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Gaussian processes (GPs), implemented through multivariate Gaussian
distributions for a finite collection of data, are the most popular approach
in small-area spatial statistical modelling. In this context, they are used to
encode correlation structures over space and can generalize well in interp-
olation tasks. Despite their flexibility, off-the-shelf GPs present serious
computational challenges which limit their scalability and practical useful-
ness in applied settings. Here, we propose a novel, deep generative
modelling approach to tackle this challenge, termed PriorVAE: for a particu-
lar spatial setting, we approximate a class of GP priors through prior
sampling and subsequent fitting of a variational autoencoder (VAE).
Given a trained VAE, the resultant decoder allows spatial inference to
become incredibly efficient due to the low dimensional, independently
distributed latent Gaussian space representation of the VAE. Once trained,
inference using the VAE decoder replaces the GP within a Bayesian sampling
framework. This approach provides tractable and easy-to-implement means
of approximately encoding spatial priors and facilitates efficient statistical
inference. We demonstrate the utility of our VAE two-stage approach on
Bayesian, small-area estimation tasks.
1. Introduction
Spatially referenced data come in a variety of forms, including exact geographical
coordinates such as a latitude and longitude or predefined geographical areal
units such as a village, administrative unit or pixel of a raster image. The latter
are known as areal unit data, and are found in fields such as epidemiology,
environmental and political science; a variety of relevant methods come under
the banner of small-area statistics [1]. There are many motivations for modelling
such data, from surveillance programme evaluation to identifying environmental
risk factors for disease. Small-area statistics are particularly relevant to informing
policy decisions, which are often made at the areal unit level [2].

Statistical modelling of spatial data is routinely performed using Gaussian
process (GP) priors [3]. GPs have gained popularity in a variety of applied
fields due to their flexibility, ease of implementation, and their inherent ability
to characterize uncertainty. However, GPs also present a number of practical
challenges. For example, basic inference and prediction using a GP require
matrix inversions and determinants—both of which scale cubicly with data
size. This makes applications of GPs prohibitive for large datasets. Moreover,
kernel design of a GP requires substantial domain knowledge in order to reflect
characteristics of the process of interest [4]. Hence, the choice of an inference
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method is of great importance when it comes to dealing with
GPs. The theoretic asymptotic convergence properties and
diversity of Markov chain Monte Carlo (MCMC) approaches
make it the most reliable method for Bayesian inference.
However, MCMC scales poorly, and struggles to deal with
the high degree of auto-correlation inherent to spatial data,
limiting its utility in large spatial settings [5]. A range of
more tractable approximate methods have been developed,
such as Laplace approximation, variational inference [6],
expectation propagation [7], or inducing variables in sparse
GPs [8]. However, few of these approximate methods have
asymptomatic guarantees or yield consistently accurate pos-
terior estimates [9] over a wide range of challenging
datasets. User-friendly software packages, such as R-INLA
[10], provide extremely convenient interfaces to a large set
of predefined models, but do not provide enough flexibility
for custom model development, and hence have limitations
for specific classes of applied research. There is an unmet
need for approaches that can be easily implemented and
customized in popular probabilistic programming languages
such as Stan [11], NumPyro [12], PyMC3 [13] or Turing.jl [14],
while still scaling favourably to large datasets. Here, we pro-
pose a novel computational technique which leverages the
variational autoencoder (VAE) model from deep learning
and combines it with Bayesian inference [15,16] with the
goal of small-area estimation.

An autoencoder [17] is a neural network architecture used
for the task of supervised dimensionality reduction and rep-
resentation learning. It is comprised of three components: an
encoder network, a decoder network and a low dimensional
layer containing a latent representation. The first component,
the encoder Egð�Þ with parameters γ, maps an input x [ Rp

into the latent variable z [ Rd, where d is typically lower
than p. The decoder network Dcð�Þ with parameters ψ aims
to reconstruct the original data x from the latent representation
z. Therefore, an autoencoder imposes a ‘bottleneck’ layer in the
network which enforces a compressed representation z of the
original input x. This type of dimensionality reduction tech-
nique is particularly useful when some structure exists in the
data, such as spatial correlations. This structure can be learnt
and consequently leveraged when forcing the input through
the network’s bottleneck. Parameters of the encoder and deco-
der networks are learnt through the minimization of a
reconstruction loss function pðxjx̂Þ expressed as the likelihood
of the observed data x given the reconstructed data x̂.

AVAE extends this formulation to a probabilistic generative
model [18]. Rather than learning a latent representation z, it
learns a probabilistic distribution p(z|x), from which a latent
representation can be sampled. This distribution is chosen
in such a way that the latent variables z are independent
and normally distributed. To achieve this, the encoder outputs
a pair of d-dimensional vectors mg, s

2
g to characterize

the mean and variance of z, respectively. The latent variable
then follows the Gaussian distribution z � N ðmg, s

2
gIÞ. The

loss function is modified to include a Kullback–Leibler
(KL) divergence term implied by a standardN ð0, IÞ prior on z:
Lðx, x̂Þ ¼ pðxjx̂Þ þ KLðN ðmg, s

2
gIÞkN ð0, IÞÞ. The KL term can

be interpreted as a regularizer ensuring parsimony in the
latent space. New data can be generated by sampling from the
latent space with the trained decoder network. This feature of
VAEs has led to a series of successful applications with the
goal of generating new samples from the approximated distri-
bution of real data [19].
In this paper, we propose a novel use of VAEs, termed
PriorVAE: we learn uncorrelated representations of spatial
GP priors for a predefined spatial setting, and then use the
trained decoder to perform Bayesian inference on new data.

Our contributions can be summarized as follows.

— We introduce a two-stage process for inference. First, we
train a VAE to create an uncorrelated representation of
complex spatial priors. Next, we use the learnt latent dis-
tribution in the model instead of the GP prior to perform
MCMC inference on new data, while keeping the trained
decoder fixed.

— We demonstrate the usage of VAE priors on a range of
simulated and real-life datasets to show their performance
in small-area estimation tasks.

The rest of this paper is organized as follows. In §2, we lay
out the methodology of the two-stage approach. In §3, we
demonstrate the approach on synthetic and real datasets.
In §4, we conclude with a discussion and provide a broader
outlook on the potential impact of this work.
2. Methods
2.1. Three types of spatial data
There are three types of spatial data: areal (or lattice), geostatisti-
cal (or point references) and point patterns. Models of all three of
them rely on the notion of GPs and their evaluations in the form
of the multivariate normal distribution. Areal data arise when a
fixed domain is partitioned into a finite number of sub-regions
at which outcomes are aggregated. Number of disease cases
recorded per county, regardless of the exact locations where
within the county the cases occurred or got recorded, constitutes
an example of areal data. State-of-the-art models of areal data
rely on ‘borrowing strength’ from neighbours and use a hierarch-
ical Bayesian formulation to do so. Widely used models of such
data capture spatial structure via the adjacency matrix A. Each
element aij of it is either 1, if areas Bi and Bj are neighbours,
and 0 if not. Point-referenced (geostatistical) data represent
measurements of a spatially continuous phenomenon at a set
of fixed locations. Number of cases recorded at a set of hospitals
with known geographical position is an example of such data.
Modelling of the underlying continuous process relies on pair-
wise distances between observed and unobserved locations.
GPs in such models use continuous kernels. Point pattern data
consist of precise locations of events. An example of a point pat-
tern is a collection of GPS coordinates of households of newly
occurred malaria cases. One way of modelling point pattern
data is to cover the entire study area with a fine computational
grid and view each grid cell as a location. Modelling of the con-
tinuous underlying process is typically done using continuous
GP kernels. All of the three types of data can be modelled
using the proposed novel approach.

2.2. Latent Gaussian models
Suppose we are given outcome data y1,…, yn, corresponding to a
set of observed disjoint areas {Bi}, i = 1,…, n, covering the
domain of interest G ¼ <n

i¼1Bi. These areas may be the cells of
a computational grid, pixels of a raster image, or they may corre-
spond to existing administrative units. Outcome data fyigni¼1
can represent either counts aggregated over an area, such as
number of disease cases, continuous bounded data, such as
disease prevalence (i.e. a number between zero and one), or con-
tinuous unbounded data, such as land surface temperature in
degrees Celsius (°C). Hence, in applied fields, it is common to
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use generalized linear models to unify the modelling approach
for all such types of outcome. Accounting for mixed effect
model structure, their Bayesian hierarchical formulation can be
expressed as follows:

u � pðuÞ, ð2:1Þ
f ju � GPðm, SðuÞÞ, ð2:2Þ

h ¼ Xbþ f ð2:3Þ
and yjh � pðu�1ðhÞ, uÞ: ð2:4Þ
Here, (2.1) describes the hyperparameters, θ, of the model, f in
(2.2) denotes the latent Gaussian field defined by mean μ and
covariance SðuÞ, X in (2.3) is the fixed effects design matrix (a
set of covariates), β are the fixed effects and η is the linear predic-
tor combining fixed and random effects. Equation (2.4) provides
an observational model, where u is a link function characterizing
the mean of the distribution (e.g. logit for binomial data,
exponential for positive data). A common modelling assumption
is that the observations yi are conditionally independent
pðyjf , uÞ ¼ Qn

i¼1 pðyijhðfiÞ, uÞ, and the spatial structure is captured
latently by function f. It is common to choose a GP prior over f,
and as a consequence, finite realizations fGP are jointly normally
distributed with mean μ and covariance matrix S. Since fGP

always enters the model via the linear predictor, without loss
of generality (affine transformation), we can consider fGP to
have zero mean (μ = 0) and be distributed as fGP � N ð0, SÞ.
Structure of the covariance matrix S depends on the spatial
setting of the problem and the model which we chose for
the random effect. Once the model for fGP has been defined,
the linear predictor can be computed as

uðE½yjfGP�Þ ¼ Xbþ fGP, ð2:5Þ
and then linked to the observed data via the likelihood. Unless
the random effect is chosen to be trivial (i.e. i.i.d. set of variables
resulting from S ¼ I), the random effect fGP represents the com-
putational challenge. Further, we describe some options for
spatial random effect priors in the context of small-area esti-
mation, and propose a method to substitute its calculation at
the inference stage with another variable, leading to increased
inference efficiency.
2.3. Models of areal data
A widely adopted group of approaches relies on the neighbour-
hood/adjacency structure and defines S based on the
connectivity of the adjacency graph. Such methods leverage
the tendency for adjacent areas to share similar characteristics.
Conditional auto-regressive (CAR) and intrinsic conditional
auto-regressive (ICAR) models were first proposed by Besag
[20] and later extended to the Besag–York–Mollié (BYM) model
[21]. The general form of the spatial prior for this group of
models is

f � N ð0, Q�1Þ,
where the precision matrix Q defines which specific model is
used. Under the CAR model, random effect fCAR = ϕ is defined
by the prior f � N ð0, t�1R�Þ. Here by Q− = τ−1R−, we denote
generalized inverse [22] of the precision matrix Q. The precision
matrix is calculated as Q = τ(D − αA). Here, A is the adjacency
matrix, and D is a diagonal matrix, with elements dii given by
the total number of neighbours of area Bi. The parameter τ is
the marginal precision, and the parameter α controls the
amount of spatial dependence. For instance, α = 0 implies com-
plete independence and i.i.d. random effects. Condition |α| < 1
ensures that the joint distribution of ϕ is proper [23]. It is not
uncommon, however, to use α = 1 leading to the degenerate pre-
cision matrix (hence, the Q− notation) and the ICAR model. In
practice, ICAR models are supplied with additional constraints,
such as
Pn

i¼1 f � 0 to enable inference. The BYM model includes
both an i.i.d. random effect component f1 � N ð0, t�1

1 IÞ to
account for non-spatial heterogeneity and an ICAR component
f2 � N ð0, Q�

2 Þ, Q2 = τ2R2, for spatial auto-correlation. Hence,
the total random effect can be calculated as fBYM = ϕ1 + ϕ2. Some
reparameterizations of BYM have been recently proposed in
the literature [24] to improve the interpretability of the inference.
The advantage of the set of models presented above is that they
take neighbourhood structure into account. However, neither the
shapes (irregularity) nor the sizes of areas are captured.

Another natural way to model areal data, especially gridded
surfaces with small-area sizes, is modelling covariance between
areas as an approximately spatially continuous process, for
example based on the pairwise distances between the centroids.
Typical kernels for distance-based covariance matrices include
squared exponential, exponential, periodic or Matérn.

2.4. Variational autoencoders
An autoencoder is a neural network that is trained by unsuper-
vised learning, with the aim of dimensionality reduction and
feature learning. It consists of an encoder network, Egð�Þ with
parameters γ, a decoder network Dcð�Þ with parameters ψ and
a bottleneck layer containing a latent vector z. The encoder
maps input x [ Rp into the latent vector z [ Rd, and the decoder
network maps z back into the input space by creating a recon-
struction of the original data x̂ ¼ DcðEgðxÞÞ. The network is
trained by optimization to learn reconstructions x̂ that are close
to the original input x. An autoencoder can borrow any neural
network architecture, including multilayer perceptrons, convolu-
tional or recurrent layers. A VAE is a directed probabilistic
graphical model whose posterior is approximated by a neural
network, forming an autoencoder-like architecture. The goal of
VAEs is to train a probabilistic model in the form of p(x, z) =
p(x|z)p(z), where pðzÞ ¼ N ð0, IÞ is a prior distribution over
latent variables z and p(x|z) is the likelihood function that gener-
ates data x given latent variables z. The output of the encoder
network Eg in VAEs is a pair of d-dimensional vectors
mgðxÞ, s2

gðxÞ, which can be used to construct the variational pos-
terior for latent variable z. The decoder (generator) network Dc

tries to reconstruct the input by producing x̂. In particular, the
model can be summarized into the following:

ðmgðxÞ, s2
gðxÞÞ ¼ EgðxÞ; ð2:6Þ

zjx � N ðmgðxÞ, s2
gðxÞIÞ ð2:7Þ

and x̂jz � DcðzÞ, z � N ð0, IÞ: ð2:8Þ

Neural network parameters γ and ψ are estimated as
maximizers of the evidence lower bound (ELBO)

L ¼ pðxjz, g, cÞ � KL(N ðmgðxÞ, s2
gðxÞIÞkN ð0, IÞ),

or its extensions [25]. The first term in ELBO is the reconstruction
loss, measured by likelihood quantifying how well x̂ and x
match. The second term is a KL divergence which ensures that
z is as similar as possible to the prior distribution, a standard
normal. It serves as a regularizer ensuring parsimony in the
latent space and thus leads to uncorrelated variables in the
latent space. New data can be generated by sampling from the
latent space with the trained decoder network. Once the numeri-
cally optimal network parameters ĉ have been obtained, new
realizations can be generated in two steps. As the first step, we
draw from the standard normal distribution z � N ð0, IÞ, and
as the second step, apply the deterministic transformation DĉðzÞ.

2.5. The proposed method
Most commonly, VAEs have been used in the literature to learn
and generate observed data. We propose using spatial priors
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Figure 1. Learning one-dimensional GP priors on a regular grid with VAE: (a) prior samples from the original Gaussian process evaluations fGP, (b) prior draws from
fVAE trained on fGP draws. Mean and highest posterior density interval (HPDI) are calculated from 1000 samples.
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x = fGP, evaluated at the required spatial configuration (a grid or
neighbourhood structure), as training examples instead of
observed data. The trained VAE then enables us to compute
x̂ ¼ fVAE. Remarkably, unlike dealing with observed data, this
approach does not have issues with the quality nor the quantity
of the training examples. The amount of training data is unlim-
ited since we can draw as many GP realizations for training as
required. Similarly, there is no issue of data quality as we can
create exact GP draws, free from noise, characteristic for any
real-life observations.

To perform MCMC inference in a spatial model, we replace
evaluation of the GP prior fGP in the linear predictor (2.5) with
the learnt prior fVAE at the inference stage:

uðE½yjfVAE�Þ ¼ Xbþ fVAE:

Drawing from the standard normal distribution z � N ð0, IÞ with
uncorrelated entries zi leads to amuch higher efficiencywhen com-
pared with the highly correlated multivariate normals N ð0, SÞ
with a dense covariance matrix S. As a consequence, computation
time also decreases, especially for models where d < p.
3. Results
3.1. One-dimensional Gaussian process on regular and

irregular grids
In this first example, we use VAE to perform inference on
continuous data fyigni¼1 over a regular one-dimensional grid.
The grid consists of n = 400 points in the (0, 1) interval. Training
prior samples are drawn as evaluations of a GPwith zeromean
and squared exponential kernel kðhÞ ¼ s2 e�h2=l2 . This model is
useful for small-area estimation when the covariance matrix
is Euclidean distance-based. To allow for hyperparameter
learning, we impose hierarchical structure on the model
by using hyperpriors on variance σ2∼ LogNormal(0, 0.1)
and lengthscale l∼ InverseGamma(4, 1). This hierarchical
structure allows the VAE to be trained on a range of values of
hyperparameters. The average lengthscale, according to these
priors, is around 0.3. Since this is much larger than the distance
between two neighbouring points on the grid (0.0025), there is
enough redundancy in the data to expect a lower-dimensional
embedding. Realizations fGP are presented in figure 1a.
We trained a VAE with two hidden layers of dimensions 35
and 30, respectively, and the bottleneck layer of dimension
10. As an activation function we used the rectified linear unit
[26–28] for all nodes in the hidden layers. The priors learnt
by the VAE are presented in figure 1b. Figure 1 shows that
the typical shape of the prior as well as the mean have been
learntwell. Amount of uncertainty (secondmoment) displayed
by the VAE priors is lower. This is an expected phenomenon as
vanilla VAEs are known to produce blurred and over-
smoothed data due to compression; on the other hand, they
performwell on denoising tasks [29], i.e. reconstructing under-
lying truth given corrupt data. Empirical covariance matrices
of the original and trained VAE priors show similar patterns
(electronic supplementary material, figure S12). To perform
inference, we generate one GP realization, use it as the
ground truth, and simulate observed data by adding i.i.d.
noise. We allow the number of observed data points
to vary as 0.5% (2 data points), 1% (4 data points) and 1.5%
(6 data points) of the total number of the grid points and
recover the true function. The model used for inference is
y � N ðfVAE, s2Þ, where the amount of noise is given the half-
normal prior s � Nþð0:1Þ. Inference results are presented in
figure 2. The higher the number of points, the closer is the esti-
matedmean to the ground truth curve. Areaswithout any data
available in their proximity show higher uncertainty than areas
informed by closely located data points. Effective sample size
(ESS) is an important measure of the efficiency of MCMC
sampling [30]. For example, we have run inference with 1000
warm-up and 1000 posterior MCMC samples for different
numberofdata points.AverageESS for the posterior of the func-
tion evaluated at the observed points increased together with
the number of points, while inference time remained constant.
The original GP model displayed the reverse trend: average
ESS remained constant, while computation time increased.

To verify that our approach is also applicable to irregular
grids, we modified the simulation study by placing the grid
points irregularly. We use the same architecture to train this
model, i.e. 35, 30 nodes in each hidden layer and 10 latent
variables in the bottleneck layer. Original GP priors evalu-
ated on an irregular grid, the learnt VAE priors and
inference results are presented in electronic supplementary
material, figures S13 and S14.
3.2. Two-dimensional Gaussian process
A similar set of experiments as described abovewere performed
for two-dimensional GP priors. A regular grid was defined over
a unit square with 25 segments along each of the two coordi-
nates, resulting in n= 625 grid cells. Inference results produced
using a VAE trained on evaluations of two-dimensional GP
priors are presented in figure 3. As the number of observed
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points increases, quality of the mean prediction improves and
uncertainty in the surface estimates decreases.
3.3. Synthetic conditional auto-regressive example
We partition a rectangle by subdividing it into 10 rows and
15 columns. Unlike the two examples above, where we
work with a continuous kernel, here we generate data using
the CAR model ϕ∼N(0, Q−1), Q = τ(D− αA), reliant on the
adjacency matrix A. Parameter α is being assigned the
Uniform(0.4, 1) prior. This prior is chosen to study the ques-
tion whether VAE can be trained well on CAR samples,
displaying spatial correlation which corresponds to the
values of α away from zero.

In this example, we demonstrate a technique to train a
VAE by allowing it to preserve explicit estimation of the mar-
ginal precision τ. For this VAE, the training is performed on
the standardized samples �f from the random effect, meaning
that the prior is drawn from the distribution

�f � Nð0, �Q�1Þ;
�Q ¼ D� aA:

ð3:1Þ
Since f ¼ ð1= ffiffiffi
t

p Þ�f � Nð0, Q�1Þ, the trained VAE generator
�fVAE�CAR also needs to be adjusted in the model at the infer-
ence stage by the magnitude of the marginal precision τ:
fVAE�CAR ¼ ð1= ffiffiffi

t
p Þ�fVAE�CAR.

To test the performance of the trained VAE, ground truth
data are generated by fixing the value of α at 0.7, and adding
normal i.i.d. noise term at each area with variance of 0.5.
These data are then used to fit the original CAR model, as
well as the model using a VAE trained on CAR prior samples.
Both models use the prior Uniform(0.01, 1) for the variance of
the noise term. For both models, we run MCMC with 1000
warm-up iterations and2000 iterations to sample fromposterior.
The average ESS of the spatial random effect in the VAE–CAR
model is 4650 which took 9 s to compute; the achieved mean
squared error (MSE) is 0.135. The average ESS in the original
CAR model is 3128 which took 73 s; the achieved MSE is
0.118. Results of the experiment are presented in figure 4.
3.4. Scottish lip cancer dataset
The Scottish lip cancer dataset, originally presented by Kemp
et al. [31], has become a benchmark dataset for areal models. It
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has been used to demonstrate performance and implemen-
tations of CAR, ICAR, BYM and its variations [32,33]. The
dataset consists of the observed and expected numbers of
cases (y and E, respectively) at 56 counties in Scotland, as well
as a covariate measuring the proportion of the population
engaged in agriculture, fishing or forestry (aff). The covariate is
related to exposure to sunlight, which is a risk factor for lip
cancer. We model the count data y as following a Poisson distri-
bution with the log-Normal rate λ distributed according to the
BYM model:

y � PoissonðlÞ,
logðlÞ ¼ logðEÞ þ b0 þ b1 aff þ f1 þ f2,

f1 � N ð0, t1IÞ
and f2 � N ð0, Q�

2 Þ, Q2 ¼ t2ðD� AÞ:

The VAE is trained on the spatial random effect BYM priors
fBYM = ϕ1 + ϕ2 to obtain the fVAE−BYM representation. We can
use any parameterization of BYM, as we only rely on its genera-
tive properties (and this is one of the advantages of our
approach). We note that a model with i.i.d. random effect ϕ1
alreadyproduces a relatively good fit (see electronic supplemen-
tarymaterial, figure S15a). It is only the remaining discrepancies
that the spatially structured random effect ϕ2 needs to explain.
We account for this observation in our priors for τ1 and τ2, as
well as the dimension of the latent variable z: as there is only a
moderate spatial signal, there is no redundancy in the data for
spatial effect estimation. To be able to provide good quality
VAE–BYM priors, we opt to not compress the spatial prior and
choose the dimension of z to be equal to the number of counties.
We train a networkwith one hidden layerwith 56 hidden nodes
and use the exponential linear unit [34], or elu, activation func-
tion. For optimization, we use the variational Rényi bound that
extends traditional variational inference to Rényi α-divergences
as proposed by Li & Turner [25]. By using α= 0, we opt for an
importance weighted autoencoder [35]. We performed two
assessments to evaluate whether the VAE–BYM produces simi-
lar inference results to the original BYM model. First, we used
bothmodels for inferenceon theentiredataset to compare results
for mapping (the most typical task in epidemiology and
policy informing work), and second, we performed fivefold
cross-validation. Posterior predictive distributions of the rates
λBYM, λVAE−BYM obtained by the models, where fBYM and
fVAE−BYM have been used to capture the spatial random effect,
are very close to each other: figure 5 displays the two distri-
butions, where each of them is represented by its point
estimate (mean) and 95% Bayesian credible interval (BCI).
Uncertainty intervals produced by the two models are remark-
ably close to each other for most of the counties. Figure 6
demonstrates very good agreement in the point estimates.
Figure 7 presents the obtained maps: models with fBYM and
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fVAE−BYMproduce very close spatial patterns. The average ESS of
the spatial effects in the BYMmodel is approximately 150, and in
the VAE–BYMmodel it is approximately 1030. MCMC elapsed
time shows the same trend: 402 s and 12 s for the BYM and
VAE–BYM, respectively. To perform cross-validation, we cre-
ated a fivefold split of the data. To measure performance, we
have used MSE between the continuous predicted rate λ and
the observed count y. The mean MSE of the BYMmodel across
five runs was 426, with standard deviation of 131, and the
meanMSEof theVAE–BYMmodelwas 414,with standarddevi-
ation of 171. Average ESS of the VAE–BYM random effect was
approximately 3850, and average ESS of the BYM random
effect was approximately 630. Inference times were 3 s on aver-
age (0.2 s standard deviation) for the VAE–BYM runs, and 33 s
on average (3 s standard deviation) for the BYM runs. These
experiments confirm the consistency of our observations: even
when the dimension of the latent variable z is the same as the
number of the counties, there is a benefit to using VAE–BYM
over BYM—it achieves comparable performance while display-
ing much higher ESS and shorter inference times.

3.5. An alternative approach to training a variational
autoencoder for non-Gaussian likelihoods

Our previously described approach, where we calculate the
linear predictor and then fit model to the data using a link
function, follows the long standing tradition in statistics
driven by the interest to measure associations between pre-
dictors and an outcome. In the previous two examples, we
have trained the VAE directly on the GP draws (fGP) and
used the Gaussian distribution to compute the reconstruction
loss pðxjx̂Þ. When the outcome data are not Gaussian or not
even continuous, there is an alternative way of training a
VAE. Let us consider, for instance, count data which we
would like to model using the Poisson distribution. Instead
of using fGP draws as training data of the VAE, we can use
directly the simulated counts y arising from the Poisson dis-
tribution with rate λ = exp( fGP). The encoder now maps
these counts into the latent variable z, as before, and the deco-
der is enhanced with a probabilistic step: it maps z into a
positive rate l̂, and calculates the reconstruction loss as
pðyjl̂Þ : y � Poisðl̂Þ. Results of such a model are shown in
figure 8. We have generated training data y for the VAE
over a regular grid with n = 100 points according to the distri-
bution y∼ Pois(exp( fGP)). The hyperparameters of the GP
were identical to our one-dimensional GP example presented
above. VAE architecture included two hidden layers with elu
activation function. An exponential transform was applied to
the final layer of the decoder to calculate the predicted rate l̂.
3.6. HIV prevalence in Zimbabwe
We consider household survey data from the 2015 to 2016
Population-based HIV Impact Assessment Survey in
Zimbabwe [36]. The observed positive cases yi among all
observed cases ni in each area Bi are modelled according to
the Binomial distribution:

y � Binomialðn, uÞ,
logit�1ðuÞ ¼ b0 þ f,

f � N ð0, Q�1Þ
and Q ¼ tðD� aAÞ:
The parameter θi is the ‘probability of success’ of the binomial
distribution, and serves as the estimate of HIV prevalence.
The linear predictor logit−1 (θi) = b0 + ϕi, i = 1,…, N consists
of the intercept b0, common for each area, and area-specific
spatial random effect ϕi. The VAE is trained on the spatial
random effect CAR priors to obtain the VAE–CAR represen-
tation. We train VAE on the standardized draws of the spatial
random effect as presented in formulae (3.1). The total
number of observed areas is 63, and we trained a VAE with
a dimension of 50 in the latent space to achieve reduction
in the dimensionality of the latent variable. Figure 9 presents
the obtained maps: models with fCAR and fVAE−CAR produce
very close spatial patterns. We used 2000 MCMC iterations
to perform inference using both the original CAR, as well
as the VAE–CAR models. The average ESS of the spatial
effects in the CAR model is approximately 120 with a compu-
tation time of 13 s. In the VAE–CAR model average ESS is
higher, at approximately 2600, and took only 4 s to compute.
ESS achieved by the VAE–CAR model is about 20 times
higher than the one achieved by the CAR model, and also
higher than the actual number of posterior samples, which
indicates extremely efficient sampling. Traceplots obtained
by both models are presented in figure 10 and demonstrate
(together with electronic supplementary material, figure
S17) that posterior samples produced by the VAE–CAR
model display very little auto-correlation, which allows to
achieve high ESS and fast inference. Posterior samples pro-
duced by the original CAR model, on the contrary, show
high auto-correlation (electronic supplementary material,
figure S18), leading to low ESS and longer computation time.
3.7. COVID-19 incidence in the UK
We consider the projected number of COVID-19 infections in
the UK at Lower Tier Local Authority (LTLA) level [37].
These estimates are available from a public website1 and
are based on the Scott et al. [38] package. The model behind
the package [39] relies on a self-renewal equation and does
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not take spatial correlations into account. Here, we demon-
strate how spatial modelling using the proposed approach
can be performed on the incidence data. Number of infec-
tions yi in each LTLA during the period between 21 January
and 5 February 2022 is modelled via the Poisson
distribution according to the model

y � PoissonðlÞ,
logðlÞ ¼ b0 þ f,

f ¼ 1
ffiffiffi
t

p �f,

�f � N ð0, �Q�1Þ
and �Q ¼ D� aA:

As above, we have chosen the representation of the spatial
CAR random effect in its standardized form �f in order to
allow for explicit inference of the marginal precision τ when
using VAE-based inference. To simplify modelling, we have
removed all singletons (islands without any neighbouring
areas within them) from the shapefile. We trained VAE on
the standardized draws of the spatial random effect. The
total number of modelled LTLAs is 372, and we chose the
dimension of the latent space to be 300. Using this example,
we demonstrate a technique, where several VAEs using
different priors for the spatial hyperparameter α can be pre-
trained, and then used for model selection—a step enabled
by fast inference times when using VAE-based models. We
have trained five VAEs using hyper-priors α∼U(0, 0.2),
U(0.2, 0.4), U(0.4, 0.6), U(0.6, 0.8), U(0.8, 0.99), correspond-
ingly. Each of the resulting VAE priors were used to fit a
model. Model selection was performed based on the widely
applicable information criterion (WAIC) [40] using the arviz
package [41]. The best model was the one trained with α∼
U(0.8, 0.99). To obtain smooth maps, we used 2000 MCMC
iterations and performed inference using both the original
CAR, as well as the VAE–CAR models with priors α∼Uni-
form(0.8, 0.99) and τ∼Gamma(6, 2). Resulting maps are
presented in figure 11: models with fCAR and fVAE−CAR pro-
duce similar spatial patterns. Characteristics of the two
model fits are presented in table 1: there is no significant
difference between the absolute errors ( p-value of the
paired t-test is 0.05), while VAE–CAR has achieved much
higher ESS at much shorter computation times.
4. Discussion and future work
In this paper, we have proposed a novel application of VAEs
to learn spatial GP priors and enable small-area estimation.
Such an approach leverages the power of deep learning to
fuel inference for well-established statistical models. Uncorre-
lated latent parameters of the VAE make consequent Bayesian
inference with MCMC highly efficient at successfully explor-
ing the posterior distribution. An advantage of the proposed
approach, when compared with traditional VAE applications,
is that there are no limitations in neither quality nor quantity
of the training data as any number of training samples can be
generated by drawing from the noise-free spatial priors. In
addition, there is no need to retain the whole training dataset
as every batch can be generated on the fly. Our method is
beneficial even if the latent space dimension is the same as
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the number of data points, unlike some other approximation
methods, which rely on information redundancy in the
data. As the HIV prevalence in Zimbabwe example
shows, by reducing the auto-correlation between posterior
MCMC samples, we can obtain drastic gains in both ESS
and computation speed.

The limitations of the proposed approach are as follows.
Firstly, MCMC inference is restricted to the spatial structure
used for training. For instance, if a fixed spatial grid or a
neighbourhood structure was used to train the VAE, predic-
tion for off-grid points would not be possible. Secondly,
using the MSE loss for VAE training, we do not expect the
VAE to work well for values of hyperparameters outside of
the typical ranges of hyperpriors which the VAE was trained
on: if a VAE was trained on GP realizations with short
lengthscales, it is unreasonable to expect good results for
long lengthscales. VAE training losses which capture distri-
butional properties of the training samples have the
potential to resolve it and constitute future work. The over-
smoothing property of vanilla VAEs can be accounted for at
the inference stage via priors allowing for wider uncertainty
ranges. There is also the upfront cost of training a VAE,
including the choice of architecture. Finally, recovering inter-
pretable hyperparameters of the spatial priors might be of
scientific interest and is more challenging in the VAE
approach rather than the traditional framework. In some
cases, this difficulty can be alleviated. For instance, in the
HIV prevalence example, we have demonstrated how mar-
ginal precision or variance can be isolated from the VAE
training to retain direct inference of this parameter.

Statistical models of areal data described above assign the
same characteristics to each location within every area Bi. This
assumption is unrealistic for many settings as heterogeneity
might be present within each Bi, as long as the size of the
area is non-negligible. Areal data can be viewed as an aggre-
gation of point data and a series of approaches began to
emerge recently to address this issue [42,43]. Hence, it is
reasonable to use a data augmentation step to sample from
the posterior distribution of the exact locations, and then to
aggregate results. Future directions of research include an
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Table 1. Results of MCMC inference with CAR and VAE–CAR models: after
2000 iterations, VAE–CAR models achieve much higher average ESS at much
shorter computation time, while displaying similar goodness of fit to the
original model. *Mean and standard error.

model
absolute
error*

ESS of the
spatial
random
effect*

MCMC
elapsed
time (s)

CAR 1.53 (0.06) 317 (6) 277

VAE–CAR 1.63 (0.06) 3188 (24) 8
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approach where models presented above, reliant on the adja-
cency structure, are substituted with continuous kernel
approaches and a VAE trained using them.

The application of VAEs to small-area estimation has
potential for far-reaching societal impact. If a set of different
GP priors, such as CAR, ICAR, BYM and others, are used to
pretrain several VAEs over the same spatial configuration, the
resulting decoders can then be applied via the proposed
inference scheme to rapidly solve real-life problems. Once
the VAE training has been performed, users will only need
access to the decoder parameters, and otherwise perform
inference as usual—the expensive step of training a VAE
would not be required at a practitioner’s end. In case of an
epidemic emergency, for instance, this would enable faster
turnaround times in informing policy by estimating crucial
quantities such as disease incidence or prevalence.
Data accessibility. Code is available at https://github.com/elizavetase-
menova/priorVAE. The data are provided in electronic
supplementary material [44].

Authors’ contributions. E.S.: formal analysis, methodology, software, visu-
alization, writing—original draft, writing—review and editing; Y.X.:
formal analysis, software, visualization, writing—review and editing;
A.H.: data curation, methodology, writing—review and editing; T.R.:
data curation, writing—review and editing; S.B.: conceptualization,
methodology, supervision, writing—review and editing; S.M.: con-
ceptualization, methodology, supervision, writing—review and
editing; S.F.: conceptualization, funding acquisition, methodology,
supervision, writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. E.S. and S.F. acknowledge the EPSRC (EP/V002910/1). A.H.
acknowledges EPSRC Centre for Doctoral Training in Modern
Statistics and Statistical Machine Learning (EP/S023151/1). T.R.
acknowledges Imperial College President’s PhD Scholarship. S.B.
acknowledges the MRC (MR/R015600/1), the Danish National
Research Foundation via a chair position, and the NIHR Health
Protection Research Unit in Modelling Methodology. S.M. and S.B.
acknowledge funding from the Novo Nordisk Young Investigator
Award (no. NNF20OC0059309).

Acknowledgements. We thank Jeffrey Eaton for his useful comments on
the manuscript.
References
1. Rao JN, Molina I. 2015 Small area estimation.
Hoboken, NJ: John Wiley & Sons.

2. Clements AC, Lwambo NJ, Blair L, Nyandindi U,
Kaatano G, Kinung’hi S, Webster JP, Fenwick A,
Brooker S. 2006 Bayesian spatial analysis and
disease mapping: tools to enhance planning and
implementation of a schistosomiasis control
programme in Tanzania. Trop. Med. Int. Health 11,
490–503. (doi:10.1111/j.1365-3156.2006.01594.x)
3. Williams CK, Rasmussen CE. 2006 Gaussian
processes for machine learning, vol. 2. Cambridge,
MA: MIT Press.

4. Stephenson WT, Ghosh S, Nguyen TD, Yurochkin M,
Deshpande SK, Broderick T. 2021 Measuring the
sensitivity of gaussian processes to kernel choice.
(https://arxiv.org/abs/2106.06510)

5. Rue H, Martino S, Chopin N. 2009 Approximate
Bayesian inference for latent Gaussian models by
using integrated nested Laplace approximations.
J. R. Stat. Soc. B (Stat. Methodol.) 71, 319–392.
(doi:10.1111/j.1467-9868.2008.00700.x)

6. Hoffman MD, Blei DM, Wang C, Paisley J. 2013
Stochastic variational inference. J. Mach. Learn. Res.
14, 1303–1347.

7. Minka TP. 2013 Expectation propagation for
approximate Bayesian inference. (https://arxiv.org/
abs/1301.2294)

https://github.com/elizavetasemenova/priorVAE
https://github.com/elizavetasemenova/priorVAE
https://github.com/elizavetasemenova/priorVAE
http://dx.doi.org/10.1111/j.1365-3156.2006.01594.x
https://arxiv.org/abs/2106.06510
https://arxiv.org/abs/2106.06510
http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
https://arxiv.org/abs/1301.2294
https://arxiv.org/abs/1301.2294
https://arxiv.org/abs/1301.2294


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220094

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 J

un
e 

20
22

 

8. Titsias M. 2009 Variational learning of inducing
variables in sparse gaussian processes. In Proc. 12th
Int. Conf. on Artificial Intelligence and
Statistics, Clearwater Beach, FL, USA, 16–18 April
2009, pp. 567–574.

9. Yao Y, Vehtari A, Simpson D, Gelman A. 2018 Yes,
but did it work?: evaluating variational inference.
In Proc. 35th Int. Conf. on Machine Learning,
Stockholm, Sweden, 10–15 July 2018, pp. 5581–
5590.

10. Martins TG, Simpson D, Lindgren F, Rue H. 2013
Bayesian computing with INLA: new features.
Comput. Stat. Data Anal. 67, 68–83. (doi:10.1016/j.
csda.2013.04.014)

11. Carpenter B et al. 2017 Stan: a probabilistic
programming language. J. Stat. Softw. 76, 1–32.
(doi:10.18637/jss.v076.i01)

12. Phan D, Pradhan N, Jankowiak M. 2019 Composable
effects for flexible and accelerated probabilistic
programming in NumPyro. (https://arxiv.org/abs/
1912.11554)

13. Salvatier J, Wiecki TV, Fonnesbeck C. 2016
Probabilistic programming in Python using
PyMC3. PeerJ Comput. Sci. 2, e55. (doi:10.7717/
peerj-cs.55)

14. Ge H, Xu K, Ghahramani Z. 2018 Turing: a language
for flexible probabilistic inference. In Proc. 21st Int.
Conf. on Artificial Intelligence and Statistics,
Lanzarote, Spain, 9–11 April 2018, pp. 1682–1690.

15. Fortuin V, Baranchuk D, Rätsch G, Mandt S. 2020
GP-VAE: deep probabilistic time series imputation.
In Proc. 23rd Int. Conf. on Artificial Intelligence and
Statistics, 26–28 August 2020, pp. 1651–1661.

16. Mishra S, Flaxman S, Berah T, Pakkanen M, Zhu H,
Bhatt S. 2020 πVAE: encoding stochastic process
priors with variational autoencoders. (https://
arxiv.org/abs/2002.06873)

17. Hinton GE, Salakhutdinov RR. 2006 Reducing the
dimensionality of data with neural networks.
Science 313, 504–507. (doi:10.1126/science.
1127647)

18. Kingma DP, Welling M. 2013 Auto-encoding
variational Bayes. (https://arxiv.org/abs/1312.6114)

19. Liu Q, Allamanis M, Brockschmidt M, Gaunt AL.
2018 Constrained graph variational autoencoders for
molecule design. (https://arxiv.org/abs/1805.09076)

20. Besag J. 1974 Spatial interaction and the statistical
analysis of lattice systems. J. R. Stat. Soc. B
(Methodol.) 36, 192–225.
21. Besag J, York J, Mollié A. 1991 Bayesian image
restoration, with two applications in spatial
statistics. Ann. Inst. Stat. Math. 43, 1–20. (doi:10.
1007/BF00116466)

22. James M. 1978 The generalised inverse. Math.
Gazette 62, 109–114. (doi:10.1017/
S0025557200086460)

23. Gelfand AE, Vounatsou P. 2003 Proper multivariate
conditional autoregressive models for spatial data
analysis. Biostatistics 4, 11–15. (doi:10.1093/
biostatistics/4.1.11)

24. Riebler A, Sørbye SH, Simpson D, Rue H. 2016 An
intuitive Bayesian spatial model for disease
mapping that accounts for scaling. Stat. Methods
Med. Res. 25, 1145–1165. (doi:10.1177/
0962280216660421)

25. Li Y, Turner RE. 2016 Rényi divergence variational
inference. (https://arxiv.org/abs/1602.02311)

26. Glorot X, Bordes A, Bengio Y. 2011 Deep sparse
rectifier neural networks. In Proc. 14th Int. Conf. on
Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 11–13 April 2011, pp. 315–323.

27. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y. 2009
What is the best multi-stage architecture for object
recognition? In 2009 IEEE 12th Int. Conf. on
Computer Vision, pp. 2146–2153. (doi:10.1109/ICCV.
2009.5459469)

28. Nair V, Hinton GE. 2010 Rectified linear units
improve restricted Boltzmann machines. In Proc.
27th Int. Conf. on Machine Learning, Haifa, Israel,
21–24 June 2010, pp. 807–814.

29. Kovenko V, Bogach I. 2020 A comprehensive study
of autoencoders, applications related to images.
In Int. Conf. on Information Technology and
Interactions, Workshops Proc., Kyiv,
Ukraine, 2–3 December 2020, pp. 43–54.

30. Martino L, Elvira V, Louzada F. 2017 Effective
sample size for importance sampling based on
discrepancy measures. Signal Process. 131,
386–401. (doi:10.1016/j.sigpro.2016.08.025)

31. Kemp I, Boyle P, Muir C, Cameron L. 1985 Atlas of
cancer in Scotland, 1975–1980: incidence and
epidemiological perspective. Lyon, France:
International Agency for Research on Cancer.

32. Duncan EW, White NM, Mengersen K. 2017 Spatial
smoothing in Bayesian models: a comparison of
weights matrix specifications and their impact on
inference. Int. J. Health Geogr. 16, 1–16. (doi:10.
1186/s12942-017-0120-x)
33. Morris M, Wheeler-Martin K, Simpson D, Mooney SJ,
Gelman A, DiMaggio C. 2019 Bayesian hierarchical
spatial models: implementing the Besag York Mollié
model in stan. Spatial Spatio-temporal Epidemiol. 31,
100301. (doi:10.1016/j.sste.2019.100301)

34. Clevert D-A, Unterthiner T, Hochreiter S. 2015 Fast and
accurate deep network learning by exponential linear
units (elus). (https://arxiv.org/abs/1511.07289)

35. Burda Y, Grosse R, Salakhutdinov R. 2015
Importance weighted autoencoders. (https://arxiv.
org/abs/1509.00519)

36. Sachathep K et al. 2021 Population-based HIV
impact assessments survey methods, response, and
quality in Zimbabwe, Malawi, and Zambia.
J. Acquir. Immune Defic. Syndr. 87, S6–S16. (doi:10.
1097/QAI.0000000000002710)

37. Mishra S, Scott J, Zhu H, Ferguson NM, Bhatt S,
Flaxman S, Gandy A. 2020 A COVID-19 model for
local authorities of the United Kingdom. medRxiv.
(doi:10.1101/2020.11.24.20236661)

38. Scott JA, Gandy A, Mishra S, Unwin J, Flaxman S,
Bhatt S. 2020 Epidemia: modeling of epidemics
using hierarchical Bayesian models. R package
version 1.0.0.

39. Flaxman S et al. 2020 Estimating the effects of non-
pharmaceutical interventions on COVID-19 in
Europe. Nature 584, 257–261. (doi:10.1038/s41586-
020-2405-7)

40. Watanabe S, Opper M. 2010 Asymptotic equivalence
of Bayes cross validation and widely applicable
information criterion in singular learning theory.
J. Mach. Learn. Res. 11, 3571–3594.

41. Kumar R, Carroll C, Hartikainen A, Martin O. 2019
Arviz a unified library for exploratory analysis of
Bayesian models in python. J. Open Source Softw. 4,
1143. (doi:10.21105/joss.01143)

42. Arambepola R, Lucas TC, Nandi AK, Gething PW,
Cameron E. 2022 A simulation study of disaggregation
regression for spatial disease mapping. Stat. Med. 41,
1–16. (doi:10.1002/sim.9220)

43. Johnson O, Diggle P, Giorgi E. 2019 A spatially discrete
approximation to log-Gaussian Cox processes for
modelling aggregated disease count data. Stat. Med.
38, 4871–4887. (doi:10.1002/sim.8339)

44. Semenova E, Xu Y, Howes A, Rashid T, Mishra S,
Flaxman S. 2022 PriorVAE: encoding spatial priors
with variational autoencoders for small-area
estimation. Figshare. (https://doi.org/10.6084/m9.
figshare.c.6011431)

http://dx.doi.org/10.1016/j.csda.2013.04.014
http://dx.doi.org/10.1016/j.csda.2013.04.014
http://dx.doi.org/10.18637/jss.v076.i01
https://arxiv.org/abs/1912.11554
https://arxiv.org/abs/1912.11554
https://arxiv.org/abs/1912.11554
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1805.09076
https://arxiv.org/abs/1805.09076
http://dx.doi.org/10.1007/BF00116466
http://dx.doi.org/10.1007/BF00116466
http://dx.doi.org/10.1017/S0025557200086460
http://dx.doi.org/10.1017/S0025557200086460
http://dx.doi.org/10.1093/biostatistics/4.1.11
http://dx.doi.org/10.1093/biostatistics/4.1.11
http://dx.doi.org/10.1177/0962280216660421
http://dx.doi.org/10.1177/0962280216660421
https://arxiv.org/abs/1602.02311
https://arxiv.org/abs/1602.02311
http://dx.doi.org/10.1109/ICCV.2009.5459469
http://dx.doi.org/10.1109/ICCV.2009.5459469
http://dx.doi.org/10.1016/j.sigpro.2016.08.025
http://dx.doi.org/10.1186/s12942-017-0120-x
http://dx.doi.org/10.1186/s12942-017-0120-x
http://dx.doi.org/10.1016/j.sste.2019.100301
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1509.00519
https://arxiv.org/abs/1509.00519
https://arxiv.org/abs/1509.00519
http://dx.doi.org/10.1097/QAI.0000000000002710
http://dx.doi.org/10.1097/QAI.0000000000002710
http://dx.doi.org/10.1101/2020.11.24.20236661
http://dx.doi.org/10.1038/s41586-020-2405-7
http://dx.doi.org/10.1038/s41586-020-2405-7
http://dx.doi.org/10.21105/joss.01143
http://dx.doi.org/10.1002/sim.9220
http://dx.doi.org/10.1002/sim.8339
https://doi.org/10.6084/m9.figshare.c.6011431
https://doi.org/10.6084/m9.figshare.c.6011431

	PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
	Introduction
	Methods
	Three types of spatial data
	Latent Gaussian models
	Models of areal data
	Variational autoencoders
	The proposed method

	Results
	One-dimensional Gaussian process on regular and irregular grids
	Two-dimensional Gaussian process
	Synthetic conditional auto-regressive example
	Scottish lip cancer dataset
	An alternative approach to training a variational autoencoder for non-Gaussian likelihoods
	HIV prevalence in Zimbabwe
	COVID-19 incidence in the UK

	Discussion and future work
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	Acknowledgements
	References


