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Abstract— Geospatial big data analytics has received much 

attention in recent years for the assessment of energy data. 

Globally, spatial datasets relevant to the energy field are growing 

rapidly every year. This research has analysed large gridded 

datasets of outdoor temperature, end-use energy demand, end-

use energy density, population and Gros Domestic Product to end 

with usable inputs for energy models. These measures have been 

recognised as a means of informing infrastructure investment 

decisions with a view to reaching sustainable transition of the 

residential sector. However, existing assessments are currently 

limited by a lack of data clarifying the spatio-temporal variations 

within end-use energy demand. This paper presents a novel 

Geographical Information Systems (GIS)-based methodology 

that uses existing GIS data to spatially and temporally assess the 

global energy demands in the residential sector with an emphasis 

on space heating. Here, we have implemented an Unsupervised 

Machine Learning (UML)-based approach to assess large raster 

datasets of 165 countries, covering 99.6% of worldwide energy 

users. The UML approach defines lower and upper limits 

(thresholds) for each raster by applying GIS-based clustering 

techniques. This is done by binning global high-resolution maps 

into re-classified raster data according to the same 

characteristics defined by the thresholds to estimate 

intranational zones with a range of attributes. The spatial 

attributes arise from the spatial intersection of re-classified 

layers. In the new zones, the energy demand is estimated, so-

called energy demand zones (EDZs), capturing complexity and 

heterogeneity of the residential sector. EDZs are then used in 

energy systems modelling to assess a sustainable scenario for the 

long-term transition of space heating technology and it is 

compared with a reference scenario. This long-term heating 

transition is spatially resolved in zones with a range of spatial 

characteristics to enhance the assessment of decarbonisation 

pathways for technology deployment in the residential sector so 

that global climate targets can be more realistic met. 

Keywords— Heat demand; spatiotemporal; integrated 

assessment; spatial datasets; spatial big data analytics. 

I. INTRODUCTION 

The Conference of the Parties, COP26 goals have 
established ambitious 2030 emissions reductions targets to 
reach net zero by the middle of the century, mobilising 
required finance to accelerate the phase-out of fossils [2]. 
Previously, the 2015 Paris Agreement and the United Nations 
Framework Convention on Climate Change (UNFCCC) have 
also established an instrument by which national governments 
have committed to pursue efforts in limiting the global average 
temperature increase to 1.5 °C [3]. The fact that the ambitious 
targets outlined in the Paris Agreement are difficult to meet 
incentivises the adoption of new energy technologies, 
disrupting established fossil fuel-based technologies [4]. 
However, successful implementation of new energy 
technology deployment presents information challenges [5]. In 
order to support national, regional and global decarbonisation 
policy, energy systems modelling that uses systematically 
processed big data approaches are emerging to address these 
challenges [6], [7]. Overtaking information challenges requires, 
among other things, to understand the spatiotemporal 
interactions between climate change, population spreading, 
along with the spatial distribution of wealth and human 
development, when investing and consuming energy. 

  
A large proportion of the global energy demand and related 

global greenhouse gas (GHG) emissions are concentrated in 
the residential sector (RS). The main end-use energy in 
buildings comes from space heating (SH), space cooling (SC), 
water heating (WH), lighting, and appliances. The energy 
consumption in these end-use applications can vary between 
30% and 70% of total energy demand depending on the 
economic, cultural, and geographical features of a country or 
region [8, 9]. Overall, SH, SC, and WH can represent up to 
80% of a building’s total energy consumption, accounting for 



32% of total global end-use energy demand worldwide and 
20% of all global anthropogenic GHG emissions [10]. With 
such high energy consumption and such a large share of global 
energy related GHG emissions, focusing on reducing the 
energy consumption and emissions of the RS would play a 
major role in decarbonising the whole energy system 
worldwide. However, to better represent the energy shift 
required in order to achieve climate targets and support energy 
planning, it is important to consider the spatio-temporal 
distribution of energy demand in modelling the future 
sustainable energy transition. The current lack of spatially and 
temporally resolved end-use energy demand assessments 
makes it challenging to identify the pathways to decarbonise 
the residential sector at a global scale. 

 
This paper presents a novel GIS-based methodology for 

such an assessment to produce temporally explicit and spatially 
resolved energy demand zones (EDZs). A systematic, spatio-
temporal data-driven approach, based on existing GIS data of 
end-use energy demand and end-use energy demand density 
from [11], Gross Domestic Product [12] and population [13], 
has been developed to derive the EDZs for each end-use 
energy demand via spatial clustering techniques. The 
associated end-use energy demand (SH, SC and WH) for each 
EDZ is estimated across 165 countries covering 99.96% of 
global energy users. The outputs of this analysis can be 
integrated into residential sector modules of Integrated 
Assessment Models and can equally be used for input in other 
energy systems models.  

 
The remainder of this paper is organised as follows. Section 

two identifies key elements in the literature to consider when 
assessing global end-use energy demand in the residential 
sector. In section three, a description of the GIS-based 
clustering techniques and the EDZ approach is given. Results 
are presented in section four adopting the breakdown of 
regions used in the Energy Technology Perspectives of the 
International Energy Agency (IEA). Here, we present results 
for several EDZ systematically founded in this research. We 
provide a snapshot of results in terms of EDZ distribution and 
the spatio-temporal phenomena of the heating transition. 
Section four also discusses the implications of these results for 
energy and climate policy followed by a discussion of 
implications for future research. 

II. LITERATURE REVIEW 

A. Modelling challenges 

The RS is a classic case of all of the typical challenges of 
modelling technology deployment in energy systems models 
[5]. Buildings are heterogeneous; they can be categorised as 
residential, services or industrial, each with their own unique 
characteristics (age, construction, occupancy/use, services, 
location, and climate). Buildings are also hard to decarbonise, 
mainly due to their heating requirements currently being served 
with cheap and effective fossil-fuelled technology (e.g., gas 
furnaces). Alternative low carbon options such as heat pumps 
(when powered by renewable electricity), or district heating 

fuelled by bioenergy or waste heat sources, are expensive and 
face many barriers to implementation [14, 15]. Therefore, 
characterising building decarbonisation options in models is 
challenging. This is specifically because of a lack of highly 
spatially and temporally resolved approaches to assess the 
spatio-temporal characteristics of energy demand. GIS-based 
approaches that assess large amounts of data are needed to 
capture the local conditions of energy demand to evaluate the 
technical and economic characteristics of a range of 
technologies.  

B. Geograohical Informartion Systems 

Geographical Information Systems (GIS) methodologies 
are attracting widespread interest due to their potential to 
geospatially locate the demand for energy in the RS [16, 17]. 
Little of the work so far has been focused on understanding the 
temporal (intermittency) and spatial (geographical) 
characteristics of the end-use energy demand density in the RS. 
The end-use energy demand density is the total demand for a 
heating or cooling service for a defined area: street, 
neighbourhood, city, country or region [18]. In the assessment 
of transition pathways to decarbonise the RS, energy density is 
a significant factor in overall investment costs due to 
associated infrastructure costs (e.g., distribution pipes for DHC 
systems). As a result, researchers have begun to use gridded 
population density, combined with temperature profiles and 
other data, to derive spatially resolved energy demand [19, 20], 
but energy demand density assessment is still an unresolved 
task.  

 
A few studies have focused on estimating the heating 

demand across Europe, USA, and China. The main approaches 
so far have been the use of national energy balances such as 
those presented by the International Energy Agency [21, 22], 
the national energy authorities [19, 23, 24], the United Nations 
database as in [25], and other research initiatives as in [26, 27]. 
In comparison to SH demand studies, cooling demand studies 
are rarely found in the scientific literature. An exception is 
Isaac and van Vuuren [26], who estimated the SC demand for 
eleven regions. SC demand estimations are also presented in 
more detail for the European Union at the country and regional 
level in [21, 28, 29]. However, to our knowledge, a systematic 
assessment of the spatio-temporal variations of end-use energy 
demand that considers demand density for the world at the 
country scale has not been presented in the literature prior to 
the publication of this study. There remains a need for a 
methodology that can temporally and spatially estimate the 
end-use energy demand considering the spatio-temporal 
distribution of a range of end-use energy demand density 
values.  

 

C. Geospatial big data for sustainable energy 

The size of spatial datasets has been growing by at least 
20% every year lastly. The analytics of such amounts of 
geospatial data is full of challenges for researchers, importance 
and benefits for stakeholders [30], such as urban planners, local 
authorities, enterprises, researchers and energy policymakers. 
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More recent attention has focused on the analytics of geospatial 
big data to enhance sustainable energy transitions [6]. The use 
of geospatial big data analytics can inform stakeholders on the 
development of sustainable energy strategies. However, 
stakeholders still face information challenges such as data 
availability, data scalability, data integration, data 
inconsistency, geocoding, and data privacy [31]. Although 
challenges are overtaking using geospatial big data analytics, 
understanding the spatiotemporal variation of a range of factors 
that influence the energy consumption in the residential sector 
has not been yet addressed in the literature. 

 
Integrating GIS and big data analytics (Geospatial big data 

analytics) has shifted from its use on single-buildings energy 
analysis to its use at urban scales [7] to countries, regions and 
even for the whole world [32]. Geospatial big data analytics is 
a potential tool to integrate and compare all the possible related 
features when planning sustainable transitions of the residential 
sector [7]. Geospatial big data or spatial data mining is being 
used to discover hidden knowledge from large spatial datasets 
to inform stakeholders [33]. Geospatial big data analytics 
implements machine learning algorithms, statistical methods 
and artificial intelligence methods to solve energy problems 
[17]. The most common machine learning methods in energy 
analysis are Unsupervised Machine Learning techniques that 
classify each spatial data point into specific group according to 
similar properties. For example, Afaifia, et al. [34] implements 
hierarchical cluster analysis towards the development of energy 
transition policies for more sustainable urban areas. Deb, et al. 
[35] applies DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) algorithm to disaggregate electrical 
load profiles into space heating and water heating. Sachs, et al. 
[32] develop a method based on K-means algorithm to assess 
worldwide gridded energy demand density. Overall, studies 
focus on the analysis of spatial big data without the possibility 
of its use in energy systems modelling. 

 

D. Unsupervised Machine Learning for geospatial analysis 

Clustering analysis is an established Unsupervised Machine 
Learning (UML) technique in data mining used for classifying 
patterns into groups of similar characteristics, termed 
“clusters”. Clustering techniques have been widely applied in 
the energy sector, especially for electricity consumption pattern 
recognition. Voulis, et al. [36] have provided a comprehensive 
review and a methodology for assessing the spatio-temporal 
electricity demand profiles at urban scales. Although a number 
of different clustering algorithms have been implemented in 
the energy field [37], Gianniou, et al. [38] argue that the K-
means algorithm has a great potential to be adopted in energy 
demand studies. Gianniou, et al. [38] applied the K-means 
clustering algorithm to group heating customers with similar 
consumption patterns. The K-means approach requires the user 
to initially provide a number of clusters k, which makes it 
challenging to determine an optimal number of clusters. To 
address this, the Elbow Method (EM) can be applied to 

evaluate the evolution of the within-cluster variance as a 
function of the number of clusters.  

The EM suggests that the elbow/knee of the curve is the 
most appropriate number of clusters [39]. K-means clustering 
techniques can also be used to segment heating and cooling 
demand density patterns. Unternährer, et al. [40] studied the 
potential of K-means for spatial clustering analysis to evaluate 
the use of geothermal energy in DH systems. They found that 
the cost-effectiveness of DH integration in urban areas is 
greatly affected by considering the spatial heating demand 
density. Unternährer, et al. [40] have also defined a range of 
heating demand by defining a lower and an upper bound based 
on clustering results. However, clustering approaches have not 
yet been applied in the residential sector at the global scale to 
further explore the tranches of end-use energy demand density 
where certain technologies can be introduced. 

 

III. METHODOLOGY 

Step 1. Clustering Geospatial Big Data: The first step is to 
classify three global high-1km2 resolution spatial datasets: 
GDP per capita [12], space heating demand per capita (HDpc) 
and heating density (HD) [32]. Here, the K-means clustering 
method is undertaken in two main stages. First, the optimal 
number of clusters (ONC) is calculated by applying the Elbow 
Method (EM) followed by the Hartigan-Wong algorithm for K-
means (1979); this is defined by Eq. (1) and Eq. (2) [39, 41], 
and explained in [42]. Eq. (1) also defines the EM, which is 
applied to calculate the sum of squared errors (SSE) of within-
cluster distances between the cluster centres and their 
members. When the number of clusters k is plotted against 
SSE, the visually determined location of the elbow of the curve 
indicates the appropriate number of clusters, or ONC. Once the 
ONC is obtained, the K-means clustering algorithm is applied 
to define the lower and upper bounds of each dataset. The 
algorithm is applied by an iterative process to minimize the 
intra-cluster inertia criterion defined by Eq. (2).  

            Eq. (1) 

         Eq. (2) 

Where: 
Wk is the average internal sum of squares,  
k is the number of clusters,  
nr is the total members points in the cluster r, and  
Dr is the sum of distances between points di and dj, which 

belong to a cluster.  
Each point between upper and lower bounds is representing 

by di and dj in Eq. (2). 
 

Step 2. Intercepting clustered Geospatial Big Data: Then, 
the three reclassified layers are spatially overlayed to arise a 
new zone that captures the three previous spatial attributes. 



 

Fig. 1. Representation of the spatial overlaying of three datasets 
previously reclassified [1]. 

 

Fig. 2. Global optimal number of EDZs for (a) GDP per capita, (b) 
heating demand per capita, (c) heating density. 

Table 1: Clustered results of GDPpc, HDpc and HD. 

GDPpc [US$/y] HDpc [MWh/cap] HD [MWh/km2] 

classes lower upper classes lower upper classes lower upper 

1 min 500 1 min 0.9 1 min 1790 

2 500 3785 2 0.9 3.2 2 1790 12080 

3 3785 18215 3 3.2 5.3 3 12080 36927 

4 18215 41667 4 5.3 max 4 36927 max 

5 41667 max       
 
 

Step 3. Extracting energy demand in intercepted zones: In 
each new zone, the total demand is extracted to be used in 
energy modelling as explained in [32]. 

 

Step 4. Zonal-based modelling: The MUSE (ModUlar 
energy system Simulation Environment) model uses the 
demand in each zone to model a sustainable scenario of energy 
transition in the residential sector. MUSE models real investors 
behaviours [43]. To simplify the simulation, the key 
investment metric in MUSE will be the Levelised Cost of 
Electricity (LCOE). MUSE applies a technology rich approach 
where each technology is individually characterised regarding 
costs and engineering performance [43], [44].  

IV. RESULTS AND DISCUSSION 

A. Optimal number of clusters 

Here, we present the results of an initial exploratory 
analysis of the GIS data using the Elbow Method (EM) 
described before. As can be seen in Figure 2, this method 
consists of clustering global spatial data of annual (a) GDP per 
capita (GDPpc), (b) heating demand per capita (HDpc), and (c) 
heating density (HD) to obtain the optimal number of clusters 
(ONC) respectively. In Figure 2, we can observe that the SEE 
value tends to decrease toward cero as the number of clusters 
increases. In the case of spatial clustering of GDPpc (Fig. 2a), 
small SEE variation can be observed at the 5-cluster solution, 
while in HDpc (Fig. 2b), at the 4-cluster solution as well as in 

HD (Fig. 2c). The elbow indicates that cluster solutions larger 
than 6 for GDPpc and 4 for HDpc and HD do not exert a 
substantial impact on the total SSE variation. Thus, the ONC 
for GDPpc is selected at 5-cluster solution. Applying the same 
method to HDpc values, the ONC is selected at the 4-cluster 
solution as for HD.  

Once the ONC is selected for GDPpc, HDpc and HD, the 
K-means clustering algorithm segments the datasets into five, 
four and four groups, respectively. The calculations include the 
estimation of the cluster centroids along with the elements that 
belong to each cluster. Then, the limits of each zone are 
defined to be halfway between each consecutive centroid 
value. Table 1 shows the lower and upper limits of each 
reclassified zone defined here. 



 

Fig. 3. Global spatial distribution of reclassified GDPpc, HDpc and 
HD. 

Table 2: Global Energy Demand Zones (EDZs) 
disaggregation. Z: zone. Refer to Table 1 for classes values. 

Classes 

[spatially resolved and time-explicit] Global EDZs 

GDPpc HDpc HD 

1 1 1 EDZ1 
1 3 2 EDZ2 
2 3 1 EDZ3 
2 3 2 EDZ4 
2 3 3 EDZ5 
2 3 4 EDZ6 
3 4 1 EDZ7 
3 4 2 EDZ8 
3 4 3 EDZ9 
3 4 4 EDZ10 
4 4 1 EDZ11 
4 3 2 EDZ12 
4 4 3 EDZ13 
4 2 4 EDZ14 
5 2 1 EDZ15 
5 3 2 EDZ16 
5 3 3 EDZ17 
5 2 4 EDZ18 
5 3 1 EDZ19 
5 3 2 EDZ20 

 

B. Reclassified rasters 

The reclassified datasets are presented in Figure 3. The 
GDPpc dataset has been segmented into five groups (Figure 
3a), while HDpc and HD has been segmented into four groups 
(Figure 3b and Figure 3c), respectively. The global atlases of 
the spatial distribution of the reclassified zones for GDPpc, 
HDpc and HD are illustrated in Figure 3. It is shown that most 
of the regions with high GDPpc values (classes 4 and 5) are 
concentrated in North America, Europe and East Asia. This 
would be mainly because of the higher country's economic 
output per person in each of those regions. A similar trend is 
observed for HDpc (classes 3 and 4) because of countries with 
both extreme seasonal weather conditions and highly populated 
areas. What is surprising is that other cold regions located in 
the Andes Cordillera (e.g., Colombia, Ecuador, Peru, Chile) or 
in Norther Europe (e.g., Norway, Finland) do not present high 
HDpc, being at classes 2 and 3 mostly. It is found that very 
high heating HDpc zones (class 4) are associated with small 
areas accounting for less than 5% of populated zones 
worldwide. On the other hand, lower HDpc zones (class 2) are 
in approximately 95% of populated zones worldwide. Figure 
3c presents the global atlas of the spatial distribution of 
reclassified HD zones. Significant HD zones are highly 
concentrated in zones in East US, Europe and China. As can be 
identified in Figure 3c, zones located in North America, 
Southern Chile, Western Europe, North India and East China 
have the highest HD. Some places with high HD zones are 
among the poorest such us India, China, Chile, which are 
classified as lower-middle income economies. This is 
important to consider as income would play an important role 
in affording heating technologies to meet the demand.  

Table 2 presents the disaggregation of the Global Energy 
Demand Zones (EDZs) which arise from the interception of 
three reclassified layers shown in Figure 3. 20 EDZs globally 
are identified where the total energy demand is calculated to be 
used in energy modelling. These EDZs captures the 
heterogeneity of residents when analysis household energy 
demand. For example, EDZ1 captures the socioeconomic 
conditions at GDPpc class 1 (up to 500 USD/yr) with a HDpc 
class 1 (up to 0.9 MWh/cap) and a HD class 1 (up to 1790 
MWh/km2). On the other hand, EDZ20 captures the 
socioeconomic conditions at GDPpc class 5 (41667 USD/yr or 
more) with a HDpc class 3 (between 3.2 and 5.3 MWh/cap) 
and a HD class 2 (between 1790 and 12080 MWh/km2). 

C. Intercepted layers 

Figure 4 illustrates how the EDZs for China are 
characterised by three measures when systematically 
overlayed. Initially, GDP is obtained (Figure 4a), which is 
divided by population to obtain the GDPpc (Figure 4b). Here, 
GDPpc is reclassified as explain previously. We observe that 
China has 3 out 4 GDPpc classes. Reclassified HDpc is 
presented in Figure 4c, and reclassified HD in Figure 4d. 
Figure 4e and Figure 4f respectively show new zones when 
two attributes (GDPpc and HDpc) and three attributes (GDPpc, 
HDpc and HD) are intersected or overlayed. This example 
shows that not all classes might be present in each country or 
region. Although worldwide there are 20 EDZs, there is only 
10 EDZs in China. This shows the heterogeneity of the 
residential sector composition that varies from country to 
country. 



 

Fig. 4. Spatial characterisation of EDZs with 1, 2 and 3 spatial attributes for China. (a) Zone-based classes defined for GDP 
per km2, (b) Zone-based classes defined for GDPpc per km2, (c) Zone-based classes defined for HDpc per km2, (d) Zone-
based classes defined with HD per km2 data, (e) Zones defined with the intersection of two attributes (GDPpc and HDpc), 
(f) Zones defined with the intersection of three attributes (GDPpc, HDpc and HD). 

 

Fig. 5. Overview of the global demand of end-uses of energy by (a) region, (b) six end-uses; and (c) space heating only. 
Countries with the highest household demand of energy: USA, RUS, OAFR (Africa expect South Africa), MEA region 
(Middle East), India, EU18 and China. 

 



 
Fig. 6: Global space heating supply by EDZs. 

 
Fig. 7: Global space heating supply under two scenarios with heat 

density restriction. (a) Sustainable scenario with a carbon tax scheme 
globally; and (b) Reference scenario without a carbon tax scheme. 

Results are provided by technology disaggregation. 

D. GIS-based modeling global demand  

Figure 5a summarises the global demand of end-use energy 
by the residential sector, disaggregated in 28 regions following 
the Energy Technology Perspective of the IEA [45] and 
considering the consumption drivers of the Shared 
Socioeconomic Pathways, SSP2 narrative (middle of the road) 
[46]. Figure 5b compares the breakdown of total end-use 
energy demand according to all residential energy services 
(i.e., appliances, cooking, space cooling, space heating, water 
heating and lighting). From all these energy demand services, 
the global demand for space heating is presented in Figure 5c. 
Closer inspection of the space heating demand shows the 
worldwide demand at 26 EJ in 2020, reaching a maximum 
demand of 27.5 EJ in 2050, and decreasing to 25.3 EJ by 2100. 
Overall, space heating moves from 41% of the total residential 
energy services in 2010 to 34% in 2050 and 31% in 2100. 
These projections are in line with the study reported by 
Knobloch, et al. [47] that simulates decarbonisation pathways 
of residential heating under the SSP2 narratives which makes 
both studies comparable. Knobloch, et al. [47] calculated future 
changes in the global heat demand, implementing the IMAGE-
REMG model. While Knobloch, et al. [47] estimate the heat 
demand for space and water heating at 41.4 EJ in 2020, the 
study presented here estimated 40.2 EJ in the same year. While 
similarities exist between the methodologies used in both 
studies, the main difference is the EDZ disaggregation across 
regions individually presented next. 

E. Global long-term transition 

Figure 6 provides the EDZ-based breakdown of global 
space heating demand of the residential sector at 20 EDZs for 
28 regions worldwide. The zones breakdown by regions 
illustrates the heterogeneity of residential space heating 
demand globally, regardless the region. Each zone, from EDZ1 
to EDZ20, is spatially resolved with similar gridded 
characteristics anywhere on the globe. It can be seen the 
composition of each zone’s heating demand profile for the 
century ahead. Interestingly, each EDZ is particularly unique 
by the fact that incorporates spatially resolved and time explicit 
attributes of each region of the world. For example, EDZ7, the 

zone with the highest demand, emerges from the combination 
of three gridded attributes, as can be seen in Table 2. This zone 
represents a region's economic output per person between 3785 
and 18215 US$ per year within a zone where demand per 
capita is higher than 5.3 MWh/cap per year and less than 1790 
MWh/km2 of HD. EDZ7 is spatially located in all regions of 
the world and evolves from a total demand of 7.5 EJ in 2010 to 
9.8 EJ by 2050 and up to 8.5 EJ by 2080. 

Figure 7 shows the global technology transition for space 
heating supply in the residential sector, worldwide, for two 
scenarios: (a) Sustainable scenario with a carbon tax scheme 
globally; and (b) Reference scenario without a carbon tax 
scheme (an unsustainable scenario). The key difference 
between scenarios (a) and (b) is the presence of a carbon price 
scheme. The sustainable scenario presents a radical uptake of 
electricity-based heat pumps from 2030 onwards, whereas in 
the reference scenario, natural gas-based technologies are 
dominant in the same period. 



 
Fig. 8: Global space heating supply by EDZs in a sustainable scenario with a carbon tax scheme globally. Results are provided by technology disaggregation. 

 

Figure 8 provides the largest set of spatially resolved and 
temporal explicit zones with same spatial characteristics 
worldwide along with the required technologies to supply them 
heat in a sustainable scenario that includes a carbon tax scheme 
globally. As observed before EDZ7 is the zone with the highest 
demand. In the breakdown of EDZs we can see the technology 
disaggregation for each zone. As expected, Air Source Heat 
Pumps (ASHeatPump) and ASHeatPump with natural gas back 

up (ASHeatPumpNG) are the dominant technologies in the 
transition. There are two extra key observations from the 
analysis: the heterogeneity and the complexity of the global 
space heating supply in the residential sector within the effect 
of gridded attributes. EDZ’s heterogeneity can be seen in the 
different supply profiles that each zone delivers, while the 
zone’s complexity is reflected in the technology stock that 
changes in time depending on budget and demand restrictions. 



 
Fig. 9: Global space heating supply by EDZs in a reference scenario without a carbon tax scheme. Results are provided by technology disaggregation. 

 

Figure 9 presents the global EDZs for a reference scenario 
without a carbon tax scheme: an unsustainable scenario. In 
this scenario, the dominant technologies are natural gas-based: 
boilers (BoilerNG) and district heating (DHNGA). In the case 

of the zone with the highest demand, DHNGA represents 
about 80% of the total supply from 2030 onwards. Although 
some EDZs uptake BoilerNG and surprisingly ASHeatPumps, 
the dominant technology prevails on DHNGA. 



Fig. 10: Global related CO2 emissions profile for two scenarios of space 
heating supply. (a) Sustainable scenario with a carbon tax scheme 
globally; and (b) Reference scenario without a carbon tax scheme. 

F. Global emissions 

Figure 10 shows the emissions profile for two scenarios of 
space heating supply. The sustainable scenario with a carbon 
tax scheme globally (a) shows net zero emissions from the 
residential sector by 2045. On the other hand, the reference 
scenario without a carbon tax scheme (b) illustrates a 
dramatical increase of emission across the century ahead. 
These emissions profiles clearly illustrate that EDZ-based 
approaches can contribute with a more focus analysis, 
including a range of spatiotemporal variabilities.   

CONCLUSION 

Before, the location characteristic of data has been under-
utilised; this has changed now. With information technologies, 
spatiotemporal data for many research areas is being saved and 
grows rapidly every year. Geospatial big data analytics has 
increased awareness of the value gained by analysing big data 
in a geographic context. More specifically, in the energy arena, 
Geospatial big data analytic tools are informing stakeholders 
and energy policy makers the ability to discover location-based 
patterns and relationships from spatial data that may exist in 
many “unrelated” places worldwide. Geospatial big data 
analytic tools enable us to visualise and analyse large spatial 
datasets to reveal patterns and trends that would previously 
have remained hidden. 

This research has developed an Unsupervised Machine 
Learning (UML)-based technique by the implementation of a 
Spatial Clustering Analysis to bringing together multiple data 
layers. The clustering method has reclassified three large data 
sets: GDPpc (includes GDP and population), HDpc (includes 
energy consumption, outdoor temperature and population) and 
HD (includes HDpc and population density). The 
reclassification process has ended with five classes for GDPpc, 
4 classes for HDpc and four classes for HD. From the spatial 
intersection of these three reclassified datasets, a new layer has 
emerged with three characteristics in each zone: the called 
Energy Demand Zones (EDZs). Twenty EDZs have serve as 
input for a regional-based simulation of the global residential 
sector.  

Two scenarios have been explored in the simulation using 
MUSE (a new Integrated Energy System Model developed at 

Imperial College London): (a) Sustainable scenario with a 
carbon tax scheme globally; and (b) Reference scenario 
without a carbon tax scheme. Results clearly show the role of 
GIS-based analysis of the energy transition of the residential 
sector. We observed different patterns on the technology 
uptake. Each EDZ provides a different energy supply profile 
which give us an idea of the key spatiotemporal features 
energy policy makers should focus on when planning the long-
term energy transition. In the sustainable scenario, natural gas-
based technologies are dominant. IN both scenarios, it can be 
observed the heterogeneity and the complexity of the 
residential sector and the importance of the effect of gridded 
attributes. Future research should go deeply on the gridded 
attributes when linking GIS-based inputs with MUSE or any 
other energy system model. 
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