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Model based eversion control of soft growing
robots with pneumatic actuation

Enrico Franco

Abstract— This letter investigates the model based po-
sition control of soft growing robots with pneumatic ac-
tuation that extend according to the principle known as
eversion. A dynamical model of the system which accounts
for the the energy of the ideal gas is presented by employ-
ing the port-Hamiltonian formulation. A new control law is
constructed with an energy shaping approach. An adaptive
observer is employed to compensate the effect of external
forces, including that of gravity. Numerical simulations in-
dicate that the proposed controller is superior to simpler
energy shaping algorithms.

Index Terms— Emerging control applications, Stability of
nonlinear systems, Adaptive control, Soft growing robots.

I. INTRODUCTION

SOFT growing robots are a class of systems capable of
navigating the environment without relying on friction

with their surroundings [1]. This is achieved by employing
a principle known as eversion, according to which a thin-
walled tubing extends longitudinally by unfolding its inner
membrane [2]. Soft growing robots are typically actuated with
compressed air, and they are characterized by a large volume
of gas and a comparatively small mass of their rigid parts.
Thus the effect of the gas energy on the system dynamics is
more pronounced compared to conventional pneumatic drives
or to other soft robots. Soft growing robots are employed for
inspection of cluttered environments, for search and rescue
operations [3], and in a more recent embodiment also for
minimally invasive surgery [4]. One of the challenges char-
acterizing soft growing robots is retraction, which requires
additional actuators to rewind the inner membrane [5] and
can lead to buckling of the tubing [6]. A further challenge is
related to steering, which can be achieved by interacting with
obstacles [7], by attaching inextensible elements to the tubing
thus resulting in pre-set curvature [8], or by using additional
actuators [2].

To date few results are available on model based control
of soft growing robots [9]. Similarly to other soft robots,
kinematic models [10] and kinematic-based controllers can be
appropriate if a fast response is not required [8], [11]–[13]. In
general however, dynamical models and corresponding model
based controllers allow improving the transient performance of
soft robots and can compensate the effects of external forces
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[14], [15]. In addition, accounting for the pressure dynamics
can improve the responsiveness of larger soft robots that
employ fluidic actuation [16]–[18]. Due to the challenges asso-
ciated to retracting soft growing robots, avoiding overshoot is
highly desirable. In addition, some applications such as search
and rescue require high responsiveness, thus resulting in a
challenging control problem.

In this letter, the model based control of a soft growing
robot with pneumatic actuation is investigated. To this end,
a system model that accounts for the energy of the ideal gas
and for the effect of external forces is presented by employing
a port-Hamiltonian formulation. The main contributions of
this work include: i) differently from previous works, both
isothermal and polytropic processes are considered, and the
effect of pressure on the gas density is accounted for; ii)
an extended nonlinear observer is employed to compensate
the effect of external forces, including that of gravity due to
an unknown slope; iii) a control law is constructed for the
resulting model by employing an energy shaping approach
with damping assignment, which was not part of [16], [17];
iv) sufficient conditions for global asymptotic stability are
provided in relation to the tuning parameters and to some veri-
fiable conditions on the disturbances. Finally, the effectiveness
of the controller is demonstrated with numerical simulations
and compared with simplified energy shaping algorithms.

The rest of this letter is organized as follows: Section II
presents the dynamical model of a soft growing robot; Section
III outlines the controller design; Section IV contains the
simulation results, and Section V the concluding remarks.

II. DYNAMICAL MODEL

A. Soft growing robot
A soft growing robot typically consists of an inflatable

tubular structure that extends at the distal end according to a
principle known as eversion [2]. Assuming that the tubing has
a uniform section of area A and an everted length 0 ≤ x ≤ x
measured on its central axis starting from the pressure source,
the volume of the pressurized gas is thus V = Ax + V0 (see
Figure 1). The internal energy of an ideal gas at the pressure P

is given by Φ = −
∫ V

V0
PdV , which computed for a polytropic

process with index c yields

Φ =

{
P (V0 +Ax) log

(
V0

V0+Ax

)
c = 1

−P (V0+Ax)c

c−1

(
V 1−c
0 − (V0 +Ax)1−c

)
c ̸= 1,

(1)

where V0 = Ax0 is the initial volume at x = 0. A characteris-
tic of eversion is that, once a portion of the tubing is inflated,



the outer membrane remains static. Instead, a portion of the
inner membrane with length x + x0 travels inside the outer
membrane at twice the speed of the tip, that is 2ẋ [5]. The
mechanical energy of the system is thus H = 1

2 ẋ
2Mt+Ω+Φ.

The mass is Mt = m + (ρA + 4ρbAb)(x + x0) > 0, where
ρ is the gas density and ρb is the density of the tubing,
while m is the mass of the tool at the tip. In particular,
ρ = ρ0

P 1/c

P
1/c
a

, where ρ0 is the gas density at the atmospheric
pressure Pa. The potential energy due to gravity associated to
the whole everted length is Ω(x) = g

∫ x

0
Mt(x̂)h(x̂)dx̂. While

the height h(x) might not be measurable during locomotion
on unknown terrains, it is bounded by the length x, that is
|h(x)| ≤ |x|. Assuming that the robot moves on a constant
slope h(x) = h0x yields Ω(x) =

(
F10 + F11

P 1/c

P
1/c
a

)
x2

2 +(
F20 + F21

P 1/c

P
1/c
a

)
x3

3 , where F10 = gh0(m+4Abρbx0), F11 =

gh0Aρ0x0, F20 = 4gh0Abρb, F21 = gh0Aρ0. Accounting for
the effect of the external forces δ in the direction of motion,
the system dynamics in port-Hamiltonian form is ẋṗ

Ṗ

 =

 0 1 0
−1 −b Γ0A

V

0 −Γ0A
V 0

∂xH∂pH
∂PH

+

 0
−δ

cRsT
V Q

 , (2)

where the system states are the position x ∈ R, the momenta
p = Mtẋ, and the pressure P . The bulk modulus of a fluid is
defined as Γ0 = −V ∂P

∂V , which for an ideal gas with polytropic
index c yields Γ0 = cP . The physical damping is b, the gas
constant is Rs, and Q is the mass flow rate of gas flowing into
the tubing. The notation ∂xH = ∂H

∂x , ∂pH = ∂H
∂p , ∂PH = ∂H

∂P
is employed throughout the paper for conciseness.
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Fig. 1. Schematic of soft growing robot: section view with system states
and key model parameters. For simplicity, no tool is shown at the tip.

The following assumptions are introduced for controller
design purposes.

Assumption 1: The gas is ideal and has a polytropic index
c and a specific constant Rs; the pressure P of the gas, its
density ρ, and its speed ẋ are uniform in the volume V .

Assumption 2: The tip position x, its time derivative ẋ, and
the pressure P are known at any instant; in addition x and P
are bounded, that is 0 ≤ x ≤ x and Pa ≤ P ≤ P .

Assumption 3: The potential energy is Ω(x) =(
F10 + F11

P 1/c

P
1/c
a

)
x2

2 +
(
F20 + F21

P 1/c

P
1/c
a

)
x3

3 where the terms
F10, F11, F20 and F21 are unknown but bounded and constant.

Assumption 4: The external forces δ = APa + F0 + F3ẋ
are bounded, where F0 > 0 and F3 > 0 are unknown but
constant. All remaining model parameters are known.

The parameterization chosen for δ and Ω describes the
so-called path-independent eversion forces [19]: i) the yield
pressure below which no growth occurs is accounted for by
F0; ii) internal and external viscous friction are accounted for
by F3 and by the physical damping b; iii) besides contributing
to Ω, F10 is also representative of length-dependent static
friction. It follows from Assumptions 3 and 4 that the vector
F = [F0, F10, F11, F20, F21, F3] is bounded, that is |F | ≤ F .
Note that the model (2) is specific to unconstrained growth
by eversion, while steering and retraction are not considered.
This is motivated by the fact that growth by eversion, steering,
and retraction are typically actuated independently [9].

B. Regulated air supply

The flow rate through an equivalent orifice with conduc-
tance C depends on the upstream pressure P0 and on the
downstream pressure P according to ISO 6358

Q =



P0C

√
1−

(
P
P0

−ϵ

1−ϵ

)2

ϵ < P
P0

< 1

P0C 0 < P
P0

≤ ϵ

−PC

√
1−

(
P0
P −ϵ

1−ϵ

)2

ϵ < P0

P < 1

−PC 0 < P0

P ≤ ϵ,

(3)

where ϵ = 0.528 is the critical pressure ratio for an ideal
gas, corresponding to sonic flow [20]. In the proposed setup,
compressed air is supplied through a pipe by a digital pressure
regulator hence P0 represents the control input for system (2),
while the internal pressure P is a system state. It follows from
(3) that the flow rate could be either positive for inflow or
negative for outflow. Computing P0 from (3) gives

P0 =


Pϵ

1−
√

1−(2− 1
ϵ )

(
1+ Q2

(CP )2
(1−ϵ)2

)
2ϵ−1 ϵ < P

P0
< 1, Q > 0

Q
C 0 < P

P0
≤ ϵ,Q > 0

P
(
ϵ+ (1− ϵ)

√
1− Q2

(CP )2

)
−CP < Q < 0

Pϵ Q < −CP.
(4)

Finally, the conductance of an orifice of diameter D and length
L at the outlet of the pressure regulator is given by

C =
0.029D2√
L

D1.25 + 510
. (5)

III. MODEL BASED POSITION CONTROL

The control aim is to regulate the position of the tip to
x = x∗ only by acting on the pressure P0. This goal has
typically been achieved with the combination of pressure to
produce growth and of an additional motor pulling the inner
membrane to resist growth and avoid overshoot [9].

A. Nonlinear observer

A nonlinear observer is constructed by employing the
Immersion and Invariance methodology [21] to estimate the



vector F = [F0, F10, F11, F20, F21, F3]. To this end define the
vector of estimation errors zF = [z0, z10, z11, z20, z21, z3]

T as

zF = F̂ + βF − F, (6)

where βF = [β0, β10, β11, β20, β21, β3]
T are

functions of the system states (x, p, P ), while
F̂ = [F̂0, F̂10, F̂11, F̂20, F̂21, F̂3]

T are the observer states. The
vector F is thus approximated with F̂ + βF .

Proposition 1: Consider system (2) with Assumptions 1 to
4 and the functions

βF = −αp
[
1 x κ1

P 1/c

P
1/c
a

x2 κ2
P 1/c

P
1/c
a

p
2Mt

]T
,

κ1 =
x2 + 2xx0

2x+ 2x0
, κ2 =

2x3 + 3x2x0

3x+ 3x0
,

(7)

˙̂
F = −∂xβF

p

Mt
− ∂PβF Ṗ + ∂pβF

(
b
p

Mt

)
+∂pβF

(
ΩF (F̂ + βF )−A(P − Pa)− 2ρbAb

p2

M2
t

)
,

ΩF =
[
1 x κ1

P 1/c

P
1/c
a

x2 κ2
P 1/c

P
1/c
a

p
Mt

]
.

(8)

Then the quantity η = ΩF zF is bounded and converges to
zero asymptotically for all α > 0, provided that the system
trajectories are bounded in closed loop with the control law.

Proof : Computing ṗ and Ṗ from (2) yields

ṗ = A(P − Pa)− b
p

Mt
− ΩF

(
F̂ + βF

)
+ η + 2ρbAb

p2

M2
t

,

Ṗ =
QcRsT

A(x+ x0)
− cPp

(x+ x0)Mt
.

(9)

Computing the time derivative of (6) and substituting (9) yields

˙zF =
˙̂
F + ∂xβF

p

Mt
+ ∂pβF

(
AP + 2ρbAb

p2

M2
t

+ η

)
−∂pβF

(
APa + b

p

Mt
+ΩF

(
F̂ + βF

))
+ ∂PβF Ṗ .

(10)

Substituting (7), (8) into (10), where ∂pβF = −αΩF , yields
˙zF = −αΩT

FΩF zF . Defining the storage function Ψ = 1
2z

T
F zF

and computing its time derivative yields Ψ̇ = −αη2 ≤ 0 for
all α > 0, thus η ∈ L2 and zF ∈ L∞. If (x, p, P ) and their
time derivatives are bounded in closed loop, it follows that
˙zF ∈ L∞, and thus η, η̇ ∈ L∞. Consequently, η is bounded

and converges to zero asymptotically [22] □

B. Control law

The control law is designed by extending the energy shaping
approach [23] with a similar procedure to [16], [17] such that
the closed-loop dynamics in port-Hamiltonian form becomes ẋṗ

Ṗ

 =

 0 S12 S13

−S12 −S22 S23

−S13 −S23 −S33

∂xHd

∂pHd

∂PHd

+

0η
0

 , (11)

where Hd = Ωd + 1
2

p2

Md
+ 1

2 ς
2 is a positive definite storage

function. In particular, Ωd = 1
2kp (x− x∗)

2 with kp > 0

satisfies the minimizer condition x∗ = argmin (Ωd). Differ-
ently from [16], [17], the controller design includes damping
assignment through a parameter kv and the mass Md is set
constant rather than proportional to Mt, thus ς is defined in
the more general form

ς = A(P − Pa) + 2ρbAb
p2

M2
t

+ kv
p

Mt

+
Md

Mt
kp(x− x∗)− ΩF

(
F̂ + βF

)
.

(12)

Since (12) contains the nonlinear observer (7) and (8), the
term η appears in (11). The terms Sij in (11) are defined as

S12 =
Md

Mt
, S13 = −Md

Mt

∂pς

∂P ς
, S22 =

Md

Mt
(b+ kv) ,

S23 =
1 + Md

Mt
∂xς +

Md

Mt
(b+ kv) ∂pς

∂P ς
, S33 = ki,

(13)

where kp, ki, kv are tuning parameters. The control input is

Q =
PAp

RsTMt
− A(x+ x0)

cRsT
S13 (kp(x− x∗) + ς∂xς)

−A(x+ x0)

cRsT

(
S23

(
p

Md
+ ς∂pς

)
+ S33ς∂P ς

)
,

(14)

where S13, S23, S33 are given in (13). The regulated pressure
P0 is then computed from (4).

Proposition 2: Consider system (2) with Assumptions 1 to
4 in closed-loop with the control law (14) and the observer
(7),(8). Assume that there exist some kp,Md, α and kv such
that ∂P ς ̸= 0 for a given F . Define then the positive constant
parameters ki,Md, kv, kp, α such that

Θ =

Md

Mt
(b+ kv) − 1

2 0

− 1
2 α 0
0 0 ki(∂P ς)

2

 , (15)

is positive definite. Sufficient conditions for ki,Md, kv, α are

kv >
bρ0A

4ρbAb

P 1/c

P
1/c
a

+
mb

4ρbAbkmα
+ k

′

v

ρbAbkm
bMd

> 0,

Md > ρbAb
km
b
, km > 0, ki > 0, αkm > x+ x0.

(16)

Then the equilibrium x = x∗ is globally asymptotically stable.
Proof : Note first that substituting the control law (14) into

(2) yields (11) with the parameters (13), thus the following
matching equations are verified

p

Mt
= S12

p

Md
+ S12ς∂pς + S13ς∂P ς, (17)

A(P − Pa) + 2ρbAb
p2

M2
t

− b
p

Mt
− ΩF

(
F̂ + βF

)
+ η =

S23ς∂P ς − S22

(
p

Md
+ ς∂pς

)
− S12 (kp(x− x∗) + ς∂xς) ,

(18)

QcRsT

A(x+ x0)
− cPp

(x+ x0)Mt
= −S33ς∂P ς

−S23

(
p

Md
+ ς∂pς

)
− S13 (kp(x− x∗) + ς∂xς) .

(19)



Defining the Lyapunov function Υ = Ψ+Hd and computing
its time derivative along the trajectories of the closed-loop
system (11) while substituting Ψ̇ from Proposition 1 yields

Υ̇ = −Md

Mt
(b+ kv) (∂pHd)

2
+ ∂pHdη

−αη2 − ki(∂P ς)
2ς2.

(20)

Refactoring common terms in (20) yields

Υ̇ = −yTΘy, (21)

where yT =
[
∂pHd η ς

]
with ∂pHd = p

Md
+ ς∂pς while

Θ is given in (15). Thus Υ̇ ≤ 0 and the equilibrium is stable
provided that ki > 0, ∂P ς ̸= 0 and Md

Mt
(b + kv)α > 1

4 . In
particular p, ς ∈ L2 ∩ L∞ and η ∈ L2, while zF , P, x ∈ L∞.
Since all states are bounded in closed loop, it follows from
Proposition 1 that η converges to zero.

To compute the lower bound of kv in (16) substitute Mt in
(15) which yields the inequality

Md(b+ kv)α >
m

4
+

(
ρ0A

4

P 1/c

P
1/c
a

+ ρbAb

)
(x+ x0), (22)

where 0 ≤ x ≤ x, Pa ≤ P ≤ P . Setting Md = ρbAb
km

b > 0

for some km > 0 and kv > bρ0A
4ρbAb

P 1/c

P
1/c
a

+ mb
4ρbAbkmα+k

′

v
ρbAbkm

bMd

with k
′

v > 0, (22) is verified for all x + x0 ≤ αkm. Thus a
conservative choice of α and km is αkm ≥ x0+x. It remains to
show that ∂P ς ̸= 0 for some kp,Md, kv, α and F . Computing
∂P ς from (12) yields

∂P ς = −ρ0A

P
(x+ x0)

(
4ρbAb

p2

M3
t

+ kv
p

M2
t

)
P 1/c

P
1/c
a

+A+
ρ0A

P
kp

Md

M2
t

(x∗ − x)(x+ x0)
P 1/c

P
1/c
a

−∂PΩF

(
F̂ + βF

)
− ΩF∂PβF .

(23)

Since Υ̇ ≤ 0, the system’s trajectory starting at Υ(t0) descends
to lower level sets, that is Ωd+

1
2

p2

Md
+ 1

2 ς
2+ 1

2z
T
F zF ≤ Υ(t0),

where zF (t0) = F . Consequently the upper bound of p is
p =

√
2MdΥ(t0). The upper bounds of zF and F̂ can be

computed in a similar fashion, while the bounds of x and
P are known from Assumption 2. Substituting p and F̂ in
(23) and imposing ∂P ς > 0 yields an inequality which can
be evaluated in advance for all 0 ≤ x ≤ x, Pa ≤ P ≤ P
given kp,Md, α and kv . Considering for illustrative purposes
(x, p, P, F̂ ) = (0, p, Pa, F̂ ) with c ̸= 1 and rearranging terms
in (23) gives (

−kpMdx
∗ + 4ρbAb

p2

Mt
+ kvp

)
ρ0x0

M2
t

+

(
pF̂

c
(m+Aρ0x0 +Abρbx0)− α

p3

c

)
ρ0x0

M2
t

< Pa,

which is verified by the sufficient condition

kpMdx
∗ +

αp3

c
≥ 4ρbAbp

2

Mt
+

pF̂ (m+ x0 (Aρ0 +Abρb))

c
+ kvp.

To prove asymptotic stability of the equilibrium, note that y =
0 is the set of points where Υ̇ = 0 and it implies ṗ = p =
0, ς = 0, and η = 0. Computing ṗ from (11) at y = 0 yields
kp(x

∗ − x) = 0. Thus the equilibrium x∗ = argmin(Ωd) is
the largest invariant set in y = 0 and it is asymptotically
stable (see Corollary 3.1 in [24]). Finally, computing (12) at
p = ς = 0 and x = x∗ yields the pressure at the equilibrium,
that is P ∗ = Pa +ΩF (F̂ + βF )/A.

To prove the global claim we proceed to show that Hd

(and therefore Υ) is radially unbounded (see Corollary 3.2 in
[24]). To this end note that Hd, zF → ∞ =⇒ Υ → ∞
and x, p, ς → ∞ =⇒ Hd → ∞. In addition, it follows
from (12) that P → ∞ =⇒ ς → ∞ =⇒ Hd → ∞,
while ς = 0 =⇒ AP = −2ρbAb

p2

M2
t
+ APa − kv

p
Mt

−
Md

Mt
kp(x− x∗) + ΩF

(
F̂ + βF

)
. Consequently, the condition

ς = 0 ∩ P → ∞ requires either q → ∞ or p → ∞, which
yield finally Hd → ∞ concluding the proof □

Remark 1: The external force F3 acts on the system dynam-
ics (2) in a similar way to the damping b. Thus F3 can either
be accounted for by ΩF

(
F̂ + βF

)
in ς as done in (12), or

alternatively alongside b in S23 and in (15), that is

S22 =
Md

Mt

(
b+ kv + F̂3 + β3

)
,

S23 =
1 + Md

Mt
∂xς +

Md

Mt

(
b+ kv + F̂3 + β3

)
∂pς

∂P ς
.

(24)

The resulting control law still depends on F̂3 + β3 but it does
not compensate this effect, thus yielding a slower response.

Remark 2: Approximating the density of the gas with
the constant value ρ0 simplifies the nonlinear observer since
Ω(x) = F10

x2

2 + F20
x3

3 where F10 = gh0(m + x0(ρ0A +
4ρbAb)), F20 = gh0(ρ0A+ 4ρbAb) thus

ΩF =
[
1 x x2 p

Mt

]
,

βF = −αp
[
1 x x2 p

2Mt

]T
.

(25)

Setting Md = kmMt for some km > 0 and kv = 0 recovers
the controller design [17] as a special case, that is

ς = A(P − Pa) + kpkm(x− x∗)− ΩF

(
F̂ + βF

)
, (26)

S12 = km, S13 = 0, S22 = kmb,

S23 =
1 + km∂xς + kmb∂pς

A
, S33 = ki.

(27)

Note that ς in (26) does not depend on p thus S13 = 0,
while ΩF does not depend on P hence ∂P ς = A. A further
difference from [17] is that system (2) is fully actuated, thus
the controller (14) does not require solving any PDE.

Remark 3: Neglecting the pressure dynamics altogether by
assuming P0 = P in (2) further simplifies the control law and
the nonlinear observer (8) as

P0 = Pa +
ΩF

A

(
F̂ + βF

)
− kpkm

A
(x− x∗)− kv

p

AMt
,

(28)

˙̂
F = ∂pβF

(
bp

Mt
−A(P0 − Pa) + ΩF (F̂ + βF )

)
− ∂xβF

p

Mt
.

(29)



IV. SIMULATION RESULTS

The system (2) has been simulated in MATLAB using an
ODE23 solver and employing the model parameters in SI
units A = 4.9 × 10−4, Ab = 3 × 10−6, V0 = 10−3, c =
1.5, ρ0 = 1.225, ρb = 900, ϵ = 0.528, Rs = 287, T =
293, D = 4 × 10−3, L = 10−2, b = 1,m = 0.1, Pa = 105

for illustrative purposes, which correspond to air undergoing
adiabatic expansion in a polythene tubing of diameter 25 mm
and thickness 0.06 mm. With the former parameters, the mass
of air accounts for approximately 14% of the total mass Mt

thus neglecting its effect on the dynamics can compromise
performance. The unknown external forces have been set as
F0 = 0.2(1 + tanh (ẋ)) and F3 = 0.5 corresponding respec-
tively to a smooth approximation of the yield pressure, and
to viscous friction. Both values are comparable in magnitude
to those reported in [19]. The unknown slope is defined for
illustrative purposes as either h0 = 0.4, which is indicated as
h1, or h0 = 0.5+0.2 sin(4πx), which is indicated as h2, or as
h0 = 0.5−0.6 sin(4πx), which is indicated as h3. The tuning
parameters of the controller (14) and of the observer (7) and
(8) have been chosen as kp = 1, kv = 1, ki = 1,Md = 2.5m
and α = 5, which satisfy the conditions in Proposition 2.
Finally, the regulated pressure P0 is computed with (4).
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Fig. 2. Simulation results for system (2) with controller (14) and
observer (7),(8) for different slopes: (a) tip position x; (b) measured
pressure P ; (c) regulated pressure P0; (d) mass flow rate Q.

Figure 2 shows the time history of the states x, P , the
regulated pressure P0, and the flow rate Q with controller (14)
for the different slopes. In all cases the regulation goal x∗ =
0.5 is achieved in approximately 5 seconds without overshoot,
while the transient remains smooth for both position and
pressure. Employing the implementation outlined in Remark
1 yields similar results which are omitted for brevity.

Figure 3 shows the time history of the states x, P and of
P0 and Q for the slope h3 while considering different values
of the parameter A in the model (2). The controller (14) is
compared to the simplified energy shaping designs discussed

in Remark 2 and in Remark 3 using the tuning parameters
kp = 1, km = 2, kv = 1, ki = 1, α = 5 in both cases for
consistency. All controllers yield similar performance with a
small A and the regulation goal is achieved in approximately
5 seconds. Employing larger values of A, which correspond to
polythene tubing of diameter 50 mm and 60 mm respectively,
can result in performance degradation or in higher control
effort with the simplified energy shaping controllers. This can
be explained considering that assuming constant density of
the gas ρ = ρ0 as in Remark 2 or neglecting it altogether
as in Remark 3 underestimates the inertia of the system.
In particular, the controller outlined in Remark 2 does not
show noticeable performance degradation but it requires a
higher control input and a higher regulated pressure compared
to the controller (14). The controller outlined in Remark 3
shows a more severe performance degradation even though
the regulated pressure and the flow rate remain comparatively
low. This is expected since neglecting the pressure dynamics is
known to degrade performance [18]. No overshoot is observed
with the controller (14) and the transient is consistent across
all conditions highlighting the advantages of this approach.

V. CONCLUSION

In this letter, the dynamical model of a soft growing robot
with pneumatic actuation that accounts for the energy of
the ideal gas has been presented by employing the port-
Hamiltonian formulation. A nonlinear control law has been
constructed with an energy-shaping and damping-assignment
approach, and the effect of a class of unknown external
forces, including gravity due to eversion on an unknown con-
stant slope, has been compensated with a nonlinear observer.
The simulation results indicate that the proposed controller
achieves the regulation goal in a consistent fashion and without
overshoot for different slopes. In comparison, simpler energy
shaping controllers can lead to overshoot in some conditions.
Future work will aim to further relax the initial assumptions,
to investigate simultaneous eversion and steering control, and
to conduct experimental tests on a prototype.
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Fig. 3. Simulation results for system (2) and different values of A: (a) position x with controller (14); (b) measured pressure P ; (c) regulated
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