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Abstract
The most obvious points of contact between linear and matrix algebra and

statistics are in the area of multivariate analysis. We review the way that, as
both developed during the last century, the two influenced each other. We
illustrate this by examining a number of key areas.

We begin with matrix and linear algebra, its emergence in the 19th cen-
tury, and its eventual penetration into the undergraduate curriculum in the
20th century. We continue with a much longer similar account for multivari-
ate analysis in statistics. We pick out the year 1936 as that of three key
developments, by H. Hotelling, R. A. Fisher and P. C. Mahalanobis, and in
the early post-war period three more key developments, by M. G. Kendall,
M. S. Bartlett and C. R. Rao. We then turn to some special results in linear
algebra that we need: Schur complements, and related inversion formulae.
We briefly discuss four of the contributors, Fisher and Kendall named above,
together with S. S. Wilks and T. W. Anderson. We close with thirteen ‘case
studies’, showing in a range of specific cases how these general algebraic
methods have been put to good use and changed the face of statistics.

Keywords linear algebra, matrix algebra, multivariate analysis in statistics,
multivariate normal distribution, Gaussian Regression Formula, Schur com-
plement, singular values decomposition.

0. Time-line
Our main focus is on the 20th century, though we touch on the 18th and

19th (and of course are influenced by the first part of the 21st). Both authors
were born in the 1940s and began publishing in the 1970s. We allow ourselves
to use the term ‘modern’, imprecise and subjective as it is, as being as useful
in this context as in general usage. It might be loosely read here as ‘within
living memory’. For example, we say (§4.3) of Anderson’s 1958 book that we
regard it as ‘the first of the unambiguously modern textbooks we cite’. We
invite readers to form their own views here.
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1. Introduction

As both subject areas changed beyond recognition in the last century,
we begin by outlining their development, discussing linear algebra in §2 and
multivariate analysis in §3. In §4 we comment briefly on four major con-
tributors to the area: Fisher, Kendall, Wilks and Anderson. We turn in
§5 to special results in linear algebra: what is now called the Schur com-
plement (the crucial ingredient for, e.g., the Gaussian Regression Formula
of §6.2), and various inversion formulae for partitioned matrices (e.g. the
(Sherman-Morrison-)Woodbury formula), crucial for studying the sensitivity
of a statistical analysis to error in one data point. In §6 we discuss thirteen
specific instances – ‘case studies’ – of this algebra-statistics interplay. We
conclude in §7.

2. Matrix and linear algebra: development and absorption into the
undergraduate curriculum

The theory of determinants certainly precedes that of matrices (the re-
verse of the logical order). Muir, in Volume 1 of his 5-volume history (Muir
1906), discusses seven authors in his Chapter II (1693-1779, from Leibniz to
Bézout) (including Vandermonde, for more on whom see Ycart (2013)), and
two more in Chapter III (1784-1812), before discussing Gauss, who intro-
duced the term in his Disquisitiones arithmeticae of 1801. Our determinant
notation is due to Cayley in 1841.

The term matrix was introduced in 1858 by Cayley (Hawkins 1975a),
and he and Sylvester worked extensively on matrix theory, but the subject
was by then well established; see Hawkins (1975b) for details and references.
One source was quadratic forms, in analytic geometry and number theory.
Another was (what we now call) spectral theory, for instance in the work of
Cauchy of 1829 on eigenvalues. Inverse matrices date from Jacobi in 1834
(Turnbull 1928, 77). An idea of the state of the theory in the early 20th cen-
tury can be gained from the books Turnbull (1928) (showing the influence of
the 19th century interest in invariants) and Turnbull and Aitken (1932) (on
canonical forms).

A good summary of the relevant developments 1750-1900 is given by
Farebrother (1999). He observes how the problem of fitting linear relation-
ships, ubiquitous in statistics from Legendre, Gauss and Laplace on in the
method of least square (and in Boscovich’s L1 precursor of this L2 theory:
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see Eisenhart (1961)) helped to motivate the development of matrix algebra
and linear programming. A study of the emergence of matrix theory as a
subject in its own right, with particular reference to the inter-war years, is
given by Brechenmacher (2010).

J. W. Gibbs, in his lecture notes at Yale of 1881 and 1884 (published
1901), did much to spread the use of vector methods. An early stimulus
for these was Grassmann’s Ausdehnungslehre of 1844. Vector methods were
championed in the UK by O. Heaviside (to whom we owe, e.g., the use of
bold face for vectors). For a good brief account of the struggles between
the proponents of vectors and quaternions (W. R. Hamilton, 1843), see the
Historical Introduction in (Weatherburn 1921). In a paper written while he
was still a student, Fisher applied vector methods to geometry (Fisher 1913).
Unfortunately, vector methods were still scorned by some as late as 1937; see
e.g. the Preface of (Ramsey, 1937).

An insight into the our theme a century earlier is provided by the follow-
ing passage from (Todhunter 1869) acknowledging input from Cayley (thanks
to Steve Stigler for this):
‘Addition. It has been pointed out to me by Professor Cayley, that the eval-
uation of the integral K in Art. 7 may be effected at a single step by a
simultaneous transformation of the variables . . . .

‘ I have however preserved the methods given in the memoir, because
they require less knowledge of the theory of determinants or of linear trans-
formations’.

Modern algebra may be said to stem from van der Waerden’s Moderne
Algebra of 1932, though that has only one chapter on linear algebra. The
standard text on general modern algebra in the UK in the mid-1960s when
the authors were students was Birkhoff and MacLane (1953). Standard works
on matrix and linear algebra from that time include Gantmacher (1959) and
Mirsky (1955).

An insight into the undergraduate curriculum, at least in the UK, around
this period is given in Mirsky’s obituary (Burkill et al 1986). When Leon
Mirsky (1918-1983) arrived to take up his post in Sheffield: ‘However, when
A G Walker, who was appointed to Daniell’s former chair in 1947, asked him
to give a lecture course in linear algebra (which had hardly figured in his
undergraduate curriculum), he immediately became fascinated by this novel
subject. The result was his textbook on linear algebra . . . .’

Students of the 1960s will remember the Oliver & Boyd series University
Mathematical Texts published in Edinburgh: good, short, cheap (7/6 old
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money, or 37.5p) and so compact they would go in a jacket pocket. Several
authors wrote two of these, including A C Aitken (1895-1967), who wrote the
first two: Determinants and matrices (Aitken 1939a) and Statistical mathe-
matics (Aitken 1939b). It has been shrewdly observed that the reader would
not know these books were by the same author, nor that the two areas had
anything to do with one another. Their interplay is our main theme here.
(For background on Aitken’s very interesting life, see his obituary (Bartlett
and Whittaker 1968).)

The more recent literature distinguishes between matrix theory, where
coordinate representations are needed (see for example Horn and Johnson
(1985; 1991)), and linear algebra, where they are not. But the area containing
both has long been recognised as being as much a part of the undergraduate
mathematics curriculum as calculus or differential equations.

3. Multivariate analysis in statistics: development and absorption
into the undergraduate curriculum

3.1. Multivariate analysis: origins and early development
The idea of analysing data collected on each of p variables for each of n

individuals already existed at the start of the 20th century. In cases where all
p variables featured in the analysis, however, one of them generally carried
special importance, while the others served mainly to help either explain the
special one or predict its future likely behaviour. This was generally done
using the well-understood techniques of correlation and regression.

The first appearance of a technique for inspecting the overall features of a
data set in which no variable carried any special emphasis was Karl Pearson’s
(Pearson 1901). This paper established for future generations of multivari-
ate analysts the notion of a set of p observations as the coordinates of a
point in Euclidean space — a representation already familiar from (multiple)
regression, but without any axis now carrying any special importance, and
closeness of fit being orthogonal distance from point to line or plane, rather
than distance measured parallel to a particular axis.

Modern analysts of course recognise such subspaces of closest fit as prin-
cipal component subspaces, but the description had not yet been coined,
and users had perforce to treat the technique as purely descriptive. Infer-
ential techniques need underlying population probability models, but only
the multivariate normal (see §6.1 below) existed at this stage (having been
comprehensively treated in Edgeworth (1892; 1893); see Chapter 9 of Stigler
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(1986)), so inferential progress was limited. The breakthrough did not come
until Wishart’s generalization of the chi-squared distribution to what is now
known as the Wishart distribution (Wishart 1928). This opened the flood-
gates to a decade of extraordinary developments, initially by three statisti-
cians working independently in three different continents, who developed a
set of distinct but interrelated techniques that still provide the basic tools of
much modern multivariate analysis.

3.2. The year 1936: Hotelling, Fisher, Mahalanobis
First out of the starting blocks was Harold Hotelling (1895-1973) in

America, who published first the multivariate generalization T 2 of the t-
test (Hotelling 1931), then a follow-up to Pearson (1901) with a systematic
development of principal component analysis (Hotelling 1933), and finally
the technique of canonical correlation analysis (Hotelling 1936). These three
papers form cornerstones of most traditional modern undergraduate lecture
courses in multivariate analysis. Hard on Hotelling’s heels came R A (Sir
Ronald) Fisher (1890-1962) in England, with his derivation of the linear
discriminant function (Fisher 1936), and P C Mahalanobis (1893-1972) in
India, with his squared distance measure between populations, now known
universally as Mahalanobis distance (Mahalanobis 1936) (see Stigler (2018)
for his relationship with Fisher). Both of these were also published in 1936,
surely making this a truly memorable year in the development of the subject.

Derivations in all these papers were done predominantly ‘longhand’ through
term-by-term formulae and sets of simultaneous equations. The one flash of
genuine advanced mathematics was the differential-geometric argument de-
ployed by Mahalanobis — but no signs of matrices anywhere. Tentative first
steps in the use of matrices occurred in the 1930s in connection with density
functions and parameters of the multivariate normal and Wishart distribu-
tions in Wishart and Bartlett (1933), Aitken (1935; 1936), Bartlett (1938)
and Ledermann (1939), but by the outbreak of the second world war these
were the only instances of matrices appearing in multivariate work.

3.3. The post-war period; Bartlett 1947
After a further note in the sequence of papers concerned with the multi-

variate normal distribution in Lawley (1942), three publications in the imme-
diate post-war years brought multivariate analysis firmly into its more recog-
nisable modern shape. Kendall published the first edition of his Advanced
Theory of Statistics, Volume 1 in 1943, and of Volume 2 in 1946; each con-

5



tained a chapter on multivariate analysis (Chapters 15, 27; see Kendall and
Stuart (1977; 1979)). Then Bartlett read his paper (Bartlett 1947) to the re-
search section of the Royal Statistical Society; it had sections on multivariate
analysis of variance, canonical reduction of the general regression problem,
discriminant functions, and the general sampling theory of canonical roots.
Finally, Rao read his paper (Rao 1948) on ‘the utilisation of multiple mea-
surements in problems of biological classification’ to the same section of the
Society, among other features extending Fisher’s concept of two-group dis-
crimination to more groups via canonical analysis. Rao’s approach for the
analysis was to represent the groups in the subspace of maximum average Ma-
halanobis distance between all pairs. A more tractable practical solution was
soon provided by Bryan (1951), where successive canonical axes carry pro-
gressively decreasing proportions of between-group relative to within-group
variation. This solution quickly became popularised as canonical variate
analysis. It is worth noting that at the start of his paper Bartlett warns
that he has not hesitated to use matrix and vector algebra or associated ge-
ometrical representation, and this mindset was adopted by all later authors.
Consequently, from this date vectors, matrices and their associated opera-
tions became fundamental to all publications in multivariate analysis.

3.4. Factor and Cluster analyses
It is also from around this time that two essentially multivariate tech-

niques that had evolved in specific disciplines became gradually subsumed
into the statistical fold. One of these was factor analysis, which had its ori-
gins in the broadly social and behavioural sciences, perhaps more specifically
in Education and Psychology, where reasonable models postulated that the
observed values for a particular individual on measurable variables (for ex-
ample IQ tests) were made up of a combination of values that individual
had on a range of underlying but unobservable (latent) ‘factors’ (such as nu-
merical ability and verbal ability). Attempts had been made since the early
1900s to extract an individual’s score on each factor using various ad-hoc
methods, until Lawley started to apply statistical principles such as maxi-
mum likelihood to the estimation problem (Lawley 1940; 1941). A summary
of the state of play was provided by Lawley and Maxwell (1963, updated in
1971). A more recent and wider survey of latent variable and factor models
is given in Bartholomew and Knott (1999).

The other technique that was brought into the multivariate canon at this
time was cluster analysis or, more generally, classification. This is concerned
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with subdividing a set of n individuals into distinct groups such that within
a group the individuals were all ‘similar’ to each other in their responses to
the p measured variables, and ‘different’ from individuals in other groups.
Such clustering is of interest in various disciplines, for example ecology, bi-
ology, market research, and many different ad-hoc computational methods
already existed. Fundamental to all of them was the specification of an ini-
tial measure of dissimilarity between two individuals, from which the (n×n)
matrix of inter-object dissimilarities would provide the starting point of the
calculations. A major advance was provided by Gower (1966), who showed
that an eigendecomposition of an appropriately scaled dissimilarity matrix
led to a subspace in which the individuals could be optimally represented.
This brought the analysis into line with those of principal component and
canonical variate analyses, and enabled groupings to be examined pictorially.
He called the technique principal coordinate analysis, now better known as
metric scaling. The similarity across all these techniques arises because they
are all all based on optimising criteria of a particular form, as shown by
Krzanowski (1971).

3.5. Post 1960; computing and research
After the wartime developments, computers had begun to appear in uni-

versities in the 1950s, and this led to the setting up of computing laboratories
and computer science departments. There was now a real prospect of writing
software to carry out all the techniques mentioned above, but computers still
had limited capacity and were quite slow in operation. So it was paramount
to write highly efficient programs that used as little computer storage as
possible. This required expertise in numerical analysis as well as in program-
ming, and for the commonly needed techiques like eigenvalue decomposition
texts such as that by Wilkinson (1965) were invaluable. So was the statis-
tical algorithms section which started in 1968 in the Journal of the Royal
Statistical Society Series C (Applied Statistics), and which over the next 20
years provided users with all manner of tailor-made routines.

Much statistical research is inevitably computationally intensive, and
many techniques were developed from the 1960s onwards that could not be
conducted without much computing effort. An early example is nonmetric
multidimensional scaling – see Kruskal (1964a; 1964b). In general problems
of inference, Bayesian methods have now come very much to the fore, with
ready access to Markov Chain Monte Carlo (MCMC) methods for carrying
out the inference in a wide variety of situations. On specifically multivari-
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ate applications, early computer-intensive procedures such as bootstrapping,
jackknifing and cross-validation have now been overtaken by neural networks,
support vector machines, random forests and a whole panoply of pattern
recognition techniques to help with data mining of enormous data sets. A
description and discussion of all these techniques can be found in Webb and
Copsey (2011).

3.6. Teaching of Statistics
From about the end of the 19th century, teaching of statistics (in those

universities where it was done) had typically been split between one per-
son in an applied department, to cover practical statistical methods, and
another in the mathematics department, to cover theoretical statistics. For
example, at Reading Harold Sanders covered statistics in the Faculty of Agri-
culture and Horticulture, while Arthur Bowley lectured in mathematics and
economics (Curnow 2006), and at Cambridge G Udny Yule was followed by
John Wishart in the Faculty of Agriculture, while Maurice Bartlett lectured
in the Faculty of Mathematics (Whittle 1993). A department of applied
statistics had existed at University College London since 1912, and the Cam-
bridge Statistical Laboratory was established in 1947. By the 1960s, the
pressure to expand became great in many other universities, and most of the
newly created departments of statistics date from this time. This was also a
time of revision of many mathematics degree programmes, with introduction
of much ‘modern mathematics’ into the syllabus. So it is not surprising to
find many degrees whose titles include statistics appearing from this date
in university handbooks. These included joint degrees with mathematics,
computer science, economics, physics, and other sciences, as well as single-
subject statistics degrees. The increasingly available software programs and
specifically statistics-orientated ‘packages’, such as SPSS, BMDP, Genstat, R
and others, meant that inclusion of multivariate analysis in the syllabus was
both possible and desirable. It would typically be included as a final-year
course, usually as an option within a large set of options.

The demands of teaching prompted the appearance of a number of books
on matrix theory for statisticians. We mention Searle (1982), Magnus and
Neudecker (1988), and Harville (1997).

4. Notes on major contributors

4.1. Fisher
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Fisher avoids matrices, though he makes extensive use of tables for
displaying data. Indeed, rather like his contemporary Sir Harold Jeffreys,
Fisher regarded himself as a Cambridge-trained applied mathematician, and
seems to have relied on the mathematical machinery he learned at Cambridge
in the early years of the last century, eschewing such things as measure the-
ory and matrix algebra, relying instead on his genius, the promptings of the
task in hand, and his great geometric insight (which he needed because of
his poor eyesight). Lesser mortals need matrix algebra, and use it very ef-
fectively. One wonders how mathematicians did as well as they did without
it for so long.

For background on Fisher, see the biography by his daughter Joan Fisher
Box (Box 1978).

4.2. Kendall
M G (Sir Maurice) Kendall (1907-1983), whose career was spent outside

academia, wrote A course in multivariate analysis (Kendall 1957). This does
indeed use matrices, but largely for the purpose of displaying data. By con-
trast, his books The advanced theory of statistics (originally two volumes,
1943 on and 1946 on, by Kendall alone, the three-volume version with Stuart,
1958 on), whose numerous editions span the period 1943-1979, make heavy
use of matrix algebra, at least in later editions.

Despite their value as works of reference, the deficiencies of Kendall’s
books are manifest, and well documented in Mathematical Reviews, to which
we refer for scholarly and balanced criticism.

4.3. Wilks and Anderson
S S (Sam) Wilks (1906-1964) was one of the founding fathers of multivari-

ate analysis, his Λ statistic proposed in Wilks (1932) matching Hotelling’s
T 2 in longevity of usefulness in hypothesis testing. He spent much of his
career at Princeton, where he founded and led the department of statistics.
He supervised the PhD of T W Anderson, whose book (Anderson 1958) we
regard as the first of the unambiguously modern textbooks we cite. It thus
seems odd at first sight that the later book (Wilks 1962) (whose last chap-
ter is on multivariate analysis) does not use modern matrix notation, while
Anderson’s earlier book does. This was commented on in the (favourable) re-
view of his book in Mathematical Reviews: ‘The common matrix and vector
notation and ready-made matrix manipulations are used very little.’ (Much
the same can be said of Cramér (1946), below.)
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The explanation lies in Wilks’s career choices. His 1962 book is the second
by that title; the earlier 1943 version (Princeton University Press; favourably
reviewed in Mathematical Reviews by Neyman) was his source for the later
one. Wilks chose to focus on teaching, administration and academic leader-
ship, at the expense of his own research. For more on Wilks’s remarkable life
and career, see Anderson’s fine obituary of him (Anderson 1965).

5. Special results in linear algebra

We turn now to certain special results in linear algebra, crucially impor-
tant in statistics, particularly multivariate analysis, needed in §6 below.

5.1. Schur complements
In 1917 Issai Schur (1875-1941) wrote the first part of an important two-

part paper on analysis, which contained (p.215-216) what was named the
Schur complement in 1968 by Emily Virginia Haynsworth (1916-1985). The
origins of this can be traced back to Laplace in 1812 and Sylvester in 1851
(Puntanen and Styan 2005).

For a partitioned matrix

M =

(
P Q
R S

)
with P non-singular, the Schur complement of P in M is

M/P := S −RP−1Q.

The Schur determinant lemma (Schur 1917, Hilfssatz) (which holds even for
P singular) states that for P,Q,R, S n × n matrices such that P and R
commute, and M the 2n× 2n matrix above, then

det M = det(PS −RQ).

When P is non-singular, this gives the Schur determinant formula

det(M) = det(P ). det(M/P ) = det(P ). det(S −RP−1Q).

Of course, no special role is played by P here. If instead one of Q,R, S is
assumed non-singular, its Schur complement in M is

M/Q := R−RQ−1P, M/R := Q− PR−1S, M/S := P −QS−1R.
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If all four are non-singular, one hasAitken’s four-complements formula (Aitken
1939a, 138-139):

M−1 =

(
P Q
R S

)−1

=

(
(M/S)−1 (M/Q)−1

(M/R)−1 (M/P )−1

)
.

One also has Aitken’s block-diagonalization formula: with M as above,(
I 0

−RP−1 I

)(
P Q
R S

)(
I −P−1Q
0 I

)
=

(
P 0
0 M/P

)
.

If P is also partitioned, with ‘top left-hand corner’ P11, one has the
Haynsworth quotient property (Puntanen and Styan 2005, (6.0.25))

M/P = (M/P11)/(P/P11).

5.2. Inversion formulae
Continuing from the above: the Banachiewicz inversion formula of 1937

states that for P and M/P both non-singular,

M−1 =

(
P Q
R S

)−1

=

(
P−1 0
0 0

)
+

(
−P−1Q

I

)
(M/P )−1(−RP−1 I).

The Duncan inversion formula of 1944 (Puntanen and Styan 2005, (0.8.3))
states that if M/S is non-singular,

(M/S)−1 = (P −QS−1R)−1 = P−1 + P−1Q(S −RP−1Q)−1RP−1.

Taking S = I gives the (Sherman-Morrison-)Woodbury formula of 1950
(Golub and Van Loan 1996, 50); (Sherman and Morrison 1950); (Woodbury
1950)):

(P −QR)−1 = P−1 + P−1Q(I −RP−1Q)−1RP−1.

If Q = q is a column-vector, R = rT a row-vector and Q = q a scalar, the
Duncan inversion formula becomes

(P − s−1qrT )−1 = P−1 +
P−1qrTP−1

s− rTP−1q
,

which (with s = −1) is Bartlett’s inversion formula (Bartlett 1951).
For ei the ith unit (column) vector, ui := P−1ei is the ith column of P−1,
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and similarly vTj = eTj P
−1 is its jth row. Taking Q = ei, r = kej with scalar

k gives

(P + keie
T
j )

−1 = P−1 +
uiv

T
j

1 + kpji
,

where P−1 = (pij) (venerable notation: see (Einstein, 1916, §8), (Turnbull,
1928, V.3), and below). This picks out the effect on the inverse of adding k
to pij. Bartlett gives a short matrix proof, expanding the inverse in a formal
geometric series, and checking the result by multiplying out. He credits the
result to (Fisher, 1936). There (IV, The analogy of partial regression) Fisher
in effect considers the sensitivity of his linear discriminant function to error
or change in a data point, in the context of his famous iris data set.

We singled out Bartlett (1947) in §3 above; we return to it and Fisher
(1936) in §6.7 below.
Note: Tensors. The ‘venerable notation’ above regarding superscripts and
subscripts derives from tensor calculus, and through it, general relativity,
areas in which, far from being a notational device, it is conceptually cru-
cial. The term tensor was introduced by Voigt in 1898. Shortly after, G
Ricci-Curbastro (1853-1925) and T Levi-Civita (1873-1941) published their
memoir on ‘absolute differential calculus’ (now known as tensor calculus or
Ricci calculus); see Ricci and Levi-Civita (1900, I.3, 134). This machinery
was decisive for Einstein’s general relativity; see Einstein (1916, (16), 787).

Tensor products are ubiquitous in linear and multilinear algebra, and
functional analysis; see e.g. Landsberg (2012). Tensor methods are also
widely used in statistics; see McCullagh (2017).

6. Case studies

6.1. The multivariate normal (multinormal, MVN) distribution
Any textbook on multivariate analysis will contain a treatment of the

multinormal distribution, in p dimensions (‘p for parameter’; we reserve n
for the sample size), with mean vector µ and covariance matrix Σ, Np(µ,Σ)
say. It is instructive to compare them, technically and notationally.

Technically, the most important distinction lies in the definition, and how
it handles the distinction between the full-rank case, where Σ has rank p and
the distribution has support Rp, and the singular case, where Σ is singular
and the support has lower dimension. These are best handled together by
taking the defining property to be that all linear combinations of coordinates
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be univariate normal, as in Rao (1965). The two cases are handled briefly at
the end of Cramér (1937, Chapter X), in scalar notation and in the language
of quadratic forms, and at chapter length, with matrix notation, in Cramér
(1946, Chapter 24). Here we find a good insight into Cramér’s own thinking,
or his assessment of his readership’s thinking, at that time: he gives (Cramér
1946, (11.12.1a)) the p-fold integral for the multinormal characteristic func-
tion as we would, in matrix notation, and continues ‘or in ordinary notation’,
to give it again in scalar notation and the language of quadratic forms.

The crux here is the formulae for the density and characteristic function
of Np(µ,Σ). The first of these is (allowing for notation) due to Edgeworth
in 1892-3, so we follow Stigler (1986, Chapter 9) and call this Edgeworth’s
theorem. It involves the inverse of the covariance (or dispersion) matrix Σ;
this is called the precision matrix K := Σ−1 (or concentration matrix: ‘K for
Konzentration’). Then

f(x) = |2πΣ|−1/2 exp{−1

2
(x− µ)TΣ−1/2(x− µ)}

= |K/2π|1/2 exp{−1

2
(x− µ)TK1/2(x− µ)},

ϕ(t) = exp{itTµ+
1

2
tTΣt}.

It is a pleasure to compare the neat, self-contained efficiency of the ex-
position of this material in any modern book with anything pre-war; see e.g.
Anderson (1958), Rao (1965), Mardia, Kent and Bibby (1979), Krzanowski
(1988), Bingham and Fry (2010).

6.2. The Gaussian Regression Formula (GRF)
The essence of regression is conditioning, and the simplest setting is that

of the multinormal above, with Σ, K, µ (conformably) partitioned:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, K =

(
K11 K12

K21 K22

)
, µ =

(
µ1

µ2

)
.

The Gaussian Regression Formula (GRF) gives the conditional distribution
of x1 given x2 as

x1|x2 ∼ N(µ1 −K−1
11 K12(x2 − µ2), K

−1
11 ) :

x1|x2 ∼ N(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21). (GRF )
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In particular, the conditional mean is linear in x2, and the conditional vari-
ance is independent of x2:

cov(x1|x2) = Σ11 − Σ12Σ
−1
22 Σ21 = Σ/Σ22,

the Schur complement of Σ22 in Σ. Its more traditional name in statistics is
the partial correlation matrix; see Kendall and Stuart (1979, Chapter 27), in
notation

cov(x1|x2) = Σ/Σ22 = Σ11.22 (or Σ11.2).

This alone justifies a place for the Schur complement in the canon of mul-
tivariate analysis (it also, of course, further justifies use of the concentration
matrix).

The result goes back to Pearson (1903; 1911-12) as Pearson’s selection
formulae (selection being the term then used for conditioning). His work
was simplified and extended in Aitken (1935; 1936), leading on to Bartlett
(1938), Ledermann (1939), Lawley (1942), and Wishart (1955). This brings
us close to our first modern textbook source, by T W Anderson (1918-2016)
(Anderson 1958, Theorem 2.5.1).

The GRF can be found in verbal form in Kendall and Stuart (1977, Ex-
ercise 15.1). It appears in more detail in Kendall and Stuart (1979, §27.6)
(first edition 1961). The theory goes through even with generalized (Moore-
Penrose) inverses, as in Rao (1965); see Puntanen and Styan (2005, §6.2.2)
for details.

6.3. Covariance and concentration matrices: independence and conditional
independence

That two coordinates xi, xj of a random vector x ∼ Np(µ,Σ) are inde-
pendent if and only if the correlation σij = 0 – that is, that independence
and uncorrelatedness are the same for Gaussians – is immediate from Edge-
worth’s formula above for the density, and indeed from Galton’s earlier work
on the bivariate normal (Stigler 1986, Chapter 8) of 1886 (from which re-
gression and correlation stem). For, one may reduce to the bivariate case by
conditioning on (or ‘selecting’, in Pearson’s terminology above; see Stigler
(2012, p8)) everything else. The two variables are independent if and only if
their joint density, of the form f(x, y) = c exp{−Q(x, y)} with Q a quadratic
form, factorises, the condition for which is that the off-diagonal coefficients,
i.e. the correlations, vanish. All this was well known from Galton’s time (so
all the more from Pearson’s, above).
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That xi, xj are conditionally independent given all the others if and only
if kij = 0 with K = (kij) the concentration matrix, is much more recent. Now
taking x1 as the random 2-vector and x2 as the (p − 2)-vector we condition
on, the GRF shows us that the conditional density f1|2 of x1|x2 has (condi-
tional) covariance matrix K−1

11 . So one has conditional independence if and
only if K−1

11 is diagonal, that is (the matrices being 2 × 2), K11 is diagonal,
that is, k12 = 0.

This result is due to A. P. Dempster ((Dempster, 1972); see also (Demp-
ster, 1969)); as it needs a name let us call it Dempster’s theorem. Despite
its simplicity, it is of great importance in modern statistics because of the
role it plays in graphical models (see e.g. Lauritzen (1996, Proposition 5.2)).
Sparseness properties of concentration matrices are highly revealing about
structure, as well as being numerically very convenient (we note in passing
the great importance of numerical linear algebra, here and elsewhere; see e.g.
Golub and Van Loan (1996), Wilkinson (1965)). Conditional independence
statements of this sort are important in Markov properties on undirected
graphs (Hammersley-Clifford theorem; Lauritzen (1996, 3.2.1)), multivariate
normal models (Lauritzen 1996, 5.1.3), covariance selection models ((Lau-
ritzen 1996, 5.2), following A P Dempster), etc. They come into their own
with Gaussian Markov random fields; see Rue and Held (2005), Bingham
and Symons (2022).

Such things underlie much recent work on causation questions in statis-
tics, and machine learning. For more here, we refer to Cox and Wermuth
(1996, 2.12, 2.13, 3.4, 5.3.3). We recall in passing the ‘conventional wisdom’
we grew up with: ‘. . . : the presumption of causality must always be extra-
statistical’ (Kendall and Stuart 1979, §27.1). For later views, see Dawid
(1979), Cox and Wermuth (2004), Pearl (2009a, 2009b).

6.4. Maximum-likelihood estimation for the multivariate normal distribution
In dealing with the multivariate normal, the calculus simplifies if one

maximises the log-likelihood ℓ rather than the likelihood L.
For the multivariate normal, the maximum-likelihood estimators µ̂, Σ̂ are

the natural ones, the sample mean x̄ and the sample covariance matrix S̄ of
the sample. For proofs (a simple trace calculation), see Anderson (1958,
§3.2), Rao (1965, §8a.5), Mardia, Kent and Bibby (1979, §4.2.2), Bingham
and Fry (2010, Th. 4.17).

6.5. Mixed models in regression: Henderson’s mixed-model equations
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In regression, one often encounters effects of two kinds: fixed effects,
which one wishes to study (for example, the effects of age or gender on a
disease), and random effects (the patients). For fixed effects, one seeks a best
linear unbiased estimator (BLUE); for random effects, the corresponding es-
timator is called the best linear unbiased predictor (BLUP) (see Robinson
(1991)). The field of mixed models was pioneered in the US dairy industry
by C. R. Henderson (1911-1989) from 1950 on, and his student S. R. Searle
(1928-2013); their work is credited with producing great efficiency gains in
the US dairy industry, for example in selecting bulls for breeding.

The key result is Henderson’s mixed-model equations. See e.g. Bingham
and Fry (2010, Th. 9.1) (for two proofs, one via the (Sherman-Morrison-)
Woodbury formula, one via Bayes’s theorem and Schur complements), Pun-
tanen and Styan (2005, §6.3.12).

6.6. Canonical correlation analysis
The situation here is rather as with mixed models in regression as above,

but now the focus is on correlation between two different kinds of fixed ef-
fects. For example, in a medical setting (Krzanowski 1988, §14.5) the fixed
effects might be simple ones (that could be measured by a routine visit to a
doctor’s surgery), and complex ones (requiring laboratory measurement); as
above, the random effects are the patients. Here one studies the relationship
between the simple and complex effects, the aim being to devise a diagnostic
system based on simple signs and symptoms. The correlation matrix R is par-
titioned conformably between the simple and complex effects. A Lagrange-
multiplier argument leads to seeking the largest eigenvalue of S−1

22 S21S
−1
11 S12

(or the same with the suffices interchanged), matrices of Schur-complement
type.

6.7. Discrimination and classification
The starting point here is the pioneering paper (Fisher 1936), where

Fisher looked for the linear combination F = aTx of the measured variables
x on which to separate the means x̄1 and x̄2 of samples from two popula-
tions Π1 and Π2. Fisher made the prior assumption, also made in Hotelling
(1931), that the variables have the same dispersion Σ in the two populations,
which can be estimated by the within-sample variance-covariance matrix W .
The optimum coefficients are given by maximising the standardised squared
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distance between the two sample means,

[aT (x̄1 − x̄2)]
2/aTWa,

which leads to the linear combination, Fisher’s linear discriminant function,

F ∝ [W−1(x̄1 − x̄2)]
Tx.

Fisher also mentioned that F could be obtained through multiple regres-
sion of y on the variables x, with y a binary variable taking values n2/(n1+n2)
and −n1/(n1+n2) in samples 1 and 2 respectively, a result proved formally in
Hand (1981). Here F is the best linear function to separate the two samples
and see how the individual values spread out, but can also used to classify
a future observation. This is done by placing it in population 1 or 2 accord-
ing as its function value is above or below some critical value c chosen with
regard to such aspects as sample sizes and prior probabilities of observing
values from each population.

In any practical situation the obtained F can be used to classify future ob-
servations into one of the groups. How can we estimate the chance of error in
the classification? The apparent error rate is just the proportion of individu-
als in the two samples that are misclassified by F , but this estimate is clearly
biased optimistically (because the calculated F is the one that best separates
the samples). Randomly removing a portion of each sample, calculating F
from the retained individuals and finding the number of removed individuals
that are misclassified will give an unbiased estimate, but now of the wrong
F ! The best procedure is leave-one-out cross-validation (Lachenbruch and
Mickey 1968) in which each individual is removed in turn, F is calculated
from the rest, the omitted individual is classified, and the error rate is the
proportion of such mis-classifications. This method is almost unbiased, and
computation is very fast using Bartlett’s inversion formula at each omission
of an individual.

In the last 60 years there has been very keen interest and much research
effort in designing various different types of classification function and meth-
ods of assessment and comparison of their performance. For details, see the
books by Hand (1981; 1997), McLachlan (1992), Denison et al (2002) and
Webb and Copsey (2011).

6.8. Singular values decomposition (SVD)
The origins of the singular values decomposition (SVD) (Krzanowski,
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1988, §4.1) are given in the survey by Stewart (1993). The crucial link be-
tween the algebra and the statistics was the Eckart-Young theorem (Eckart
and Young 1936), on best approximation (in matrix norm) by matrices of
low rank. The statistical importance of this was pointed out in Good (1969).
The SVD is important in numerical linear algebra in all contexts (including
statistics) because of its numerical stability.

6.9. Prediction theory
When our sample is naturally ordered by time, that is, for a time series,

the partial covariance or correlation above becomes particularly important, as
the partial autocorrelation coefficient (PACF). It is better here to work with
complex values; then partial correlations have modulus in the unit disc D (by
the Cauchy-Schwarz inequality). By the remarkable theorem of Verblunsky
(1936), re-discovered much later in statistics (Barndorff-Nielsen and Schou
1973); Ramsey, 1974), there is a bijection (the Verblunsky bijection) between
the set of D-valued sequences α = (αn)

∞
0 and the probability measures µ on

the unit circle (one-dimensional torus) T:

α ↔ µ. (V er)

Every time series can occur in this way, by the Kolmogorov Isomorphism
Theorem of 1941; so can every autocorrelation function γ = (γn), by Her-
glotz’s theorem (or the Verblunsky bijection). For details and references, see
Bingham (2012), for example. But α is much more convenient than γ here:
α gives an unrestricted parametrizaton, while parametrization by γ is subject
to nested determinental inequalities.

The paper (Schur, 1917) which gave us the Schur complement also showed
that orthogonal polynomials on the unit circle (OPUC) arise here. These
have a three-term recurrence relation involving one sequence, the (αn) above
– which in consequence have various names: Schur coefficients, Verblunsky
coefficients, Geronimus coefficients, and PACF. (This is in contrast to orthog-
onal polynomials on the real line, OPRL, which have a three-term recurrence
relation involving two sequences of constants, (an) and (bn), say.) For a full
account of the analytic theory, see Simon (2005), and for the probabilistic
consequences, Bingham (2012).

6.10. Non-negative matrices and Markov chains
The theory of positive matrices rests on the Perron-Frobenius theory of O
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Perron (1907) and G Frobenius (1909; 1912). It has been extensively applied
to matrices of transition probabilities of Markov chains. These stem from A
A Markov (1856-1922) in 1906; see his book (Markoff 1906, Anhang II). For
a modern treatment, see Seneta (1981) (and the additional bibliography in
the 2006 reprinting).

6.11. Group representations
It is difficult to over-emphasize the importance of the group concept

in modern mathematics and physics, and group invariance is important in
statistics; see (Eaton, 1983), (Eaton, 1989). We turn to the links with linear
algebra.

The theory of group representations, in which groups are studied by
means of matrices, matrix multiplication corresponding to the group op-
eration, was developed by G Frobenius (1849-1917), I Schur (1875-1941) and
W Burnside (1852-1927), around the period 1895-1915. The subject received
a tremendous boost in 1925-26, with the development of quantum theory
by Heisenberg and Schrödinger. The relevance of group representations to
quantum mechanics was immediately developed by H Weyl (1885-1955) in
his book of 1928 (German, 2nd edition 1931; English 1931). B L van der
Waerden (1903-1996; book, 1932, German; 1974, English) and E P Wigner
(1902-1995; book, 1931, German; 1959, English).

For an excellent introduction to group representations in probability and
statistics, see Diaconis (1988). See Bayer and Diaconis (1992), Aldous and
Diaconis (1986) for Diaconis’s famous result on card-shuffling: (for a standard
pack of 52 cards and the riffle shuffle) seven shuffles suffice. The background
here involves the Diaconis ‘cut-off phenomenon’ and the theory of rapidly
mixing Markov chains (Aldous, 1983).

6.12. Information
The important idea of information in statistics stems from Fisher’s great

foundational paper, (Fisher, 1922); this contains determinants and Hessians
but not matrices. The Fisher information matrix evolved in response to the
need to handle multidimensional parameters; see e.g. (Lehmann, 1983, 2.7).
In 1945 the then young C. R. Rao (1920-) combined the Fisher information
matrix with Riemannian geometry. This famous paper (Rao, 1945) also con-
tains the Cramér-Rao inequality and Rao-Blackwellization; it has received
much recent attention following Rao’s centenary. The use of differential ge-
ometry in statistics has greatly expanded in recent times and led to the
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emergence of the field of information geometry. For a monograph treatment,
see (Amari, 2016).

6.13. Random matrices
As a probabilistic counterpart to §6.1-12, we close with random ma-

trices; their very name shows clearly the influence of matrices in probability.
The field is vast, fascinating and highly technical; we confine ourselves to
brief mention of four aspects.
(i) Products of random matrices and Lyapunov exponents.

Interesting results on limits of products of random matrices by Fursten-
berg and Kesten in 1960, Kesten in 1973 and others were recognised as in-
volving Lyapunov exponents (characteristic exponents). These govern the
stability of dynamical systems: negative exponents indicate stability, but
one positive exponent indicates exponential divergence from equilibrium, in-
stability, even chaos. For details and references, see e.g. Guivarc’h (1980),
Ledrappier (1984), Bougerol and Lacroix (1985).
(ii) The Wigner semi-circle law.

‘In the 50s, Wigner suggested that the resonance lines of a heavy nucleus
(their determination by analytic means being intractable) might be mod-
elled by the spectrum of a large random matrix’ (Katz and Sarnak 1999a,
§2). This led to the Wigner semi-circle law. For the work of Wigner, Dyson,
Mehta and others here, see Mehta (1967, Chapter 2), Pastur and Shcherbina
(2011, §1.2).
(iii) The Tracy-Widom law.

The limit law of (appropriately normalised) extreme eigenvalues of ran-
dom matrices of various types (‘ensembles’) was found by Tracy and Widom
in 1994; it was a new type, involving the Airy kernel. See e.g. Blower (2009,
§9.7, Chapter 10). Note (Baik-Deift-Johansson theorem, Blower (2009, Th.
10.4.7), Aldous and Diaconis (1999)) the non-standard centring (by

√
n) and

scaling (by n1/6).
(iv) Pair correlations.

In a famous chance meeting in 1974 (between the number theorist Hugh
L Montgomery (1944-) and the theoretical physicist Freeman J Dyson (1923-
2020), in Princeton), it emerged in conversation that the function

1−
(sin πx

πx

)2

,

which occurred in Montgomery’s work on the pair correlation of zeros 1
2
+ iγ
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of the Riemann zeta function ζ, also occurred in Dyson’s work on eigenvalues
of random matrices (in the limit as γ → ∞ for ζ and n → ∞ for matrices of
order n in the Gaussian Unitary Ensemble GUE respectively). This sparked
an enormous amount of interest (as a possible new approach to the Riemann
hypothesis (RH) from an apparently quite unrelated area), still ongoing. See
e.g. Katz and Sarnak (1999a; 1999b), Keating and Snaith (2003).

Thanks to intensive computing efforts by Odlyzko and others, there is
now overwhelming numerical evidence that these two phenomena are (in
some sense) ‘the same’ (see Keating and Snaith (2003) for more on this, and
the two relevant and visually indistinguishable graphs). But, no such thing
has been proved, and proof is the essence of mathematics. It may well be
that this matter, so closely related to RH, the resolution of which is the Holy
Grail of mathematics, will remain mysterious as long as RH itself does.

7. Conclusion
To borrow the language of T S Kuhn’s 1962 book The structure of scien-

tific revolutions, where he speaks of paradigm shifts, we may identify three
key dates here. They are: 1936, for the three key enabling technical advances
(Hotelling, Fisher, Mahalanobis); 1947, for the paradigm shift to ‘matrices
with everything’ in the research literature (Bartlett); and 1958, for that in
the textbook literature (Anderson).

Our preferred metaphor for scientific change is that of a glacier, which
is static or flowing, depending on how one looks at it and on what time-scale.
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Schur, I, ‘Über Potenzreihen, die im Innern der Einheitskreises beschränkt
sind’, Journal für die reine und angewandte Mathematik, 147 (1917), 205-
232.
Searle, S R, Matrix algebra useful for statistics, New York: Wiley, 1982.
Seneta, E, Non-negative matrices and Markov chains, Heidelberg: Springer,
1981 (revised 2006).
Sherman, J, and Morrison, W J, ‘Adjustment of an inverse matrix corre-
sponding to a change in one element of a given matrix’, Annals of Mathe-
matical Statistics, 21 (1950), 124-127 (Abstract, 20 (1949), 62).
Simon, B, Orthogonal polynomials on the unit circle. Part 1: Classical the-
ory, Providence: American Mathematical Society (American Mathematical
Society Colloquium Publications 54.1).

27



Stewart, G W, ‘On the early history of the singular values decomposition’,
SIAM Review, 35 (1993), 551-566.
Stigler, S M, The measurement of uncertainty before 1900, Harvard: Harvard
University Press, 1986.
Stigler, S M, ‘Studies in the history of probability and statistics L: Karl Pear-
son and the Rule of Three’, Biometrika, 99 (2012), 1-14.
Stigler, S M, ‘Mahalanobis & Fisher: mathematical statistics as a global en-
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