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ABSTRACT: Personalized and point-of-care (POC) diagnoses are
critical for ocular physiology and disease diagnosis. Real-time
monitoring and continuous sampling abilities of tear fluid and user-
friendliness have become the key characteristics for the applied
ophthalmic techniques. Fluorescence technologies, as one of the
most popular methods that can fulfill the requirements of clinical
ophthalmic applications for optical sensing, have been raised and
applied for tear sensing and diagnostic platforms in recent decades.
Wearable sensors in this case have been increasingly developed for
ocular diagnosis. Contact lenses, as one of the commercialized and
popular tools for ocular dysfunction, have been developed as a
platform for fluorescence sensing in tears diagnostics and real-time
monitoring. Numbers of biochemical analytes have been examined
through developed fluorescent contact lens sensors, including pH values, electrolytes, glucose, and enzymes. These sensors have
been proven for monitoring ocular conditions, enhancing and detecting medical treatments, and tracking efficiency of related
ophthalmic surgeries at POC settings. This review summarizes the applied ophthalmic fluorescence sensing technologies in tears for
ocular diagnosis and monitoring. In addition, the cooperation of fabricated fluorescent sensor with mobile phone readout devices for
diagnosing ocular diseases with specific biomarkers continuously is also discussed. Further perspectives for the developments and
applications of fluorescent ocular sensing and diagnosing technologies are also provided.

KEYWORDS: Fluorescence biosensing, Ophthalmological diagnostics, Fluorescence imaging, Contact lens sensors, Point-of-Care,
Tear monitoring, Fluorescent tear diagnosis, Smartphone readout devices, Ocular diseases

As the second most complicated and important part of the
human body, the human eye is responsible for receiving,

transforming, transmitting, and assimilating informative
messages.1 Ocular defects have affected more than 2.2 billion
people around the world with different severities of visual
dysfunction based on the analytical results from the World
Health Organization (WHO).2−4 Thirty-six million people
from this investigation are blind and over 50; moreover, the
majority of these patients with ocular dysfunctions are from
developing countries.3 Visual impairment is usually caused by
different common ocular diseases, including refractive errors,
corneal opacification, age-related macular degeneration
(AMD), trachoma, glaucoma, cataracts, diabetic retinopathy,
and some undetermined diseases (Figure 1). Blindness and
visual impairment can be the worst influence of these diseases
and are accompanied by other functional impairments, such as
intellectual disability, cerebral palsy, and epilepsy.4,5 Moreover,
the total expenditure of ophthalmic health care costs has
reached around $3 trillion,5 and the prescription drug
expenditure was reported to be over $1 billion during 2013.6

In addition, the largest direct medical cost is the hospitalization
medical services for diagnosing and treating vision impairment
and blindness at the primary phase.7 In recent decades, ocular

therapeutic treatments and diagnosis have been highly
developed and applied for personalized treatment, and some
therapeutic technologies have been applied for real-time
ophthalmic monitoring. Ophthalmologic technologies have
been improved from both clinical trials and fundamental
laboratory-based research. Current clinical ophthalmic spectro-
scopic applications contain both routine assessment photo-
graphic technologies and ocular segment imaging technologies.
Routine detection of ocular disease diagnosis consists of retinal
scopes,8 external eye photography in cooperation with a hand-
held smartphone,9 and gonioscopy technologies.10,11 Further
developments for spectroscopic assessment of ocular diseases
have been established during the recent two decades and
utilized for ophthalmologists clinically for real-time and
dynamic monitoring, such as optical coherence tomography
(OCT),12−19 confocal scanning laser ophthalmoscope
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(cSLO),20−22 scanning laser polarimeter (GDx),23 and fundus
autofluorescence imaging.24 Several ophthalmic technologies
have also been applied with the hand-held spectroscopic
devices at point-of-care (POC) settings in recent years, such as
digital cameras and smartphone devices, and are treated as one
of the emerging clinical applications in ophthalmology for
ocular imaging diagnosis and monitoring.9

Sensing of tears for diagnosing and monitoring ophthalmic
diseases has been emerging in the past decade.25,26 There are
three layers within tear fluid, including the outer lipid layer, the
aqueous layer, and the mucous layer (Figure 1).27 As tears
obtain similar but simple compositions compared to blood,
their potential for diagnosing various diseases has been
evaluated. Mitochondrial energy metabolism and some other
specific metabolic processes occur during plasma leakage and
lead to transference of the components from the blood through
the barrier to tears.27,28 Hence, tear fluid has a wide potential
detection range for developing innovative diagnostic platforms
of ocular diseases and other developmental ocular dysfunc-
tions, such as cancer, neurological disorders, and diabetes.29−34

A large number of analytes within the tear fluid have been
examined and treated as potential biomarkers for diagnosing
and monitoring various ophthalmic diseases, including ocular
diseases and ocular complication diseases (Figure 1).35−46

Therefore, the cooperation of specific technologies for target
biomarkers in tear fluid provides more possibilities to identify
the pathophysiology of ocular diseases. Instead of direct
biomarker monitoring and detection within tears, other
evaluation criteria have also been studied for ocular disease
diagnosis such as moisture content and intraocular pres-

sure.47,48 These developed sensors for physical signals
commonly collaborate with the contact lens-based detection
and aim especially for dry eye diseases and glaucoma
examinations. There have been various biosensors fabricated
for tear analyte detection in ophthalmological diagnosis on
either paper-based or contact lens-based platforms during the
past decade, including colorimetric,25,49−51 fluorescent,52−55

electrochemical,56−60 and photonic crystal sensing.61

Fluorescence sensing of biomarkers in tears is remarkable,
especially for glucose,78 pH, and electrolytes.52 Performance of
different fluorescent tear sensors (especially contact lens type
of sensor) varies depending on different status, the range of
detection for biomarkers, and the response time of the sensor,
for instance. Fluorescence sensors have always been treated for
various scientific applications, such as fluorescent labeling,
biological detections, mineralogy, gemmology, and cosmic-ray
detection.79 Based on the advantages of high sensitivity,
specificity, easy operation, and low cost, fluorescence sensors
have emerged in recent decades. Moreover, according to the
WHO health report of the global population, 75% of them are
claimed as subhealth and over 68.5% of these people are the
health care workers during the COVID-19 pandemic.80 The
demand for POC diagnostic platforms continues to increase. It
is crucial to detect and monitor the biological and chemical
molecules in tears under minimal concentrations within the
physiological conditions through rapid and accurate method-
ologies in the modern world.81 Fluorescence biosensors,
therefore, are among the target examples that can rapidly
detect analytes. Reversibility of the fluorescence biosensors is
also an important criterion for POC settings, as the patients

Figure 1. Summary of tear capacities for detection of various biomarkers in ocular diseases (top) and ocular complication disease fluorescent
sensing (bottom). Biomarkers in purple are potential indicators for specific ocular diseases and ocular-related diseases, such as cancer, Parkinson’s
disease, sclerosis disease, and diabetic retinopathy.30,62−77 Fluorescent sensing technologies can be applied for tear biomarker sensing aiming to
indicate and monitor related ocular disease to achieve personal and POC diagnosis.
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require multisensing and real-time monitoring for ocular
disease diagnosis. The evolution of typical fluorescence sensing
technologies can access the opportunities in real-time
monitoring, diagnosing specific ocular diseases, and under-
standing the physiological conditions within the eye systems.29

Typical fluorescence sensing techniques, such as Forster or
fluorescence resonance energy transfer (FRET), can also apply
one detection system for multianalyte monitoring in tears. In
this circumstance, the ocular disease that is evaluated by
different biomarkers and the accuracy of diagnosis can be
improved for a future clinical study.
This review aims to summarize the applied clinical and

experimental fluorescence sensing technologies for ophthalmic
diagnosis and real-time monitoring in recent decades. The
importance of fluorescence sensing for tear diagnosis will be
discussed. The development of portable smart readout devices
for sensing at POC settings will also be included. Moreover,
the expected aspect for fluorescence tear sensing is over-
whelmed by the possibilities for drug delivery.

■ FLUORESCENCE SENSING TECHNOLOGIES
In the fluorescence mechanism, normally the excitation of one
molecule from the ground state (S0) to a singlet state (S2)
would occur by absorption (eq 1); then the relaxation occurs

by emitting photon energy to a lower energy state (S1) (eq 2).
The absorption can be treated quantitatively using the Beer−
Lambert Law. The ending state (S1) does not have to be the
ground state, and the remaining energy within the molecule
may be emitted through further fluorescence processes or
dissipated by nonradiative relaxation energy such as heat.
Therefore, the fluorescence process is rotative; the same
fluorophore can be excited and detected repeatedly as long as
the fluorophore is not destroyed at the excited state. Various
principles have been applied to define a fluorescence process,
including quantum yield, lifetime, quenching, photobleaching,
and energy transfer.

ν+ →hExcitation: S S0 ex 2 (1)

ν→ + hFluorescence (emission): S S2 1 em (2)

where S0 indicates the ground state; S1 and S2 indicate singlet
states; h indicates the Planck’s constant; νex and νem indicate
the frequency of the photon.

Characteristics for Fluorescence. The fluorescence
process usually can be visualized with a Jablonski diagram
(Figure 2a) which illustrates molecular electronic states and
demonstrates the transitions between them via a diagram. The
states are arranged in two directions, the energy levels are

Figure 2. Schematic explanation for fluorescence and current fluorescent sensing methods. (a) The Jablonski diagram demonstrates one molecule
(A) excited from the ground state (1A) followed by two procedures: including direct fluorescence and intersystem crossing to its triplet state (3A)
phosphorescence to the ground state after that. The relative figures for different sections of the Jablonski diagram.84−86 Fluorescence image.
Reproduced with permission from ref 84. Copyright 2014, Public Library of Science. Intersystem crossing image. Reproduced from ref 85.
Copyright 2018, American Chemical Society. Phosphorescence image. Reproduced with permission from ref 86. Copyright 2020, Nature Portfolio.
(b) Energy transfer for Jablonski diagram demonstration of fluorescence reaction. The system excitation reaction occurs electronically and
vibrationally; then the high-energy photon is absorbed by an electron. The system relaxes by vibrational reactions, and the fluorescence at a longer
wavelength is triggered eventually. (c) Relative common approaches for turn-on or radiometric fluorescence sensing detection mechanisms: (i)
bond-cleavage reaction; (ii) organic addition or metal−ligand substitution reaction; and (iii) tandem reaction cascades for fluorogenic scaffolds.87
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measured vertically, and the spin multiplicity is grouped
horizontally. Squiggly arrows indicate nonradiative transitions,
and radiative transitions are noted by straight arrows (Figure
2b). The absorption spectrum and the emission image are
mirror images for some fluorescent molecules and can be
explained by the Frank−Condon principle.82 As a conse-
quence, the vibrational levels are similar between the excited
state and the ground state, and the nucleus does not move.
Moreover, nonradiative transitions exhibit various mechanisms
and with different labels in the diagram. The vibrational
relaxation presents the relaxation from the molecule’s excited
state to its lowest vibrational level. The isolated molecules do
not exhibit this process, as the energy from the molecule to its
surroundings would be dissipated. Furthermore, internal
conversion (IC) and intersystem crossing (ISC) are also two
types of nonradiative transition. An examination of the
Jablonski diagram indicates that emission energy is universally
less than absorption energy.82 As a consequence, lower energy
level or longer wavelengths can motivate fluorescence
reactions. Stokes shifts usually indicate the energy difference
from the absorbed fluorescent molecule to the emitted
fluorescent molecule. The rapid decay of vibration and the
heat caused by extra vibrational energy are the initial causes for
Stokes shifts (Figure 2).83 Additionally, excited state reactions,
solvent effects, energy transfer, and complexation reactions can
lead to further Stokes shifts.
The efficient rate of one fluorescence process is called the

fluorescence quantum yield (QY) and is usually equal to the
amount of emission photons divided by the amount of
absorption photons.79 An alternative explanation of QY is by
the decay rate of the excited state (eq 3), and the nonradiative
rates that are caused by mechanisms are included where kisc
indicates ISC, kic indicates IC, kpd and kd indicates
predissociation and dissociation respectively, and kec is the
external coversion. Therefore, the fluorescence QY can be
affected by the variation of the rate in any pathway. However,
QY is independent or has less dependency on the wavelength
of exciting radiation according to the Kasha−Vavilov rule,
because the fluorescence emission usually takes place after the
decay of excited molecule transfer to the lowest vibrational
level.82,88 The excited state lifetime may also be influenced by
the rate changes, and the fluorescence can be explained by a
lifetime using first-order kinetics (eq 4). The fluorescence
lifetime is critical for some applied fluorescent technologies,
such as Förster resonance energy transfer (FRET) and
fluorescence-lifetime imaging microscopy. A fluorophore’s
fluorescence lifetime (τ) usually indicates an exponential
decay of the radiative (kf) and nonradiative (knr) process
during the depopulation of excited state molecules (eq 5).
Subsequently, with an infinitesimally short excitation process,
the fluorescence intensity decay (It) with time can be
expressed (eq 6). The fluorochrome may experience different
reactions, for instance, diffusion of molecules, reaction process
of molecule through conformational changes, or molecular
interactions with surrounding molecules during the lifetime.
Consequently, it provides chances for lifetime measurements
to probe these actions. Fluorescent lifetime is an important
parameter for many tear sensing studies.89,90
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where kf indicates the rate constant of radiation with
spontaneous emission; ∑iki indicates all rates of excited state
decay in total; [S1] indicates excited state molecules’
concentrations at time t; [S1]0 indicates the original
concentration and Γ indicates the decay rate; τ indicates the
lifetime; knr indicates the rate constant of nonradiative decay
process; I0 indicates the initial intensity, It indicates the
fluorescence intensity at time t, and t indicates time.
Additionally, the fluorescence polarization can be measured

through the orientation of the transition moment of
fluorochromes at rapid emission, as the measurement of
anisotropy can determine the rotation of fluorochromes.
Fluorescence quenching, a phenomenon in which a molecule
(quencher) interacts with the fluorophore, leads to a reduction
in quantum yield or lifetime. Furthermore, autofluorescence is
also one of the species in fluorescent sensing technology, and it
occurs from cellular components with fluorescence properties
instead of being developed from the fluorochrome of interest.
The most typical example would be flavins and extracellular
matrix components such as elastin, lipofuscin, and colla-
gen.91,92 Photobleaching is an important photochemical
process that can be applied in several practical fluorescence
sensing technologies. The chemical reactivity of fluorochrome
is high, and the fluorochrome lives longer than singlet states
under its dark triplet excited state; hence, the photochemical
process occurs predominantly.
Fluorescence can be characterized by different parameters

and applied in various scientific areas. Fluorophores for
fluorescent detection are important elements, as they obtain
high specificity and satisfy basic principles. Fluorophores can
be applied as diverse characters, which can be utilized alone as
a substrate of enzymes, probes, or indicators. In the meantime,
they can be bonded covalently to a macromolecule as a marker
for bioactive reagents.93−95 Hence, various fluorescence
technologies and their practical applications on the platform
of tear fluids can be utilized for future personalized treatment
and applied at POC settings.

Fluorescence Sensors for Ophthalmic Diagnosis. pH
and Electrolyte Sensing. Electrolytes and pH levels in tears
have always been crucial and popular for tear sensing and
diagnosis. The composition of the tear film is based on the ion
and water transported from the ocular surface epithelia and
secreted fluid from lacrimal glands. Hence, major electrolytes
within tears (pH, Na+, K+, Ca2+, Mg2+, Cl−, and Zn2+) are the
most popular analytes for real-time fluorescence monitoring in
ophthalmic platforms. Moreover, variation of these electrolytes
would be related with a series of ocular diseases, such as dry
eye disease (DED), ocular infections caused by parasites, and
thyroid eye disease.96−98 Besides the quantification of different
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ions for various ocular disease demonstrations, DED is one of
the most common examples.52,53 Existing clinical diagnostic
approaches for DED can be varied by symptom identifica-
tion,99 ocular surface examination with aid of slit lamp,100

quantification tests (e.g., Schrimer’s test),101−103 physical tear
fluid analysis (e.g., TearLab),104 and lateral flow assay
detections (e.g., InflammaDry and Tearscan).105,106 However,
most of the detection methods lack specificity, commercial
availability, and understanding of pathophysiology of DED.
The potential of tear fluid for DED diagnosis and differ-
entiation should be explored. The development of fluorescent
biosensing technologies would enable high selectivity for
continuous detection of typical analytes and major ions within
tears as well as achieving a relatively rapid and cheap detection.
One fluorescence detection method was developed to analyze
the concentrations of electrolytes in tear fluid from
anesthetized mice.107 The dual-wavelength fluorescent in-
dicators were selected accompanying the application of the
ratio imaging fluorescence microscope. Both red- and green-
colored fluorescence images were obtained from the self-
designed dual fluorescent membrane-impermanent indicators
for Na+ (Figure 3a(i)), K+ (Figure 3a(ii)), and Cl− (Figure
3a(iii)), and a bis(carboxyethyl)-carboxyfluorescein fluores-
cence-conjugated dextran was utilized for pH detection (Figure
3a(iv)).107 The remarkable universal concentrations of electro-
lytes within the wild-type mice were reported, and the Na+ ion
level was claimed to be significantly higher in AQP5 null mice
and declined after the ocular surface was exposed to a humid
environment.107 The in vivo fluorescence analytic method for
tear analyte determination was conducted using the ratio
fluorescence microscopic technology. The overall experiment

provided the idea for specifically synthesized fluorophores
applying for tear sensing and indicated the biocompatibility for
in vivo measurement. However, the experimental element was
anesthetized during the staining process, noninvasive detection
could be considered and developed for commercial applica-
tions.
Instead of fluorescence sensing with the aid of injection

through ocular surfaces, other types of devices have been
studied and investigated during the recent decade. Wearable
sensing technologies are therefore emerging and developed
during recent years. One silicone hydrogel (SiHG) contact lens
sensor was fabricated and examined to distinguish the
concentration levels of pH, Na+, and Cl− ion for ocular
disease diagnosis.89 During the fabrication and evaluation
procedure at the beginning stage of the SiHG sensor, the
stabilities and other properties were examined for three sensing
probes. As for the pH sensing probe, three chemicals including
polarity-sensitive probes, 1-anilinonaphthalene-8-sulfonic acid
(1,8-ANS, ANS), and a 4-(1-octylamine)-7-nitrobenzoxadia-
zole (NBD-C18) were used. Both hydrophilic and hydro-
phobic pH sensing probes were detected and compared to
exhibit the sensing property of the fabricated probe. The
chloride ion sensing was fabricated from 6-A methoxyquino-
linium-containing (SPQ) probe.89 As for the mechanisms of
pH and chloride ion sensing, hydrophobic and hydrophilic
fluorescence interactions were detected and evaluated through
the C18 and C3 alky chains. Among different types of contact
lenses, SiHG contact lenses were selected for their high Dk
value (permeability of the material) and silicone content
(52%).89 The hydrophobic fluorophores for ion sensing were
hardly removed from aqueous solutions due to a strong

Figure 3. Chemical structures of the sensing probes for pH, sodium, potassium, and chloride ions and experimental results. (a) Chemical structure
demonstration of fluorescent probes (i) Na+; (ii) K+; (iii) Cl+; and (iv) pH sensing probe. (b) Chemical structure of sodium ion detection within
silicone hydrogel contact lens (SiHG). (c) pH sensing probe that was used for tear diagnosis (left) and the resulting fluorescent contact lens
sensors (right); the blue color fluorescent contact lens was at pH = 4.0, and the yellow fluorescence image was obtained under pH = 10.0.
Reproduced with permission from ref 89. Copyright 2017, Elsevier. (d) Reversibility test of the detection of Na+ and Cl− ions. Reproduced with
permission from ref 90. Copyright 2020, Elsevier.
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binding between SiHG lenses and the selected fluorophore.
With a similar fabrication process, another tear sensing
experiment was employed for sodium and chloride ions
detection by SiHG lenses. The binding site of the Cl−-sensitive
fluorophore between the octadecyl side chain and SiHG lenses
was hydrophobic.90 As for the sodium-sensitive fluorophore,
the sodium green (SG) and poly(L-lysine) (PL) were
combined through covalent conjugation (Figure 3b). The
fabricated contact lens sensor achieved a wider concentration
range of detection for Na+ and Cl− ions, and the response of
each fluorescent was independent.
Moreover, a pH-independent SiHG was also detected with

the selected labeled fluorophore and showed a significant
fluorescence change under pH = 4 (blue) and pH = 10
(yellow) (Figure 3d). The reversibility of the fluorescence
sensor was examined for Na+ and Cl− ion detection as well
(Figure 3d).90 By testing the fabricated fluorescent probe, 5
cycles were obtained and the contact lenses were rinsed various
times within 3 mL of buffered solution in each cycle. The
fluorescent lifetime was also detected between 0 and 340 mmol
L−1 of NaCl and claimed no effect on different concentration
of NaCl, where 0 mmol L−1 of NaCl indicated 1.5 ns and 340
mmol L−1 indicated 2.8 ns at fluorescence-reversible lifetime
detection. The interference of tear proteins for the reversibility
of the probe was also evaluated and reported no effect even

after rinsing the lenses for 2 h within the tear proteins buffered
solutions. The interfacial region of SiHG lenses were well-
established and explored through these studies, and the
developed silicone hydrogel fluorescent contact lens sensor
can be established and integrated with other tear analytes for
typical ocular disease diagnosis and monitoring of ophthalmic
physiologies. Furthermore, the approved detection of reversi-
bility of fluorophores for continuous tear monitoring enhanced
the advantages of fluorescence tear monitoring by comparing
with other tear diagnostic methods, such as disposable
colorimetric test strips.
Quantitative analysis and real-time monitoring of analytes in

tear fluid are essential for diagnosing eye diseases at the early
stage for a POC platform, especially for tear ion detection. A
type of paper-based fluorescence sensor for tear diagnosis was
investigated with a multidetection mode strip for pH, Na+, K+,
and Ca2+ ions using chelation reactions (Figure 4a(i,ii)).53 The
fluorescence sensor was fabricated incorporating an optical
readout device and a smartphone diagnostic system (Figure
4a(iii,iv)). As a continuous study for this type of sensor, one
fluorescent scleral contact lens sensor was then fabricated to
detect pH, Na+, K+, Ca2+, Mg2+, and Zn2+ ions within the tear
physiological range. A smartphone readout was accompanied
by this sensor for analyzing specific ion-sensitive data
quantitatively.52 The constructed sensor is advantageous in

Figure 4. Multifluorescence sensing devices and fluorescence chelation reaction. (a) Paper-based microfluidic device for multianalyte sensing in
tears: (i) fabricated paper-based sensing probes for pH, Na+, K+, and Ca2+ ion detection. (scale bar: 2 mm); (ii) finalized sensing device for tear
diagnosis (scale bar: 1 cm); (iii) guidance of the smartphone readout device; scale bar = 1 cm; (iv) photograph for reading the paper-based sensing
device within the black box before excitation of the fluorophores (scale bar: 4 mm). Reproduced with permission from ref 53. Copyright 2017, The
Royal Society of Chemistry. (b) Chelation fluorescent reaction mechanisms for (i) Ca2+, (ii) Zn2+, and (iii) Mg2+. (c) Fabrication of microfluidic
contact lens sensor: (i) closed microfluidic channel for 2 μL of fluid flowing in the microchannel; (ii) fabricated contact lens sensor for
multianalytes detection. (d) Photograph of readout system: (i) readout box for multidetection of fluorescence sensors, consisting of three excitation
switches of the filter and three readout emission filters with different wavelengths of light; (ii) smartphone readout demonstration for detection the
ions within contact lens sensor. Reproduced with permission from ref 52. Copyright 2020, Wiley-VCH.
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the ability to recognize the severity of DEDs and their different
types (Table 1). Chelation reactions were utilized for different
fluorophore detection of individual concentrations (Figure
4b(i−iii)). The pH probe, for instance, was examined and
evaluated in the concavity of the contact lens. Moreover, the
Na+ sensing probe (15.6 mmol L−1) was selected by the crown
ether derivatives within 0−100 mmol L−1 of the detection

range, and the K+ sensing probe could be examined from 0 to
50 mmol L−1 with a LOD at 8.1 mmol L−1.52 Acid-based
probes were utilized for Ca2+ and Zn2+ monitoring ranging
from 0.50 to 1.25 mmol L−1 and from 0.5 to 0.8 mmol L−1

respectively. In addition, a sensitivity of 1 μmol L−1 was
claimed for the Zn2+ ion sensor and the range of detection was
10−20 μmol L−1.52 Moreover, the microfluidic channel of the

Table 1. Ion Detection within Tear for the Diagnosis of Dry Eye Disease and Its Subtypes52,53

Abnormal Level within Tears (mmol L−1)

Dry Eye Disease Type

Electrolytes Detection Range within Tears (mmol L−1) MGD LGD MGD and LGD Sensitivity (mmol L−1)

pH ∼7.4 ∼7.9 0.12
Na+ 120−165 133.2−136.1 133.2−142.2 133.2−145.1 15.6
K+ 20−42 (ave. 24) 24.6 24.9 25.4 0.8
Ca2+ 0.4−1.1 (ave. 0.8) 0.82 0.84 0.86 0.02−0.05
Mg2+ 0.5−0.9 (ave. 0.61) 0.61 0.63 0.65 0.01−0.03

Figure 5. Highly sensitive glucose sensor based on FRET within tears. (a) Detection mechanism for tear glucose sensing within MSNs. (b)
Microphotographs for the nanoparticles and aqueous glucose sensing: (i) micrograph (SEM) of assembled FITC-dextran-ConA-FRITX@MSNs;
LCSM photograph of fabricated FRET sensor before (ii) and after (iii) the addition of glucose (20 μL) within 0.10 mmol L−1 of aqueous solution.
(c) Fluorescent spectrum with various glucose concentrations. (d) Image of the FRET sensor and its conversion of readable MATLAB data under
the glucose concentration of (i) 0.05 and (ii) 0.10 mmol L−1, respectively. Reproduced with permission from ref 127. Copyright 2013, SAGE. (e)
Mechanism for tear glucose sensing: (i) illustrated FRET glucose detection included ConA conjugation quantum dots as the donor and MG as the
acceptor; (ii) schematic mechanism of sensor immobilization on silicone hydrogel. (f) Images for fabricated nanoparticles and glucose sensing: (i)
micrograph of QDs coated with ZnO nanorods using SEM; (ii) TEM image of QDs coated with ZnO nanorods; the resulting fluorescence images
for the patterned FRET sensors on silicone hydrogel under aqueous glucose at 0.04 mmol L−1 (iii), and 0.4 mmol L−1 (iv). Reproduced from ref
128. Copyright 2017, Elsevier.
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contact lens was examined for the final fabricated contact lens
sensor (Figure 4c).
The development of a portable readout device for data

collection and process is another advantage of this series of
research. This device was constructed with light-emitting
diodes (LEDs) and bandpass optical filters for the sensor
excitation. Data collection was another innovative point for the
research (Figure 4d(i)). One smartphone camera was applied
to assist with the fabricated readout device to deliver
measurements quantitatively (Figure 4d(ii)). Then, the
finalized fluorescent biosensor based on scleral lenses was
explored for diagnosing and detecting the severity stage and
distinguishing the subtypes of DEDs, meibomian gland
dysfunction (MGD), and lacrimal gland dysfunction (LGD),
for instance. The conversion of fluorescence into readable
output data using a smartphone is advantageous in a
personalized POC platform by providing the possibility for
patients to collect data corresponding with their ocular
conditions at any moment necessitated. Future development
of the build-up application of smartphones can also be
enriched with different sections of a variety of ocular diseases,
and it would be user-friendly for real-time POC monitoring.
Ascorbic acid, as an important antioxidant biomarker for ocular
inflammations, has also been studied for fluorescence
detections.108,109 However, the detection of ascorbic acid at
POC platforms was conducted in aqueous humor instead of
tear fluid with a high accuracy over than 80%.108 The sensor
was mainly developed for diagnostics of ocular globe injuries
and glaucoma care. Further fluorescence detection of ascorbic
acid should be developed for tear fluid examination.
Glucose Sensing. Glucose has been considered one of the

critical biomarkers for diabetes diagnosis. There have been
extensive studies conducted for glucose monitoring within
various biological fluids, including blood,110,111 interstitial
fluid,112,113 urine,110,114,115 sweat,116−118 saliva,114,119 and tear
fluid in the recent decade.120−124 Tear glucose monitoring has
been recently established for diagnosing diabetes and diabetic
retinopathy. A normal level of tear glucose at 0.16 ± 0.03
mmol L−1 was claimed as compared to the diabetic patients
0.35 ± 0.04 mmol L−1, and the glucose level within tears is 0−
5 mmol L−1.125,126 Different technologies have been applied
for tear glucose sensing, especially fluorescence sensing
technologies. Fluorescence resonance energy transfer (FRET)
is one of the popular methods for low volume glucose
detection. One highly sensitive nanostructured fluorescent
biosensor was fabricated by utilizing FRET to monitor tear
glucose levels (Figure 5a).127 In this work, the interaction
between the selected nanoparticles FITC-dextran-silica and
tetramethyl rhodamine isothiocyanate-labeled Concanavalin A
(TRITC-Con A) occurred through binding Con A to dextran
molecules. The FRET pairs were then formed by fluorescein
isothiocyanate and tetramethyl rhodamine isothiocyanate
(FITC-TRITC). The fluorescent chip device for tear glucose
sensing was then formatted by the deposition of these
fabricated fluorescent nanomaterials on the poly-
(dimethylsiloxane) (PDMS) surface. The insertion of glucose
could replace the TRITC-Con A from PDMS. The different
levels of glucose concentration would be detected through the
fluorescence resonance energy transfer (FITC-TRITC) ratio.
The morphology of assembled FITC-dextran-Con A-TRITC
mesoporous silica nanoparticles (MSN) on PDMS was
characterized using a scanning electron microscope (SEM)
(Figure 5b(i)), and the diameter of the nanoparticles were

indicated as 60 ± 5 nm on average. Further fluorescence
images of FRET sensors from laser confocal scanning
microscopy (LCSM) were also shown to demonstrate the
glucose concentration (Figure 5b(ii,iii)). As a result, the
finalized FRET biosensor could reach a detection range within
0.04−4 mmol L−1, and the data of the sensor could be
obtained within 2 min (Figure 5c). Moreover, the chip can still
be functionalized within 5 days.127 The obtained fluorescence
image was finally converted into readable data with the aid of
MATLAB coding. Different concentrations of glucose were
evaluated, and the image and data of glucose under 0.05 mmol
L−1 in Figure 5d(i) and 0.10 mmol L−1 in Figure 5d(ii) were
the corresponding results, respectively. The binding perform-
ance of the fabricated sensor was further investigated within
the hydrogel contact lens material; the fluorescence property
and biocompatibility were proven. With the readable
developed MATLAB data, it could be applied to smart readout
devices for the future perspective.
Another similar fluorescence tear glucose sensor has been

further developed by using fluorescent patterned arrays. The
illustrated mechanism (Figure 5e(i)) introduced a FRET pair
consisting of Con-A-conjugation quantum dots as a donor and
MG as an acceptor, and the quenched fluorescence was
restored by a competitive affinity of glucose over MG. The
nanostructured FRET quenching sensor was immobilized onto
ZnO nanorod arrays which were attached to the silicon
hydrogel (Figure 5e(ii)).128 Both the fluorescence camera and
the fluorometer could be utilized for analyzing glucose
concentrations based on the uniquely designed procedure.
During this fabrication procedure, the patterned ZnO nanorod
arrays on the hydrogel were treated as a substrate, and ConA
was conjugated onto the hybrid nanorods after conjugating
CdSe/ZnS quantum dots (QDs) with ZnO nanorods. The
fluorescence quenching molecule was claimed to be malachite
green modified dextran and was bound onto Con A. After
introducing the glucose, the dextran molecule was replaced by
glucose competitively and the QDs fluorescence recovered.
The QDs coated ZnO nanorod arrays were further analyzed by
SEM (Figure 5f(i)) and transmission electron microscope
(TEM) (Figure 5f(ii)). The FRET sensor on SiHG was
evaluated with different concentrations of glucose (Figure
5f(iii−iv)), and a detection range of glucose was stated within
0.03−3 mmol L−1. The possibility of conducting a FRET
sensor onto an SiHG was claimed. Hence, it would be
promising to develop this series of FRET technologies onto an
SiHG biosensor attached with contact lenses for real-time tear
glucose monitor at POC settings. However, the biocompati-
bility for applying QDs to in vivo studies is needed to be
considered.
Instead of FRET imaging for glucose detection within tears,

other contact lens sensors have been developed. For example, a
typical SiHG contact lens sensor has been examined and
fabricated for tear glucose monitoring continuously in the last
five years. In this study, the monitoring mechanism was
simplified, and a glucose-sensitive fluorophore (Glu-SFs)
named Quin-C18 was utilized for examination.126,129 The
interpenetrating polymer network of the SiHG lenses was
evaluated for the characterization of the sensor during
fabrication. One polarity-sensitive probe (Prodan) was applied
for the lenses used within water and pure silicone regions. In
order to confine the glucose-sensitive fluorescent probe within
the interfacial area of the contact lens, Quin-C18 was formed
and attached with one hydrophobic chain (Figure 6a).129 The
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Figure 6. Fluorescence sensing of glucose in tears. (a) Synthetic mechanism for Quin-C18, the fluorophore that was used for glucose sensing. (b)
Photographs for characterization of the contact lens glucose sensor: (i) micrograph for indicating the influence of dwell time over the increased
intensity and phase angle, and the absence of the signal at the outside surrounding circles claimed the fluorophore could not be detected;
photographs of Quin-C18-doped contact lens (Comfilcon A) under room light (ii) and UV light (iii) without an emission filter. (c) Glucose
detection for optimization of contact lens sensor: (i) glucose concentration change versus the emission intensity in the phosphate-buffered solution
(pH = 7.2); (ii) emission spectra for Quin-C18-coated Comfilcon A contact lens with multiple washing steps; (iii) finalized glucose-dependent
emission results of Quin-18-coated Comfilcon A SiHG contact lens. Reproduced with permission from ref 129. Copyright 2018, Society of Photo-
Optical Instrumentation Engineers Digital Library. (d) Mechanism for fluorescent copolymer formation for tear glucose sensing. (e) Paper-based
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applied glucose sensor would also suitable for in vitro
examination and can be verified with different glucose
concentrations (Figure 6b,c). The fabricated contact lens
sensor was claimed to be consistent for glucose detection and
proved that Quin-C18 can bound strongly to the lenses. Other
properties such as leaching rate was also examined during
detection. The leaching rate was extremely low after several
rinsing processes, and a continuous detection result of glucose
sensing was reported as being similar after a three-month
storage of lenses within water. Hence, the developed glucose-
sensitive sensor is advantageous in continuous POC detecting
glucose within tears.
Therefore, the fabricated fluorescent contact lens sensor

enables people to obtain the ophthalmic conditions and
properties, and to explore the typical ophthalmological
pathology through the examined results of specific tear
biomarkers. Corresponding with the data-processing portable
smart readout devices, it would be a solid benefit for clinical
applications, personal diagnosis, and treatments for ophthalmic
diseases. Another tear glucose fluorescent microfluidic paper-
based analytical device was also developed based on lateral
flow assay detection (Figure 6d,e), the fluorescent copolymer
formation mechanism was developed and applied for the tear
glucose sensing process. As a result, a detection range for the
level of glucose in tears was achieved within the concentration
between 0.1 and 4.0 mmol L−1.130 This sensor provided a
faster response time and a wider range of glucose sensing.
Meanwhile, it was claimed for practical diagnosis for diabetes.
The development of the lateral flow assay detection provided
an alternative measurement for glucose and diagnostic
methodology to monitor the diabetic patients at POC
platform.
One recent wearable glucose-sensitive fluorescent contact

lens sensor was developed by integrating and immobilizing one
glucose fluorescent probe and a reference fluorescent reference
probe for calibration within the hydrogel network to achieve
highly sensitive glucose detection on contact lens (Figure
6f).131 The fabricated glucose fluorescent contact lens sensor
was able to recognize a concentration variation from 23 μmol
L−1 to 1.0 mmol L−1 with a fluorescent color change from pink
to blue (Figure 6f(ii).131 One smartphone RGB signal region
was developed for collecting and transferring the fluorescent
color of this experiment. Additionally, further in vivo rabbit
experiments were conducted to indicate the biocompatibility
of the fabricated contact lens sensor (Figure 6f(iii)). It is
advantageous in providing a rapid and noninvasive method for
real-time tear glucose examination, and the constructed
glucose-sensitive contact lens sensor was able to detect as
low as 9.3 μmol L−1 through the fluorescence spectropho-
tometer.131 The idea for implementing and stabilizing specific
fluorescent probe for a target biomarker within the hydrogel
network and attach it with a contact lens broadens the
possibility for the detection of other tear analytes, especially for

proteins within tear fluid. Most of the developed glucose
fluorescent sensors can cover the detection range within the
tear fluid and the achieved sensitivity of the sensor enable a
differentiation ability between nondiabetic and diabetic
individuals. However, few comparison experiments were
conducted for in vivo identities before and after taking food.
Because the tear glucose level is significantly lower than the
glucose in blood (3.9−30 mmol L−1),125 it would be harder to
achieve the variation examination within tears. Further
developments could be made to reach a lower sensitivity of
the fabricated fluorescent tear glucose sensor. Moreover, the
clinical data collection and analysis for tears between healthy
and diabetic groups of people would also benefit a future
evaluation of the fluorescent tear glucose sensor.

Proteins Sensing. Other than the integration of the
fluorescent biosensor onto the contact lens, the microfluidic
paper-based analytical device (μPAD) is also emerging for tear
diagnosis. LF is one of the most important and abundant ion-
binding proteins within the human body fluid, especially in
tears.132 It is responsible for antibacterial and anti-inflamma-
tory activities. Abnormal increase of LF levels within tears can
lead to serious ocular diseases, for example, xerophthalmia and
early-stage inflammatory bowel diseases.132,133 One fluorescent
μPAD was developed for tear lactoferrin (LF) detection
without antibodies (Figure 7).The inkjet printer and UV-
curable ink were utilized for fabricating microfluidic patterns
on μPADs.55 The fabricated fluorescent sensor exhibited a
limit of detection (LOD) of LF at 0.3 mg mL−1 from 0.5 to 3
mg mL−1 of LF in the tear level.134 During the fabrication of
μPAD, filter papers, A4 copy papers, and the EPSON inkjet
printer were used. It was claimed to be important to attach the
filter paper onto a sheet of copy paper, because the inkjet
printer used for this work was not suitable to handle round
shapes. The filter paper faces were then fitted with the round-
shaped cut-out of the copy paper. During the inking process,
both octadecyl acrylate and 1,10-decanediol diacrylate were
applied for UV-curable ink. After the ejection of the paper
from the printer, it was placed to cool at 10 °C.134 The filter
paper with a circular cut area of 81 cm2 was utilized for
microfluidic channel patterns. The designed sensor was then
fabricated by a straight channel including two square areas
(Figure 7a). During the detection, the sensing areas consisted
of TbCl3 solution (1 mmol L−1) mixing with ethylene glycol
(15 vol %); then the pattern was soaked in poly(vinyl alcohol)
for 5 min.134 The paper was then dried to prevent LF
adsorption on the paper surface. After that, the 25 mmol L−1 of
the NaHCO3 solution was pipetted onto the sampling areas.
The buffered solutions (HEPES pH 7.4, 50 mmol L−1) were
used during all procedures. Finally, the single μPADs were cut
from the papers after the soaking process of substrates. As a
result, the LF was first detected within the buffered solution
from 0 to 1 mg mL−1 (Figure 7b) and the paper-based device
was examined with the obtained range of 0.63−2.9 mg mL−1

Figure 6. continued

microfluidic system for artificial tear glucose detection: (i) illustrated structure of a Schirmer test for tear glucose sensing; (ii) resulting emission
spectrum for the variation of glucose detection under gel-encapsulated B5 sensing system; the inset chart indicated the calibration curve of glucose
sensing within artificial tears (n = 3); here, the percentage emission change was evaluated with different glucose concentrations. Reproduced with
permission from ref 130. Copyright 2018, Multidisciplinary Digital Publishing Institute. (f) Glucose-sensitive fluorescent contact lens sensor: (i)
reversible detection mechanism on contact lens; (ii) photos for artificial eyes with contact lens and the fluorescent signal change with the variation
of glucose; (iii) fluorescent image captured by smartphone from the rabbit with 1 mmol L−1 (upper) and 5 mmol L−1 (bottom) of glucose
injection. Reproduced with permission from ref 131. Copyright 2022, Elsevier.
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(Figure 7c).134 Instead of conducting the measurement with a
signal readout instrument, distance-based LF was also
developed for similar research (Figure 7d). Further treatment
on the filter paper used was claimed (Figure 7e). With the
fabricated ι-Cg (ι-carrageenan)-coated filter paper (Figure

7e(iii)), an even lower LOD at 0.1 mg mL−1 of LF was
obtained.135 The LF within tears was eligible for detection with
0−4 mg mL−1 of LF with this μPAD (Figure 7f(i)). Instead of
correlation from the fabricated device (Figure 7f(ii)), further
evaluation was conducted between the standard ELISA test

Figure 7. Developed fluorescent μPAD for tear LF detection. (a) Schematic (upper) and photograph (lower) of μPAD for tear LF analysis. (b)
Emission spectrum of LF (0−1 mg mL−1) within a pH = 7.4 level of HEPES (50 mmol L−1) buffered solution. (c) Calibration curve of human LF
on μPAD; the dashed line was LOD and the dashed square area represented regular the physiological detection range of the tear LF (n = 3).
Reproduced with permission from ref 134. Copyright 2014, The Royal Society of Chemistry. (d) Distance μPAD for human LF detection: (i)
illustrated outline structure of μPAD; (ii) UV illumination (λmax = 254 nm) photographs of filter paper test for LF mobility within water; 100 mmol
L−1 of NaCl aqueous solution; solution with lysozyme (3 mg mL−1); pseudotear fluid and water with treated lysozyme (3 mg mL−1), from left to
right, respectively; (iii) UV illumination (λmax = 254 nm) photographs for visualizing Tb3+-LF (1.5 mg mL−1, 0.5 μL) reaction after elution with
different fluids: pure water, pseudotear fluid, LF in water and in the pseudotear fluid. Photograph on the right was the control results of LF buffered
solution (HEPES 50 mmol L−1, pH = 7.4) without elution. (e) SEM of utilized filter paper (i) and results of the final fabricated μPAD; (ii) SEM
for ι-Cg coated filter paper; (iii) images for analyzing different levels of LF (0.1, 0.6, 1, 2, 3, and 4 mg mL−1 from left to right) onto the ι-Cg coated
μPAD. Scale bar: 10 μm. (f) Graphs for LF evaluations: (i) calibration curve between LF concentration and the length of emitted fluorescence line
(0.5 mm was related to 1 scale of increment); (ii) further correlation on observed results for four sets of batches of fabricated μPAD; (iii)
correlation curve between ELISA (n = 4) and μPAD (n = 6). Reproduced from ref 135. Copyright 2015, American Chemical Society.
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and μPADs (Figure 7f(iii)). After the success of detection in
tears using μPADs, the device can be explored further by
integrating paper-based sensors onto contact lenses or other
portable devices to fulfill the aim at the POC diagnostic
platform for ocular diseases.26 In addition, with the integration
and investigation of fluorescent paper-based detection, more
protein biomarkers within tear fluid including interleukin 6
(IL-6) and immunoglobin G (IgG) can obtain the potential for
fluorescence detection with relative technologies, such as
immunofluorescent assay and encapsulation of nanocluster
fluorescence detection.136,137

Enzymes Sensing. Instead of proteins detected within the
tear, enzymes have also been studied for fluorescence detection
within tears. One contact lens sensing method was developed
for sensing analytes within tears. The contact lenses were
treated as collectors of samples, and the subsequent analysis
was accompanied by one field-portable and cost-effective

reader (Figure 8a(i)−(iii)).138 Lysozyme, as one of the most
prevalent and important naturally occurring enzymes within
tears,139 was therefore selected to be quantified. Moreover, the
time-lapse imaging technology was utilized with the mobile
reader to observe the increase of fluorescence signal within a
standard well-plate. The obtained data was indirectly inferred
to the change of lysozyme concentration through a standard
curve. The best-suited contact lens and the assay were chosen
empirically for tear collection and detection. The variation of
lysozyme concentrations were then monitored within nine
healthy human objectives over 2 weeks. The results were used
for a comparison with the objectives with DED. A time
dependency experiment was conducted with a mobile-based
microplate readout that exhibited the data of each ELISA well
with three fibers to get the green channels (Figure 8b). The
fluorescence data increased over 10 min, and a calibration
curve was delivered from the constructed smartphone reader

Figure 8. Detection of lysozyme within tears using developed fluorescence mobile phone-based microplate reader. (a) Detection method and
schematic demonstration of well-plate reader developed by smartphone, (i) the final step of mixing the wash solution and the Micrococcus
lysodeikticus cell solution within the ELISA well for fluorescent detection; (ii) a schematic illustration of the smartphone-based well-plate reader;
(iii) photograph of the fabricated product. (b) The recorded results for fluorescent observation with time dependence, where the green channel
indicated the fiber bundled image that was taken from the smartphone (three fibers per well) (upper) and the lower graph indicated the standard
curve for fluorescence well-plate assay over time (10 min). (c) Experimental results for lysozyme detection: (i) Standard curve for fluorescence
well-plate assay: the vertical and horizontal lines state the LOD (1.99 μg mL−1); (ii) overall resulting data of lysozyme concentration detection for
healthy participants (n = 30) without DED for over 5-day monitoring period of contact lens wear and one-time measurement for patients (n = 6)
with DED. The red horizontal line claimed the median concentration of lysozyme in each measurement group and the top and bottom line of the
blue rectangular represented 75% and 25% of the data, respectively. Reproduced with permission from ref 138. Copyright 2020, The Royal Society
of Chemistry.
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with the variation of lysozyme concentration. The experimental
data were then compared with the in vivo human objectives
with and without DEDs (Figure 8c). As a result, the
concentration of lysozyme increased from 6.89 ± 2.02 μg
mL−1 to 10.72 ± 3.22 μg mL−1 (mean ± SD) was observed for
six participants of nine who wear contact lenses regularly, and
these objectives were detected with the induction of a digital
ocular strain model during the period of contact lens wear.
Moreover, a lower mean lysozyme level of a patient with DED
was claimed compared to the healthy participants, the mean
levels of concentrations were 2.43 ± 1.66 μg mL−1 and 6.89 ±
2.02 μg mL−1, respectively. The main advantages of this study
would be introducing a simple and noninvasive sampling
method for detection as well as the measurement system was
considered to be relatively rapid, user-friendly, and cost-
effective for indicating the physiological change within human
ocular objectives. Future tear-fluid studies could be conducted
with the application of this methodology, and it would be
significant for tear biomarker multiplex measuring on a POC
platform.
Another type of fluorescent detection of lysozyme within

tears was developed through the inner filter effect of gold
nanoparticles on CdTe quantum dots.140 This sensor was
fabricated by utilizing lysozyme reacting with the lysozyme
binding aptamer to avoid the reaction between gold nano-
particles and the lysozyme binding aptamer. The gold
nanoparticles in this case would aggregate and a strong blue
fluorescence could be observed under this circumstance. The
finalized sensor was examined and evaluated within real tear
and saliva samples, and the detection range was claimed
between 1.0 nmol L−1 and 20 nmol L−1.140 The fabricated
sensor is advantageous in high sensitivity and label-free
detection of lysozyme. With the application of this method,
further integration of this sensor onto paper-based microfluidic
detection could be applied for POC detection. However,
further biocompatibility tests should be qualified if the sensor
could direct contact with human eyes.

■ FUTURE PROSPECTIVE

During the past decade, ophthalmology-related fluorescence
technologies have been commonly studied and have been
explored for ophthalmic diagnosis from spectroscopic tech-
nologies to portable biosensors. The possibility of integration
of smart readout devices and cooperation with a hand-held
camera for fluorescence tear sensing has also been proposed
that would be helpful for monitoring and diagnosis on POC
platforms. Ophthalmic fluorescent monitoring has been well-
established in lab-based studies (Table 2). Nevertheless, the
detected analytes within tears are still limited in glucose and
typical ions.26,61,141,142 More proteins and enzymes need to be
explored for further ocular diagnosis, such as reactive oxygen
species (ROS), immunoglobulins, and interleukins.143 Nano-
scale carriers in fluorescent detection on targeted biomarkers in
ophthalmologic diagnosis and drug delivery have received
much attention recently, especially for relatively large-sized
proteins and cytokines.144−146 Relative fluorescent technolo-
gies can also be employed for tear analyte detection, such as
quantum dots, carbon dots, and FRET. As discussed, different
means of tear sensing platforms are also one of the future
directions for bringing biosensors to the commercial industry.
For instance, paper-based detection, lateral flow assays (LFA),
capillary tube detection, and three-dimensional (3D) printing
could be established and combined with fluorescence sensing
technologies to achieve personalized treatments on POC
platforms.147 Biocompatibility should be one of the criteria for
evaluation of the sensing platforms developments. Therefore,
the development for biologically modified nanoparticles could
also be one of the directions for ophthalmic therapeutic
monitor and examinations, especially for diagnosing and
monitoring cancer-derived ocular diseases.148,149

It was predicted that the global contact lens market will
increase to over $19 billion in 2024.150 Instead of converting
the contact lens for existing therapeutic and cosmetic uses,
various countries have begun treating contact lenses as
potential medical tools for broad applications in ocular-related

Table 2. Conclusion of the Developed Fluorescent Sensors for Tear Biomarker Detection

Tear Biomarker Detection Platform Sensitivity Linearity Animal Test Response/Reaction Time ref

pH Silicone hydrogel contact lens - 4.2−10.0 No - 89
Paper-based microfluidic channel - 7.0−8.0 No - 53
Scleral contact lens 0.12 7.0−8.0 No - 52

Na+ Silicone hydrogel contact lens 0.2−0.3 mmol L−1 0−150 mmol L−1 No - 90
Paper-based microfluidic channel 1.5 mmol L−1 0−200 mmol L−1 No - 53
Scleral contact lens 15.6 mmol L−1 0−100 mmol L−1 No - 52

K+ Silicone hydrogel contact lens - 0−200 mmol L−1 No - 90
Paper-based microfluidic channel 0.9 mmol L−1 0−50 mmol L−1 No - 53
Scleral contact lens 8.1 mmol L−1 0−50 mmol L−1 No - 52

Ca2+ Paper-based microfluidic channel 0.03 mmol L−1 0−2 mmol L−1 No - 53
Scleral contact lens 0.02−0.05 mmol L−1 0.50−1.25 mmol L−1 No - 52

Mg2+ Scleral contact lens 0.01−0.44 mmol L−1 0.5−0.8 mmol L−1 No -
Zn2+ 0.001 mmol L−1 0.01−0.02 mmol L−1 No -
Glucose Matlab imaging - 0.04−4 mmol L−1 No <2 min 127

Fluorescence spectrum - 0.03−3 mmol L−1 No 30 s 128
Silicone hydrogel contact lens - 0−100 mmol L−1 No - 129
Paper-based microfluidic channel 0.08 mmol L−1 0.1−4.0 mmol L−1 No 0.3 s 130
Contact lens 0.0093 mmol L−1 0.023−1.0 mmol L−1 Yes 3−5 s 131

Lactoferrin Paper-based microfluidic channel 0.3 mg mL−1 0.5−3 mg mL−1 Yes 15 min 134
0.1 mg mL−1 0−4 mg mL−1 Yes <10 min 135

Lysozyme Contact lens 1.99 μg mL−1 0−25 μg mL−1 Yes 10 min 138
Fluorescence spectrum 0.55 nmol L−1 1.0−20 nmol L−1 Yes 100 s 140
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disease diagnosis and drug delivery. Cooperation with a novel
series of hand-held readout smart devices to enhance the
facilities of minimally or noninvasive fluorescence contact lens
sensors even brought a higher value for these novel generated
contact lens sensors. The market for these kinds of smart
contact lens sensors is claimed to possess over $24.12 billion
by 2029.150,151 Therefore, both manufacturers and patients
worldwide could obtain a promising potential market with the
development of contact lens sensors. However, the low volume
and concentration of sampled proteins and enzymes in tears
are still negligible.152,153 Principles of fabricating fluorescence
biosensors for in situ contact lens sensing to achieve POC in
indication and real-time detection of ocular diseases should
focus on the mechanism of sensing technologies, types of
cross-linkers, and fluorophores. Another crucial ultimate
prospective of fluorescence tear sensors is drug dosage and
delivery. Microneedle arrays, as a popular developing
technology in delivering drug, biosensing analytes, and neural
interfaces,154−156 can be utilized to combine with fluorescence
sensing technologies for drug delivery in tears. One of the
advantages of the microneedle fabrication process is an easy
operation by using low-cost 3D printing techniques.157,158

Subsequently, the fabricated fluorescent microneedle arrays
can reach not only the tear fluid interface but other intraocular
positions, such as aqueous humor. Then, one suitable design
could be selecting each one-phase monitoring and diagnosis
for ocular disease and combining the single test channel into
the multidetection phase, simulating and optimizing the
interferences for the final diverse sensing mode within the
fluorescent sensor, and finally producing one microneedle
channel for target therapeutic aim. Moreover, the experimental
data can be compared and optimized with the obtained clinical
ophthalmic technologies, such as ophthalmic spectroscopies
and clinical chemistry analyzer, for instance. With the golden
standard comparisons, the permitted tolerance of errors would
be optimized to be as minor as possible.

■ CONCLUSION
In conclusion, tear fluid detection has attracted continuous
attention in scientific, technological, and clinical studies of
healthcare diagnosis. Fluorescence sensing materials have been
well-established for wide applications in the past decade.
Fluorescent sensing in tear fluid offers a sensitive, cost-
effective, and noninvasive platform for early diagnosis of
ocular-related diseases, including various cancers, neurological
disorders, sclerosis diseases, and Parkinson’s disease. One
immediate future area could be directly working on immediate
diagnosis and data collection for ocular disease at the POC
platform in which the patients would not need to rely heavily
on hospitality and could achieve self-detection and data
collection. The development of biological assays would also be
one of the intermediate future directions on ocular disease
monitoring. The integration of the portable readout devices
and wearable sensing tools (contact lens) can be helpful at the
POC platform to improve the user experience and conven-
ience. The fluorescence sensors then should be sufficient in
sensitivity, selectivity, accuracy, and reproductivity. Hence,
potential principles for fluorescence sensing and sufficient
fluorophores need to be developed and investigated. Moreover,
the biocompatibility of the fluorescent detection within tears
should be considered for future commercialized trials. As for
the intermediate future of fluorescent tear sensing, more
complicate biomarkers within tears and even aqueous human

fluid such as BDNF, IL-6, and other proteins need to be
explored. Some neuro-related diseases could be achieved at a
POC diagnosis and monitor. Moreover, a multichannel
diagnosing fluorescent sensing could be developed to achieve
multidetection on one ocular-related disease and that would
lead to a more accurate data outcome for patients.
It is also necessary to achieve minimally or noninvasive tear

sensing and real-time monitoring for ophthalmic diagnosis and
ocular physiological index analysis. The achievement of drug
delivery at the POC platform is one of the most critical longer
future directions to tear diagnosis. Fluorescence contact lens
sensors, as one of the most effective techniques for biosensing
and real-time monitoring, therefore, should be used to conduct
more investigations in intermediate ophthalmological diagnosis
and long-term database collection for hospitalization. Sufficient
fluorescence sensing technologies as well as the cooperation
with portable hand-held smart devices should be evaluated and
explored to enhance the functions of fluorescence sensing and
diagnosis within tears at the POC platforms. These fabricated
fluorescent sensors could be applied clinically for real-time
monitoring, one-time detection, drug delivery, etc. In some
cases, the continuous monitoring would not be necessary, but
the annual or regular detection and monitoring would be
required. For example, some glaucoma patients would need to
do the examination every 6 months, where some of the ocular
diseases such as inflammation would require a more frequent
detection (once per week). Furthermore, real-time monitoring
would be beneficial to the surgical monitoring before and
afterward.
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■ VOCABULARY
Fluorescent sensing techniques: Technologies that can be
utilized for the detection of different analytes based on
fluorescence mechanisms.
Point-of-care (POC): Normally can be defined as medical
applications and diagnostic methods for patients to use by
their side at any time.
Tear biomarkers: Analytes in the tear fluid which can be
examined and evaluated for ocular-related disease diagnostic
and therapeutic treatments. The analytes include electro-
lytes, proteins, enzymes, and cytokines.
Tear sensing and diagnostics: This term is commonly
applied to medical applications (ophthalmic research); the
ocular-related disease can be diagnosed by the quantitative
and qualitative analysis of tear biomarkers. Typical ocular
diseases have been studied and evaluated, such as dry eye
diseases, glaucoma, and diabetic retinopathy.
Microfluidic paper-based sensing device: The paper-based
sensing device is a platform for medical, chemical, and
biological analysis, and microfluidic channels are the media
for achieving multidetection of analytes for the detection
and differentiation of a wide range of ophthalmic diseases.
Contact lens sensor: The device or developed system that
detects ophthalmic environments and physiologic variations
and transfers the information through contact lens to the
media by different methodologies, for example fluorescent
contact lens sensors.
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(67) Göncü, T.; Akal, A.; Adbelli, F. M.; Çakmak, S.; Sezen, H.;
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