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Abstract

Online Controlled Experiments (OCE) are the gold standard to measure impact and
guide decisions for digital products and services. Despite many methodological
advances in this area, the scarcity of public datasets and the lack of a systematic
review and categorization hinder its development. We present the first survey and
taxonomy for OCE datasets, which highlight the lack of a public dataset to support
the design and running of experiments with adaptive stopping, an increasingly pop-
ular approach to enable quickly deploying improvements or rolling back degrading
changes. We release the first such dataset, containing daily checkpoints of decision
metrics from multiple, real experiments run on a global e-commerce platform. The
dataset design is guided by a broader discussion on data requirements for common
statistical tests used in digital experimentation. We demonstrate how to use the
dataset in the adaptive stopping scenario using sequential and Bayesian hypothesis
tests and learn the relevant parameters for each approach.

1 Introduction

Online controlled experiments (OCEs) have become popular among digital technology organizations
in measuring the impact of their products and services, and guiding business decisions [50, 53, 76].
Large tech companies including Google [41], Linkedin [85], and Microsoft [49] reported running
thousands of experiments on any given day, and there are multiple companies established solely to
manage OCEs for other businesses [11, 45]. It is also considered a key step in the machine learning
development lifecycle [9, 90].

OCEs are essentially randomized controlled trials run on the Web. The simplest example, commonly
known as an A/B test, splits a group of entities (e.g. users to a website) randomly into two groups,
where one group is exposed to some treatment (e.g. showing a "free delivery" banner on the website)
while the other act as the control (e.g. seeing the original website without any mention of free
delivery). We calculate the decision metric(s) (e.g. proportion of users who bought something)
based on responses from both groups, and compare the metrics using a statistical test to draw causal
statements about the treatment.

The ability to run experiments on the Web allows one to interact with a large number of subjects
within a short time frame and collect a large number of responses. This, together with the scale of
experimentation carried out by tech organizations, should lead to a wealth of datasets describing
the result of an experiment. However, there are not many publicly available OCE datasets, and we
believe they were never systematically reviewed nor categorized. This is in contrast to the machine
learning field, which also enjoyed its application boom in the past decade yet already has established
archives and detailed categorizations for its datasets [28, 78].

We argue the lack of relevant datasets arising from real experiments hinders the further development
of OCE methods (e.g. new statistical tests, bias correction, and variance reduction methods). Many
statistical tests proposed relied on simulated data that impose restrictive distributional assumptions
and thus may not be representative of the real-world scenario. Moreover, it may be difficult to
understand how methods differ from each other and assess their relative strengths and weaknesses
without a common dataset to compare them on.
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To address this problem, we present the first ever survey and taxonomy for OCE datasets. Our
survey identified 13 datasets, including standalone experiment archives, accompanying datasets from
scholarly works, and demo datasets from online courses on the design and analysis of experiments.
We also categorize these datasets based on dimensions such as the number of experiments each
dataset contains, how granular each data point is time-wise and subject-wise, and whether it includes
results from real experiment(s).

The taxonomy enables us to engage in a discussion on the data requirements for an experiment by
systematically mapping out which data dimension is required for which statistical test and/or learning
the hyperparameter(s) associated with the test. We also recognize that in practice data are often used
for purposes beyond what it is originally collected for [47]. Hence, we posit the mapping is equally
useful in allowing one to understand the options they have when choosing statistical tests given the
format of data they possess. Together with the survey, the taxonomy helps us to identify what types
of datasets are required for commonly used statistical tests, yet are missing from the public domain.

One of the gaps the survey and taxonomy identify is datasets that can support the design and running
of experiments with adaptive stopping (a.k.a. continuous monitoring / optional stopping). We
motivate their use below. Traditionally, experimenters analyze experiments using Null Hypothesis
Statistical Tests (NHST, e.g. a Student’s t-test). These tests require one to calculate and commit to a
required sample size based on some expected treatment effect size, all prior to starting the experiment.
Making extra decisions during the experiment, be it stopping the experiment early due to seeing
favorable results, or extending the experiment as it teeters “on the edge of statistical significance” [61],
is discouraged as they risk one having more false discoveries than intended [35, 60].

Clearly, the restrictions above are incompatible with modern decision-making processes. Businesses
operating online are incentivized to deploy any beneficial and roll back any damaging changes
as quickly as possible. Using the “free delivery” banner example above, the business may have
calculated that they require four weeks to observe enough users based on an expected 1% change
in the decision metric. If the experiment shows, two weeks in, that the banner is leading to a 2%
improvement, it will be unwise not to deploy the banner to all users simply due to the need to run the
experiment for another two weeks. Likewise, if the banner is shown leading to a 2% loss, it makes
every sense to immediately terminate the experiment and roll back the banner to stem further losses.

As a result, more experimenters are moving away from NHST and adopting adaptive stopping
techniques. Experiments with adaptive stopping allow one to decide when to stop an experiment
(i.e. stopping it earlier or prolonging it) based on the sample responses observed so far without
compromising the statistical validity of false positive/discovery rate control. To encourage further
development in this area, both in methods and data, we release the ASOS Digital Experiments Dataset,
which contains daily checkpoints of decision metrics from multiple, real OCEs run on the global
online fashion retail platform.

The dataset design is guided by the requirements identified by the mapping between the taxonomy
and statistical tests, and to the best of our knowledge, is the first public dataset that can support the
end-to-end design and running of online experiments with adaptive stopping. We demonstrate it can
indeed do so by (1) running a sequential test and a Bayesian hypothesis test on all the experiments in
the dataset, and (2) estimating the value of hyperparameters associated with the tests. While the notion
of ground-truth does not exist in real OCEs, we show the dataset can also act as a quasi-benchmark
for statistical tests by comparing results from the tests above with that of a t-test.

To summarize, our contributions are:

1. (Sections 2 & 3) We create, to the best of our knowledge, the first ever taxonomy on online
controlled experiment datasets and apply it to publicly available datasets;

2. (Section 4) We map the relationship between the taxonomy to statistical tests commonly used in
experiments by identifying the minimally sufficient set of statistics and dimensions required in
each test. The mapping, which also applies to offline and non-randomized controlled experiments,
enables experimenters to quickly identify the data collection requirements for their experiment
design (and conversely the test options available given the data availability); and

3. (Section 5) We make available, to the best of our knowledge, the first real, multi-experiment time
series dataset, enabling the design and running of experimentation with adaptive stopping.1

1Link to the dataset and accompanying datasheet: https://osf.io/64jsb/
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2 A Taxonomy for Online Controlled Experiment Datasets

We begin by presenting a taxonomy on OCE datasets, which is necessary to characterize and
understand the results of a survey. To the best of our knowledge, there are no surveys nor taxonomies
specifically on this topic prior to this work. While there is a large volume of work concerning the
categorization of datasets in machine learning [28, 78], of research work in the online randomized
controlled experiment methods [3, 4, 32, 69], and of general experiment design [43, 52], our search
on Google Scholar and Semantic Scholar using combinations of the keywords “online controlled
experiment”/“A/B test”, “dataset”, and “taxonomy”/“categorization” yields no relevant results.

The taxonomy focuses on the following four main dimensions:

Experiment count A dataset can contain the data collected from a single experiment or multiple
experiments. Results from a single experiment are useful for demonstrating how a test works, though
any learning should ideally involve multiple experiments. Two closely related but relatively minor
dimensions are the variant count (number of control/treatment groups in the experiment) and the
metric count (number of performance metrics the experiment is tracking). Having an experiment
with multiple variants and metrics enables the demonstration of methods such as false discovery rate
control procedures [8] and learning the correlation structure within an experiment.

Response granularity Depending on the experiment analysis requirements and constraints imposed
by the online experimentation platform, the dataset may contain data aggregated to various levels.
Consider the “free delivery” banner example in Section 1, where the website users are randomly
allocated to the treatment (showing the banner) and control (not showing the banner) groups to
understand whether the banner changes the proportion of users who bought something. In this case,
each individual user is considered a randomization unit [50].

A dataset may contain, for each experiment, only summary statistics on the group level, e.g. the
proportion of users who have bought something in the control and treatment groups respectively.
It can also record one response per randomization unit, with each row containing the user ID and
whether the user bought something. The more detailed activity logs at a sub-randomization unit level
can also have each row containing information about a particular page view from a particular user.

Time granularity An experiment can last anytime between a week to many months [50], which
provides many possibilities in recording the result. A dataset can opt to record the overall result
only, showing the end state of an experiment. It may or may not come with a timestamp for
each randomization unit or experiment if there are multiple instances of them. It can also record
intermediate checkpoints for the decision metrics, ideally at regular intervals such as daily or hourly.
These checkpoints can either be a snapshot of the interval (recording activities between time t
and t + 1, time t + 1 and t + 2, etc.) or cumulative from the start of the experiment (recording
activities between time 0 and 1, time 0 and 2, etc.).

Syntheticity A dataset can record data generated from a real process. It can also be synthetic—
generated via simulations with distributional assumptions applied. A dataset can also be semi-synthetic
if it is generated from a real-life process and subsequently augmented with synthetic data.

Note we can also describe datasets arising from any experiments (including offline and non-
randomized controlled experiments) using these four dimensions. We will discuss in Section 4
how these dimensions map to common statistical tests used in online experimentation.

In addition, we also record the application domain, target demographics, and the temporal coverage
of the experiment(s) featured in a dataset. In an age when data are often reused, it is crucial for
one to understand the underlying context, and that learnings from a dataset created under a certain
context may not translate to another context. We also see the surfacing of such context as a way to
promote considerations in fairness and transparency for experimenters as more experiment datasets
become available [44]. For example, having target demographics information on a meta-level helps
experimenters to identify who were involved, or perhaps more importantly, who were not involved in
experiments and could be adversely impacted by a treatment that is effectively untested.

Finally, two datasets can also differ in their medium of documentation and the presence/absence
of a data management / long-term preservation plan. The latter includes the hosting location, the
presence/absence of a DOI, and the type of license. We record these attributes for the datasets
surveyed below for completeness.
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3 Public Online Controlled Experiment Datasets

Here we discuss our approach to produce the first ever survey on OCE datasets and present its results.
The survey is compiled via two search directions, which we describe below. For both directions, we
conduct a first round search in May 2021, with follow up rounds in August and October 2021 to
ensure we have the most updated results.

We first search on the vanilla Google search engine using the keywords “Online controlled experiment
"dataset"”, “A/B test "dataset"”, and “Multivariate test "dataset"”. For each keyword, we inspect the
first 10 pages of the search result (top 100 results) for scholarly articles, web pages, blog posts, and
documents that may host and/or describe a publicly available OCE dataset. The search term “dataset”
is in double quotes to limit the search results to those with explicit mention of dataset(s). We also
search on specialist data search engines/hosts, namely on Google Dataset Search (GDS) and Kaggle,
using the keywords “Online controlled experiment(s)” and “A/B test(s)”. We inspect the metadata
and description for all the results returned (except for GDS, where we inspect the first 100 results for
“A/B test(s)”) for relevant datasets as defined below.2

A dataset must record the result arising from a randomized controlled experiment run online to be in-
cluded in the survey. The criterion excludes experimental data collected from offline experiments, e.g.
those in agriculture [84], medicine [27], and economics [29]. It also excludes datasets used to perform
quasi-experiments and observational studies, e.g. the LaLonde dataset used in econometrics [21] and
datasets constructed for uplift modeling tasks [25, 40].3

The result is presented in Table 1. We place the 13 OCE datasets identified in this exercise along the
four taxonomy dimensions defined in Section 2 and record the additional features. These datasets
include two standalone archives for online media and education experiments respectively [56, 71],
plus two accompanying datasets for peer-reviewed research articles [75, 87]. There are also tens
of Kaggle datasets, blog posts, and code repositories that describe and/or duplicate one of the five
example datasets used in five different massive open online courses on online controlled experiment
design and analysis [10, 12, 36, 37, 77]. Finally, we identify three standalone datasets hosted on
Kaggle with relatively light documentation [5, 31, 48].

From the table, we observe a number of gaps in OCE dataset availability, the most obvious one being
the lack of datasets that record responses at a sub-randomization unit level. In the sections below, we
will identify more of these gaps and discuss their implications for OCE analysis.

4 Matching Dataset Taxonomy with Statistical Tests

Specifying the data requirements (or structure) and performing statistical tests are perhaps two of the
most common tasks carried out by data scientists. However, the link between the two processes is
seldom mapped out explicitly. It is all too common to consider from scratch the question “I need
to run this statistical test, how should I format my dataset?” (or more controversially, “I have this
dataset, what statistical tests can I run?” [47]) for every new project/application, despite the list of
possible dataset dimensions and statistical tests remaining largely the same.

We aim to speed up the process above by describing what summary statistics are required to perform
common statistical tests in OCE, and link the statistics back to the taxonomy dimensions defined in
Section 2. The exercise is similar to identifying the sufficient statistic(s) for a statistical model [33],
though the identification is done for the encapsulating statistical inference procedure, with a practical
focus on data dimension requirements. We do so by stating the formula used to calculate the
corresponding effect sizes and test statistics and observe the summary statistics required in common.
The general approach enables one to also apply the resultant mapping to any experiments that involve

2Searching for the keyword “Online controlled experiment” on GDS and Kaggle returned 42 and 7 results
respectively, and that for “A/B test” returned “100+” and 286 results respectively. Curiously, replacing “experi-
ment” and “test” in the keywords with their plural form changes the number of results, with the former returning
6 and 10 results on GDS and Kaggle respectively, and the latter returning “100+” and 303 results respectively.

3Uplift modeling (UM) tasks for online applications often start with an OCE [67] and thus we can consider
UM datasets as OCE datasets with extra randomization unit level features. The nature of the tasks is different
though: OCEs concern validating the average treatment effect across the population using a statistical test,
whereas UM concerns modeling the conditional average treatment effect for each individual user, making it
more a general causal inference task that is outside the scope of this survey.
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Dataset Name Ref. Experiment Count
- Variant / Metric

Count

Response
Granularity

Time Granularity Syntheticity Application
Domain

Target
Demographic

Temporal
Coverage

Documentation Data management / long-
term preservation plan

Upworthy Research Archive [56] Multiple (32,487)
- 2-14 / 2 (C) Group Overall result only

Timestamp per expt. Real Media & Ads
Copy/Creative

Mostly English-
speaking users
in USA

Jan 2013 –
Apr 2015

Peer reviewed
data article

Host: Open Science
Framework

DOI: 3 (see [56])
Licence: CC BY 4.0

ASSISTments Dataset from
Multiple Randomized
Controlled Experiments

[71] Multiple (22)
- 2 / 2 (BC) Rand. Unit Overall result only

7 timestamp Real Education
Teaching model

Mostly middle school
students (age 11-14)
in/near MA, USA

2013 –
2015

Peer reviewed
data article

Host: Author website
DOI: Unknown
Licence: Unknown

A/B Testing Web Analytics Data
(From [88]) [87] Single

- 5 / 2 (C) Group Overall result only
X timestamp Real Education

UX/UI change

Mostly English-
speaking university
library users

May 2013 –
Jun 2013

Accompanying
dataset to
peer-reviewed
research article

Host: University library
DOI: 3 (see [87])
Licence: CC BY-SA 4.0

Dataset of two experiments of the
application of gamified peer
assessment model into online
learning environment MeuTutor
(From [74])

[75] Multiple (2)
- 3+2 / 3+3 (R+C) Rand. Unit Overall result only

7 timestamp Real Education
Teaching model

High school students
in Brazil taking
ENEM (age 17)

Jul 2015 –
Aug 2015

Peer reviewed
data article

Host: Journal website
DOI: 3 (see [75])
Licence: CC BY 4.0

Udacity Free Trial Screener
Experiment (From Udacity
A/B Testing Course -
Final Project [36])

See e.g.
[62, 72, 80]

Single
- 2 / 4 (C) Group Daily checkpoint

Snapshot Real Education
UX/UI change

Mostly English-
speaking users Unknown

Blog posts &
Kaggle notebooks
e.g. [57, 70, 89]

Host: Kaggle / GitHub
(multiple)

DOI: Unknown
Licence: Unknown

“Analyse A/B Test Results”
Dataset (From Udacity Online
Data Analyst Course -
Project 3 [77])

See e.g.
[2, 20, 65]

Single
- 2 / 1 (B) Rand. Unit Overall result only

Timestamp per RU Unknown E-commerce
UX/UI change Unknown Unknown

Blog posts &
Kaggle notebooks
e.g. [16, 54, 68]

Host: Kaggle / GitHub
(multiple)

DOI: Unknown
Licence: Unknown

Mobile Games A/B Testing
with Cookie Cats
(DataCamp project [10])

See e.g.
[30, 73, 86]

Single
- 2 / 3 (BC) Rand. Unit Overall result only

7 timestamp Real Gaming
Design change

Unknown (likely
Facebook users) Unknown Kaggle notebook

Host: Kaggle /
Course website

DOI: Unknown
Licence: Unknown

Experiment Dataset (From
DataCamp A/B Testing
in R Course [12])

[13] Single
- 2 / 1 (B) Rand. Unit Overall result only

Timestamp per RU Synthetic Tech
UX/UI Change N/A N/A Course notes

Blog posts

Host: Course website
DOI: Unknown
Licence: Unknown

Data Visualization Website -
April 2018 (From DataCamp
A/B Testing in R Course [12])

[14] Single
- 2 / 4 (BR) Rand. Unit Overall result only

Timestamp per RU Synthetic Tech
UX/UI Change N/A N/A Course notes

Host: Course website
DOI: Unknown
Licence: Unknown

AB Testing Result (From
Customer Analytics and
A/B Testing in Python [37])

[38] Single
- 2 / 2 (CR) Rand. Unit Overall result only

Timestamp per RU Unknown Tech
UX/UI Change Unknown Jan 2014 –

Jan 2018 Course notes
Host: Course website
DOI: Unknown
Licence: Unknown

Grocery Website Data for AB Test [48] Single
- 2 / 1 (B) Rand. Unit Overall result only

7 timestamp Unknown E-commerce
UX/UI change Unknown Unknown Kaggle notebook

Host: Kaggle
DOI: Unknown
Licence: Unknown

Ad A/B Testing
(aka SmartAd AB Data) [31] Single

- 2 / 2 (B) Rand. Unit Overall result only
Timestamp per RU Unknown Media & Ads

Display ads Unknown Jul 2020 Kaggle notebook
Host: Kaggle
DOI: N/A
Licence: CC BY-SA 3.0

Synthetical A/B-Tests [5] Multiple (25,856)
- 2 / 1 (R) Group. Overall result only

7 timestamp Synthetic N/A N/A N/A Kaggle notebook

Host: Kaggle
DOI: Unknown
Licence: CDLA-

Sharing-1.0

Table 1: Results from the first ever survey of OCE datasets. The 13 datasets identified are placed on the four taxonomy dimensions defined in Section 2 together
with the additional attributes recorded. In the Experiment Count column, a second-line value (corresponding to Variant/Metric Count) of “x / y (BCLR)” means
the dataset features x variants and y metrics, with the metrics based on Binary, Count, Likert-scale, and Real-valued responses. In the Response Granularity and
Time Granlarity columns, Randomization Unit is abbreviated as RU or Rand. Unit. Note that a large proportion of resources are accessed via links to non-scholarly
articles—blog plots, Kaggle dataset pages, and GitHub repositories. These resources may not persist over time.
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a two-sample statistical test, including offline experiments and experiments without a randomized
control. For brevity, we will refrain from discussing the full model assumptions as well as their
applicability. Instead, we point readers to the relevant work in the literature.

4.1 Effect size and Welch’s t-test

We consider a two-sample setting and let X1, · · · , XN and Y1, · · · , YM be i.i.d. samples from
the distributions FX(·) and FY (·) respectively. We assume the first two moments exist for the
distributions FX and FY , with their mean and variance denoted (µX , σ

2
X) and (µY , σ

2
Y ) respectively.

We also denote the sample mean and variance of the two samples (X̄, s2X) and (Ȳ , s2Y ) respectively.

Often we are interested in the difference between the mean of the two distributions ∆ = µY − µX ,
commonly known as the effect size (of the difference in mean) or the average treatment effect. A
standardized effect size enables us to compare the difference across many experiments and is thus
useful in meta-analyses. One commonly used effect size is Cohen’s d, defined as the difference in
sample means divided by the pooled sample standard deviation [18]:

d =
(
Ȳ − X̄

)/√ (N − 1)s2X + (M − 1)s2Y
N +M − 2

. (1)

We are also interested in whether the samples carry sufficient evidence to indicate ∆ is different from a
prescribed value θ0. This can be done via a hypothesis test withH0 : ∆ = θ0 andH1 : ∆ 6= θ0.4 One
of the most common statistical test used in online controlled experiments is the Welch’s t-test [82], in
which we calculate the test statistic t as follow:

t =
(
Ȳ − X̄

)/√s2X
N

+
s2Y
M

. (2)

We observe that in order to calculate the two stated quantities above, we require six quantities: two
means (X̄ , Ȳ ), two (sample) variances (s2X , s2Y ), and two counts (N , M ). We call these quantities
Dimension Zero (D0) quantities as they are the bare minimum required to run a statistical test—these
quantities will be expanded along the taxonomy dimensions defined in Section 2.

Cluster randomization / dependent data The sample variance estimates (s2X , s2Y ) may be biased
in the case where cluster randomization is involved. Using again the “free delivery” banner example,
instead of randomly assigning each individual user to the control and treatment groups, the business
may randomly assign postcodes to the two groups, with all users from the same postcode getting the
same version of the website. In this case, user responses may become correlated, which violates the
independence assumptions in statistical tests. Common workarounds including the use of bootstrap [7]
and the Delta method [24] generally require access to sub-randomization unit responses.

4.2 Experiments with adaptive stopping

As discussed in Section 1, experiments with adaptive stopping are getting increasingly popular
among the OCE community. Here we motivate the data requirement for statistical tests in this
domain by looking at the quantities required to calculate the test statistics for a Mixture Sequential
Probability Ratio Test (mSPRT) [45] and a Bayesian hypothesis test using Bayes factor [23], two
popular approaches in online experimentation. There are many other tests that support adaptive
stopping [59, 79], though the data requirements, in terms of the dimensions defined in Section 2,
should be largely identical.

We first observe running a mSPRT with a normal mixing distribution H = N (θ0, τ
2) involves

calculating the following test statistic upon observing the first n Xi and Yj (see Eq. (11) in [45]):

Λ̃H,θ0n =

√
σ2
X + σ2

Y

σ2
X + σ2

Y + nτ2
exp

(
n2τ2(Ȳn − X̄n − θ0)2

2(σ2
X + σ2

Y )(σ2
X + σ2

Y + nτ2)

)
, (3)

where X̄n = n−1
∑n
i=1Xi and Ȳn = n−1

∑n
j=1 Yj represent the sample mean of the Xs and Y s up

to sample n respectively, and τ2 is a hyperparameter to be specified or learned from data.
4There are other ways to specify the hypotheses such as that in superiority and non-inferiority tests [19],

though they are unlikely to change the data requirement as long as it remains anchored on θ0.
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For Bayesian hypothesis tests using Bayes factor, we calculate the (square root of) Wald test statistic
upon seeing the first n Xi and first m Yj [22, 23]:

Wn,m =
Ȳm − X̄n√(
σ2
X

n +
σ2
Y

m

) =
Ȳm − X̄n√(σ2

X

n +
σ2
Y

m

)
/
(
1
n + 1

m

)︸ ︷︷ ︸
δn,m

1√
1
n + 1

m︸ ︷︷ ︸√
En,m

, (4)

where δn,m andEn,m are the effect size (standardized by the pooled variance) and the effective sample
size of the test respectively. In OCE it is common to appeal to the central limit theorem and assume a
normal likelihood for the effect size, i.e. δn,m ∼ N (µ, 1/En,m). We then compare the hypotheses
H0 : µ = θ0 and H1 : µ ∼ N (θ0, V

2) by calculating the Bayes factor [46]:

BFn,m =
f(δn,m|H1)

f(δn,m|H0)
=
φ(δn,m; θ0, V

2 + 1/En,m)

φ(δn,m; θ0, 1/En,m)
, (5)

where φ(· ; a, b) is the PDF of a normal distribution with mean a and variance b, and V 2 is a
hyperparameter that we specify or learn from data.

During an experiment with adaptive stopping, we calculate the test statistics stated above many times
for different n and m. This means a dataset can only support the running of such experiments if it
contains intermediate checkpoints for the counts (n, m) and the means (X̄n, Ȳm), ideally cumulative
from the start of the experiment. Often one also requires the variances at the same time points (see
below). The only exception to the dimensional requirement above is the case where the dataset
contains responses at a randomization unit or finer level of granularity, and despite recording the
overall results only, has a timestamp per randomization unit. Under this special case, we will still be
able to construct the cumulative means (X̄n, Ȳm) for all relevant values of n and m by ordering the
randomization units by their associated timestamps.

Learning the effect size distribution (hyper)parameters The two tests introduced above feature
some hyperparameters (τ2 and V 2) that have to be specified or learned from data. These parameters
characterize the prior belief of the effect size distribution, which will be the most effective if it
“matches the distribution of true effects across the experiments a user runs” [45]. Common parameter
estimation procedures [1, 6, 39] require results from multiple related experiments.

Estimating the response variance In the equations above, the response variance of the two
samples σ2

X and σ2
Y are assumed to be known. In practice we often use the plug-in empirical

estimates (s2X)n and (s2Y )m—the sample variances for the first n Xi and first m Yj respectively, and
thus the data dimensional requirement is identical to that of the counts and means as discussed above.
In the case where the plug-in estimate may be biased due to dependent data, we will also require a
sub-randomization unit response granularity (see Section 4.1).

4.3 Non-parametric tests

We also briefly discuss the data requirements for non-parametric tests, where we do not impose
any distributional assumptions on the responses but compare the hypotheses H0 : FX ≡ FY and
H1 : FX 6= FY , where we recall FX and FY are the distributions of the two samples.

One of the most commonly used (frequentist) non-parametric tests in OCE, the Mann-Whitney
U -test [55], calculates the following test statistic:

U =

N∑
i=1

M∑
j=1

S(Xi, Yj), where S(X,Y ) =

{
1 if Y < X ,
1/2 if Y = X ,
0 if Y > X .

(6)

While a rank-based method is available for large N and M , both methods require the knowledge of
all the Xi and Yj . Such requirement is the same for other non-parametric tests, e.g. the Wilcoxon
signed-rank [83], Kruskal-Wallis [51], and Kolmogorov–Smirnov tests [26]. This suggests a dataset
can only support a non-parametric test if it at least provides responses at a randomization unit level.

We conclude by showing how we can combine the individual data requirements above to obtain the
requirement to design and/or run experiments for more complicated statistical tests. This is possible
due to the orthogonal design of the taxonomy dimensions. Consider an experiment with adaptive
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Figure 1: Distribution of p-values attained by the 99 OCEs in the ASOS Digital Experiment Dataset
using Welch’s t-tests, split by decision metrics. The leftmost bar in each histogram represents
experiments with p<0.05. Here we treat OCEs with multiple variants as multiple independent OCEs.

stopping using Bayesian non-parametric tests (e.g. with a Pólya Tree prior [17, 42]). It involves a
non-parametric test and hence requires responses at a randomization unit level. It computes multiple
Bayes factors for adaptive stopping and hence requires intermediate checkpoints for the responses (or
a timestamp for each randomization unit). Finally, to learn the hyperparameters of the Pólya Tree
prior it requires multiple related experiments. The substantial data requirement along 3+ dimensions
perhaps explains the lack of relevant OCE datasets and the tendency for experimenters to use simpler
statistical tests for the day-to-day design and/or running of OCEs.

5 A Novel Dataset for Experiments with Adaptive Stopping

We finally introduce the ASOS Digital Experiments Dataset, which we believe is the first public
dataset that supports the end-to-end design and running of OCEs with adaptive stopping. We motivate
why this is the case, provide a light description of the dataset (and a link to the more detailed
accompanying datasheet),5 and showcase the capabilities of the dataset via a series of experiments.
We also discuss the ethical implications of releasing this dataset.

Recall from Section 4.2 that in order to support the end-to-end design and running of experiments
with adaptive stopping, we require a dataset that (1) includes multiple related experiments; (2) is
real, so that any parameters learned are reflective of the real-world scenario; and either (3a) contains
intermediate checkpoints for the summary statistics during each experiment (i.e. time-granular), or
(3b) contains responses at a randomization unit granularity with a timestamp for each randomization
unit (i.e. response-granular with timestamps).

None of the datasets surveyed in Section 3 meet all three criteria. While the Upworthy [56],
ASSISTments [71], and MeuTutor [75] datasets meet the first two criteria, they all fail to meet the
third.5 The Udacity Free Trial Screener Experiment dataset meets the last two criteria by having
results from a real experiment with daily snapshots of the decision metrics (and hence time-granular),
which supports the running of an experiment with adaptive stopping. However, the dataset only
contains a single experiment, which is not helpful for learning the effect size distribution (the design).

The ASOS Digital Experiments Dataset contains results from OCEs run by a business unit within
ASOS.com, a global online fashion retail platform. In terms of the taxonomy defined in Section 2,
the dataset contains multiple (78), real experiments, with two to five variants in each experiment and
four decision metrics based on binary, count, and real-valued responses. The results are aggregated
on a group level, with daily or 12-hourly checkpoints of the metric values cumulative from the start
of the experiment. The dataset design meets all the three criteria stated above and hence differentiates
itself from other public datasets.

We provide readers with an accompanying datasheet (based on [34]) that provides further information
about the dataset. We also host the dataset on Open Science Framework to ensure it is easily
discoverable and can be preserved long-term.1 It is worth noting that the dataset is released with
the intent to support development in the statistical methods required to run OCEs. The experiment
results shown in the dataset are not representative of ASOS.com’s overall business operations, product
development, or experimentation program operations, and no conclusion of such should be drawn
from this dataset.

5All three report the overall results only and hence are not time-granular. The Upworthy dataset reports
group-level statistics and hence is not response-granular. The ASSISTments and MeuTutor datasets are response-
granular but they lack the timestamp to order the samples.
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Figure 2: Change in (left) p-values in a mixed Sequential Probability Ratio Test (τ2 = 5.92e-06)
and (right) posterior belief in the null hypothesis (π(H0|data)) in a Bayesian hypothesis test (V 2 =
5.93e-06, π(H0) = 0.75) during the experiment for five experiments selected at random. The
experiment duration (x-axis) is normalized by its overall runtime. Only results for Metric 4 is shown.

5.1 Potential use cases

Meta-analyses The multi-experiment nature of the dataset enables one to perform meta-analyses.
A simple example is to characterize the distribution of p-values (under a Welch’s t-test) across all
experiments (see Figure 1). We observe there are roughly a quarter of experiments in this dataset
attaining p < 0.05, and attribute this to the fact that what we experiment in OCEs are often guided by
what domain experts think may have an impact. Having that said, we invite external validation on
whether there is evidence for data dredging using e.g. [58].

Design and running of experiments with adaptive stopping We then demonstrate the dataset
can indeed support OCEs with adaptive stopping by performing a mixed Sequential Probability
Ratio test (mSPRT) and a Bayesian hypothesis test via Bayes factor for each experiment and metric.
This requires learning the hyperparameters τ2 and V 2. We learn, for each metric, a naïve estimate
for V 2 by collating the δn,m (see (4)) at the end of each experiment and taking their sample variance.
This yields the estimates 1.30e-05, 1.07e-05, 6.49e-06, and 5.93e-06 for the four metrics
respectively. For τ2, we learn near-identical naïve estimates by collating the value of Cohen’s d
(see (1)) instead. However, as τ2 captures the spread of unstandardized effect sizes, we specify in each
test τ2 = d · (s2X)n, where (s2X)n is the sample variance of all responses up to the nth observation in
that particular experiment. The Bayesian tests also require a prior belief in the null hypothesis being
true (π(H0))—we set it to 0.75 based on what we observed in the t-tests above.

We then calculate the p-value in mSPRT and the posterior belief in the null hypothesis (π(H0|data))
in the Bayesian test for each experiment and metric at each daily/12-hourly checkpoint, following the
procedures stated in [45] and [23, 46] respectively. We plot the results for five experiments selected
at random in Figure 2, which shows the p-value for a mSPRT is monotonically non-increasing, while
the posterior belief for a Bayesian test can fluctuate depending on the effect size observed so far.

A quasi-benchmark for adaptive stopping methods Real online controlled experiments, unlike
machine learning tasks, generally do not have a notion of ground truth. The use of quasi-ground truth
enables the comparison between two hyperparameter settings of the same adaptive stopping method
or two adaptive stopping methods. Using as quasi-ground truth the significant / not significant verdict
from a Welch’s t-test at the end of the experiment as the “ground truth”, we could then compare this
“ground truth” to the significant / not significant verdict of a mSPRT at different stages of individual
experiments. This yields many “confusion matrices” over different stages of individual experiments
where a “Type I error” corresponds to cases where a Welch’s t-test gives a not significant result
and a mSRPT reports a significant result, a confusion matrix for the end of each experiment can
be seen in Table 2. As the dataset was collected without early stopping it allows us to perform
sensitivity analysis and optimization on the hyperparameters of mSPRT under what can be construed
as a “precision-recall” tradeoff of statistically significant treatments.

Other use cases The time series nature of this dataset enables one to detect bias (of the estimator)
across time, e.g. those that are caused by concept drift or feedback loops. In the context of OCEs, [15]
described a number of methods to detect invalid experiments over time that may be run on this dataset.
Moreover, being both a multi-experiment and time series dataset also enables one to learn the
correlation structure across experiments, decision metrics, and time [66, 81].

5.2 Ethical considerations

We finally discuss the ethical implications of releasing the dataset, touching on data protection and
anonymization, potential misuses, and the ethical considerations for running OCEs in general.
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t-test Significant Not significant
mSPRT Significant Not significant Significant Not significant
Metric 1 19 7 2 71
Metric 2 20 7 18 49
Metric 3 16 9 6 63
Metric 4 16 11 4 63

Table 2: Comparing the number of statistically significant / not significant results reported by a
Welch’s t-test and an mSPRT at the end of an experiment for all four metrics.

Data protection and anonymization The dataset records aggregated activities of hundreds of
thousands or millions of website users for business measurement purposes and hence it is impossible to
identify a particular user. Moreover, to minimize the risk of disclosing business sensitive information,
all experiment context is either removed or anonymized such that one should not be able to tell who
is in an experiment, when is it run, what treatment does it involve, and what decision metrics are used.
We refer readers to the accompanying datasheet5 for further details in this area.

Potential misuses An OCE dataset, no matter how anonymized it is, reflects the behavior of its
participants under a certain application domain and time. We urge potential users of this dataset
to exercise caution when attempting to generalize the learnings. It is important to emphasize that
the learnings are different from the statistical methods and processes that are demonstrated on this
dataset. We believe the latter are generalizable, i.e. they can be applied on other datasets with similar
data dimensions regardless of the datasets’ application domain, target demographics, and temporal
coverage, and appeal for potential users of the dataset to focus on such.

One example of generalizing the learnings is the use of this dataset as a full performance benchmark.
As discussed above, this dataset does not have a notion of ground truth and any quasi-ground truths
constructed are themselves a source of bias to estimators. Thus, experiment design comparisons need
to be considered at a theoretical level [52]. Another example will be directly applying the value of
hyperparameter(s) obtained while training a model on this dataset to another dataset. While this may
work for similar application domains, the less similar they are the less likely the hyperparameters
learned will transfer. This may introduce risk in incurring bias both on the estimator and in fairness.

Running OCEs in general The dataset is released with the aim to support experiments with
adaptive stopping, which will enable a faster experimentation cycle. As we run more OCEs, which
are ultimately human subjects research, the ethical concerns will naturally mount. We reiterate the
importance of the following three principles when we design and run experiments [63, 64]: respect
for persons, beneficence (properly assess and balance the risks and benefits), and justice (ensure
participants are not exploited), and refer readers to Chapter 9 of [50] and its references for further
discussions in this area.

6 Conclusion

Online controlled experiments (OCE) are a powerful tool for online organizations to assess their
digital products’ and services’ impact. To safeguard future methodological development in the area,
it is vital to have access to and have a systematic understanding of relevant datasets arising from
real experiments. We described the result of the first ever survey on publicly available OCE datasets,
and provided a dimensional taxonomy that links the data collection and statistical test requirements.
We also released the first ever dataset that can support OCEs with adaptive stopping, which design
is grounded on a theoretical discussion between the taxonomy and statistical tests. Via extensive
experiments, we also showed that the dataset is capable of addressing the identified gap in the
literature.

Our work on surveying, categorizing, and enriching the publicly available OCE datasets is just the
beginning and we invite the community to join in the effort. As discussed above we have yet to see a
dataset that can support methods dealing with correlated data due to cluster randomization, or the
end-to-end design and running of experiments with adaptive stopping using Bayesian non-parametric
tests. We also see ample opportunity to generalize the survey to cover datasets arising from uplift
modeling tasks, quasi-experiments, and observational studies. Finally, we can further expand the
taxonomy, which already supports datasets from all experiments, with extra dimensions (e.g. number
of features to support stratification, control variate, and uplift modeling methods) as the area matures.
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