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ABSTRACT Convolutional neural networks (CNNs) have become the de facto algorithms of choice for
semantic segmentation tasks in biomedical image processing. Yet, models based onCNNs remain susceptible
to the domain shift problem, where a mismatch between source and target distributions could lead to a drop
in performance. CNNs were recently shown to exhibit a textural bias when processing natural images, and
recent studies suggest that this bias also extends to the context of biomedical imaging. In this paper, we focus
onMagnetic Resonance Images (MRI) and investigate textural bias in the context of k-space artifacts (Gibbs,
spike, and wraparound artifacts), which naturally manifest in clinical MRI scans. We show that carefully
introducing such artifacts at training time can help reduce textural bias, and consequently lead to CNNmodels
that are more robust to acquisition noise and out-of-distribution inference, including scans from hospitals
not seen during training. We also present Gibbs ResUnet; a novel, end-to-end framework that automatically
finds an optimal combination of Gibbs k-space stylizations and segmentation model weights. We illustrate
our findings on multimodal and multi-institutional clinical MRI datasets obtained retrospectively from the
Medical Segmentation Decathlon (n = 750) and The Cancer Imaging Archive (n = 243).

INDEX TERMS Texture, bias, artifacts, robustness, MRI, CNNs.

I. INTRODUCTION
Convolutional neural networks (CNNs) have become the
tools of choice for semantic segmentation of biomedical
images [1]. However, one notable limitation of modern CNNs
is their deterioration under domain shift. When develop-
ing a predictive model, we generally assume that the test
data belongs to the same distribution seen during training.
Yet, such assumption does not usually hold true in realis-
tic settings, such as those observed in clinical workflows.
Consequently, when carrying out complex tasks like image
segmentation, CNNs tend to underperform in real world sce-
narios. With magnetic resonance imaging (MRI), there are
many factors that can contribute to this, such as hardware
differences, variations in image acquisition protocols, acqui-
sition artifacts, as well as mechanical and electronic noise.

We argue that in order to effectively tackle the chal-
lenges introduced by domain shift, it is important to re-visit
our understanding of CNNs’ inner workings. Importantly,
there exists a division in our current understanding of how
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CNNs tend to process images, and there is conflicting evi-
dence in the literature as to how CNNs extract and build
meaningful features. On one hand, the ‘shape hypothesis’
argues that CNNs recognize objects via shape representa-
tions, while on the other hand the ‘texture hypothesis’ pos-
tulates a textural-based decision making process [2].

According to the shape hypothesis, CNNs operate through
a hierarchical sequence of shape-building steps. This
sequence starts with rather simple, shapes-like edges (locally
significant changes in contrast) and builds up to more com-
plex visuals such as doors or faces [2], [3]. In a review of bio-
logical vision modeling [3], Kriegeskorte explains that CNNs
map shape-based visuals into a shape-based and semantic
representation. In [4], the authors go at length to describe
CNNs as reproducing the human visual cortex, which also
works by extracting local features such as edges at low level
layers, and global shapes at higher level layers. These views
are supported by other empirical studies which have shown
that CNNs are especially sensitive to shape features [5].

Diverging from the work above, there is a number of recent
studies in the computer vision literature which point to a com-
peting textural bias in deep CNNs [2], [6], [7]. For instance,
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it was shown that CNNs can solve classification problems
on ImageNet by simply working with spatially localized
features without the need for global shape integration [6].
Further, the experiments conducted in [2] involving stylized
versions of ImageNet (using textural transfers) point to CNNs
exhibiting a clear textural bias. One of their results suggested
that solving the stylized ImageNet problem is harder than
working with vanilla ImageNet, since after stylization CNNs
could not rely on local textural patches. Studying ways of
reducing textural bias as potential remedies for the domain
shift problem has therefore made its way into the complex
field of biomedical image processing, especially in semantic
segmentation of MRI scans [8]–[10]. The recent work of
Chai et al. [10] used noise injection in the image space as a
way of reducing textural bias in deep segmentation CNNs.
The authors observed that models trained on images with
certain combinations of simple textural filters were able to
generalize well to new data with different levels of noise.

We hypothesise that addressing the textural bias phe-
nomenon through the use of realistic MRI acquisition arti-
facts at training time can improve robustness to: a) other
types of acquisition artifacts, and b) changes in acquisition
site, scanner hardware, or imaging protocols. In this paper,
we expand on recent findings by studying the effects of tex-
tural filters which model realistic noise that manifest during
clinical MRI acquisition, through the simulation of k-space
artifacts. In addition to studying robustness to acquisition
noise, we also study the problem of domain shift with respect
to the sourcing institutions. Our paper makes three specific
contributions:

• We empirically show that CNNs trained on MRI scans
can be made robust to a variety of MRI artifacts via
stylizations at training time. The focus is on k-space cor-
ruptions which occur naturally during MRI acquisition.

• We also show that the same artifact stylizations can
provide a high level of robustness to out-of-distribution
inference for images acquired at hospitals not seen dur-
ing model training.

• We introduce the Gibbs ResUnet framework, which
makes use of a novel layer that can be readily plugged
into CNNs to automatically apply Gibbs artifact styliza-
tions. The framework can be trained end-to-end to reach
optimal stylization for a given segmentation task.

II. BACKGROUND
A. TEXTURAL BIAS IN DEEP CONVOLUTIONAL NEURAL
NETWORKS
This section provides a review of state-of-the-art work that
investigated the CNN textural bias phenomenon on natural
images. In 2016, Ballester and Araujo [11] tested pre-trained
GoogLeNet and AlexNet on crowd-sourced sketches. Their
aimwas to investigate what CNNs could learn, as well as their
limitations. Their initial hypothesis was that CNNs would be
able to match human performance when it came to recogniz-
ing objects from the sketches. Instead, the results suggested

that in this task, state-of-the-art methods underperformed
when compared to human predictions. Although at the time
the authors did not explicitly mention it, they were working
on a task where textural bias was likely affecting the results.

Gatys et al. [12] investigated the area of texture and style
transfer, and suggested that the VGG network carries out
object recognition tasks without explicitly maintaining a spa-
tial order in the images. Scrambling an image can be seen
as a way to texturize it, and the authors illustrated that VGG
models predicted the same class label for an image, whether
or not the components of the images were scrambled. The
authors also performed experiments with style transfer sim-
ilar to those later performed in depth by Geirhos et al. [2].
They applied style transfer on test images and showed that the
model classified the images based on the stylization pattern,
as opposed to the global shapes within the images.

The 2019 analysis of the more interpretable BagNets archi-
tecture by Brendel and Bethge [6] provided further evidence
in support of the texture hypothesis. Their work was inspired
by earlier non-neural models, namely bag-of-features (BoF),
which work by aggregating statistics of local image patches
and ignoring spatial relationships of local image features.
The authors designed a CNN called BagNet, which was
inspired by the BoF model, and studied the receptive fields
of the resulting CNNs. Whilst early BoF models performed
simple local aggregations, BagNet were able to introduce
non-linearity effects into the experiments.

Further evidence comes from studies like [7], where the
images were mapped to full textural representations. To gen-
erate textures from a given image, the authors used a CNN
to extract features of various homogeneous sizes from the
image. Using the extracted features, they obtained spatial
summary statistics on the features, which corresponded to
building a stationary description of the source image. Finally,
via gradient descent from a white noise array, the authors
created a new image with the obtained stationary description.
The main goal of [7] was to introduce a novel approach to
textural synthesis via deep neural networks. Yet, an interest-
ing finding of their work was that feeding the CNN textural
output into a linear classifier resulted in similar performance
to what was achieved by CNN architectures.

Even though the aforementioned studies all suggest that
CNNs exhibit a strong textural bias, it was in the work of
Geirhos et al. [2] where this texture hypothesis was posited.
Part of the study involved an expansion of the experiments
carried out in [12] changing the texture of tests images to
check how the ImageNet-trained CNNs performed. To com-
pare the behavior of the CNNs and humans, the authors car-
ried out psychophysical experiments where human subjects
were also asked to classify stylized images. In doing this, they
used networks that included GoogLeNet, AlexNet, VGG-16,
as well as ResNet-50.

Thework of Hermann et al. [13] provided a further investi-
gation on the origins of prevalence of CNN textural bias and
how model robustness could be improved through specific
types of data augmentation at training time. Interestingly,
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however, Mummadi et al. [14] argued that although data aug-
mentation can improve model robustness through stylization,
there is no clear correlation between increasing shape bias
and improving model robustness.

B. TEXTURAL BIAS IN THE CONTEXT OF MRI
Findings that support the CNN textural bias argument were
also reported in the context of biomedical images. Here we
cover relevant examples from the MRI image processing
literature, which is the focus of this paper.

A number of studies in the literature involved the use of
adversarial training and transfer learning to facilitate domain
adaptation, see for example [15], [16]. Shaw et al. [17]
showed that by simulating artifacts in the data, specifically
patient movements in artifact-free MRI data, CNNs can be
trained to generalise better and perform more reliably in the
presence of artifacts. Hesse et al. [8] set out to utilize intensity
augmentation to enable domain adaptation for breast MRI
segmentation. The domain transfer in question was between
T1w and T2w images, with the models trained on T1w data
and tested on T2w data. The authors relied on a data aug-
mentation approach,making use of synthetic images and style
transfer. By carrying out data augmentation through styliza-
tion, the authors tried to probe not just geometric differences
that may appear at inference, but also a larger landscape
of intensity distributions. They argued that by training on
stylized images, the models could focus on global shape
features as opposed to local textural and intensity variations.

Whilst the work of Hesse et al. [8] focused on removing
local textural information, the study by Fetit et al. [9] focused
on keeping nothing but local textural information. The latter
explored constructing segmentation models based on local
binary textural maps of the images, without feeding any of
the original data to the CNNs. The textural encoding of the
images was obtained using the Local Binary Patterns (LBP)
algorithm. LBP summarizes local textural patterns for each
pixel’s neighborhood under the assumption only two mea-
sures are needed: the local spatial pattern and gray-scale
contrast.

A recent study that investigated textural bias in CNNs is
the work of Chai et al. [10]. The authors’ goal was to use
noise (e.g. salt and pepper speckles, Gaussian noise, and
median filters) as a way of changing the textural patterns
within the training data, in order to improve robustness in
segmentation models. Their findings indicate that the models
trained on certain noise stylizations generalize to images with
different noise composition, suggesting that stylized models
can indeed succeed in learning anatomical features and global
shape information.

C. MRI DATA ACQUISITION AND ARTIFACTS
Having discussed state-of-the-art work on CNN textural bias
from both natural and magnetic resonance imaging (MRI)
perspectives, we now shift the discussion to give a brief
overview of how MRI scans are acquired, and how image
artifacts normally manifest during acquisition. The literature

remains lacking in investigating k-space noise that manifests
during clinical MRI acquisition in the specific context of
CNN robustness, which motivates our work in this paper.

MRI is the name given to tomography obtained via nuclear
magnetic resonance (NMR). To obtain the NMR signal,
nuclei are exposed to a strong external magnetic field, usually
in the range 0.5T - 3T , and a weak radiofrequency (RF)
pulse. The strong field forces the nuclei’s spins to align
parallelly or orthogonally to the field’s direction, while the
RF pulse induces energy absorption and re-emissions which
are recorded at the receivers [18].

The raw data coming from the receivers are amplitudes
recorded at fixed frequencies in what is referred to as k-
space. This k-space data is then mapped to an image space
I(x, y, z) via Fourier transform. In medical settings, various
flavours of the NMR signal are used. These different signals
are generated by different spin relaxation mechanisms and
can be used to create images which highlight tissues with
different visual properties. Some of the most common types
of MR images are called T1w, T2w, and FLAIR. In a T1w
image water and celebrospinal fluid appear dark and fat
shows as bright, whereas in a T2w image the celebrospinal
fluid appears rather bright. FLAIR images are similar to T2w
images but with fluid attenuated to dark and abnormalities
show up bright [18]. One refers to the different types of MRI
images as ‘modalities’.

In terms of artifacts, Gibbs artifacts, also called truncation
or ringing artifacts in the MRI literature, arise from high
contrast regions in the image. These artifacts arise from the
Fourier transform process itself, which produces a ringing
effect at jump discontinuities, such as in the Heaviside step
function. The effects become more apparent in anMRI image
when the higher end of the spectrum is not fully resolved;
hence the truncation name [19]. In addition to Gibbs, Spike
artifacts, also called Herringbone or corduroy artifacts, can
occur in MRI scans when some of the pixels in k-space
have abnormal intensities. A third type is the wraparound
artifact; an aliasing artifact which occurs when some of the
recorded data has a phase outside the field of view which
is usually set in the range [−π ,π ]. In this case, the Fourier
transform process will generate an image with overlapping
spatial coordinates. The aforementioned artifacts were used
in this study as a way of introducing realistic noise to the data
at training time; the ultimate goal is to develop noise invariant
models by introducing the noise into k-space as opposed to
image space.

III. MATERIALS AND METHODS
A. DATASETS USED
In this paper, we worked with two datasets containing clinical
MRI scans of brain tumors. The first dataset was obtained
from the Medical Segmentation Decathlon (MSD) challenge.
It consists of a subset of the 2016 and 2017 Brain Tumor
Segmentation (BraTS) challenges, and includes 750 mul-
tiparametric MRI scans of patients diagnosed with either

VOLUME 10, 2022 58433



Y. Cabrera, A. E. Fetit: Reducing CNN Textural Bias With k-Space Artifacts Improves Robustness

glioblastoma or lowergrade glioma [20]. Each sample con-
sists of 4D data, specifically four 3D channels from dif-
ferent modalities: T1w, T1gd, T2w, and FLAIR. The data
is multicentric and the acquisition took place during actual
clinical practice, spanning various hardware, protocols, and
19 different locations. The targets are three segmentations
corresponding to the tumor’s sub-regions: edema, enhancing,
and non-enhancing tumour.

The second dataset is a joint dataset comprising 243 3D
scans from the TCGA-GBM [21] and TCGA-LGG [22]
data from [23]. Just like the aforementioned MSD dataset,
the TCIA data is pre-operative multimodal and multi-
institutional data. It was actually used in the latest version
of the BraTS dataset. Importantly to us, this joint dataset
contains labels identifying the institutional source for each
image. Using this information, we were able to partition the
images to fully exclude some institutions from the training
set and explicitly study out-of-distribution inference. Neither
of the two datasets used in this paper contained time axes,
and all the used data was spatial, i.e. I (x, y, z) as opposed to
I (x, y, t), where I is the intensity.

B. DEEP LEARNING FRAMEWORK
Our initial deep learning framework broadly consisted of two
parts: a) a pre-processing pipeline and b) an end-to-endmulti-
label segmentation model. We utilized MONAI,1 a PyTorch-
based open-source library for deep learning. The benefits
of using MONAI include direct access to purpose-built data
transforms and different network architectures.

The pre-processing pipeline was structured as follows.
Image intensity was standardized by bringing the intensity to
zero mean and unit variance; this normalization was carried
out channel-wise. Both the image and segmentation maps
were then re-sampled to voxel dimensions (2.0, 2.0, 1.5) via a
bilinear interpolation on the signal, and nearest-pixel interpo-
lation for the segmentation. The pre-processing pipeline also
included the following data augmentation steps: crop each
channel in the image and label to 128× 128× 64 with a ran-
dom center using RandSpatialCropd; randomly flip about the
0-axis with probability 0.5 using RandFlipd; scale the image
intensity by 10% and probability 0.5 using RandScaleIntensi-
tyd; and shift intensity with offset 0.1 and probability 0.5. The
final step in the pre-processing pipeline was to introduce the
k-space MRI artifacts into the data via one of the designed
stylization transforms, depending on the experiment. Sub-
section III (C) provides a summary of the simulated artifacts
used in this paper.

Each segmentation model was trained using the Residual
U-Net (ResUnet) developed in [24]. The choice of architec-
ture was based on the wide success of the conventional U-Net
architecture of [25]–[27] in biomedical segmentation tasks.
For the additional benefits of stability and speed, we decided
to use the ResUnet network since residual learning is an
important strategy for deep networks. The encoder of the

1https://monai.io/

network uses 5 stacked residual blocks of depth 2 (12 total
convolutional layers) to map the data into a 256-dimensional
feature space.

For the loss, we used the Dice loss function. The Dice sim-
ilarity coefficient (DSC) was used an evaluation metric [28].
A sigmoid activation function was applied within the loss
function implementation. This activation layer is commonly
moved from the network into the loss function to mitigate the
vanishing gradient problem.The following hyperparameters
were used: Number of epochs = 110; Optimizer = AMS-
Grad Adam; Learning rate = 10−4; Weight decay = 10−5.
These were the hyperparameters used for all the experiments,
although one exception is that the number of epochs was
larger when 4D data was used (180 as opposed to 110).

C. SIMULATED ARTIFACTS IN K-SPACE
The k-space data represents the spatial frequency information
of the scan and it is related to the image data via the 3D
Fourier transform. Therefore, in order to implement the arti-
facts discussed below, the first step was to generate k-space
data from their corresponding image data by carrying out a
Fourier transform.

1) GIBBS
To simulate Gibbs artifacts, we implemented a filter which
truncates the frequency content of the scan by masking out
the outer part the k-space domain of the data. With this filter,
one can specify the strength of the transform by how much
of the k-space volume is kept. The application of this filter
at different intensities used in the experiments is shown in
Figure 1. The strength of the artifact is parametrized by a
floating number r. When r is equal to the largest diagonal
of the image, one obtains the identity transform, and as one
shrinks r the ringing effects appear; at the other extreme of
r = 0 the image would be mapped to a constant zero.

2) SPIKE
We designed a filter which inserts an anomalous value at a
given index location in the k-space domain of the data. In the
experiments, the anomalous value (intensity) was fixed, and
its location was allowed to be sampled uniformly from all
the 3D locations in the image as shown in Figure 2. As one
can see in the figure, dialing up the intensity obscures the
underlying brain structure since the plane wave amplitudes
dominate at most pixels.

3) WRAPAROUND
This artifact was simulated by obscuring every other sample
in each of the k-space dimensions. This is done bymultiplying
by a mask that is a 3D grid, where each pixel takes values
in {q, 1}, with q ∈ [0, 1]. By choosing the intensity of
the mask (the value of q), one can parametrize how much
the wraparound shows up in the image. Figure 3 contains
examples of this artifact at various strengths. The wraparound
happens along the three spatial dimensions.
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FIGURE 1. Applications of the Gibbs artifact filter at various intensities on
an axial brain MRI slice. Larger r values result in lower artifact severity.

FIGURE 2. Applications of the spike artifact filter at various intensities on
an axial brain MRI slice. The location of the anomalous k-space pixel is
allowed to randomly vary hence the 3D plane waves have arbitrary
direction in each case.

D. SIMULATED NOISE IN THE IMAGE SPACE
In addition to introducing the k-space artifacts mentioned
above, we also simulated salt-and-pepper noise directly
in the image space. This fourth stylization was imple-
mented for comparison against the approach discussed by
Chai et al. [10]. The transform is parametrized by a factor p ∈
[0, 1] and works pixel-wise by assigning each pixel a value x
drawn from [0, 1] uniformly. At each pixel if x > p, the ampli-
tude is left untouched. Else, if x ∈ [0, p/2] the amplitude is
set close to white; otherwise if x ∈ [p/2, p] the amplitude
is set close to black. Examples of images with the salt-and-
pepper transform applied are shown in Figure 4. The ampli-
tude of the affected pixels was set to either half the maximum

FIGURE 3. Examples of wraparound artifact simulated at different
severity levels. Factor = 1 corresponds to identity mapping; factor =
0 means that the wraparound artifact shows up with the same amplitude
as the original data.

FIGURE 4. Examples of salt-and-pepper noise simulated at different
levels of severity. Factor = 0 corresponds to the identity mapping;
factor = 1 is pure uniform noise.

or minimum amplitude of the image. This choice was made
to keep a constant relative contrast between the affected and
unaffected pixels for each image.

E. EXPERIMENTS ON ROBUSTNESS TO ARTIFACTS
As seen in the literature on natural images of [2], [12] and on
MRI data [8]–[10] CNNs can express a marked bias towards
the textural attributes of an image. Particularly interesting
are the results of Chai et al. [10], where the authors showed
that simple textural changes applied to the image by injecting
noise can improve robustness to distributional shift. Differ-
ently from the other works on textural bias, the authors in [10]
did not apply full stylizations which completely corrupted the
image (e.g. via scrambling or style transfer).

In this paper, our first set of experiments aimed to expand
on the observation that careful use of noise at training time
can be used to improve model robustness. Whilst Chai et al.
discussed noise that can appear during post-processing (e.g.
blurring with Gaussian filters and impulse noise modeled
with salt-and-pepper), we here experiment with artifacts that
are directly related to MRI data acquisition, namely Gibbs
ringing, spike artifacts, and wraparound aliasing. There are
two reasons why employing such artifacts is important:
• MRI acquisition artifacts can strongly contribute to insti-
tutional domain shift since different imaging hardware
or protocols can result in different rates of occurrence of
these artifacts.

• Since MRI data acquisition happens in k-space before
the data is transformed to the image space, artifacts
originating in k-space have a more ‘intrinsic’ signature
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on the images, making them highly pervasive. Their
effects may therefore strongly influence model training
down the line.

We also made use of salt-and-pepper in this study as a non
k-space artifact, and as a way to link the work of Chai et al.
with the experiments of this project.

For each artifact type, we trained a model whose training
data has a fixed intensity of the artifact applied. By intensity
we refer to the aggressiveness or strength of the artifact.
For each artifact, we trained models with various (fixed)
intensities as well; each model was then tested on datasets
corresponding to other models. The expectation is that there
is a trade-off between possible robustness and performance
degradation coming caused by the noise. This trade-off
appeared in the literature in different forms, e.g. in [6] with
the q in BagNet-q, and [9] with the radius of the LBP
algorithm.

In addition to testing models on different intensities of
the same artifacts, we also experimented with cross-artifact
inference. For example, each model trained with a Gibbs
artifact was then tested on wraparound test datasets. The
goal was to see whether the artifacts stylizations can help
generalize the models to other types of noise.

This set of experiments was carried out using theDecathlon
dataset described above. Since the dataset presents a multil-
abel segmentation task with three different labels, we com-
pared the models using the mean Dice score averaged over
the three outputs. Each stylization was applied as the last
transform in the pre-processing pipeline before the data was
passed to the segmentation network.

For training, we used 388 samples out of the 484 available
in the Decathlon data set. The remaining 96 samples were
partitioned into validation and testing sets of 48 samples each.
All models based on the Decathlon dataset were trained for
180 epochs.

F. EXPERIMENTS ON ROBUSTNESS TO HOSPITAL
DISTRIBUTION SHIFT
A strong check of the effectiveness of k-space artifacts in
tackling domain shift is to test whether there is an improve-
ment in out-of-distribution robustness when the stylizedmod-
els are used. For this set of experiments, we employed
the same pre-processing pipeline described in the previous
section.We also used the same overall convolutional ResUnet
architecture, albeit modified to accept and output a three
dimensional tensor since the TCIA data is 3D, as opposed
to 4D. Given the lower dimensionality of the data, the models
were trained for 110 epochs as opposed to 180 in the previous
experiments.

The models were trained in the presence of stylizations,
while keeping a held-out set where all images come from
one institution that was fully excluded from the training set.
A second held-out test set was also built by sampling data
points from the same institutions used in the training set
to create the in-distribution test set. All models, including

the baseline, were trained using the same scheme and same
number of epochs. Each model was the then tested on the
in-distribution test set as well as the out-of-distribution test
set.

In terms of evaluation, there were two key measures: the
performance of the models on the in-distribution test set, and
how the performance changes when tested on the out-of-
distribution set, i.e. the level of robustness.

G. THE LEARNABLE GIBBS LAYER
In the experiments described above, the stylization
parametrization (e.g. the k-spike intensity) was fixed for each
model. Here, we take a different approach by replacing the
stylization pre-processing step with a learnable layer within
the segmentation network. With this change, we can allow
the training process to find an optimal combination of the
stylization and the segmentation architecture. The new ‘styl-
ized’ architecture consists of a Gibbs layer followed by the
ResUnet. Inputs and outputs are still 3D tensors. Throughout
the paper, we will refer to our stylized network as Gibbs
ResUnet.

The hyperparameters controlling the intensity of the styl-
ization filters do not make it as a variable into the loss
function, even when they are attached to the computational
graph of the architecture. In the case of the Gibbs layer
there is a hyperparameter, which we call α, controlling the
size of a k-space mask. Hence, this hyperparameter is not
applied directly to the data as a weight. For this reason,
we implemented the optimization of the Gibbs layer via a
finite-difference implementation of minibatch SGD. Instead
of using automatic differentiation, at each step the algorithm
updates the following for each data minibatch:

α→ α − η
L(α + h)− L(α)

h
(1)

where h is the finite-difference step, and η is the learning rate.
The values of h = 0.01 and η = 0.02 were empirically found
to work well. Note that the above equation is schematic; the
parameter α goes into the the loss L via the model. To train
the whole model, updates were done in two steps within each
iteration: (1) updating the ResUnet using theAdam optimizer,
and (2) updating the Gibbs layer using the finite-difference
gradient descent.

IV. RESULTS AND DISCUSSION
In this section, we present and discuss the results of the
robustness experiments described above. It is important
to highlight that by robustness we refer to the difference
between amodel’s best andworst performances over different
settings. In other words, a robust model would have little
variation under different cases of domain shift presented to
it, while a non-robust model would show a drop of perfor-
mance when presented with domain shift. Of course, a model
that underperforms across the board is not a useful model,
albeit arguably ‘‘robust’’ if it can maintain the same level of
performance throughout the experiments.
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A. ROBUSTNESS TO ARTIFACTS
Below, we present the results of: (1) using the same artifacts
during both training and testing, as well as (2) using artifacts
different from those introduced during training.

1) USING THE SAME ARTIFACT TYPE DURING BOTH
TRAINING AND TESTING
In most cases, there was a general trade-off between robust-
ness and performance on the baseline data. When restricting
inference to within each stylization type, the stylized models
were found to be more robust to varying degrees of the noise
than the baseline model. Specific results are detailed below.

a: GIBBS-STYLIZED MODELS
Dice scores for Gibbs-stylized models on Gibbs test data
are shown in Figure 5(B). The right-most x-axis value of
50 corresponds to a very mild application of the artifact,
which leaves the data similar to the original version (see
Figure 1 for visualizations of the tested filter strengths). The
solid black curve represents the non-stylized baseline model
performance. Over the range of tested Gibbs strengths, the
baseline model dropped in performance by roughly 18%.
Meanwhile, the stylized models showed much lower variance
across the x-axis. For example, the performance of the Gibbs-
12.5 model (model trained on Gibbs 12.5 data) varied by
only 4%; and that of the Gibbs-9 model varied by only 1.4%,
suggesting a high level of robustness. At the same time, there
was a degradation of the models’ performance on the baseline
data as we increased the Gibbs factor.

b: SPIKES-STYLIZED MODELS
Observations similar to the Gibbs case hold for the models
trained and tested on the spike artifacts data. Performance
for these models is shown in Figure 6(C). Here, one sees
a very marked drop in performance of the baseline model
as it probes increasing intensities of the artifact (moving to
the right along the x-axis). The baseline model Dice score
varied by as much as 90%. On the side of the artifact intensity
spectrum, the spikes-16 model score varied by only 4%while
performing close to the baseline model on the baseline data,
which suggests a high level of robustness. The other models’
performances interpolate those of the baseline and spikes-
16 models. Examples of images belonging to each tested
intensity of the spike artifact are in Figure 2.

c: WRAPAROUND-STYLIZED MODELS
Figure 7(A) shows the performance of the wraparound mod-
els on the different wraparound test sets. These models
demonstrated robustness to varying intensities of the artifact.
Only the edge case (the wrap0 model) underperformed the
baseline model. Noteworthy, in this edge case the aliasing
noise was as strong as the signal itself. Another difficulty is
that the artifact itself was drawn from the same distribution
as the underlying image. That is, the artifact consisted of
multiple superpositions of the image along each axis (see

Figure 3). It is therefore possible that those characteristics of
the artifact make it difficult for the network to choose the right
signal to focus on.

d: SALT-AND-PEPPER STYLIZED MODELS
The last case was the salt-and-pepper stylized models. Their
performance across the salt-and-pepper test sets is shown in
Figure 8(D). The robustness of the salt-and-pepper models
to unseen levels of noise was remarkable. While the baseline
model showed a drop of 40% across the datasets, some of the
stylized models generally stayed consistent in performance.
The cost of underperforming on the baseline test set was only
about a 3% drop in performance for the S&P-25 model.

2) USING DIFFERENT ARTIFACT TYPES DURING TRAINING
AND TESTING
We here present comparisons of the models trained on data
stylized with one artifact type, but tested on a different styl-
ization category. Generally, stylized models did not always
beat the baseline model when tested on differently stylized
datasets. Yet, in some cases, e.g. the spikes-12 model, robust-
ness was demonstrated across all the stylizations considered
in this study. Details of our findings are shown below.

a: SPIKES-STYLIZED MODELS
The performance of models trained on spikes-stylized data
strongly outperformed the baseline model when tested on
S&P-stylized data, as shown in Figure 8(C). This is an inter-
esting result since the image and k-space characteristics of
the spikes artifact and the salt-and-pepper noise are very
different. In Figure 5(C), we see that these models also per-
form better than the baseline on Gibbs-stylized data. On the
wraparound data, the spikes-12 model was the only one to
slightly outperform the baseline model. These observations,
together with the performance of the spikes-12, suggest that
the spikes-12 model is more robust than the baseline model
against all noise types and intensities considered here.

b: GIBBS-STYLIZED MODELS
Models trained on Gibbs data performed as well as, or worse
than, the baseline model on the spikes test data, wraparound
test data, and S&P test data as shown in the plots (B) of
Figures 6, 7, and 8 respectively. For mild applications of the
filter at training time, the stylized models showed a very close
performance to the baseline model on the cross-artifact tests.

c: WRAPAROUND-STYLIZED MODELS
The wraparound-stylized models mostly underperformed the
baseline model on differently stylized data. The performance
curves of the model with the mildest wraparound factor
(wrap-75) closely mimicked those of the baseline model as
seen in Figures 5(A), 8(A), and 6(A). Since the wrap-75
model also outperformed the baseline model on wraparound
test sets, we see that it does not a price on the differently
stylized tests for such performance boost.
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FIGURE 5. Inference of stylized models on the Gibbs stylized test sets. The x-axis labels the test sets stylized at different intensities of the Gibbs
artifact. The intensity of the artifact decreases with increasing factor.

d: S&P-STYLIZED MODELS
The S&P models showed a mixed performance on differently
stylized test sets. Inference on spike data (Figure 6(D)) indi-
cates that these models all performed better than the baseline
model, while paying a small price on the baseline test set.
Yet, switching to the wraparound test sets, the S&P models
performed about as good as the baseline (Figure 7(D)); and
on the Gibbs test sets their gains were mostly offset by the
price paid on the baseline test set (Figure 5(D)).

B. ROBUSTNESS TO HOSPITAL DOMAIN SHIFT
The results presented so far indicate that in some cases the
stylized models can exhibit good levels of robustness on
artifact intensities and categories not seen during training.
In medical settings, a scenario of relevance is when the

segmentation model is presented with MRI images coming
from a new hospital which was not in the set of institutions
seen during training. Here we present results which show that
k-space artifact stylizations can be used to achieve robustness
on out-of-hospital-distribution images. To check that each
model has been trained sufficiently during the selected num-
ber of epochs (number of epochs= 110), we plot the learning
curves for each case in Figure 10. The plots show that all
models have learned on par with the baseline model even if
they are handling stylized datasets.

The results of the Gibbs-stylized models are displayed in
Figure 9. It is important to emphasize that neither of the
test sets were stylized. The x-axis represents the intensity
of the artifact, while the y-axis on the left represents the
mean Dice score. We represent the gap between the in- and
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FIGURE 6. Inference of stylized models on the spikes stylized test sets. The x-axis labels the test sets stylized at different intensities of the spikes
artifact. The intensity of the artifact increases with increasing factor.

out-of-distribution scores by a bar, where the higher and
endpoints of the bar mark each Dice score (higher is
always in-distribution). For ease of comparison against the
un-stylized baseline model, we plotted a light blue band,
which is the baseline performance gap. To get a clear mea-
sure of the decrease or increase in the difference between
the performance of each model in- and out-of-distribution,
we plotted the 1-ratio, which we defined as:

1D/1D0 (2)

where 1D is the difference in Dice scores between in- and
out-of-distribution test data;1D0 is this difference computed
for the baseline model. For example, a value of 1 for this
1-ratio means that the given model has a performance gap
equal to that shown by the baseline model.

As per Figure 9, we can observe that for some mild
applications of the Gibbs artifact (mild being a value greater
than 35), we can obtain a better out-of-distribution perfor-
mance. Of the stylized models, two versions exhibited this
characteristic: Gibbs-45 and Gibbs-65. For both of these
models, the out-of-distribution score was higher than that
for the baseline (they are above the lower bound of the blue
band). At the same time, their normalizedDice difference was
close to or less than 1. Other stylized models also showed
1-ratio values below 1, meaning that their out-of-distribution
performance was closer to the in-distribution one than in the
case of the baseline model. Nevertheless, those models also
underperformed the baseline model.

The results of the spikes-stylized models are displayed in
Figure 11. Similar to the Gibbs-stylized model, we see that
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FIGURE 7. Inference of stylized models on the wraparound stylized test sets. The x-axis labels the test sets stylized at different intensities of the
wraparound artifact. The intensity of the artifact decreases with increasing factor.

the spikes artifacts could also result in models which perform
better than the baseline when tested on the out-of-distribution
set. For those cases ( i.e. spikes-9 and spikes-10), we also
see that the 1-ratio is close to 1. The learning curves for the
spikes-stylized models are shown in Figure 12.

C. THE LEARNABLE GIBBS LAYER
We first carried out a reality check, where we trained the
Gibbs layer with a fixed, pre-trained ResUnet (Figure 13).
The resulting curve is plotted for two separate runs with
different Gibbs layer initializations. Indeed, the expected
behavior is observed with α gravitating towards α = 1, which
is the extreme case where the Gibbs layer coincides with the
identity mapping. This behavior indicates the the Gibbs layer
implementation (or rather, the minibatch Stochastic Gradient

Descent on it) was able to search the solution landscape for
optimal solutions.

With regards to the end-to-end, Gibbs ResUnet models
trained with the novel Gibbs layers, those were able to out-
perform the baseline model on the out-of-distribution set,
but the starting state of the Gibbs layer had a clear effect
on the final state. To check the stability of the learning
process, we trained various model versions, each with a dif-
ferent given starting parametrization of the Gibbs layer (if
not specified, the parameter α would be sampled uniformly
upon initialization). In all cases, the overall Dice loss of
the model followed a similar decay as the baseline model.
This behavior is illustrated in Figure 14. The correspond-
ing trajectories for the Gibbs parameter α are shown in
Figure 15.
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FIGURE 8. Inference of stylized models on the salt-and-pepper stylized test datasets. The x-axis labels the test sets stylized at different intensities
of the salt-and-pepper artifact. The intensity of the artifact increases with increasing factor.

As per Figure 15, we can see that the finite-difference SGD
was able to approach an optimal state for each model. Yet,
the learned optima were not unique and clearly depended on
the initial parametrization α0. The initialization dependence
was apparent since for α0 > 0.8 the final value was around
0.8, while the rest of the curves settled at around 0.5 - 0.6.
Such behavior suggests the presence of non-unique solutions,
or the possibility that the learning algorithm was simply not
able to reach the true optima in some cases.

In Figure 16, we summarized the inference results for
each of the Gibbs ResUnet models. Again, for each model,
there is a segment whose upper and lower endpoints mark
the in- and out-of-distribution mean Dice scores. The models
showed better robustness on out-of-distribution data than the
baseline. Most of the models, however, paid the price of

underperforming on in-distribution data, except for the model
with starting parameter α0 = 0.75. A visual example compar-
ing the predictions of the baseline and the α0 = 0.7 stylized
models on an in-distribution test image is show in Figure 17;
a similar example using an out-of-distribution image is shown
in Figure 18.

V. OPEN-SOURCE SOFTWARE CONTRIBUTION
For reproducibility, we shared our implementation of styl-
ization filters on MONAI, an open-source library that is part
of PyTorch ecosystem. We designed the implementations to
work with minimal user input and with default parameters
that allow the code to work out-of-the-box. For each filter,
we designed two versions: one which applies the artifact
directly, and another one which applies it randomly. The
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FIGURE 9. Performance of Gibbs-stylized models on in- and
out-of-distribution data. Each vertical bar represents the change in mean
Dice score when a model was tested on in- and out-of-hospital test sets.
For comparison, the light blue band represents this difference for the
un-stylized baseline model.

FIGURE 10. Learning curves for Gibbs-stylized models.

second version can be used as a pre-processing data augmen-
tation tool by the community to improve the robustness of
CNNs trained on MRI data.

All the implementations can readily work with 2D and 3D
data. Theywere also designed toworkwithNumpy arrays and
PyTorch tensors. The user does not need to specify the shape
or data type on instantiation, as the code will determine that
information automatically when it is called.

To ensure reliability, exceptions were placed on user-set
hyperparameters to avoid any unintended results. Any func-
tionality that is common to the various transforms has been
relegated to super classes for readability and ease of code
maintenance. Lastly, all the transforms were written in with

FIGURE 11. Performance of spikes-stylized models on in- and
out-of-distribution data. Each vertical bar represents the change in mean
Dice score when a model was tested on in- and out-of-hospital test sets.
For comparison, the light blue band represents this change for the
un-stylized baseline model.

FIGURE 12. Learning curves for spikes-stylized models.

multi-threaded safety in mind. Thus, the transforms avoid
mutating their own states and can run on multi-processing
architectures.

The open-source implementations are listed below, and
their full documentation can be accessed through MONAI’s
documentation pages.2

• monai.transforms.KSpaceSpikeNoise This is a deter-
ministic transform which applies the k-space spike arti-
fact on input images.

2https://docs.monai.io/en/latest/transforms.html

58442 VOLUME 10, 2022



Y. Cabrera, A. E. Fetit: Reducing CNN Textural Bias With k-Space Artifacts Improves Robustness

FIGURE 13. Gibbs layer trajectories when used in conjunction with a
frozen ResUnet.

FIGURE 14. Learning curves for different implementations of the
end-to-end Gibbs ResUnet model. Each loss curve corresponds to a
model with a specified starting value for the hyperparameter alpha.

• monai.transforms.KSpaceSpikeNoised This is a
dictionary-based wrapper of KSpaceSpikeNoise. The
purpose of this implementation is to allow the user to
easily apply different artifact settings to images that are
grouped together.

• monai.transforms.GibbsNoise This is a deterministic
implementation of a filter that applies the Gibbs artifact
on the input image.

FIGURE 15. Trajectories of the Gibbs layers for various starting points.

FIGURE 16. Inference of Gibbs-stylized models trained using the Gibbs
ResUnet. The upper and lower boundaries of the blue band mark the in-
and out-of-distribution mean Dice scores for the baseline model,
respectively.

• monai.transforms.GibbsNoised This transform is a
dictionary version of the GibbsNoise filter.

The following implementations are probabilistic versions
of the filters described above. Instead of taking in descrip-
tors of the artifacts as parameters, they take in ranges
from which the descriptors can be sampled. All the trans-
forms listed below inherit probabilistic methods from a
superclass, which dictates how the transforms ought to
behave.
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FIGURE 17. Example of an in-distribution instance and predicted
segmentations. The segmentation maps are overlaid on the image.

FIGURE 18. Example of an out-of-distribution instance and predicted
segmentations. The segmentation maps are overlaid on the image.

• monai.transforms.RandKSpaceSpikeNoise
• monai.transforms.RandKSpaceSpikeNoised
• monai.transforms.RandGibbsNoise
• monai.transforms.RandGibbsNoised

Finally, we also made public the repository with the source
code of the end-to-end Gibbs ResUnet architecture.3

3https://github.com/yanielc/Gibbs_ResUnet

VI. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we investigated the issue of textural bias exhib-
ited by CNNs, and studied how addressing it can improve
robustness to out-of-distribution inference in MRI scans.
Specifically, the textural attributes of the images were altered
using artifacts commonly seen in clinical MRI images. These
artifacts included Gibbs, spike, and wraparound aliasing arti-
facts, and were all applied in k-space.
The initial set of experiments involved training segmen-

tation models on datasets intentionally corrupted with arti-
facts, and studying how these models performed on new
types of artifacts. Our results showed that models trained
on certain artifact stylizations were clearly more robust
than the baseline model when the intensity the artifact was
changed at test time. More importantly, some of these models
were indeed able to outperform the baseline model when
we changed the type of artifact used in the stylized test
set. This leads us to believe that the careful use of arti-
fact stylizations can make the models invariant to low fre-
quency textural features, leading them to learn useful infor-
mation about the global anatomical structures within the
image.

Encouraged by the above observations, we carried out
further experiments to explore whether the use of k-space
artifacts could lead to models performing well under a shift in
hospital distribution. Some of the models that were trained on
datasets stylized with Gibbs and spikes artifacts exhibited an
increased performance on out-of-distribution test sets. These
results showed that the stylizations were indeed enabling the
models to generalize better by paying less attention to local
textural variations, which can be inherent to certain scanner
hardware or acquisition protocols. This is an important obser-
vation because by using the studied artifacts as pre-processing
filters, image segmentation models could be made robust to
data acquired from previously-unseen hospitals, making it
easier for CNNs to be implemented in routine clinical practice
in the long-term.

Lastly, in an effort to automatically obtain the desired
improvement on out-of distribution images, we introduced
Gibbs ResUnet: a novel, end-to-end framework which incor-
porates the stylization filter as an initial, learnable layer. Our
experiments showed that Gibbs ResUnet can indeed be suc-
cessfully trained to outperform the baseline model on images
coming from a held-out institution.

In terms of efficiency, the 4D and 3D models were trained
over approximately 11 and 7 hours respectively when using
a single graphics processing unit (GPU). The stylization
transforms’ runtimes are on par with the other PyTorch pre-
processing transforms. This is aided by the fact that the
stylization transforms work on batches just like rest of the
pipeline and the CNN. When it comes to Gibbs ResUnet,
there is the extra step of gradient descent for the Gibbs
layer but this means learning only one additional parame-
ter (alpha) out of a total of 4,810,075 parameters. Hence, the
runtime of the Gibbs ResUnet is effectively the runtime of the
ResUnet.
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With regards to future work, the findings of this paper
point at several interesting questions which could shed more
light on the CNN textural bias debate, in the context of
MRI. For example, comparing the activations within the best
performing stylized networks against those of the baseline
model could provide more insight into why the bias is less
pronounced in the former, and may help spawn research on
inherently unbiased segmentation networks. In the case of the
stylizing layers, this work showed that gradient descent can
be used to successfully train the end-to-end Gibbs ResUnet
architecture. Yet, the stability issue experienced duringmodel
training remains unsolved. It would therefore be beneficial to
explore whether there is a more stable approach to end-to-end
training of the Gibbs layer with the network, e.g. by using
alternatives to gradient descent or through pre-training the
segmentation component of the model. With regards to the
scalability of our findings, the exact degree to which Gibbs
ResUnet could aid model robustness in the presence of
other MRI artifacts (e.g. chemical shift artifacts, magnetic
field inhomogeneities, surface coil artifacts) remains an open
question, and investigating this could lead to exciting future
research. Lastly, future work should also investigate the ini-
tialization of alpha_0 to help Gibbs ResUnet find the ideal
balance between robustness and performance degradation.
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