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Abstract

New bounds are proven on the mean vertical convective heat transport, 〈wT 〉, for
uniform internally heated (IH) convection in the limit of infinite Prandtl num-
ber. For fluid in a horizontally-periodic layer between isothermal boundaries, we
show that 〈wT 〉 ≤ 1

2 − cR
−2, where R is a nondimensional ‘flux’ Rayleigh num-

ber quantifying the strength of internal heating and c = 216. Then, 〈wT 〉 = 0
corresponds to vertical heat transport by conduction alone, while 〈wT 〉 > 0 rep-
resents the enhancement of vertical heat transport upwards due to convective
motion. If, instead, the lower boundary is a thermal insulator, then we obtain
〈wT 〉 ≤ 1

2 − cR
−4, with c ≈ 0.0107. This result implies that the Nusselt num-

ber Nu, defined as the ratio of the total-to-conductive heat transport, satisfies
Nu . R4.Both bounds are obtained by combining the background method with
a minimum principle for the fluid’s temperature and with Hardy–Rellich inequal-
ities to exploit the link between the vertical velocity and temperature. In both
cases, power-law dependence on R improves the previously best-known bounds,
which, although valid at both infinite and finite Prandtl numbers, approach the
uniform bound exponentially with R.

1 Introduction

Convective flows driven by internal sources of heat have attracted renewed interest
in recent years [1–6]. Such flows are commonly encountered in geophysics, where
atmospheric convection [7] and mantle convection [8, 9] are typical examples. They
also exhibit unique features not seen in boundary-driven Rayleigh–Bénard convection:
for instance, it has recently been observed experimentally that internally heated (IH)
convection can transport heat more efficiently than Rayleigh-Bénard convection [10,
11]. Nevertheless, the former remains much less studied. In particular, it remains a
largely open challenge to rigorously predict how key statistical properties such as the
mean vertical heat flux depend on the heating strength and on the fluid’s Prandtl
number Pr , defined as the ratio between the fluid’s kinematic viscosity ν and its
thermal diffusivity κ.
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One source of difficulty for mathematical studies of IH convection is that the mean
thermal dissipation, the mean viscous dissipation, and the mean vertical convective
heat flux cannot all be related to each other via a priori relationships. This is
in contrast with Rayleigh-Bénard convection, where such relationships enable one to
rigorously bound the convective heat transfer through variational analysis of the mean
thermal dissipation [12]. Applying the same strategy to IH flows yields bounds on
the mean temperature of the fluid [13–16] but not the convective heat flux. Recently,
this variational strategy was extended by taking into account a minimum principle for
the temperature, leading to bounds on the mean convective heat flux that approach
a constant exponentially fast as the heating strength is increased [2, 5]. Here, we
demonstrate that these bounds can be improved to algebraic powers when the Prandtl
number is taken to be infinite.

Using standard non-dimensional variables [15], we consider a fluid in a horizontally
periodic domain Ω = T[0,Lx]×T[0,Ly ]× [0, 1], the motion of which is governed by the
infinite Prandtl number Boussinessq equations

∇ · u = 0 , (1.1a)

∇p = ∆u + R T ẑ , (1.1b)

∂tT + u · ∇T = ∆T + 1. (1.1c)

Here, u = (u, v, w) is the fluid velocity in cartesian components, p is the pressure,
T is the temperature, and the unit forcing in (1.1c) represents the non-dimensional
internal heating rate. The flow is controlled by a ‘flux’ Rayleigh number that measures
the destabilising effect of the heating compared to the stabilising effects of diffusion,

R :=
gαQd5

ρcpνκ2
. (1.2)

Here g is the acceleration of gravity, ρ is the density, cp is the specific heat capacity,
α is the thermal expansion coefficient and Q is the heating rate per unit volume.

We consider two separate configurations that differ in the choice of boundary
conditions at the top (z = 1) and bottom (z = 0) of the domain. In the first
configuration, referred to as IH1 and sketched in Figure 1(a), the velocity satisfies no-
slip conditions and the temperature of both vertical boundaries is held at a constant
value, which can be taken as zero without loss of generality. Hence, we enforce

IH1: u|z∈{0,1} = 0, T |z=0 = 0, T |z=1 = 0. (1.3a)

In the second configuration, illustrated by Figure 1(b), the bottom plate is replaced
by a perfect thermal insulator, giving

IH3: u|z∈{0,1} = 0, ∂zT |z=0 = 0, T |z=1 = 0. (1.3b)

We seek bounds on the mean vertical convective heat transport, 〈wT 〉, a quantity
that is directly proportional to the viscous dissipation for both the IH1 and IH3
configurations. Throughout this paper overbars denote infinite time averages, while
angled brackets denote volume averages:

〈f〉 =
1

LxLy

ˆ Lx

0

ˆ Ly

0

ˆ 1

0
f(x, y, z, t)dz dy dx, (1.4a)

〈f〉 = lim sup
τ→∞

1

τ

ˆ τ

0
〈f〉 dt. (1.4b)
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Figure 1: IH convection with (a) isothermal boundaries (1.3a), and (b) insulating lower boundary
(1.3b). In both panels, IH represents the uniform unit internal heat generation. Red lines denote
the conductive temperature profiles ( ) and indicative mean temperature profiles in the turbulent
regime ( ).

For either set of boundary conditions considered in this paper, it is known that
0 ≤ 〈wT 〉 ≤ 1

2 uniformly in R and Pr [17]. The zero lower bound is saturated by
the (possibly unstable) state in which the flow does not move and heat is transported
vertically by conduction alone. The upper bound of 1

2 , instead, takes on a different
meaning depending on the thermal boundary conditions. As will become apparent
from (1.6) below, for the IH1 configuration a flow with 〈wT 〉 = 1

2 would see all heat
escape the domain through the upper boundary. This, however, cannot be achieved
at any finite value of R. Precisely, our first main results reveal that the mean vertical
heat flux 〈wT 〉 is strictly smaller than 1

2 by an amount that cannot decrease faster
than quadratically as R is raised.

Theorem 1 (Isothermal boundaries, Pr = ∞). Suppose that u = (u, v, w) and T
solve (1.1) subject to the no-slip isothermal boundary conditions (1.3a). There exists
a constant c > 0 such that, for all sufficiently large R > 0,

〈wT 〉 ≤ 1

2
− cR−2. (1.5)

Remark 1. It is shown in §2.4 that (1.5) holds with c = 216 for any R > 1892.

The bound on 〈wT 〉 can be given a clear physical interpretation as a measure
of the asymmetry of the heat transport due to heating. Indeed, upon computing
〈z · (1.1c)〉 one can show that the average nondimensional heat fluxes through the top
and bottom boundaries, denoted by FT and FB respectively, can be expressed as

FT := −∂z〈T 〉h|z=1 =
1

2
+ 〈wT 〉, (1.6a)

FB := ∂z〈T 〉h|z=0 =
1

2
− 〈wT 〉, (1.6b)

where 〈·〉h denotes a spatial average over the horizontal directions alone. Thus, our
upper bound on 〈wT 〉 immediately implies bounds on FT and FB.

Corollary 1.1. For all sufficiently large R,

FT ≤ 1− cR−2 and FB ≥ cR−2. (1.7)

The results discussed so far apply to the IH1 configuration, where the two hori-
zontal domain boundaries are isothermal. Similar results hold also for the IH3 case,
where the bottom boundary is perfectly insulating. In this case, however, the devia-
tion of 〈wT 〉 from 1

2 may decay as fast as R−4.
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Theorem 2 (Insulating bottom & isothermal top, Pr = ∞). Suppose that u =
(u, v, w) and T solve (1.1) subject to the boundary conditions (1.3b). There exists a
constant c > 0 such that, for all sufficiently large R > 0,

〈wT 〉 ≤ 1

2
− cR−4. (1.8)

Remark 2. It is shown in §3.1 that (1.8) holds with c ≈ 0.0107 for all R > 2961.

Since the IH3 boundary conditions imply that the conductive heat flux is positive,
the effects of convection on the enhancement of heat transport in the system can be
described using a Nusselt number, Nu. This is defined as the ratio of the mean total
heat flux to the mean conductive heat flux, and can be expressed in terms of 〈wT 〉 as

Nu =
(

1− 2〈wT 〉
)−1

. (1.9)

Thus, our upper bound on 〈wT 〉 can be transformed into an upper bound on Nu.

Corollary 2.1. For all sufficiently large R, Nu ≤ cR4.

The proofs of Theorems 1 and 2 rely on two key ingredients. The first is a varia-
tional problem giving an upper bound on 〈wT 〉. This variational problem is derived by
enforcing a minimum principle for the fluid’s temperature within the classical “back-
ground method” [12, 18, 19], which for simplicity we formulate using the language
of a more general framework for bounding infinite-time averages [20–23] (see [21, 24]
for further discussion of the link between the two approaches). Using this minimum
principle is essential to obtain bounds on 〈wT 〉 that asymptote to 1

2 from below. This
has already been shown for the IH1 configuration at finite Pr : for this case, without
the miniumum principle one obtains only 〈wT 〉 . R1/5 [2], while with it one can prove
that 〈wT 〉 ≤ 1

2 −O(R1/5 exp (−R3/5)) uniformly in Pr [5]. A similar (but not identi-

cal) exponentially-varying bound of 〈wT 〉 ≤ 1
2 − O(R−1/5 exp (−R3/5)) uniformly in

Pr was also obtained for the IH3 configuration [5].
The second key ingredient in our proofs are estimates of Hardy–Rellich type,

obtained by observing that the reduced momentum equation (1.1b) determines the
vertical velocity field as a function of the temperature field. Specifically, taking the
vertical component of the double curl of (1.1b) gives

∆2w = −R∆hT, (1.10)

where ∆h := ∂2
x + ∂2

y , is the horizontal Laplacian. Using the no-slip boundary condi-
tions with the incompressibility condition (1.1a), the vertical velocity w satisfies

w|z=0 = ∂zw|z=0 = w|z=1 = ∂zw|z=1 = 0. (1.11)

Equation (1.10) was exploited in Rayleigh-Bénard convection to improve the scaling
of upper bounds on Nu [25]. This was achieved by using (1.10) to derive inequalities
of the Hardy–Rellich type (see Lemma 4 below) that help the construction of a back-
ground field with a logarithmically-varying stable stratification in the bulk [25, 26].
Here, we use the same inequalities to construct (different) background fields suited
to IH convection, which will enable us to bound 〈wT 〉 in the infinite Pr limit.

4



2 Bounds for the IH1 configuration

We first consider the IH1 configuration, where the top and bottom plate are held
at zero temperature. In §2.1, we show that 〈wT 〉 can be bounded from above by
constructing suitably constrained functions of the vertical coordinate z. Section 2.2
describes parametric ansätze for such functions, while §2.3 establishes auxiliary results
that simplify the verification of the constraints and the evaluation of the bound. We
then prove Theorem 1 in §2.4 by prescribing R-dependent values of the free parameters
in our ansätze.

To simplify the notation, we introduce two sets of temperature fields that encode
the thermal boundary conditions and the pointwise nonnegativity constraint implied
by the minimum principle:

Hn := {T ∈ H1(Ω) : T is horizontally periodic & (1.3a) Y (1.3b)}, (2.1a)

H+ := {T ∈ Hn : T (x) ≥ 0 a.e. x ∈ Ω}, (2.1b)

where n = 1 or 3, depending on the boundary conditions of IH1 and IH3 respectively.
In §2, T belongs to H1.

2.1 Bounding framework

To bound 〈wT 〉 we employ the auxiliary function method [20, 24]. The method relies
on the observation that the time derivative of any bounded functional V{T (t)} along
solutions of the Boussinesq equations (1.1) averages to zero over infinite time, so

〈wT 〉 = 〈wT 〉+ d
dtV{T (t)}. (2.2)

If V is chosen such that the quantity being averaged on the right-hand side is bounded
above pointwise in time, then this pointwise bound is also an upper bound on 〈wT 〉.

Following analysis at finite Prandtl number [2], we restrict our attention to quadratic
functionals taking the form

V{T} =
〈
β
2 |T |

2 − [τ(z) + z − 1]T
〉
, (2.3)

which are parametrized by a positive constant β ∈ R+ and a piecewise-differentiable
function τ : [0, 1]→ R with square-integrable derivative. We require τ to satisfy

τ(0) = 1, τ(1) = 0, (2.4)

so the coefficient multiplying T in (2.3) vanishes at z = 0 and z = 1. This choice
enables us to integrate by parts without picking up boundary terms when calculating
d
dtV{T (t)}. To ensure that the resulting expression 〈wT 〉+ d

dtV{T} can be bounded
from above poinwise in time, we also require that the pair (β, τ) satisfies a condition
called the spectral constraint.

Definition 1 (Spectral constraint). The pair (β, τ) is said to satisfy the spectral
constraint if 〈

β |∇T |2 + τ ′wT
〉
≥ 0 T ∈ Hn, (2.5)

where w = −R∆−2∆hT solves (1.10) with the boundary conditions (1.11).
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If the spectral constraint is satisfied, then it is possible to bound 〈wT 〉 from above
in terms of τ , β, and another suitably constrained function λ : [0, 1]→ R.

Proposition 1 (Bounding framework, IH1). Suppose that the pair (β, τ) satisfies the
spectral constraint and the boundary conditions in (2.4). Further, let λ ∈ L2(0, 1) be
a nondecreasing function such that 〈λ〉 = −1. Then,

〈wT 〉 ≤ 1
2 +

〈
1

4β

∣∣τ ′ − λ− β (z − 1
2

)∣∣2 − τ〉 =: U(τ, λ, β)

Proof. A standard calculation using integration by parts, the incompressibility con-
dition (1.1a), and the boundary conditions on u and T yields

〈wT 〉 = 〈wT 〉+ d
dtV{T (t)}

= 1
2 +

〈
−β |∇T |2 − τ ′wT + (τ ′ − βz)∂zT − τ

〉
. (2.6)

The infinite-time average on the right-hand side is bounded above by the largest value
of the argument over the global attractor of the infinite-Prandtl-number Boussinesq
equations (1.1). The minimum principle for the temperature field implies that the
global attractor is contained in the set H+ defined in (2.1b). Consequently, we can
estimate

〈wT 〉 ≤ 1
2 + sup

T∈H+

w=−R∆−2∆hT

〈
−β |∇T |2 − τ ′wT + (τ ′ − βz)∂zT − τ

〉
. (2.7)

This upper bound is finite if and only if unless the pair (β, τ) satisfies the spectral
constraint (cf. definition 1), in which case the supremum over T can be evaluated
using a technical convex duality argument detailed in appendix A. The result of the
argument is that the bound in (2.7) is equivalent to

〈wT 〉 ≤ 1
2 + inf

λ∈L2(0,1)
λ nondecreasing
〈λ〉=−1

〈
1

4β

∣∣τ ′ − λ− β (z − 1
2

)∣∣2 − τ〉 . (2.8)

This inequality clearly implies the upper bound on 〈wT 〉 stated in the proposition,
which is therefore proven.

Remark 3. The function λ that arises when deriving (2.8) from (2.7) can be viewed
as a Lagrange multiplier enforcing the pointwise nonnegativity of temperature fields
in the set H+. Further details regarding this interpretation (with slightly different
notation) are given in [2, §4.4].

Remark 4. The best upper bound on 〈wT 〉 provable with our approach is found
upon minimizing the expression U(τ, λ, β) over all choices of τ , λ and β that satisfy
the conditions of Proposition 1. This is hard to do analytically, but can be done
computationally using a variety of numerical schemes (see [24] and references therein).
We leave such computations to future work and focus on proving Theorem 1 by
constructing suboptimal τ , λ and β analytically.
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Figure 2: Sketches of the functions τ(z) in (2.9) and λ(z) in (2.10) used to prove Theorem 1.

2.2 Ansätze

To prove the upper bound on 〈wT 〉, we seek β > 0, τ(z), and λ(z) that satisfy the
conditions of Proposition 1 and make the quantity U(β, τ, λ) as small as possible. To
simplify this task, we restrict τ to take the form

τ(z) :=



1− z

δ
, 0 ≤ z ≤ δ

A ln

(
z(1− δ)
δ(1− z)

)
, δ ≤ z ≤ 1− ε

A ln

(
(1− ε)(1− δ)

εδ

) (
1− z
ε

)
, 1− ε ≤ z ≤ 1

(2.9)

and λ to be given by

λ(z) :=

−
1

δ
, 0 ≤ z ≤ δ,

0, δ ≤ z ≤ 1.
(2.10)

These piecewise-defined functions, sketched in Figure 2, are fully specified by the
bottom boundary layer width δ ∈ (0, 1

2), the top boundary layer width ε ∈ (0, 1
2), and

the parameter A > 0 that determines the amplitude of τ in the bulk of the layer.
We also fix

β :=
〈
|τ ′ − λ|2

〉 1
2
〈
|z − 1

2 |
2
〉− 1

2 = 2
√

3
〈
|τ ′ − λ|2

〉 1
2 . (2.11)

This choice is motivated by the desire to minimize the right-hand side of the inequality

1

4β

〈
|τ ′ − λ− β

(
z − 1

2

)
|2
〉
≤ β

2

〈
|z − 1

2 |
2
〉

+
1

2β

〈
|τ ′ − λ|2

〉
, (2.12)

which is used later in Lemma 2 by estimating from above the value of the bound
U(β, τ, λ) for our choices of τ and λ.

For any choice of the parameters δ, ε, and A, the function τ satisfies the boundary
conditions in (2.4), while λ is nondecreasing and satisfies the normalization condition
〈λ〉 = −1. To establish Theorem 1 using Proposition 1, we only need to specify
parameter values such that U(β, τ, λ) ≤ 1

2 − O(R−2) while ensuring that the pair
(β, τ) satisfies the spectral constraint. For the purposes of simplifying the algebra in
what follows, we shall fix

A(δ) =
3
√

15

20
δ

3
2 (2.13)
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from the outset. As explained in remark 7 below, this choice arises when insisting
that the upper estimate on U(β, τ, λ) derived in Lemma 2 be strictly less than 1

2 for
some values of δ and ε, at least when all other constraints on these parameters are
ignored.

2.3 Preliminary estimates

We now derive a series of auxiliary results that make it simpler to specify the boundary
layer widths δ and ε. The first result gives estimates on the value of β in (2.11).

Lemma 1 (Estimates on β). Let τ(z), λ(z) and β be given by (2.9), (2.10), and (2.11)
with A specified by (2.13). Suppose that the boundary layer widths δ and ε satisfy

δ ≤ 1

6
, ε ≤ 1

3
, δ ln2

(
1

δ2

)
≤ ε. (2.14a,b,c)

Then,
9

2
√

5
δ ≤ β ≤ 9

2
δ. (2.15)

Remark 5. Condition (2.14c) is key to prove the auxiliary results of this section. The
other two restrictions, instead, are introduced to more easily keep track of constants
in our estimates, which is necessary to obtain an explicit prefactor for the O(R−2)
term. We have not attempted to optimize this prefactor.

Remark 6. Condition (2.14c) implies that δ ≤ ε. We will use this fact often in the
proofs of this section.

Proof of Lemma 1. It suffices to estimate
〈
|τ ′ − λ|2

〉 1
2 from above and below. For a

lower bound, substitute our choices for τ and λ to estimate

〈
|τ ′ − λ|2

〉
=

ˆ 1

δ
|τ ′(z)|2 dz ≥

ˆ 1−ε

δ
|τ ′(z)|2 dz = A2

ˆ 1−ε

δ

∣∣∣∣1z +
1

1− z

∣∣∣∣2 dz.

Expanding the square, dropping the nonnegative term 2
z(1−z) , and recalling that ε ≤ 1

3
and δ ≤ 1

6 <
1
3 by assumption, we can further estimate

〈
|τ ′ − λ|2

〉
≥ A2

(ˆ 2/3

δ

1

z2
dz +

ˆ 2/3

1/3

1

(1− z)2
dz

)
=
A2

δ
. (2.16)

Taking the square root of both sides and substituting for the value of A from (2.13)
gives

〈
|τ ′ − λ|2

〉1/2 ≥ (3
√

15/20) δ, which combined with (2.11) proves the lower
bound on β stated in (2.15).

For the upper bound on β, recall that condition (2.14c) implies δ ≤ ε, so 1− ε ≤
1− δ ≤ 1. Then,〈

|τ ′ − λ|2
〉

A2
=

ˆ 1−ε

δ

∣∣∣∣1z +
1

1− z

∣∣∣∣2 dz +
1

ε
ln2

(
(1− ε)(1− δ)

εδ

)
≤

ˆ 1−δ

δ

∣∣∣∣1z +
1

1− z

∣∣∣∣2 dz +
1

ε
ln2

(
1

δ2

)
.
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Using the inequality (a+ b)2 ≤ 2a2 + 2b2 we can further estimate〈
|τ ′ − λ|2

〉
A2

≤ 2

(ˆ 1−δ

δ

1

z2
dz +

ˆ 1−δ

δ

1

(1− z)2
dz

)
+

1

ε
ln2

(
1

δ2

)
=

4

δ

(
1− 2δ

1− δ

)
+

1

ε
ln2

(
1

δ2

)
.

Finally, we observe that 1−2δ
1−δ ≤ 1 for all δ ≥ 0 and apply (2.14c) to arrive at

〈
|τ ′ − λ|2

〉
≤ 5A2

δ
. (2.17)

Substituting our choice of A from (2.13) and taking a square root gives 〈|τ ′ − λ|2〉1/2 ≤
(3
√

3/4)δ, which combined with (2.11) yields the upper bound on β in (2.15).

Our second auxiliary result estimates the upper bound U(β, τ, λ) on 〈wT 〉 from
Proposition 1 in terms of the bottom boundary layer width δ alone.

Lemma 2 (Estimates on U(β, τ, λ)). Let τ(z), λ(z) and β be given by (2.9), (2.10),
and (2.11) with A specified by (2.13). Suppose the boundary layer widths δ and ε
satisfy the conditions of Lemma 1. Then,

U(β, τ, λ) ≤ 1

2
− δ

8
. (2.18)

Proof. Using inequality (2.12), our choice of β from (2.11), and the upper bound on
〈|τ ′ − λ|2〉 from (2.17) yields

U(β, τ, λ) ≤ 1

2
+

√
3

6

〈
|τ ′ − λ|2

〉 1
2 − 〈τ〉 ≤ 1

2
+

√
15A

6
δ−

1
2 − 〈τ〉 .

Moreover, since we have chosen τ to be a non-negative function we can estimate
〈τ〉 =

´ 1
0 τ(z) dz ≥

´ δ
0 τ(z) dz = 1

2δ to obtain

U(β, τ, λ) ≤ 1

2
+

√
15A

6
δ−

1
2 − 1

2
δ. (2.19)

Substituting our choice of A from (2.13) into this inequality gives (2.18).

Remark 7. The right-hand side of (2.19) can be strictly smaller than 1
2 only if A .

δ3/2. It is this observation that dictates the choice of A in (2.13). For any fixed
value of R, one should choose A ∼ δ3/2 with a (possibly R-dependent) prefactor that
optimises the balance between the positive and negative terms, subject to constraints
on A, δ and all other parameters that ensure the spectral constraint. To simplify our
proof, however, we choose to fix this prefactor a priori irrespective of R.

Our final auxiliary result gives sufficient conditions on δ and ε that ensure the
spectral constraint (cf. definition 1) is satisfied.

Lemma 3 (Sufficient conditions for the spectral constraint). Let τ(z), λ(z) and β be
given by (2.9), (2.10), and (2.11) with A specified by (2.13). Suppose the boundary
layer widths δ and ε satisfy the conditions of Lemma 1. Suppose further that

δ ≤ (24
√

3)2R−2 and ε3δ
1
2 ln2

(
1

δ2

)
≤ 8
√

3R−1. (2.20a,b)

Then, the pair (β, τ) satisfies the spectral constraint.

9



The proof of this result relies on Hardy–Rellich inequalities established in Ref. [14],
which extract a positive term from the a priori indefinite term 〈τ ′wT 〉.

Lemma 4 (Hardy–Rellich inequalities [14]). Let T,w : Ω→ R be horizontally periodic
functions such that ∆2w = −R∆hT subject to velocity boundary conditions (1.11).
Then,〈

wT

z

〉
≥ 4

R

〈
w2

z3

〉
and

〈
wT

1− z

〉
≥ 4

R

〈
w2

(1− z)3

〉
. (2.21a,b)

Proof of Lemma 3. Let 1(a,b) denote the indicator function of the interval (a, b). De-
fine the functions

f(z) :=

[
1

δ
+

A

z(1− z)

]
1(0,δ)(z), (2.22a)

g(z) :=

[
1

ε
ln

(
(1− ε)(1− δ)

εδ

)
+

1

z(1− z)

]
1(1−ε,1)(z). (2.22b)

Given our choice of τ from (2.9), we can rewrite the spectral constraint as

0 ≤
〈
β|∇T |2 + τ ′wT

〉
= F{T}+ G{T},

where

F{T} :=
β

2

〈
|∇T |2

〉
+A

〈
wT

z

〉
− 〈f(z)wT 〉 , (2.23a)

G{T} :=
β

2

〈
|∇T |2

〉
+A

〈
wT

1− z

〉
−A 〈g(z)wT 〉 . (2.23b)

Here, w is determined as a function of T by solving (1.10) subject to the boundary
conditions in (1.11). We shall prove that F and G are individually non-negative.

First, let us consider F . The Hardy–Rellich inequality (2.21a) gives

F{T} ≥ β

2

〈
|∇T |2

〉
+

4A

R

〈
w2

z3

〉
− 〈f(z)wT 〉 . (2.24)

Next, we estimate 〈f(z)wT 〉. Since T vanishes at z = 0 by virtue of the thermal
boundary conditions in (1.3a), we can use the fundamental theorem of calculus and
the Cauchy-Schwarz inequality to estimate |T (·, z)| ≤

√
z(
´ 1

0 |∇T |
2dz)1/2. Squaring

both sides and taking the horizontal average of which gives
〈
T 2
〉
h
≤ z

〈
|∇T |2

〉
. Then,

use of the Cauchy–Schwarz inequality, substitution for
〈
T 2
〉
h

and Youngs inequality
gives

〈f(z)wT 〉 ≤
ˆ 1

0
|f(z)| 〈|wT |〉h dz ≤

ˆ 1

0
|f(z)|

〈
w2
〉1/2

h

〈
T 2
〉1/2

h
dz

≤
〈
|∇T |2

〉 1
2

ˆ 1

0
f(z)z2

〈
w2

z3

〉 1
2

h

dz

≤
〈
|∇T |2

〉 1
2
〈
f(z)2z4

〉 1
2

〈
w2

z3

〉 1
2

≤ β

2

〈
|∇T |2

〉
+

1

2β

〈
f(z)2z4

〉〈w2

z3

〉
.

10



Upon using the lower bound on β from (2.15) to estimate the last term from above
we obtain

〈f(z)wT 〉 ≤ β

2

〈
|∇T |2

〉
+

√
5

9δ

〈
f(z)2z4

〉〈w2

z3

〉
. (2.25)

This can be substituted into (2.24) along with our choice of A from (2.13) to find

F{T} ≥
√

5

9
δ

3
2

(
27
√

3

5R
−
〈
f(z)2z4

〉
δ

5
2

)〈
w2

z3

〉
. (2.26)

To conclude, we show that the term in parentheses is nonnegative when δ satisfies
δ ≤ 1

6 and (2.20a). To do this, we observe that the function f(z) in (2.22a) is
nonnegative function and that it is nonzero only if z ≤ δ. We can therefore bound it
from above on the interval (0, δ) using the estimates 1

1−z ≤
1

1−δ ≤
6
5 and, consequently,

obtain 〈
f(z)2z4

〉
δ

5
2

≤ 1

δ
5
2

ˆ δ

0

(
1

δ
+

6A

5z

)2

z4 dz =

(
1

5
+

9
√

15

100
δ

3
2 +

81

500
δ3

)
δ

1
2 .

Using the assumption that δ ≤ 1
6 to estimate the expression in parentheses by its

value at δ = 1
6 , followed by an application of assumption (2.20a) to estimate the

remaining δ1/2 term in terms of R we arrive at the desired inequality〈
f(z)2z4

〉
δ

5
2

≤ 9δ
1
2

40
≤ 27

√
3

5R
.

Analogous arguments show that G{T} is nonnegative. Using the Hardy–Rellich
inequality (2.21b) we have

G{T} ≥ β

2

〈
|∇T |2

〉
+

4A

R

〈
|w|2

(1− z)3

〉
−A 〈g(z)wT 〉 . (2.27)

To estimate the last term, we use (in order) the inequality
〈
T 2
〉
h
≤ (1− z)

〈
|∇T |2

〉
,

the Cauchy–Schwarz inequality, and Young’s inequality:

〈g(z)wT 〉 ≤
ˆ 1

0
|g(z)| 〈|wT |〉h dz ≤

ˆ 1

0
|g(z)|

〈
w2
〉1/2

h

〈
T 2
〉1/2

h
dz

≤
〈
|∇T |2

〉 1
2

ˆ 1

0
g(z)(1− z)2

〈
w2

(1− z)3

〉 1
2

h

dz

≤
〈
|∇T |2

〉 1
2
〈
g(z)2(1− z)4

〉 1
2

〈
w2

(1− z)3

〉 1
2

≤ β

2A

〈
|∇T |2

〉
+
A

2β

〈
g(z)2(1− z)4

〉〈 w2

(1− z)3

〉
.

Using the lower bound on β from (2.15) gives

〈g(z)wT 〉 ≤ β

2A

〈
|∇T |2

〉
+

√
5A

9δ

〈
g(z)2(1− z)4

〉〈 w2

(1− z)3

〉
, (2.28)

11



which can be substituted into (2.27) along with the value of A from (2.13) to obtain

G{T} ≥ 3δ
3
2

16
√

5

(
16
√

3

R
− δ

1
2
〈
g(z)2(1− z)4

〉)〈 w2

(1− z)3

〉
. (2.29)

To conclude the argument we show that the term in parentheses is non-negative. To
demonstrate this, we first estimate g(z) on the interval (1 − ε, 1) from above using
the assumption that ε ≤ 1

3 , so 2
3 ≤ z ≤ 1 and 1

z(1−z) ≤
3

2(1−z) . Thus,

g(z) ≤ 1

ε
ln

(
1

δ2

)
+

3

2(1− z)
∀z ∈ (1− ε, 1).

Then, we use the assumptions δ ≤ 1
6 and δ ≤ ε (cf. remark 6) to observe that

ln ( 1
εδ ) ≤ ln ( 1

δ2
) ≤ ln2 ( 1

δ2
) and 3

4 ≤
3
4 ln2 ( 1

δ2
). Combining these estimates with the

upper bound on g derived above gives

δ
1
2
〈
g(z)2(1− z)4

〉
≤ δ

1
2

ˆ 1

1−ε

(
1

ε
ln

(
1

δ2

)
+

3

2(1− z)

)2

(1− z)4 dz

= δ
1
2 ε3

(
1

5
ln2

(
1

δ2

)
+

3

4
ln

(
1

δ2

)
+

3

4

)
≤ 2δ

1
2 ε3 ln2

(
1

δ2

)
(by (2.20b)) ≤ 16

√
3

R
,

as desired. This concludes the proof of Lemma 3.

2.4 Proof of Theorem 1

It is now straightforward to prove the upper bound on 〈wT 〉 by specifying boundary
layer widths δ and ε that satisfy the conditions of Lemmas 1, 2 and 3.

Since the estimate for the resulting upper bound obtained in Lemma 2 is min-
imized when δ is as large as possible, we choose the largest value consistent with
(2.20a),

δ = (24
√

3)2R−2. (2.30)

With this choice of δ, conditions (2.14c) and (2.20b) require ε to satisfy

27 648

R2
ln2

(
R

24
√

3

)
≤ ε ≤

(
1

48

) 1
3

ln−
2
3

(
R

24
√

3

)
, (2.31)

which is possible for R > R0 ' 1891.35 (cf. Figure 3). For R > R0, any choice of ε in
this range is feasible. The optimal value could be determined at the expense of more
complicated algebra either by optimizing the full bound U(β, τ, λ), or by deriving
better ε-dependent estimates for it. However, we expect that any ε-dependent terms
will contribute only higher-order corrections to our bound on 〈wT 〉.

To conclude the proof of Theorem 1, there remains to verify that our choice of δ
is no larger than 1

6 and that any ε satisfying (2.31) is no larger than 1
3 . It is easily

checked that both conditions hold when R ≥ R0 (see Figure 3 for an illustration). For
all such values of R, therefore, Lemma 2 and our choice of δ yield the upper bound
〈wT 〉 ≤ U(β, τ, λ) ≤ 1

2 − cR
−2 with c = 216.

12



Figure 3: Variation with R of the allowed values for the bottom boundary layer width ε (shaded
region), determined by condition (2.14c) in Lemma 1 and condition (2.20b) in Lemma 3 when the
bottom boundary layer width δ ( ) is chosen as in (2.30). Also shown are the uniform upper bounds
δ ≤ 1

6
( ) and ε ≤ 1

3
( ) imposed on these variables. A black vertical line marks the Rayleigh

number R0 ' 1891.35 above which all constraints on δ and ε are satisfied.

3 Bounds for the IH3 configuration

We now move on to studying IH convection in the IH3 configuration, where the top
boundary is maintained at constant (zero) temperature and the bottom boundary is
insulating. First, in §3.1, we derive a bounding framework for 〈wT 〉 following steps
similar to those used for the IH1 case (cf. §2.1). In §3.2 we present ansätze for
τ and λ, with which we obtain crucial estimates in §3.3 , which give the bound in
§3.4. Throughout this section, T belongs to H3. Observe that this changes the set of
temperature fields over which the spectral constraint in definition 1 is imposed. The
notation H+ still denotes the subset of temperature fields in H3 that are nonnegative
pointwise almost everywhere.

3.1 Bounding framework

Upper bounds on 〈wT 〉 for the IH3 configuration can be derived using a quadratic
auxiliary function V{T} similar to that used for the IH1 case. Precisely, we still
take V to be defined as in (2.3), where the positive constant β and the piecewise-
differentiable square-integrable function τ(z) are tunable parameters. However, this
time we impose only the boundary condition

τ(1) = 0. (3.1)

These changes result in the following family of parametrized upper bounds on 〈wT 〉.

Proposition 2 (Bounding framework, IH3). Suppose that the pair (β, τ) satisfies the
spectral constraint (cf. definition 1) and the boundary condition in (3.1). Further, let
λ ∈ L2(0, 1) be a nondecreasing function such that λ(0) = −1. Then,

〈wT 〉 ≤ 1
2 +

〈
1

4β

∣∣τ ′ − λ− βz∣∣2 − τ〉 =: U(τ, λ, β)

13



Proof. Proceeding as in the proof of Proposition 1 shows that

〈wT 〉 ≤ 1
2 + sup

T∈H+

w=−R∆−2∆hT

〈
−b |∇T |2 − τ ′wT + (τ − βz + 1) ∂zT − τ

〉
. (3.2)

The supremum on the right-hand side can be evaluated using the convex duality
argument summarized in appendix B, leading to the equivalent inequality

〈wT 〉 ≤ 1
2 + inf

λ∈L2(0,1)
λ nondecreasing

λ≥−1

〈
1

4β

∣∣τ ′ − λ− βz∣∣2 − τ〉 . (3.3)

This clearly implies the upper bound stated in the proposition.

3.2 Ansätze

The procedure for the proof of an upper bound on 〈wT 〉 is the same as that employed
for isothermal boundaries. We construct β > 0, τ(z) and λ(z) that satisfy the condi-
tions of Proposition 2, while trying to minimize the corresponding bound U(β, τ, λ).
Due to the Neumann boundary condition on T at z = 0, we can no longer employ
the Poincaré estimates used in §2.3 to control the sign-indefinite term in the spec-
tral constraint at the bottom boundary. Instead we modify τ(z) in (δ, 1

2) to increase
slower than logarithmically in z and use results established in [26]. The function τ(z)
is hence chosen to have the form

τ(z) :=


δ − z, 0 ≤ z ≤ δ,
A

1− α
(
z1−α − δ1−α)−A ln

(
1− z
1− δ

)
, δ ≤ z ≤ 1− ε,

AB

ε
(1− z) , 1− ε ≤ z ≤ 1,

(3.4)

where

B = B(ε, δ, α) :=
(1− ε)1−α − δ1−α

1− α
+ ln

(
1− δ
ε

)
. (3.5)

On the other hand, the Lagrange multiplier λ(z) is still chosen to be

λ(z) :=

{
−1, 0 ≤ z ≤ δ,
0, δ ≤ z ≤ 1.

(3.6)

These piecewise functions, sketched in Figure 4, are fully specified by the bottom
and top boundary layer widths δ, ε ∈ (0, 1

2), the constant A > 0, and the exponent
α ∈ (0, 1) driving the behaviour of τ(z) in the bulk.

For β we take

β :=
〈
|τ ′ − λ|2

〉 1
2
〈
z2
〉− 1

2 =
√

3
〈
|τ ′ − λ|2

〉 1
2 . (3.7)

This choice is motivated by minimizing the right hand side of the estimate

1

4β

〈
|τ ′ − λ− βz|2

〉
≤ β

2

〈
z2
〉

+
1

2β

〈
|τ ′ − λ|2

〉
=

1√
3

〈
|τ ′ − λ|2

〉 1
2 =

β

3
, (3.8)
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z

τ(z)

1

δ

δ 1− ε

z

λ(z)
1δ

−1

Figure 4: Sketch of the functions τ(z) (3.4) and λ(z) in (3.6) used to prove Theorem 2.

which is used in Lemma 6 below to estimate the value of the bound U(β, τ, λ) from
above when τ and λ are define by (3.4) and (3.6) respectively.

For any choice of the parameters δ, ε, A, and α, the function τ satisfies the
boundary conditions in (3.1), while λ is nondecreasing and satisfies the condition
λ(0) = −1. Thus, to establish Theorem 2 using Proposition 2 we need only specify
parameter values such that U(β, τ, λ) ≤ 1

2 −O(R−4) while ensuring that (β, τ) satisfy
the spectral constraint. For the purposes of simplifying the algebra in what follows,
we shall fix

A(δ, α) =
2
√

3

9

√
2α− 1 δα+ 3

2 (3.9)

from the outset. This choice arises when insisting that the upper estimate on U(β, τ, λ)
derived in Lemma 6 below should be strictly less than 1

2 for suitable choices of δ and
ε, at least when all other constraints on these parameters are ignored.

3.3 Preliminary Estimates

We now derive auxiliary results that simplify the choice of the exponent α and of the
boundary widths δ and ε. The first gives estimates on the value of β in (3.7).

Lemma 5 (Estimates on β). Let τ(z), λ(z) and β be given by (3.4), (3.6) and (3.7)
with A specified in (3.9). Suppose that α ∈ (1

2 , 1) and the boundary layer widths δ
and ε satisfy

δ ≤ 1

3

(
1

2

) 1
2α−1

, ε ≤ 1

3
, (2α− 1) δ2α−1B(ε, δ, α)2 ≤ ε. (3.10a,b,c)

Then √
2

3
δ2 ≤ β ≤ 4

3
δ2. (3.11)

Remark 8. Condition (3.10a) and the bounds on α imposed in the Lemma imply that
0 ≤ δ ≤ 1

6 . These uniform bounds will be used repeatedly in the following proofs.

Proof of Lemma 5. It suffices to estimate
〈
|τ ′ − λ|2

〉 1
2 from above and below. For a

lower bound, we can substitute our choices of τ and λ and then estimate

〈
|τ ′ − λ|2

〉
=

ˆ 1

δ
|τ ′(z)|2dz ≥

ˆ 1−ε

δ
|τ ′(z)|2dz = A2

ˆ 1−ε

δ

∣∣∣∣ 1

zα
+

1

1− z

∣∣∣∣2 dz.
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Dropping the positive term 1/(1−z) from the integrand and integrating the rest gives

〈
|τ ′ − λ|2

〉
≥ A2

(
δ1−2α − (1− ε)1−2α

2α− 1

)
.

For every α ∈ (1
2 , 1), the second term inside the parentheses can be estimated upon

observing that constraints (3.10a-b) imply

(1− ε)1−2α ≤
(

2

3

)1−2α

≤ 1

22α
δ1−2α ≤ 1

2
δ1−2α. (3.12)

Thus, we obtain 〈
|τ ′ − λ|2

〉
≥ A2

1
2δ

1−2α

2α− 1
. (3.13)

Taking the square root of (3.13) and using (3.9) gives
〈
|τ ′ − λ|2

〉 1
2 ≥

√
6

9 δ2, which
combined with (3.7) proves the lower bound on β stated in (3.11).

To prove the upper bound on β, we start by using the inequality (a + b)2 ≤
2a2 + 2b2, evaluating exactly the integral of τ ′ − λ, and dropping the negative terms
to get 〈

|τ ′ − λ|2
〉

A2
=

ˆ 1−ε

δ

∣∣∣∣ 1

zα
+

1

1− z

∣∣∣∣2 dz +
B2

ε

≤
ˆ 1−ε

δ

2

z2α
+

2

(1− z)2
dz +

B2

ε

(since α >
1

2
) ≤ 2δ1−2α

2α− 1
+

2

ε
+
B2

ε
. (3.14)

Using assumption (3.10c), the second and final term in (3.14) can be estimated from
above to arrive at 〈

|τ ′ − λ|2
〉

A2
≤ δ1−2α

2α− 1

(
2 +

2

B2
+ 1

)
. (3.15)

Next, we observe that for all ε ∈ (0, 1
3), δ ∈ (0, 1

6), and α ∈ (1
2 , 1) we can estimate

B(ε, δ, α) ≥ B
(

1

3
,
1

6
,
1

2

)
=

√
6

3
+ ln

(
5

2

)
>
√

2,

so B−2 ≤ 1/2. Using this estimate in (3.15), taking a square root, and substituting

in the value of A given in (3.9) leads to the inequality
〈
|τ ′ − λ|2

〉1/2 ≤ (4
√

3/9) δ2.
Combining this with (3.7) yields the upper bound on β stated in (3.11) and concludes
the proof of Lemma 5.

The second auxiliary result of this section estimates the upper bound U(β, τ, λ)
on 〈wT 〉 given by Proposition 2 using only the bottom boundary layer width δ.

Lemma 6 (Estimates on U(β, τ, λ)). Let τ(z), λ(z) and β be specified by (3.4), (3.6)
and (3.7) with A given by (3.9). Suppose α and the boundary layer widths δ, ε satisfy
the conditions of Lemma 5. Then,

U(β, τ, λ) ≤ 1

2
− δ2

18
. (3.16)
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Proof. Inequality (3.8) and the upper bound on β from (3.11) give

U(β, τ, λ) ≤ 1

2
+
β

3
− 〈τ〉 ≤ 1

2
+

4

9
δ2 − 〈τ〉 . (3.17)

The result follows upon observing that τ is non-negative, so 〈τ〉 =
´ 1

0 τ(z)dz ≥´ δ
0 τ(z)dz = 1

2δ
2.

Remark 9. The right hand side of (3.17) can be strictly smaller than 1
2 when δ2 is

small only if A . δα+3/2. This observation dictates the choice of A in (3.9). For
any fixed value of R, one should choose A ∼ δα+3/2 with a (possibly R-dependent)
prefactor that optimises the balance between the positive and negative terms, subject
to constraints on A, δ and all other parameters that ensure the spectral constraint.
To simplify our proof, however, we choose to fix this prefactor a priori irrespective
of R.

Our final auxiliary result gives the sufficient conditions on δ and ε that ensure the
spectral constraint (cf. definition 1) is satisfied.

Lemma 7 (Sufficient conditions for spectral constraint). Let τ(z), λ(z) and β be
specified by (3.4), (3.6) and (3.7) with A given by (3.9). Suppose that α and the
boundary layer widths satisfy the conditions of Lemma 5. Further, let

h(α) = 2(2α− 1)(1− α2). (3.18)

and suppose that

δ ≤ ε, (3.19a)

δ ≤ h(α)R−2, (3.19b)
√

2α− 1

(1− α)2
δα−

1
2 ε3 ln2 (δ−1) ≤ 4

3

√
6R−1. (3.19c)

Then, the pair (β, τ) satisfies the spectral constraint.

Unlike the analogous result obtained in §2.3, Lemma 7 cannot be proven using
only the Hardy–Rellich inequalities stated in Lemma 4. The lack of a fixed boundary
temperature at z = 0, makes it impossible to gain sufficient control on the contribution
of the bottom boundary layer to the quadratic form in (2.5). This difficulty can be
overcome using the following result, obtained as a particular case of a more general
analysis by Whitehead and Wittenberg [26, Eqs. (59) & (77)], which upon setting

(in their notation) ν1 = α
2 − ν2 and ν2 = 1

2

(
−1 +

√
2(1− α2)

)
.

Lemma 8 (Adapted from [26]). Fix α ∈ (1
2 , 1) and µ,R > 0. Suppose ϕ(z) : [0, 1]→

R, be a non-negative function, satisfying〈
ϕ(z)z1+α/2

〉2
≤ µ

R

√
2(3− α)(2 + α)

√
1− α2

3 + α
. (3.20)

Then, for every w and T solving (1.10) subject to the boundary conditions (1.11),〈
1

2
|∇T |2 + µ

wT

zα
− ϕ(z)wT

〉
≥ 0. (3.21)
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We are now ready to prove Lemma 7.

Proof of Lemma 7. Let 1(a,b) denote the indicator function of the interval (a, b) and
define the functions

f(z) :=

[
1 +

A(δ, α)

zα
+
A(δ, α)

1− z

]
1(0,δ)(z), (3.22a)

g(z) :=

[
B(ε, δ, α)

ε
+

1

zα
+

1

1− z

]
1(1−ε,1)(z). (3.22b)

Given our choice of τ , we can rewrite the spectral constraint as

0 ≤
〈
β|∇T |2 + τ ′wT

〉
= F{T}+ G{T},

where

F{T} :=
β

2

〈
|∇T |2

〉
+A

〈
wT

zα

〉
− 〈f(z)wT 〉 , (3.23a)

G{T} :=
β

2

〈
|∇T |2

〉
+A

〈
wT

1− z

〉
− A 〈g(z)wT 〉 . (3.23b)

Observe that F{T} and G{T} are functionals of the temperature field only because w
is determined as a function of T by solving (1.10) subject to the boundary conditions
in (1.11). We shall prove that F{T} and G{T} are individually non-negative for all
temperatures T from the space H3, which is sufficient for the spectral constraint to
hold.

To prove that F{T} ≥ 0, we apply Lemma 8 with ϕ(z) = f(z)/β and µ = A/β,
where f is given by (3.22a) and A given by (3.9). We therefore need to check that〈

f(z)z1+α
2

〉2
≤ βA

R

√
2(3− α)(2 + α)

√
1− α2

3 + α
. (3.24)

To verify this inequality, we first bound from above the weighted integral on the
left-hand side. By assumption we have 0 ≤ z ≤ δ ≤ 1

6 and α ∈ (1
2 , 1), from which

we obtain 1
1−z ≤

1
zα . Using this estimate and the definition of A from (3.9) we can

therefore estimate〈
f(z)z1+α

2

〉
≤
ˆ δ

0
z1+α

2 + 2Az1−α
2 dz =

[
2

4 + α
+

8
√

3

9

√
2α− 1

(4− α)
δ

3
2

]
δ2+α

2 .

Using again that 0 ≤ δ ≤ 1
6 and α ∈ (1

2 , 1), the bracketed expression can be bounded
from above to obtain〈

f(z)z1+α
2

〉
≤

[
4

9
+

8
√

3

9
· 1

3
·
(

1

6

) 3
2

]
δ2+α

2 <
1

2
δ2+α

2 . (3.25)

Next, we bound from below the right-hand-side of (3.24). Using the lower bound
on β from Lemma 5, the definition (3.9) of A, and the fact that α ∈ (1

2 , 1), we have

βA
√

2(3− α)(2 + α)

(3 + α)
≥ 4
√

3

27
δα+ 7

2

√
2α− 1 · (3− α)(2 + α)

(3 + α)

≥ 5

9
√

3
δα+ 7

2

√
2α− 1. (3.26)
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Combining (3.25) and (3.26), we conclude that (3.24) holds if

δ
1
2 ≤ 20

9
√

3

√
(2α− 1)(1− α2)

R
≤
√

2

√
(2α− 1)(1− α2)

R
,

which is true because δ satisfies (3.19a) by assumption. This proves that F{T} ≥ 0,
as desired.

We now prove that G{T} is also nonnegative. This can be done following the
same steps used in §2.3. The Hardy–Rellich inequality (2.21b) gives

G{T} ≥ β

2

〈
|∇T |2

〉
+

4A

R

〈
w2

(1− z)3

〉
−A 〈g(z)wT 〉 . (3.27)

To estimate the last term, as before we use the inequality
〈
T 2
〉
h
≤ (1− z)

〈
|∇T |2

〉
,

the Cauchy–Schwarz inequality, and Young’s inequality:

〈g(z)wT 〉 ≤ β

2A

〈
|∇T |2

〉
+
A

2β

〈
g(z)2(1− z)4

〉〈 w2

(1− z)3

〉
.

Using the lower bound on β from (3.11) gives

〈g(z)wT 〉 ≤ β

2A

〈
|∇T |2

〉
+

3
√

2A

4δ2

〈
g(z)2(1− z)4

〉〈 w2

(1− z)3

〉
,

which can be substituted into (3.27) along with the value of A from (3.9) to obtain

G{T} ≥
√

6(2α− 1)A

6

(
4
√

6√
2α− 1R

− δα−
1
2
〈
g(z)2(1− z)4

〉)〈 |w|2

(1− z)3

〉
. (3.28)

To conclude the argument we need to show that term in the parentheses is non-
negative. To demonstrate this, we first estimate from above the function g(z) given
in (3.22b) on the interval (1− ε, 1). Our assumption that δ ≤ ε implies that 1− ε ≤
1− δ ≤ 1 and ln(1

ε ) ≤ ln(1
δ ). Thus, for all δ ≤ 1

6 and α ∈ (1
2 , 1) the first term in g(z)

can be bounded as

B

ε
≤ 1

ε

(
1

1− α
+ ln

(
1

δ

))
≤

2 ln
(

1
δ

)
ε(1− α)

. (3.29)

To estimate the other terms in g(z), we observe that the assumptions ε ≤ 1
3 and

α ∈ (1
2 , 1) imply that 1

zα ≤
1

2(1−α)(1−z) and 1
1−z ≤

1
2(1−α)(1−z) . Consequently, we

arrive at

g(z) ≤
2 ln (1

δ )

ε(1− α)
+

1

(1− α)(1− z)
. (3.30)

Finally, using (3.30) and evaluating the integral in the parentheses of (3.28) with the
fact that ln(1

δ ) ≤ ln2 (1
δ ) and 1

3 ≤
1
3 ln (1

δ ) gives

δα−
1
2
〈
g(z)2(1− z)4

〉
≤ δα−

1
2

ˆ 1

1−ε

(
2 ln

(
1
δ

)
ε(1− α)

+
1

(1− α)(1− z)

)2

(1− z)4 dz

=
δα−

1
2 ε3

(1− α)2

[
4

5
ln2

(
1

δ

)
+ ln

(
1

δ

)
+

1

3

]
≤

3 δα−
1
2 ε3 ln2

(
1
δ

)
(1− α)2

(by (3.19b)) ≤ 4
√

6√
2α− 1R

. (3.31)
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(a) (b)

Figure 5: (a) Variation with R of the allowed values for the bottom boundary layer width δ (3.32)
( ) and the feasible region of ε (3.34) (shaded region). Also shown are uniform upper bounds of
δ ≤ 1

6
( ), and ε ≤ 1

3
( ) imposed on the variables. A black vertical line marks the Rayleigh

number, R0 ≈ 2960.89 above which all constraints on are satisfied. (b) Plot of the function h(α)
(3.18) ( ). Shown also is the optimal α∗ = (1 +

√
13)/6 ( ).

This concludes the proof of Lemma 7.

3.4 Proof of Theorem 2

To prove Theorem 2, we only need to specify R-dependent values for α and for the
boundary layer widths δ and ε that satisfy the conditions of Lemmas 5, 6 and 7.

Motivated by the desire to minimize the upper bound on U(β, τ, λ) stated in
Lemma 6, we choose

δ = h(α∗)R−2 (3.32)

where α∗ = (1 +
√

13)/6 is the unique maximizer of h(α) on the interval (1
2 , 1) (see

Figure 5(b)). With these choices, conditions (3.10c) and (3.19b) require ε to satisfy

c0R
−4α∗+2B(δ, ε, α∗)2 ≤ ε ≤ c2R

− 2−2α∗
3 ln−

2
3 (δ−1), (3.33)

where c0, c1 and c2 are non-negative constants independent of R. Using the upper
bound on B from (3.29), it suffices to find ε such that

4c0

(1− α∗)2
R−4α∗+2 ln2

(
R2

h(α∗)

)
≤ ε ≤ c2R

− 2−2α∗
3 ln−

2
3

(
R2

h(α∗)

)
. (3.34)

Figure 5 shows that suitable values of ε exist when R ≥ R0 ≈ 2960.89. One can also
check that for all such values of R and any ε in the range given by §3.4 one has δ ≤ 1

6 ,
ε ≤ 1

3 , and δ ≤ ε. We have therefore verified all conditions of Lemmas 5, 6 and 7.
To conclude the proof of Theorem 2, we simply substitute our choice of δ from

(3.32) into Lemma 6 to find the upper bound 〈wT 〉 ≤ U(β, τ, λ) ≤ 1
2 − cR

−4, where

c = h2(α∗)
18 ' 0.0107.

Remark 10. The top boundary layer width ε is not uniquely determined in our con-
struction. Its optimal value could be obtained by considering more refined estimates
on U(β, τ, λ) than Lemma 6, but we expect such estimates to provide only higher-
order corrections to the eventual bound on 〈wT 〉.
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4 Conclusions

We have proven upper bounds on the mean vertical convective heat transport 〈wT 〉 for
two configurations of infinite-Prandtl-number convection driven by uniform internal
heating between no-slip boundaries. In the first case, where both boundaries are held
at a constant temperature, we find 〈wT 〉 ≤ 1

2 − O(R−2) for all sufficiently large R
(cf. Theorem 1). This result implies that the outward heat fluxes through the top
and bottom are bounded by FT ≤ 1 − O(R−2) and FB ≥ O(R−2), respectively. In
the second configuration, where the top boundary remains isothermal but the bottom
one is insulating (no-flux condition), we find 〈wT 〉 ≤ 1

2 − O(R−4) (cf. Theorem 2).
In this case, we conclude from (1.9) that the Nusselt number is bounded above by
Nu ≤ O(R4). Explicit suboptimal values for the prefactors in the Rayleigh-dependent
terms were also obtained (cf. remarks 1 and 2).

All of these results were derived using the background method, which we formu-
lated as a search over quadratic auxiliary functionals of the form (2.3) and augmented
using a minimum principle for the fluid’s temperature. Similar to previous works on
infinite-Prandtl-number Rayleigh–Bénard convection, the background temperature
fields used vary linearly in thin boundary layers, and increase either logarithmically
(IH1 configuration) or as a power law (IH3 configuration) in the bulk of the fluid
layer. This bulk behaviour enables us to use Hardy–Rellich inequalities from [14]
(Lemma 4) and an integral estimate from [26] (Lemma 8) that were originally devel-
oped in the context of Rayleigh–Bénard convection. In contrast to the latter, however,
our background fields lack symmetry in the vertical direction, which reflects the lack
of vertical symmetry of IH convection problems.

In our choice of background fields, allowing the bottom boundary layer width δ to
be smaller than the top boundary layer width ε is essential to prove Theorems 1 and 2.
For the IH1 configuration, forcing δ = ε worsens the R-dependent correction to 1

2 in
Theorem 1 to O(R−2 ln−2 (R)). For the IH3 configuration, instead, no upper bound
on 〈wT 〉 that asymptotes to 1

2 from below as R increases can be obtained with our
method of proof if δ = ε. This boundary layer asymmetry contrasts the construction
of background fields for IH convection at finite Pr [5], where taking δ 6= ε appears
to bring no qualitative improvement to the exponentially-varying upper bounds on
〈wT 〉 . We also stress that the a priori uniform limits on the allowed values of δ and ε
imposed throughout §2 and §3 have been chosen with the only goal of simplifying the
algebra in our proofs. Varying these limits affects the prefactors of the R-dependent
terms in Theorems 1 and 2, as well as the range of R values for which they hold.
Both could be optimized further if desired.

One crucial difference between our constructions for the IH1 and IH3 configura-
tions is the leading-order behaviour of the background temperature fields—or, more
precisely, of the function τ(z)—as the bottom boundary layer edge is approached
from the bulk region. For the IH1 configuration, it suffices for τ to have the same
logarithmic behaviour as the background temperature fields used to study Rayleigh–
Bénard convection [25]. For the IH3 configuration, however, this choice does not work
due to the loss of control on the temperature of the bottom boundary, and we are
instead forced to take τ(z) ∼ z1−α with α ∈ (0, 1). This modification was already
used in the context of Rayleigh–Bénard convection between imperfectly conduct-
ing boundaries [26], where the optimal exponent α depended logarithmically on the
Rayleigh number. Within our proof, instead, the optimal α is a constant. Whether
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this difference is due to our choice of estimates or the inherent differences between
Rayleigh-Bénard and IH convection remains an open question.

More generally, we do not know whether the upper bounds on 〈wT 〉 stated in
Theorems 1 and 2 are qualitatively sharp. To check if the O(R−2) and O(R−4)
corrections to the asymptotic value of 1

2 are optimal within our bounding framework,
one could employ a variation of the computational approach taken in [2] and optimize
the tunable parameters τ , β, and λ in full (see also [24] and references therein for
more details on the numerical optimization of bounds). A more interesting but also
more challenging problem is to identify which convective flows maximize 〈wT 〉 and
the corresponding optimal scaling of this quantity with R. Considerable insight in
this direction can be gained through (i) direct numerical simulations, which to the
best of our knowledge are currently lacking; (ii) the calculation of steady but unstable
solution of the Boussinesq equations (1.1) that, as recently observed in the context
of Rayleigh–Bénard convection [27, 28], may transport heat more efficiently than
turbulence; and (iii) the explicit design of optimally-cooling flows [6, 29, 30]. Finally, it
would be interesting to investigate if more sophisticated PDE analysis techniques used
for Rayleigh–Bénard convection [31] can be extended to IH convection to interpolate
between the algebraic bounds on 〈wT 〉 proved in this paper for infinite-Pr fluids with
the finite-Pr exponential bounds obtained in [5].

Acknowledgements A.A. acknowledges funding by the EPSRC Centre for Doc-
toral Training in Fluid Dynamics across Scales (award number EP/L016230/1). G.F.
was supported by an Imperial College Research Fellowship and would like to thank
the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and
hospitality during the programme “Mathematical aspects of turbulence: where do
we stand?” (EPSRC grant number EP/R014604/1) where work on this paper was
undertaken.

A Convex duality for the IH1 configuration

The equivalence between (2.7) and (2.8) follow from a relatively standard convex
duality argument. It will be enough to show that

sup
T∈H+

−Φ{T} = inf
λ∈L2(0,1)

λ nondecreasing
〈λ〉=−1

1
4β

〈∣∣τ ′ − λ− β (z − 1
2

)∣∣2〉 , (A.1)

where
Φ{T} :=

〈
β |∇T |2 −Rτ ′(∆−2∆hT )T − (τ ′ − βz)∂zT

〉
.

To establish this identity, we start by rewriting the maximization on the left-hand
side as a minimization problem for the Legendre transform of Φ. Recall that the
Legendre transform of a functional Λ : H → R is the functional

Λ∗{µ} := sup
T∈H

(µ{T} − Λ{T}) ,

which acts on the dual space H∗ of bounded linear functionals T 7→ µ{T} on H. We
shall write H∗+ ⊂ H∗ for the subset of nonnegative bounded linear functionals on H,
meaning that µ ∈ H∗+ if and only if µ ∈ H∗ and µ{T} ≥ 0 for all T ∈ H+.
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Lemma 9. If the pair (β, τ) satisfies the spectral constraint, supT∈H+
−Φ{T} =

infµ∈H∗
+

Φ∗{µ}.

Proof. Define a functional Ψ from H into R ∪ {+∞} via

Ψ{T} :=

{
0 T ∈ H+,

+∞ otherwise.

Its Legendre transform is

Ψ∗{µ} =

{
0 if − µ ∈ H∗+,
+∞ otherwise.

We claim that

sup
T∈H+

−Φ{T} = − inf
T∈H+

Φ{T}

= − inf
T∈H

(Φ{T}+ Ψ{T})

= inf
µ∈H∗

(Φ∗{−µ}+ Ψ∗{µ})

= inf
µ∈H∗

+

Φ∗{µ}.

The first, second and fourth equalities are immediate consequences of the definitions of
inf, sup, Ψ, and Ψ∗. The third one, instead, follows from the Fenchel–Rockafellar min-
max theorem when H is viewed as a Hilbert space with the inner product 〈∇T1 · ∇T2〉
and norm 〈|∇T |2〉. To apply this theorem as stated in [32, Theorem 1.12], we need
to verify that the functionals Φ and Ψ are convex, and that Φ is continuous (with
respect to the norm on H) at some T0 ∈ dom(Φ) ∩ dom(Ψ) = H+.

The convexity of Ψ is obvious, while that of Φ follows from the assumption that
the pair (β, τ) satisfies the spectral constraint (cf. definition 1). To see this, write
Φ{T} = Q{T, T} − (τ ′ − βz)∂zT where Q is the bilinear form

Q{T1, T2} :=
〈
β∇T1 · ∇T2 −Rτ ′(∆−2∆hT1)T2

〉
,

and observe that the spectral constraint ensures Q{T, T} ≥ 0 for all T in the linear
space H. Thus, for any λ ∈ [0, 1] we can set λ̄ = 1− λ and estimate

Φ{λT1 + λ̄T2} = Q{λT1 + λ̄T2, λT1 + λ̄T2} − (τ ′ − βz)∂z[λT1 + λ̄T2]

= λΦ{T1, T1}+ λ̄Φ{T2, T2} − λλ̄Q{T1 − T2, T1 − T2}
≤ λΦ{T1, T1}+ λ̄Φ{T2, T2},

proving that Φ is convex. The continuity of Φ at any T0 ∈ H+ follows because Φ
is continuous on the whole space H. Indeed, the terms 〈|∇T |2〉 and 〈(τ ′ − βz)∂zT 〉
in the expression for Φ{T} are clearly continuous on H. To see that the remaining
term is also continuous, it is enough to establish that Tk → T in H implies ϕk :=
∆−2∆hTk → ∆−2∆hT =: ϕ in H. This can be shown by combining the Poincaré
inequalities 〈ϕ2〉 . 〈|∆ϕ|2〉 and 〈T 2〉 . 〈|∇T |2〉 with the estimate

〈|∆ϕ|2〉 =
∣∣〈ϕ∆2ϕ〉

∣∣ = |〈ϕ∆hT 〉| = |〈∆hϕT 〉| ≤ 〈|∆ϕ|2〉
1
2 〈|T |2〉

1
2 ,

which implies 〈|∆ϕ|2〉 ≤ 〈T 2〉. This concludes the proof of Lemma 9.

23



Next, we prove that since Φ{T} is invariant under horizontal translations of the
temperature field T , the minimization of its Legendre transform Φ∗ can be restricted
to functionals µ ∈ H∗+ that are translation invariant. Specifically, for any real numbers
r, s define the translation map Sr,s : H → H and its adjoint S ∗

r,s : H∗ → H∗ via

Sr,sT := T (x+ r, y + s, z)

S ∗
r,sµ := µ ◦Sr,s.

The functional µ ∈ H∗ is translation invariant if S ∗
r,sµ = µ for all r and s.

Lemma 10. Suppose Φ : H → R satisfies Φ{Sr,sT} = Φ{T} for all r, s ∈ R. Then,

inf
µ∈H∗

Φ∗{µ} = inf
µ∈H∗

µ transl. inv.

Φ∗{µ}.

Proof. It suffices to show that for every ν ∈ H∗ there exists a translation-invariant
µ ∈ H∗ such that Φ∗{µ} = Φ∗{ν}. Since every temperature field T ∈ H is horizontally
periodic, such a µ can be constructed simply by averaging the functionals S ∗

r,sν over
horizontal translations r and s, i.e., by letting

µ(T ) :=

 
r,s

S ∗
r,sν{T} =

 
r,s
ν{Sr,sT} ∀T ∈ H.

To show that Φ∗{µ} = Φ∗{ν}, we establish the complementary inequalities Φ∗{µ} ≤
Φ∗{ν} and Φ∗{µ} ≥ Φ∗{ν}. For the first one, use the translation invariance of Φ and
the definition of the Legendre transform to estimate

ν{Sr,sT} − Φ{T} = ν{Sr,sT} − Φ{Sr,sT} ≤ Φ∗{ν}

for all T ∈ H and all horizontal shifts r, s ∈ R. Averaging over horizontal shifts shows
that µ{T} − Φ{T} ≤ Φ∗{ν} for all T ∈ H, which implies Φ∗{µ} ≤ Φ∗{ν}.

To obtain the reverse inequality observe that, by definition of Φ∗, for any ε > 0
there exists Tε ∈ H such that ν{Tε}−Φ{Tε} ≥ Φ∗{ν}−ε. Then, since Φ is translation
invariant,

Φ∗{ν} − ε ≤ ν{Tε} − Φ{Tε}
= (S ∗

r,sν){S−r,−sTε} − Φ{S−r,−sTε}
≤ Φ∗{S ∗

r,sν}.

Upon averaging this inequality over all horizontal shifts r, s ∈ R and applying Jensen’s
inequality to Φ∗, which is concave because it is the supremum of linear functions, we
find

Φ∗(ν)− ε ≤
 
r,s

Φ∗
(
S ∗
r,sν
)
≤ Φ∗

( 
r,s

S ∗
r,sν

)
= Φ∗(µ).

Letting ε→ 0 yields Φ∗{µ} ≥ Φ∗{ν}, as desired. Lemma 10 is therefore proved.

To establish identity (A.1) we now need to show that its right-hand side coincides
with the infimum of Φ∗ over translation-invariant functionals µ ∈ H∗+. For this, we
use a characterization of such µ established in [2, Appendix C].
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Lemma 11. Let H∗+ be the set of positive linear functionals on the temperature space
H defined in (2.1a). If µ ∈ H∗+ is translation invariant, there exists a nondecreasing
function λ ∈ L2(0, 1) with 〈λ〉 = −1 such that µ{T} = 〈−λ(z) ∂zT 〉.

Thanks to this representation, all that remains to do is to calculate

Φ∗{µ} = sup
T∈H

〈
(τ ′ − λ+ βz)∂zT − β |∇T |2 +Rτ ′(∆−2∆hT )T

〉
. (A.2)

To solve this maximization problem, let η(z) = 〈T 〉h(z) be the horizontal mean of T
and set ξ = T − η. Since ∆hη = 0 and 〈ξ〉h(z) = 0 by construction, we can therefore
substitute T = η + ξ in (A.2) and solve the equivalent problem

Φ∗{µ} = sup
η=0 if z∈{0,1}
ξ=0 if z∈{0,1}
〈ξ〉h=0

{〈
(τ ′ − λ+ βz)η′ − β

∣∣η′∣∣2 − β |∇ξ|2 +Rτ ′(∆−2∆hξ)ξ
〉

〈
(τ ′ − λ+ βz)∂zξ − 2β η′ ∂zξ +Rτ ′η (∆−2∆hξ)

〉}
. (A.3)

The boundary conditions on η and ξ follow from those on T . The three terms on
the second line vanish identically because 〈ξ〉h(z) = 0 at all z ∈ [0, 1]. To verify this
claim, observe that

〈f(z)∂zξ〉 =

ˆ 1

0
f(z) 〈ξ〉′h (z)dz = 0

for any function f(z) that depends only on the vertical direction. Similarly, one can
show that 〈

Rτ ′η (∆−2∆hξ)
〉

= 0

because the function w = −R∆−2∆hT = −R∆−2∆hξ also has zero horizontal mean.
Indeed, taking the horizontal average of (1.10) yields the ODE 〈w〉′′h(z) = 0, whose
only solution satisfying the boundary conditions in (1.11) is 〈w〉h(z) = 0. The mini-
mization in (A.3) therefore simplifies into

Φ∗{µ} = sup
η=0 if z∈{0,1}
ξ=0 if z∈{0,1}
〈ξ〉h=0

〈
(τ ′ − λ− βz)η′ − β

∣∣η′∣∣2 − β |∇ξ|2 −Rτ ′wξ〉 . (A.4)

Since the pair (β, τ) was assumed to satisfy the spectral constraint (cf. definition 1),
the choice ξ = 0 is optimal. The optimal η, instead, satisfies the Euler–Lagrange
equation 2βη′′ = (τ ′−λ−βz)′. Solving this equation using the boundary conditions,
the constraints τ(0) = 1 and τ(1) = 0, and the normalization 〈λ〉 = −1 gives η′ =
1
2b [τ

′ − λ− b(z − 1
2)], which can be substituted back into (A.4) to give

Φ∗{µ} = 1
4β 〈
∣∣τ ′ − λ′ − β (z − 1

2

)∣∣2〉. (A.5)

Minimizing the left-hand side over translation invariant µ in H∗+ is the same as min-
imizing the right-hand side over λ satisfying the conditions in Lemma 11, which is
exactly the problem on the right-hand side of (A.1).
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B Convex duality for the IH3 configuration

The equivalence between the upper bounds (3.2) and (3.3) for the IH3 configuration
follows from the identity

sup
T∈H+

−Φ{T} = inf
λ∈L2(0,1)

λ nondecreasing
λ≥−1

〈
1

4β

∣∣τ ′ − λ− βz∣∣2〉 , (B.1)

where
Φ{T} :=

〈
β |∇T |2 −Rτ ′(∆−2∆hT )T −

(
τ ′ − βz + 1

)
∂zT

〉
. (B.2)

This identity can be proven using a convex duality argument analogous to that in
appendix A. Indeed, Lemmas 9 and 10 apply to the functional Φ considered in this
section with no changes to their proofs. Consequently,

sup
T∈H+

−Φ{T} = inf
µ∈H∗

µ transl. inv.

Φ∗{µ}. (B.3)

To calculate the Legendre transform Φ∗, however, we must replace Lemma 11 with a
different characterization of translation-invariant linear functionals µ ∈ H∗+. This is
due to the different boundary conditions imposed on the temperature space H.

Lemma 12. Let H∗+ be the set of positive linear functionals on the temperature
space H defined in (2.1a). If µ ∈ H∗+ is translation invariant, there exists a nonde-
creasing function λ ∈ L2(0, 1) nonnegative almost everywhere and such that µ{T} =
〈−λ(z) ∂zT 〉.

Proof. Straightforward modifications to the proof of [2, Lemma 3] reveal that any
translation-invariant µ ∈ H∗ admits the representation µ{T} = 〈−λ(z) ∂zT 〉 for some
function λ ∈ L2(0, 1). If µ is also positive, then the argument in the proof of [2,
Lemma 2] shows that λ must be nondecreasing. To see that we must have λ(z0) ≥ 0
at almost every z0 ∈ (0, 1), fix ε > 0 sufficiently small and consider the temperature
field Tε ∈ H+ given by

Tε(x) :=


2 z ∈ (0, z0 − ε),
2− ε−1(z − z0 + ε) z ∈ (z0 − ε, z0 + ε),

0 z ∈ (z0 + ε, 1).

Then, since µ is a positive functional by assumption,

0 ≤ µ(Tε) =
1

ε

ˆ z0+ε

z0−ε
λ(z)dz.

By Lebesgue’s differentiation theorem, the right-hand side tends to 2λ(z0) for almost
all z0 ∈ (0, 1) as ε→ 0. Thus, we must have λ ≥ 0 almost everywhere on (0, 1).

To conclude the argument, we need to calculate Φ∗{µ} for translation-invariant
µ ∈ H∗+, which by Lemma 12 is given by

Φ∗{µ} = sup
T∈H

〈(
τ ′ − λ− βz + 1

)
∂zT − β |∇T |2 +Rτ ′(∆−2∆hT )T

〉
.
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Since the pair (β, τ) was assumed to satisfy the spectral constraint, this maximization
problem can be restricted to temperature fields that depend only on the vertical
coordinate z (this can be proven by splitting T into its horizontal mean η and a
perturbation ξ with zero horizontal mean, as outlined at the end of appendix A). The
optimal value can then be shown to be

Φ∗{µ} = 1
4β

〈∣∣τ ′ − λ− βz + 1
∣∣2〉

and can be substituted into (B.3) to arrive at

sup
T∈H+

−Φ{T} = inf
λ∈L2(0,1)

λ nondecreasing
λ≥0

1
4β

〈∣∣τ ′ − λ− βz + 1
∣∣2〉 .

Changing the optimization variable on the right-hand side to λ̃ = λ− 1 yields (B.1).

References

[1] A. Arslan, G. Fantuzzi, J. Craske, and A. Wynn. Bounds for internally heated convection
with fixed boundary heat flux. J. Fluid Mech., 922:R1, 2021. (doi:10.1017/jfm.2021.527).

[2] A. Arslan, G. Fantuzzi, J. Craske, and A. Wynn. Bounds on heat transport for convection
driven by internal heating. J. Fluid Mech., 919:A15, 2021. (doi:10.1017/jfm.2021.360).

[3] Q. Wang, D. Lohse, and O. Shishkina. Scaling in internally heated convec-
tion: a unifying theory. Geophysical Research Letters, 47:e2020GL091198, 2020.
(doi:10.1029/2020GL091198).

[4] M. Creyssels. Model for thermal convection with uniform volumetric energy sources. J.
Fluid Mech., 919:A13, 2021. (doi:10.1017/jfm.2021.392).

[5] A. Kumar, A. Arslan, G. Fantuzzi, J. Craske, and A. Wynn. Analytical bounds on
the heat transport in internally heated convection. J. Fluid Mech., 938:A26, 2022.
(doi:10.1017/jfm.2022.170).

[6] I. Tobasco. Optimal cooling of an internally heated disc. Phil. Trans. Roy. Soc. A, 310
(1):20210040, 2022. (doi:10.1098/rsta.2021.0040).

[7] K. A. Emanuel. Atmospheric convection. Oxford University Press, 1994.

[8] G. Schubert, D. L. Turcotte, and P. Olson. Mantle convection in the Earth and planets.
Cambridge University Press, 2001.

[9] E. Mulyukova and D. Bercovici. Mantle convection in terrestrial plan-
ets. Oxford Research Encyclopedia of Planetary Science, 03 2020.
(doi:10.1093/acrefore/9780190647926.013.109).

[10] B. Miquel, S. Lepot, V. Bouillaut, and B. Gallet. Convection driven by internal heat
sources and sinks: Heat transport beyond the mixing-length or “ultimate” scaling regime.
Phys. Rev. Fluids, 4(12):121501, 2019. (doi:10.1103/PhysRevFluids.4.121501).
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