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Abstract 35 

Non-fullerene acceptors (NFAs) are excellent light harvesters, yet the origin of such high 36 

optical extinction is not well understood. In this work, we investigate the absorption strength of 37 

NFAs by building a database of time-dependent density functional theory (TDDFT) 38 

calculations of ~500 -conjugated molecules. The calculations are first validated by comparison 39 

with experimental measurements on solution and solid state using common fullerene and non-40 

fullerene acceptors. We find that the molar extinction coefficient (𝜀𝑑,𝑚𝑎𝑥) shows reasonable 41 

agreement between calculation in vacuum and experiment for molecules in solution, 42 

highlighting the effectiveness of TDDFT for predicting optical properties of organic -43 

conjugated molecules. We then perform a statistical analysis based on molecular descriptors to 44 

identify which features are important in defining the absorption strength. This allows us to 45 

identify structural features that are correlated with high absorption strength in NFAs and could 46 

be used to guide molecular design: highly absorbing NFAs should possess a planar, linear, and 47 

fully conjugated molecular backbone with highly polarisable heteroatoms. We then exploit a 48 

random decision forest to draw predictions for 𝜀𝑑,𝑚𝑎𝑥 using a computational framework based 49 

on extended tight-binding Hamiltonians, which shows reasonable predicting accuracy with 50 

lower computational cost than TDDFT. This work provides a general understanding of the 51 

relationship between molecular structure and absorption strength in -conjugated organic 52 

molecules, including NFAs, while introducing predictive machine-learning models of low 53 

computational cost. 54 

55 
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Broader context 56 

The synthetic versatility of organic -conjugated semiconductors converts them onto the ideal 57 

candidates for rational molecular design based on high-throughput screening techniques. 58 

Significant advances had been made by trial and error with new but increasingly diverse 59 

moieties and materials, primarily using non-fullerene acceptors (NFAs). These have raised the 60 

efficiency of organic photovoltaics (OPVs) above 19% in single junctions, to a large extent 61 

owing to their high absorption strength. However, the reasons for that remain elusive, thus 62 

preventing the molecular tailoring of NFAs with further enhanced light harvesting capabilities 63 

that enable breakthrough OPV efficiencies in the years to come. Here we exploit time-64 

dependent density functional theory (TDDFT) calculations performed on NFA molecules and 65 

-conjugated oligomers to investigate what drives their absorption strength higher. The 66 

statistical analysis of thousands of molecular descriptors reveals that molecular linearity, 67 

planarity, polarizability, and number of -conjugated carbon atoms correlate strongly with the 68 

absorption strength, hence forming a structure-absorption strength relationship that is further 69 

exploited to introduce design rules for highly absorbing NFAs. We identify frequent moieties 70 

(i.e. molecular fragments) and combinations thereof to drive absorption strength higher in novel 71 

NFAs. To speed up the screening of NFA molecular candidates at lower computational cost, 72 

we propose exploiting a state-of-the-art machine-learning (ML) model in combination with 73 

extended tight-binding Hamiltonians to predict the absorption strength of -conjugated organic 74 

molecules. This work contributes to an improved understanding of the absorption strength of 75 

-conjugated organic molecules in general while suggesting ways the OPV community to 76 

design highly absorbing NFAs that maximize the light harvesting capabilities of materials for 77 

solar energy conversion. 78 

  79 
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TOC: 80 

We combine experiments with density functional theory calculations, statistical analysis, and 81 

machine-learning to reveal the structure-absorption strength relationship and predict the 82 

absorption strength in organic non-fullerene acceptors.  83 

 84 

  85 
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1. Introduction 86 

Organic photovoltaic (OPV) energy conversion is a promising option among next generation 87 

renewable and sustainable energy technologies for a low-carbon energy future.1–3 OPV has 88 

shown promising potential for various applications, such as indoor photovoltaics (PV),4–6 semi-89 

transparent solar windows,7,8 PV greenhouses,9 and off-grid power supply.10 Recent OPV 90 

devices based on non-fullerene acceptors (NFAs) have demonstrated certified power 91 

conversion efficiencies (PCEs) exceeding 19% in a single junction configuration,11 much closer 92 

to the efficiencies observed in inorganic semiconductor PV technologies such as crystalline 93 

silicon and perovskite solar cells, and far higher than values thought attainable in OPV when 94 

using fullerene derivatives as the electron-acceptors.12 The startling progress led by NFAs can 95 

be attributed to various advantages over fullerene derivatives, such as band-gap tunability, sharp 96 

absorption onset, high emission, high absorption, and low energy losses.13–15 Among these 97 

advantages, the absorption strength of state-of-the-art NFAs is particularly outstanding, as 98 

exemplified in Figure 1c (a detailed list of chemical names and nomenclatures is provided in 99 

Supplementary Note 1).16 For instance, Y6 shows a maximum extinction coefficient (𝜅𝑚𝑎𝑥) 100 

over 1.5 in the visible part of the electromagnetic spectrum, as compared to less than 0.75 for 101 

fullerene derivatives (PC61BM and PC71BM). High extinction coefficient increases the chance 102 

of high quantum efficiency and photogenerated current density, and makes it possible to 103 

fabricate highly absorbing OPV films with just a few tens of nanometre-thick photoactive layers. 104 

In comparison with workhorse fullerene acceptors, OPV devices based on highly absorbing 105 

NFAs could be made comparably thinner than the former, which exponentially raises the output 106 

power per weight (i.e. the specific weight in W g-1) of OPV devices17 and might be an effective 107 

route toward lower production costs (as less material could employed to achieve an equivalent 108 

PCE) and even increase device thermal stability18. Moreover, through detailed balance between 109 

photon absorption and emission,19,20 high absorption strength in principle should lead to high 110 

emission from the NFAs, while strong NFA emission is believed to be a key reason for NFA-111 

based OPVs to possess low nonradiative voltage losses.21–25 Despite the clear advantage of 112 

strong photo-absorption of NFAs over fullerene derivatives, the phenomenon has attracted 113 

much less attention than other properties of NFAs.21–23,25–28 Conceptually, symmetry rules (i.e., 114 

Laporte rule) can explain the qualitative difference between NFAs and fullerene derivatives in 115 

terms of absorption strength, yet such rules cannot predict differences in absorption strength 116 

among structures for which the lowest transitions are symmetry allowed. The features 117 

empirically and theoretically proposed29,30 to lead to strong absorption in -conjugated 118 

polymers are molecular stiffness, linearity, extended -conjugation and large molecular size. It 119 
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is therefore of interest to establish whether the same (or other) molecular features are 120 

quantitatively associated or not with increased absorption strength in NFAs, while seeking 121 

molecular design rules to drive absorption and performance higher in new molecules. 122 

Excited state calculations based on quantum chemistry methods, such as time-dependent 123 

density functional theory (TDDFT),8,29,31–33 Hartree-Fock method,34 ab initio Monte Carlo 124 

method,35 second order Møllier-Plesset theory (MP2),36 and coupled cluster method,37 have 125 

been applied to predict the electronic and optical properties of molecules. Among them, TDDFT 126 

is the most widely applied method for excited state calculations, and has shown reasonable 127 

accuracy in calculating and predicting the trends in absorption strength of organic 128 

molecules,29,31 as also demonstrated in this work. However, the rapid scaling of computation 129 

time with molecular size has been the real obstacle limiting the applicability of TDDFT for 130 

excited state calculations on molecules with hundreds of atoms. Given the size and diverse 131 

structure of modern NFAs, faster and more efficient methods are therefore needed to establish 132 

the relationship between excited-state and molecular properties in NFAs. 133 

The emergence of artificial intelligence (AI) has made it possible to study quantitative 134 

structure–property relationships (QSPRs) in molecules with massively improved computational 135 

efficiency. As the most popular branch of AI, machine-learning (ML) has attracted much 136 

attention in materials science over the last decade, and has been widely applied for material 137 

property prediction and material discovery.38–41 Recently, ML has also gained popularity in 138 

OPV scenarios,42–52 yet existing ML studies related to OPVs have been primarily focused either 139 

on the energetics42,43,53–56 or directly on PCE,42,48,57–64 with little attention paid to the absorption 140 

strength of the photoactive materials.65,66 Moreover, there are no ML studies explicitly focused 141 

on the absorption strength of NFAs beyond the identification of moieties of frequent appearance 142 

in highly absorbing molecules.42 However, QSPR and ML models have been successfully 143 

applied to investigate the absorption strength of fluorophores or dyes typically employed in 144 

bioimaging, showing encouraging results.30,67,68 Therefore, it is appealing to apply ML methods 145 

in combination with QSPR models to investigate the origin of the large absorption strength in 146 

state-of-the-art NFAs. 147 

Here, we present an experimental, TDDFT, QSPR, statistical and ML study of the absorption 148 

strength of NFAs to identify the key chemical and structural features that lead to high optical 149 

absorption in state-of-the-art NFAs. We exploit a database of nearly 500 unique organic 150 

molecules (or 3500 calculations) generated using DFT and TDDFT over several years. We 151 

obtain good quantitative agreement between TDDFT calculations of absorption strength and 152 
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experimental values for state-of-the-art NFAs and fullerenes, which supports the use of TDDFT 153 

results for further statistical and QSPR modelling. Accordingly, we extract molecular 154 

information from the DFT-optimized geometries by computing nearly 6000 molecular 155 

descriptors and first looking for correlations with the absorption strength. The strongest 156 

correlations are found between experimentally measured maximum molar extinction coefficient 157 

(𝜀𝑑,𝑚𝑎𝑥) and two main molecular descriptors from calculations: 1,p and C2SP2, which describe 158 

the size of the molecule in the direction of maximal atomic polarizability, and the number of 159 

sp2 hybridized carbon atoms that are bound to two other carbons (C2), respectively. These 160 

quantities can be related to a few key material features leading to high absorption strength: 161 

linearity, planarity, and extension of the -conjugation in the form of fused and closed-ring 162 

moieties, in good agreement with previous ML reports on fluorophores and dyes.30 We further 163 

identify several moieties and paired combinations thereof that are frequently found in highly 164 

absorbing NFAs, corresponding to thieno[3,2-b]thiophene (TT), thiophene (T), 2-(5,6-difluoro-165 

3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2FIC), 2-(3-oxo-2,3-dihydro-1H-inden-166 

1-ylidene)malononitrile (IC) and indaceno[1,2-b:5,6-b′]dithiophene (IDT). These form a 167 

catalogue of molecular design rules to further enhance the absorption strength of organic -168 

conjugated molecules, such as next-generation NFAs. We then train and test an ensemble 169 

learning method, namely a random decision forest (RF), to predict εd,max and provide further 170 

information about the most important features in the modelling of absorption strength in organic 171 

-conjugated molecules. Finally, we explore the possibility to predict 𝜀𝑑,𝑚𝑎𝑥  while using a 172 

cheaper molecular geometry optimization method based on semiempirical extended tight-173 

binding (xTB) Hamiltonians instead of the expensive DFT approach. We do so by training a 174 

RF with our TDDFT database and proving its predictive properties in terms of 𝜀𝑑,𝑚𝑎𝑥 when 175 

interpolated using xTB-optimized geometries. This approach shows application potential in 176 

high-throughput screening studies in combination with generative molecular models. 177 

2. Results and discussion 178 

2.1. Experimental validation of calculated absorption strength using TDDFT 179 

Quantifying how well the TDDFT derived excited state properties agree with the experimental 180 

measurements in terms of absorption strength is of utmost importance to validate our theoretical 181 

calculations and support further conclusions extracted thereof. Accordingly, we first evaluate 182 

the agreement between TDDFT calculations and experimental data in terms of the absorption 183 

strength. We compare the absorption strength of a broad catalogue (~10 molecules) of NFA 184 
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molecules and widely studied fullerene derivatives (PC61BM and PC71BM, with their 185 

molecular structures shown in Figure 1a) as obtained from TDDFT calculations, with a variety 186 

of optical measurements in both solution and solid state. For the most representative NFAs 187 

examined, we verify that their frontier molecular orbital energy levels as retrieved from TDDFT 188 

calculations are properly aligned, relative to those of a set of common polymer donors, for the 189 

NFAs to act as electron acceptor in a bulk heterojunction blend with those donors (Figure S1). 190 

The measured refractive index (𝑛) and extinction coefficient (𝜅) of those molecules in thin film 191 

obtained using our variable-angle spectroscopic ellipsometry (VASE) measurements are shown 192 

in Figure 1b and c. Solution state data shown in Figure 1d and e are collected from a variety 193 

of literature references as detailed in the Supporting database. 194 

As a metric for absorption strength, we initially consider several candidates such as the 195 

oscillator strength (𝑓𝑜𝑠𝑐), the absorption coefficient (𝛼) or the imaginary part of the dielectric 196 

function (𝜀2). In this work, we eventually focus on the maximum molar extinction coefficient 197 

(𝜀𝑑,𝑚𝑎𝑥, M-1 cm-1) of NFAs as it shows the best agreement between experimental and theoretical 198 

data, as we demonstrate below. 𝜀𝑑,𝑚𝑎𝑥  constitutes a typical experimental measurement in 199 

solution that can also be accessed from myriad literature references. Note that the usual 200 

calculations based on single molecules using TDDFT cannot account for solid state effects as 201 

they are performed for isolated molecules in vacuum or surrounded by an isotropic medium 202 

(such as a solvent using the polarizable-continuum-solvent-model, PCM, Figure S2). The 203 

derivation of the theoretical 𝜀𝑑  is provided in the Methods section, which results in a 204 

mathematical expression for 𝜀𝑑,𝑚𝑎𝑥 as 205 

𝜀𝑑,𝑚𝑎𝑥 = 10 𝑙𝑜𝑔10(𝑒) 𝑁𝐴
2𝜋𝑒ℏ

3𝜖0𝑚0𝑛𝑟𝑐
 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥

1

𝜎√2𝜋
  ,    (Equation 1) 206 

Where 𝑁𝐴 is the Avogadro constant, 𝑒 the elementary charge, ℏ the reduced Planck constant, 207 

𝜖0 the vacuum permittivity, 𝑚0 the electron mas, 𝑛𝑟 is the refractive index in solution (assumed 208 

to be 1.3 of a common organic solvent throughout this study), and c the speed of light. 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥 209 

is the oscillator strength of the strongest transition among the calculated states within the 210 

visible-IR part of the spectrum, and 𝐸𝑚𝑎𝑥  is the energy of that transition. The brightest 211 

transition is very often the lowest-energy transition in commonly used -conjugated 212 

molecules.29 We note here that the delta function in Eq. (S13) is replaced with a gaussian 213 

distribution function with a peak intensity of 
1

𝜎√2𝜋
, where 𝜎 is the gaussian width and assumed 214 

to be 0.1 eV for a common organic pi-conjugated molecule. 215 
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The experimental 𝜀𝑑,𝑚𝑎𝑥  from solution can be obtained using the optical density (OD) 216 

measurements performed using UV-visible spectroscopy, via 217 

𝜀𝑑,𝑚𝑎𝑥 =
𝑂𝐷𝑚𝑎𝑥 

𝜌𝑑
,                            (Equation 2) 218 

where 𝑂𝐷𝑚𝑎𝑥 is the maximum optical density, 𝜌 is the molar concentration (M), and d the light 219 

path length of the cuvette (cm). Similarly, the experimental 𝜀𝑑,𝑚𝑎𝑥 from film can be estimated 220 

assuming a mass concentration 𝜌𝑀 in the film of 1000 g L-1 (as a typical value for conjugated 221 

polymers and small molecules),29 either from the maximum absorption coefficient 𝛼𝑐𝑚,𝑚𝑎𝑥 222 

(cm-1) or extinction coefficient (𝜅𝑚𝑎𝑥) (Figure 1c), via 223 

𝜀𝑑,𝑚𝑎𝑥 = 𝑙𝑜𝑔10(𝑒) 𝛼𝑐𝑚,𝑚𝑎𝑥
𝑀𝑤

𝜌𝑀
= 𝑙𝑜𝑔10(𝑒)

4𝜋𝜅𝑚𝑎𝑥

𝜆𝑚𝑎𝑥 

𝑀𝑤

𝜌𝑀
,   (Equation 3) 224 

where 𝑀𝑤 is the molecular weight in g mol-1, and 𝜆𝑚𝑎𝑥 the wavelength at 𝜅𝑚𝑎𝑥 in centimetre. 225 
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 226 

Figure 1. a) Molecular structures of typical organic acceptors, including PC61BM, PC71BM, 227 

O-IDFBR, O-IDTBR, ITIC, IT-4F, IDIC, IEICO, IEICO-4F, Y5, Y6, and Y7. b) Refractive 228 

index and c) extinction coefficient of a larger set of typical organic acceptor thin films measured 229 

using VASE. d) Experimental 𝜀𝑑,𝑚𝑎𝑥  in solution versus calculated 𝜀𝑑,𝑚𝑎𝑥  in vacuum using 230 
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TDDFT of a set of ~80 π-conjugated molecules. e) Estimated experimental 𝜀𝑑,𝑚𝑎𝑥 in film (solid 231 

state) versus that in solution using Eq. (3). Panel (d) contains a subset of well-known NFA 232 

molecules that are highlighted in colour. All TDDFT results in panel (d) were performed using 233 

the functional B3LYP and basis set 6-311+G(d,p), except for the ones (grey squares) taken from 234 

Ref. 69 that are based on  the LRC-wPBEh functional and 6-311+G(d) basis set. We also note 235 

here that the side chains of molecules are replaced by H atoms or methyl groups in the 236 

calculations as they are computationally expensive and do not contribute to the -conjugation, 237 

hence electronic transitions.29 The experimental data of 𝜀𝑑,𝑚𝑎𝑥  in film are converted from 238 

maximum values of extinction coefficients shown in panel (c) using Eq. (3), while solution data 239 

are collected from literature, noting that different values may be present for the same material 240 

as retrieved from different sources. Grey dashed lines indicate the perfect match between x and 241 

y axis. The data required for generating panels (d) and (e) in this figure are presented in the 242 

Supplementary Database. 243 

Figure 1d presents the results of the comparison between experimental εd,max in solution and 244 

theoretical 𝜀𝑑,𝑚𝑎𝑥  calculated from single molecules using TDDFT in vacuum. A brief 245 

discussion of the solvent effect on the absorption strength and the reasons why we choose 246 

vacuum medium are provided in Figure S2. Despite the scattering of data points, we observe 247 

the occurrence of a monotonic relationship between solution and calculated 𝜀𝑑,𝑚𝑎𝑥  with a 248 

Pearson correlation coefficient (𝑟) of 0.77. Interestingly, such correlation is no longer observed 249 

when quantifying the absorption strength in terms of 𝛼𝑚𝑎𝑥 neither when adding further data 250 

points from literature on -conjugated fluorophores to our statistical analysis (Figure S3a, r =251 

0.30), which is believed to be caused by the differences in molecular weight; in that case, only 252 

𝜀𝑑,𝑚𝑎𝑥 is found to follow a monotonic trend (Figure S3b). Some of the material assumptions 253 

on refractive index and density required to obtain 𝛼𝑚𝑎𝑥 values might be responsible for the 254 

observed mismatch. It is worth noting that, expectedly, the correlation between solid state (film) 255 

and solution (𝑟 = 0.66, Figure 1e) or calculated 𝜀𝑑,𝑚𝑎𝑥 (𝑟 = 0.61, Figure S4) is not as good 256 

as that from solution data versus calculated 𝜀𝑑,𝑚𝑎𝑥 (𝑟 = 0.77, Figure 1d, neither for 𝛼𝑚𝑎𝑥 as 257 

shown in Figure S5). Such discrepancy is attributed to solid-state effects such as the 258 

aggregation effects,15 intermolecular orientation,70,71 and side chain interactions,72 which are 259 

not considered in single molecule excited state calculations.29 The observed trend that a highly 260 

absorbing material in solution will produce highly absorbing films is, nonetheless, generally 261 

valid and thus solution data is relevant for devices. Since the NFAs analysed here have a rather 262 

similar number of -electrons (n), the corresponding εd,max per -electron (Figure S6) shows 263 
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a similar trend as that in Figure 1d, Figure 1e, and Figure S4. Despite the simplicity of single 264 

molecule excited state calculations, these data show that using TDDFT calculations of the 265 

excited state to deliver 𝜀𝑑,𝑚𝑎𝑥 can provide a reasonably good approximation to experimental 266 

measurements. Moreover, dealing with TDDFT calculations gives us room to correlate key 267 

molecular properties, such as molecular size and shape (aspect ratio), linearity, planarity, 268 

grafted side chain positions, or functional groups, to the absorption strength using molecular 269 

descriptors. These observations provide a foundation from molecular structures to identify the 270 

origin and further extend the high optical extinction of NFAs through chemical design rules, as 271 

we show in the upcoming sections. 272 

2.2. Statistical analysis of the TDDFT absorption strength dataset 273 

The experimental validation of the TDDFT calculations in NFAs supports the use of such 274 

results to build an extended database of optimized molecular geometries and excited state 275 

properties. The dataset is built by collecting thousands of molecular geometries generated over 276 

the last years in our group, making up a total of 3515 calculations on small molecules and 277 

oligomers. The distribution of number of atoms in a molecule is shown in Figure S7 with a 278 

majority lying between 50 and 100 atoms. This database is sufficiently diverse to allow us to 279 

detect correlations and chemical/structural design rules that could explain and/or further 280 

enhance optical absorption in conjugated small molecules. 281 

2.2.1. Correlation analysis of molecular descriptors 282 

In the simplest statistical analysis of our TDDFT database, we look for correlations of the 283 

absorption strength with respect to a catalogue of molecular descriptors. First, as described in 284 

Supplementary Note 2, we filter the pristine TDDFT database by identifying duplicate 285 

molecules (in terms of molecular weight) and selecting the lowest energy conformer (i.e., 286 

optimized geometries in the ground state) among them. As a result, the curated TDDFT 287 

database employed in this work consists of 479 -conjugated small molecules and oligomers 288 

with a distribution of moieties shown in Figure S9. 289 

Then, we introduce several target features related with absorption strength, starting from the 290 

maximum oscillator strength of any calculated transition (𝑓𝑚𝑎𝑥 ); the maximum oscillator 291 

strength of any transition in the visible electromagnetic window (herein constrained between 292 

300-1200 nm or 1-4 eV for its relevance in solar energy harvesting applications) (𝑓𝑚𝑎𝑥,𝑣𝑖𝑠); and 293 

the sum of oscillator strengths of all transitions in the visible window, 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠. These three 294 
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features are also evaluated per 𝑛𝜋 for the molecule, i.e., 𝑓𝑚𝑎𝑥/𝑛𝜋, 𝑓𝑚𝑎𝑥,𝑣𝑖𝑠/𝑛𝜋 and 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠/𝑛𝜋. 295 

We then consider the maximum absorption coefficient (𝛼𝑚𝑎𝑥) obtained using Eq. (1) and Eq. 296 

(3); the maximum of the imaginary part of the dielectric function (𝜀2,𝑚𝑎𝑥);29 and 𝜀𝑑,𝑚𝑎𝑥. Finally, 297 

we compute the spectral overlap between the OD (𝑑𝛼(𝐸), where 𝑑 is set to a typical film 298 

thickness value of 100 nm and 𝛼(𝐸) derives from the Gaussian-broadened spectrum of f in the 299 

visible spectral range taking a standard deviation of 0.1 eV) and the AM1.5G solar photon flux 300 

spectrum (ΦAM1.5G), namely 𝑓𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
∫ 𝛷𝐴𝑀1.5𝐺

4 𝑒𝑉
1 𝑒𝑉

(𝐸)𝑑𝛼(𝐸)𝑑𝐸

∫ 𝛷𝐴𝑀1.5𝐺
4 𝑒𝑉

1 𝑒𝑉
(𝐸)𝑑𝐸

. 301 

These features, together with their corresponding histograms (Figure S14) in terms of 302 

Spearman’s rank correlation coefficients (𝜌), are explained in more detail in Supplementary 303 

Note 2. Molecular descriptors are calculated using up to four different open-source packages73–304 

76 (Supplementary Note 2) to generate a (curated) collection of 3239 entries (including 40 305 

electronic descriptors derived from the TDDFT calculations, namely the energy of the 306 

molecular orbitals ranging from HOMO-19 to LUMO+19). Then, we scan for statistical 307 

correlations between those descriptors and all target features introduced above, from which we 308 

consider as highly correlated descriptors those showing   0.7 as threshold. However, since 309 

some descriptors are calculated in groups or families where weighting factors are varied among 310 

atomic masses, van der Waals volumes, electronegativities, ionization potentials or 311 

polarizabilities, we usually encounter sets of multicollinear descriptors that show very similar 312 

trends with respect to the target feature. Accordingly, to drop redundant (collinear) descriptors 313 

we classify them into clusters to select the most representative candidate of each bundle (i.e., 314 

cluster). This serves us to simplify the identification of characteristic and well-correlated 315 

descriptors families. The clustering algorithm applied to analyse multicollinear descriptors 316 

based on  and r values is further described in Supplementary Note 3. 317 

After running the clusterization of descriptors on all target features, we identify strong 318 

correlations with molecular descriptors for 𝑓𝑚𝑎𝑥, 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠 and 𝜀𝑑,𝑚𝑎𝑥 (i.e., implicitly 𝑓𝑚𝑎𝑥,𝑣𝑖𝑠). 319 

For the remaining target variables (𝑓𝑜𝑣𝑒𝑟𝑙𝑎𝑝, 𝛼𝑚𝑎𝑥, 𝜀2,𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥/𝑛𝜋, 𝑓𝑚𝑎𝑥,𝑣𝑖𝑠/𝑛𝜋 and 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠/320 

𝑛𝜋), we do not identify molecular descriptors with  above the threshold value (0.7) and they 321 

are generally below 0.6 units, see Figure S14. The lack of correlation for 𝑓𝑜𝑣𝑒𝑟𝑙𝑎𝑝 could be 322 

justified by the existence of a gas-to-solid shift in the corresponding absorption spectrum, which 323 

prevents proper matching of the Gaussian-broadened absorption features with the solar photon 324 

flux. Regarding 𝛼𝑚𝑎𝑥  and 𝜀2,𝑚𝑎𝑥 , the estimation of these values from TDDFT calculations 325 

requires taking generalized assumptions on several materials properties (such as density or 326 
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refractive index) that might be enough to disturb the underlying trends in our heterogeneous 327 

material database. For the quantities normalised by the number of pi electrons, i.e. 𝑓𝑚𝑎𝑥/𝑛𝜋, 328 

𝑓𝑚𝑎𝑥,𝑣𝑖𝑠/𝑛𝜋  and 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠/𝑛𝜋 , the weak correlation is expected since normalization tends to 329 

deviate from linear correlations depending on the straightness of the molecule.29 Due to the 330 

strong correlation between size of the molecule and oscillator strength as discussed below based 331 

on C2SP2, the normalised quantity is believed to be a secondary factor, therefore not clear 332 

correlations are observed. In the successful correlation cases (i.e. 𝑓𝑚𝑎𝑥, 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠 and 𝜀𝑑,𝑚𝑎𝑥) and 333 

with the given thresholds of 0.7 units for  and r, we identify a single feature cluster lead by 334 

the 1,p descriptor in the case of 𝑓𝑚𝑎𝑥 and 𝜀𝑑,𝑚𝑎𝑥 (Figure 2a). For 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠, a threshold  of 0.68 335 

reveals C2SP2 as a rather descriptive molecular feature (Figure 2b). Interestingly, C2SP2 is 336 

also found in the main cluster represented by 1,p in 𝑓𝑚𝑎𝑥 and 𝜀𝑑,𝑚𝑎𝑥, and we could not identify 337 

any strong correlations between the absorption strength (in any of its proposed metrics) and 338 

electronic descriptors (from HOMO-19 to LUMO+19 energy levels). Note that 𝜀𝑑,𝑚𝑎𝑥 values 339 

in excess of 2.5 × 105 M-1 cm-1 in Figure 2a and b are mostly attributed to artificially straight 340 

conjugated oligomers with >10 monomers contained in our database, for which the straightness, 341 

hence high 𝜀𝑑,𝑚𝑎𝑥, are unlikely to be maintained in the experimental solid state scenario. In fact, 342 

only the exemplary and asymmetric NFA known as BDTP-4F (inset of Figure 2a)77,78 surpasses 343 

that threshold with a record 𝜀𝑑,𝑚𝑎𝑥 in our NFA dataset (2.7 × 105 M-1 cm-1, and 2.4 × 105 M-1 344 

cm-1 measured in CHCl3 solution).77 345 
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 346 

Figure 2. (a) Correlation between 𝜀𝑑,𝑚𝑎𝑥 , as calculated from TDDFT, and 1,p as obtained in 347 

the database of 479 molecules. The DFT-optimized geometry of BDTP-4F is shown in the inset. 348 

(b) Correlation between 𝜀𝑑,𝑚𝑎𝑥 (and 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠 in the secondary axis) and C2SP2 in that same 349 

database. (c) DFT-optimized geometries of archetypal NFAs ordered by increased values of 350 

1,p from bottom to top (CBM < Y6 < IEICO-4F < NIBT). Dotted red lines tentatively indicate 351 

the overall curvature of the main conjugated backbone of the molecule. 1,p and C2SP2 describe 352 

the size of the molecule in the direction of maximal atomic polarizability, and the number of 353 

doubly bound carbon atoms (sp2 hybridized) bound to two other carbons (C2), respectively. 354 

1,p is part of a bundle of three-dimensional molecular size and shape descriptors known as 355 

weighted holistic invariant molecular (WHIM) descriptors.79–81 These can be interpreted as a 356 

generalized search for the principal axes with respect to a defined atomic property.82 In this 357 

particular case, 1,p is obtained by performing a principal component analysis (PCA) on the 358 

centred atomic coordinates of the molecule using a covariance matrix (𝑠𝑗𝑘) that is weighted by 359 

the atomic polarizabilities (𝑝𝑖): 360 

𝑠𝑗𝑘 =
∑ 𝑝𝑖(𝑞𝑖𝑗−𝑞𝑗̅̅ ̅)(𝑞𝑖𝑘−𝑞𝑘̅̅̅̅ )𝐴

𝑖=1

∑ 𝑝𝑖
𝐴
𝑖=1

,   (Equation 4) 361 
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where 𝑠𝑗𝑘 is the weighted covariance between the jth and kth atomic coordinates; 𝐴 is the total 362 

number of atoms; 𝑝𝑖 is the (tabulated) polarizability of the ith atom; 𝑞𝑖𝑗 and 𝑞𝑖𝑘 represent the 363 

jth and kth coordinate of the ith atom (𝑗, 𝑘 =  𝑥, 𝑦, 𝑧), respectively; and 𝑞̅  is their average 364 

value.82 After diagonalization of the polarizability-weighted covariance matrix, the first 365 

eigenvalue (1,p) quantifies the size of the molecule in the direction of maximal polarizability 366 

variance. Interestingly, the third eigenvalue (3,p) approaches zero in planar molecules as a 367 

result of absence of variance in the out-of-plane (z) direction.82 On the other hand, C2SP2, 368 

which is not in the WHIM group, accounts for the number of doubly bound carbon atoms (sp2 369 

hybridized, SP2) bound to two other carbons (C2), thus constituting a two-dimensional 370 

descriptor of fast computation. The correlation between C2SP2 and absorption strength can be 371 

relatively easier to understand, as C2SP2 to some extent represents the size of the conjugated 372 

molecule. Enlarging the size of the molecule increases the total number of -electrons, which 373 

controls the total oscillator strength following the Thomas-Reiche-Kuhn rule. For the molecules 374 

that are extended along one direction, such as linear oligomers, increasing the size should 375 

enhance the oscillator strength of the first transition,29 i.e. the dominant one. 376 

To further interpret these two magnitudes (1,p and C2SP2) as the main correlated descriptors 377 

with 𝜀𝑑,𝑚𝑎𝑥  and 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠 , we inspect the DFT-optimized geometries of archetypal NFAs 378 

(Figure 2c). The observed trend suggests that optical extinction monotonically increases with 379 

1,p (Figure 2a) in molecules having most of their polarizable atoms arranged along a main axis, 380 

i.e., linear molecules. While CBM shows large torsion angles mainly affecting the 2,1,3-381 

benzothiadiazole (BT) moieties (thus making the molecule non-planar and increasing 3,p, see 382 

Figure S15), Y6 shows a characteristic curved geometry that limits its 𝜀𝑑,𝑚𝑎𝑥 despite showing 383 

improved planarity. The NFA with the highest 1,p (NIBT) shows both linearity and planarity, 384 

with most of the more polarizable atoms (mainly C and S) lying along the principal polarizable 385 

axis of the molecule. Thus, in terms of molecular geometry, the absorption strength of NFAs 386 

could be further enhanced by distributing most of the atomic polarizability along a main axis 387 

while keeping good planarity and minimizing curvature. However, 1,p is not the sole molecular 388 

descriptor governing absorption strength, as BDTP-4F shows ca. 40% lower 1,p (0.75 nm2) yet 389 

ca. 40% higher 𝜀𝑑,𝑚𝑎𝑥 than NIBT (Figure 2a), which suggests that the molecular symmetry of 390 

NFAs could be another important factor affecting 𝜀𝑑,𝑚𝑎𝑥. Our preliminary investigations on 391 

this issue indicate that molecular asymmetry, as quantified by the WHIM symmetry index 𝐺𝑢, 392 

might drive absorption strength higher (Figure S16a), yet we require a larger NFA database 393 

including more asymmetric molecules to further explore such an observation. Also, we 394 
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acknowledge that this observation might be biased by the systematic omission of side chains in 395 

the TDDFT calculations. By comparing 1,p in a selection of small molecule acceptors 396 

geometrically optimized with and without side chains (Figure S17a), we observe that in most 397 

cases the addition of side chains either decreases 1,p slightly or keeps it invariant. Still, the 398 

positive correlation of 1,p with respect to 𝜀𝑑,𝑚𝑎𝑥 is maintained (Figure S17b). Furthermore, 399 

the presence of napthalene imide derivatives in the molecular structure of NIBT could be 400 

hindering further increase of the absorption strength with 1,p, as suggested by our statistical 401 

analysis of frequent moieties in the selection of good light harvesters (presented in the next 402 

section). On the other hand, an increase of 𝑛𝜋  in the molecule in the form of closed-ring 403 

conjugated moieties will systematically increase C2SP2 and accordingly 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠 . These 404 

findings support the previously known design rules in terms of molecular linearity and -405 

conjugation enabling large oscillator strength in organic small molecules and polymers, and are 406 

consistent with a recent study on chromophores.30 In particular, trans- conjugated polymer 407 

stereoisomers are known to possess higher optical extinction due to their increased straightness 408 

and persistence length,29 which agrees with our observations on exemplary curved (Y6) and 409 

more linear (NIBT) NFAs. 410 

The energy of the first optical transition (𝐸1) is also of practical importance in light harvesters 411 

such as NFAs as the lower energy part of the solar spectrum, down to ~1 eV, contains a higher 412 

photon flux density. Our results show the number of heteroatoms in the molecule as the most 413 

correlated feature with 𝐸1 ( = -0.72, Figure S18a) while forming a single feature cluster, yet 414 

neither 1,p nor C2SP2 show strong correlations with 𝐸1. This fact prevents the introduction of 415 

molecular design rules targeted at E1 using 1,p or C2SP2. However, we acknowledge a negative 416 

correlation between 𝐸1  and 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥  among common NFAs that suggests further room for 417 

absorption strength increase as 𝐸1 is reduced (Figure S19). 418 

2.2.2. Chemical insights into highly absorbing molecules 419 

Beyond molecular descriptors, we investigate the relationship between the choice of moieties 420 

and absorption strength to provide further material design rules for highly absorbing conjugated 421 

small molecules. Our objective is to identify overrepresented moieties in the subset of high-422 

absorbing molecules (which we arbitrarily define as those having 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥 > 2.5, thus setting a 423 

population of size p ) with respect to the entire molecular dataset (population of size P ). 424 

Accordingly, we identify the molecular motifs present in the molecules by comparing their 425 

structures (as derived from SMILES notation) with those of a previously built database of 426 
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moieties (also SMILES-based). This database of moieties was partly inherited from a previous 427 

work42 and extended with further motifs present in our particular dataset (see Supplementary 428 

Note 4 and the spreadsheet included as Supplementary database). Afterwards, we consider that 429 

a discrete hypergeometric distribution is adequate to model our molecular dataset and the 430 

fragments found therein42 to calculate the corresponding Z-scores as 𝑍 = (𝑘 − 𝑘̅)/𝜎𝑘, where 𝑘 431 

is the number of high-absorbing molecules containing certain moiety; 𝑘̅ is its expected value, 432 

defined as 𝑝𝐾/𝑃  where 𝐾  corresponds to the number of molecules in the entire dataset 433 

containing that same moiety; and 𝜎𝑘 = √𝑝𝐾(𝑃 − 𝐾)(𝑃 − 𝑝)/(𝑃2(𝑃 − 1))  is the standard 434 

deviation of the hypergeometric distribution. Z-scores will indicate (in units of 𝜎𝑘 ) which 435 

moieties are overrepresented or underrepresented in the subset of high-performing molecules 436 

with respect to the expected values when looking at the entire dataset. Our results (Figure 3) 437 

suggest that thieno[3,2-b]thiophene (TT), thiophene (T), 2-(5,6-difluoro-3-oxo-2,3-dihydro-438 

1H-inden-1-ylidene)malononitrile (2FIC), 2-(3-oxo-2,3-dihydro-1H-inden-1-439 

ylidene)malononitrile (IC), indaceno[1,2-b:5,6-b′]dithiophene (IDT), 2-methylene 440 

malononitrile, cyanide, and aniline are particularly frequent in highly absorbing molecules. 441 

Interestingly, four of those molecular fragments (TT, T, 2FIC and IC) are contained in the 442 

chemical structure of the workhorse NFA Y6 (Figure 2c). Contrarily, napthalene imide 443 

derivatives, as typically encountered in n-type small molecules and conjugated polymers; 444 

4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione and benzo[1,2-b:4,5-b']dithiophene 445 

fragments are mostly underrepresented in the selection of high-performing light harvesters. 446 

We further study the existing correlation between pairs of moieties to understand in which way 447 

the different molecular fragments should (or should not) be combined to retrieve highly-448 

absorbing molecules. Our analysis starts by creating molecular subsets determined by the 449 

presence of a given moiety, which acts as source node (coloured in black) in the network graph 450 

shown in Figure 3b. Within that subset, we identify the high-absorbing molecules (𝑓osc,max > 451 

2.5) and compute the Z-scores of their moieties (child nodes, coloured in grey in Figure 3b) 452 

with respect to the molecules of the entire molecular subset. As per the network shown in 453 

Figure 3b, the absolute Z-scores will determine the width of the edges connecting the nodes 454 

(moieties) and its sign the colour of the edge (green for positive Z-score [overrepresentation] 455 

and red for negative Z-score [underrepresentation]). Therefore, green and thick edges connect 456 

pairs of molecules that are more frequently found in high-absorbing molecules whereas thick 457 

and red edges indicate combinations of moieties that lead to less absorbing molecules. In this 458 

analysis, we set up 8 different source nodes corresponding to the most overrepresented moieties 459 
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observed in Figure 3a. As a result, Figure 3b can be interpreted as a catalogue of design rules 460 

relating pairs of moieties with high oscillator strength in -conjugated small molecules. 461 

 462 

Figure 3. (a) Z-scores obtained from the discrete hypergeometric distribution of moieties in the 463 

highly-absorbing molecules (𝑓𝑜𝑠𝑐,𝑚𝑎𝑥 > 2.5) with respect to the entire molecular dataset, for 464 

moieties activated at least 10 times. The corresponding structures of identified moieties are 465 

shown. (b) Network graph of Z-scores relating pairs of moieties. Source nodes are coloured in 466 

black whereas child nodes are coloured in grey. The colour of the edges corresponds to the sign 467 

of the Z-score (green for positive, red for negative). The width of the edges scales with the 468 

absolute value of the Z-score.  469 

2.3. Machine-learning modelling of the absorption strength 470 

Besides providing useful chemical insights from a material design perspective, molecular 471 

descriptors can be exploited to feed regression models and draw predictions on certain target 472 

features, forming the so-called quantitative structure-property relationship (QSPR) and 473 

quantitative structure-activity relationship (QSAR) models.79,80,82,83 In the present study, we 474 

train and test several ML models fed with molecular and electronic descriptors obtained from 475 

TDDFT calculations to predict the value of 𝜀𝑑,𝑚𝑎𝑥  in conjugated small molecules and 476 

oligomers. Finally, we propose exploiting such ML model (trained with TDDFT data) to predict 477 

𝜀𝑑,𝑚𝑎𝑥 in molecules optimized using a semi-empirical quantum chemistry method, i.e. xTB.84 478 

This renders possible thanks to the geometrical similarity of the TDDFT and xTB ground state 479 

conformers, which lead to similar (geometrical) descriptors values; and the calibration of their 480 
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corresponding energy levels, as per the required inputs of the ML model herein employed. 481 

Therefore, further molecular candidates beyond the pristine dataset could be geometrically 482 

optimized using solely xTB Hamiltonians and their absorption strength predicted using such 483 

ML model. This approach effectively bypasses the use of TDDFT calculations when screening 484 

the absorption strength of novel molecules, which results in less demanding computations and 485 

higher throughput. The present ML workflow will open the possibility to accelerate the 486 

screening of high-performing molecular candidates with low-to-moderate computational 487 

requirements (further discussed in Supplementary Note 5). 488 

2.3.1. Modelling 𝜀𝑑,𝑚𝑎𝑥 with random decision forests 489 

From the analysis of descriptors shown in Section 2.2.1, we identified two main feature clusters 490 

represented by 1,p and C2SP2. We tentatively consider these two descriptors as independent 491 

variables in baseline models (such as 1-nearest neighbour and linear regression) targeted to 492 

εd,𝑚𝑎𝑥. For the model training and testing, we split our pristine dataset onto two subsets, namely 493 

the training set (gathering 70% of the data, randomly selected) and the testing set (gathering the 494 

remaining 30% of the data). Such baseline models are picked according to a recently introduced 495 

catalogue of good practices in the ML field,85 to demonstrate the requirement of more advanced 496 

regressors (namely ML) in successful data modelling. The models are scored and quantitatively 497 

compared based on workhorse fitting metrics, such as their coefficient of determination (𝑅2); 498 

their adjusted coefficient of determination (𝑅𝑎𝑑𝑗
2 , which adds penalties as the number of 499 

parameters increases, see Supplementary Note 2); and their Pearson correlation coefficient (r), 500 

as retrieved in the training (fitting) and test sets. The inherent mathematical simplicity of the 501 

baseline models results in poor fitting scorings (Figure S20 and Table S1) yet they suggest that 502 

feature selection procedures could end up in higher-performing models. 503 

Accordingly, we deploy a state-of-the-art ML method, namely a RF, to aid in both aspects: 504 

feature selection and building of 𝜀𝑑,𝑚𝑎𝑥 models of higher accuracy. RFs constitute one of the 505 

simplest and most widely applied ML methods in molecular screening and data mining 506 

studies.30,43,46,86 They are particularly appealing for their straightforward implementation 507 

through open-source Python libraries such as Scikit-Learn,87 and also for their inherent 508 

robustness against overfitting and fast optimization. RFs are formed by an ensemble of decision 509 

trees (estimators) that are executed in parallel and independently from each other. Decision 510 

trees serve to classify data by starting from a single root node that is subsequently divided into 511 

child nodes, the latter being chosen randomly among the input features. At every node splitting 512 
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step (i.e., decision making), the algorithm selects the pathway that minimizes the mean square 513 

error (MSE). Eventually, when every tree reaches its maximum extension (which is set 514 

arbitrarily via model hyperparameters), the predictions of all trees are averaged (ensembled), 515 

hence constituting the final predicted value of the RF. At this stage, myriad cross-validation 516 

(CV) techniques exist to evaluate the quality of the model and help in the tuning of 517 

hyperparameters. CV methods can estimate the ML model performance, evaluate potential 518 

over- or underfitting, and quantify how accurate the model is on drawing predictions on unseen 519 

data. In this work, we adopt two common cross-validation schemes, namely a repeated holdout 520 

CV; and a leave-one-out cross-validation (LOOCV). On the one hand, in a repeated holdout 521 

CV the pristine dataset is randomly split onto two distinct subsets, namely the training (here 522 

gathering 70% of the data) and testing (the remaining fraction of data, i.e. 30%) subsets. The 523 

model is trained and tested on the respective subsets, and the corresponding statistical metrics 524 

(R2, r, MSE, etc.) annotated. Eventually, the process is repeated k times (10-fold in this work), 525 

and all metrics are averaged to evaluate the ML model performance (its CV score). On the other 526 

hand, in a LOOCV the holdout process is taken to the extreme as the testing subset consists of 527 

a single data point while the remaining data is used in the training step. The process runs 528 

recursively for all data, thus eventually all data points are used for training and testing in the 529 

LOOCV protocol. Yet being computationally expensive, a LOOCV results in a more accurate 530 

estimate of model performance. 531 

Table S1 includes the performance of an out-of-the-box RF model trained and cross-validated 532 

using 300 trees (estimators). Exemplary comparisons between the two previous baseline models 533 

(1-nearest neighbor and linear regression) and the out-of-the-box RF model are found in Figure 534 

S20. The RF models indicate that scoring functions (𝑅2, 𝑟) well above 0.6-0.8 are feasible upon 535 

careful feature selection and further optimization of the RF regressor. Feature selection in RFs 536 

is usually performed by filtering variables based on their feature importance, which is a metric 537 

that accounts for how much a feature decreases the weighted variance in the node splitting steps 538 

of the decision trees. This property enables feature ranking to then apply myriad algorithms to 539 

filter out the least important variables as seen by the RF regressor. In this work, we perform a 540 

recursive feature elimination (RFE) procedure to the initial library of 3239 descriptors as 541 

described in Supplementary Note 2. In a RFE protocol, a significant fraction of the initial 542 

population of features is dropped in successive training steps of the RF ensemble. Features are 543 

dropped based on their corresponding feature importance until reaching an arbitrarily low 544 

number of input variables, hence simplifying the original model. Our RFE analysis shows that 545 

a threshold average 𝑅2 of 0.70 is achieved using a 12-variable model (R2 = 0.70  0.05, r = 546 
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0.84  0.03), which outperforms the RF model presented earlier while including a drastic 547 

reduction in the number of variables (from 3239 to 12). The sweet spot in model accuracy and 548 

number of degrees of freedom is found for the 10-variable model, which shows the maximum 549 

average 𝑅𝑎𝑑𝑗
2  (0.67  0.06). 550 

Notably, a threshold 𝑅2 of 0.60 is already achieved training a 3-parameter RF model (𝑅2  =551 

 0.63  0.06, 𝑅𝑎𝑑𝑗
2  =  0.62  0.06, 𝑟 =  0.80  0.03), which is particularly appealing given its 552 

simplicity. The resulting three-variable model includes one three-dimensional descriptor (1,v 553 

or WHIM_45, as computed by the RDKit library, Figure 4a), one two-dimensional descriptor 554 

(CIC3, as computed by PaDEL software, Figure 4b) and one electronic descriptor, in this case 555 

the energy level of the second molecular orbital below the frontier HOMO (HOMO-2, Figure 556 

4c). 1,v refers to the first eigenvalue of the covariance matrix weighted by the atomic van der 557 

Waals volumes; thus, 1,v is included in the multicollinear feature cluster represented by 1,p 558 

that we previously and statistically identified, showing nearly perfect correlation (r = 0.99) with 559 

1,p. Accordingly, 1,v can be exchanged by 1,p without loss of performance in the RF model. 560 

This finding confirms that the linearity of the molecule (either quantified in terms of 561 

polarizabilities or van der Waals volumes) plays a key role in determining its absorption 562 

strength in the form of 𝜀𝑑,𝑚𝑎𝑥 . On the other hand, CIC3 is a graph-based, third-order 563 

neighbourhood symmetry index82 which lacks a straightforward interpretation due to its 564 

mathematical complexity. We observe, however, that it linearly scales as log2 A, with A being 565 

the total number of vertices (atoms) in the graph (molecule)82 thus likely reflecting the size of 566 

-conjugation as per the characteristics of our dataset. The interpretation of HOMO-2 as an 567 

important descriptor is more challenging, and it is not possible to substitute it by a different 568 

descriptor without a noticeable drop in the model performance (excepting HOMO-1, which 569 

shows r = 0.96).  570 

Interestingly, electronic descriptors (in particular) are required for the RF models to achieve 571 

their highest potential and scoring despite we have not observed strong correlations in our 572 

earlier statistical analysis. To probe it, we have performed the same RFE protocol yet skipping 573 

the set of electronic descriptors among the input features. Our results show that the top 574 

performing RF models (selecting 29 variables and getting 𝑅2  =  0.58  0.06, 𝑅𝑎𝑑𝑗
2  =575 

 0.48  0.07, 𝑟 =  0.78  0.04 ; or selecting 9 variables to obtain  𝑅𝑎𝑑𝑗
2 =  0.52  0.06 , see 576 

Figure S13) are yet behind the scorings recorded when the electronic descriptors are included 577 

in the list of features. Note that the performance without electronic descriptors is lower than the 578 
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3-parameter model that includes HOMO-2 as descriptor, highlighting its positive effect on the 579 

performance of the RF regressor. 580 

 581 

Figure 4. Correlation plots for 𝜀𝑑,𝑚𝑎𝑥 and the three most important descriptors retrieved by the 582 

RF model: (a) 1,v; (b) CIC3; and (c) HOMO-2. (d) Holdout cross-validation run of a RF 583 

ensemble to predict 𝜀𝑑,𝑚𝑎𝑥. 70% of the data is randomly selected for training and the remaining 584 

fraction is used for testing; the process is repeated 10 times and the statistical metrics averaged. 585 

The RF model is trained with three molecular descriptors (1,v; CIC3; and HOMO-2) and a 586 

Morgan fingerprint vector of 64 bits. (e) Leave-one-out cross-validation (LOOCV) of that same 587 

RF model using the optimized hyperparameter of 1200 estimators. 588 

Molecular fingerprints have also been extensively exploited as input vectorial descriptors in 589 

statistical and ML models focused on feature prediction.42,88–90 Molecular fingerprints are 590 

usually represented as bit activation vectors of arbitrary length and degree of complexity, 591 

representing the absence or presence of certain molecular (bonding) pattern, moiety, functional 592 

group, or atom. In this work, we exploit the RDKit library to generate moiety fingerprints, 593 

MACCS keys, Morgan fingerprints, path-based or topological fingerprints, E-state fingerprints, 594 

and Coulomb vectors. These fingerprints are quickly computed and serve to complement and 595 

improve the learning process of the ML models employed herein. 596 

a b c
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To better analyse the influence of the different fingerprint vectors in improving the RF scoring, 597 

we trained and cross-validated the 3-parameter RF model previously found in combination with 598 

all fingerprint vectors generated. The results shown in Table S2 indicate that by adding a 599 

Morgan fingerprint vector of 64 bits to the initial set of input features the model performance 600 

can be substantially improved: 𝑅2 increases by 10% (relative), and r by another (relative) 5% 601 

(see Figure 4d). Therefore, Morgan fingerprints are particularly suitable to fine-tune the 602 

training and prediction accuracy of 𝜀𝑑,𝑚𝑎𝑥 in RF models although lacking of a straightforward 603 

physical interpretation. Additional refinement of the RF hyperparameters results in further 604 

improved models. We performed this optimization through a randomized search (in 350 605 

iterations) of the hyperparameters controlling the number of estimators in the RF, the minimum 606 

number of samples per leaf node and the minimum number of samples required to split an 607 

internal node, which constitute the main adjustable hyperparameters of the RF algorithm. These 608 

results are shown in Table S3, together with the scoring obtained in a rigorous LOOCV of the 609 

optimized RF model (Figure 4e). As an alternative ensemble of decision trees, we have also 610 

tested and optimized an Extra Trees (ET) regressor in Scikit-Learn. Its performance is, however, 611 

very close to that attained in the workhorse RF regressor (Table S3 and Figure S21). 612 

2.3.2. Bypassing TDDFT calculations through machine-learning and extended tight-binding 613 

xTB Hamiltonians have recently emerged as semi-empirical and low computational cost 614 

quantum chemistry methods.84 These have a remarkable potential in molecular screening when 615 

implemented in multilevel workflows where xTB is exploited first to identify plausible 616 

candidates using a minimal fraction of computational resources, to then leave room for higher-617 

level DFT methods in selected candidates.84 In this work, we propose exploiting a ML model 618 

trained with DFT data to predict εd,𝑚𝑎𝑥 in molecular geometries optimized using xTB (Figure 619 

5a). This is expected to enable faster molecular screening and geometrical optimization steps, 620 

as both being entirely run using xTB Hamiltonians; followed by absorption strength (𝜀𝑑,𝑚𝑎𝑥) 621 

prediction in a TDDFT-trained RF model. Notably, our estimations show that the geometrical 622 

optimization step using GFN2-xTB is ca. 3000 times faster than using DFT with a hybrid 623 

functional (B3LYP/6-311+G(d,p)), as discussed in Supplementary Note 5 and Table S4.  624 

Nevertheless, the dissimilarity between xTB- and DFT-optimized molecular geometries might 625 

have a direct impact on the value of the (three-dimensional) molecular descriptors, and hence 626 

on the final accuracy of the interpolated ML model if some of those are included. Accordingly, 627 

we have first quantitatively compared both sets of molecular (non-electronic) descriptors by 628 
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computing r in all of them and found that the median of their distributions is very close to unity 629 

in all cases (Figure S22). Based on this finding, we proceed by training the RF model with 630 

TDDFT-derived descriptors and exploring how well the model interpolates when fed with xTB-631 

derived descriptors. Figure S23a shows a leave-one-out interpolation of a RF model trained 632 

using TDDFT data and interpolated on GFN2-xTB-optimized molecules, descriptors and 633 

energy levels.84,91,92 In this kind of model validation, all TDDFT data is used in the training step 634 

excepting that for a single molecule, for which we retrieve its corresponding xTB-optimized 635 

geometry and descriptors as the sole interpolation (testing) dataset; this procedure is 636 

subsequently repeated for all molecules. Thus, the model performance is assessed by comparing 637 

the actual TDDFT-derived 𝜀𝑑,𝑚𝑎𝑥 of the molecules (x-axis in Figure 5b) with that predicted by 638 

a RF model trained with TDDFT data and interpolated using xTB-derived descriptors (y-axis 639 

in Figure 5b). This is useful to evaluate whether such RF model fed with TDDFT data could 640 

be exploited to predict 𝜀𝑑,𝑚𝑎𝑥 in unseen molecules that are geometrically optimized through 641 

xTB Hamiltonians. 642 

Our first model takes as inputs the three molecular descriptors found previously to be the most 643 

important features in the RF model together with their corresponding (64-bit) Morgan 644 

fingerprints. The scoring of the LOOCV in this preliminary model (𝑅2  =  0.53, 𝑟 =  0.74) is 645 

limited due to the existence of a mismatch between the absolute energy levels retrieved by either 646 

DFT (B3LYP) or GFN2-xTB methods (Figure S23b). Thus, the RF model trained on TDDFT 647 

data needs proper calibration of the energy levels obtained through GFN2-xTB, which we 648 

perform using either a linear regression, a support vector regressor (SVR) or an additional RF 649 

model (Figure S23c). By applying such calibration on the HOMO-2 energy levels, we obtain 650 

the champion RF model (𝑅2  =  0.61, 𝑟 =  0.78) shown in Figure 5b using three molecular 651 

descriptors and a 64-bit Morgan fingerprint vector. Hence, Figure 5b shows that molecular 652 

databases of xTB-optimized geometries could be exploited in combination with TDDFT-653 

trained ML models to predict the absorption strength ( 𝜀𝑑,𝑚𝑎𝑥 ) at significantly lower 654 

computational cost and with reasonable accuracy. The statistical analysis and ML modelling 655 

framework introduced here is thus expected to show large potential in the high-throughput 656 

screening of highly absorbing molecular candidates in combination with generative models 657 

(autoencoders and neural networks) as part of future work in the group. 658 
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 659 

Figure 5. (a) ML workflow used in this work to draw 𝜀𝑑,𝑚𝑎𝑥 predictions. A RF model is trained 660 

on TDDFT data and interpolated (validated) on xTB geometries, including also their 661 

corresponding molecular descriptors. To improve the accuracy of the model, energy levels 662 

obtained using the GFN2–xTB Hamiltonian require calibration with TDDFT values (Figure 663 

S23). (b) Leave-one-out interpolation of the resulting RF model using three input molecular 664 

descriptors (including calibrated energy levels) and a 64-bit Morgan fingerprint vector. 665 

3. Conclusion 666 

We have demonstrated that TDDFT calculations agree reasonably well with the experimental 667 

maximum molar extinction coefficient (𝜀𝑑,𝑚𝑎𝑥) in solution state by exploiting a database of 668 

TDDFT-optimized small molecular acceptors (NFAs) and donor oligomers collected over the 669 

years. This finding supports further analysis of the molecular dataset to identify structure-670 

absorption relationships by means of statistical and machine-learning (ML) methods. Through 671 

the exploration of molecular descriptors, we identify two features that are strongly correlated 672 

with 𝜀𝑑,𝑚𝑎𝑥, namely the linearity and planarity of the molecule in the direction of maximum 673 

atomic polarizability variance; and the number of sp2-hybridized carbon atoms bonded to two 674 

other carbons included in the molecule. These further suggest design rules that highly absorbing 675 

organic -conjugated molecules (such as NFAs) should follow, namely a fully conjugated, 676 

planar and linear molecular backbone with more polarisable heteroatoms. We further identify 677 

that moieties such as thieno[3,2-b]thiophene (TT), thiophene (T), 2-(5,6-difluoro-3-oxo-2,3-678 

dihydro-1H-inden-1-ylidene)malononitrile (2FIC), 2-(3-oxo-2,3-dihydro-1H-inden-1-679 

ylidene)malononitrile (IC) and indaceno[1,2-b:5,6-b′]dithiophene (IDT) appear more 680 

frequently in molecules with the highest absorption strength. Finally, we demonstrate the 681 
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feasibility of random decision forests (RFs) trained with a few (3) molecular descriptors and 682 

64-bit Morgan fingerprint vectors to predict 𝜀𝑑,𝑚𝑎𝑥 in molecular geometries optimized by a 683 

computationally less demanding method such as extended tight-binding (xTB). This approach 684 

shows the ability to bypass thorough TDDFT calculations, thus facilitating high-throughput 685 

screening of absorption strength in organic -conjugated molecules in combination with 686 

generative molecular models. 687 

4. Outlook  688 

This work was motivated by the search for molecular design rules to enable higher PCE in 689 

organic solar cells. Although maximizing light absorption for a given optical band gap is a key 690 

requirement to enable record PCE, many additional physical processes contribute to 691 

photovoltaic performance but are not considered directly in the present work, namely, exciton 692 

diffusion, charge transfer, charge separation, charge transport and charge recombination. To 693 

date, there is no holistic modelling framework nor are there sufficient data to relate these 694 

multiple processes to device performance via chemical structure. However, developments in AI 695 

and ML methods are likely to advance the status of models for multiple property - device 696 

performance relationships in the coming years. 697 

Nevertheless, understanding how light harvesting alone can be maximized by smart molecular 698 

design is significant for improving several different aspects of OPV performance. Light 699 

absorption is the primary step towards charge generation and is therefore strongly related to the 700 

macroscopic short-circuit current density of the device. According to the reciprocity relation 701 

between absorption and emission,20 high absorption should in principle lead to strong emission, 702 

therefore reducing the nonradiative energy losses, and benefitting the open-circuit voltage. In 703 

addition, high absorption allows the fabrication of thin devices, therefore facilitating charge 704 

extraction and enhancing fill factor.93 Moreover, based on the causality principle, high 705 

absorption strength would lead to higher refractive index, which takes the first interference 706 

maximum of electric field to lower thicknesses, resulting in large light harvesting potential in 707 

thinner devices. Therefore, designing highly absorbing organic π-conjugated molecules has the 708 

potential to enhance different aspects relating to the performance of OPVs in conjunction with 709 

the proposed predictive ML model. 710 

A separate aspect for future work is the impact of solid-state molecular interactions on light 711 

absorption. This paper concerns the optical absorption of isolated molecules while applications 712 

normally require thin films of molecules. Although intermolecular interactions can strongly 713 
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impact the strength as well as the spectrum of thin film absorption,94 this has been neglected in 714 

the present study due to the lack of a suitable database of computations and the lack of solid 715 

state packing information. In the future, ML approaches could be used to better understand and 716 

predict how solid state interactions affect optical absorption, and thereby improve molecular 717 

design rules. Such advances may be enabled by the growing capability in computational 718 

structure prediction as well as improved understanding of the impact of intermolecular 719 

interactions on excited state properties. 720 

 721 

  722 
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5. Experimental and theoretical methods 723 

Excited state calculation database and experimental εd,max database: TDDFT results in this 724 

study are based on the functional B3LYP and were performed by present and past group 725 

members in Prof. Jenny Nelson’s group at Imperial College London, making up more than 3500 726 

entries (corresponding to 479 unique molecules). The majority of experimental solid state thin 727 

film εd,max values for NFAs shown in Figure 1a, b and c were measured using variable-angle 728 

spectroscopic ellipsometry (VASE) for the present study. Neat films were deposited from 729 

solution by either spin- or blade-coating on glass substrates at distinct thicknesses (typically 730 

ranging from 30 to 150 nm). Ellipsometry data were acquired at three to five angles of incidence 731 

(55º-75º) using a Sopralab GES-5E rotating polarizer spectroscopic ellipsometer (SEMILAB) 732 

coupled to a charge-coupled device (CCD) detector. Experimental solution εd,max were mostly 733 

collected from literature with a majority of data taken from Ref. 95, and Y5, Y6, and Y7 734 

measured using UV-visible spectroscopy. The complete database and sources are presented in 735 

the Supplementary Database.  736 

Theoretical description of molar extinction coefficient (𝜀𝑑): To calculate the molar extinction 737 

coefficient 𝜀𝑑, let us start with defining the absorption coefficient 𝛼 in a quantum picture (we 738 

stay with SI units for the moment). The absorption coefficient for transition from state 1 to state 739 

2 can be defined as 19,96 740 

𝑑𝐼

𝑑𝑥
= −𝛼12𝐼,   (Equation S1) 741 

where 𝐼 is light intensity, determined by the energy density of an electromagnetic wave via 742 

𝐼 =
1

2
𝑛𝑐𝜖0|𝛦0|2,   (Equation S2) 743 

where 𝑛  is the refractive index, 𝜖0  vacuum permittivity, 𝑐  the speed of light, and 𝐸0  the 744 

amplitude of the electric field. For an electromagnetic wave, the rate of intensity attenuation 
𝑑𝐼

𝑑𝑥
 745 

is equal to the rate of loss of energy density from the field −
𝑑𝑈

𝑑𝑡
, and the latter is the product of 746 

transition rate 𝛤12 and transition energy ℏ𝜔12, and we have 747 

𝑑𝐼

𝑑𝑥
= −𝑁𝛤12ℏ𝜔12,   (Equation S3) 748 
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where 𝑁 is the volume density of molecules and ℏ the reduced Planck constant. Substituting 749 

for 
𝑑𝐼

𝑑𝑥
 and I in the definition of 𝛼12 we get 750 

𝛼12 =
2𝑁ℏ𝜔12𝛤12

𝑛𝑐𝜖0|𝛦0|2    (Equation S4) 751 

The transition rate 𝛤12 can be defined by Fermi’s Golden Rule and the perturbing Hamiltonian 752 

given by 𝐻 = 𝑑12𝜠𝟎 using dipole approximation, where 𝑑12 is the transition dipole moment of 753 

the transition. Considering randomly oriented transition dipoles relative to the direction of the 754 

exciting electromagnetic field, we have 755 

𝛤12 =
2𝜋

3ℏ
 𝑑12

2 |𝛦0|2𝛿(ℏ𝜔 − 𝐸2 + 𝐸1)   (Equation S5) 756 

Using 𝐸2 − 𝐸1 = ℏ𝜔12, we get 757 

𝛼12 =
4𝜋𝑁𝜔12

3𝑛𝑐𝜖0ℏ
𝑑12

2 𝛿(𝜔 − 𝜔12)   (Equation S6) 758 

From an arbitrary transition from state i to state j, we can express above equation using oscillator 759 

strength of the transition (𝑓𝑖𝑗): 760 

𝛼𝑖𝑗 =
2𝜋𝑁𝑒2

3𝜖0𝑚0𝑛𝑐
𝑓𝑖𝑗𝛿(𝜔 − 𝜔𝑖𝑗),   (Equation S7) 761 

where 𝑒 is the elementary charge, and 𝑓𝑖𝑗 =
2𝑚0𝜔12

𝑒2ℏ
𝑑𝑖𝑗

2 . Integrating over all transitions, we have 762 

𝛼(𝜔) =
2𝜋𝑁𝑒2

3𝜖0𝑚0𝑛𝑐
∑ 𝑓𝑖𝑗𝛿(𝜔 − 𝜔𝑖𝑗)𝑖𝑗    (Equation S8) 763 

To correlate the absorption coefficient (𝛼) with the molar extinction coefficient (𝜀𝑑), we need 764 

the definition of optical density (𝑂𝐷) and optical depth (𝛼𝑑). Light is attenuated by passing 765 

through a depth 𝑑 of material such that  766 

𝐼(𝑑) = 𝐼0𝑒−𝛼𝑑 = 𝐼010−𝑂𝐷   (Equation S9) 767 

And optical density, or called sometimes absorbance is defined as 768 

𝑂𝐷 = 𝜌𝜀𝑑𝑑,   (Equation S10) 769 

where 𝜌 is concentration in molar (M or mol L-1), and 𝑑 is sample length in cm. Consequently, 770 

we have  771 
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𝜀𝑑 =
𝑙𝑜𝑔10(𝑒)

𝜌
𝛼𝑐𝑚 =

𝛼𝑐𝑚

2.303𝜌
,   (Equation S11) 772 

noting that we now write the absorption coefficient per cm to distinguish from the expression 773 

for 𝛼 above, which we did assuming SI units, hence 𝛼𝑐𝑚 =
𝛼

100
. 𝜌 is moles of molecules per 774 

dm3. We now have 775 

𝜀𝑑(𝜔) = 10 𝑙𝑜𝑔10(𝑒) 𝑁𝐴
2𝜋𝑒2

3𝜖0𝑚0𝑛𝑐
∑ 𝑓𝑖𝑗𝛿(𝜔 − 𝜔𝑖𝑗)𝑖𝑗    (Equation S12) 776 

Let us recast this in terms of photon energy 𝐸 in eV, i.e. 𝐸 =
ℏ𝜔

𝑒
, rather than angular frequency, 777 

so it is easier to consider the magnitude, and finally we have 𝜀𝑑 in the unit of M-1 cm-1. 778 

𝜀𝑑(𝐸) = 10 𝑙𝑜𝑔10(𝑒) 𝑁𝐴
2𝜋𝑒ℏ

3𝜖0𝑚0𝑛𝑐
 ∑ 𝑓𝑖𝑗𝛿(𝐸 − 𝐸𝑖𝑗)𝑖𝑗    (Equation S13) 779 

This allows us to compute the theoretical 𝜀𝑑 using the calculated oscillator strength at different 780 

transitions. And the common method to calculate the oscillator strength is time-dependent-781 

density-functional-theory (aka TDDFT). 782 

Converting complex refractive index from solid state ellipsometry measurements to 𝜀𝑑: Using 783 

ellipsometry measurements from film (solid state), we can extract the complex refractive index, 784 

𝜂 785 

𝜂 = 𝑛 + 𝑖𝜅   (Equation S14) 786 

Where 𝑛 is the refractive index, and 𝜅 the extinction coefficient. The absorption coefficient 787 

(𝛼𝑐𝑚) is then determined by 788 

𝛼𝑐𝑚 =
4𝜋𝜅

𝜆𝑐𝑚
   (Equation S15) 789 

Where 𝜆𝑐𝑚 is the wavelength in centimetre. Using Equation S11, and the relationship between 790 

molar concentration 𝜌 and mass concentration 𝜌𝑀, i.e., 𝜌 =
𝜌𝑀

𝑀𝑤
, we have 791 

𝜀𝑑 = 𝑙𝑜𝑔10(𝑒) 𝛼𝑐𝑚
𝑀𝑤

𝜌𝑀
= 𝑙𝑜𝑔10(𝑒)

4𝜋𝜅

𝜆𝑐𝑚

𝑀𝑤

𝜌𝑀
   (Equation S16) 792 

Where 𝑀𝑤  is the molecular weight, g mol-1, and 𝜌𝑀  has the unit of g L-1, and is typically 793 

assumed to be 1000 g L-1.  794 



  

32 

Author contributions 795 

J.Y. and X.R.-M. contributed equally to this work and drafted the paper. J.Y. performed DFT 796 

and TDDFT calculations, absorption strength analysis, and data collection. X.R.-M. performed 797 

the statistical analysis and machine-learning study. D.P., H.D., D.B., M.A., A.V., S.F., A.A.S., 798 

and X.H. shared their DFT/TDDFT calculation results. F.E. prepared thin films of NFAs for 799 

VASE measurements. X.R.-M., V.B., and B.D. did VASE measurements. E.R. did UV-vis 800 

measurements of Y5, Y6, and Y7 in solution. G.Z. and H.-L.Y. provided Y5, Y6, and Y7. All 801 

authors gave critical review on this work. J.N. and M.C.-Q. supervised this work. 802 

Conflicts of interest 803 

There are no conflicts to declare. 804 

Acknowledgements 805 

J.N., J.Y., D.P., M.A., F.E., and E.R. thank the European Research Council for support under 806 

the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 807 

742708 and No. 648901). The authors at ICMAB acknowledge financial support from the 808 

Spanish Ministry of Science and Innovation through the Severo Ochoa” Program for Centers 809 

of Excellence in R&D (No. CEX2019-000917-S), and project PGC2018-095411-B-I00. E.R. 810 

is grateful to the Fonds de Recherche du Quebec-Nature et technologies (FRQNT) for a 811 

postdoctoral fellowship and acknowledges financial support from the European Cooperation in 812 

Science and Technology. M.A. thanks the Engineering and Physical Sciences Research Council 813 

(EPSRC) for support via doctoral studentships. F.E. thanks the Engineering and Physical 814 

Sciences Research Council (EPSRC) for support via the Post-Doctoral Prize Fellowship. X.R.-815 

M. acknowledges Prof. Olle Inganäs and the Knut and Allice Wallenberg Foundation for 816 

funding of his current postdoctoral position. H.-L. Yip thanks the support from Guangdong 817 

Major Project of Basic and Applied Basic Research (2019B030302007). The TOC figure and 818 

Figure 5a in the manuscript include freely available resources from Flaticon.com. J.Y. thank 819 

Xiaodan Ge for her support.  820 



  

33 

References 821 

1 J. Nelson, Mater. Today, 2011, 14, 462–470. 822 

2 G. Li, R. Zhu and Y. Yang, Nat. Photonics, 2012, 6, 153–161. 823 

3 A. J. Heeger, Adv. Mater., 2014, 26, 10–28. 824 

4 M. Mainville and M. Leclerc, ACS Energy Lett., 2020, 5, 1186–1197. 825 

5 H. K. H. Lee, J. Wu, J. Barbé, S. M. Jain, S. Wood, E. M. Speller, Z. Li, F. A. Castro, 826 

J. R. Durrant and W. C. Tsoi, J. Mater. Chem. A, 2018, 6, 5618–5626. 827 

6 Y. Cui, Y. Wang, J. Bergqvist, H. Yao, Y. Xu, B. Gao, C. Yang, S. Zhang, O. Inganäs, 828 

F. Gao and J. Hou, Nat. Energy, 2019, 4, 768–775. 829 

7 Y. Li, J. D. Lin, X. Che, Y. Qu, F. Liu, L. S. Liao and S. R. Forrest, J. Am. Chem. Soc., 830 

2017, 139, 17114–17119. 831 

8 S. Difley and T. Van Voorhis, J. Chem. Theory Comput., 2011, 7, 594–601. 832 

9 C. J. M. Emmott, J. A. Röhr, Mariano Campoy-Quiles, Thomas Kirchartz, 833 

Antonio Urbina, N. J. Ekins-Daukes and Jenny Nelson, Energy Environ. Sci., 2015, 8, 834 

1317–1328. 835 

10 C. J. M. Emmott, D. Moia, P. Sandwell, N. Ekins-Daukes, M. Hösel, L. Lukoschek, C. 836 

Amarasinghe, F. C. Krebs and J. Nelson, Sol. Energy Mater. Sol. Cells, 2016, 149, 837 

284–293. 838 

11 L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, 839 

Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. MacKenzie, Y. Zou, J. Nelson, Y. 840 

Zhang, Y. Sun and F. Liu, Nat. Mater., 2022, 1–8. 841 

12 J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma and H. Yan, Nat. Energy, 842 

2016, 1, 15027. 843 

13 P. Cheng, G. Li, X. Zhan and Y. Yang, Nat. Photonics, 2018, 12, 131–142. 844 

14 Y. Wang, J. Lee, X. Hou, C. Labanti, J. Yan, E. Mazzolini, A. Parhar, J. Nelson, J. Kim 845 

and Z. Li, Adv. Energy Mater., 2021, 11, 2003002. 846 



  

34 

15 J. Hou, O. Inganäs, R. H. Friend and F. Gao, Nat. Mater., 2018, 17, 119–128. 847 

16 J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, 848 

P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li and Y. Zou, Joule, 2019, 3, 1140–849 

1151. 850 

17 M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. 851 

Sariciftci and S. Bauer, Nat. Commun. 2012 31, 2012, 3, 1–7. 852 

18 W. Yang, W. Wang, Y. Wang, R. Sun, J. Guo, H. Li, M. Shi, J. Guo, Y. Wu, T. Wang, 853 

G. Lu, C. J. Brabec, Y. Li and J. Min, Joule, 2021, 5, 1209–1230. 854 

19 J. Nelson, The Physics of Solar Cells, Imperial College Press, 2003. 855 

20 U. Rau, Phys. Rev. B, 2007, 76, 085303. 856 

21 M. Azzouzi, J. Yan, T. Kirchartz, K. Liu, J. Wang, H. Wu and J. Nelson, Phys. Rev. X, 857 

2018, 8, 031055. 858 

22 F. D. Eisner, M. Azzouzi, Z. Fei, X. Hou, T. D. Anthopoulos, T. J. S. J. S. Dennis, M. 859 

Heeney and J. Nelson, J. Am. Chem. Soc., 2019, 141, 6362–6374. 860 

23 J. Yan, E. Rezasoltani, M. Azzouzi, F. Eisner and J. Nelson, Nat. Commun., 2021, 12, 861 

3642. 862 

24 A. Classen, C. L. Chochos, L. Lüer, V. G. Gregoriou, J. Wortmann, A. Osvet, K. 863 

Forberich, I. McCulloch, T. Heumüller and C. J. Brabec, Nat. Energy, 2020, 5, 711–864 

719. 865 

25 X.-K. Chen, D. Qian, Y. Wang, T. Kirchartz, W. Tress, H. Yao, J. Yuan, M. Hülsbeck, 866 

M. Zhang, Y. Zou, Y. Sun, Y. Li, J. Hou, O. Inganäs, V. Coropceanu, J.-L. Bredas and 867 

F. Gao, Nat. Energy, 2021, 6, 799–806. 868 

26 J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. A. 869 

McGarry, O. Zeika, M. K. K. Riede, C. J. J. Douglas, S. Barlow, S. R. R. Marder, D. 870 

Neher, D. Spoltore and K. Vandewal, Nat. Energy, 2017, 2, 17053. 871 

27 X.-K. Chen, V. Coropceanu, J.-L. Brédas and J.-L. Brédas, Nat. Commun., 2018, 9, 872 

5295. 873 



  

35 

28 D. Qian, Z. Zheng, H. Yao, W. Tress, T. R. Hopper, S. S. Chen, S. Li, J. Liu, S. S. 874 

Chen, J. Zhang, X.-K. K. Liu, B. Gao, L. Ouyang, Y. Jin, G. Pozina, I. A. Buyanova, 875 

W. M. Chen, O. Inganäs, V. Coropceanu, J.-L. L. Bredas, H. Yan, J. Hou, F. Zhang, A. 876 

A. Bakulin and F. Gao, Nat. Mater., 2018, 17, 703–709. 877 

29 M. S. Vezie, S. Few, I. Meager, G. Pieridou, B. Dörling, R. S. Ashraf, A. R. Goñi, H. 878 

Bronstein, I. McCulloch, S. C. Hayes, M. Campoy-Quiles and J. Nelson, Nat. Mater., 879 

2016, 15, 746–753. 880 

30 B. Kang, C. Seok and J. Lee, J. Chem. Inf. Model., 2020, 60, 5984–5994. 881 

31 S. Few, J. M. Frost, J. Kirkpatrick and J. Nelson, J. Phys. Chem. C, 2014, 118, 8253–882 

8261. 883 

32 Y. Yi, V. Coropceanu and J.-L. Brédas, J. Mater. Chem., 2011, 21, 1479. 884 

33 T. Liu and A. Troisi, J. Phys. Chem. C, 2011, 115, 2406–2415. 885 

34 J. C. Slater, Phys. Rev., 1951, 81, 385. 886 

35 B. L. Hammond, W. A. Lester and P. J. Reynolds, Monte Carlo Methods in Ab Initio 887 

Quantum Chemistry, WORLD SCIENTIFIC, 1994, vol. 1. 888 

36 R. A. Friesner, Proc. Natl. Acad. Sci., 2005, 102, 6648–6653. 889 

37 Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. 890 

Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio Jr, R. C. 891 

Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Yeh Lin, T. Van 892 

Voorhis, S. Hung Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. 893 

Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. 894 

Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. 895 

Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, 896 

M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. 897 

Min Rhee, J. Ritchie, E. Rosta, C. David Sherrill, A. C. Simmonett, J. E. Subotnik, H. 898 

Lee Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. 899 

Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, 900 

M. Head-Gordon, Yihan Shao, L. Fusti Molnar, Yousung Jung, Jörg Kussmann, 901 

Christian Ochsenfeld, S. T. Brown, A. T.B. Gilbert, L. V. Slipchenko, S. 902 



  

36 

V. Levchenko, D. P. O’Neill, R. A. D. Jr, R. C. Lochan, Tao Wang, G. J.O. Beran, N. 903 

A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S. H. Chien, Alex Sodt, R. 904 

P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, 905 

Brian Austin, Jon Baker, E. F. C. Byrd, Holger Dachsel, R. J. Doerksen, 906 

Andreas Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, 907 

Andreas Heyden, So Hirata, Chao-Ping Hsu, Gary Kedziora, R. Z. Khalliulin, 908 

Phil Klunzinger, A. M. Lee, M. S. Lee, WanZhen Liang, Itay Lotan, Nikhil Nair, 909 

Baron Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, Jim Ritchie, Edina Rosta, C. 910 

D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. W. H. F. S. III, Weimin Zhang, A. 911 

T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, Arieh Warshel, W. J. Hehre, H. 912 

L. W. H. F. S. III, Jing Kong, A. I. Krylov, P. M. W. Gill and Martin Head-Gordon, 913 

Phys. Chem. Chem. Phys., 2006, 8, 3172–3191. 914 

38 P. Raccuglia, K. C. Elbert, P. D. F. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, 915 

S. A. Friedler, J. Schrier and A. J. Norquist, Nat. 2016 5337601, 2016, 533, 73–76. 916 

39 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and A. Walsh, Nat. 2018 917 

5597715, 2018, 559, 547–555. 918 

40 J. Westermayr and P. Marquetand, Chem. Rev., 2021, 121, 9873–9926. 919 

41 F. Häse, L. M. Roch, P. Friederich and A. Aspuru-Guzik, Nat. Commun., 2020, 11, 1–920 

11. 921 

42 S. A. Lopez, B. Sanchez-Lengeling, J. de Goes Soares and A. Aspuru-Guzik, Joule, 922 

2017, 1, 857–870. 923 

43 H. Sahu, W. Rao, A. Troisi and H. Ma, Adv. Energy Mater., 2018, 8, 1–9. 924 

44 W. K. Tatum, D. Torrejon, A. B. Resing, J. W. Onorato and C. K. Luscombe, Comput. 925 

Mater. Sci., 2021, 197, 110599. 926 

45 N. Majeed, M. Saladina, M. Krompiec, S. Greedy, C. Deibel and R. C. I. MacKenzie, 927 

Adv. Funct. Mater., 2019, 1907259, 1907259. 928 

46 X. Rodríguez-Martínez, E. Pascual-San-José, Z. Fei, M. Heeney, R. Guimerà and M. 929 

Campoy-Quiles, Energy Environ. Sci., 2021, 14, 986–994. 930 

47 X. Rodríguez-Martínez, E. Pascual-San-José and M. Campoy-Quiles, Energy Environ. 931 



  

37 

Sci., 2021, 14, 3301–3322. 932 

48 K. Kranthiraja and A. Saeki, Adv. Funct. Mater., 2021, 31, 1–11. 933 

49 E. O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli, J. Aguilera-Iparraguirre and A. 934 

Aspuru-Guzik, Annu. Rev. Mater. Res., 2015, 45, 195–216. 935 

50 J. Hachmann, R. Olivares-amaya, S. Atahan-evrenk, C. Amador-bedolla, R. S. 936 

Sanchez-carrera, A. Gold-parker, L. Vogt, A. M. Brockway and A. Aspuru-Guzik, J. 937 

Phys. Chem. Lett., 2011, 2, 2241–2251. 938 

51 A. Mahmood, J.-L. Wang, Asif Mahmood and Jin-Liang Wang, Energy Environ. Sci., 939 

2021, 14, 90–105. 940 

52 P. Malhotra, S. Biswas, F.-C. Chen and G. D. Sharma, Sol. Energy, 2021, 228, 175–941 

186. 942 

53 A. Kuzmich, D. Padula, H. Ma and A. Troisi, Energy Environ. Sci., 2017, 10, 395–401. 943 

54 I. Y. Kanal, S. G. Owens, J. S. Bechtel and G. R. Hutchison, J. Phys. Chem. Lett., 944 

2013, 4, 1613–1623. 945 

55 L. Wilbraham, E. Berardo, L. Turcani, K. E. Jelfs and M. A. Zwijnenburg, J. Chem. 946 

Inf. Model., 2018, 58, 2450–2459. 947 

56 E. O. Pyzer-Knapp, K. Li and A. Aspuru-Guzik, Adv. Funct. Mater., 2015, 25, 6495–948 

6502. 949 

57 J. Hachmann, R. Olivares-Amaya, A. Jinich, A. L. Appleton, M. A. Blood-Forsythe, L. 950 

R. Seress, C. Román-Salgado, K. Trepte, S. Atahan-Evrenk, S. Er, S. Shrestha, R. 951 

Mondal, A. Sokolov, Z. Bao and A. Aspuru-Guzik, Energy Environ. Sci., 2014, 7, 698–952 

704. 953 

58 N. Bérubé, V. Gosselin, J. Gaudreau and M. Côté, J. Phys. Chem. C, 2013, 117, 7964–954 

7972. 955 

59 S. Nagasawa, E. Al-Naamani and A. Saeki, J. Phys. Chem. Lett., 2018, 9, 2639–2646. 956 

60 Y. Huang, J. Zhang, E. S. Jiang, Y. Oya, A. Saeki, G. Kikugawa, T. Okabe, T. Okabe, 957 

F. S. Ohuchi and F. S. Ohuchi, J. Phys. Chem. C, 2020, 124, 12871–12882. 958 



  

38 

61 W. Sun, M. Li, Y. Li, Z. Wu, Y. Sun, S. Lu, Z. Xiao, B. Zhao and K. Sun, Adv. Theory 959 

Simulations, 2019, 2, 1–9. 960 

62 R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann, S. Atahan-Evrenk, R. S. 961 

Sánchez-Carrera, L. Vogt and A. Aspuru-Guzik, Energy Environ. Sci., 2011, 4, 4849–962 

4861. 963 

63 H. Sahu, F. Yang, X. Ye, J. Ma, W. Fang and H. Ma, J. Mater. Chem. A, 2019, 7, 964 

17480–17488. 965 

64 D. Padula, J. D. D. Simpson and A. Troisi, Mater. Horizons, 2019, 6, 343–349. 966 

65 L. Simine, T. C. Allen and P. J. Rossky, Proc. Natl. Acad. Sci., 2020, 117, 13945–967 

13948. 968 

66 J. F. Joung, M. Han, J. Hwang, M. Jeong, D. H. Choi and S. Park, JACS Au, 2021, 1, 969 

427–438. 970 

67 S. Ye, W. Hu, X. Li, J. Zhang, K. Zhong, G. Zhang, Y. Luo, S. Mukamel and J. Jiang, 971 

Proc. Natl. Acad. Sci., 2019, 116, 201821044. 972 

68 C. Nantasenamat, C. Isarankura-Na-Ayudhya, N. Tansila, T. Naenna and V. 973 

Prachayasittikul, J. Comput. Chem., 2007, 28, 1275–1289. 974 

69 E. J. Beard, G. Sivaraman, Á. Vázquez-Mayagoitia, V. Vishwanath and J. M. Cole, Sci. 975 

Data, 2019, 6, 307. 976 

70 S. Varghese and S. Das, J. Phys. Chem. Lett., 2011, 2, 863–873. 977 

71 C. L. Donley, J. Zaumseil, J. W. Andreasen, M. M. Nielsen, H. Sirringhaus, R. H. 978 

Friend and J. S. Kim, J. Am. Chem. Soc., 2005, 127, 12890–12899. 979 

72 P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J.-S. S. Kim, C. M. Ramsdale, H. 980 

Sirringhaus and R. H. Friend, Phys. Rev. B, 2003, 67, 064203. 981 

73 C. W. Yap, J. Comput. Chem., 2011, 32, 1466–1474. 982 

74 D.-S. Cao, Q.-S. Xu, Q.-N. Hu and Y.-Z. Liang, Bioinformatics, 2013, 29, 1092–1094. 983 

75 H. Moriwaki, Y.-S. Tian, N. Kawashita and T. Takagi, J. Cheminform., 2018, 10, 4. 984 



  

39 

76 RDKit: Open-Source Cheminformatics Software. 985 

77 Z. Luo, R. Ma, Y. Xiao, T. Liu, H. Sun, M. Su, Q. Guo, G. Li, W. Gao, Y. Chen, Y. 986 

Zou, X. Guo, M. Zhang, X. Lu, H. Yan and C. Yang, Small, 2020, 16, 2001942. 987 

78 M. Y. Mehboob, M. Adnan, R. Hussain and Z. Irshad, Synth. Met., 2021, 277, 116800. 988 

79 R. Todeschini, M. Lasagni and E. Marengo, J. Chemom., 1994, 8, 263–272. 989 

80 R. Todeschini and P. Gramatica, in 3D QSAR in Drug Design, Kluwer Academic 990 

Publishers, Dordrecht, pp. 355–380. 991 

81 R. Todeschini and P. Gramatica, Quant. Struct. Relationships, 1997, 16, 113–119. 992 

82 R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley, 993 

Second Edi., 2009, vol. 41. 994 

83 R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley, 2000. 995 

84 C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher 996 

and S. Grimme, WIREs Comput. Mol. Sci., , DOI:10.1002/wcms.1493. 997 

85 N. Artrith, K. T. Butler, F.-X. Coudert, S. Han, O. Isayev, A. Jain and A. Walsh, Nat. 998 

Chem., 2021, 13, 505–508. 999 

86 M. Lee, Adv. Energy Mater., 2019, 1900891. 1000 

87 F. Pedregosa, R. Weiss, M. Brucher, G. Varoquaux, A. Gramfort, V. Michel, B. 1001 

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, 1002 

A. Passos, D. Cournapeau, M. Brucher, M. Perrot and É. Duchesnay, J. Mach. Learn. 1003 

Res., 2011, 12, 2825–2830. 1004 

88 D. Rogers and M. Hahn, J. Chem. Inf. Model., 2010, 50, 742–754. 1005 

89 L. H. Hall and L. B. Kier, J. Chem. Inf. Comput. Sci., 1995, 35, 1039–1045. 1006 

90 D. C. Elton, Z. Boukouvalas, M. S. Butrico, M. D. Fuge and P. W. Chung, Sci. Rep., 1007 

2018, 8, 9059. 1008 

91 C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory Comput., 2019, 15, 1652–1009 

1671. 1010 



  

40 

92 S. Grimme, C. Bannwarth and P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1011 

1989–2009. 1012 

93 F. Deledalle, T. Kirchartz, M. S. Vezie, M. Campoy-Quiles, P. S. Tuladhar, J. Nelson 1013 

and J. R. Durrant, Phys. Rev. X, 2015, 5, 1–13. 1014 

94 F. C. Spano, Acc. Chem. Res., 2010, 43, 429–439. 1015 

95 G. Forti, A. Nitti, P. Osw, G. Bianchi, R. Po and D. Pasini, Int. J. Mol. Sci., 2020, 21, 1016 

8085. 1017 

96 L. A. A. Pettersson, L. S. Roman and O. Inganäs, J. Appl. Phys., 1999, 86, 487–496. 1018 

97 S. Karuthedath, J. Gorenflot, Y. Firdaus, N. Chaturvedi, C. S. P. De Castro, G. T. 1019 

Harrison, J. I. Khan, A. Markina, A. H. Balawi, T. A. Dela Peña, W. Liu, R.-Z. Liang, 1020 

A. Sharma, S. H. K. Paleti, W. Zhang, Y. Lin, E. Alarousu, D. H. Anjum, P. M. 1021 

Beaujuge, S. De Wolf, I. McCulloch, T. D. Anthopoulos, D. Baran, D. Andrienko and 1022 

F. Laquai, Nat. Mater., 2021, 20, 378–384. 1023 

98 Z. Cong, B. Zhao, Z. Chen, W. Wang, H. Wu, J. Liu, J. Wang, L. Wang, W. Ma and C. 1024 

Gao, ACS Appl. Mater. Interfaces, 2019, 11, 16795–16803. 1025 

99 W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang and J. Hou, J. Am. Chem. Soc., 1026 

2017, 139, 7148–7151. 1027 

100 W. Wang, B. Zhao, Z. Cong, Y. Xie, H. Wu, Q. Liang, S. Liu, F. Liu, C. Gao, H. Wu 1028 

and Y. Cao, ACS Energy Lett., 2018, 3, 1499–1507. 1029 

101 S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielsen, C. H. 1030 

Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. 1031 

Salleo, J. R. Durrant and I. McCulloch, Nat. Commun., 2016, 7, 1–11. 1032 

102 D. Baran, T. Kirchartz, S. Wheeler, S. Dimitrov, M. Abdelsamie, J. Gorman, R. S. 1033 

Ashraf, S. Holliday, A. Wadsworth, N. Gasparini, P. Kaienburg, H. Yan, A. Amassian, 1034 

C. J. Brabec, J. R. Durrant and I. McCulloch, Energy Environ. Sci., 2016, 9, 3783–1035 

3793. 1036 

103 N. A. Cooling, E. F. Barnes, F. Almyahi, K. Feron, M. F. Al-Mudhaffer, A. Al-Ahmad, 1037 

B. Vaughan, T. R. Andersen, M. J. Griffith, A. S. Hart, A. G. Lyons, W. J. Belcher and 1038 



  

41 

P. C. Dastoor, J. Mater. Chem. A, 2016, 4, 10274–10281. 1039 

104 M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal 1040 

and R. A. J. Janssen, Angew. Chemie Int. Ed., 2003, 42, 3371–3375. 1041 

105 D. Baran, R. S. Ashraf, D. A. Hanifi, M. Abdelsamie, N. Gasparini, J. A. Röhr, S. 1042 

Holliday, A. Wadsworth, S. Lockett, M. Neophytou, C. J. M. Emmott, J. Nelson, C. J. 1043 

Brabec, A. Amassian, A. Salleo, T. Kirchartz, J. R. Durrant and I. McCulloch, Nat. 1044 

Mater., 2017, 16, 363–369. 1045 

106 M. Li, Y. Liu, W. Ni, F. Liu, H. Feng, Y. Zhang, T. Liu, H. Zhang, X. Wan, B. Kan, Q. 1046 

Zhang, T. P. Russell and Y. Chen, J. Mater. Chem. A, 2016, 4, 10409–10413. 1047 

107 N. Qiu, H. Zhang, X. Wan, C. Li, X. Ke, H. Feng, B. Kan, H. Zhang, Q. Zhang, Y. Lu 1048 

and Y. Chen, Adv. Mater., 2017, 29, 1604964. 1049 

108 C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. 1050 

Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, 1051 

M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. 1052 

Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke and T. 1053 

E. Oliphant, Nature, 2020, 585, 357–362. 1054 

109 P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. 1055 

Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, 1056 

K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, 1057 

İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. 1058 

Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa 1059 

and P. van Mulbregt, Nat. Methods, 2020, 17, 261–272. 1060 

110 N. S. Raju, R. Bilgic, J. E. Edwards and P. F. Fleer, Appl. Psychol. Meas., 1997, 21, 1061 

291–305. 1062 

111 G. Moreau, J. Chem. Inf. Comput. Sci., 1997, 37, 929–938. 1063 

  1064 



  

42 

Supporting Information 1065 

Identifying structure-absorption relationships and predicting absorption strength of non-1066 

fullerene acceptors for organic photovoltaics 1067 

 1068 

Jun Yan,a,# Xabier Rodríguez-Martínez,*,b,c,# Drew Pearce,a Hana Douglas,a Danai Bili,a 1069 

Mohammed Azzouzi,a Flurin Eisner,a Alise Virbule,a Elham Rezasoltani,a Valentina Belova,c 1070 

Bernhard Dörling, c Sheridan Few, a,f Anna A. Szumska, a Xueyan Hou,a Guichuan Zhang,d Hin-1071 

Lap Yip,d,e Mariano Campoy-Quiles *,c and Jenny Nelson*,a 1072 

 1073 

# J.Y. and X.R.-M. contributed equally to this work. 1074 

 1075 

a Department of Physics, Imperial College London, SW7 2AZ, London, United Kingdom 1076 

Email: jenny.nelson@imperial.ac.uk 1077 

 1078 

b Electronic and Photonic Materials (EFM), Department of Physics, Chemistry and Biology 1079 

(IFM), Linköping University, Linköping, SE 581 83 Sweden 1080 

Email: xabier.rodriguez.martinez@liu.se 1081 

 1082 

c Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra 1083 

08193, Spain 1084 

Email: mcampoy@icmab.es 1085 

 1086 

d Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of 1087 

Luminescent Materials and Devices, South China University of Technology, Guangzhou 1088 

510640, P. R. China 1089 

 1090 

e Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee 1091 

Avenue, Kowloon, Hong Kong 1092 

 1093 

f Sustainability Research Institute, School of Earth and Environment, University of Leeds, 1094 

Leeds, LS2 9JT 1095 

 1096 

  1097 

mailto:jenny.nelson@imperial.ac.uk
mailto:xabier.rodriguez.martinez@liu.se
mailto:mcampoy@icmab.es


  

43 

Supplementary Note 1. Chemical names and nomenclature of the materials 1098 

highlighted in this work. 1099 

PC61BM: [6,6]-Phenyl-C61-butyric acid methyl ester 1100 

PC71BM: [6,6]-Phenyl-C71-butyric acid methyl ester 1101 

ICBA: 1′,1′′,4′,4′′-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2′,3′,56,60:2′′,3′′][5,6]fullerene-1102 

C60 1103 

Y5: (2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-1104 

dihydro[1,2,5]thiadiazolo[3,4e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g] 1105 

thieno[2',3':4,5]thieno[3,2-b]-indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1106 

1H-indene-2,1-diylidene))dimalononitrile) 1107 

Y6: 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-1108 

[1,2,5]thiadiazolo[3,4-e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-1109 

g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-1110 

2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile 1111 

Y7: 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-1112 

[1,2,5]thiadiazolo[3,4-e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-1113 

g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-dichloro-3-oxo-1114 

2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile 1115 

Y11: 2,2'-((2Z,2'Z)-((6,12,13-tris(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-6H-1116 

thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-1117 

b][1,2,3]triazolo[4,5-e]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-1118 

dihydro-1H-indene-2,1-diylidene))dimalononitrile 1119 

Y12: 2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-1120 

[1,2,5]thiadiazolo[3,4-e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-1121 

g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-1122 

2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile 1123 

O-IDTBR: (5Z,5'Z)-5,5'-(((4,4,9,9-tetrakis(n-octyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-1124 

b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methaneylylidene))bis(3-1125 

ethyl-2-thioxothiazolidin-4-one) 1126 
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O-IDFBR: (5Z,5'Z)-5,5'-(((6,6,12,12-tetraoctyl-6,12-dihydroindeno[1,2-b]fluorene-2,8-1127 

diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methaneylylidene))bis(3-ethyl-2-1128 

thioxothiazolidin-4-one) 1129 

EH-IDTBR: (5Z,5'Z)-5,5'-(((4,4,9,9-tetrakis(2-ethylhexyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-1130 

b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methaneylylidene))bis(3-1131 

ethyl-2-thioxothiazolidin-4-one) 1132 

IDIC: 2,2'-((2Z,2'Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-1133 

2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-1134 

diylidene))dimalononitrile 1135 

SN6IC-4F: 2,2'-((2Z,2'Z)-((thieno[3,2-1136 

b]thieno[2''',3''':4'',5'']pyrrolo[2'',3'':4',5']thieno[2',3':4,5]thieno[2,3- d]pyrrole,4,9-dihydro-4,9-1137 

di-1-octylnonyl-2,7-diyl)bis(methanylylidene))bis((5,6-difluoro-3-oxo-2,3 -dihydro-1H-1138 

indene-2,1-diylidene))dimalononitrile 1139 

ITIC: 2,2'-[[6,6,12,12-tetrakis(4-hexylphenyl)-6,12-dihydrodithieno[2,3-d:2',3'-d']-s-1140 

indaceno[1,2-b:5,6-b']dithiophene-2,8-diyl]bis[methylidyne(3-oxo-1H-indene-2,1(3H)-1141 

diylidene)]]bis[propanedinitrile] 1142 

ITIC-C2C6: 2,2'-[[6,6,12,12-tetrakis(2-ethylhexyl)-6,12-dihydrodithieno[2,3-d:2',3'-d']-s-1143 

indaceno[1,2-b:5,6-b']dithiophene-2,8-diyl]bis[methylidyne(3-oxo-1H-indene-2,1(3H)-1144 

diylidene)]]bis[propanedinitrile] 1145 

ITIC-C8: 2,2'-[[6,6,12,12-tetrakis(n-octyl)-6,12-dihydrodithieno[2,3-d:2',3'-d']-s-1146 

indaceno[1,2-b:5,6-b']dithiophene-2,8-diyl]bis[methylidyne(3-oxo-1H-indene-2,1(3H)-1147 

diylidene)]]bis[propanedinitrile] 1148 

IT-4F: 9-Bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,11-1149 

tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene 1150 

CBM: 2,2'-(7,7'-(9-(heptadecan-9-yl)-9H-carbazole-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-1151 

7,4-diyl))bis(methan-1-yl-1-ylidene)dimalononitrile 1152 

FBR: 5,5′-[(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(2,1,3-benzothiadiazole-7,4-1153 

diylmethylidyne)]bis[3-ethyl-2-thioxo-4-thiazolidinone] 1154 
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BTPM: 2,2'-((2Z,2'Z)-((12,13-diisobutyl-3,9-dimethyl-5,7,12,13-tetrahydro-1155 

[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-1156 

g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methaneylylidene))bis(6-methyl-3-oxo-1157 

2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile 1158 

BTTPC: 2,2'-((6Z,6'Z)-((12,13-diisobutyl-3,9-dimethyl-5,7,12,13-tetrahydro-1159 

[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-1160 

g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methaneylylidene))bis(5-oxo-5,6-dihydro-1161 

7H-indeno[5,6-b]thiophene-6,7-diylidene))dimalononitrile 1162 

BTDTP-4F: 2,2'-((2Z,2'Z)-((3,12-dimethyl-13,14-dihydro-12H-[1,2,5]thiadiazolo[3,4-1163 

e]thieno[2'',3'':4',5']pyrrolo[2',3':4,5]thieno[3,2-1164 

b]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]indole-2,10-1165 

diyl)bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-1166 

diylidene))dimalononitrile 1167 

BDTP-4F: 2,2'-(((1Z,1'Z)-(1,11-dimethyl-4,6,6c,10,11,11b,12,13-octahydro-2H-1168 

[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']pyrrolo[2',3':4,5]thieno[3,2-1169 

b]thieno[2',3':4,5]pyrrolo[3,2-g]indole-2,9(1H)-diylidene)bis(methaneylylidene))bis(5,6-1170 

difluoro-3-oxo-2,3,3a,6,7,7a-hexahydro-1H-indene-2-yl-1-ylidene))dimalononitrile 1171 

BTTPTP-2OYPD: 2,2'-((2Z,2'Z)-((13,14-diisobutyl-5,7,13,14-tetrahydro-1172 

[1,2,5]thiadiazolo[3,4-e]thieno[2''',3''':4'',5'']thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-1173 

g]thieno[2'',3'':4',5']thieno[2',3':4,5]thieno[3,2-b]indole-2,10-1174 

diyl)bis(methaneylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile 1175 

BTPTTT-2OYPD: 2,2'-((2Z,2'Z)-((13,14-diisobutyl-5,7,13,14-tetrahydro-1176 

[1,2,5]thiadiazolo[3,4-e]thieno[2''',3''':4'',5'']thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-1177 

g]thieno[2'',3'':4',5']thieno[2',3':4,5]thieno[3,2-b]indole-2,10-1178 

diyl)bis(methaneylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile 1179 

IEICO: 2,2′-((2Z,2′Z)-((5,5′-(4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydros-indaceno[1,2-1180 

b:5,6-b′]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-1181 

diyl))bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile 1182 

IEICO-4F: 2,2'-((2Z,2'Z)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-sindaceno[1,2-b:5,6-1183 

b']dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2- 1184 
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diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1- 1185 

diylidene))dimalononitrile 1186 

BTTPTP-4Cl: 2,2'-((2Z,2'Z)-((13,14-diisobutyl-5,7,13,14-tetrahydro-[1,2,5]thiadiazolo[3,4-1187 

e]thieno[2''',3''':4'',5'']thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-1188 

g]thieno[2'',3'':4',5']thieno[2',3':4,5]thieno[3,2-b]indole-2,10-1189 

diyl)bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-1190 

diylidene))dimalononitrile 1191 

INPIC-4F: [(Z)-2-({24-[(Z)-(1-Dicyanomethylidene-5,6-difluoro-3-oxo-2-1192 

indanylidene)methyl]-15,15,30,30-tetrakis(p-hexylphenyl)-12,27-dioctyl-5,8,20,23-tetrathia-1193 

12,27-diazanonacyclo[16.12.0.03,16.04,14.06,13.07,11.019,29.021,28.022,26]triaconta-1194 

1(18),2,4(14),6(13),7(11),9,16,19(29),21(28),22(26),24-undecaen-9-yl}methylidene)-5,6-1195 

difluoro-3-oxo-1-indanylidene]propanedinitrile 1196 

o-IO1: 2-((Z)-2-((5-(7-(5-(((Z)-1-(dicyanomethylene)-5,6-difluoro-3-oxo-1,3-dihydro-2H-1197 

inden-2-ylidene)methyl)-3-((2-ethylhexyl)oxy)thiophen-2-yl)-4,4,9,9-tetraoctyl-4,9-dihydro-1198 

s-indaceno[1,2-b:5,6-b']dithiophen-2-yl)-4-(2-ethylhexyl)thiophen-2-yl)methylene)-5,6-1199 

difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile 1200 

TfIF-4FIC: [(Z)-2-({26-[(Z)-(1-Dicyanomethylidene-5,6-difluoro-3-oxo-2-1201 

indanylidene)methyl]-7,7,16,16,23,23,32,32-octaoctyl-11,27-1202 

dithianonacyclo[17.13.0.03,17.04,15.06,13.08,12.020,31.022,29.024,28]dotriaconta-1203 

1(19),2,4(15),5,8(12),9,13,17,20(31),21,24(28),25,29-tridecaen-10-yl}methylidene)-5,6-1204 

difluoro-3-oxo-1-indanylidene]propanedinitrile 1205 

NIBT: (7Z,7'Z)-7,7'-(((4,4,9,9-tetrakis(4-octylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-1206 

b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methaneylylidene))bis(2-1207 

(2-ethylhexyl)-1H-indeno[6,7,1-def]isoquinoline-1,3,6(2H,7H)-trione) 1208 

  1209 
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 1210 

Figure S1. Highest occupied molecular orbital (HOMO) and lowest unocuppied molecular 1211 

orbital (LUMO) energy levels of representative donor and acceptor molecules as retrieved 1212 

from TDDFT calculations. Molecules considered as NFAs in this work show proper HOMO 1213 

and LUMO energy level alignment to act as electron acceptor when in a bulk heterojunction 1214 

blend with commonly used donors, such as P3HT, PCDTBT, PM6 or PBDB-T. 1215 

  1216 
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 1217 

Figure S2. Solvent effect on the maximum oscillator strength ( 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥 ) in TDDFT 1218 

calculations. (a) 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥 in Chlorobenzene (CB) versus in vacuum for 56 organic molecules 1219 

including common NFAs. (b) 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥  in various organic solvents versus in vacuum for 7 1220 

different organic molecules, O-IDFBR, O-IDTBR, IT-4F, ITIC, Y5, Y6, and Y7. Noting here 1221 

that 𝜀𝑑,𝑚𝑎𝑥 ∝ 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥. TDDFT was performed under B3LYP/6-311+G(d,p) using Polarizable-1222 

continuum-solvent-model (PCM). We can see that the choice of solvent does not affect 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥 1223 

much, and that a good linear correlation between solvent and vacuum 𝑓𝑜𝑠𝑐,𝑚𝑎𝑥 is obtained. This 1224 

tells us that the same correlation between TDDFT and experiments will be maintained based 1225 

on either vacuum environment or polarized medium, which allows us focus on TDDFT results 1226 

from vacuum calculations only. This is a great benefit since most of the TDDFT calculations 1227 

by the present and past group members were done in vacuum, allowing us to have a larger 1228 

database. 1229 

  1230 
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 1231 

Figure S3. (a) Correlation between the maximum of the absorption coefficient ( 𝜀𝑑,𝑚𝑎𝑥 ) 1232 

obtained in solution state with the TDDFT calculated values. (b) Same dataset yet plotted in 1233 

terms of maximum molar extinction coefficient εd,max). A significant fraction of this dataset 1234 

was collected from literature.95,97–107 When required, a refractive index of 1.5 and a solid density 1235 

of 1000 g L-1 were considered for all materials. 1236 

  1237 
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 1238 

 1239 

Figure S4. Comparison of maximum molar extinction coefficient ( 𝜀𝑑,𝑚𝑎𝑥 ) between film 1240 

experiments and TDDFT calculations in vacuum (20 data points). The experimental data of 1241 

𝜀𝑑,𝑚𝑎𝑥 in film are either measured or collected from literature, noting that different values may 1242 

be present for the same material as they were collected from different papers. Unit of 𝜀𝑑,𝑚𝑎𝑥 is 1243 

M-1 cm-1. Grey dashed lines indicate the perfect match between x- and y-axis. The detailed data 1244 

for generating this figure is presented in the Supplementary Database. 1245 

 1246 
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 1248 

Figure S5. (a) Maximum absorption coefficient (𝛼𝑚𝑎𝑥) in solution and film. Grey squares 1249 

correspond to data obtained from literature.97,99 (b) Maximum absorption coefficient in film and 1250 

as obtained in their corresponding TDDFT calculations. A few data points (labelled as lit.) 1251 

correspond to values extracted from literature.97,99 1252 

 1253 

  1254 
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 1255 

Figure S6. Effect of the number of -electrons on the comparison between experimental 1256 

(solution and film) maximum molar extinction coefficients and TDDFT results for the NFAs 1257 

studied. (a) Experimental εd,max/𝜋 in solution versus calculated εd,max/𝜋  using TDDFT, (b) 1258 

experimental εd,max/𝜋   in film (solid state) versus that in solution; and (c) experimental 1259 

εd,max/𝜋  in solid state film versus calculated εd,max/𝜋  using TDDFT. Unit of εd,max/𝜋  is M-1260 

1 cm-1. 1261 
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 1263 

Figure S7. Histogram of the number of atoms present in the molecules of our TDDFT (B3LYP) 1264 

dataset. Blue bars correspond to the molecules found originally in the dataset (3515 entries). 1265 

Orange bars represent the distribution of the number of atoms found in the 479 molecules 1266 

selected based on lowest energy conformation criteria. 1267 

  1268 
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Supplementary Note 2. Description of the TDDFT database, statistical and machine-learning 1269 

methods. 1270 

The pristine data source of this work consists of a database of 3515 molecules optimized via 1271 

DFT using the B3LYP functional as implemented in Gaussian09 software package. The 1272 

database gathers original calculations performed for this particular study on conjugated small 1273 

molecules as well as others developed in-house during the past years, including diverse 1274 

conjugated small molecules, fullerenes and conjugated (co-)oligomers in distinct conformations 1275 

(i.e., cis-/trans-).29 Given the variety of input sources, the corresponding data cleaning 1276 

procedure consists of: i) identifying duplicates based on molecular weight; and ii) picking the 1277 

lowest energy molecular conformation among each set of duplicates. The filtering results in a 1278 

final selection of 479 conjugated small molecules and oligomers optimized at the B3LYP level 1279 

of theory. The resulting database gathers a variety of basis sets employed in the geometrical 1280 

optimization step: 48% of the molecules were optimized using the 6-31G(d) set and 36% of 1281 

them using the more computationally-expensive 6-311+G(d,p), see Figure S8. Furthermore, 1282 

the chemical heterogeneity of the studied database is leaned toward known molecules and 1283 

moieties of frequent use in high-performing solar energy harvesting applications, see Figure S9 1284 

and Figure S10. Side chains are systematically omitted or substituted by methyl groups in all 1285 

calculations to reduce the computational cost. 1286 
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 1287 

Figure S8. Histogram of the basis set employed in the geometrical optimization of the 479 1288 

molecules found in the curated DFT database. 1289 

 1290 

Figure S9. Histogram of the moieties present in the DFT database of 479 conjugated small 1291 

molecules and oligomers. Moieties labels correspond to the chemical structures shown in 1292 

Supplementary Note 4. 1293 
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 1294 

Figure S10. The 10 most frequent moieties together with their corresponding ID number. 1295 

 1296 

Molecular descriptors are computed using four different open-source software packages and 1297 

Python libraries (such as NumPy),108 including 1D, 2D and 3D descriptors as retrieved from 1298 

the corresponding DFT optimized geometries. The software bundle employed includes PaDEL 1299 

(1874 descriptors),73 PyChem (1094 descriptors),74 Mordred (1826 descriptors)75 and RDKit 1300 

v2021.03.2. (1039 descriptors).76 As a result, we obtained an initial set of 5834 descriptors for 1301 

each molecule, which decreased up to 3239 after curing (i.e. dropping of uninformative or 1302 

constant descriptors and others containing infinite or NaN values). Note that the same descriptor 1303 

might be computed by more than one software bundle, yet slight numerical disagreements may 1304 

arise due to the different computation algorithms. For that reason, we do not filter out redundant 1305 

descriptors and perform their subsequent statistical analysis using the entire available catalogue. 1306 

Furthermore, we include electronic features retrieved from the DFT calculations such as the 1307 

energy levels of the 20 occupied and unoccupied molecular orbitals (HOMOs and LUMOs) 1308 

closer to the band gap; the electronic band gap energy itself, 𝐸𝑔𝑎𝑝; and the number of  electrons 1309 

(n) in the molecule, which was determined using custom coding based on the RDKit library. 1310 

The set of molecular fingerprints tested in this work is computed using RDKit and it includes 1311 

customized coding for the moiety fingerprints and built-in functions for the computation of 1312 

MACCS keys, Morgan fingerprints,88 path-based (topological) fingerprints, E-state 1313 

fingerprints89 and Coulomb vectors.90 1314 

The target features in this study focus on the maximum oscillator strength (𝑓𝑚𝑎𝑥) and other 1315 

derived figures such as the maximum oscillator strength in the visible electromagnetic spectrum 1316 

(𝑓𝑚𝑎𝑥,𝑣𝑖𝑠, herein constrained between 300-1200 nm for its relevance in solar energy harvesting 1317 
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applications); the sum of 𝑓 in the visible window, 𝑓𝑚𝑎𝑥,𝑣𝑖𝑠; the spectral overlap between the 1318 

Gaussian-broadened spectrum of fs in the visible (taking a standard deviation of 0.1 eV) and 1319 

the AM1.5G solar irradiance spectrum, 𝑓𝑜𝑣𝑒𝑟𝑙𝑎𝑝; the maximum absorption coefficient (𝛼𝑚𝑎𝑥); 1320 

the maximum of the imaginary part of the dielectric function (𝜀2,𝑚𝑎𝑥); and the maximum molar 1321 

extinction coefficient, 𝑓𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥,𝑣𝑖𝑠 and 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠 are also evaluated per number of  electrons 1322 

in the molecule, i.e. 𝑓𝑚𝑎𝑥/𝑛𝜋, 𝑓𝑚𝑎𝑥,𝑣𝑖𝑠/𝑛𝜋 and 𝑓𝑠𝑢𝑚,𝑣𝑖𝑠/𝑛𝜋. 1323 

The statistical analysis of descriptors is deployed using the open-source library SciPy109 1324 

whereas the machine-learning (ML) models (k-nearest neighbours, linear regression, support 1325 

vector regressor and random forests) are implemented in Scikit-Learn.87 1326 

Regarding the scoring of the ML models, 𝑅2 ranges from -∞ to unity, being 1 the best possible 1327 

score and zero an indication of lack of predictive power (as it is always returning the expected 1328 

value of the target function, i.e., its average value); 𝑅𝑎𝑑𝑗
2  is formulated as110 1329 

𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝 − 1
, 1330 

where 𝑝 is the number of variables and n the sample size. Thus, 𝑅𝑎𝑑𝑗
2  adds penalties if the model 1331 

uses too many variables, which is a useful metric when studying feature selection procedures. 1332 

Test sets comprise 30% of the available data and all models are 10-fold holdout cross-validated 1333 

(unless otherwise stated, using a randomized 70%-30% splitting for the train and test sets, 1334 

respectively). 1335 

The recursive feature elimination (RFE) procedure applied in this work starts by decreasing the 1336 

number of input features to 32 (i.e., 1% of the starting descriptor population of 3239 descriptors) 1337 

in six consecutive feature reduction steps, in which after performing successive 10-fold cross-1338 

validations we drop 50% of the (averaged and least important) descriptors. Rather than 1339 

observing a performance drop, the actual scoring of the RF ensemble improves as the number 1340 

of features is reduced from 3239 ( 𝑅2  =  0.65  0.06, 𝑟 =  0.82  0.03 ) to 51 ( 𝑅2  =1341 

 0.70  0.05, 𝑟 =  0.85  0.02) variables in the last RFE iteration (Figure S11). After the last 1342 

pruning step (51 variables), we select the 32 most important descriptors and perform a more 1343 

thorough feature selection procedure by successively dropping (one-by-one) the least important 1344 

descriptor (always keeping a 10-fold cross-validation scheme, see Figure S12). 1345 
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 1346 

Figure S11. Scoring of RF regressors as part of a recursive feature elimination (RFE) loop in 1347 

which 50% of the least important descriptors are dropped at each step. 1348 

 1349 

Figure S12. Scoring of 10-fold cross-validated RF regressors (300 estimators) trained and 1350 

tested using different amounts of input descriptors as progressively indicated by the RFE 1351 

algorithm. The top axis indicates, from left to right, the name of the variable that is added to the 1352 

RF model, thus forming an ordered list of the most important descriptors found by the RF 1353 

method. 1354 



  

59 

 1355 

Figure S13. Performance of RF regressors trained without including electronic descriptors, 1356 

using 300 estimators and 10-fold cross-validation. (a) Scoring parameters of cross-validated 1357 

models as part of the RFE algorithm. (b) Detailed scoring parameters of the last 32 models 1358 

obtained by RFE. 1359 
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Supplementary Note 3. Clusterization algorithm of multicollinear descriptors.  1361 

The clusterization algorithm starts by taking the descriptor with the highest Spearman’s rank 1362 

correlation coefficient () and computing the Pearson correlation coefficient (r) with respect to 1363 

the remaining elements in the -ordered list of descriptors with   0.7. Descriptors from this 1364 

list are dropped if r  0.7 and considered to be in the same cluster; those showing r  0.7 are 1365 

candidates to form a different cluster. The process runs in a recursive-elimination manner until 1366 

naturally leading to a selection of (typically) 1 to 5 descriptor clusters depending on the selected 1367 

thresholds (0.6-0.7). These clusters gather the most statistically relevant and monotonic 1368 

correlation trends with the target feature. Interestingly, by looking at the features stored in each 1369 

of the clusters it is possible to replace some of the descriptors found originally by the algorithm 1370 

by alternative figures of easier interpretation and/or larger physicochemical relevance. 1371 

 1372 

Figure S14. Spearman’s rank correlation coefficient (in absolute value) histograms for the 3239 1373 

descriptors and the 10 different target features related with optical absorption and oscillator 1374 

strength explored in this work. 1375 

 1376 

  1377 
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 1378 

Figure S15. Influence of the molecular planarity on the maximum molar extinction 1379 

coefficient. (a) The 1,p/3,p ratio correlates positively with ed,max as straighter (more linear) 1380 

molecules show larger 1,p while enhanced molecular planarity lowers 3,p values (which 1381 

approach zero as there is no variance out of the molecular plane). (b) The shape of the molecule 1382 

quantified with 𝐾𝑝 shows that linear and planar molecules (i.e., 𝐾𝑝 closer to unity)82 enable 1383 

larger 𝜀𝑑,𝑚𝑎𝑥 values. 𝐾𝑝 is defined as82 1384 

𝐾𝑝 =

∑ |
𝜆𝑚,𝑝

∑ 𝜆𝑚,𝑝𝑚
−

1
3|𝑚

4/3
, 1385 

where 𝑚 = 1,2,3 and 0 ≤ 𝐾𝑝 ≤ 1. 1386 
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 1388 

Figure S16. Influence of molecular symmetry on absorption strength. (a) Quantification of 1389 

the total molecular symmetry as per the definition of the WHIM symmetry descriptor 𝐺𝑢 1390 

(corresponding to the unweighted geometric mean of the directional symmetries, 𝐺𝑢 =1391 

√𝛾1,𝑢 · 𝛾2,𝑢 · 𝛾3,𝑢
3 )82 shows that as the molecules lose their central symmetry (i.e., lower 𝐺𝑢 1392 

values), 𝜀𝑑,𝑚𝑎𝑥 can be further enhanced. (b) Conversely, the Moreau chirality index111 weighted 1393 

by atomic coordinates of small molecular absorbers shows poor correlation with 𝜀𝑑,𝑚𝑎𝑥. 1394 
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 1396 

Figure S17. Influence of the side chains on 1,p values. (a) Comparison of 1,p values for a 1397 

selection of small molecule acceptors as computed from xTB including side chains (y axis) and 1398 

DFT-optimized geometries with methyl-substituted side chains (x axis). (b) Maximum molar 1399 

extinction coefficient (𝜀𝑑,𝑚𝑎𝑥) as a function of 1,p for small molecule acceptors optimized with 1400 

(open circles) and without (filled circles) side chains. 1401 
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 1403 

Figure S18. (a) Correlation between E1 and the number of heteroatoms in the molecules. (b) 1404 

Correlation between the molar extinction coefficient (𝜀𝑑,𝑚𝑎𝑥) and the number of heteroatoms. 1405 

(c) Correlation between E1 and 1,p. (d) Correlation between E1 and C2SP2. All panels include 1406 

the corresponding Spearman’s rank correlation coefficient (). 1407 
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 1409 

Figure S19. Relationship between the maximum oscillator strength and the energy of the first 1410 

electronic transition in a set of TDDFT-optimized NFAs. 1411 
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Table S1. Statistical performance of a manifold of 10-fold cross-validated baseline models 1413 

using 𝜀𝑑,𝑚𝑎𝑥 as target feature. 1414 

Model No. variables R2 r 

1-nearest neighbour 
2 -0.18  0.41 0.50  0.05 

3239 -0.10  0.37 0.47  0.09 

Linear regression 2 0.37  0.10 0.61  0.09 

Random forest w/300 estimators 
2 0.23  0.17 0.59  0.06 

3239 0.65  0.06 0.82  0.03 
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 1416 

Figure S20. Correlation plots of three (exemplary) baseline models trained and tested on 𝜀𝑑,𝑚𝑎𝑥 1417 

using two input descriptors only: 1,p and C2SP2. (a) 1-nearest neighbour; (b) linear regression; 1418 

and (c) out-of-the-box RF trained with 300 estimators. 1419 
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Table S2. Performance of RF models trained and 10-fold cross-validated using 300 estimators, 1421 

3 input molecular descriptors (1,v, CIC3 and HOMO-2) and different forms of molecular 1422 

fingerprint vectors. In the case of Morgan fingerprints, we set the connectivity radius to 4 units, 1423 

while for topological fingerprints the minimum and maximum path counts are set to 1 and 6 1424 

units, respectively. Their vector lengths are set to either 64 or 2048 bits to reflect different 1425 

degrees of model complexity. 1426 

No. molecular descriptors Fingerprint type No. bits Total no. inputs R2 r 

3 N/A N/A 3 0.63  0.06 0.80  0.03 

3 Moiety 159 162 0.63  0.06 0.81  0.04 

3 MACCS 166 169 0.66  0.04 0.83  0.02 

3 Morgan 

64 67 0.70  0.05 0.84  0.03 

2048 2051 0.69  0.05 0.84  0.03 

3 Topology 

64 67 0.68  0.04 0.83  0.02 

2048 2051 0.69  0.05 0.84  0.03 

3 E-state 79 82 0.66  0.04 0.82  0.02 

3 Coulomb 320 323 0.56  0.07 0.77  0.04 
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Table S3. Scoring of the baseline and hyperparametrically optimized RF and ExtraTrees 1428 

models, fed with 3 molecular descriptors and a Morgan fingerprint vector of 64 bits. 1429 

Model 
No. 

estimators 

No. samples per 

leaf 

No. samples to 

split 
Validation R2 r 

RF 

(out-of-the-box) 

300 1 2 10-fold CV 0.70  0.05 0.84  0.03 

RF (optimized) 1200 1 2 10-fold CV  0.70  0.05 0.85  0.03 

RF (optimized) 1200 1 2 LOOCV 0.74 0.86 

ExtraTrees 

(out-of-the-box) 

300 1 2 10-fold CV 0.69  0.05 0.85  0.02 

ExtraTrees 

(optimized) 
2000 1 2 10-fold CV 0.70  0.04 0.85  0.02 

ExtraTrees 

(optimized) 
2000 1 2 LOOCV 0.73 0.86 
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 1431 

Figure S21. LOOCV of the optimized Extra Trees (ET) regressor fed with 3 molecular 1432 

descriptors and a 64-bit vector as Morgan fingerprint. 1433 
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 1435 

Figure S22. Boxplots for the Pearson correlation coefficients between different sets of 1436 

molecular descriptors retrieved from xTB and DFT (B3LYP) optimized geometries. 1437 
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 1439 

Figure S23. (a) Leave-one-out interpolation of a RF model trained using DFT data and tested 1440 

on xTB-optimized molecules using 3 parameters (1,v and CIC3 recalculated from the xTB 1441 

geometry, and the HOMO-2 energy level as computed in xTB) and a 64-bit vector as Morgan 1442 

fingerprint. (b) Fitting of linear regression and support vector regressor (SVR) models for 1443 

calibration of HOMO-2 energy levels as computed in xTB and DFT (B3LYP). The mismatch 1444 

in the absolute values of HOMO-2 energy levels between DFT and xTB calculations prevents 1445 

obtaining higher scorings in the RF models depicted in (a). (c) Correlation plot between 1446 

HOMO-2 energy levels from DFT and the corresponding calibrated values as obtained by linear 1447 

regression (blue), SVR (red) and RF (green) models. The dashed black line indicates perfect 1448 

matching between DFT and calibrated values. 1449 
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Supplementary Note 4. Detailed database of moieties used in this work. 1451 

 1452 
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Supplementary Note 5. Estimation of computation time required to make absorption strength 1458 

predictions using xTB Hamiltonians (in combination with ML models) or rigorous TDDFT. 1459 

Table S4 provides a comparison in terms of the computation time required for the molecular 1460 

geometry optimization step in the TDDFT and xTB approaches. We analysed 194 molecules 1461 

from TDDFT calculations based on B3LYP/6-311+G(d,p) and 475 molecules (Figure S7) from 1462 

xTB calculations based on GFN2–xTB to tentatively quantify the difference in computational 1463 

efficiency between both methods. Our analysis suggests that geometry optimization using 1464 

GFN2–xTB is ca. 3000 times faster than TDDFT/B3LYP/6-311+G(d,p), even though GFN2–1465 

xTB calculations were done on a conventional 12 CPUs laptop as opposed to the 32 CPUs 1466 

dedicated cluster/workstation employed in the TDDFT calculations, thus highlighting the great 1467 

advantage of using xTB over TDDFT. 1468 

Furthermore, we have estimated the time consumption for the absorption strength predictions 1469 

using the established ML model in this work. The time required for the ML model training and 1470 

LOOCV steps is below 10 minutes (12 CPUs), whereas the calculation of molecular descriptors 1471 

(>5000 descriptors) for the full data set (479 molecules) takes no less than 180 minutes (12 1472 

CPUs). Hence, for a molecule made up of 100 atoms, the whole absorption strength 1473 

determination (i.e., from geometry optimization to εd,max prediction) effectively takes around 1474 

200 minutes using xTB with ML; and 1345 minutes using solely TDDFT. Nevertheless, the 1475 

advantage of the ML approach is more evident as interpolation in the trained model takes less 1476 

than 1 second (per molecule) to compute, which enables at least four orders of magnitude faster 1477 

molecular screening with respect to TDDFT (1345 minutes or 80700 seconds per molecule). 1478 

Table S4. Computation time required for molecular geometry optimization steps using 1479 

TDDFT/B3LYP/6-311+G(d,p) and xTB/GFN2–xTB. 1480 

Approach DFT/B3LYP/6-311+G(d,p) xTB/GFN2–xTB 

No. of molecules 194 475 

No. of atoms 18022 37989 

No. of CPUs 32 12 

Time elapsed (mins) 206398.355 136 

Time elapsed per atom (mins) 11.45257768 0.003579984 
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