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1. Introduction

This paper continues the theme of the author’s earlier surveys [Bin1]
on prediction theory for one-dimensional time series, [Bin2] on the finite-
dimensional case, and touching briefly (with Badr Missaoui, [BinM]) on the
infinite-dimensional case. This is our theme here. Our motivation is partly
mathematical interest and completeness, partly the vigorous development of
functional data analysis (FDA; [RamS1], [RamS2], [HorK]) made possible by
the explosive growth in computer power, data storage and data handling.

We begin in §2 with the Cramér Representation (CR) and the Kolmogorov
Isomorphism Theorem (KIT), on which everything rests. In §3 we turn to
Verblunsky coefficients and Schur functions. Szegő’s theorem and the Wold
decomposition follow in §4, and the Szegő alternative and factorization in
§5, all themes familiar from e.g. [Bin1], [Bin2]. Section 6 is on the Beurling-
Lax-Halmos theorem and inner functions. Section 7 is on numerical imple-
mentation. Complements follow in §8, in particular (§8.1) the deterministic
case and (§8.2) model spaces. We close in §9 with some open questions, with
which the area abounds.

As with FDA itself, implementation involves discretization (‘calculus is
continuous, calculation is discrete’), and so in principle (subject to a suitable
choice of dimension) reduces the setting to a finite-dimensional one, which
can be handled by the finite-dimensional methods of e.g. [Bin2] and the ref-
erences there (the extensions to higher dimensions, due to Whittle in 1963
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and Wiggins and Robinson in 1965, of the Levinson-Durbin algorithm for the
scalar case). We prefer to use the infinite-dimensional context suggested by
the nature of the data. See e.g. §7.1 below, [RamS1], [DetKA] for more on
this. (Ramsay and Silverman remark [RamS1, p.11] ‘In general, prediction
theory is beyond our scope, and is only considered here and there’.)

The mathematics here involves vectorial integration (see e.g. [Rud2, Ch.
12]).

2. The Cramér Representation and the Kolmogorov Isomorphism
Theorem

2.1. The Cramér Representation (CR)
We confine ourselves throughout to stationary processes, that is, those

whose distributions are invariant under time-shifts. One can work in discrete
or continuous time, depending on preference, context or the data available.
As the term ‘time series’ indicates, the first is the traditional one, and we
shall follow it here. Then the time set is the integers Z, with (Pontryagin-van
Kampen) dual [Pon, Ch. 6] the torus T (equivalently R/2πZ; one can pass
between these by θ ↔ eiθ, and we shall do this at will). In the second case,
the time-set is the real line R, with dual R also. Stationarity is a strong con-
dition, which yields correspondingly strong conclusions; we turn later to how
it may be relaxed (§8.4). For a monograph treatment, see Nikolskii [Nik1],
whose sub-title ‘Spectral function theory’ gives a hint of the mathematics
involved (see also [Nik2]).

We write our process (or time series) as x = {xn : n ∈ Z}, where the xn
are in R, Rd, a Hilbert space H or a Banach space B, depending on context
(one can work more generally; see e.g. [BinM, §5.5, §5.6]). While our data
consists of functions, as in our title, these functions will always belong to
function spaces, which are at least topological vector spaces, the elements of
which we will call vectors as usual. So vectors here are infinite-dimensional
unless otherwise stated. Covariances are matrices in the finite-dimensional
case (as in multivariate analysis in statistics, and in [Bin2]). But here, co-
variances are (linear) operators, hence the crucial role of operator theory in
what follows. We will work in a Hilbert space H unless otherwise stated.

Write the time-shift n 7→ n+ 1 as U . Then U is unitary, and generates a
unitary group, U . Being unitary, U is normal, and so the spectral theorem
for the unitary case (Stone’s theorem) applies ([Rud2, Ch. 12]; [Sto VIII.2],
[RieN, §109], [DunS, X.2]). This involves integration over T with respect to
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a resolution of the identity (projection-valued measure, in Mackey’s termi-
nology [Mac]) E = {E(θ) : θ ∈ T}: E(T) = 1, and

Un =

∫
T
einθdE(θ), n ∈ Z (U)

(as all our integrals will be over the torus T, we omit the T below). Note
that as |einθ| = 1 and E(T) = 1, for x ∈ H (U) gives

∥Ux∥ = ∥
∫
eiθdE(θ)x∥ ≤ ∥x∥ :

U is a contraction.
By above,

xn = Unx0 =

∫
einθdE(θ)x0 =

∫
einθdY (θ), n ∈ Z,

say, giving the Cramér representation

xn =

∫
einθdY (θ), n ∈ Z. (CR)

The random measure Y here is the Cramér measure [Cra1], [Cra2], [CraL],
or (Cramér’s terminology) the spectral process, of the stationary process x.
This is orthogonally scattered (Masani, [Mas1]): the masses of disjoint sets
are orthogonal (see also Aue and van Delft [AueD], Prop. 2.1).

The Cramér representation holds also in continuous time; see e.g. [Kak3,
§2 Th. 1].

2.2. The Kolmogorov Isomorphism Theorem (KIT)
One has the Kolmogorov Isomorphism Theorem ([Kak3]; [Kak4, p.104];

[ManS]; [DelE])], as in the scalar and matrix cases (see e.g. [Bin1], [Bin2]).
Put succinctly and acronymically,

x(n) ↔ ein. I, n ∈ Z, (KIT )

with I the identity operator (here the time domain is on the left, the fre-
quency domain on the right). As with (CR), this holds also in continuous
time. Formally, (a convenient source here is [Kak3, §2 Th. 3]):
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Theorem (Kolmogorov Isomorphism Theorem). On a probability
space (Ω,F , P ), write X = L2

0(Ω) for the Hilbert space of complex-valued
zero-mean square-integrable random variables, H(x) for the closed subspace
of X spanned by the set {x(t) : t ∈ R}. For {x(t)} an X-valued sta-
tionary process on R with spectral measure µ, the time domain H(x) and
the frequency (spectral) domain L2(µ) are isomorphic by a unitary operator
U : H(x) → L2(µ) given by

Ux(t) = eit., t ∈ R.

We recall Chung’s famous dictum ‘The process is the thing’. A stochastic
process is an infinite-dimensional object, characterised by its distribution.
Both (KIT ) and (CR) deal with the distribution of the process in full, in
different ways, with the distribution implicit in (KIT ) and explicit in (CR).
By contrast, we shall meet below results that deal only with the second-
order aspects of the process: (mean and) covariance. The key result here is
Verblunsky’s theorem, or the Verblunsky isomorphism (§3), characterising (or
parametrising) the covariance structure. This is fully informative about the
process when the process is Gaussian; we discuss Gaussianity in §2.4 below
(cf. [Bin4, §4.1] in continuous time).

2.3. The Gramian
Take H a separable Hilbert space, B(H) the algebra of all bounded linear

operators on H, T (H) the trace class operators in B(H) (cf. §4.1 below).
The Kolmogorov Isomorphism Theorem in the Hilbert case is due to Man-
drekar and Salehi [ManS]; here we follow Kakihara [Kak1], [Kak2], [Kak3],
[Kak4]. Write X := L2

0(Ω,H) for the Hilbert space of all H-valued (strong)
random variables with mean 0 and finite second moment: with (Ω,F ,P) the
probability space, E[x] :=

∫
Ω
x(ω)dP(ω) = 0,

∥x∥2X :=

∫
Ω

∥x(ω)∥2H dP(ω) = E [ ∥x∥2H] <∞,

and so with inner product on X

(x, y)X :=

∫
Ω

(x(ω), y(ω))H dP(ω) = E[(x, y)H].
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The Gramian operator, or Gramian, is the T (H)-valued inner product [., .]X
defined by

([x, y]Xϕ, ψ)H =

∫
Ω

(x(ω), ϕ)H(ψ, y(ω))H dP(ω)

= E[(x, ϕ)H(ψ, y)H] (x, y ∈ X,ϕ, ψ ∈ H). (GO)

In the finite-dimensional case, this reduces to a doubly-indexed set of scalars,
which gives a matrix, the Gramian matrix [HorJ, §7.2], which is positive
definite; so too is the Gramian operator likewise. Symbolically,

[x, y]X =

∫
Ω

x(ω)⊗ y(ω)dP(ω) = E[x⊗ y],

where
(ϕ⊗ ψ)ϕ′ := (ϕ′, ψ)Hϕ, ϕ, ϕ′, ψ ∈ H.

Now X is both
(i) a left B(H)-module under the module action

(a, x) 7→ a.x = ax (a ∈ B(H), x ∈ H),

(ii) a Hilbert space with Gramian [., .]X :
X is a normal Hilbert B(H)-module in the sense of [Kak2]. (For background
on Hilbert modules, see Lance [Lan]. Both Hilbert modules and Gramians
go back here at least to Masani’s comments on Wiener’s work on prediction
[Mas2].)

We may now without ambiguity abbreviate [., .]X (whose values are non-
random operators) to [., .]. With it, we can define the spectral measure, or
control measure,

F (.) := [Y (.), Y (.)] (SM)

(operator-valued, indeed Gramian-valued), and the operator covariance func-
tion,

Γ(m,n) := [x(m), x(n)].

The process x = {x(n)} is called operator stationary (or just stationary) if
its operator covariance function (or just covariance function) is a function
of m − n only, Γ̃(m − n) = Γ(m,n), say. We assume stationarity unless
otherwise stated.
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As in the matrix case above, the Gramian is positive definite (Gretsky
[Gret, §3]). One has [Kak3] the spectral representation

Γ̃(n) =

∫
einθdF (θ). (SR)

This is the operator version of Herglotz’s theorem (or Bochner’s theorem);
cf. [Bin1], [Bin2] in finite dimensions and van Delft and Eichler [DelE] in
this setting.

Below, we shall need the spectral density f , the Radon-Nikodym deriva-
tive of the absolutely continuous component of the spectral measure F with
respect to normalised Lebesgue measure dθ/2π on T, operator-valued, as F
is (take f as 0 if F is singular).

2.4. Gaussianity
In (CR), one has the stationary process x = (xn) in the time domain

represented as a stochastic integral of the orthogonal-increments process
Y = (Y (θ)) in the frequency domain. For Gaussians, orthogonality is the
same as independence, so if Y is Gaussian, it has independent increments.
As sums (and so integrals) of independent Gaussians are Gaussian, x is then
Gaussian by (CR). The converse also holds (see e.g. [Cra3], [Horo]). All this
is true regardless of the dimension d.

This simple and basic fact should thus have been stated (indeed, stressed)
in the d = 1 case in [Bin1] and the case 1 < d <∞ in [Bin2]. Unfortunately,
Gaussianity is only touched on in [Bin1] (§2, KIT, §4, Rajchman measures,
$ 6.1, ϕ-mixing), and not even mentioned in [Bin2].

3. Verblunsky coefficients; Schur functions

3.1. Verblunsky’s theorem
In the scalar case [Bin1], the distribution of a (discrete-time, complex-

valued) stationary sequence, given by the spectral measure µ on the unit torus
T, may be fully described (encoded, parametrised) by a sequence α = (αn)

∞
0

of complex numbers αn ∈ D, the unit disc of C, the Verblunsky doefficients
(there are several other names; see [Bin1], [Sim3]). This bijection

µ↔ α (V er)

is:
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Theorem (Verblunsky’s Theorem). There is a bijection between the se-
quences α = (αn) with each αn ∈ D and the probability measures µ on T.

The relevant theory here depends heavily on orthogonal polynomials on
the unit circle (OPUC), due originally to Szegő, the theme of Simon’s books
[Sim3], [Sim4] ([Sim4] deals with orthogonal polynomials on the line and the
cirle together; these correspond to continuous and to discrete time).

In the finite-dimensional (ℓ-vector, ℓ× ℓ matrix) case, the relevant theory
is matrix orthogonal polynomials on the unit circle (MOPUC) [Bin2]. The
process also has a Verblunsky parametrisation, but now the αn are (ℓ × ℓ)
matrices, of norm ∥αn∥ < 1. These encode the stationary processes, as be-
fore: Verblunsky’s theorem. See Damanik, Pushnitski and Simon in 2008
[DamPS, (3.10), Th. 3.12]. In the infinite-dimensional case, the measures
are vector-valued, the αn are operators; see below.

3.2. Schur functions
In [DamPS], the authors write: ‘Among the deepest and most elegant

methods in OPUC are those of Khrushchev . . . . We have not been able to
extend them to MOPUC! We regard their extension as an important open
question’. The papers they referred to are [Khr1], [Khr2]; Khrushchev gave
a monograph account of his work in [Khr3].

In addition to the sequence α = (αn) of Verblunsky parameters, there
are two other ways of encoding the spectral measure µ on T that have been
useful: the Carathéodory function F and the Schur function f , given by

F (z) :=

∫ (θ + z

θ − z

)
dµ(θ), f(z) := z−1(F (z)− 1)(F (z) + 1)−1.

Here we use scalar notion, but the formulae extend to the matrix case and to
the operator case by replacing 1 in the formula for f by the identity (and of
course preserving the order of the factors in f as commutativity is lost). The
Schur function f has a continued-fraction expansion in terms of the Schur
parameters γn, where γn < 1 unless f is a finite Blaschke product. That the
Schur parameters are the same as the Verblunsky parameters is Geronimus’s
theorem [Sim3, Part 1 p.3].

Remarkably enough, work on quantum random walks led Grünbaum,
Velázquez, Werner and Werner in 2013 [GruV] and Bourgain, Grünbaum,
Velázquez and Wilkenin in 2014 [BouG] to extend Khrushchev’s work from
OPUC to MOPUC, so answering the question raised in [DamPS] above.
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The work on operator-valued Schur functions above extends [DamPS],
and so also Verblunsky’s theorem, to the operator case.

4. Szegő’s theorem; Wold decomposition

4.1. Szegő’s theorem
For stationary processes, the key result underlying prediction is Szegő’s

theorem, which relates to the influence of the remote past. This may be ab-
sent, e.g., bathwater forgetting its thermal history as it thermalises; total,
e.g. tempered steel, whose thermal history is locked in; or present with a par-
tial influence, e.g. the climate-weather interplay, where (on a time-scale, in
years, short enough to neglect climate change) climate is permanent, while
weather is (again on a suitable time-scale, in days) temporary and unpre-
dictable, indeed chaotic.

To re-capitulate from [Bin1, Th. 3]: with σ2 the variance of the least-
squares prediction one step ahead from the whole (infinite) past, Szegő’s
theorem in the scalar case [Bin1, §4 Th. 3] tells us when the influence of
the remote past is not total, i.e. when σ > 0, so each time-step adds gen-
uine new randomness. The condition for this is Szegő’s condition (Sz) below:

Theorem (Szegö’s Theorem).
(i) σ > 0 iff the Szegő condition logw ∈ L1 holds, that is,∫

− logw(θ)dθ > −∞. (Sz)

(ii) σ > 0 iff α ∈ ℓ2.
(iii)

σ2 =
∏∞

1
(1− |αn|2),

so σ > 0 iff the product converges, i.e. iff∑
|αn|2 <∞ : α ∈ ℓ2;

(iv) σ2 is the geometric mean G(µ) of µ: for σ > 0,

σ2 = exp(
1

2π

∫
logw(θ)dθ) =: G(µ) > 0. (K)

Szegő’s theorem is extended to the finite-dimensional setting by Derevya-
gin, Holtz, Khrushchev and Tyaglov in 2012 [DerH, Th. 28, Th. 29]: with
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† for the adjoint (following their notation here), det and tr for determinant
and trace,

det
∞∏
0

(I− αkα
†
k) =

∞∏
0

det(I− αkα
†
k) = exp

∫
tr log f(θ)dθ/2π (KSz)

(the Kolmogorov-Szegő formula; see e.g. [Bin1, §4]), and Szegő’s condition –
that the right here is positive – holds iff

∞∑
0

∥α†
kαk∥ <∞ (Sz)

(extending early work of Delsarte, Genin and Kamp [DelGK, Th. 18, 19]).
The product theorem for determinants in (KSz) above is simple linear

algebra in finitely many dimensions, and holds quite generally. Neither of
these is true in infinitely many dimensions! The results of [DerH] do extend
to infinitely many dimensions, but as they involve determinants we must
restrict to situations where infinite determinants are defined. Recall from
functional analysis (see e.g. [Con1]):
(i) the trace class operators and the Hilbert-Schmidt operators, the two most
important classes of operators (they suffice for our purposes here);
(ii) that det(I−A) is defined when the operator A is trace class (nuclear, in
Grothendieck’s terminology), see e.g. [Sim2];
(iii) that this is so when A is a product of two Hilbert-Schmidt operators;
(iv) the multiplication theorem for determinants holds here too [BriC], so
one may interchange det and

∏
in (KSz) as above;

(v) by contrast, for Hilbert-Schmidt operators, the multiplication theorem
for determinants involves extra terms, of the kind arising in Fredholm theory
[BriC] (see §8.15).
The map A 7→ det(I−A) is continuous (indeed, Lipschitz), so no convergence
problems arise here [Sim1]. The restriction that the α†

jαj be trace class – that
the αj be Hilbert-Schmidt – is the natural one for Szegő’s theorem to hold.
It is not restrictive in practice; see §7.

Recall also that the condition for A to be trace class is that its eigenval-
ues λj (multiplicity counted) should be summable,

∑
|λj| < ∞ (

∑
λj < ∞

here as the A = αkα
†
k are positive, so λj > 0). No such restriction on the

eigenstructure is needed in the finite-dimensional case (see §8.15 below).
Payen [Pay] makes a thorough study of the Hilbert-valued case. There
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([Pay, II.]; [BinM]) he gives an infinite-dimensional form of Szegő’s theorem
in terms of factorization (§5.2 below).

To summarise: Szegő’s theorem extends to the setting of infinite-dimensional
Hilbert space, but only when, with αk the (operator) Verblunsky coefficients,
the αk are Hilbert-Schmidt, so the αkα

†
k are trace class, so the det(I−αkα

†
k)

in (KSz) are defined.

4.2. The Szegő limit theorems
Strongly related to the work above are the Szegő limit theorems. Szegő’s

first (weak) limit theorem (1915) and much later second (strong) limit theo-
rem (1952) concern the asymptotics of Toeplitz determinants Tn of order n as
n→ ∞. The first concerns asymptotics of log detTn, the condition for which
is Szegő’s condition, that the geometric mean of the spectral measure satisfies
G(µ) > 0. The second gives the asymptotics of detTn itself, under a stronger
condition, on E(µ) (in the standard notation). In their modern form, due
to Ibragimov, both have the pleasing features that ‘they hold whenever they
make sense’; see e.g. [Bin1, §6] for details and references.

The proofs of both results were simplified dramatically by Geronimo and
Case (1979) and Borodin and Okounkov (2000). The key result here, known
as the Borodin-Okounkov formula, essentially reduces the limit results to al-
gebra. This work has been further simplified, and extended to matix and
operator versions, by a number of authors; we refer to the papers of Böttcher
[Bot1], [Bot2], [Bot3] for details and references.

4.3. Baxter’s Theorem
The Verblunsky doefficients α = (αn) are the partial autocorrelation

coefficients in statistical language. Recall the great advantage of partial
autocorrelations over ordinary correlations: the first give an unrestricted
parametrization, as all values in the unit disk D can arise, while the sec-
ond are restricted by complicated nested inequalities.

For convenience, abbreviate (Sz) above to α ∈ ℓ2(N), an L2-condition.
The result for the corresponding L1-condition is Baxter’s theorem:

Theorem (Baxter’s theorem). The following are equivalent:
(i) the Verblunsky coefficients (or PACF) are summable,

α ∈ ℓ1; (Bax)

(ii) the autocorrelations are summable, and µ is absolutely continuous with
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continuous positive density:

minθw(θ) > 0.

See [Sim3, Ch. 5], [Bin1, §5] for the scalar case, extended by Kasahara
and Bingham [KasB1, §5]. A thorough study of Baxter’s theorem in the
matrix case was given by Dym and Kimsey [DymK]; cf. [Bin2], [KasB3]. We
raise (§9, Q3) the question of extending Baxter’s theorem to infinitely many
dimensions.

4.4. Wold decomposition
The past at time n, the remote past and the remote future of the process

x = (x(n)) are the closed linear subspaces spanned by the random variables
below:

H(x, n) :=
∨

(x(k) : k < n), H(x,−∞) :=
⋂

(
∨

(x, n) : n ∈ Z),

H(x,+∞) :=
⋂

(
∨

(x, n) : n ∈ Z).

The process is called deterministic if all three are equal, purely non-deterministic
(pnd) if the second is trivial. The Wold decomposition [Kak2] splits the pro-
cess x = (x(n)) into a deterministic and a purely non-deterministic compo-
nent,

x = xd + xp,

which are Gramian orthogonal:

[xd(m), xp(n)] = 0 (m,n ∈ Z).

The Cramér measure Y of the process also splits, into a sum of absolutely
continuous and singular components, Ya and Ys, and similarly for the spectral
measure:

Y = Ys + Ya, F = Fs + Fa.

In one dimension, one has Wold-Cramér concordance: regarded as processes
in their own right, the ‘good’ process xp has Cramér and spectral measures
Ya, Fa, while the ‘bad’ one xd has Ys, Fs (see [Bin1] for details and refer-
ences). In the matrix case, Wold-Cramér concordance holds in the full-rank
case but not in general ([Bin2]; see e.g. Payen [Pay, Remarque 8, 376-7]).
The vector case is studied in [Kak3], where such concordance is shown to be
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preserved under dilation from the stationary case here to the harmonisable
case (§ 7.4).

The ‘good’ component xp in the Wold decomposition is a moving average
of the products of the innovations (new randomness) at past times and the
matrices appearing in the Taylor expansion of the Szegő function (‘analytic
square root’ of the spectral density matrix), as we shall see below. Compare
[Bin4, §2.5] in continuous time.

In the Hilbert-valued case, spectral criteria for the process to be purely
non-deterministic are given by Kallianpur and Mandrekar [KalM].

5. Szegő alternative; factorization

5.1. Szegő alternative
In one dimension, one has a clean split, the Szegő alternative, between

‘good’ and ‘bad’ cases. In the first, there is a genuine innovation (input of
new randomness) in each time-step from n to n + 1. The size of this new
input is measured by the prediction error variance σ2, the infimum of the
variances of all linear predictors based on the present and (finite sections of)
the past of the next future value xn+1. This ‘good’ case can only happen if
there is an absolutely continuous component Fa to F , that is, if the spectral
density f is not a.e. zero. When this is so, it happens if and only if the Szegő
condition (Sz) holds, and then σ2 > 0 is the geometric mean of log f , as in
Szegő’s Theorem. Note that the singular component of F (if present) plays
no role here.

In the Wold decomposition, x is the sum of a ‘bad’ part xd (§3), and the
‘good’ part xp, a moving average of the innovations over the past to date;
this contains a factor σ, and so is absent if σ = 0 [Bin1]. In terms of the
Verblunsky coefficients,

σ2 =
∏∞

1
(1− |αn|2),

so (Sz) holds iff σ > 0 iff the product converges. Then (and only then), one
can define the Szegő function h(z):

h(z) := exp
(1
2

∫ (eiθ + z

eiθ − z

)
logw(θ)dθ/2π

)
(z ∈ D). (OF )

This is an outer function, in the Hardy space H2(D) ([Dur]; [Sim3]; [Bin1]).
It is analytic in D, and zero-free there [Sim3, Th. 2.4.1]. As (from Fatou’s
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theorem: [GarMR, Th. 1.10], [Rud1, Th. 17.10])∫ (eiθ + z

eiθ − z

)
logw(θ) dθ/2π → log f(ϕ) a.e. (z = reiϕ, r ↑ 1),

its square has radial limit f a.e. on T :

lim |h(z)|2 = f(θ) a.e. (z = reiθ, r ↑ 1).

It may thus be regarded as the analytic square root of the spectral density f .
In the matrix case, we refer to [Bin2, §5] for details and references. Szegő’s

theorem (the matrix forms of (Sz), (KSz) above) holds, see [DerH, Th. 28],
extended to the infinite-dimensional (operator) case under the trace-class re-
striction in §4.1.

5.2. Factorization
In the scalar case, existence of the Szegő function (analytic square root

of the spectral density) and the Szegő condition are equivalent. One seeks
a matrix and a vector version of this. So one seeks to factorise a matrix
spectral density into its analytic square root times its adjoint (denoted by ∗
here, to conform to the sources below),

F = ΦΦ∗.

There is an extensive theory here, due mainly to Wiener and Masani and to
Helson and Lowdenslager. We note that the coefficient matrices Φn in the
Taylor expansion

Φ(z) =
∞∑
0

Φnz
n

appear in the prediction-error matrix (and operator, in the vector case, be-
low). See e.g. Masani [Mas2, p.278], Whittle [Whi] (for the scalar case, see
e.g. [GreSz, §10.8]).

For factorizations in the operator case, we refer to [RosR Ch. 6]. We also
mention briefly the approach of Power [Pow]. We make the restrictive as-
sumption that the spectral density f is essentially bounded (i.e. is bounded,
after excluding some null set on the torus T). Then

f = hh∗ + g,
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where g is a positive operator and h is analytic and outer. Here g can be
taken to be minimal. A Wold(-Zasuhin) decomposition is obtained. The
prediction-error operator G(f) of f is obtained as

G(f) = G(hh∗) = (QhQ)(QhQ)∗,

where Q is an orthogonal projection; we refer to [Pow] for details.
As Power points out, his method gives g and h as functions of f , while

the methods of Sz.-Nagy and Foiaş ([SzNFBK]; §5 below) do not. But this
applies only to the behaviour encoded in the spectral density, the absolutely
continuous component in the Lebesgue decomposition of the spectral mea-
sure. We turn now to how to address the ‘bad’ behaviour encoded in the
other two components.

6. The Beurling-Lax-Halmos theorem; inner functions

So far as prediction theory is concerned, it is the ‘good’ part of the process
(or its spectral measure) that matters. Nevertheless, the Wold decomposi-
tion shows us that to understand the structure of a stationary process we
need to look at the ‘bad’ part also.

Recall the outer function of (OF ), §4 above. The term is due to Beurling
[Beu], as is the corresponding term inner function. These correspond respec-
tively to the ‘good’ and ‘bad’ parts above. When we pass from the time
domain (Wold decomposition) to the frequency (or spectral) domain by the
Kolmogorov Isomorphism Theorem, we obtain the factorization into outer
and inner factors in Hardy spaces H2(H). For the scalar case (where the
Hardy space is written H2) there are good accounts in Duren [Dur], Garnett
[Garn] and Hoffman [Hof] (see also [Rud1, Ch. 17]). For the vector case, see
[SzNF, III, V], [Nik1, I.7, XI.3], [RosR, Ch. 4-6], [Hof, 114-116].

The remote past (the ‘bad’ part) is invariant under the time-shift. The
invariant subspaces are exactly those given by multiplication in H2(H) by an
inner function ([SzNF, V, Th. 3.3]; [Nik1, I.7, XI.3]; [RosR, 1.12]). This is
the Beurling-Lax-Halmos theorem, due to Beurling (dimension d = 1), Lax
[Lax] (1 < d < ∞) and Halmos [Halm] (d ≤ ∞) [Con2]. So study of the
remote past reduces to study of inner functions, u say. These have a rich
structure; they factorise into a unimodular constant, a Blaschke product, and
an integral factor as in (OF ) but with a singular rather than an absolutely
continuous measure. See §7.1,2 below.
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Halmos’s approach [Halm] uses the concept of a wandering subspace; these
correspond to the innovations (new randomness) in the process. For an isom-
etry V on a Hilbert space H, call a subspace L of H wandering if for distinct
integers m,n V mL and V nL are orthogonal. Then [SzNF, §1.1] if

M+(L) := ⊕∞
0 V nL,

one has
L =M+(L)⊖ VM+(L).

Call an isometry V on H (which will be U of §2 for us) a unilateral shift if
H has a wandering subspace L with M+(L) = H. Then L, called generating
for V , is uniquely determined by V , indeed L = H ⊖ VH. One has the
Wold decomposition ([SzN, Th. 1.1], [RosR, §1.3]): H decomposes into the
orthogonal sum H = H0 ⊕ H1 such that the Hi reduce H (each is mapped
onto itself by V ), V |H0 is unitary and V |H1 is a unilateral shift. This
decomposition is unique; indeed,

H0 =
∞⋂
0

V nH, H1 =M+(L), where L = H⊖ VH.

Either H0 or H1 may be absent (= {0}).

7. Implementation

7.1. Theory
As remarked before, calculus is continuous; calculation is discrete. Data

is discrete. Our given data on past curves (at times 1, · · · , n say – the distinc-
tion between being given the infinite past or a finite part of it is important
theoretically but evaporates at the implementation stage) necessarily con-
sists of finitely many points on each, interpolated or smoothed so as to give a
curve (continuous, say), with whatever degree of smoothness the statistician
chooses (as with density estimation; see e.g. Silverman [Sil]), by whatever
means the statistician chooses – splines, wavelets etc. The prediction process
then consists of the inevitable three steps:
(i) Discretisation of the data (now curves), into d-vectors, for some d < ∞.
For choice of d, see e.g. Li and Hsing [LiH].
(ii) Prediction, using e.g. the multidimensional version of the Levinson-
Durbin algorithm, as in [Bin2]; see below.
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(iii) Interpolation or smoothing of this set of predicted values at time n + 1
to give the predicted curve at time n+ 1.

As one will see from the above, the practical problems involved at the
implementation stage are largely numerical. This is a familiar phenomenon;
see e.g. [BinS2] for a different setting (random fields) where the writer (with
Symons) recently encountered such things.
The Levinson-Durbin algorithm

For this classical algorithm for the computation of the best linear pre-
dictor based on the last n data points, see e.g. Brockwell and Davis [BroD,
§5.2], [Bin1] in the scalar case, [Bin2] in the matrix case. It is worth noting
that numerical improvements have been made here (the split Levinson algo-
rithm); see Delsarte and Genin [DelG].

7.2. Numerics
The three-step procedure above thus amounts substantially to

(i) discretization of the infinite-dimensional process (random curves) in (CR)
to random d-vectors for suitably chosen d;
(ii) prediction by finite-dimensional methods [Bin2] (e.g., the Levinson-Durbin
algorithm);
(iii) smoothing (e.g., spline interpolation with a roughness penalty) to return
to the infinite-dimensional setting.
See also Hyndman and Shang [HynS1], [HynS2].

One way to implement (i) is to expand the covariance by Mercer’s the-
orem and use an orthogonal eigenexpansion, the Karhunen-Loève expansion
[Loe2, II, 37.5], then truncate after a suitable number of terms. See e.g. Hall
et al. [HalPP], Aue et al. [AueNH] for implementation. In the Gaussian
case of §1.4 [MarR, §5.3], the terms are independent (and Gaussian). Such
methods can be extremely effective (for background see e.g. [BinS1], [BinS2]
and the references there).
Kernel methods

Kernel methods, commonly used in machine learning, have recently been
advocated for functional prediction by Hashimoto et al. [Has1], [Has2].

8. Complements

8.1. The deterministic case
When the Szegő condition (Sz) fails (e.g., when the density is absent –

Fa = 0 in the notation of §3), the entire process is ‘bad’, and consists entirely

16



of ‘echoes of the remote past’. In the scalar case (for simplicity): the vari-
ance σ2

n of the best linear predictor based on the last n readings decreases
to σ2 = 0. The interesting question of how fast was addressed long ago
by Rosenblatt [Ros], and more recently by Babayan, Ginovyan and Taqqu
[BabGT].

8.2. Model spaces
Again in the scalar case first for simplicity: the (unilateral, forward) shift

S (time n 7→ n+ 1) is represented on the Hardy space H2 by

Sf = zf (f = f(z) ∈ H2).

This has adjoint the backward shift S∗:

S∗f =
f − f(0)

z
.

This follows from the Taylor series for f(z) =
∑∞

0 anz
n in each case. Note

that f ∈ H2 and a = (an) ∈ ℓ2(N) are equivalent, and give the ‘Hardy-
Hilbert space’ (see de Branges [dBra], Martinez-Avendano and Rosenthal
[MartR] for monograph treatments).

By the Beurling(-Lax-Halmos) theorem, the invariant subspaces of S are
uH2 for the inner functions u. Similarly, the invariant subspaces for S∗ are
the orthogonal complements of these, written

Ku := (uH2)⊥.

These are called model spaces (‘model spaces are the invariant subspaces
of the backward shift’). To explain the terminology, we quote [GarMR, 105]
‘The term model space originates in the theory of model operators, developed
by Sz.-Nagy and Foiaş, where it is shown that certain types of Hilbert-space
contractions are unitarily equivalent to the compressions of the unilateral
shift to a model space. This underscores the importance of model spaces
in developing concrete, function-theoretic realizations of abstract Hilbert
space operators.’ For background, see the two classic sources [SzNF] and
Nikolskii [Nik1] cited in §5, plus Rosenblum and Rovnyak [RosR] and the
two-volume [Nik2], and the two recent treatments by Garcia, Mashreghi and
Ross [GarMR] cited above (see also [GarR]) and Agler, McCarthy and Young
[AglMY]. (Note that different authors use the term compression differently
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[GarMR, Remark 9.2].) See also [Nik2, §4.8.8] and [NikV].

8.3. Compressions and dilations
For A,B operators on spaces A ⊂ B, B is a dilation of A if

An = pr Bn for all n ∈ N ,

where pr is projection [SzNF, p.10]. Then A is a compression of B ([GarMR,
Def. 9.1]; [SzNF] does not use the term compression).

The basic result here is the Sz.-Nagy-Foiaş dilation theorem: if H is a
Hilbert space and T a linear contraction on it, there exists a larger Hilbert
space H and a unitary operator U on H with U a dilation of T and

H =
∨

(UnH : n ∈ N)

(such a dilation is called minimal). For the extensive theory here, see e.g.
[SzNF, Ch. I], [Nik1, Introductory Lecture, Lecture III], [GarMR, Ch. 9].

8.4. Harmonizability
This concept, due to Loève [Loè] in 1948, addresses the need to relax the

strong assumption of stationarity, which one cannot expect to hold exactly
in practice. It has been studied and extended by Karhunen, Cramér and
others. As the covariance function now needs two arguments, s and t say,
rather than one, s− t, the spectral measure now becomes a ‘bimeasure’. For
details and references, see e.g. [Rao1,2], [Kak1-4]. To summarise [Rao2, 292]:
strongly harmonisable ⊂ weakly harmonizable ⊂ Karhunen ⊂ Cramér.

Note [Kak3, Th. 2] that a process is weakly harmonizable iff it has a
stationary dilation. For readers to whom dilation theory is new, we offer
the following heuristic for this result. For a population in equilibrium (‘zero
population growth’, ZPG), at population level things look stationary even
over long time-scales. At the individual level, things look far from stationary
as one progresses through life.

Thus weak harmonizability is the broadest context in which we can hope
to bring the powerful tools available in the stationary case to bear. Beyond
that, one is more in the realm of the Kalman filter and its extensions, where
the dynamics dominate, one predicts using only the immediate past and the
present, and what matters is speed and accuracy of reaction (e.g., control of
manned spacecraft, or mortar-locating radar).
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8.5. Banach spaces and beyond
Such extensions were addressed briefly in [BinM, §5.5]. We refer there for

further detail, and to e.g. Dette et al. [DetKA], Chobanyan and Weron
[ChoW], Weron [Wer], Miamee and Salehi [MiaS] and Klotz and Riedel
[KloR]. For a Banach-space version of the Wold decomposition, see [FauH].

8.6. Operator-valued processes
For an approach via dilation theory and operator models, see Makagon

and Salehi [MakS, §2] and the references cited there. The vector- and
operator-valued cases are developed together in [RosR, Ch. 4-6].

8.7. The multivariate case
See e.g. [Kak3, §6] for a multivariate vector-valued treatment.

8.8. High- and infinite-dimensional probability and statistics.
For high-dimensional treatments, see e.g. [Ver] for probability, [Wai] for

statistics. For infinite-dimensional statistics, see e.g. Giné and Nickl [GinN].

8.9. Specifically infinite-dimensional phenomena.
We have been concerned here with vector-valued Hardy space theory

(inner-outer function factorization, etc.), in finitely many dimensions [Bin2],
or infinitely many, our main concern here. There are results in the area which
do not extend to the infinite-dimensional case. For example, see Treil [Tre1],
[Tre2] for the (operator) corona problem.

8.10. Cramér-Karhunen-Loève expansion
The Karhunen-Loève expansion ([MarR, §5.3], [GinN, Th. 2.6.10]) may

be combined with the Cramér representation to give a dynamicized form of
the expansion, which has been used for modelling functional time series. See
e.g. Antoniadis and Sapatinas [AntS] (who considered El Niño), [AntPS],
Panaretos and Tavakoli [PanT1], [PanT2].

8.11. Functional data analysis; prediction; change-points
For some recent developments in these areas, see e.g. Aue, Norinho and

Hörmann [AueNH], Dette, Kokot and Aue [DetKA].

8.12. Smoothness of functions
Our data are functions, drawn from function spaces, often Hilbert spaces
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H. These may (and typically do) have some smoothness properties. One of
the most basic is continuity of point evaluation, x 7→ f(x) (f ∈ H). By the
Riesz representation theorem, this is the condition for H to be a reproducing-
kernel Hilbert space (RKHS): to have a reproducing kernel k(., .) such that,
with kx(.) := k(., x),

(f, kx) = (f(.), k(., x))H = f(x) (f ∈ H).

Such spaces are common in the Hardy-space setting above. For example, the
Hardy-Hilbert space H2 is a RKHS with kernel

kλ(z) = 1/(1− λz) (λ, z ∈ D)

[GarMR, Prop. 3.3], and so are the model spaces Ku above, with kernel (with
the u here to be understood in the notation)

kλ(z) =
1− u(λ)u(z)

1− λz
(λ, z ∈ D)

[GarMR, §5.5]. For the extensive theory of RKHS, and applications to prob-
ability and statistics, see e.g. Berlinet and Thomas-Agnan [BerTA].

8.13. Hankel operators and Nehari sequences.
Toeplitz operators occur frequently in the above; they have many links

with Hankel operators (for which see e.g. Peller [Pel]). The Nehari problem
[Pel, Ch. 5] is: given a sequence γ = (γn) (γn ∈ C), find a function ϕ in the
unit ball of L∞ with

γn =

∫
einθϕ(θ)dθ/2π (n = 1, 2, · · ·).

Nehari’s theorem is that such a solution exists iff the Hankel matrix (γm+n)
of γ acts as a contraction on ℓ2. There is more than one solution (the in-
determinate case) iff γ = (γn) is the negatively indexed Fourier coefficients
of the phase factor of some function in H2; in this case γ is called a Nehari
sequence (compare the determinate and indeterminate cases in the moment
problem; see e.g. [Bin3] and the references there).

Nehari sequences also occur in prediction theory, for example in connec-
tion with the condition of complete non-determinacy for time series (see e.g.
[KasB1]). Study of problems of Nehari type has led (among other things)
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to extensions of the strong Szegő and Baxter theorems in the scalar case
[KasB1, §5] and to matrix forms of Baxter’s theorem [KasB2,3].

8.14. Continuous time.
We refer to [Bin4] for the analogous continuous-time case (see §4.4 there

for ways of passing between the two).

8.15. Infinite determinants.
Infinite determinants go back to Fredholm’s work on integral equations

in 1903 (and so pre-date functional analysis, which they helped to motivate);
see Smithies [Smi], Ruston [Rus]. We recommend Simon’s survey [Sim1]. See
also Britz et al. [BriT] for ‘regularized’ determinants, and Fuglede-Kadison
determinants, for which see e.g. [BleL].

9. Questions

We close with some questions arising from the work surveyed above.
Q1. Is there an infinite-dimensional version of Szegő’s theory of orthogonal
polynomials on the unit circle (OPUC, [Sim3], [Bin1]; MOPUC, [Bin2])?
In this regard, see [GarMR, Example 8.3]. This involves the Szegő (or
Toeplitz) conjugation, which is familiar from the Szegő recursion of OPUC
and MOPUC.
Q2. Can one express the trace-class condition of §4.1 in terms of the spectral
measure µ itself?
Q3. Can Baxter’s theorem (§4.1) be extended to the infinite-dimensional
(operator) case, by operator-valued Schur functions or other means?
Q4. Can the assumption of essentially bounded spectral density in [Pow], §4,
be relaxed (or dropped)?
Q5. Can the assumption of having a scalar multiple in [SzNF, V.6,7], §4, be
relaxed (or dropped)?
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