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Abstract: We present an evaluation of Aerosol Optical Depth (AOD) retrievals from the Moderate
Resolution Imaging Spectroradiometer (MODIS) over Australia covering the period 2001–2020. We
focus on retrievals from the Deep Blue (DB) and Multi-Angle Implementation of Atmospheric
Correction (MAIAC) algorithms, showing how these compare to one another in time and space.
We further employ speciated AOD estimates from Copernicus Atmospheric Monitoring Service
(CAMS) reanalyses to help diagnose aerosol types and hence sources. Considering Australia as a
whole, monthly mean AODs show similar temporal behaviour, with a well-defined seasonal peak
in the Austral summer. However, excepting periods of intense biomass burning activity, MAIAC
values are systematically higher than their DB counterparts by, on average, 50%. Decomposing
into seasonal maps, the patterns of behaviour show distinct differences, with DB showing a larger
dynamic range in AOD, with markedly higher AODs (∆AOD∼0.1) in northern and southeastern
regions during Austral winter and summer. This is counter-balanced by typically smaller DB values
across the Australian interior. Site level comparisons with all available level 2 AOD data from
Australian Aerosol Robotic Network (AERONET) sites operational during the study period show that
MAIAC tends to marginally outperform DB in terms of correlation (RMAIAC = 0.71, RDB = 0.65) and
root-mean-square error (RMSEMAIAC = 0.065, RMSEDB = 0.072). To probe this behaviour further,
we classify the sites according to the predominant surface type within a 25 km radius. This analysis
shows that MAIAC’s advantage is retained across all surface types for R and all but one for RMSE.
For this surface type (Bare, comprising just 1.2% of Australia) the performance of both algorithms is
relatively poor, (RMAIAC = 0.403, RDB = 0.332).

Keywords: AOD; MODIS; MAIAC; DB; aerosol; Australia; optical depth; CAMS; AERONET

1. Introduction

Aerosols are tiny suspended solid or liquid particles in the atmosphere comprised
of substances such as smoke, ash, dust, pollution, sulphates and numerous other natural
or anthropogenic species. Aerosols affect the climate by altering the Earth’s radiation
budget through several mechanisms. They absorb and scatter incoming solar and out-
going longwave radiation, alter cloud microphysical properties such as droplet size and
concentration by acting as condensation nuclei and even affect the carbon cycle via land
and ocean fertilization, through the deposition of nutrients such as iron and phosphorus
(for example, in nutrient rich dust) [1–3]. Additionally, particulate matter smaller than
2.5 microns, PM2.5, is known to have negative long term effects on human health and
well-being [4]. Decreases in visibility caused by accumulation of aerosols regionally can
also negatively impact the local environment [5]. It is clear, therefore, that there is a need to
monitor the distribution and evolution of aerosols and to properly assess the accuracy of
aerosol observations.
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Australia is a growing area of interest in the aerosol remote sensing community. A
wide variety of aerosols have been identified over Australia, including dust, smoke, urban
pollution, sulphates and sea salt [6]. Australian smoke and dust aerosols are significant
contributors to the global budgets of these aerosol types. The region has been estimated to
contribute 7% to global fire emissions (1997–2009), making it the fifth largest fire emissions
source region globally [7]. Bushfires and wildfires are common along the north and east
coasts over grassland and savanna-dominated areas, particularly in the fire season [7]. It is
also thought to be the most prominent source of dust in the Southern Hemisphere, making
up around 4% of the global dust budget [8]. This is largely due to Australia being host to
many ephemeral lakes and other water bodies, some of which are active dust sources year
long and which have been estimated to be responsible for around 75% of dust emissions
in the country [8]. Nonetheless, Australia remains a relatively understudied region in the
literature, and often discrepancies are found when determining spatial/seasonal Aerosol
Optical Depth (AOD) trends over the area. Work by Mulcahy et al. [9] shows that the
spatial distribution of satellite retrieved AOD over Australia varies significantly depending
on which satellite is used for the retrievals. The largest discrepancies are seen in the Austral
winter, in which the three satellite AOD retrievals they explore predict levels ranging
between 0 and 0.3 over the majority of the land surface. It is clear, therefore, that an
accuracy assessment of satellite AOD retrievals from Australia is required.

Arguably, the most popular satellite instrument used for AOD retrieval in the at-
mospheric community is the Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument on board the twin Terra and Aqua satellites. These satellites have a near polar
orbiting scan track and a global data record spanning more than 20 years (December 1999–
present), achieving global coverage every 1–2 days. MODIS measures spectral radiance
of the Earth in 36 bands across the visible, UV and IR parts of the spectrum (0.4–14.4 µm)
and uses some of these to perform AOD retrievals. At the time of writing, there are three
operational AOD retrieval algorithms applied to MODIS radiances, and these are: Multi-
Angle Implementation of Atmospheric Corrections (MAIAC), Deep Blue (DB) and Dark
Target (DT). As the name suggests, the DT algorithm was designed to retrieve aerosol over
surfaces that appear dark at solar wavelengths, such as the ocean (under non-glint condi-
tions) and dense vegetation. DB and MAIAC were specifically developed to counteract
some of the issues encountered by the DT approach over brighter surfaces. Because the
vast majority of the Australian land surface is highly reflective, this work focuses on AOD
retrievals from only the DB and MAIAC algorithms.

The DB algorithm is one of the most extensively validated AOD retrieval algorithms,
and with a wealth of both global and regional validations already performed, its limitations
are well characterised. Recent work by Yang et al. [6] and Che et al. [10] explores the per-
formance of the DB algorithm over Australia using Aerosol Robotic Network (AERONET)
ground based sun photometers for ground truthing. Yang et al. [6] use DB retrievals to
analyse the spatio-temporal distributions of AOD over Australia from 2002 to 2020, overall
and by region, with data from the Aqua satellite. They find aerosol levels that peak in
the Austral spring and summer and an overall decreasing trend in yearly averaged AOD
from the DB Aqua data (−0.0003 yr−1). They also analyse AERONET records through a
yearly time series analysis, noting both increasing and decreasing AOD trends in the long
term over specific sites. With an averaged monthly analysis of AERONET records, they
similarly find spring and summer peaks at all sites. They go on to further discriminate
aerosol properties over Australia, specifying the AOD types present. Che et al. [10] also use
AERONET to perform an overall evaluation of DB AOD retrievals over Australia as part of
their research, before going on to compare the DB retrievals to an AOD reanalysis product.
They find good agreement between DB Terra and Aqua AODs with the AERONET data,
with 66% and 67% of points falling within the Expected Error (EE) envelope, respectively,
and similar Root Mean Square Error (RMSE) values (0.07 and 0.08). However, coefficients of
0.56 for Terra and 0.68 for Aqua indicate a marginal improvement in agreement for Aqua.
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The work presented here builds on these foundations by comparing the DB algorithm
with the newer MAIAC algorithm. The MAIAC algorithm has improved spatial resolution,
and regional studies have found it to have an enhanced ability over DB to retrieve fine
scale AOD features, such as smoke plumes, as well as performing well over complex
geographical landscapes [11]. Since the MAIAC algorithm became operational in 2018,
there has been one global [12] and numerous regional evaluations of its performance
and limitations, including North America [13], South America [14], Asia [11,15–19] and
Moscow City [20]. Falah et al. [21] also use AERONET to assess the validity of MAIAC
retrievals over North Africa (Algeria, Morocco and Tunisia), California and Germany, to
elucidate the effect of different environments (aerosol types, surface properties) on the
performance of the MAIAC algorithm. These studies have generally found MAIAC to
have good agreement to ground truth sites, often exceeding the performance of the DB
algorithm. Whilst the global performance analysis of MAIAC by Qin et al. [12] includes a
brief assessment of Oceania aerosol, providing Correlation Coefficient (R), RMSE, mean
absolute difference and mean absolute error for four AERONET sites, most of the analysis
focuses on global patterns as a whole. They find good performance of MAIAC AOD over
Oceania from the AERONET sites used. They go on to evaluate global performance as a
function of surface type, finding that MAIAC performs best over highly vegetated surfaces
and worst on croplands and barren lands. In this work, we expand on this by taking a
detailed look into the performance of MAIAC over Australia, including an assessment of
the seasonality of AOD and the effect of aerosol loading and underlying surface type on
retrieval performance in the region. To our knowledge, this is the first detailed regional
evaluation of the MAIAC AOD retrieval algorithm over Australia.

We compare AOD retrievals over Australia from MAIAC and DB against one another
and against AERONET for the period 2001–2020. This article is set out as follows: Section 2
outlines the materials and methods used, including a description of the study area and
the MODIS and AERONET data. It also describes both the surface type classification
system and methods used to co-locate MODIS and AERONET AOD retrievals. Section 3
presents the results of spatio-temporal trends and seasonal distributions of AOD over
Australia, subsequently using the CAMS reanalysis dataset to understand aerosol species’
distributions. This is followed by the results of the co-location to AERONET, first for the
whole region, then as a function of aerosol loading and finally as a function of underlying
surface type. Conclusions from this work are presented in Section 5.

2. Materials and Methods
2.1. Study Area

Australia is the most prominent source of dust in the Southern Hemisphere, being
home to a number of evaporated or ephemeral water bodies which can continuously
produce dust storms that can travel far across the country [8]. Prone also to frequent and
large bush fires, particularly in the summer months, Australia is additionally a significant
contributor to global smoke aerosol [7]. Fires are most prevalent in areas where fuels are
more widely available, such as in the forest and savanna covered lands near the north and
east coasts. Urban aerosols may be prevalent around urban centres and sea salt aerosols
may be prevalent along the coastlines [6].

Australia has several distinct climatological zones (Figure 1). Almost all of the interior
is covered by arid deserts, which are largely made up of dune fields [22]. Tropical and
subtropical temperate climates dominate to the north and east of the country, experiencing
characteristic heavy rainfalls during the monsoon season (November–April) and humid
heat in the dry seasons (May–October) [23]. Coastal south and east areas have a warm
and cool temperate climate, similar to European climates with 4 distinct seasons. This is
also where the majority of the population lives. Arid desert and steppe climates cover the
largest fraction of land and are the areas where it is expected that dust activity will be the
highest [22]. The analysis performed in this work focuses on all Australian land mass area
(including Australian islands such as Tasmania), as shown in Figure 1.
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Figure 1. Köppen Climate Zones in Australia generated using Copernicus Atmosphere Monitor-
ing Service information (2022) [24]. Overlain are the locations of the Aerosol Robotic Network
(AERONET) sites used in this study (see Section 2.2.3). The size of the circle markers are proportional
to the length of the data record available. The colour scheme used is taken from Beck et al. [24].

2.2. Data Sources
2.2.1. MODIS: MAIAC AOD (MCD19A2)

The MAIAC algorithm [25] is applied to the MODIS instruments on board the Terra
and Aqua satellites. The MAIAC algorithm derives AOD at 550 nm from raw MODIS radi-
ance observations by using a dynamical times series approach and image-based processing,
which helps to separate out the Earth’s surface and atmospheric contributions to the total
observed reflectance. In principle, this method allows MAIAC to retrieve AOD effectively
over both bright and dark surfaces, for the entire data record (2000–present) [25].

MAIAC data are presented at 1km resolution on a sinusoidal grid and are split into
equally spaced 1200 km by 1200 km tiles. Australia falls within the bounds of 16 of these
tiles. All processing in this study was performed on a per tile basis for each of these tiles
over the 20-year dataset. The relatively high resolution of MAIAC gives it the ability to
distinguish more fine scale features of AOD than the DB algorithm, described in the next
section. Previous research has also shown that high resolution allows the retrieval of AOD
over more complex geological features [11]. There is a land–sea detection mask contained
within a parameter known as the Land Water Snow Ice Classification (LWSC), which is
used in this work to mask ocean areas around Australia.

To perform its retrievals, MAIAC uses several fixed aerosol models; each of these
has a look-up table. Over Australia, two aerosol models are used—these are ‘Model 1’,
based on climatology seen in the east coast of the USA, with high summer humidities, and
‘Model 2’, which more closely resembles the more arid and dusty interior of the USA (for
example, the coarse to fine mode AOD fraction is larger). This second model is used over
the vast majority of the land whilst Model 1 is used in far northern and eastern regions [25].
The use of these two different models may cause differences in the AODs retrieved on the
boundaries between these areas, as has been noted by Lyapustin et al. [25]. This has been
found to be particularly prevalent in areas where there are large differences in absorption
between two neighbouring models and when AOD levels are high.

2.2.2. MODIS: DB AOD (MxD04 _L2)

The MODIS DB algorithm [26], so-named as it takes advantage of the ‘deep blue’
MODIS band (0.412 µm, near-UV), was developed to improve aerosol retrievals over bright
surfaces, such as deserts. In the near-UV band, the land’s surface reflectance appears
lower than for the longer, visible wavelengths, allowing aerosol signals to show up more
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clearly [26]. This algorithm utilises a hybrid approach in determining the surface reflectance
contribution to the top of atmosphere radiance, consisting of a prescribed surface reflectance
database and a dynamical method utilizing the Normalized Difference Vegetation Index.
DB AOD is available in two separate datasets, one for each of Aqua and Terra, (MYD04_L2
and MOD04_L2, respectively) [26]. DB has a lower spatial resolution than MAIAC—
roughly 10km at nadir, stretching to around 40km at swath edges. The data are presented
as ‘granules’—5 min segments of the swath overpass of the given area. Whilst spectral
AOD is produced, this report utilises AOD at 550 nm for ease of comparison with MAIAC
and because this is usually used as standard across research institutions for aerosol studies.

2.2.3. Aeronet

AERONET is a global system of ground based atmospheric monitoring stations which
provide high temporal resolution data on a number of aerosol parameters, including
spectral AOD, Ångström Exponent and Single Scattering Albedo [27]. AOD data from
AERONET have a typical characteristic uncertainty of around 0.01–0.02 and are commonly
considered to represent ‘ground truth’ [27,28]. Relevant data from all 18 AERONET stations
(see Figure 1) based in Australia are obtained for this study; information regarding each of
these sites is listed in Table 1.

AOD at 500 nm is available for 17 of these sites. In order to compare it to MODIS AOD,
the AOD at 550 nm (τ550) is calculated from AERONET by interpolating the closest available
AOD (τ500) using the Ångström exponent calculated from the nearest adjacent bands at 675
and 440 nm (α(675−440)), as in Equation (1). The Ångström exponents for various bands
are available from the AERONET L2 data product and can be used to interpolate AODs at
different nearby wavelengths [29], based on a linear fit. One site (Lucinda) presents AOD
at 551 nm; this particular AOD is used in the analysis without alteration. Only the highest
quality level 2 data are used, which have been quality assured and cloud screened.

τ550 = τ500

(
λ550

λ500

)−α(675−440)

(1)

Table 1. Site Information for all 18 AERONET stations over Australia. The allocation of the land
cover class associated with each site is described in Section 2.3.1.

Site Name Latitude Longitude Years of Data Span MAIAC Tile Land Cover Class

ARM_Darwin −12.4250 130.8910 2.8 2010–2015 h30v10 Medium Vegetation
Adelaide_Site_7 −34.7251 138.6565 0.8 2006–2007 h29v12 Medium Vegetation
Birdsville −25.8989 139.3460 6.9 2005–2019 h30v11 Bare
Brisbane-Uni_of_QLD −27.4971 153.0136 1.6 2010–2015 h31v11 Mixed Urban
Canberra −35.2713 149.1111 9.4 2003–2018 h30v12 Dense Vegetation
Coleambally −34.8101 146.0644 0.8 2002–2003 h29v12 * Medium Vegetation
Darwin −12.4240 130.8915 2.0 2004–2011 h30v10 Medium Vegetation
Fowlers_Gap −31.0863 141.7008 3.1 2013–2018 h30v12 Sparse Vegetation
Jabiru −12.6607 132.8931 9.5 2002–2019 h30v10 Medium Vegetation
Lake_Argyle −16.1081 128.7485 10.0 2002–2020 h30v10 Sparse Vegetation
Lake_Lefroy −31.2550 121.7050 4.6 2012–2020 h28v12 Medium Vegetation
Learmonth −22.2407 114.0967 1.4 2017–2020 h28v11 Sparse Vegetation
Lucinda −18.5198 146.3861 4.1 2014–2020 h31v10 Dense Vegetation
Merredin −31.4931 118.2264 0.1 2006 h28v12 Medium Vegetation
Milyering −22.0292 113.9231 0.1 2006 h28v11 Sparse Vegetation
Perth −32.0081 115.8936 0.2 2005–2006 h27v12 Mixed Urban
Rottnest_Island −32.0001 115.5017 1.0 2001–2004 h27v12 Mixed Urban
Tinga_Tingana −28.9758 139.9909 4.6 2002–2012 h30v11 Bare

* Radii greater than 3 km from Coleambally station intersect the neighbouring tile, h30v12.
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2.2.4. Auxiliary Data
Surface Classification

It is well known that the performance of AOD retrieval algorithms can be largely
dependant on the underlying surface type (e.g., [17]). Aerosols can be distinguished
more easily over dark surfaces (such as forests and oceans) than over highly reflective
surfaces (such as deserts). For this reason, as part of our analysis, the performance of each
AOD dataset is assessed as a function of land cover type. Figure 2 shows the land cover
type around each AERONET site as characterised by the MODIS MCD12Q1 International
Geosphere Biosphere Programme (IGBP) product. The IGBP product classifies the surface
into 18 different types and is provided at yearly temporal resolution. In Figure 2, we show
the average classification for 2016. It is apparent from Figure 2 that the heterogeneity
around an individual site and between sites can be significant. For this reason, we simplify
the surface classification according to the dominant land-cover type, as described in the
next section.

Figure 2. International Geosphere Biosphere Programme (IGBP) Land Surface Classification at 500 m
resolution for each AERONET station (Year: 2016). Red circle is of radius 25 km around the sites.

CAMS Reanalysis AOD

To assist with the interpretation of the spatio-temporal distributions of the MODIS DB
and MAIAC AODs, Copernicus Atmospheric Monitoring Service (CAMS) AOD reanalyses
are employed [30]. These reanalyses, running from January 2003 to June 2021, provide 3-
dimensional time-consistent atmospheric composition fields, including aerosols, chemical
species and greenhouse gases [31]. They are produced using 4DVar data assimilation
in Cycle 42r1 of the European Centre for Medium-Range Weather Forecasts’ Integrated
Forecasting System. We focus on the total and speciated AOD (at 550 nm), which involves
the assimilation of either MODIS DT or DB or Advanced Along-Track Scanning Radiometer
(AATSR) AOD retrievals. As such, we note that we might expect some dependency between
the MODIS DB retrievals and the CAMS AOD reanalyses examined here.

Five aerosol types are included in the CAMS reanalysis AOD product: black carbon,
dust, organic matter, sea salt and sulphate. Black carbon and organic matter tend to be
produced from similar emissions sources, including biomass burning (such as wildfires)
and pollution from fossil fuels and combustion, meaning they have both natural and
anthropogenic origins [32]. Organic matter aerosols are also produced from other biogenic
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sources [31]. Dust aerosols typically originate from arid and semi-arid environments as
a result of wind induced uplift but can be entrained and carried substantial distances
depending on their size [8]. Sea salt aerosols are generally produced as a result of sea spray
and wave breaking, and near surface winds again play a role both in their formation and
circulation, driving them over nearby land surfaces [32]. Sulphates can have both natural
and anthropogenic origins, being produced naturally by volcanoes but also commonly in
Australia by mining operations and industrial urban centres [33]. Here, we make use of the
total and speciated AODs to determine spatio-temporal distributions of specific aerosol
types over Australia for the period 2003–2020.

2.3. Methods
2.3.1. Surface Type Classification

A simplified land-cover type classification for each AERONET site was determined
by considering all pixels which fall within 25 km of the site location. For each site, this
area is indicated by the red circle in Figure 2. To simplify the classification and allow the
generation of more robust statistics when ground-truthing the MODIS AODs, we created
new, broader categories to group all sites into one of five surface types, based on levels
of vegetation cover and urban land cover. These categories were: no or extremely low
levels of vegetation (‘Bare’), sparsely vegetated areas (‘Sparse Vegetation’), medium density
vegetation areas including croplands (‘Medium Vegetation’), densely vegetated areas
(‘Dense Vegetation’) and areas with considerable urban land coverage (‘Mixed Urban’).
Table 2 lists the thresholds used to determine the new surface classification. Of all the
categories, the ‘Mixed Urban’ classification is the least stringent. This is deliberate and
accounts for the fact that urban coverage tends to be relatively small but can be responsible
for disproportionately high aerosol emissions and hence optical depths. Of the sites
considered, the site with the highest IGBP urban classification is Rottnest Island at 60%,
followed by Perth at 47%.

Table 2. Land Cover classification criteria. If the IGBP classification shows Mixed Urban coverage of
>30 % and also satisfies one of the other criterion, the Mixed Urban classification takes precedence.

Category Technical Criteria

Bare >50% Barren OR
>40% Barren & >40% Open Shrubland

Sparse >50% Open Shrubland

Medium >50% (combined) of any medium density vegetation (Cropland, Grassland,
Closed Shrubland, Permanent Wetland, or Savanna)

Dense >50% (combined) any Forest type OR
>25% (combined) any Forest type & >25% Other medium or dense vegetation

Urban >30% Urban

We note that whilst the IGBP land surface categories are generally stable on the macro-
scale, around some sites there is significant inter-annual variability. To account for this,
the average percentage cover for each of the original IGBP categories over a time span
coinciding with the AERONET operating lifetime for each site is used to perform the
simplified classification. Figure 3 shows the spatial distribution of land surface categories
taken from the IGBP classification, compared with the new classification described above.
The percentage of land taken up by each category is as follows: 52.6% Sparse, 40.8%
Medium, 5.2% Dense, 1.2% Bare and 0.2% Mixed Urban. Visual inspection of the resultant
simplified category map shows that the categories appropriately classify the land surface
cover in a sensible way.
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Figure 3. IGBP categories (left) and newly defined, simplified categories (right), with the location of
AERONET stations indicted by red crosses.

2.3.2. Spatio-Temporal Co-Location of AERONET and MODIS AOD and
Evaluation Metrics

Spatio-temporal co-location of AERONET and MODIS AODs was performed to enable
validation of the MODIS data against the AERONET ‘ground truth’ data. The MODIS
record from 2001 to 2020 was co-located against all available AERONET stations in Australia
(see Table 1). Although AERONET can, in principle, provide measurements continuously
throughout sunlit hours, Aqua and Terra typically only see any given AERONET station
in Australia up to 4 or 5 times a day. Therefore, AOD observations from AERONET and
MODIS were matched to each other when readings were within a ±30 min time window
and 0.3 degree radius of each other. This window span has been commonly used in
past research to collocate MODIS to AERONET AOD [28,34]. To achieve this, AERONET
readings were averaged over a 1 h window (±30 min) centred on the satellite-station
overpass time. A shorter 30 min window was also considered, but the results from this
analysis showed no significant deviations from those obtained using the 1 h match-ups,
which were thus chosen in order to give more robust statistics.

For the spatial segment of the co-location, AOD were first regridded to a common 0.1◦

by 0.1◦ grid. Subsequently, any grid box whose centre fell within ±0.3◦ of the AERONET
station location was included in an overall average. The 0.3◦ radius was chosen to allow
sufficient DB pixels to be included for a robust statistical analysis. Several other radii were
tested using MAIAC over the range 1 km to 50 km (approx. 0.01◦ to 0.5◦), and this showed
that the dependence of key statistics such as the R, RMSE and Bias (Equations (2)–(4)) on
radius typically flattened at values above 15 km (∼0.15 deg). We note that for some sites,
this behaviour was not seen: for example, at low radii, the MAIAC retrievals tended to be
biased high over Lake Lefroy. The fact that the site is located on a large salt pan points to a
misidentification of the surface as elevated aerosol loading, an error which is compensated
by retrievals further from the site. Note that the difficulty of correctly classifying surface
conditions over this location is also highlighted by Figure 2, where several points are
identified as snow or ice covered.

We use a number of standard metrics to evaluate and compare the performances of
each algorithm in this work. To evaluate the performance of each algorithm, in addition to
R, RMSE and Bias, the EE, Equation (5), is also calculated.

R =
∑i(xi − x)(yi − y)√

∑i (xi − x)2
√

∑i (yi − y)2
(2)

RMSE =

√
∑N

i=1 (AODSatellite − AODAERONET)
2

N
(3)

Bias = AODSatellite − AODAERONET (4)
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EE = ±(0.05 + 0.15AOD) (5)

The EE is commonly used in MODIS validation studies (e.g., [12,16,34,35]). It is
designed to account for errors which are normally expected in a satellite retrieval of AOD.
At low AOD, the error is usually dominated by both the instrument calibration and the
surface reflectance estimations; this type of error is absolute and does not change with AOD.
However, as AOD increases, assumptions within the aerosol model employed become
much more significant, dominating at high AOD. The form of Equation (5) was defined
so as to combine these two factors and has been widely used in satellite AOD retrieval
validation studies of the type described in this work [12,16,35]. Typically, the assumption
is made that if 66% of data points are found to lie within the EE envelope, a dataset can
be considered validated or it can be considered that there is a ‘good’ match [36]. Clearly, a
higher percentage of points falling within the EE envelope indicates a better performance.
Through a global validation of DB data, Levy et al. [34] found the specific values used
in Equation (5), which were chosen so that the envelope of ±EE values contained one
standard deviation (i.e., ∼68%) of the DB/AERONET matchups.

3. Results
3.1. Macro-Scale Spatio-Temporal Variation over Australia

To explore the internal consistency of the DB and MAIAC MODIS AOD records, the
spatial distributions are evaluated at the seasonal timescale and Australia wide monthly
mean temporal variations are examined. Because the datasets are produced with signif-
icantly different algorithms and assumptions, some variation is expected between them.
For example, the higher spatial resolution of MAIAC allows it to pick out fine scale aerosol
features that may be missed in DB [11].

3.2. Temporal Variations

Figure 4a shows the monthly mean time series of ‘Australia mean’ AOD at 550 nm
(hereafter, ‘AOD’ will refer to the AOD at 550 nm specifically) from the DB and MAIAC
algorithms. ‘Australia mean’ in this context means an average of all Australian land pixels
and corresponds to the study area displayed in Figure 5. The deseasonalised variation for
the whole record is also shown in Figure 4b. The time series was deseasonalised using the
standard approach of creating a 20-year climatological monthly mean ‘Australia mean’ for
each month and then subtracting this from the time series shown in Figure 4a. A trendline
analysis was performed on the deseasonalised time series to determine the presence of
upward or downward trends in AOD over the last two decades, and this is displayed in
Figure 4c.

The variation in AOD with time suggests a seasonal cycle is present in the retrievals
from both algorithms, with AODs typically peaking from November to February and at a
minimum between June and August. The timing of these peaks coincides with Australia’s
known high aerosol seasons, in which wildfires are prevalent in the North and Australia’s
interior becomes dustier [6,8,22]. The MAIAC algorithm exhibits increased levels of AOD
at almost all times of year over DB, with an overall average bias over DB of 0.023 (or
roughly 50% larger). The notable exceptions to this are months where extreme high AOD
peaks occur, and DB rises up above the maximum MAIAC AOD levels. This can be
seen around January2003, December 2006 and January 2020. The largest spike (January
2020) coincides with a very active fire season in Australia [37]. Overall, the mean level
of each time series is relatively stable. This is reflected by the trend analysis performed
on each individual sensor and retrieval algorithm, which shows a maximum value of
0.00050 ± 0.00012 yr −1 for MAIAC Aqua, where the error estimate is indicative of the
uncertainty in the linear fit. The corresponding trend from DB Aqua is negative and
slightly smaller, at −0.00033 ± 0.00017 yr−1, in agreement with the value derived by Yang
et al. [6] from 2002 to 2020 annual averages. For Terra, MAIAC shows a negative trend
of −0.00035 ± 0.00011 yr−1. All three of these linear fits imply a trend that is different
from zero with p-values at or lower than 0.05. Conversely, the linear fit for DB Terra is not
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statistically significant. Given these results, it cannot be definitively concluded that there
is any overall trend in Australian AOD levels over the time period under consideration,
particularly because the sign of the trend for a given satellite switches depending on the
retrieval algorithm. Disagreement in the sign of the long term DB AOD trends from Terra
and Aqua has been occasionally noted in the literature over megacities, for example in
South America, for the period 2002–2010 [38]. Work by Provençal et al. [39] also finds no
significant trend in AOD levels when focussing on three particular Australian cities for
the period 2003–2015, from an analysis of the MERRA Aerosol Reanalysis dataset, which
includes MODIS data assimilation.

Figure 4. Monthly mean time series of Aerosol Optical Depth (AOD) for Deep Blue (DB) and Multi-
Angle Implementation of Atmospheric Correction (MAIAC) over Australia (a), the deseasonalised
time series, showing the AOD anomaly (b) and the fitted trendlines for these data (c), for all available
land pixels.

One obvious feature from Figure 4 which influences the MAIAC trends is the deviation
between MAIAC Terra and Aqua retrievals beginning in 2016 and continuing to the end of
the time series. To our knowledge, this divergence has not been noted in the literature to
date, and it would be worth exploring whether it is unique to Australia.
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Figure 5. Seasonal spatial distributions of AOD over the period 2001–2020 for the DB (top row) and
MAIAC (middle row) algorithms, and the algorithm AOD difference in the sense of DB-MAIAC
(bottom row).

3.3. Seasonal Spatial Variations

To gain further insight into the seasonality shown in Figure 4, maps of the 20 year
mean AOD distribution over Australia during each season were created. Figure 5 shows
the spatial distribution by season for MAIAC and DB AOD (Terra and Aqua combined)
and the difference between the algorithms in the sense of DB-MAIAC. It is evident from
these images that, for the DB algorithm, low levels of AOD are found over the majority of
the land surface in all seasons, with lowest levels seen in the Austral autumn and winter
months (MAM, JJA), dipping to around 0.04. Higher levels of AOD are seen in the spring
and summer (consistent with Figure 4), with northern areas recording average AODs that
are around 3 times higher than those seen in the winter months. There are similar elevated
AODs seen in the southwest in the winter and spring (JJA, SON), centred at approx. 118◦E,
33◦S and in summer (DJF) in the southeast (centred at approx. 148◦E, 37◦S). The southwest
regions encompass large areas of cropland, and the southeast regions are a combination of
forested and urban areas, with some cropland regions slightly more inland (see Figure 3).
In JJA, there is a concentrated area of elevated AOD just west of Melbourne (141◦E, 37◦S),
over a large area of mixed vegetation (croplands, forest and grasslands). A number of
concentrated high AOD areas are seen inland (centred at approx. 137◦E, 30◦S) near a
collection of ephemeral lakes including Lake Eyre-Kati Thanda and the Strzelecki Desert.
These areas are known to be persistent sources of dust aerosol and appear active throughout
the year. The top row in Figure 5 confirms previous findings by both Yang et al. [6] and Che
et al. [10], who display the seasonal spatial distributions of the DB algorithm in a similar
way and achieve similar results, albeit for slightly different time spans (2002–2020 and
1999–2021, respectively).

The middle row of Figure 5 shows that MAIAC exhibits a broadly similar spatial
pattern to DB, with AOD levels becoming elevated in Austral spring (SON), leading to a
peak in the summer (DJF) season. It appears that the dynamic range of the DB retrievals
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is larger, with stronger peaks and typically lower minimum values across the Australian
interior. This is confirmed by the bottom row of the figure, which shows the difference
between the seasonally averaged AODs. Over the majority of the country and throughout
the year there is a small negative bias between MAIAC and DB, with the former recording
higher values consistent with the offset seen in Figure 4. However, DB shows two coherent
features between 134 and 145◦E, 16–23◦S in DJF, that are much weaker in the MAIAC record.
DB AODs over the Lake Eyre region also appear consistently higher (centred around 141◦E,
30◦S), and there is a region of elevated AOD centred on 141◦E, 37◦S in JJA that is not
seen at all in the equivalent MAIAC retrievals. Conversely, the elevated AODs centred
on 118◦E, 32◦S seen in the MAIAC record in DJF are not apparent in DB. Comparison of
Figure 5 to Figure 3 suggests that the strong positive features in northern Australia during
DJF occur over grassland. The marked negative difference in south-western Australia
during DJF appears aligned with cropland surface cover. In some seasons for MAIAC, a
vertical boundary artefact is present in the east of the country, a consequence of the aerosol
model implementation in the MAIAC algorithm (see Section 2.2.1). This is most evident in
summer, when AOD levels are generally higher. Caution should be used when interpreting
AODs near this boundary.

In order to more confidently attribute the spatio-temporal patterns seen in Figures 4 and 5,
we make use of the CAMS AOD reanalysis product. Although this is, by its nature, a
model-observation hybrid, it brings together knowledge of the underlying meteorological
and anthropogenic factors driving aerosol emission with quantitative estimates of total
aerosol loading from satellite retrievals. Figure 6 shows the equivalent plot to Figure 4a,
giving the monthly mean time series of the total CAMS AOD over the Australian land
surface. Inspection of both figures indicates general agreement in the magnitude of the
AOD, with CAMS total AOD tending to sit within the envelope of DB and MAIAC retrievals.
The seasonality evident in the retrievals (Figure 4a) is also apparent in the CAMS record,
although detailed comparison suggests that CAMS tends to agree more closely with DB in
Austral autumn and winter, switching to better agreement with MAIAC in most Austral
spring and summer seasons.

Figure 6. Monthly mean time series of speciated AOD types from the Copernicus Atmosphere
Monitoring Service (CAMS) reanalysis over Australia for the period 2003–2020. This mean is the
average AOD for each month over the entire Australian land mass, including Tazmania.

Figure 6 also shows how the total CAMS AOD is broken down into the various aerosol
types. Looking at the speciated records, all aerosol types show a seasonal cycle which peaks
broadly in tandem with the satellite data, as shown in Figure 4, with the exception of sea
salt aerosol, which peaks around six months earlier. Within CAMS, Figure 6 indicates that
the highest peaks in total AOD (in 2003, 2004, 2006, 2011, 2012 and 2019) occur as a result
of spikes in the organic matter, and to a lesser extent, black carbon AOD. All of these peaks
align with unusually high retrieved values for at least one of the MAIAC or DB algorithms,
as seen in Figure 4. This analysis suggests that enhanced biomass burning activity during
these periods is likely responsible for the large peaks in the observed records.

Analogous to Figure 5, Figure 7 shows the seasonally averaged CAMS AOD but
separated into each aerosol type and covering the period 2003–2020. Panels (a–d) show
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the smallest contributor to total AOD, black carbon aerosol, which shows very low levels
year-round. Some seasonal dependency can be seen, with a small peak in the southwest
(148◦E, 37◦S) in DJF situated between Melbourne and Canberra, coincident with large
forested areas, which are prone to wildfires in the summer season. Some black carbon
aerosol is also picked up in the far north in SON, also coincident with the wildfire season
in that location, and which is largely covered by savannas and grasslands. Patterns in the
organic matter AOD (i–l) tend to back up these inferences with regard to wildfire activity.
High levels of organic matter AOD are seen over a more extensive area of the northern
regions, particularly in DJF and SON. These features are consistent with the peaks seen in
the same area from both MODIS algorithms (Figure 5), providing further evidence that the
likely cause of these high AOD retrievals is biomass burning. The feature noted at 148◦E,
37◦S in DJF is also apparent in the organic matter AOD field. Moreover, elevated values are
also seen in SON over the east coast. Again, both of these seasonal patterns are seen in the
DB and MAIAC retrievals. Interestingly, organic matter seems to be the only viable cause
of the aerosol peak seen in the MAIAC algorithm in DJF in the SW (centred around 116◦E,
33◦), with all other aerosol species showing a distinct lack of prevalence in that area.

Of the remaining aerosol types, a fairly strong seasonal dependency is seen for dust
aerosols (Figure 7e–h) with the highest levels seen again in the Austral spring and summer.
It is largely spread through the interior of the continent, with hotspots seen near Lake
Eyre (141◦E, 30◦S). The CAMS analysis suggests that dust is the largest contributor to
inland AOD in Australia. As might be anticipated, sea salt aerosol is elevated near the
coastal areas and nearly entirely absent in the interior (m–p). High levels of this aerosol
do ingress over land in the far north of Queensland (142◦E, 44◦S), peaking most strongly
in the autumn and winter, in antiphase to the other aerosol types. Finally, over large
swathes of the Australian interior, sulphate levels are very low (q–t), with the exception of
the well-defined bullet-like peak in sulphate AOD at approx. 137◦E, 20◦S, evident in all
seasons, which is coincident with the location of Mount Isa, a city in Queensland [40]. The
sulphates here are a by-product of the mining industry in Mount Isa, home to mineral ores
containing sulfur, which, upon processing, release large amounts of sulphur dioxide into
the atmosphere, a precursor to sulphate aerosol [32,33]. The feature lines up well with the
leftmost coherent feature captured by the DB algorithm (and to a lesser extent, MAIAC)
around 134–141◦E, 16–23◦S. The seasonalities of these features also match, with the highest
levels seen in DJF in both Figures 5 and 7. Figure 7 also shows small sulphate aerosol peaks
along the southeast coast, near Sydney and Canberra, again which might be expected from
a densely populated urban area and which is a consequence of human activity. This peak is
strongest in DJF and weakest in JJA, which is reflective of average energy usage over those
times [41].
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Figure 7. Seasonal spatial distributions of speciated AODs from the CAMS reanalysis over the period
2003–2020 for (a–d) Black Carbon, (e–h) Dust, (i–l) Organic Matter, (m–p) Sea Salt and (q–t) Sulphate
AOD.

3.4. MAIAC and DB Evaluation Using AERONET

Although the results of Section 3.1 show that, broadly speaking, the seasonal and
spatial behaviour of the MAIAC and DB datasets over Australia is similar, there are some
notable discrepancies. To provide a further ‘ground-truth’ evaluation, in this section the
satellite retrievals are compared to all 18 available AERONET sites across Australia, using
the methodology outlined in Section 2.3.2. Figure 8 shows the results of this comparison.
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In order for a fair comparison to be made, the MAIAC and DB datasets were sub-sampled
to contain only pixels where both algorithms successfully made a retrieval, resulting in a
total of 24,041 co-locations.

Figure 8. Results of the MAIAC and DB co-location to ground truth AERONET sites as a density
scatter plot. The dashed black line is the 1:1 line, and the solid black lines are the upper and lower
limits of the EE envelope. Statistics are printed on the graph representing the number of co-location
matchups (Number), Correlation Coefficient (R), root-mean-square error (RMSE), Mean AOD, Bias
and the percentage of points falling inside (=EE), above (>EE) and below (<EE) the Expected Error
(EE) envelope. Note the log scale.

Broadly speaking, the retrievals from both algorithms show what would be classified
as ‘good’ performance, with over 75% of MAIAC retrievals falling within the EE envelope,
rising to in excess of 80% for DB. Over the whole distribution, the mean AERONET AOD is
relatively low at 0.077, with the DB retrievals biased slightly low and the MAIAC retrievals
slightly high. This relative performance is consistent with the behaviour seen in Figure 4
and implies that the true Australia mean AOD lies somewhere between the red and blue
lines shown there. Both RMSE and R values hint at a slightly improved performance for
MAIAC compared to DB, although the difference in both cases is relatively minor. It is
notable that the contours in Figure 8 are rather more aligned with the 1-1 line for MAIAC,
with the DB retrieval appearing to flatten out at an AOD value of around 0.02, perhaps
indicating a minimum sensitivity issue and potentially limiting the usability of the data at
AODs below around 0.03. Whilst the ’flattening-out’ effect of DB retrievals at low AOD has
not been noted previously in the literature, some publications show figures which hint at
similar behaviour, e.g., Tao et al. [19] Figure 7 and Osgouei et al. [42] Figure 3; however,
this has not been specifically commented on before.

Figure 9 shows the bias distributions (in the sense MODIS-AERONET) for all col-
located observations for DB and MAIAC. The retrievals are also split according to the
satellite platform. Figure 9 reinforces the messages from Figures 4 and 8 in terms of the
overall bias between DB and MAIAC retrievals. In addition, the DB algorithm applied to
Terra observations shows a slightly larger negative bias than DB Aqua observations when
compared to AERONET. Mhawish et al. [11] found similar behaviour for DB over South
Asia, in which DB Terra is slightly more negatively biased than DB Aqua. They postulate
that differences in the bias for Terra and Aqua could be caused by instrument calibration.
Over the same period, the MAIAC performance across both satellites appears more stable.
However, it should be noted that decomposing the figure into pre and post 2016 highlights
the offset noted in Figure 4 for the later period. This implies some form of instrumental
artefact rather than a real diurnal difference in AOD is responsible.
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Figure 9. Bias distribution for MAIAC and DB over all Australian AERONET sites, separated into
Terra and Aqua components.

For completeness, Figure 10 shows how the satellite bias varies as a function of
AERONET AOD. It shows that both MAIAC and DB increasingly underestimate AOD
as the AERONET AOD level increases. The figure shows that nearly all of the positive
bias in MAIAC stems from co-location pairs in the first four AERONET AOD bins (which
contain the vast majority of the data points). This shows MAIAC is overestimating low
AOD for much of the time. Above an AOD of around 0.15, both algorithms experience
mostly negative bias, which becomes increasingly extreme as AERONET AOD increases.
Above an AERONET AOD of 0.25, the median and mean begin to fall below the bounds of
the expected error envelope for both MAIAC and DB, although interpretation of the bias
behaviour at these AODs and above must be performed with caution due to the limited
number of collocations.

It is very likely that limited AERONET sampling in Australia will have some bearing
on these results. In particular, the underlying surface type and/or its complexity might
be expected to introduce specific biases or limitations in the quality of the retrievals.
Therefore, in the next section we evaluate the level of agreement between AERONET and
the MODIS retrievals as a function of surface type to give more insight into the strengths
and weaknesses of each algorithm.
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Figure 10. Box plots showing the MODIS-AERONET bias as a function of AERONET AOD for
MAIAC (top) and DB (bottom). AERONET AOD was grouped into bins of 0.025. Plotted for each
bin is the algorithms median and mean AOD value (blue line and red dot, respectively) and the
interquartile range of values (box). The widths of the boxplots are proportional to the standard
deviation of the retrieved AOD values for that bin. Points lying greater than two standard deviations
from the mean AERONET value are not shown (for clarity). The frequency histogram shows how
many co-location pairs make up each bin. The zero bias line is indicated by the black dashed line at x
= 0 and the EE envelope is shown with the red dashed line.

3.5. Spatio-Temporal Co-Location Results by Surface Type

Figure 11 summarises R and RMSE for all the AERONET stations in this study over
their individual periods of operation. It is relevant to note that several of the poorly
performing sites with low R (<0.5) and high RMSE (>0.05), in particular on the west and
south coast of Australia, are sites which had very short periods of operation of between
1 month and 2 years, and subsequently, data used to create these statistics contained very
few observation pairs (generally < 200). For example, the Rottnest Island site had only
29 co-location pairs. Nonetheless, there appears to be no consistent relationship between
record length and either R or RMSE across all of the sites, with a more obvious clustering
being related to location and, potentially, surface type.

With this result in mind, Figure 12 shows density scatter plots of AERONET AOD
against MAIAC and DB retrievals grouped according to the site surface type, using the
classification outlined in Section 2.3.1. For MAIAC, R, RMSE and bias statistics are relatively
consistent across all surface types, excepting ‘Bare’, which shows a markedly reduced R
and enhanced high bias, particularly at low AODs. This is also reflected in the reduced
number of points lying within the expected error envelope (<50%) for this surface type
compared to >80% for the four other surface classifications. For DB, the correlation is also
markedly lower for sites classified as Bare, but the distribution is more centred around the
1-1 line such that a greater percentage of points fall within the expected error. The values
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of R are always smaller for DB than for MAIAC, with an accompanying small increase
in RMSE for all but the Bare surface type. The flattening out at very low AOD apparent
in Figure 8 is most obvious for ‘Dense’ vegetation classification, although there is a clear
minimum retrieved value in most cases.

Figure 11. Correlations Coefficients (R, top) and RMSE (bottom) between satellite data (DB left and
MAIAC right) and each AERONET station over Australia for collocations in the period 2001–2020.
The operational period of individual AERONET sites is highly variable, extending from 1 month to
10+ years (refer to Table 1).

Figure 12. Results of the MAIAC (a–e) and DB (f–j) co-location to AERONET ground truth as density
scatter plots and presented as a function of surface type, where: (a,f) Bare, (b,g) Sparse, (c,h) Medium,
(d,i) Dense and (e,j) Mixed Urban. All stats and line indicators are as presented in Figure 8.
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A summary of the performance of each algorithm over the different surface classifica-
tions is provided by Figure 13. The figure reiterates the very good agreement seen in the
MAIAC retrievals across vegetated and urban categories, with the algorithm’s performance
over Bare surfaces a clear outlier. DB performs more consistently across all five surface
classifications but shows larger biases in terms of both the mean and median across the
majority of surface type classifications considered here.

Figure 13. Box and whisker plots illustrating the bias variation as a function of surface type around
the AERONET sites. Green text indicates the number of co-location pairs per category. Widths of the
boxes are proportional to the standard deviations, and the central horizontal lines mark the medians.
Fifty percent of data falls within the bounds of each box. Outliers have been removed—lower limit is
the AOD value of the lower limit of the inter-quartile range (IQR) subtract 1.5IQR. Similarly, upper
limit is upper quartile plus 1.5IQR.

4. Discussion

We evaluated the performance of the MODIS MAIAC and DB AOD retrieval algo-
rithms over the Australian continent by co-locating the satellite observations with the
AERONET system of ground-based sun photometers. The performance was further as-
sessed as a function of aerosol loading and also by surface type to elucidate whether the
algorithms had particular problems retrieving over a given surface. All possible AERONET
sites and two decades of AOD data were analysed to perform these assessments. Unfortu-
nately, the small number of AERONET sites in Australia, many of which operated for a
limited duration, limits how far the accuracy assessment can be taken. Very few of these
sites are placed in inland regions, with the vast majority in or near coastal areas, in places
which are not typical of the majority of Australian land and may not have typical aerosol
profiles. More aerosol data are needed from the interior of the region to further assess
the performance of these satellite retrievals. A related limitation of this study is that the
simplified land cover classification is somewhat subjective and based on perceived ‘thick-
ness’ of vegetation cover. This could affect the interpretation of the accuracy of algorithms
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over different surface types. Future assessments may explore whether results significantly
deviate based on changes in the classification system.

5. Conclusions

This article makes a new contribution to the accuracy assessment of both the DB, and
in particular, the MAIAC AOD retrieval algorithms over Australia. We have performed
a detailed comparison with all available AERONET stations covering the period 2001 to
2020. Spatio-temporal patterns of AOD from both algorithms were also investigated on a
seasonal and monthly basis, and the CAMS reanalysis dataset was used to gain insight into
aerosol types and sources. Our main conclusions are as follows:

1. Temporal Analysis: A seasonal cycle of AOD was found to be present over Australia,
which both the DB and MAIAC algorithms pick up. The AOD levels peak in the
Austral spring and summer, also confirming findings made by Yang et al. [6] and
Che et al. [10] for the DB algorithm. At almost all times of year, MAIAC displayed
monthly averaged AOD levels, which were around 50% higher than that of DB for
both satellites. Exceptions to this occur when there are large peaks in the AOD record.
Analysis of CAMS reanalysis data shows a clear association of these elevated AODs
with fire activity, suggesting that DB tends to overestimate smoke aerosol compared
to MAIAC. Analysis of the long-term trends in the data shows very small values
for both algorithms applied to both Terra and Aqua based sensors. Although the
small negative trend derived from DB Aqua agrees with that quoted in previous work
[6], results from DB Terra show no significant trend. Moreover, trends derived from
MAIAC Aqua have inconsistent signs with those from DB Aqua. The trend from
MAIAC also changes sign for the Terra platform. Given this, we cannot confidently
assert that a trend exists in the AOD over Australia over the past two decades. It was
also found that the deviation between MAIAC Terra and Aqua AODs increased in
the period beginning in 2016. This has not been noted before in the literature, and it
would be interesting to know whether this deviation is also apparent in other regions.

2. Spatial analysis: The seasonally averaged spatial distributions of AOD for both the
MAIAC and DB algorithms were generally consistent. Over large swaths of Australia,
both algorithms retrieved very low average AOD, in all seasons, though values are
higher for MAIAC. This spatial analysis also revealed differences in AOD peak areas
between the two algorithms. Both showed a very spatially heterogeneous distribution
of AOD in all seasons, with higher levels of AOD in the northern and eastern regions,
which is particularly prominent in peak seasons (summer and spring). The MAIAC
algorithm also shows strong peaks in AOD in the south-western regions in DJF, in
areas covered in cropland.

3. Performance against ground sites: (a) Overall Whilst both sites exhibit good performance
overall, MAIAC was found to perform generally slightly better than the DB algorithm
in almost all areas when compared to the ground truth stations. Over key evaluation
metrics, MAIAC (R = 0.709, RMSE = 0.065) outperforms DB (R = 0.0653, RMSE =
0.072). We also find that MAIAC tends to be biased slightly high, whilst DB is biased
slightly low, with the magnitude of bias smaller for DB. The ‘true’ AOD level is hence
likely to lie somewhere in between these retrievals. The typically higher values of R
for the MAIAC retrievals are manifested in terms of the distribution of points along
or offset from the 1-to-1 agreement line, as opposed to a less defined clustering in the
equivalent DB values. We also find evidence of a distinct lack of sensitivity of the
DB retrievals at very low AODs, with a noticeable ’flattening-out’ in the retrieved
values when AERONET AODs are less than around 0.3. Although there are hints of
this in previous work, to our knowledge this is the first time it has been so evident.
We postulate that it may be related either to a lack of sensitivity or possibly to the
discretisation used in the DB algorithm.
(b) By Surface Type The quality of AOD retrievals was found to vary based on the
underlying surface type. Better performance was found for both DB and MAIAC
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over Sparse, Medium and Dense vegetation cover, with the worst performance being
seen over Mixed Urban and Bare surfaces. Mixed Urban and Bare surfaces make
up only 0.2% and 1.2% of the Australian land mass, respectively, according to the
simplified classification used here. Therefore, the performance over the other 98.6%
of the land surface indicates that both algorithms are able to retrieve AOD with a
good level of accuracy over the vast majority of the Australian surface, making both
algorithms applicable to use in (large-scale) studies of Australian aerosol. Across all
five surface classifications used here, MAIAC’s advantage in terms of a slightly higher
R is retained. MAIAC also shows uniformly lower RMSE values than DB except over
bare surfaces. The larger RMSE in this case is related to the more marked positive bias
that MAIAC displays in these locations.

This work has shown that both the MAIAC and DB algorithms are suitable for use in
regional scale aerosol studies in Australia. However, our findings suggest MAIAC AOD
may be a better option to use for such studies due to its higher spatial resolution, ability
to pick out fine detail over complex features [16] and marginally better performance both
overall and over most surface types compared to DB.
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