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Abstract: One of the crucial issues in federated learning is how to develop efficient optimization

algorithms. Most of the current ones require full devices participation and/or impose strong

assumptions for convergence. Different from the widely-used gradient descent-based algorithms,

this paper develops an inexact alternating direction method of multipliers (ADMM), which is

both computation and communication-efficient, capable of combating the stragglers’ effect, and

convergent under mild conditions.
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1 Introduction

Federated learning (FL), originated from [1, 2], gains its popularity recently due to its ability

to address extensive applications, such as vehicular communications [3, 4, 5, 6], digital health

[7], and mobile edge and over-the-air computing [8, 9, 10, 11], but is facing many challenges.

One of them is how to develop efficient optimization algorithms for different purposes, such as

saving communication resources, accelerating the learning process, coping with the stragglers’ effect,

preserving data privacy, and so on. We refer to some nice surveys [12, 13, 14] for more challenges.

1.1 Prior arts

It is known that FL trains a model across multiple decentralized edge devices (or clients) holding

local data, without exchanging them. The training is usually coordinated by a central server

that chooses which devices to participate in the training and collects parameters from them for

averaging periodically. Based on this, FL algorithms can be categorized into two groups: full and

partial device participation.

a) Full device participation. There is an impressive body of work on developing algorithms

based on full device participation. The stochastic gradient descent (SGD) is one of the most

extensively used schemes [15, 16, 17, 18, 19]. As gradients are constructed using randomly chosen

data, SGD often assumes the local data is identically and independently distributed (i.i.d.) to

establish the convergence theory, which is unrealistic for FL settings where data distributions

are usually heterogeneous. A parallel line of research aims to investigate non-stochastic gradient

descent-based algorithms, namely, all data is used to construct the gradient. Thanks to this, these

algorithms do not need assumptions on data distributions but still impose restrictive assumptions

on the learning models [20, 21, 22, 23, 24].

In addition to gradient descent-based frameworks, algorithms from primal-dual perspective

have also drawn much attention. Typical representative is the popular ADMM. It has two versions:

exact and inexact ADMM. The former requests clients to update their parameters through solving
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sub-problems exactly, which hence incurs expensive computational cost [25, 26, 27, 28, 29, 30, 31].

Therefore, inexact ADMM is an alternative to reduce the computational complexity for clients

[32, 33, 34, 35] as they can update their parameters via solving sub-problems approximately.

We would like to point out that most of these algorithms not only require full device participation

but also impose relatively strong assumptions on the model to establish the convergence properties.

Common assumptions include the gradient Lipschitz continuity (also known as L-smoothness),

strong smoothness, convexity, or strong convexity.

b) Partial device participation. As stated in [36], full device participation in the training at each

step suffers from the so-called “stragglers’ effect” (which means everyone waits for the slowest) in

real-world applications. Thus it is more realistic for FL algorithms to select partial devices to join in

the training at each step. Motivated by this, FedAvg, a state-of-the-art algorithm for FL, has been

proposed in [37] and its convergence has been established under assumptions of strongly convexity

and smoothness in [36]. Recently, FedProx has been developed in [38] to tackle the statistical

heterogeneity. We note that both algorithms were designed from the primal perspective. Hence,

it is interesting to see the performance of a primal-dual algorithm (e.g., ADMM) for FL using a

partial device participation strategy.

1.2 Our contributions

The main contribution of this paper is to develop an inexact ADMM-based FL algorithm (FedADMM,

see Algorithm 1) with the following advantages.

a) Communication and computation efficiency. The framework states the global averaging oc-

curs only at certain steps (e.g., at step k that is a multiple of a pre-defined integer k0). This means

the communication rounds (CR) can be affected by setting a proper k0. It is shown that the larger

k0 the fewer CR for the algorithm to converge, see Figure 2. In addition to the communication effi-

ciency, FedADMM suggests selected clients solve their sub-problems approximately with a flexible

accuracy. In this regard, clients can relax the accuracy to reduce the computational complexity of

solving their sub-problems.

b) Avoiding the stragglers’ effect. In FedADMM, at each round of communication, the sever

randomly divides all clients into two groups. One group adopts the inexact ADMM to update their

parameters, while parameters in the second group remain unchanged, which means the server can

put stragglers into the second group to avoid their impact on the training.

c) Convergence under mild conditions. We have proven that FedADMM converges to a station-

ary point, see Definition 4.1, of the learning optimization in (2.3) only under two mild conditions:

gradient Lipschitz continuity and the coerciveness of the objective function, see Theorem 4.2. If

we further assume the convexity, then it can achieve the optimal parameter, see Corollary 4.1.

d) High numerical performance. The numerical comparisons with two state-of-the-art algo-

rithms have demonstrated that FedADMM can learn the parameter using the fewest CR and

consuming the shortest computational time.

1.3 Organization

The paper is organized as follows. In the next section, we summarize all notations used in this paper

and introduce ADMM and FL mathematically. In Section 3, we present algorithm FedADMM,
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followed by highlighting its advantages. We then establish its global convergence in Section 4 and

conduct some numerical comparison in Section 5. Concluding remarks are given in the last section.

2 Preliminaries

This section presents the notation that will be employed throughout this paper, followed by intro-

ducing the framework of ADMM and FL mathematically.

2.1 Notation

We use plain, bold, and capital letters to present scalars, vectors, and matrices, respectively, e.g., k

and σ are scalars, w and π are vectors, W and Π are matrices. Let btc be the largest integer smaller

than t + 1 (e.g., b1.1c = b2c = 2). Denote [m] := {1, 2, · · · ,m} with ‘:=’ meaning define and Rn

the n-dimensional Euclidean space equipped with inner product 〈·, ·〉 defined by 〈w, z〉 :=
∑

iwizi.

The 2-norm is written as ‖ · ‖, i.e., ‖w‖2 = 〈w,w〉. Function f is said to be gradient Lipschitz

continuous with a constant r > 0 if

‖∇f(w)−∇f(z)‖ ≤ r‖w − z‖ (2.1)

for any two vectors w and z, where ∇f(w) is the gradient of f with respect to w. Hereafter, for

two groups of vectors wi and πi in Rn, we denote

W := (w1,w2, · · · ,wm), Π := (π1,π2, · · · ,πm).

Similar rules are also applied for W k,W ∗,W∞ and Πk,Π∗,Π∞. Here k, ∗ and∞ mean the iteration

number, optimality and accumulation, e.g., see Corollary 4.1.

2.2 ADMM

We refer to the earliest work [39] and a nice book [40] for more details of ADMM and briefly

introduce it as follows: Given an optimization problem,

minw∈Rn,z∈Rq f(w) + g(z), s.t. Aw +Bz− b = 0,

where A ∈ Rp×n, B ∈ Rp×q, and b ∈ Rp, its corresponding augmented Lagrange function is

L(w, z,π) := f(w) + g(z) + 〈Aw +Bz− b,π〉+ σ
2 ‖Aw +Bz− b‖2,

where π is the Lagrange multiplier and σ is a given positive constant. Then starting with an initial

point (w0, z0,π0), ADMM performs the following steps iteratively,
wk+1 = argminw∈Rn L(w, zk,πk),

zk+1 = argminz∈Rq L(wk+1, z,πk),

πk+1 = πk + σ(Awk+1 +Bzk+1 − b).

(2.2)

2.3 Federated learning

Given m local clients (or devices) with datasets {D1,D2, · · · ,Dm}, each client has the total loss

fi(w) := 1
di

∑
x∈Di `i(w; x),
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where `i(·; x) : Rn 7→ R is a continuous loss function and bounded from below, di is the cardinality

of Di, and w ∈ Rn is the parameter to be learned. The overall loss function can be defined by

f(w) :=
∑m

i=1 αifi(w),

where αi is a positive weight satisfying
∑m

i=1 αi = 1. The task of FL is to learning an optimal

parameter w∗ that minimizes the overall loss, namely,

w∗ := argmin
w∈Rn

f(w). (2.3)

Since fi is supposed to be bounded from below, we have

f∗ := f(w∗) > −∞. (2.4)

3 FL via Inexact ADMM

By introducing auxiliary variables, wi = w, problem (2.3) can be rewritten as the following form,

min
w,W

∑m
i=1 αifi(wi), s.t. wi = w, i ∈ [m]. (3.1)

Throughout the paper, we shall focus on the above optimization problem instead of problem (2.3)

as they are equivalent to each other. For simplicity, we also denote

F (W ) :=
∑m

i=1 αifi(wi). (3.2)

Clearly, F (w,w, · · · ,w) = f(w).

3.1 Algorithmic design

To implement ADMM for (3.1), the corresponding augmented Lagrange function is defined by,

L(w,W,Π) :=
∑m

i=1(αifi(wi) + 〈wi −w,πi〉+ σi/2‖wi −w‖2︸ ︷︷ ︸
=:L(w,wi,πi)

), (3.9)

where Π is the Lagrange multiplier, and σi > 0, i ∈ [m]. Similar to (2.2), we have the framework

of ADMM for problem (3.1). That is, for an initial point (w0,W 0,Π0) and any k ≥ 0, perform the

following updates iteratively,

wk+1 = argminw L(w,W k,Πk)

= 1
σ

∑m
i=1(σiw

k
i + πki ),

wk+1
i = argminwiL(wk+1,wi,π

k), i ∈ [m],

πk+1
i = πki + σi(w

k+1
i −wk+1), i ∈ [m],

(3.10)

where σ :=
∑m

i=1 σi. Based on the framework of ADMM, we present our algorithm in Algorithm 1

and highlight its advantages in the sequel.
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Algorithm 1: FL via inexact ADMM (FedADMM)

Initialize an integer k0 > 0 and Ω0 = [m]. Set k = 0. Denote τk := bk/k0c and gki := αi∇fi(wk
i ).

All clients i ∈ [m] initialize ε0i , σi > 0, νi ∈ [1/2, 1),w0
i , π

0
i = −g0

i , z0
i = σiw

0
i + π0

i and send the

sever σi to calculate σ =
∑m

i=1 σi.

for k = 0, 1, 2, · · · do

if k ∈ K := {0, k0, 2k0, 3k0, · · · } then
Weights upload: (Communication occurs)

Clients in Ωτk send their parameters {zki : i ∈ Ωτk} to the server.

Global averaging:

The server calculates average parameter wτk+1 by

wτk+1 = 1
σ

∑m
i=1 zki . (3.3)

Weights feedback: (Communication occurs)

The server randomly selects clients in [m] to form a subset Ωτk+1 and broadcasts them

parameter wτk+1 .

end

for every i ∈ Ωτk+1 do
Local update: Client i updates its parameters as follows:

εk+1
i ≤ νiε

k
i , (3.4)

Find wk+1
i such that ‖gk+1

i + πki + σi(w
k+1
i −wτk+1)‖2 ≤ εk+1

i

by solving minwiL(wτk+1 ,wi,π
k),

(3.5)

πk+1
i = πki + σi(w

k+1
i −wτk+1), (3.6)

zk+1
i = σiw

k+1
i + πk+1

i . (3.7)

end

for every i /∈ Ωτk+1 do
Local invariance: Client i keeps their parameters by

(εk+1
i ,wk+1

i ,πk+1
i , zk+1

i ) = (εki ,w
k
i ,π

k
i , z

k
i ). (3.8)

end

end

3.2 Communication efficiency

The framework of ADMM in (3.10) indicates that the global averaging (i.e., the first sub-problem)

and local updates (i.e., the last two sub-problems) are repeated at every step. In FL settings, this

manifests that local clients and the central server have to communicate at every step. However,

frequent communications would come at a huge price like long time for learning and large amounts

of communication resources (e.g., power and bandwidth).

Therefore, in Algorithm 1, we allow a portion of clients (i.e., clients in Ωτk+1) to update their pa-
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rameters a few times (i.e., k0 times) and then upload them to the central server. In other words, the

central server collects parameters from local clients only when k ∈ K = {0, k0, 2k0, 3k0, · · · }. Here,

choosing a proper k0 can reduce CR significantly so as to save resources. It is worth mentioning

that such an idea has been extensively used in [15, 41, 16, 17, 18, 19].

3.3 Local invariance

It is worth mentioning that clients outside Ωτk do not need to do anything at steps k, k+1, · · · , k+

k0 − 1. We use (3.8) for the purpose of notational convenience when conducting convergence

analysis. Moreover, (3.8) also allows the server to record the previous uploaded parameters from

clients outside Ωτk . Precisely, for any i /∈ Ωτk , at step k ∈ K, let ki be the largest integer in [0, k)

such that i ∈ Ωτki . In other words, ki is the last time that i was selected. Hence, (3.8) implies

zti ≡ zkii , ∀t = ki, ki + 1, · · · , k and thus

wτk+1 = 1
σ (
∑

i∈Ωτk zki +
∑

i/∈Ωτk zkii ) = 1
σ

∑m
i=1 zki .

This means the sever uses the previously uploaded parameters (i.e., zkii ) from clients outside Ωτk

and the currently uploaded parameters (i.e., zki ) from clients in Ωτk .

3.4 Fast computation

We emphasize that wk+1
i in (3.5) is well defined. In fact,

αi∇fi(v∗i ) + πki + σi(v
∗
i −wτk+1) = 0, (3.11)

where v∗i is any optimal solution to minwiL(wτk+1 ,wi,π
k). This means there always exists a

point satisfying the condition in (3.5). We note that minwiL(wτk+1 ,wi,π
k) is an unconstrained

optimization problem, so many solvers can be used to solve it. However, we are interested in

algorithms that can find wk+1
i quickly. Particularly, we initialize v0

i = wτk+1 , and perform the

following steps, for ` = 0, 1, 2, · · · , κ,

v`+1
i = argminwi 〈wi −wτk+1 ,πki 〉+ σi

2 ‖wi −wτk+1‖2+

αi(fi(v
`
i) + 〈∇fi(v`i),wi − v`i〉+ ri

2 ‖wi − v`i‖2)

= 1
αiri+σi

(αiriv
`
i + σiw

τk+1 − (αi∇fi(v`i) + πki )),

(3.12)

where ri > 0 which can be the Lipschitz continuous constant if fi is Lipschitz continuous and κ is

a given maximum number of steps to update v`i . The following theorem states that using (3.12) to

find wk+1
i = vκ+1

i can guarantee the condition in (3.5) within a small number of iterations κ.

Theorem 3.1. Suppose that every fi, i ∈ [m] is gradient Lipschitz continuous with ri > 0 and

Hessian matrix ∇2fi � −siI with si ≥ 0. By setting σi ≥ αisi + %αiri/2 with % > 1, client i ∈ [m]

can find wk+1
i = vκ+1

i such that (3.5) through (3.12) with at most κ steps, where

κ = log%

⌊
2(α2

i r
2
i+σ2

i )‖wτk+1−v∗
i ‖2

εk+1
i

⌋
− 1. (3.13)

Here, ∇2fi � −siI means ∇2fi + siI � 0, a positive semi-definite matrix. Plentiful non-convex

and all convex functions satisfy this condition. For convex functions, we could choose si = 0. The
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above theorem implies that clients can set a slightly large accuracy εk+1
i to ensure a small κ in

(3.13) for the sake of fastening their computations. Therefore, the computational cost can be saved

in comparison with solving the second sub-problem of (3.10) exactly.

3.5 Coping with straggler’s effect

The framework enables FedADMM to deal with the straggler’s effect as partial clients are selected

for the training at every step. This strategy is similar to FedAvg [37, 36] and FedProx [38]. Their

algorithmic frameworks are summarized in Algorithm 2, where FedAvg corresponds to the case of

B = ∞ in its original version. For FedProx, we use the gradient decent-based scheme (3.17) to

solve the sub-problem with a proximal term.

Algorithm 2: FedAvg and FedProx.

Initialize an integer k0, γ, µ > 0 and Ω0 = [m]. Set k = 0. All clients i ∈ [m] initialize w0
i = 0.

for k = 0, 1, 2, · · · do

if k ∈ K := {0, k0, 2k0, 3k0, · · · } then
Weights upload: (Communication occurs)

Clients in Ωτk send {wk
i : i ∈ Ωτk} to the server.

Global averaging:

The server averages wτk+1 by

[FedAvg] wτk+1 = 1
m

∑m
i=1 wk

i . (3.14)

[FedProx] wτk+1 = 1
|Ωτk |

∑
i∈Ωτk wk

i . (3.15)

Weights feedback: (Communication occurs)

The server randomly selects clients to form Ωτk+1 and broadcasts them wτk+1 .

end

for every i ∈ Ωτk+1 do
Local update: Client i updates its parameter by

[FedAvg] wk+1
i =


wτk+1 − γ

m∇fi(w
τk+1), k ∈ K,

wk
i −

γ
m∇fi(w

k
i ), k /∈ K.

(3.16)

[FedProx] wk+1
i = wk

i + µ(wk
i −wτ

k+1)− γ
m∇fi(w

k
i ). (3.17)

end

for every i /∈ Ωτk+1 do

Local invariance: Client i keeps wk+1
i = wk

i .

end

end

There are some difference among FedAvg, FedProx and our algorithm. First of all, the global

averaging for FedProx is taken on the selected clients in Ωτk by (3.15), while FedADMM and FedAvg

assemble parameters of all clients, see (3.3) and (3.14). In addition, FedAvg and FedProx average

7



parameters wk
i directly. However, FedADMM aggregates zki , which are the combinations of primal

variables wk
i and dual variables πki . To this end, it is more secured to protect clients’ data when

communicating with the server.

4 Convergence analysis

This section aims to establish the global convergence for FedADMM, before which we define the

optimality conditions of problem (3.1) and (2.3) as follows.

4.1 Stationary point

Definition 4.1. A point (w∗,W ∗,Π∗) is a stationary point of problem (3.1) if it satisfies
αi∇fi(w∗i ) + π∗i = 0, i ∈ [m],

w∗i −w∗ = 0, i ∈ [m],∑m
i=1 π

∗
i = 0.

(4.1)

It is not difficult to prove that any locally optimal solution to problem (3.1) must satisfy (4.1).

If fi is convex for every i ∈ [m], then a point is a globally optimal solution if and only if it satisfies

condition (4.1). Moreover, a stationary point (w∗,W ∗,Π∗) of problem (3.1) indicates

∇f(w∗) =
∑m

i=1 αi∇fi(w∗) = −
∑m

i=1 π
∗
i = 0. (4.2)

That is, w∗ is also a stationary point of problem (2.3).

4.2 Some assumptions

Assumption 4.1. Every fi, i ∈ [m] is gradient Lipschitz continuous with a constant ri > 0.

Assumption 4.2. Function f is coercive. That is, f(w)→ +∞ when ‖w‖ → +∞.

Scheme 4.1. The sever randomly selects Ωτ that satisfies

Ωτ+1 ∪ Ωτ+2 ∪ · · · ∪ Ωτ+s0 = [m], ∀τ = 0, s0, 2s0, · · ·

where s0 is a pre-defined postive integer.

Such a scheme indicates that for each group of s0 sets {Ωτ+1,Ωτ+2, · · · ,Ωτ+s0}, all clients should

be chosen at least once. In other words, for any client i ∈ [m], the maximum gap between its two

consecutive selections is no more than 2s0, namely,

max

{
u− v :

i ∈ Ωv, i ∈ Ωu,

i /∈ Ωτ , τ = v + 1, · · · , u− 1

}
≤ 2s0. (4.3)

Remark 4.1. Scheme 4.1 can be satisfied with a high probability. In fact, if Ω1,Ω2, · · · are se-

lected independent and indices in Ωt are uniformly sampled from [m] without replacement, then the

probability of client i being selected in {Ωτ+1,Ωτ+2, · · · ,Ωτ+s0} is

pi := 1− P(i /∈ Ωτ+1, i /∈ Ωτ+2, · · · , i /∈ Ωτ+s0)

= 1− P(i /∈ Ωτ+1)P(i /∈ Ωτ+2) · · ·P(i /∈ Ωτ+s0)

= 1− (1− |Ω
τ+1|
m )(1− |Ω

τ+2|
m ) · · · (1− |Ω

τ+s0 |
m ),
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which tends to 1. For example, pi = 1− 10−5 if s0 = 5 and |Ωτ | = 0.9m for any τ ≥ 1.

4.3 Global convergence

Now with the help of Assumptions 4.1 and 4.2, our first result shows the following decreasing

property of the sequence associated with Lk := L(wτk ,W k,Πk).

Lemma 4.1. Under Assumption 4.1, it holds that

L̃k − L̃k+1≥ σ
2 ‖w

τk+1 −wτk‖2 + c
4

∑m
i=1 ‖w

k+1
i −wk

i ‖2,

where L̃k and c are defined as

L̃k := Lk +
∑m

i=1

(
νi

(1−νi)αiri + 10(1+νi)
σi(1−νi)

)
εki ,

c := mini∈[m]
(σi+αiri)(2σi−5αiri)

σi
.

(4.4)

Using this result enables to prove that whole sequences of three objectives f(wτk), F (W k), and

Lk converge.

Theorem 4.1. Suppose that Assumptions 4.1 and 4.2 hold. Every client i ∈ [m] chooses σi >

5αiri/2 and the sever selects Ωτk as Scheme 4.1. Then the following results hold.

a) Sequence {(wτk ,W k,Πk)} is bounded.

b) Three sequences {Lk}, {F (W k)}, and {f(wτk)} converge to the same value, namely,

lim
k→∞

Lk = lim
k→∞

F (W k) = lim
k→∞

f(wτk). (4.5)

c) ∇F (W k) and ∇f(wτk) eventually vanish, namely,

lim
k→∞

∇F (W k) = lim
k→∞

∇f(wτk) = 0. (4.6)

Theorem 4.1 states that the objective function values of sequence {(wτk ,W k,Πk)} converge. In

the following theorem, we would like to see the convergence performance of the sequence itself.

Theorem 4.2. Suppose that Assumptions 4.1 and 4.2 hold. Every client i ∈ [m] chooses σi >

5αiri/2 and the sever selects Ωτk as Scheme 4.1. Then the following results hold.

a) Any accumulating point (w∞,W∞,Π∞) of sequence {(wτk ,W k,Πk)} is a stationary point of

(3.1), where w∞ is a stationary point of (2.3).

b) If further assuming that w∞ is isolated, then the whole sequence converges to (w∞,W∞,Π∞).

It is worth mentioning that the establishments of Theorems 4.1 and 4.2 do not rely on the

choices of Ωτk explicitly due to Scheme 4.1. If the sever generates Ωτk randomly rather than using

Scheme 4.1, then the above two theorems are valid with a high probability.

In addition, since no convexity of fi or f is imposed, the sequence is guaranteed to converge

to the stationary point of problems (3.1) and (2.3). In other words, if we assume the convexity of

f , then the sequence is capable of converging to the optimal solution to problems (3.1) and (2.3),

which is stated by the following corollary.
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Corollary 4.1. Suppose that Assumptions 4.1 and 4.2 hold and f is convex. Every client i ∈ [m]

chooses σi > 5αiri/2 and the sever selects Ωτk as Scheme 4.1. Then the following results hold.

a) Three sequences converge to the optimal function value of (2.3), namely,

lim
k→∞

Lk = lim
k→∞

F (W k) = lim
k→∞

f(wτk) = f∗. (4.7)

b) Any accumulating point (w∞,W∞,Π∞) of sequence {(wτk ,W k,Πk)} is an optimal solution

to (3.1), where w∞ is an optimal solution to (2.3).

c) If f is strongly convex, then whole sequence converges the unique optimal solution (w∗,W ∗,Π∗)

to (3.1), where w∗ is the unique optimal solution to (2.3).

Remark 4.2. Regarding assumptions in Corollary 4.1, f being strongly convex does not require

that every fi, i ∈ [m] is strongly convex. If one of fis is strongly convex and the remaining is convex,

then f =
∑m

i=1 αifi is strongly convex. Moreover, the strongly convexity suffices to the coerciveness

of f . Therefore, under the strongly convexity, Assumption 4.2 can be exempted.

5 Numerical Experiments

This section conducts some numerical experiments to demonstrate the performance of FedADMM.

All numerical experiments are implemented through MATLAB (R2019a) on a laptop with 32GB

memory and 2.3Ghz CPU.

5.1 Testing example

Example 5.1 (Linear regression with non-i.i.d. data). For this problem, local clients have their

objective functions as

fi(w) =
∑di

t=1
1

2di
(〈ati,w〉 − bti)2,

where ati ∈ Rn and bti ∈ R are the t-th sample for client i. We first pick m integers d1, · · · , dm
randomly from [50, 150] and denote d := d1 + · · ·+dm. Then we generate bd/3c samples (a, b) from

the standard normal distribution, bd/3c samples from the Student’s t distribution with degree 5, and

d− 2bd/3c samples from the uniform distribution in [−5, 5]. Now we shuffle all samples and divide

them into m parts with sizes d1 · · · , dm for m clients. In the regard, each client has non-i.i.d. data.

For simplicity, we fix n = 100 and alter m ∈ {32, 64, 96, 128, 160}.

Table 1: Descriptions of two real datasets.

Data Datasets Source n d

qot Qsar oral toxicity uci 1024 8992

sct Santander customer transaction kaggle 200 200000

Example 5.2 (Logistic regression). For this problem, local clients have their objective functions as

fi(w) = 1
di

∑di
t=1(ln(1 + e〈a

t
i,w〉)− bti〈ati,w〉) + λ

2‖w‖
2,
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where ati ∈ Rn, bti ∈ {0, 1} , and λ > 0 is a penalty parameter (e.g., λ = 0.001 in our numerical

experiments). We use two real datasets described in Table 1 to generate (a, b). Again, we randomly

split d samples into m groups for m clients.

5.2 Implementations

We fix αi = 1/m, i ∈ [m] in model (2.3) and initialize w0
i = π0

i = 0. Parameters are set as follows:

σi = 0.2ri/m, where ri is the gradient Lipschitz continuous constant for fi, ε
0
i = k2

0, and νi = 0.95

for all i ∈ [m]. We terminate our algorithm if k ≥ 104 or solution wτk satisfies

Error := ‖∇f(wτk)‖2 ≤ 5n10−4/d. (5.1)

In the subsequent experiments, Ω1,Ω2, · · · are selected independently with |Ωτ | = ρm for any τ ≥ 1,

where ρ ∈ (0, 1]. Indices in each Ωτ are uniformly sampled from [m] without replacement.

5.3 Benchmark algorithms

We will compare our proposed method with FedAvg [37] and FedProx [38] presented in Algorithm

2. Their starting points are initialized as w0
i = 0 and the learning rate is set as γ = γk(a) :=

a/log2(k+1) with a = 0.005 for Example 5.1 and a = 0.5d/m for Example 5.2. To ensure relatively

fair comparisons, we terminate them and FedADMM if condition (5.1) is met or CR are over 1000.

5.4 Numerical comparisons

In this part, we conduct some simulation to demonstrate the performance of three algorithms by

reporting the following factors: objective f(wτk), CR, and computational time (in second).
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Figure 1: Objective v.s. CR.

a) Effect of k0. By fixing m = 64 and ρ = 0.5 meaning half clients chosen for the training

(i.e., |Ωτ | = 0.5m), we apply three algorithms into solving two examples under k0 = 1, 5, 10 and

report the results in Figure 1. One can observe that (i) with the increase of CR, all algorithms

eventually achieve the same objective function values (i.e., the optimal function values), (ii) for

each algorithm, the larger k0 the fewer CR needed to converge, and (iii) FedADMM outperforms

FedProx which behaves better than FedAvg.

Next, we generate 20 instances for each example solved by one algorithm with a fixed k0 ∈ [20]

and present the average results in Figure 2, where the following comments can be declared: (i)

for Example 5.1, FedAvg and FedProx reach the maximum of CR and their computational time is
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Figure 3: Effect of ρ.

rising along with k0 increasing, (ii) for Example 5.2, CR and time are descending when k0 is getting

bigger, (iii) for both examples, FedADMM performs the best in terms of using the fewest CR and

running the fastest.

b) Effect of Ωτ . To see this, we fix m = 64, k0 = 10 and alter ρ ∈ [0.1, 1]. Since |Ωτ | = ρm, the

large value of ρ means more clients are selected for the training. Similarly, we generate 20 instances

for each example solved by one algorithm with a fixed ρ and report the average results in Figure

12
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3. We can conclude that (i) for Example 5.1, FedAvg and FedProx reach the maximum allowed

number of CR, and their computational time is rising along with ρ increasing, (ii) for Example

5.2, there are declining trends for CR generated by FedAvg and FedADMM. By contrast, CR from

FedProx stabilizes at a certain level with the changing of ρ. This is probably because of averaging

scheme (3.15) that only uses selected clients. (iii) Once again, FedADMM outperforms the other

two algorithms for both examples.

c) Effect of m. To see this, we fix ρ = 0.5, k0 = 10 and alter m ∈ {32, 64, 96, 128, 160}. The

average results over 20 instances are presented in Figure 4, where for both examples, CR and

computational time from FedAvg and FedProx increase when m gets bigger. However, CR for

FedADMM does not fluctuate significantly. Apparently, our algorithm performs better than the

other two algorithms.

6 Conclusion

We developed an inexact ADMM-based FL algorithm, FedADMM. The periodic global averaging

allows it to reduce CR so as to save communication resources. Solving sub-problems inexactly

alleviates clients’ computational burdens significantly, thereby accelerating the learning process.

Partial device participation in the algorithm eliminates the stragglers’ effect. Those merits show

the strong potential of FedADMM for real-world applications like vehicular communications, mobile

edge and over-the-air computing.
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7 Appendix: Proofs of all theorems

For any w1,w2, and wi ∈ {w1,w2}, it follows that w2 + t(w1 −w2) −wi = (t − 1)(w1 −w2) or

= t(w1 −w2). If function is gradient Lipschitz continuous with constant r, then the Mean Value

Theorem suffices to

f(w1)− f(w2)− 〈∇f(wi),w1 −w2〉

=
∫ 1

0 〈∇f(w2 + t(w1 −w2))−∇f(wi),w1 −w2〉dt

≤
∫ 1

0 r‖w2 + t(w1 −w2)−wi‖‖w1 −w2‖dt

= r
2‖w1 −w2‖2.

(7.1)

If ∇2f � −sI, then the Mean Value Theorem brings out

〈∇f(w1)−∇f(w2),w1 −w2〉

=
∫ 1

0 〈∇
2f(w2 + t(w1 −w2))(w1 −w2),w1 −w2〉〉dt

≥−s‖w1 −w2‖2.

(7.2)
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For any vectors wi, matrix H � 0, and t > 0, we have

2〈w1,w2〉 ≤ t‖w1‖2 + (1/t)‖w2‖2,

‖w1 + w2‖2 ≤ (1 + t)‖w1‖2 + (1 + 1/t)‖w2‖2,

‖
∑m

i=1 wi‖2 ≤ m
∑m

i=1 ‖wi‖2.

(7.3)

For notational simplicity, hereafter, we denote

4wτk+1 := wτk+1 −wτk 4wk+1
i := wk+1

i −wτk+1 ,

4wk+1
i := wk+1

i −wk
i , 4π

k+1
i :=πk+1

i −wk
i ,

4εk+1
i := εk+1

i − εki ,

(7.4)

and let wk → w stand for limk→∞wk = w.

7.1 Proof of Theorem 3.1

Proof. Since v`+1
i is a solution to problem (3.12), it satisfies the following optimality condition,

αi∇fi(v`i) + πki + σi(v
`+1
i −wτk+1) + αiri(v

`+1
i − v`i) = 0,

which subtracting (3.11) gives rise to

−σi(v`+1
i − v∗i )− αiri(v

`+1
i − v`i) = αi(∇fi(v`i)−∇fi(v∗i ))

= αi(∇fi(v`i)−∇fi(v
`+1
i ) +∇fi(v`+1

i )−∇fi(v∗i )).

Using the condition allows us to obtain

−αisi‖v`+1
i − v∗i ‖2

(7.2)

≤ 〈v`+1
i − v∗i , αi(∇fi(v

`+1
i )−∇fi(v∗i )〉

= 〈v`+1
i − v∗i ,−σi(v

`+1
i − v∗i )− αiri(v

`+1
i − v`i)〉

+ 〈v`+1
i − v∗i , αi(∇fi(v

`+1
i )−∇fi(v`i)〉

≤ −(σi + αiri)‖v`+1
i − v∗i ‖2 − αiri〈v

`+1
i − v∗i ,v

∗
i − v`i〉

+ αiri
2 (‖v`+1

i − v∗i ‖2 + ‖v`+1
i − v`i‖2)

= −σi‖v`+1
i − v∗i ‖2 −

αiri
2 ‖v

`
i − v∗i ‖2

≤ −(αisi + %αiri
2 )‖v`+1

i − v∗i ‖2 −
αiri

2 ‖v
`
i − v∗i ‖2,

which immediately results in

‖vκ+1
i − v∗i ‖2 ≤ 1

%‖v
κ
i − v∗i ‖2 ≤ 1

%2
‖vκ−1

i − v∗i ‖2 ≤ · · · ≤ 1
%κ+1 ‖v0

i − v∗i ‖2.

Now letting wk+1
i = vκ+1

i , we verify the condition in (3.5) by

‖gk+1
i + πki + σi(w

k+1
i −wτk+1)‖2

(3.11)
= ‖gk+1

i − αi∇fi(v∗i ) + σi(w
k+1
i − v∗i )‖2

≤ 2(α2
i r

2
i + σ2

i )‖w
k+1
i − v∗i ‖2

≤ 2(α2
i r

2
i + σ2

i )/%
κ+1‖v0

i − v∗i ‖2 ≤ ε
k+1
i ,

17



which by v0
i = wτk+1 implies that

κ = log%

⌊
2(α2

i r
2
i+σ2

i )‖wτk+1−v∗
i ‖2

εk+1
i

⌋
− 1.

The whole proof is finished.

7.2 Key lemma

Lemma 7.1. The following statements are valid.

a) For any k ∈ K, ∑m
i=1(σi(w

k
i −wτk+1) + πki ) = 0. (7.5)

b) For any k ≥ 0 and any i ∈ [m],

ϕk+1
i := gk+1

i + πk+1
i and ‖ϕk+1

i ‖2 ≤ εk+1
i . (7.6)

c) Under Assumption 4.1, for any k ≥ 0 and any i ∈ [m],

‖4πk+1
i ‖2 ≤ 5α2

i r
2
i

4 ‖4wk+1
i ‖2 − 10(1+νi)

1−νi 4ε
k+1
i . (7.7)

d) Under Scheme 4.1, for any i ∈ [m],

εk+1
i → 0. (7.8)

Proof. a) For any i ∈ [m] and at (k + 1)th iteration, let ki be the largest integer in [−1, k] such

that i ∈ Ωτki+1 . This implies that client i is not selected in all Ωτki+2 ,Ωτki+3 · · · ,Ωτk+1 , which by

(3.8) yields

(ε`+1
i ,w`+1

i ,π`+1
i , z`+1

i ) ≡ (εki+1
i ,wki+1

i ,πki+1
i , zki+1

i ), ∀` = ki, ki + 1, · · · , k. (7.9)

For any client i ∈ Ωτk+1 , we have (3.7). For any client i /∈ Ωτk+1 , if ki ≥ 0, then (wki+1
i ,πki+1

i , zki+1
i )

also satisfies (3.7) due to i ∈ Ωτki+1 , which by condition (7.9) implies that (wk+1
i ,πk+1

i , zk+1
i )

satisfies (3.7). If ki = −1, this means that is client i has never been selected. Then by (7.9) and

our initialization, we have

zk+1
i = zki+1

i = z0
i = σiw

0
i + π0

i = σiw
k+1
i + πk+1

i .

Hence, (3.7) is still valid. Overall, we can conclude that (3.7) holds for every i ∈ [m] and k ≥ 0.

Now, for any k ∈ K,∑m
i=1(σi(w

k
i −wτk+1) + πki )

(3.7)
=
∑m

i=1 σi(z
k
i −wτk+1)

(3.3)
= 0.

b) For any i ∈ Ωτk+1 , solution wk+1
i in (3.5) satisfies

ϕk+1
i = gk+1

i + πk+1
i

(3.6)
= gk+1

i + πki + σi4wk+1
i ,

‖ϕk+1
i ‖2

(3.4)

≤ εk+1
i .

(7.10)

For any i /∈ Ωτk+1 , we have

ϕki+1
i = gki+1

i + πki+1
i , ‖ϕki+1

i ‖2 ≤ εki+1
i
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due to i ∈ Ωτki+1 . This together with (7.9) implies that (7.6) is still true. So, (7.6) holds for any

i ∈ [m] and any k ≥ 0.

c) For any i ∈ Ωτk+1 , it follows from (7.6) and the gradient Lipschitz continuity of fi that

‖4πk+1
i ‖2 ≤ ‖gk+1

i − gki +ϕk+1
i −ϕki ‖2

(7.3)

≤ 5α2
i r

2
i

4 ‖4wk+1
i ‖2 + 5‖ϕk+1

i −ϕki ‖2
(3.4)

≤ 5α2
i r

2
i

4 ‖4wk+1
i ‖2 + 10(εk+1

i + εki )
(3.4)

≤ 5α2
i r

2
i

4 ‖4wk+1
i ‖2 + 10(1+νi)

1−νi (εki − ε
k+1
i ).

For any i /∈ Ωτk+1 , we have πk+1
i = 0 by (3.8), and thus the above condition is still valid.

d) For sufficiently large k ∈ K, any client i has been selected at least k/(s0k0) times due to (4.3).

This means that (3.4) (e.g., εk+1
i = εki /2 ) occurs at least k/(s0k0) times, leading to εk+1

i → 0.

7.3 Proof of Lemma 4.1

Proof. We estimate gap (Lk+1 − Lk) by decomposing it as

Lk+1 − Lk =: pk1 + pk2 + pk3, (7.11)

with

pk1 := L(wτk+1 ,W k,Πk)− Lk,

pk2 := L(wτk+1 ,W k+1,Πk)− L(wτk+1 ,W k,Πk),

pk3 := Lk+1 − L(wτk+1 ,W k+1,Πk).

(7.12)

Estimate pk1. If k /∈ K, then wτk+1 = wτk , thereby leading to

pk1 = L(wτk+1 ,W k,Πk)− Lk = 0 = −σ
2 ‖4wτk+1‖2. (7.13)

If k ∈ K, then we have (7.5) and

σi
2 ‖w

k
i −wτk+1‖2 − σi

2 ‖4wk
i ‖2

= 〈4wτk+1 ,−σi(wk
i −wτk+1)〉 − σi

2 ‖4wτk+1‖2.
(7.14)

These facts also allow us to derive that

pk1
(3.9)
=

∑m
i=1〈4wτk+1 ,−πki 〉+

∑m
i=1(σi2 ‖w

k
i −wτk+1‖2 − σi

2 ‖w
k
i −wτk‖2)

(7.14)
=

∑m
i=1〈4wτk+1 ,−πki − σi(wk

i −wτk+1)〉 −
∑m

i=1
σi
2 ‖4wτk+1‖2

(7.5)
= −σ

2 ‖4wτk+1‖2.

(7.15)

Estimate pk2. We consider two cases: i /∈ Ωτk+1 and i ∈ Ωτk+1 . For the former, wk+1
i = wk

i from

(3.8) suffices to

uki := L(wτk+1 ,wk+1
i ,πki )− L(wτk+1 ,wk

i ,π
k
i ) = 0.

For the latter, it follows from (7.3) that

σi
2 ‖4wk+1

i ‖2 − σi
2 ‖w

k
i −wτk+1‖2 = 〈4wk+1

i , σi4wk+1
i 〉 − σi

2 ‖4wk+1
i ‖2. (7.16)

19



Now we have the following chain of inequalities,

uki
(3.9)
= αifi(w

k+1
i )− αifi(wk

i ) + 〈4wk+1
i ,πki 〉+ σi

2 ‖4wk+1
i ‖2 − σi

2 ‖w
k
i −wτk+1‖2

(7.16),(3.6)
= αifi(w

k+1
i )− αifi(wk

i ) + 〈4wk+1
i ,πk+1

i 〉 − σi
2 ‖4wk+1

i ‖2
(7.1)

≤ αiri−σi
2 ‖4wk+1

i ‖2 + 〈4wk+1
i , gk+1

i + πk+1
i 〉

(7.10)
= αiri−σi

2 ‖4wk+1
i ‖2 + 〈4wk+1

i ,ϕk+1
i 〉

(7.3)

≤ 3αiri−2σi
4 ‖4wk+1

i ‖2 + 1
αiri
‖ϕk+1

i ‖2
(7.6)

≤ 3αiri−2σi
4 ‖4wk+1

i ‖2 +
εk+1
i
αiri

(3.4)

≤ 3αiri−2σi
4 ‖4wk+1

i ‖2 − νi4εk+1
i

(1−νi)αiri .

Therefore, for both cases, we obtain

pk2 =
∑m

i=1 u
k
i ≤

∑m
i=1(3αiri−2σi

4 ‖4wk+1
i ‖2 − νi4εk+1

i
(1−νi)αiri ).

(7.17)

Estimate pk3. We consider two cases: i /∈ Ωτk+1 and i ∈ Ωτk+1 . For the former, πk+1
i = πki from

(3.8) suffices to

vki := L(wτk+1 ,wk+1
i ,πki )− L(wτk+1 ,wk+1

i ,πki ) = 0.

For the latter, it is easy to see that

vki
(3.9)
= 〈4wk+1

i ,4πk+1
i 〉 (3.6)

= 1
σi
‖4πk+1

i ‖2
(7.7)

≤ 5α2
i r

2
i

4σi
‖4wk+1

i ‖2 − 10(1+νi)
σi(1−νi)4ε

k+1
i .

Therefore, for both cases

pk3 =
∑m

i=1 v
k
i ≤

∑m
i=1(

5α2
i r

2
i

4σi
‖4wk+1

i ‖2 − 10(1+νi)
σi(1−νi)4ε

k+1
i ). (7.18)

Overall, combining (7.11), (7.15), (7.17) and (7.18), we obtain

Lk+1 − Lk = pk1 + pk2 + pk3 ≤ −σ
2 ‖4wτk+1‖2 −

∑m
i=1( νi

(1−νi)αiri + 10(1+νi)
σi(1−νi) )4εk+1

i

−
∑m

i=1(2σi−3αiri
4 − 5α2

i r
2
i

4σi
)‖4wk+1

i ‖2,

which displays the result.

Lemma 7.2. Suppose that Assumptions 4.1 and 4.2 hold. Every client i ∈ [m] chooses σi > 5αiri/2

and the sever selects Ωτk as Scheme 4.1. Then the following results hold.

a) Sequence {L̃k} is non-increasing.

b) L̃k ≥ f(wτk) ≥ f∗ > −∞ for any k ≥ 1.

c) The limits of all the following terms are zero, namely,

(εk+1
i ,4wτk+1 , 4wk+1

i , 4wk+1
i , 4πk+1

i )→ 0. (7.19)

Proof. a) It follows from σi > 5αiri/2 that c > 0, which by Lemma 4.1 can conclude the conclusion.
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b) The gradient Lipschitz continuity of fi implies

αifi(w
τk)− αifi(wk

i )
(7.1)

≤ 〈4wk
i , g

k
i 〉+ riαi

2 ‖4wk
i ‖2

(7.6)
= 〈4wk

i ,π
k
i +ϕki 〉+ riαi

2 ‖4wk
i ‖2

(7.3)

≤ 〈4wk
i ,π

k
i 〉+ 3riαi

4 ‖4wk
i ‖2 + 1

αiri
‖ϕki ‖2

(7.6)

≤ 〈4wk
i ,π

k
i 〉+ 3riαi

4 ‖4wk
i ‖2 +

εki
αiri

.

The above relation and νi ≥ 1/2 gives rise to

L̃k
(4.4)

≥
∑m

i=1(L(wτk ,wk
i ,π

k
i ) +

νiε
k
i

(1−νi)αiri )
(3.9)

≥
∑m

i=1(αifi(w
k
i ) + 〈4wk

i ,π
k
i 〉+ σi

2 ‖4wk
i ‖2 +

εki
αiri

)

≥
∑m

i=1(αifi(w
τk) + 2σi−3riαi

4 ‖4wk
i ‖2)

≥
∑m

i=1 αifi(w
τk) = f(wτk) ≥ f∗

(2.4)
> −∞.

c) Using Lemma 4.1 and L̃k > −∞ enables to show that

∑
k≥0(σ2 ‖4wτk+1‖2 +

∑m
i=1

c
2‖4wk+1

i ‖2)

≤
∑

k≥0(L̃k − L̃k+1) = L̃0 − f∗ < +∞.
(7.20)

The above condition means ‖4wτk+1‖ → 0 and ‖4wk+1
i ‖ → 0, which by (7.7) and (7.8) derives

‖4πk+1
i ‖ → 0. Finally, for i ∈ Ωτk+1 , it follows from (3.6) that ‖σi4wk+1

i ‖ = ‖4πk+1
i ‖ → 0. For

i /∈ Ωτk+1 , then i ∈ Ωτki+1 , where ki is defined the same as that in the proof of Lemma 7.1 a). Based

on (4.3), we have τk+1 − τki+1 ≤ 2s0. As a consequence,

‖4wk+1
i ‖2 (7.9)

= ‖wki+1
i −wτk+1‖2

≤ 2‖4wki+1
i ‖2 + 2‖wτki+1 −wτk+1‖2

(3.6)
= 2

σ2
i
‖4πki+1

i ‖2 + 2‖
∑τk+1−1

τ=τki+1
(wτ −wτ+1)‖2

(7.3)

≤ 2
σ2
i
‖4πki+1

i ‖2 + 4s0
∑τk+1−1

τ=τki+1
‖wτ −wτ+1‖2 → 0,

(7.21)

where the last relationship is due to 4πki → and 4wτk+1 → 0. The whole proof is finished.

7.4 Proof of Theorem 4.1

Proof. a) By Lemma 7.2 that L̃1 ≥ f(wτk+1) and f being coercive, we can claim the boundedness of

sequence {wτk+1} immediately. This calls forth the boundedness of sequence {wk+1
i } as4wk+1

i → 0

from (7.19), thereby delivering

‖πk+1
i ‖ (7.6)

= ‖ϕk+1
i − gk+1

i ‖

≤ ‖ϕk+1
i ‖+ ‖gk+1

i − g0
i ‖+ ‖g0

i ‖
(7.6),(2.1)

≤
√
εk+1
i + αiri‖wk+1

i −w0
i ‖+ ‖g0

i ‖ < +∞.

This shows the boundedness of {πk+1
i }. Overall, sequence {(wτk+1 ,W k+1,Πk+1)} is bounded.
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b) It follows from Lemma 7.2 that {L̃k} is non-increasing and bounded from below. Therefore,

the whole sequence {L̃k} converges and L̃k+1 → Lk+1 due to εk+1
i → 0 in (7.19). Again by (7.19)

and the boundedness of sequence {πk+1
i }, we can prove that

Lk+1 − F (W k+1)
(3.9)
=
∑m

i=1(〈4wk+1
i ,πk+1

i 〉+ σi
2 ‖4wk+1

i ‖2)→ 0. (7.22)

It follows from Mean Value Theory that

fi(w
k+1
i ) = fi(w

τk+1) + 〈4wk+1,∇fi(wt)〉,

where wt := (1 − t)wτk+1 + twk+1
i for some t ∈ (0, 1). Since {wτk+1 ,wk+1

i } is bounded, so is wt.

This calls forth fi(w
k+1
i )− fi(wτk+1)→ 0 due to 4wk+1 → 0. Using this condition obtains

Lk+1 − f(wτk+1) =
∑m

i=1(αifi(w
k+1
i )− αifi(wτk+1)

+ 〈4wk+1,πk+1
i 〉+ σi

2 ‖4wk+1‖2)→ 0.

b) Let ` := (τk+1 − 1)k0 ∈ K, then for any k, it has

`+ 1 = (τk+1 − 1)k0 + 1 ≤ k + 1 ≤ τk+1k0,

τ`+1 = b(`+ 1)/k0c = bτk+1 − 1− 1/k0c = τk+1.
(7.23)

Since ` ∈ K, we have

∑m
i=1 π

`+1
i

(7.19)→
∑m

i=1(σi(4w`+1
i −4w`+1

i )−4π`+1
i + π`+1

i )

=
∑m

i=1(σi(w
`
i −wτ`+1) + π`i)

(7.5)
= 0.

We note that sequence {εk+1
i } is non-increasing and thus obtain ε`+1

i ≤ εk+1
i from (7.23), thereby

rendering that

‖πk+1
i − π`+1

i ‖2
(7.6)
= ‖ϕk+1

i −ϕ`+1
i − gk+1

i + g`+1
i ‖2

(7.6),(2.1)

≤ 3εk+1
i + 3ε`+1

i + 3α2
i r

2
i ‖w

k+1
i −w`+1

i ‖2
(7.23)

= 6εk+1
i + 3α2

i r
2
i ‖w

k+1
i −wτk+1 + wτ`+1 −w`+1

i ‖2

≤ 6εk+1
i + 6α2

i r
2
i (‖4wk+1

i ‖2 + ‖4w`+1
i ‖2)

(7.19)→ 0.

Using the above two conditions immediately derives that

∑m
i=1 π

k+1
i → 0. (7.24)

Taking the limit on both sides of (7.6) gives us

∇F (W k+1) =
∑m

i=1 g
k+1
i

(7.24)→
∑m

i=1(gk+1
i + πk+1

i )

(7.6)
=
∑m

i=1ϕ
k+1
i

(7.7)→ 0,
(7.25)

which together with 4wk+1
i → 0 and the gradient Lipschitz continuity yields that ∇f(wτk+1) =∑m

i=1 αi∇fi(wτk+1)→ 0. This completes the whole proof.
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7.5 Proof of Theorem 4.2

Proof. a) Let (w∞,W∞,Π∞) be any accumulating point of the sequence, it follows from (7.6) and

(7.7) that

0 = αi∇fi(w∞i ) + π∞i .

By (wk+1
i −wτk+1)→ 0 and (7.24), we have

0 = w∞i −w∞, 0 =
∑m

i=1 π
∞
i .

Therefore, recalling (4.1), (w∞,W∞,Π∞) is a stationary point of problem (3.1) and w∞ is a

stationary point of problem (2.3).

b) It follows from [42, Lemma 4.10], 4wτk+1 → 0 and w∞ being isolated that the whole

sequence, {wτk+1} converges to w∞, which by 4wk+1
i → 0 implies that {W k+1} also converges to

W∞. Finally, this together with (7.6) and (7.7) results in the convergence of {Πk+1}.

7.6 Proof of Corollary 4.1

Proof. a) The convexity of f and the optimality of w∗ yields

f(wτk) ≥ f(w∗) ≥ f(wτk) + 〈∇f(wτk),w∗ −wτk〉. (7.26)

Theorem 4.1 ii) states that

limk→∞∇F (W k) = limk→∞∇f(wτk) = 0.

Using this and the boundedness of {wτk} from Theorem 4.2, we take the limit of both sides of

(7.26) to derive that f(wτk)→ f(w∗), which recalling Theorem 4.1 i) yields (4.7).

b) The conclusion follows from Theorem 4.2 ii) and the fact that the stationary points are

equivalent to optimal solutions if f is convex.

c) The strong convexity of f means that there is a positive constance ν such that

f(wτk)− f(w∗) ≥ 〈∇f(w∗),wτk −w∗〉+ ν
2‖w

τk −w∗‖2 = ν
2‖w

τk −w∗‖2,

where the equality is due to (4.2). Taking limit of both sides of the above inequality shows wτk → w∗

since f(wτk)→ f(w∗). This together with (7.19) yields wk
i → w∗. Finally, πki → π∗i because of

‖πki − π∗i ‖2
(4.1),(7.6)

= ‖ϕki + gki − αi∇fi(w∗)‖2
(2.1)

≤ 2α2
i r

2
i ‖wk

i −w∗‖2 + 2εki → 0,

displaying the desired result.
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