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Abstract—The exponential increase of digital data and the
limited capacity of current storage devices have made clear the
need for exploring new storage solutions. Thanks to its biological
properties, DNA has proven to be a potential candidate for
this task, allowing the storage of information at a high density
for hundreds or even thousands of years. With the release of
nanopore sequencing technologies, DNA data storage is one step
closer to become a reality. Many works have proposed solutions
for the simulation of this sequencing step, aiming to ease the
development of algorithms addressing nanopore-sequenced reads.
However, these simulators target the sequencing of complete
genomes, whose characteristics differ from the ones of synthetic
DNA. This work presents a nanopore sequencing simulator
targeting synthetic DNA on the context of DNA data storage.

Index Terms—DNA data storage, nanopore sequencing, se-
quencing simulator, image coding.

I. INTRODUCTION

Storing digital data is becoming a challenge for mankind
due to the relatively short lifespan of devices. At the same
time, the amount of digital data on the planet is expected to
reach more than 175 billion Terabytes (TB) in 2025. Most of
this data is seldom accessed and is referred to as cold (e.g
old photos stored by users on Facebook). Unfortunately, all
storage media currently used for archiving cold data (hard
drives or magnetic tapes) suffer from two basic problems.
Firstly, the storage density improvement rate is 20% per year at
best, which is significantly behind the 60% cold data growth.
Secondly, current storage media have a limited lifespan of
five years (hard drive) to twenty years (magnetic tape). Since
data is often stored for a significantly long period (50 years
or more), it must be periodically migrated to new devices,
leading to a huge waste of equipment and energy and thereby
increasing the cost of storage. As a consequence, the search
for new efficient ways to store digital information able to
keep up with the current needs has become of great interest
as it is the case of DNA, the carrier of heredity in living
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organisms. Theoretically, it is possible to store 455 million
TB, i.e. the amount of data that can be stored in 45.5 million
10TB capacity hard drives, in 1 gram of synthetic DNA
while still allowing for longevity of several centuries even
in harsh storage environments. DNA is a complex molecule
corresponding to a succession of four types of nucleotides
(nts), adenine (A), thymine (T), guanine (G) and cytosine (C).
It is this quaternary genetic code that inspired the idea of
storing digital data in DNA which suggests that any digital
information can be encoded in a quaternary alphabet sequence
A, T, C, G. At the same time, the important advances made
in the field of biology today allow the construction of DNA
sequences in vitro thanks to molecular synthesis, as well as
the reading of any DNA strand (oligo) carried out by special
machines called sequencers. The storage of data on DNA is
an emerging field of research which is very promising but
also very complicated to implement. Indeed, it is subjected to
various constraints imposed by the biochemical procedures of
synthesis (writing) and sequencing (reading). On the one hand,
the process of DNA synthesis is relatively expensive (several
dollars per synthesized oligo containing of the order of 200 to
300 nts) and on the other hand, DNA sequencing is susceptible
to errors and can introduce insertions, deletions or substitutions
of nucleotides into the decoded DNA strands. Reducing the
high cost of synthesis requires efficient compression of the
data before encoding. In addition, the code generated must
be robust to the errors introduced by the sequencing in order
to allow its decoding, in particular by taking into account
constraints linked to biology.

Since the release of nanopore sequencers, this technology
has become more and more popular thanks to its affordabil-
ity, small size and speed, which make it suitable for real-
time applications. More precisely, nanopore-based sequencers
measure the changes in the electrical conductivity as DNA
strands pass through the pore. This electrical signal is then
translated into a sequence of nucleotides in a process known
as basecalling. Despite of all the advantages that sequencers
such as the MinION [1] offer, it has a major drawback as



it remains an error-prone process. This constitutes the main
challenge when using this device in the context of DNA data
storage, compromising the decodability of the data.

In the past years, several works have introduced sequencing
simulators aiming to ease the implementation of new algo-
rithms targeting nanopore-sequenced data. Such simulators
allow testing while developing new tools thanks to their speed,
low cost and high throughput. Commonly, simulators generate
noisy reads using a model error profile extracted from experi-
mental data. The introduction of the errors can be done directly
by modifying the bases of the DNA sequences [2]–[4] or by
simulating the electrical signals and allowing the basecaller
to introduce the errors while translating it into a sequence of
nucleotides which provides a more realistic scenario [5], [6].
The main challenge when using these simulators for DNA data
storage applications lies in the fact that their error models are
generated from the sequencing of complete genomes and thus,
longer reads than in the case of synthetic DNA, whose length
is limited to 300 nts. This work constitutes a first proof of
concept of a new nanopore sequencing simulator addressing
synthetic DNA in the context of DNA data storage. To our
knowledge, this is the first nanopore simulator specifically
designed to model the full DNA storage channel, including
synthesis, storage, PCR amplification and sequencing.

In section II we introduce the simulator and its capabilities.
Section III describes how the error rate of nanopore sequenc-
ing has been estimated for the specific case of synthetic
DNA and how it has been used to parameterize the simulator.
Simulation results illustrating the performance of the simulator
in comparison to the ground truth are reported in Section IV.

II. SIMULATOR

Our simulator models errors in all phases of DNA storage,
i.e., synthesis, storage, PCR (for amplification) and sequenc-
ing. It takes as input the sequences encoding the information
and returns the sequences incorporating simulated errors. We
discuss the errors and configuration of each phase in the
following. Error probabilities to configure the simulator can
either be determined experimentally or be taken from related
work [7].

A. Synthesis

DNA synthesis is a linear process, i.e., one nucleotide is
added after another (in the 5’-3’ direction). Errors occur during
the physical assembly of the nucleotides. As such, errors
are evenly or uniformly distributed across the synthesised
sequence, meaning that an error is as likely to occur on the
first nucleotide as it is in the middle of the sequence. Our
simulation consequently passes over the whole sequence and
at each nucleotide decides whether an error should occur based
on the error probability.

Different errors such as deletions (absence of a nucleotide or
accidental, early termination), insertion (additional nucleotide)
or substitution (a different nucleotide than intended is added)
can occur. The simulator is configurable in terms of likelihood
of an error occurring and, if an error occurs, the likelihood of

the type of error (and in case of a substitution, the likelihood
of each type, e.g., A substituted by G).

Although insertions and substitutions are uniformly dis-
tributed across synthesised sequences, deletions are tail
favoured. The simulator hence compensates for that by simu-
lating an error with the same likelihood across nucleotides of
the sequence, but if an error occurs, the chances for a deletion
are higher at either end of the sequence.

B. Storage

Errors can also be introduced during storage. Increased
humidity or temperature can drastically shorten the lifespan
of DNA. Experiments with protocols for accelerated ageing
by way of increased temperature (to speed up decay and
thus simulate a storage time of multiple half-lives) have been
carried out to understand the sources of errors.

The decay of DNA is modelled like standard radioactive
decay. However, instead of removing nucleotides, the bonds
between nucleotides are simply broken resulting in broken
sequences. The broken sequences are no longer readable as
the forward and reverse primer are no longer located on the
same strand.

Our simulator uses a derivation of the Arrhenius equation
with its values from studies on dated fossils [8] to model
a breakage/decay event on a sequence. The only parameter
needed to be configured is the storage duration in years.

Simulating errors in storage starts with the sequences re-
sulting from the synthesis simulation. The process is iterative,
meaning that in the event a sequence is fragmented due to
decay, both (or all) fragments are added back to the pool of
sequences, meaning that they can be broken again.

C. PCR

Polymerase Chain Reaction (PCR) is a method widely
used to amplify sequences, i.e., to rapidly make millions to
billions of copies of the sequences before sequencing. PCR
is typically done in multiple cycles and at every cycle, the
number of sequences is doubled, i.e., two identical sequences
are produced for every sequence.

Standard experimental protocols suggest to run 40 PCR
cycles. Doing so in a simulation quickly renders the simulation
computationally intractable as it produces too many . It is,
therefore, necessary to be able to reduce the size of the PCR
output to a constant number. By taking a uniform random
sub-sample after each PCR cycle, the simulator keeps a
constant size in addition to a general representation of the
error distribution. The number of PCR cycles in the simulator
is configurable.

The downside of taking a random sub-sample is that there
will be a bias towards the initial sequences for PCR phases
with small cycles. Due to the exponential nature of PCR,
the sequences generated during the first cycles will have a
disproportionate representation in the sub-sample compared
to the later cycles. Increasing the number of cycles will help
reduce the bias and help arrive at a more randomly distributed
final sub-sample.



D. Sequencing

The approach to modelling sequencing is very similar to
modelling the synthesis phase. More specifically, the same
errors as in synthesis can occur, insertions, deletions and
substitutions, due to misreads can occur. Generally, across
different sequencing technologies, the distribution of errors
across sequences are uniform - as is the case for synthesis.

We thus implement simulation of sequencing the same as
synthesis but the probabilities for substitution, deletions and
insertions errors and their respective transitions (for substitu-
tions) need to be configured.

III. ESTIMATION OF THE NANOPORE SEQUENCING NOISE

Although several works have provided studies about the
error rates introduced by nanopore sequencing, most of them
focus on the sequencing of long DNA strands (thousands of
bases) as this technology targets the sequencing of complete
genomes. Additionally, state of the art simulators expect a
genome as reference, which will be subsampled following
some nanopore read length distribution model and then cor-
rupted by adding errors in form of substitutions, insertions
and deletions. On the contrary, our work uses synthetic DNA,
limiting the length of the oligos to 300 nts at most and making
the sampling step unnecessary. As some studies state than the
errors introduced by the nanopore sequencers affects dramat-
ically both ends of the DNA strands [9], it remains unclear
how the length of the input sequences affects the performance
of the MinION. Therefore, to adapt the characteristics of the
noise introduced by the simulator when sequencing short DNA
strands, we have computed the noise rates from the nanopore-
sequenced reads storing two images.

A. Experimental data

After being stored in sealed capsules for two years, we have
sequenced the DNA strands which store 2 different images (see
figures 2(a1) and 2(b1)) of size 128 by 128 pixels and 120 by
120 pixels representing a total amount of 662 and 875 oligos
respectively. All the oligos had a length of 91 nts (without
considering primers, which are special sequences required by
the sequencer). In both cases, 11 oligos contained only headers
encoding important information about the characteristics of
the image and the parameters of the encoding. The rest of the
oligos contained the encoded data itself. Figure 1 depicts a
schema of the format of the oligos.

The synthesized pool of oligos was amplified with PCR and
sequenced using an ONT MinION sequencer (SQK-LSK109
sequencing kit and MinKNOW 3.6.8 software). Base calling
was performed in 4000 event batches using Guppy 3.2.10. The
sequencing step led to a total amount of 3395789 raw reads.
For the decoding of the stored data, sequencing adapters were
removed using Porechop [10]. The trimmed reads were then
filtered by length and clustered according to their identifier,
headers and offset (see figure 1). Once clustered, a consensus
sequence was obtained from each cluster using an algorithm
based on majority voting, dividing each oligo into its different
codewords and selecting as consensus the most frequent one. A

D Data offsetData headers

H Encoding headers

Data

Primer 1 S Payload P S Primer 2ID

(header oligo)

(data oligo)

Fig. 1. Format of the oligos - All oligos contain primers that are needed for
the sequencing: S denotes the sense nucleotide which determines whether a
strand is reverse complemented when sequenced. P is a parity check nucleotide
while the ID is an identifier of the image so to be distinguished from other
data that may be stored. The payload can either contain encoding headers
only which hold information about the image characteristics and the encoding
parameters used (header oligo), or it can contain some data headers and an
offset to denote the position and nature of the data field that follows (data
oligo).

detailed explanation about the decoding can be found in [11].
Figures 2(a2) and 2(b2) show the resulting decoded images
from this wet-lab experiment.

B. Error rates

For the estimation of the error rates, we first mapped each
read to its reference using minimap2 [12] and computed the
Levenshtein distance between each read and its reference
considering only those reads that could be unequivocally
mapped to a reference. Nanopore adapters were not considered
when computing the distances. In the same way, we estimated
its three different components (substitutions, insertions and
deletions):

• Total error rate: 0.0686
• Substitution rate: 0.0253
• Insertion rate: 0.0179
• Deletion rate: 0.0255

In addition, we computed the error rates for the oligos encod-
ing each image independently but no significant variation was
found. Figure 3 shows the distribution of the different noise
components.

C. Parameterization of the simulator

As described in the previous section, the synthesized DNA
strands for our wet-lab experiment had a length of 138 nts and
they were stored for two years in a sealed capsule. Considering
that the error rate of DNA synthesis is almost negligible when
the synthesized oligos do not exceed 300 nts length and that
the capsule prevents its contact with water and oxygen keeping
the DNA intact during the storage period, the only significant
source of error is the process of sequencing. Therefore, in our
simulations we only considered sequencing noise.

More precisely, the estimated rates of substitutions, inser-
tions and deletions from the experimental data (see section
III-B) were used as target rates. As these rates were computed
without considering the nanopore adapters, they were not
included in the input sequences of the simulator. Finally, the
coverage was selected so to match the coverage from the
experimental data.



IV. COMPARISON OF THE RESULTS

We tested the performance of the simulator by running 50
realisations for the error rates provided in section III-B and
averaged the results. The reference sequences used to feed the
simulator were the same ones as the ones used in our wet-lab
experiment (see section III-A).

In average, the simulations led to a total amount of 3396770
reads with the following error rates:

• Substitution rate: 0.0242
• Insertion rate: 0.0169
• Deletion rate: 0.0255

For the decoding of the simulated reads we followed the
same process we used to decode the reads from our wet-lab
experiment [11]. Figures 2(a3) and 2(b3) depict an example
of the reconstructed images from one simulation run.

(a1)
PSNR = Inf, mse = 0

(b1)
PSNR = Inf, mse = 0

(a2)
PSNR = 40.5 dB, mse = 5.81

(b2)
PSNR = 33.23 dB, mse = 30.9

(a3)
PSNR = 40.5 dB, mse = 5.78

(b3)
PSNR = 33.63 dB, mse = 28.17

Fig. 2. Visual results of the decoded data - (a1) and (b1) correspond to
perfectly decoded images. (a2) and (b2) correspond to MinION sequencing
and our novel consensus algorithm based on Majority Voting in codewords
[11]. (a3) and (b3) correspond to an example of the decoding of simulated
reads.

In average, the decoded images from the simulated se-
quenced reads provided a Peak Signal-to-Noise Ratio (PSNR)
of 40.23 dB and 32.7 dB with a Mean Squared Error (MSE)
of 7.62 and 41.56 respectively. The results obtained from the
simulations are comparable to the experimental ones in terms

of PSNR, MSE as well as the visual quality of the decoded
images for all the runs.

We have also compared the distribution of the errors in-
troduced by the MinION and the simulator. Figure 3 depicts
the Probability Density Function (PDF) for the different error
types.

It is important to note that the only parametrization required
for the simulations is the average error rates of insertions,
deletions and substitutions. Therefore, while the mean error
rate of the simulator can be controlled, the standard deviation
of the error rate can vary. This fact explains the reason why
the variability of the error in the experimental reads is higher
than the one computed by the simulations. Nevertheless, this
difference in the standard deviation does not have a significant
impact on the reliability of the simulator results.
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Fig. 3. Comparison of the Probability Density Function (PDF) for each kind
of error between the reads form the wet-lab experiment (blue) and simulated
reads (red) - (a) Edit distance, (b) substitutions, (c) insertions and (d) deletions.

V. CONCLUSIONS

This work is a very first demonstration of the potential of a
new simulator that models the full DNA data storage channel.
Although in this study we have only assessed the performance
of the nanopore sequencing module (mainly due to the lack of
experimental data), future works will focus on the evaluation
of the rest of the existing modules in this simulation tool.
Nevertheless, these first results are highly promising as they
are comparable to the experimental ones in terms of PSNR,
MSE and the visual quality of the decoded images, proving the
capability of the simulator to reproduce the errors introduced
during nanopore sequencing in short synthetic DNA strands.
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Pharmacologie Moléculaire et Cellulaire) in Sophia Antipolis,
France.



REFERENCES

[1] M. Jain, H. E. Olsen, B. Paten, and M. Akeson, “The oxford nanopore
minion: delivery of nanopore sequencing to the genomics community,”
Genome biology, vol. 17, no. 1, p. 239, 2016.

[2] E. A. G. Baker, S. Goodwin, W. R. McCombie, and O. M. Ramos,
“Silico: a simulator of long read sequencing in pacbio and oxford
nanopore,” BioRxiv, p. 076901, 2016.

[3] P. C. Faucon, P. Balachandran, and S. Crook, “Snaresim: synthetic
nanopore read simulator,” in 2017 IEEE International Conference on
Healthcare Informatics (ICHI). IEEE, 2017, pp. 338–344.

[4] C. Yang, J. Chu, R. L. Warren, and I. Birol, “Nanosim: nanopore
sequence read simulator based on statistical characterization,” Giga-
Science, vol. 6, no. 4, p. gix010, 2017.

[5] Y. Li, S. Wang, C. Bi, Z. Qiu, M. Li, and X. Gao, “Deepsimulator1. 5: a
more powerful, quicker and lighter simulator for nanopore sequencing,”
Bioinformatics, vol. 36, no. 8, pp. 2578–2580, 2020.

[6] C. Rohrandt, N. Kraft, P. Gießelmann, B. Brändl, B. M. Schuldt,
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