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Attitude regulation with bounded control in the
presence of large disturbances with bounded

moving average
Ang Li, Alessandro Astolfi, Fellow, IEEE and Ming Liu

Abstract—The attitude regulation problem with bounded con-
trol for a class of satellites in the presence of large disturbances,
with bounded moving average, is solved using a Lyapunov-like
design. The analysis and design approaches are introduced in
the case in which the underlying system is an integrator and
are then applied to the satellite attitude regulation problem. The
performance of the resulting closed-loop systems are studied in
detail and it is shown that trajectories are ultimately bounded
despite the effect of the persistent disturbance. Simulation results
on a model of a small satellite subject to large, but bounded in
moving average, disturbances are presented.

Index Terms—Robust attitude regulation, Ultimate bounded-
ness, Bounded control, CubeSats

I. INTRODUCTION

In the past few decades satellites have been widely devel-
oped for commercial, communication, military and scientific
purposes. These include tasks which play important roles in
modern society, such as long-distance signal transmission [1],
[2], navigation [3], [4], Earth observation [5] and weather
and climate monitoring [6]. To guarantee reliable and re-
peatable operations, high-accuracy attitude control algorithms
have to be implemented and various control methods have
been ultilized. Traditional control architectures exploit PD-like
controllers [7], PID controllers [8], LQR-based designs [9],
[10], sliding mode controllers [11] and back-stepping-based
designs [12]. Of these, PD-like, PID and LQR controllers
are most widely used in applications because of their simple
structure and design process.

A class of satellites, which is becoming very popular be-
cause of the modest construction and deployment costs, is that
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of the so-called CubeSats [13]–[18]. Unfortunately, CubeSats
have a limited power budget and, because of their small
dimension, are very sensitive to environmental disturbances,
such as the Earth gravity gradient, aerodynamic drag, solar
radiation pressure [19], [20], and to disturbances resulting
from the coupling of the on-board electronics with the Earth
magnetic field (often known as the residual dipole torque)
[21]. In addition, the size and weight limitations impose
strict constraints on the attitude control torque, which is often
smaller, in magnitude, than the combined torque generated by
the disturbances [22].

CubeSats attitude regulation in the presence of disturbances
has been studied in [23] (in which the gravity gradient is
regarded as the main external disturbance) and in [24] (in
which multiple external disturbances are considered). In both
papers, however, no consideration has been given to control
bounds or to the fact that the instantaneous amplitude of the
external disturbance may exceed the available control torque.

Such considerations are the point of departure for this paper.
In particular, we study control systems which are perturbed by
(additive) external disturbances, the instantaneous amplitude of
which is not constrained to be smaller than the amplitude of
the control signal. To illustrate this class of control problems,
which to the best of our knowledge has not received attention
in the control literature, we study initially the case of a scalar
linear system (an integrator) with matched additive disturbance
and with bounded input. For this toy example we design a state
feedback control law which, on the basis of an integral bound
on the disturbance, yields ultimately bounded trajectories and
stability of a set containing the origin.

This design idea is then extended to solve the attitude
control problem for a satellite subject to external torque
disturbances, which satisfy an integral bound, in the presence
of bounded control. We consider a saturated PD-like control
structure, the gains of which are tuned as a function of
the available bound on the disturbance, the available control
torque, and the desired attitude accuracy. Similarly to the case
of the toy example, we show that the trajectories of the closed-
loop system are ultimately bounded and a residual set around
the origin, the size of which depends upon the bound on the
disturbances, is stable.

The paper is organised as follows. In Section II we dis-
cuss the class of disturbances considered and we present
integral bounds which are used to characterize their long
term properties, or their properties in a given time window.
Relations among these bounds and implications in terms of the
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instantaneous amplitude of the disturbance are also discussed.
In Section III a scalar linear system with matched additive dis-
turbance and bounded input is studied as a motivating example.
Two state feedback controllers, designed on the basis of a
given integral bound on the external disturbance, are presented
and the resulting properties of the closed-loop system are
discussed. By exploiting the ideas of Section III, Section IV
provides a solution to the bounded input attitude regulation
problem for a satellite subject to disturbances satisfying an
integral bound. In Section V simulation results for the systems
studied in Sections III and IV driven by randomly generated
disturbances satisfying the considered integral bounds are
presented. Section VI contains conclusions and outlooks.

II. THE CLASS OF ADMISSIBLE DISTURBANCES

Disturbances are ubiquitous in practical control problems.
While there are several ways in which disturbances can
be measured, for example using Lp norms, where typically
p = 1, 2, ∞, or the notion of power, in this paper we consider
bounds in terms of windowed averaged p-norms defined as
follows. Differently from traditional Lp norms, the introduced
windowed averaged p-norms are useful to “measure” distur-
bances, the amplitude of which may be very large only for
short periods.

Definition 1 Let w : ℜ≥0 → ℜd be a piece-wise continuous
vector-valued function of time. Consider a window [t1, t2], with
0≤ t1 < t2. Let

‖w‖[t1,t2]p,a =
1

t2− t1

[∫ t2

t1

d

∑
i=1
|wi(τ)|p dτ

]1/p

,

for p any finite integer, or

‖w‖[t1,t2]∞,a =
1

t2− t1
max

i=1,··· ,d
max

t∈[t1,t2]
|wi(t)| ,

for p = ∞.
The average p−norm of w with moving window of size T >

0 is given by
‖w‖T

p, a = sup
t≥0
‖w‖[t, t+T ]

p,a . (1)

Definition 2 The set of all signals w with finite average p-
norm over a moving window of size T > 0 is denoted as LT

p, a.

The class of disturbances characterised in Definition 1
possesses some interesting properties and relations with dis-
turbances satisfying Lp norm bounds, as summarised in the
following statement.

Proposition 1 Let w be a piece-wise continuous vector-valued
function.

(P1) Lp ⊂ LT
p,a, that is, w ∈ Lp implies w ∈ LT

p,a, for all T > 0.
(P2) w ∈ LT

p,a, for some T > 0, does not imply w ∈ Lp, that is
there exists signals w ∈ LT

p,a such that w /∈ Lp.

(P3) If w ∈ LT
1,a
⋂

LT
∞,a, then ‖w‖T

2,a <
(
‖w‖T

∞,a‖w‖T
1,a
)1/2,

hence w ∈ LT
2,a.

(P4) If w is a periodic signal with period T , then w ∈ LT
p,a.

(P5) If w is a power signal and w ∈ LT
∞,a, then w ∈ LT

2,a.

Proof: We prove each item individually.

(P1) Let w ∈ Lp, that is

‖w‖p =

[∫ +∞

0

d

∑
i=1
|wi(τ)|p dτ

]1/p

< ∞,

or, equivalently,

‖w‖p
p =

∫ +∞

0

d

∑
i=1
|wi(τ)|p dτ < ∞.

Note now that, for all t ≥ 0,

T (‖w‖T
p,a)

p =
∫ t+T

t

d

∑
i=1
|wi(τ)|p dτ

=
∫ +∞

0

d

∑
i=1
|wi(τ)|p dτ−

∫ t

0

d

∑
i=1
|wi(τ)|p dτ

−
∫ +∞

t+T

d

∑
i=1
|wi(τ)|p dτ

= ‖w‖p
p−

∫ t

0

d

∑
i=1
|wi(τ)|p dτ

−
∫ +∞

t+T

d

∑
i=1
|wi(τ)|p dτ

< ∞,

hence we conclude that ‖w‖T
p,a <∞, for any T > 0, which

complete the proof of (P1).
(P2) From the proof of (P1) we have that if w ∈ LT

p,a then

T (‖w‖T
p,a)

p = ‖w‖p
p−

∫ t

0

d

∑
i=1
|wi(τ)|p dτ

−
∫ +∞

t+T

d

∑
i=1
|wi(τ)|p dτ

< ∞,

which does not impose any restriction on ‖w‖p. In
summary, w ∈ LT

p, a for some T > 0, does not imply
w ∈ Lp, which proves (P2).

(P3) By Definition 1

‖w‖T
1,a =

1
T

∫ t+T

t

d

∑
i=1
|wi(τ)|dτ.

Moreover, since w ∈ LT
1,a
⋂

LT
∞,a, then∫ t+T

t

d

∑
i=1
|wi(τ)|2dτ =

∫ t+T

t
|w(τ)||w(τ)|dτ

≤ T 2(‖w‖T
∞,a‖w‖T

1,a)

< ∞.

As a result

‖w‖T
2,a =

1
T

[∫ t+T

t

d

∑
i=1
|wi(τ)|2dτ

]1/2

≤ (‖w‖T
∞,a‖w‖T

1,a)
2

< ∞,
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which completes the proof of item (P3).
(P4) Since w is a periodic signal with period T then, for all

t ≥ 0 and for all finite p,∫ t+T

t

d

∑
i=1
|wi(τ)|pdτ =C < ∞

for some C > 0. Note that a similar condition holds for
p = ∞. Thus, for any t ≥ 0 and any finite p,

‖w‖T
p,a =

1
T

[∫ t+T

t

d

∑
i=1
|wi(τ)

p|dτ

]1/p

=
C̄
T

< ∞,

where C̄ =C1/p. Again, a similar condition holds for p =
∞. As a result (P4) holds.

(P5) If w is a (one-sided) power signal, then the limit

lim
T→∞

1
T

∫ T

0
w(t)2dt

exists. Now, since ‖w‖T
∞,a < ∞, for 0 < T < ∞, one has

1
T

∫ t+T

t
w(t)2dt =

1
T

∫ t+T

t

d

∑
i=1
|wi(t)|2 dt

≤ ‖w‖T 2

∞,a
1
T

∫ T

t
dt

= ‖w‖T 2

∞,a

< ∞.

Thus

‖w‖T
2,a =

1
T

[∫ t+T

t

d

∑
i=1
|wi(t)|2 dt

]1/2

=

(
1
T

)1/2
[

1
T

∫ t+T

t

d

∑
i=1
|wi(t)|2 dt

]1/2

<

(
1
T

)1/2

∞

< ∞,

which implies that (P5) holds. �

To illustrate the introduced notions, consider two periodic
disturbances with period T = 5s, as displayed in Figures 1 and
3. Figures 2 and 4 show that the considered disturbances have
bounded average norms, and unbounded Lp norms, for any
finite p.
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Fig. 1. Time histories of the components of w1(t).
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for p = 1,2.
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The selected disturbances are such that ‖w‖T
p,a ≤ 1− ε < 1

for p = 1,2 and ε ∈ (0,1), conditions which will be used in
Sections III and IV, whereas they have unbounded L1 and L2
norms.

III. A PERTURBED INTEGRATOR WITH BOUNDED CONTROL

In this section we introduce the main tools for control design
in the presence of persistent disturbances by studying the
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robust stabilization problem for a scalar system described by
the equation

ẋ = u+w, (2)

where x(t) ∈ IR is the state of the system, u(t) ∈ [−1,1]
refers to the control input and w(t) ∈ IR denotes the external
disturbance. In addition, the disturbance w is such that

‖w‖T
1,a =

1
T

∫ t+T

t
|w|dτ ≤ 1− ε < 1, (3)

for all t ≥ 0 and for some, not necessarily known, T > 0 and
some 0 < ε < 1.

Proposition 2 Consider the system (2). Suppose the distur-
bance satisfies the condition (3). Let

u =−sign(x), (4)

where

sign(x) =

 1, x > 0,
0, x = 0,
−1, x < 0.

Then the state of the closed-loop system is ultimately bounded
and limsup

t→∞

|x(t)| ≤ 2T .

Proof: Consider the function V (x) = 1
2 x2, which is smooth,

positive definite, bounded from below and has a global min-
imizer at x = 0. Along the trajectories of the closed-loop
system, to be understood as in [27], one has

V̇ ≤−|x|+ |x||w|=
√

2V (−1+ |w|). (5)

Suppose now that |x(t)| > εT . Integrating both sides of (5)
from t to t +T , by condition (3), one has√

V (t +T )−
√

V (t)≤
√

2T
2

[
−1+

1
T

∫ t+T

t
|w|dτ

]
≤−
√

2
2

εT < 0,

(6)

hence
|x(t +T )|− |x(t)| ≤ −εT,

that is
0≤ |x(t +T )| ≤ |x(t)|− εT, (7)

which implies that there exists a finite k such that |x(t+kT )| ≤
εT .

Suppose now that 0≤ |x(t)| ≤ εT , for some t ≥ 0. Note that

−1−|w| ≤ ẋ =−sign(x)+w≤ 1+ |w|,

hence a direct integration yields

−T −
∫ t+T

t
|w(τ)|dτ ≤ x(t +T )− x(t)≤ T +

∫ t+T

t
|w(τ)|dτ,

that is

|x(t +T )| ≤ |x(t)|+T +
∫ t+T

t
|w(τ)|dτ

≤ εT +T (2− ε)

≤ 2T,

We therefore conclude that for any initial condition, the

trajectories of the system enter the set |x(t)| ≤ εT in finite
time and are such that |x(t)| ≤ 2T , afterwards, which proves
the claim. �

Remark 1 The condition expressed in Proposition 1 and in
equation (3) reduce, at T tends to zero, to

lim
T→0

1
T

∫ t+T

t
|w|dτ = |w(t)| ≤ 1− ε < 1,

which implies that all trajectories converge to zero (in finite
time).

Remark 2 The controller (4) is similar to a bang-bang con-
troller, with the difference that the controller (4) does not solve
an optimal control problem: it is developed to deal with control
systems affected by disturbances, the instantaneous amplitude
of which is not constrained to be smaller than the maximum
amplitude of the control signal.

To show that a similar result holds also for the LT
2,a norm,

assume that

‖w‖T
2,a =

1
T

[∫ t+T

t
|w|2dτ

]1/2

≤ 1− ε < 1, (8)

for some ε ∈ (0,1), that is∫ t+T

t
|w|2dτ ≤ (1− ε̃)T 2, (9)

where ε̃ = (2− ε)ε , ε̃ ∈ (0,1), and for some T > 0.

Proposition 3 Consider the system (2). Suppose that the
disturbance satisfies the condition (8) and T < 1

1−ε̃
. Let

u =−sign(x). (10)

Then the state of the closed-loop system is ultimately bounded
and limsup

t→∞

|x(t)| ≤ 5
2 T .

Proof: Consider again the function V (x) = 1
2 x2 and note that

V̇ ≤−|x|+ |x||w|
=−|x|+

√
|x|(
√
|x||w|)

≤−|x|+ |x|
2

+
|x||w|2

2

≤
√

2V
2
(
−1+ |w|2

)
.

(11)

Suppose now that |x(t)| > T
2 . Integrating both sides of (11)

from t to t +T and exploiting condition (9), one has√
V (t +T )−

√
V (t)≤

√
2T
4

[
−1+

1
T

∫ t+T

t
|w|2dτ

]
≤−
√

2T
4

[1− (1− ε̃)T ] .

(12)

Hence, since T is such that T < 1
1−ε̃

then 1− (1− ε̃)T > 0,
and √

V (t +T )−
√

V (t)<−
√

2T
4

,

and, equivalently,

|x(t +T )|− |x(t)| ≤ −T
2
,



IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X 5

that is
0≤ |x(t +T )| ≤ |x(t)|− T

2
, (13)

which implies that there exists a finite k such that |x(t+kT )| ≤
T
2 .

Suppose now that 0≤ |x(t)| ≤ T
2 , for some t ≥ 0. Note that

−1− |w|
2 +1
2

≤ ẋ =−sign(x)+w≤ 1+
|w|2 +1

2
,

hence a direct integration yields

|x(t +T )| ≤ |x(t)|+ 1
2

(
2T +T +

∫ t+T

t
|w(τ)|2dτ

)
≤ T

2
+

T
2
(3+(1− ε̃)T ) .

As a result

|x(t +T )| ≤ T
(

2+
1
2
(1− ε̃)T

)
. (14)

Recalling that T < 1
1−ε̃

, we have that |x(t+T )| ≤ 5T
2 . We there-

fore conclude that, for any initial condition, the trajectories of
the system enter the set |x(t)| ≤ T

2 in finite time and are such
that |x(t)| ≤ 5

2 T , afterward, which proves the claim. �

In what follows we show that the bound of Proportion 2
can be obtained also with a continuous control law. To this
end, consider the control law

u(t) =−sat(Kx), (15)

with sat(Kx) = min{1,K|x|}sign(x), and K > 0.

Corollary 1 Consider the system (2) in closed-loop wtih the
controller (15). Then the state of the closed-loop system is
ultimately bounded. In particular,

i) if w satisfies the condition (3) one has limsup
t→∞

|x(t)| ≤ 2T,

if εT ≥ 1
K , and limsup

t→∞

|x(t)| ≤ 1
K +(2− ε)T, if εT ≤ 1

K ;

ii) if w satisfies the condition (8) one has limsup
t→∞

|x(t)| ≤ 5
2 T ,

if 2
K ≤ T < 1

1−ε̃
and limsup

t→∞

|x(t)| ≤ 1
K +2T, if T ≤ 2

K <

1
1−ε̃

, where ε̃ is defined in (9).

The claim of Corollary 1 follows from the proof of
Propositions 2 and 3, respectively. Note that in this case,
u(x) = −sign(x) for all |x| ≥ 1

K . The proof of claim i) and
ii) are given below.

Proof:

i) Consider the function V (x) = 1
2 x2, which is smooth,

positive definite, bounded from below and has a global
minimizer at x = 0. Along the trajectories of the closed-
loop system one has

V̇ ≤−|x|+ |x||w|=
√

2V (−1+ |w|). (16)

Suppose now that |Kx(t)|> 1, i.e. |x(t)|> 1
K . Integrating

both sides of (16) from t to t +T , by condition (3), one

has√
V (t +T )−

√
V (t)≤

√
2T
2

[
−1+

1
T

∫ t+T

t
|w|dτ

]
≤−
√

2
2

εT

< 0,
(17)

hence
|x(t +T )|− |x(t)| ≤ −εT,

that is
0≤ |x(t +T )| ≤ |x(t)|− εT, (18)

which implies that there exists a finite k such that |x(t +
kT )| ≤ εT .
Suppose now that 0≤ |Kx(t)| ≤ 1, i.e. 0≤ |x(t)| ≤ 1

K , for
some t ≥ 0. Note that

−1−|w| ≤ ẋ =−sign(x)+w≤ 1+ |w|,

hence a direct integration yields

−T −
∫ t+T

t
|w(τ)|dτ ≤ x(t +T )− x(t)≤ T +

∫ t+T

t
|w(τ)|dτ,

that is
|x(t +T )| ≤ |x(t)|+T +(1− ε)T

≤ 1
K
+T +(1− ε)T.

(19)

Thus, if T is such that εT ≥ 1
K , one has

|x(t +T )| ≤ 2T,

which is as discussed in Proposition 2. Similarly, if T is
such that εT ≤ 1

K , then there exists a finite k such that
|x(t + kT )| ≤ εT ≤ 1

K and

|x(t +T )| ≤ 1
K
+(2− ε)T.

We therefore conclude that for any initial condition the
trajectories of the system enter the set |x(t)| ≤ εT in finite
time and are such that |x(t)| ≤ 2T afterward, if εT ≥ 1

K ,
and |x(t)| ≤ 1

K +(2− ε)T afterward, if εT ≤ 1
K , which

proves the claim i).
ii) Consider again the function V (x) = 1

2 x2 and note that

V̇ ≤−|x|+ |x||w|
=−|x|+

√
|x|(
√
|x||w|)

≤−|x|+ |x|
2

+
|x||w|2

2

≤ |x|
2
(
−1+ |w|2

)
≤
√

2V
2
(
−1+ |w|2

)
.

(20)

Suppose now that |Kx(t)|> 1, i.e. |x(t)|> 1
K . Integrating

both sides of (20) from t to t+T and exploiting condition
(9), one has



IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X 6

√
V (t +T )−

√
V (t)≤

√
2T
4

[
−1+

1
T

∫ t+T

t
|w|2dτ

]
≤−
√

2T
4

[1− (1− ε̃)T ] . (21)

Recalling that T is such that T < 1
1−ε̃

, then√
V (t +T )−

√
V (t)<−

√
2T
4

,

and, equivalently,

|x(t +T )|− |x(t)| ≤ −T
2
,

that is
0≤ |x(t +T )| ≤ |x(t)|− T

2
, (22)

which implies that there exists a finite k such that |x(t +
kT )| ≤ T

2 .
Suppose now that 0≤ |Kx(t)| ≤ 1, i.e. 0≤ |x(t)| ≤ 1

K , for
some t ≥ 0. Note that

−1− |w|
2 +1
2

≤ ẋ =−K|x|sign(x)+w≤ 1+
|w|2 +1

2
,

hence a direct integration yields

|x(t +T )| ≤ |x(t)|+ 1
2

(
2T +T +

∫ t+T

t
|w(τ)|2dτ

)
,

that is

|x(t +T )| ≤ 1
K
+

T
2
(3+(1− ε̃)T ) . (23)

Thus if T is such that 1
K ≤

T
2 < 1

2(1−ε̃) , i.e. 2
K ≤ T < 1

1−ε̃

one has
|x(t +T )| ≤ 5T

2
,

which is as discussed in Proposition 3. Similarly, if T is
such that T

2 ≤
1
K ≤

1
2(1−ε̃) there exists a finite k such that

|x(t + kT )| ≤ T
2 ≤

1
K and

|x(t +T )| ≤ 1
K
+2T.

We therefore conclude that, for any initial condition, the
trajectories of the system enter the set |x(t)| ≤ T

2 in finite
time and are such that |x(t)| ≤ 5

2 T afterward, if 2
K ≤ T ≤

1
1−ε̃

, and |x(t)| ≤ 1
K + 2T afterward, if T

2 ≤
1
K ≤

1
2(1−ε̃) ,

which proves the claim ii).

�

IV. SATELLITE ATTITUDE CONTROL SYSTEM

Consider now the attitude control problem for a fully
actuated satellite, described by the equations

Jω̇ +ω
×Jω = τ +w,

q̇ =
1
2

(
0 −ωT

ω −ω×

)(
q0
qv

)
=

1
2

(
−ωTqv

−ω×qv +q0I3ω

)
,

(24)

where ω = (ω1 ω2 ω3)
T denotes the angular velocity, and q =

(q0, qT
v )

T ∈ IR4×1, with q0 = cos ϑ

2 , qv =(q1, q2, q3)
T = esin ϑ

2
is the quaternion vector such that qT

v qv +q2
0 = 1. The variable

ϑ represents the rotation angle with respect to the Euler axes
and e = (ex, ey, ez)

T denotes the vector basis of the Euler axes
satisfying ‖e‖1 = 1. J ∈ IR3×3 is the positive definite inertia
matrix. τ = (τ1 τ2 τ3)

T is the input torque and w represents
the action of the external disturbance. Finally,

ω
× =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 .

Let now
τ(t) =−k1

2
qv(t)− k2sat(Jω(t)) , (25)

with the saturation function defined as

sat(x) =
x√

1+ xT J−1x
,

with k1 > 0 and k2 ≥ α

1−α2 , for some α ∈ (0, 1), such that
k1
2 + k2 ≤ |τmax|, where τmax is selected on the basis of the

specific application.

Proposition 4 Consider the system (24) with the controller
(25). Assume the disturbance satisfies (3), then the angular
velocity and quaternion are ultimately bounded, and there
exists ζ > 0 such that limsup

t→∞

‖ω(t)‖= ‖J‖−1/2ζ .

Proof: Consider the function

V (t) =V1(t)+V2(t), (26)

with V1(t) = k1[qT
v qv+(1−q0)

2] and V2(t) = ωTJω . Recalling
now that by definition of q(t), one has V (t) = 2k1(1− q0)+
ω(t)TJω(t).

Differentiating along the trajectories of the closed-loop system
yields

V̇ (t) =−2k1q̇0 +2ω(t)TJω̇(t)

= k1ω(t)Tqv(t)+2ω(t)TJ
[
− J−1(

ω(t)×Jω(t)

+ τ(t)+w(t)
)]

= k1ω(t)Tqv(t)+2ω(t)T(
τ(t)+w(t)

)
.

(27)

Recalling that
√

V2 ≤
√

V , and substituting (25) into (27)
yields

V̇ (t) =−2k2ω(t)Tsat(Jω(t))+2ω(t)Tw(t)

≤−2k2

√
V2(t)√

1+V2(t)

√
V2(t)+2

√
V2(t)‖J‖−

1
2 ‖w(t)‖2

≤−2k2

√
V2(t)√

1+V2(t)

√
V (t)−V1(t)+2

√
V (t)‖J‖−

1
2 ‖w(t)‖1

≤−2k2

√
V2(t)√

1+V2(t)

(
1
α

√
V (t)−α

√
V1(t)

)
+2
√

V (t)‖J‖−
1
2 ‖w(t)‖1,

(28)
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for any α ∈ (0,1). Since
√

V1 ≤
√

V , we conclude that

V̇ (t)≤−2k2

√
V2(t)√

1+V2(t)

(
1
α
−α

)√
V (t)

+2
√

V (t)‖J‖−
1
2 ‖w(t)‖1,

(29)

hence

V̇ (t)√
V (t)

≤−2k2(1−α2)

α

√
V2(t)√

1+V2(t)
+2‖J‖−

1
2 ‖w(t)‖1. (30)

Let ξ (t) =
√

V (t), ζ (t) =
√

V2(t), and note that ξ̇ (t) =
1
2

V̇ (t)√
V (t)

, thus equation (30) can be rewritten as:

ξ̇ (t)≤−k2(1−α2)

α

ζ (t)√
1+ζ (t)2

+‖J‖−
1
2 ‖w(t)‖1. (31)

Consider now the auxiliary system

η̇(t) =−k2(1−α2)

α

ζ (t)√
1+ζ (t)2

+‖J‖−
1
2 ‖w(t)‖1 (32)

According to the Comparison Principle [26], if η(0)≥ ξ (0),
then η(t) ≥ ξ (t) ≥ 0 for all t ≥ 0. Integrating both sides of
equation (32) in the time intervals [0, T ], [T, 2T ], · · · , [(K−
1)T, T ] yields

η(T )−η(0) =−k2(1−α2)

α

∫ T

0

ζ (t)√
1+ζ (t)2

dt

+‖J‖−
1
2

∫ T

0
‖w‖1dt

≤−k2(1−α2)

α

ζ
1√

1+ζ
2
1

T

+‖J‖−
1
2 (1− ε)T

η(2T )−η(T )≤−k2(1−α2)

α

ζ
2√

1+ζ
2
2

T

+‖J‖−
1
2 (1− ε)T

...

η(KT )−η((K−1)T )≤−k2(1−α2)

α

ζ
K√

1+ζ
2
K

T

+‖J‖−
1
2 (1− ε)T,

(33)

where η i = min
t∈((i−1)T,iT ]

(ηi(t)), η i = max
t∈((i−1)T,iT ]

(ηi(t)), ζ
i
=

min
t∈((i−1)T,iT ]

(ζi(t)), ζ i = max
t∈((i−1)T,iT ]

(ζi(t)), i = 1, · · · ,K. Adding

the left and right hand sides of the inequalities (33) yields

0≤ η(KT )≤ η(0)− k2(1−α2)

α

Kζ√
1+ζ

2
T

+‖J‖−
1
2 (1− ε)KT,

(34)

in which ζ = min(ζ
i
) and ζ = max(ζ̄i), i = 1, · · · ,K. Accord-

ing to the definition of ζ one has

ζ̇ (t) = 1
2V2(t)−

1
2 V̇2(t) = 1

2 ζ−1(t)V̇2(t). (35)

Suppose now that ζ (t∗) = ζ at t = t∗. Then by integrating both
side of (35) from t∗ to t∗+ t yields

ζ̄ = ζ +
V (t + t∗)−V (t∗)

2

∫ t∗+t

t∗
ζ (τ)−1dτ, t ∈ [0, KT ]. (36)

Define now
ψ(ζ ∗,ε) = ϕ(ζ ∗)−φ(ε), (37)

where ϕ(ζ ∗) = k2(1−α2)
α

ζ√
1+ζ

2
and φ(ε) = ‖J‖− 1

2 (1− ε).

Consider now a fixed T and let K → +∞. Then equation
(34) can be rewritten as

0≤ η(KT )≤ η(0)− lim
K→+∞

KT ψ(ζ ∗,ε). (38)

Consider now the case in which ψ(ζ ∗,ε) ≤ 0 as K → +∞.
Then, by the definition of ψ(ζ ∗,ε), one has

0 ≤ ζ ≤
α‖J‖− 1

2 (1− ε)
√

1+ ζ̄ 2

k2(1−α2)
,

hence

lim
K→+∞

η(KT )≤ η(0)− lim
K→+∞

KT ψ(ζ ∗,ε)→+∞. (39)

Then according to the Comparison Principle [26], for any
η(0)≥ ξ (0) one can obtain

+∞≥ η(t)≥ ξ (t) =
√

V (t) =
√

V1(t)+V2(t),

which is a contradiction.
Note now that V1 is bounded by definition, and ζ (t) =√
V2(t) =

√
ωTJω cannot increase for all t ∈ [0,KT ], since

there always exists a time instant t∗∗ such that sat(Jω(t∗∗)) =
1. For all t such that |Jω(t)| ≥ 1, the equation (31) can be
rewritten as

ξ̇ (t)≤−k2(1−α2)

α
‖J‖−

1
2 +‖J‖−

1
2 ‖w(t)‖1. (40)

Integrating both sides of (40) in the time interval [t∗∗, t∗∗+T ]
yields

ξ (t∗∗+T )−ξ (t∗∗)≤−k2(1−α2)

α
‖J‖−

1
2 T +‖J‖−

1
2 (1− ε)T

≤ −k2(1−α2)+α

α
‖J‖−

1
2 T − ε

∗T, (41)

where ε∗ = ‖J‖− 1
2 ε , since k2 is such that

k2 ≥
α

1−α2 > 0 (42)

for some α ∈ (0,1). Then√
V (t∗∗+T )−

√
V (t∗∗) = ξ (t∗∗)−ξ (t∗∗)<−ε

∗T,

that is √
V (t∗∗+T )≤

√
V (t∗∗)− ε

∗T, (43)

which implies that the condition ψ(ζ ∗,ε)≤ 0 cannot hold for
K→ +∞. Hence ξ (t) decrease after reaching its peak value,
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i.e. lim
t→+∞

ξ (t)<+∞. Thus, ψ(ζ ∗,ε)> 0, K→+∞.

Suppose now that ψ(ζ ∗,ε)> 0, as K→+∞. Then

0≤ η(KT )≤ η(0)− lim
K→+∞

KT ψ(ζ ∗,ε)< η(0), (44)

which implies that η decreases and enters a neighbourhood of
the origin. Moreover

0 < lim
K→+∞

KT ψ(ζ ∗,ε)< η(0) (45)

and
0 < ψ(ζ ∗,ε)→ η(0)

KT
→ 0, K→+∞. (46)

Then for K→+∞ there exists a small scalar ε̄ > 0 such that
|ψ(ζ ∗,ε)|< ε̄ . Hence, the lower bound ζ for ζ is such that∣∣∣∣∣∣ζ − α‖J‖− 1

2 (1− ε)
√

1+ ζ̄ 2

k2(1−α2)

∣∣∣∣∣∣< ε
∗∗ (47)

with ε ∈ (0,1) and ε∗∗ =
αε̄

√
1+ζ̄ 2

k2(1−α2)
.

We therefore conclude that, for any initial condition the
states of the closed-loop system (24) with the controller (25)
are ultimately bounded, and there exists ζ > 0 such that

‖ω(t)‖ ≤ α‖J‖−
1
2 (1−ε)

√
1+ζ̄ 2

k2(1−α2)
for some finite t and

limsup
t→+∞

‖ω(t)‖= ‖J‖−1/2
ζ

with ζ ∈
(

α‖J‖−
1
2 (1−ε)

√
1+ζ̄ 2

k2(1−α2)
− ε∗∗,

α‖J‖−
1
2 (1−ε)

√
1+ζ̄ 2

k2(1−α2)
+ ε∗∗

)
.

�

Remark 3 On the basis of the analysis in Proposition 3, a
similar result can be obtained using bounds on the average
p-norms of the disturbance w.

Remark 4 Considering the natural characteristics of space
environmental torques (mainly generated by the Earth gravity
gradient, geomagnetic field, aerodynamic drag and solar radi-
ation pressure), one can assume that all these torques are Lp
norm bounded [28], [29]. Thus condition (3) is reasonable.

V. SIMULATION RESULTS

In this section we illustrate the performance of the consid-
ered perturbed closed-loop systems.

To begin with consider the perturbed integrator system (2),
with the control law u =−sat(Kx). Let ε = 0.1, K = 1, and

w(t) =
{

ᾱ, nT < t < λT +nT,
β̄ , λT +nT < t < (n+1)T,

(48)

with ᾱ = 1
3 (2α̃ rand(·)− α̃), β̄ = 1

3 (2β̃ rand(·)− β̃ ), where
rand(·) gives uniformly distributed random numbers in the set
[0, 1]. By choosing α̃ = 10,

β̃ = 0.9
1− ε−λα̃

1−λ
<

1− ε−λα̃

1−λ
,

λ = 0.9
1− ε

α̃
<

1− ε

α̃
,

one has
1
T

∫ t+T

t
|w|dτ ≤ 1

T
(λα̃T +(1−λ )β̃T )≤ 1− ε < 1,

which satisfies the condition in (3). Figures 5 and 6 show a
realization of the selected disturbance and its averaged LT

1,a
norm, for T = 1. Fig. 7 displays time histories of the state of
the system (2) in closed loop with the controller (15) for two
values of T .
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Fig. 5. Realization of the disturbance w, with T = 1.
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Fig. 7. Time histories of the states of the system (2), with the
disturbance w for T = 1 (top) and T = 0.05 (bellow), and for
various initial conditions.
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A. Attitude regulation

Consider now the attitude regulation problem described in
Section IV. Let

J =

 4 0 0
0 3 0
0 0 5

kg ·m2,

and

w(t) =



 wα1
wα2
wα3

 , nT < t < λT +nT wβ1
wβ2
wβ3

 , λT +nT < t < (n+1)T

with wαi = 2αi rand(·)−αi ≤ |αi|, wβ j = 2β j rand(·)− β j ≤
|β j|, i, j = 1,2,3.

Note now that
1
T

∫ t+T

t
|w|dτ ≤ 1

T
(λᾱT +(1−λ )β̄T )≤ 1− ε < 1 (49)

with ε ∈ (0, 1), ᾱ = |α1|+ |α2|+ |α3| and β̄ = |β1|+ |β2|+
|β3|. In what follows we select α1 = α2 = α3 =

ᾱ

3 , β1 = β2 =

β3 =
β̄

3 , ᾱ = 10
√

3Nm, T = 1s, and

β̄ = 0.9 · 1− ε−λᾱ

1−λ
<

1− ε−λᾱ

1−λ
,

λ = 0.9 · 1− ε

ᾱ
<

1− ε

ᾱ

for ε = 0.1. The controller gains k1 and k2 are selected such
as k1

2 + k2 = 1 with k2 ≥ α

1−α2 and α ∈ (0,1). The initial
conditions are selected as ω(0) = [0.05,0.02,0.05]Tdeg/s,
q(0) = [0.83,0.03,0.02,0.02]T. Figs. 8 and 9 show a realiza-
tion of the disturbance and its averaged LT

1,a norm, for T = 1.
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Fig. 8. Realization of the disturbance w for T = 1s.

To assess the performance of the closed loop system let

Eq =
∫ t

0
(q′vqv +(1−q0)

2)dt =
∫ t

0
(1−q0)dt, and note that Eq

represents the quaternion energy in the time interval [0, t). Fig.
10 and Fig. 11 display the quaternion energy as a function of
the controller parameters.
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Fig. 9. Time history of 1
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|w|dτ , with T = 1s.
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Fig. 10. The quaternion energy for different control parameters
and a fixed disturbance.

Fig. 11. Mean quaternion energy for different disturbances as
a function of k1 and k2.

We conclude from Fig. 10 and Fig 11 that a good selection
of the control gains is k1 = 1.2 and k2 = 0.4. Moreover, if
we select α = 0.1 the condition k2 ≥ α

1−α2 is satisfied. For
such values of ki (i = 1,2) the time histories of the angular
velocity w and of the quaternion q are displayed in Figs. 12
and 13. Consistent with the results of Proposition 4, the state
of the system is ultimately bounded despite the presence of
the persistent disturbance.
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B. COMPASS-1 based simulation

In this section, we demonstrate the performance for the
closed-loop system of the CubeSat COMPASS-1 [19]. The
COMPASS-1 is designed by students at Aachen University
of Applied Sciences in Germany. It has been launched in
April 2008 with an orbit inclination and altitude approxi-
mately of 98◦ and 800km, respectively. Its orbit period is
approximate 1.7h. The dimensions of the COMPASS-1 are
10× 10× 10 cm3, its weight is less than 1kg and its inertia
matrix is [25]

J =

0.00198 0 0
0 0.0021 0
0 0 0.00188

kg ·m2.

According to the data recorded in [19], the worst case distur-
bance value for low orbit standard CubeSats like COMPASS-
1 is 5.79× 10−7 Nm, including Aerodynamic Drag (1.34×
10−7 Nm), Solar Pressure (2.62× 10−7 Nm) and Residual
Dipole (4.59×10−7 Nm).

Thus, we consider disturbance w to be such that ‖wαi‖ ≤
5.79×10−7Nm. Selecting ᾱ as in (49), with ‖ᾱ‖=

√
3|αi|=

5.79×10−7Nm, yields |wαi | ≤ |αi|= 1√
3
×5.79×10−7Nm and

|ᾱ|= 3|αi|=
√

3×5.79×10−7Nm. Then

λ = 0.9 · (1− ε)×10−7

ᾱ
<

(1− ε)×10−7

ᾱ
,

β̄ = 0.9 · (1− ε)×10−7−λᾱ

1−λ
<

(1− ε)×10−7−λᾱ

1−λ

for ε = 0.1. As a result, the condition in (3) gives

1
T

∫ t+T

t
|w|dτ ≤ 1

T
(λᾱT +(1−λ )β̄T )

= (1− ε)×10−7

= 0.9×10−7.

For CubeSats like COMPASS-1, the input control which
can be provided is limited. Note that, the inertia matrix J
of COMPASS-1 is such that ‖J‖ = 0.0021. Selecting k1 =
1.2× 10−5 and k2 = 0.4× 10−5, as shown in Fig. 15 and
Fig. 17, the magnitude of the control torque u is comparable,
yet smaller, than the magnitude of the worst-case disturbance.
Since the inertia matrix is small, the response is also very
slow as is demonstrated in Fig. 18, but approximate attitude
regulations are achieved despite the fact that the control torque
is smaller in amplitude than the worst-case disturbance. In
addition, we can conclude from Fig. 20 that for smaller control
amplitude, as shown in Fig. 19, where k1 = 1.2× 10−7 and
k2 = 0.4× 10−7, a reduced precision attitude regulation can
be maintained over a large period, which means that the
input torque can be reduced for a short period, if only low
precision is needed, for energy-saving purpose. Moreover,
Figs. 21 and 22 show the time histories of the control input
and of the attitude regulation performance for k1 = 1.2×10−3

and k2 = 0.4×10−3. With a larger control amplitude, a faster
attitude regulation is achieved.
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with T = 1s.
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Fig. 18. Time histories of the quaternion q and of the angular
velocity ω .
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Fig. 19. Time histories of the control input u, with k1 = 1.2×
10−7 and k2 = 0.4×10−7.
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Fig. 20. Time histories of quaternion q and of the angular
velocity ω .
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Fig. 21. Time histories of the control input u, with k1 = 1.2×
10−3 and k2 = 0.4×10−3.
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Fig. 22. Time histories of the quaternion q and of the angular
velocity ω .

VI. CONCLUSION

This paper has studied the attitude regulation problem for a
class of satellites with bounded control input in the presence
of persistent disturbances with bounded windowed norms.
A Lyapunov-like analysis, which is firstly introduced in the
case in which the underlying system is a disturbed integrator
and then extended to the satellite attitude regulation problem,
is developed. A detailed analysis of the performance of the
resulting closed-loop systems is given and it is shown that
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the trajectories are ultimately bounded even in the presence
of a persistent disturbance. Simulation results on the model
of a small satellite subject to large, but bounded in moving
average, disturbances are presented.

Future work will extend the proposed analysis tools to a
more general classes system.
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