubNiño4 but with a slight shift
towards longer lead times. This is consistent with the east-
wards propagation of the SubT anomaly in the equatorial
Pacific and the WWVW region being centred westwards
of the (Sub)Niño4 region. In many of the other cases, the
WWVW anomaly is less correlated with regional precip-
itation and fire over a smaller time window compared
with SubNiño4. Sometime the WWVW anomaly does not
work at all when the SubNiño4 index is still a useful indi-
cator. The utility of the WWVW anomaly may also be
limited, because its domain of definition is problematic,
as it includes considerable land mass to the west. The
(Sub)Niño4 region does not have this issue.

5 CONCLUSIONS

We extend the SubNiño4 index originally proposed by
Sparks and Toumi (2020) and give it a fuller investigation,
revealing its relation to the surface Niño indices. We

show that the SubNiño4 index captures the evolution
of subsurface ocean heat content between the El Niño
and La Niña phases of the ENSO cycle, thus allow-
ing it to serve as a long-range indicator of Niño 3.4
and ENSO-driven atmospheric phenomena. It achieves
this with temporally more stable correlations compared
with the commonly used WWVW anomaly. We demon-
strate that the ENSO correlation with the SubNiño4 index
matches that of the WWVW anomaly and becomes sig-
nificant at around the same lead time. However, the
SubNiño4 correlation is sustained further into shorter
lead times. At lead times of the order of 12 months,
observed Niño 3.4 correlations with the lead observed
SubNiño4 index become similar to and can exceed those
produced with typical dynamical model ENSO predic-
tions. Our study confirms that an important source of
long-range predictive skill for ENSO in dynamical mod-
els can be understood to stem from good initialisation of
the subsurface temperature profile in the western equato-
rial Pacific. We further establish the potential value and
viability of the SubNiño4 index as a long-range indica-
tor of atmospheric phenomena driven by ENSO, partic-
ularly regional precipitation anomalies throughout the
Tropics and fires in Continental and Maritime Southeast
Asia.
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