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Abstract The steel–concrete interface (SCI) is a

complex, multi-phase and multi-scale system. It is

widely known to influence the performance and long-

term durability of concrete structures. However, a

fundamental understanding of its properties and

effects on corrosion initiation of embedded reinforc-

ing steel remains elusive. This is attributed to its

complicated heterogeneity and time-dependent nature,

exacerbated by the lack of suitable techniques for

systematic and detailed characterisation. This paper,

prepared by members of the RILEM Technical

Committee 262-SCI, critically reviews available

information regarding current methods (laboratory or

field-based) for characterising local properties of the

SCI that have been identified as governing factors

affecting corrosion initiation. These properties include

characteristics of the steel such as mill scale and rust

layers, and characteristics of the concrete such as

interfacial voids, microstructure and moisture content.

We evaluated over twenty methods and summarised
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José Pacheco, Radhakrishna Pillai, Rob Polder, Mezgeen

Rasol, Michael Raupach, Alberto A Sagüés, Henrik Erndahl
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their advantages, applications and limitations. The

findings show a severe lack of well established, non-

destructive techniques that are suitable for direct

monitoring of the SCI at a representative scale with

sufficiently high resolution (spatial, temporal), partic-

ularly for moisture related aspects. Several promising

novel techniques with significant potential for further

development and application were identified and

discussed. Finally, we provide several recommenda-

tions for future research needs that are required to

advance this critically important topic.

Keywords Steel–concrete interface � Durability �
Corrosion � Microstructure � Moisture �
Characterisation

1 Introduction

It is well known that the steel–concrete interface (SCI)

plays a significant role in determining the performance

and long-term durability of reinforced concrete struc-

tures. Yet, our fundamental understanding of the SCI

is incomplete. Recent state-of-the-art reviews, pre-

pared by the members of RILEM TC 262-SCI,

attempted to elucidate the characteristics of the SCI

and their potential impact on corrosion of steel

reinforcement in concrete [1, 2]. These reviews have

shown that, despite many decades of research, the

most dominant SCI characteristics influencing the

susceptibility of steel reinforcement to corrosion

remain largely unclear.

The associated uncertainty is mainly attributed to

the complexity and heterogeneity of the SCI, and its

interactions with many factors. However, the absence

of a comprehensive understanding and the existence of

(some) conflicting findings in the literature are also, to

an extent, due to a lack of informative, consistent and

well-established experimental methods for studying

the SCI. This limits our ability to model reinforcement

corrosion accurately, formulate new materials and

construction practices to build corrosion-resistant

reinforced concrete structures, and develop new

means and methods to delay corrosion onset or

propagation, extending the service life of existing

structures. Thus, a systematic approach for character-

ising the local, physical, and chemical properties of the

SCI is highly needed.

The overall aim of this paper is to evaluate

techniques for characterising local properties of the

SCI that have been identified as the main factors

influencing corrosion initiation in previous publica-

tions by the RILEM TC 262-SCI. These include

characteristics of the steel surface such as mill scale
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and rust layers, and characteristics of the concrete such

as interfacial voids, microstructure and moisture

content [2]. This paper will focus on techniques

currently used in practice (in the laboratory or field)

and touch on potential methods under development.

Where possible, the paper will provide recommenda-

tions on experimental protocols and identify future

research needs. Specifically, the paper will address the

following questions:

• What are the features of the SCI that currently

available techniques can characterise?

• What are these techniques, their performance, and

their reliability?

• What can we do with available techniques and the

collected data?

• What are the future research needs in terms of

enhancing/developing characterisation techniques?

The work should help to guide and improve future

studies, which are needed to understand the funda-

mental mechanisms operative in corrosion initiation of

steel in concrete, aid the development of more durable

materials, novel test methods, and models for predict-

ing reinforcement corrosion.

2 Methods overview

We have examined over twenty methods in this

review. These can be broadly classified according to

their working principle and/or analysis method, e.g.

microscopy, radiography, tomography, spectroscopy,

etc., as listed in Table 1. They can also be categorised

according to the scale and location of measurement

relative to the SCI, as shown in Fig. 1. The most

promising techniques should be capable of providing a

direct characterisation of the SCI, either on specific

locations at the interface (a), along the interface (b), or

around its circumference (c). Some methods may

provide information in the form of a distribution

profile through the concrete cover, extending to the

SCI (d). Other techniques are applicable only to the

bulk concrete, steel or reinforced concrete, as a proxy

to the SCI (e, f, g, h).

The review is structured according to features of the

SCI that have been identified as being the most

relevant to corrosion initiation of conventional carbon

steel reinforcement in portland cement-based concrete

[2]. These are organised and presented in three

themes: (a) mill scale and rust layers (Sect. 3);

(b) interfacial voids and concrete microstructure

(Sect. 4); and (c) moisture content and spatial distri-

bution (Sect. 5). In each, we provide some background

to the main properties and research questions, fol-

lowed by a critical assessment of the most promising

methods. Section 6 reviews other techniques that may

yield valuable information but are not necessarily

performed directly at the SCI. Finally, we discuss the

implications of the review and summarise the main

findings.

3 Steel properties: mill scale & rust layer

3.1 Background

It is well established that both corrosion initiation and

subsequent propagation are affected by mill scale and

pre-existing rust layers on steel surfaces [1]. For

example, higher chloride thresholds have been

reported for rebars that have been modified through

sandblasting, polishing or pickling compared to as-

received rebars with mill scale [3–7]. In addition, the

removal of these surface layers has been shown to

reduce the variability in electrochemical measure-

ments and chloride thresholds [8, 9]. This can be

explained by the fact that rebars with cleaned (i.e.

modified) surfaces are almost uniform, whereas those

in as-received conditions used on-site in concrete

structures are locally diverse and complex due to the

presence of mill scale or native rust layers [10].

Therefore, it is not practically relevant to focus on

corrosion initiation of clean rebars.

Mill scale is a thin, adherent iron oxide coating that

forms on rebar during heat treatment and hot rolling

processes at the steel mill [1]. Oxidation of the steel

occurs after exposure to air while cooling from the

rolling temperature. Mill scale is brittle and hence

likely to crack during transport, handling (e.g. bend-

ing), and placement in the formwork. In terms of

morphology and composition, mill scale differs from

corrosion products. For example, the mill scale has a

higher Fe/O atomic ratio and therefore it is possible to

differentiate these layers [11]. At early stages of

corrosion, the mill scale is usually found near the outer

edge of the solid rust layer as the latter expands from

the corroding site.
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It is well known that voids and crevices exist

between the steel and mill scale/rust layers [12]. Some

of the voids and crevices are connected by cracks,

which serve as pathways for ions in the pore solution

to reach the steel through electromigration and

diffusion. Thus, the main role of mill scale and rust

layers on corrosion initiation can be explained by the

crevice corrosion mechanism, illustrated in Fig. 2.

Over time, the composition of the solution within the

crevices changes from that of the bulk pore solution

[12]. Specifically, the [Cl-]/[OH-] ratio increases due

to combined chloride accumulation and decreased pH

within the crevice. Therefore, as-received rebars with

rust layers and/or mill scale are generally more

susceptible to corrosion initiation than polished rebar

[3–6, 13].

In addition, Fe(III)-rich phases in rust layers may

catalyse anodic activity by increasing the area of

cathodic surfaces and forming galvanic couples,

especially under wetting/drying conditions. However,

there is some controversy about whether oxygen

reduction can take place on a mill scale because of its

semi-conductive nature [5]. When concrete is partially

dry, oxygen reduction is limited due to an increase in

Table 1 List of methods (ordered according to working principle and/or method of analysis) and features that can be characterised

Method Features that can be characterised, their location and scale

Mill-scale Rust layer Interfacial voids Micro-structure Moisture

Microscopy

Optical microscopy (OM) a, b, c a, b, c a, b, c a, b, c, d –

Secondary elec. (SEM-SE) a, b, c a, b, c – a, b, c –

Backscattered elec. (SEM-BSE) a, b, c a, b, c a, b, c a, b, c, d –

Focused ion beam (FIB-SEM) (a) (a) (a) (a) –

Transmission elec. (TEM) (a) (a) – (a) –

Radiography and tomography

X-ray imaging (lCT) (a, b, c) (a, b, c) (a, b, c) (a, b, c, d) (d, e, f, g)

Neutron imaging – – (a, b, c) (a, b, c) (a, b, c, d)

Combined X and neutron imaging – – (a, b, c) (a, b, c) (a, b, c, d)

Spectroscopy

Energy-dispersive X-ray (EDX) a, b, c a, b, c – a, b, c, d –

Raman spectroscopy a, b, c a, b, c – (a, b, c, d) –

X-ray photoelectron (XPS) a a – – –

Infrared spectroscopy (IR) – – –– – (e, f, g, h)

Physical

Nano/micro indentation a, b, c a, b, c – a, b, c, d –

Thermogravimetric analysis (TGA) – – – – (a, b, c, d) g, h

Dynamic vapour sorption (DVS) – – – – (a, b, c, d) g, h

Others (less applicable)

Electrochemical e e – – –

Mass transport based – – d, e – –

Electrical resistivity – – – – (d, e, f, g, h)

Elec. resistance tomography (ERT) – – – – (e, f, g, h)

Ground-penetrating radar (GPR) – – – – (e, f, g, h)

Nuclear magnetic res. (NMR) – – – – (e, f, g, h)

Letters a, b, c, d, e, f, g and h refer to the location and scale of measurement, as defined in Fig. 1

Parentheses () indicate that the method may potentially be applicable under certain conditions but lacks well-documented evidence

Endash ‘‘–’’ indicates that the method is not applicable
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Fig. 1 Location and scale of measurements (left: longitudinal; right: cross-section). The orange and blue zones represent measurements

performed at the steel surface and in the concrete, respectively

Fig. 2 Increase in [Cl-]/[OH-] and decrease in pH within a hypothetical mill scale crevice [13] and reduction of Fe(III)-rich phases to

Fe(II)-rich phases on mill scale/rust layers [5]
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Fe(III)-rich phases (which are generally insulating)

and the lack of an electrolyte needed for the electro-

chemical reactions to occur at an appreciable rate [14].

When concrete is saturated, the Fe(III)-rich phases can

be reduced to Fe(II) compounds, and this generates a

cathodic current (in addition to the oxygen reduction

reaction) to sustain anodic reactions [14, 15] in the

crevice. As a result, the presence of rust layers (and

potentially mill scale) may have a catalysing effect on

the corrosion process, as illustrated in Fig. 2.

Due to the importance of mill scale and rust layers

to corrosion, it is critical to characterise their mor-

phology/geometry, composition and mechanical prop-

erties. Several methods to achieve this are reviewed

below.

3.2 Morphology and chemical characterisation

3.2.1 Optical microscopy

Optical microscopy via stereo or compound micro-

scopes can be used to characterise the morphology

(i.e., thickness, pattern, and distribution) of mill scale

and rust layers on the steel surface in a relatively fast

and cost-effective manner. The technique can be used

on rebar as received from the mill [12, 16], after

mechanical separation from mortar/concrete [17], or

as part of a general investigation of SCI on sectioned

samples [16, 18]. Optical microscopy can also visu-

alise corrosion products that form and their penetra-

tion into pores and cracks in the surrounding concrete

[19].

A stereo microscope provides a low magnification

overview of the mill scale and rust layers. Although

the useable magnification is typically limited to

* 509, it is simple to operate and does not require

extensive surface preparation. The large working

distance and depth of field allow three-dimensional

visualisation of texture, roughness, crack opening, etc.

For example, Fig. 3a shows the texture of the mill

scale that highlights the discontinuity and defects

along the rebar.

With a compound microscope, higher magnifica-

tions can be achieved, but this requires sample

preparation to obtain a flat ground and finely polished

surface. Figure 3b illustrates the application of high-

resolution optical microscopy to characterise the

morphology of mill scale and rust layers on a polished

reinforced mortar specimen that has been exposed to

chlorides. It shows rust forming at micron-sized

defects between the mill scale and steel substrate, in

line with the crevice corrosion mechanism presented

in Fig. 2.

Resolution can be defined by the Abbe diffraction

limit and Rayleigh criterion, as a function of the

illumination wavelength and numerical aperture of the

objective lens. On this basis, the theoretical resolution

limit for optical microscopy is *0.2 micron. In

practice however, the achievable resolution is further

degraded by other factors related to microscope optics,

illumination, specimen surface quality, feature con-

trast, pixel size and segmentation accuracy.

Sample preparation for microscopy is a highly

skilled and specialised activity but critical for obtain-

ing good reliable data with minimal artefacts [20].

Although optical microscopy on etched surfaces can

show microstructural details (e.g., to identify ferrite,

pearlite and austenite grains) [17, 21], it does not

provide information on chemical composition. There-

fore, optical microscopy is usually complemented

with other techniques such as scanning electron

(a) (b)

Steel

MortarMill scale

Defects

Rust

Mill 
scale

Fig. 3 Optical micrographs

showing a mill scale

discontinuity on rebar

surface, and b morphology

of mill scale and rust layers

on a cross-section of

reinforced mortar subjected

to chloride-induced

corrosion [16]
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microscopy (SEM) coupled with energy dispersive

X-ray (EDX) spectroscopy or Raman spectroscopy.

3.2.2 Scanning electron microscopy (SEM)

SEM allows high-resolution characterisation beyond

the capacity of optical microscopy. It is usually

operated in the secondary electron (SE) or the

backscattered electron (BSE) mode. The SE mode

uses low-energy elastically scattered electrons to give

morphological and topographic information at nanos-

cale resolution. The BSE mode is particularly useful

because it allows differentiation between mill scale,

rust layers and other phases [12, 16–19, 22] based on

their atomic contrast and brightness intensity (see also

Sect. 4.2.2). Furthermore, the elemental composition

can be obtained when BSE is coupled with EDX spot

analysis, line scan or mapping.

For example, Fig. 4a, b presents SEM-BSE micro-

graphs of as-received rebar cross-sections that show

the presence of pores, cracks, and crevices in the mill

scale [12]. The mill scale has a variable thickness,

coverage, and composition. EDX analyses indicate

differences in Fe/O ratio within the brighter inner layer

(probably wüstite) and darker outer layer (probably

magnetite), consistent with findings from Raman

spectroscopy (see Sect. 3.2.3). Figure 4c, d shows an

example SEM-BSE-EDX characterisation of the SCI

subjected to chloride-induced corrosion [22]. The mill

scale shows deterioration, and rust can be seen

forming at the interface between mill scale and steel.

EDX shows a higher concentration of Cl in this region

consistent with the mechanism described in Fig. 2 and

penetration of corrosion products into the adjacent

porous cement paste matrix. Quantitative methods for

determining the chloride concentration via EDX have

been reported elsewhere [23].

Preparation of metallic samples for SEM is rela-

tively straightforward but includes polishing or etch-

ing depending on the goal of the study. Samples that

contain SCI require additional preparation such as

impregnation with low viscosity epoxy, sectioning,

SiC grinding, diamond polishing and coating with a

thin conductive layer to avoid charging artefacts for

high-vacuum imaging [24]. Carbon is typically used as

the conductive coating to avoid interference with Cl

Fig. 4 a, b SEM-BSE micrographs showing mill scale on as-

received rebar [12]; c SEM-BSE micrograph showing rust

layers, mill scale, and chloride-induced corrosion products

penetrating the cement paste; d EDX mapping of Fe, Ca, O, and

Cl. (S: steel; MS: mill scale; RL: rust layer; CP: corrosion

products filled paste; P: paste) [22]
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and other elements. Extracting these sub-samples from

a larger specimen can cause damage; however,

procedures are available to minimise these issues [25].

Electron backscatter diffraction (EBSD) is another

promising SEM-based technique that can be used to

determine the crystallographic structure of metal

oxides [26] and provide insights into phases that have

similar compositions. However, we are not aware of

any substantial EBSD studies applied to the SCI to

date, presumably due to difficulties in achieving the

high level of surface quality required.

3.2.3 Raman spectroscopy

Raman spectroscopy is a chemical analysis method

based on the characteristic energy shift known as

Raman scatter, produced from the interaction between

a monochromatic laser with the chemical bonds within

a material. The technique can be used as point analysis

or spectral mapping to give images at micron-scale

spatial resolution. The Raman spectrum provides

chemical and structural information, and phases can

be identified by comparison with reference spectra of

pure phases.

Raman spectroscopy has been used to characterise

iron oxides and oxyhydroxides, including mill scale,

rust layers, and corrosion products at the SCI [27–34].

However, attempts to study passive film were unsuc-

cessful because it was too thin to be observable [29].

Section 3.2.4 provides some guidance on nano-scale

surface characterisation techniques. The majority of

these studies indicate that mill scale is primarily

composed of wüstite (FeO) and magnetite (Fe3O4),

with a surface layer of hematite (a-Fe2O3) and goethite

(a-FeOOH) [27, 28, 33]. In the presence of chloride,

the main corrosion products are mixtures of poorly

crystalline iron oxyhydroxides, goethite (a-FeOOH),

lepidocrocite (c-FeOOH), akaganeite (b-FeOOH) and

maghemite (c-Fe2O3) [30, 31, 34].

Steel specimens can be analysed without surface

preparation, but intact SCI would require preparation

in the form of epoxy mounting, SiC grinding, and

diamond polishing [32–34]. Some iron compounds are

susceptible to thermal degradation from laser irradi-

ation [35]. Therefore, the laser power must be filtered

to less than 0.1 mW to avoid thermal effects [30, 34].

Furthermore, the Raman shifts of many iron

compounds are either close or overlapping, and are

challenging to discriminate, particularly in mixtures

within the analysed volume [32, 34, 36, 37]. The

Raman spectra and main peak positions of major iron

compounds can be found in the preceding references.

3.2.4 Nano-scale surface characterisation

The techniques described previously are appropriate

for micrometre-scale features. For nano-scale passive

film and native oxide films, other methods such as

X-ray photoelectron spectroscopy (XPS) and trans-

mission electron microscopy (TEM) are required

[38–41]. XPS can identify all elements (except H

and He) and their chemical state within a surface depth

of *10 nm. Samples may require polishing to reduce

topographic variability. XPS can also provide the

oxidation state of iron species in the analysed depth

[38, 39, 42]. The technique is non-destructive when

used in the angle-resolved mode but could change

oxidation states if used as a depth-profiling tool for

elemental composition.

TEM requires electron transparent thin sections

(typically *100 nm thick) extracted using focused

ion beam (FIB) milling. The samples can also be used

with EDX to obtain elemental information and elec-

tron energy loss spectroscopy (EELS) to provide

information on the atomic composition, chemical

bonding, valence and conduction band electronic

properties, surface properties, and element-specific

pair distance distribution functions [41]. However, it

should be noted that these nano-scale techniques are

not commonly used for characterising the SCI.

3.3 Micromechanical properties

Micro/nano-indentation is a depth-sensing technique

for determining mechanical properties such as

Young’s modulus and hardness within a local volume

of material. It works by pressing a small tip (indenter)

of known geometry and mechanical properties into the

sample at increasing load, and subsequently analysing

the load versus displacement data [43]. The method

requires flat-polished samples prepared similarly to

SEM-BSE (Sect. 3.2.2) and has been applied to

characterise mill scale and corrosion products

[33, 44–47].
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An example application of nano-indentation on SCI

subjected to chloride-induced corrosion is shown in

Fig. 5a, b [44]. It can be seen that the measured elastic

moduli fluctuate with indentation depth and stabilise at

*2 lm. Nevertheless, the obtained averages are

distinct for steel (*183 GPa), mill scale

(*122 GPa) and rust layer (*47 GPa). The latter

shows a high degree of scatter, suggesting variable

composition and mechanical properties. These trends

are consistent with data from other studies

[33, 45–47].

Figure 5c, d shows positive correlations between

Young’s modulus, hardness and Fe/O atomic ratio

(from parallel EDX analyses), obtained from [ 500

indentations of mill scale and corrosion products at the

SCI [33]. The results suggest that micromechanical

properties of corrosion products increase with Fe/O

atomic ratio, but large scatter occurs locally due to the

complex mixture of phases within the rust layer,

consistent with findings from Raman spectroscopy

(Sect. 3.2.3). The ability to resolve these complex

mixtures is challenging and not yet achievable with

current instrumental capabilities.

4 Interfacial voids and concrete microstructure

4.1 Background

Macroscopic interfacial voids play an important role

in chloride-induced corrosion initiation [2]. These

include entrapped or entrained air adjacent to the steel,

settlement and bleeding zones, and mechanical dam-

age such as cracks, slip and separation [1]. Addition-

ally, microstructural features such as the paste porosity

[48] or phase assemblage [49] and their gradients from

the steel surface are important for corrosion processes.

It is thus critical to be able to study and quantify these

characteristics.

A pertinent issue is the role of macroscopic

interfacial voids. Various studies have attempted to

address this issue, however, with contradictory con-

clusions [2]. A general limitation of many studies was

that the methods used did not allow for an accurate

determination of the exact location of corrosion

initiation concerning the location of interfacial voids.

As schematically shown in Fig. 6, localised corrosion

may, in some cases, start close to a void but later

Steel

100 m

Concrete

Rust layer
Mill scale

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

(a) (b)

(c) (d)

µ

Fig. 5 a, b SEM-BSE micrograph indicating nano-indentation

locations on corroded SCI and the variation in measured elastic

moduli with indentation depth [44]. c, d Correlations between

Young’s modulus, nano-hardness and Fe/O atomic ratio (EDX)

for mill scale and corrosion products at the SCI showing large

scatter [33]
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spread towards it and cause corrosion products to

precipitate within the void. In other cases, corrosion

may initiate at the void and later spread to other areas

where the environment is more favourable for corro-

sion. Figure 7 illustrates that the location of studying

these phenomena, namely through 2D cut sections (see

Sect. 4.2), bears a risk for misinterpretation of the

results.

It is also important to distinguish whether an

interfacial void is directly in contact with the steel or

separated by a thin cement paste layer, which provides

a pH buffer against corrosion initiation. Yet, this may

not be readily apparent because precipitated corrosion

products could mask the cement paste at the SCI

(Figs. 7 and 8). Furthermore, the paste may be

damaged in experiments where rebar is physically

removed to observe the imprinted SCI, which is a

common practice. Another complicating factor is that

the moisture state of interfacial voids largely influ-

ences its susceptibility to corrosion initiation

(Sect. 5.1). These scenarios have different implica-

tions for the corrosion initiation mechanism, and thus

reliable documentation is needed to obtain fundamen-

tal understanding [2].

Fig. 6 Schematics showing possible locations of corrosion initiation relative to interfacial voids. Dashed lines (A, B) represent possible

sections investigated in two-dimensional characterisation methods and the related misinterpretation risk

2 mm

Rebar

Interfacial 
void

Interfacial 
void

Rust

Rust

Rust

Fig. 7 Optical microscopy image showing macroscopic interfacial voids filled with corrosion products [54]

124 Page 10 of 29 Materials and Structures (2022) 55:124



Such considerations define the information

required to prove hypotheses related to the effect of

interfacial voids and microstructure at the SCI. For

example, characterisation methods need to deliver

quantitative information on the size/length, shape, and

distribution of voids, particularly their location with

respect to corrosion initiation spots. For these inves-

tigations, the spatial resolution needs to be in the

micron range. Furthermore, microstructural features

such as cement paste porosity, phase assemblage,

corrosion products and their spatial distribution within

the SCI must be characterised, ideally at submicron

resolution.

4.2 Two-dimensional characterisation

A common approach is to prepare sections perpendic-

ular to the steel and view them with optical

microscopy or SEM (e.g., sections A and B as

schematically illustrated in Fig. 7). These two-dimen-

sional microscopy techniques can reliably distinguish

different phases at a high resolution. They can also be

combined with other techniques (e.g., EDX, Raman

spectroscopy) to yield further insights on phase

composition. Another approach is to split the

specimen, carefully remove the rebar, and observe

the SCI imprint. This allows the examination of voids

and corrosion spots over a wider interfacial area along

the rebar.

The main disadvantage is the destructive nature of

the sample preparation, which requires cutting, drying,

evacuation, resin impregnation, and several mechan-

ical grinding and polishing stages. These are delicate,

time-consuming and costly processes that are prone to

induce artefacts or damages [24, 25]. Thus, appropri-

ate equipment, technique and expertise are required to

produce reliable data. This approach can only probe

the microstructure at a particular point in time, and

continuous monitoring is not possible.

Furthermore, precipitates may mask certain inter-

facial features, and correct interpretation may be

difficult due to the lack of three-dimensional infor-

mation. It is also not possible to characterise the

amount or the chemistry of the aqueous solution at the

SCI since samples are dried. Representative sampling

is challenging for techniques that require rebar

removal, particularly where a thin cement paste

separates voids from the rebar, or where the

microstructure is already weakened by corrosion.

Rebar (topside)

Coarse aggregate

Air 
void

1 mm

Rebar (underside)

Air 
void

Casting direction

1 mm

(a)

(b)

Rebar (underside)

Rust layer

Air 1 mm
(c)

Fig. 8 BSE montages showing a entrapped air voids beneath a

coarse aggregate particle near a rebar; b entrapped air voids

beneath a rebar; and c severely corroded specimen showing

accumulation of corrosion products at the SCI and penetration

into cement paste, air voids and cracks [22]. Note that the air

voids are nearly spherical and that only the tips are in contact

with the rebar (courtesy of Hong Wong, Imperial College

London, UK)
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4.2.1 Optical microscopy

Optical microscopy has been used in numerous studies

to characterise interfacial voids and concrete

microstructure. The imaging is usually carried out in

reflected mode using visible or UV light (to induce

fluorescence). It is rarely possible to characterise SCI

using transmitted or polarised light because of diffi-

culties with preparing thin sections containing rebar

[50]. The main application is the study of macroscopic

features such as rebar, mill scale (Sect. 3.2.1), inter-

facial voids, bleed water zones, cracks and corrosion

products [51–53]. These features are distinguished

solely from their colour, shape and location, and the

characterisation is qualitative unless images are cap-

tured, digitised and measured with image analysis. For

polished cementitious materials in reflected light, the

smallest resolvable feature is likely to be several

microns (see Sect. 3.2.1).

Figure 7 shows an example of optical microscopy

applied to visualise the distribution of interfacial voids

and corrosion products at the SCI. The specimen was

subjected to corrosion in a cyclic wetting/drying

natural marine environment, then sectioned and flat

ground with SiC, and imaged using a stereomicro-

scope. The observation suggests a spatial correlation

between corrosion spots and macroscopic voids at

SCI. However, it is difficult to draw any definitive

conclusion on the exact location of corrosion initiation

due to the uncertainties discussed earlier (Fig. 6).

4.2.2 Scanning electron microscopy

SEM has been used in many studies to characterise the

microstructure of SCI. Earlier studies have focussed

on detecting calcium hydroxide and corrosion prod-

ucts [55–59] using secondary electron (SE) imaging.

This imaging mode is well suited for studying

morphology and orientation. However, it is carried

out on fractured surfaces, which could be damaged and

therefore misleading. Furthermore, it is challenging to

obtain compositional information, quantitative data or

meaningful comparison between samples.

A more objective and informative approach is the

backscattered electron (BSE) mode on epoxy impreg-

nated polished sections [60]. This allows high-resolu-

tion characterisation of air voids, capillary pores,

cracks, unreacted cement, hydration products, aggre-

gates, mill-scale and corrosion products (Sect. 3.2.2)

based on brightness intensity (Fig. 8). Furthermore,

quantitative information can be extracted via stereol-

ogy and image analysis. For example, the amount, size

and spatial distribution of various phases at the SCI

can be obtained at pixel resolution [61, 62].

The achievable spatial resolution is dependent on

the electron-solid interaction volume, phase contrast

and other factors such as the electron source (emitter

type), detector efficiency, sample preparation quality

and image segmentation. A sub-micron resolution can

be achieved for epoxy-filled voids depending on the

SEM type and image segmentation [63, 64]. Another

advantage of SEM-BSE imaging is that it can be

combined with EDX [34, 65, 66], Raman spectroscopy

(Sect. 3.2.3) and nano-indentation (Sect. 3.3) to

obtain chemical and micromechanical properties.

However, it requires extensive sample preparation

(Sect. 3.2.2) that may induce changes to the SCI.

4.3 Three-dimensional characterisation

To overcome the limitations of two-dimensional

characterisation discussed above, approaches utilizing

non-destructive radiation (X-ray, neutrons) or destruc-

tive layer-by-layer milling and imaging have been

used. The advantage of non-destructive techniques is

that they allow continuous in-situ monitoring of

corrosion processes. The drawbacks are generally

lower spatial resolution and larger uncertainties in

phase identification. While radiographic techniques

provide some three-dimensional information from

integral attenuation, only tomographic techniques

allow complete 3D reconstruction. Besides providing

visual observation, computed tomography entails the

possibility of developing 3D models for simulation of,

for instance, microstructure, mechanics and mass

transfer.

4.3.1 X-ray imaging

X-ray micro-computed tomography (lCT) has gained

significant attention for characterising three-dimen-

sional voids, pores and microcracks in hardened

cementitious materials [67–70] due to its non-destruc-

tive nature and ease of sample preparation. The

achievable spatial resolution is around one-thousandth

of the specimen diameter [71]; therefore, small

specimens are required to obtain high spatial resolu-

tion. State-of-the-art laboratory lCT can provide
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micrometre scale resolution for specimens of a few

mm in diameter, while synchrotron sources can

achieve better resolution, but are rarely used due to

limited access. Nanotomography may yield informa-

tion down to the sub-micrometre scale [72].

However, there are challenges and limitations when

applying X-ray imaging to SCI. Obtaining small

specimens from the SCI (as opposed to bulk cement

paste/mortar) in an undisturbed state to achieve

micrometre scale resolution is extremely difficult.

This is due to challenges associated with cutting or

drilling small specimens covering the SCI from larger

specimens [25]. Thus, X-ray imaging of the SCI is

typically limited to a resolution of tens of microme-

tres. Another challenge relates to the large mismatch

in X-ray photoelectric absorption between steel and

concrete, causing low feature contrast in the latter.

Furthermore, the presence of steel induces beam

hardening artefacts (for polychromatic X-ray sources)

that distort the imaged SCI [25, 45, 73–75].

These artefacts hamper reconstruction and correct

segmentation of the SCI, especially for realistic rebar

geometries, which render accurate analysis difficult.

Some of the artefacts may be reduced by using small

hollow cylindrical rebar and filtering or post-acquisi-

tion data processing, at least for simple geometries

(smooth/plain) in well-controlled laboratory condi-

tions [76–78], or by using synchrotron X-ray sources.

For simple rebar geometries, lCT can be used to study

certain microstructural SCI features, such as cracks

(Fig. 9), interfacial voids, corrosion pits and corro-

sion-induced damage [45, 79–84].

4.3.2 Neutron imaging

Neutron imaging is based on measuring the intensity

of a transmitted neutron beam through an object, either

in two-dimension (radiography) or three-dimension

(tomography) [85]. It is similar to X-ray imaging in the

sense that it allows non-destructive characterisation

with almost no sample preparation required. However,

neutron imaging is less commonly used due to limited

availability of beamline facilities. Typical setups can

achieve a field of view of 40 9 40 cm (200 lm/pixel)

to 0.5 9 0.5 cm (5 lm/pixel). Its resolution improves

with small specimens and is considered to be about

10–20 lm for the smallest achievable field of view

[86, 87]. The main advantage of neutron imaging over

X-ray imaging is the absence of steel artefacts as

discussed in the previous section. This is because

neutrons are almost completely transparent to steel,

but strongly attenuated by hydrogen-rich phases such

as the moisture (see Sect. 5.3.2), hydrated cement

paste and corrosion products. Figure 10 shows an

example that highlights the feasibility of this tech-

nique when applied to reinforced concrete.

Neutron tomography has been used in a few

exploratory studies to visualise the spatial distribution

of voids, aggregate particles, cracks and corrosion

products at the SCI [88–90]. For example, Garbe et al.

[89] observed large voids (*50 mm3) adjacent to

reinforcement steel at the SCI. Zhang et al. [90] used

neutron tomography to visualise the spatial distribu-

tion of corrosion products in mortar reinforced with an

8 mm rebar subjected to load-induced damage and

Fig. 9 a X-ray lCT slice showing cracks and voids at the interface between mortar and cylindrical steel tube; b 3D rendering of the

segmented cracks (blue) and steel tube (yellow) [25]. (Color figure online)
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wet/dry cycles of 5% NaCl solution. They observed

corrosion products mainly at the location of cracks

(60–120 lm width). However, the pixel dimension

used in these studies was relatively coarse

(55–59 lm). Nevertheless, we believe that neutron

tomography has considerable potential to be devel-

oped further for characterising the SCI non-

destructively.

4.3.3 Bi-modal X-ray and neutron imaging

Combining X-ray with neutron imaging could be

advantageous because of their complementary atten-

uation characteristics in reinforced concrete. For

instance, Garcez et al. [88] used this combined

approach to visualise three-dimensional flaws in

structural concrete. X-ray imaging allows reliable

segmentation of the rebar, while neutron imaging can

be used for segmenting concrete microstructural

features and corrosion products. Furthermore, com-

plex data fusion and bimodal segmentation can

distinguish features with similar contrast in one

imaging mode but different contrast in the comple-

mentary mode. This approach was used in the recent

research conducted by Boschmann [91] to study

corrosion products and voids (Fig. 11). Cylindrical

specimens (25 mm) with a centrally embedded rebar

(diameter 10 mm), taken from existing engineering

structures and later subjected to chloride-exposure

conditions to trigger corrosion initiation in the labo-

ratory, were imaged by X-ray and neutron tomogra-

phy. With these specimen dimensions, the smallest

detectable air void (empty or filled with water) was

*50 lm. Figure 11 shows an example of a section

from the tomographic data with segmented phases,

namely cementitious matrix, steel, voids, and corro-

sion products. More recently, Robuschi et al. [92] used

bimodal X-ray and neutron imaging to observe the SCI

of naturally corroded reinforced concrete specimens

containing 16 mm rebar. They were able to measure

the volume loss of steel, iron-to-rust volumetric ratio,

and the distribution of macroscopic interfacial voids

and corrosion layer at a pixel size of *26–36 lm.

4.3.4 Focused ion beam combined with scanning

electron microscopy

Serial sectioning by focused ion beam (FIB) milling at

nm precision followed by SEM imaging can be used to

reconstruct 3D images of the microstructure. This

method, known as FIB-nanotomography, has been

used to study cementitious materials [93–95]. A

significant advantage is that the milling is relatively

gentle compared to mechanical cutting and grinding

[96], which can induce artefacts at the SCI [25].

However, achieving representative sampling,

although feasible, is a time-consuming process and

quantitative analysis of the observed phases is com-

plex [97]. For cement pastes, the representative

elementary volume (REV) based on 3D pore structure

characterisation is *1003 lm3 [98]. Mortars and

concretes are inherently more heterogeneous due to

the presence of aggregates, interfaces and defects such

as bleeding, segregation and microcracking. The REV

Fig. 10 Neutron tomography of a reinforced concrete showing the cement paste and spatial distribution of aggregate particles around

ribbed steel reinforcement [88]
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of these materials will be at least several times the

largest aggregate particle size.

Figure 12 shows a preliminary application of FIB-

SEM to study the interface between mortar and

carbon-steel wire. The specimen was first carbonated

to achieve corrosion initiation and then exposed to

cyclic wetting/drying for several months [15]. Subse-

quently, it was sectioned across the steel wire and

platinum-coated. A focused Ga? ion source (6.5 nA,

30 kV) was used to mill a trench to expose the internal

steel-mortar interface for SEM-BSE imaging. The

data reveals the steel, corrosion products, cementitious

phases and pore space. The achievable resolution is

similar to SEM-BSE, which is in the submicron range.

This example illustrates the potential of FIB-SEM for

characterising SCI, but clearly, more work is needed to

establish the technique further.

5 Moisture content & spatial distribution

5.1 Background

The presence and movement of moisture have impor-

tant direct impacts on the durability of concrete

structures. Reviews by RILEM TC 262-SCI showed

that moisture is a significant factor controlling the

critical chloride threshold for corrosion initiation [2].

It was further hypothesised that in line with the

mechanisms presented in Fig. 11 of reference [2], the

moisture state of interfacial voids (Sect. 4.1) influ-

ences the susceptibility of steel to corrosion initiation

and that this factor could explain the seemingly

contradictory findings from different studies. How-

ever, the availability of moisture at the SCI is

dependent not only on the exposure environment

(wetting/drying, temperature) but also on a host of

other factors including microstructure (e.g. capillary

porosity and connectivity), presence of macroscopic

interfacial voids and mechanical damage in the

concrete cover [1, 2].

Macroscopic interfacial voids such as entrapped

and entrained air voids, settlement and bleeding zones,

cracks, slips and separations differ in length scale,

geometry, initial moisture condition and access to the

external exposure environment via the concrete cover

[2]. All of these play a role in determining the long-

term moisture state, availability of aggressive species

and corrosion electrochemistry at the SCI. Unfortu-

nately, these issues have received little research

attention.

A recent overview of available techniques for

determining the amount and state of moisture in

building materials is given in [99]. Techniques that are

suitable or potentially applicable to the SCI are

reviewed here. These can be divided into absolute

(e.g., gravimetry) or deductive methods, where mois-

ture is determined by measuring a related property

(e.g., electrical conductivity). To understand corro-

sion, we need the ability to detect the presence of

moisture and determine its amount, state

Fig. 11 Results of bimodal neutron and X-ray tomography [91].

Segmented cross-section showing air voids (blue) and corrosion

products (red) at the steel–concrete interface

Fig. 12 Preliminary study using FIB-SEM on a steel-mortar

interface (photograph: courtesy of Ueli Angst, Nicolas Ruffray

and Zhidong Zhang, ETH Zurich, Switzerland)
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(liquid/vapour, free/adsorbed/bound), chemical com-

position, and spatial distribution at the SCI, specifi-

cally within the voids, hydrates and corrosion

products. However, none of the currently available

techniques can achieve this.

5.2 Gravimetry

Determining moisture content in cementitious mate-

rials is commonly done by drying and measuring the

associated mass loss. Gravimetry may also be used to

obtain moisture profiles by analysing thin slices

extracted at different depths [100]. The specimen size

needed for such analyses depends on the accuracy and

sensitivity of the balance and requirements for repre-

sentativeness. This approach could be applied to the

SCI if small specimens (*50 mg) are carefully

extracted and subjected to thermogravimetric analysis

(TGA) or dynamic vapour sorption (DVS). In TGA,

the specimen is heated in steps of increasing temper-

ature and weighed to determine the amount of free,

adsorbed and chemically bound water. In DVS, the

specimen is equilibrated to a range of vapour pressure

at a constant temperature to determine water sorption

isotherms. Both techniques use precise microbalance

(resolution *1 lg) and, as such, are highly sensitive.

A novel method to determine moisture state and

content simultaneously via DVS is proposed here. In

this approach, the specimen is transferred to the

microbalance and the chamber RH is varied stepwise

within an expected range. The specimen moisture state

can be taken as equivalent to the chamber RH where it

remains at or returns to its initial mass by monitoring

asymptotic mass change. The number of iterations and

step size will determine its accuracy; the latter should

be kept small to reduce moisture hysteresis. The initial

water content can subsequently be determined by

drying to a well-defined state, e.g. 11% RH [101, 102].

These methods are potentially viable for character-

ising the SCI, but they will require further research and

validation. The main challenges lie in extracting small

representative specimens from the SCI and analysing

them in an original undisturbed state. Accidental

wetting/drying, carbonation or decomposition of

volatile phases during sampling must be avoided.

For TGA, the partial decomposition of C-S-H, ettrin-

gite and monosulfate at \ 105 �C needs to be

accounted for. For DVS, the issue of hysteresis needs

careful consideration. In any case, the analysis of

moisture within macroscopic voids at the SCI is not

possible at present with these techniques.

5.3 Radiation methods

5.3.1 X-ray imaging

X-ray imaging has been used to quantify relative

changes (temporal and spatial) in water content of

cementitious materials, rather than the actual absolute

moisture content. A typical example is the study of

waterfront movement during wetting [103] or drying

[104] experiments using radiography (2D) and tomog-

raphy (3D) techniques. Although radiography allows

data acquisition at higher frequencies and thus achieve

a better time resolution than tomographic measure-

ments, the latter gives more information related to the

three-dimensional transport process.

Typical challenges with these techniques concern

detecting relatively small changes in density caused by

water movement, the X-ray scattering artefacts caused

by the heterogeneity of concrete and moisture distri-

bution [105, 106], and measurement variability [107].

Contrast agents (e.g. CsCl) can be used to improve the

signal-to-noise ratio [103], but this may affect the

moisture transport phenomenon under study [105]. An

alternative approach is phase-contrast imaging

[105, 108]. Nevertheless, calibration is required, and

common sources of error that affect resolution and

accuracy include incorrect attenuation coefficients

when calculating moisture content changes. Theoret-

ical calculations indicate that X-ray imaging could

observe changes in moisture content of approximately

± 1 kg/m3 in concrete [106]. While actual measure-

ments have not been able to achieve this level of

accuracy, the method has been shown to detect the

movement of moisture front from water ingress in

conditioned (i.e. dried) concrete samples [107]. We

are not aware of any studies that have successfully

quantified moisture at realistic SCI geometries due to

the limitations discussed in Sect. 4.3.1.

5.3.2 Neutron imaging

Neutron imaging is a promising non-destructive

technique to study moisture content and movement

in cementitious materials [85, 109–115]. This is

because neutrons are strongly attenuated (absorbed

and scattered) by hydrogen, producing a much higher
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contrast between water-rich phases and other compo-

nents compared to X-rays (see also Sect. 4.3.2).

Neutron imaging may, under some conditions, detect

changes of *1% volumetric moisture content in

cement-based materials [115]. The contrast may be

further enhanced by using heavy water (D2O) as a

tracer in saturated samples since the neutron attenu-

ation of deuterium is considerably lower than that of

hydrogen.

Neutron radiography allows 2D projections to be

acquired at intervals of a few seconds, while the

acquisition of 3D tomographs is more time consum-

ing, with measurement intervals of around 10 min

[112]. Therefore, most studies on moisture transport

have utilized radiography. Examples include quanti-

tative measurements to determine the temporal and

spatial variability of saturation degree in cementitious

samples during water uptake [110–113, 115]. Brew

et al. [110] detected macro-pores (volumes between

0.01 and 10 mm3) in paste and mortar samples.

However, very few studies are related to moisture at

the SCI. Zhang et al. [116] used neutron radiography

to visualise the process of water penetration into a

cracked steel-reinforced mortar. They observed rapid

capillary absorption through the load-induced cover

crack (0.35 mm width) and the steel-mortar interface

that has been damaged presumably by the imposed

flexural loading (Fig. 13).

As mentioned in Sect. 4.3.3, neutron tomography

can be advantageously combined with X-ray imaging

and this approach has been used to detect air voids

(empty or water filled) down to *50 lm at the SCI

[91]. We consider this a promising technique for future

research, mainly because the presence of steel does not

induce imaging artefacts, which is a limiting factor in

other methods such as X-ray (Sect. 4.3.1) and mag-

netic resonance techniques (Sect. 6.7).

6 Other methods

This section examines other methods that apply to the

bulk concrete, steel or reinforced concrete, as a proxy

to the SCI. These techniques cannot characterise the

SCI directly due to the nature of the method itself, or

the presence of a particular phase (e.g. steel) that

severely complicates data analyses. However, these

methods can provide averaged information relevant to

the SCI, primarily when used under certain conditions

or in combination with other methods.

6.1 Electrochemical techniques

Electrochemical techniques are widely used to study

steel corrosion in concrete and can provide valuable

data concerning the mechanisms associated with the

presence of mill scale and rust layers on rebar surfaces

[3, 7, 9, 79, 117–123]. Such techniques include but are

not limited to, open-circuit corrosion (OCP) monitor-

ing, linear polarization resistance (LPR), electrochem-

ical impedance spectroscopy (EIS), cyclic

voltammetry (CV) and coupled multi-electrode arrays

(CMEA). However, they are not necessarily well-

suited to characterise mill scale or rust layer as stand-

alone techniques. The main limitation is that these

techniques provide averaged data from the studied

surface rather than localised properties and their

spatial distribution.

Nevertheless, they can provide some relevant

averaged properties of the mill scale and rust layers

Fig. 13 Neutron imaging of water absorption into a reinforced mortar (8 mm rebar) from the bottom-exposed surface showing rapid

ingress through a load-induced crack and the steel-mortar interface. Adapted from Zhang et al. [116]
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when used as a tool to compare polished and as-

received rebar in well designed-laboratory experi-

ments. In particular, EIS can provide specific infor-

mation about the average impedance of mill scale and

rust layers, and other data such as their contributions to

charge transfer resistance (Rct), double layer capaci-

tance (Cdl), etc. [124] when coupled with equivalent

circuit modelling. Similarly, comparative CV exper-

iments performed on polished and as-received rebar

can provide information about the contribution of

these layers to electrochemical oxidation/reduction

reactions and characteristics such as pitting potential

and re-passivating potential [125].

Local information about mill-scale and rust layer

properties may be obtained through local electro-

chemical measurements, either by dedicated tech-

niques applied to rebars [8, 126] or steel immersed in

simulated solutions such as employing scanning

vibrating electrode technique (SVET) or similar

methods. CMEA has been used to measure local

corrosion rates on rebar surface in mortar [79, 127] and

shows promise in relating these measurements to

heterogeneities in the SCI such as interfacial voids and

moisture variations, when coupled with some of the

other techniques described in this paper. To our

knowledge, this has not been attempted before.

Challenges related to the application of CMEA to

study the SCI, particularly on the representativeness of

CMEA with respect to rebar surfaces, are still to be

tackled. A general advantage of many electrochemical

techniques (e.g., OCP, LPR, EIS, CMEA, but for

instance not CV) is that they are non-destructive;

therefore, they can evaluate and capture changes of

properties over time.

6.2 Mass transport based methods

Various researchers have used methods based on mass

transport to visualise mechanical defects or bleed-

water and settlement zones at the SCI that allow

preferential mass transport. An example using neutron

imaging to observe water ingress was described in

Sect. 5.3.2. Another approach is based on exposing the

reinforced concrete specimen to a chloride solution

[128] or to CO2 [129] for a specific time to allow these

species to penetrate through cracks. Upon splitting the

specimen, an indicator is applied, such as silver nitrate

(for chloride) or phenolphthalein/thymolphthalein (for

carbonation), to reveal the area along the SCI exposed

to chlorides or CO2, respectively. It is suggested that

these areas correspond to damaged zones at the SCI,

e.g. to settlement, slip and separation, which can be

detected at lm scale resolution.

It should be noted that these methods rely on the

existence of cracks to allow water, chlorides or CO2 to

access macroscopic voids at the SCI. In the absence of

cracks, drilling a hole through the concrete cover to

reach the SCI has been suggested. Nevertheless, a

potential limitation of this approach is that it cannot

reveal isolated voids at the SCI. Furthermore, the

exposure and sampling may induce changes to the

material (e.g. shrinkage cracking), and therefore the

results must be interpreted with care to account for

these factors.

6.3 Electrical resistivity

Electrical resistivity or conductivity has been sug-

gested as a rapid non-destructive method to detect

moisture ingress in concrete structures [130–132].

This is carried out using embedded sensors or Wenner-

type arrays placed on the concrete surface. Multi-ring

electrodes or comparable arrays are used to measure

electrical resistivity as a function of depth and time,

from which water profiles to the level of embedded

steel and below could be estimated [131]. It is

proposed that the local water content at the SCI could

be estimated indirectly with appropriate calibration if

the steel rebar is used as an electrode and other smaller

electrodes are placed close to it. However, quantifica-

tion of moisture in concrete is not straightforward

because the measured electrical resistivity depends not

only on the amount of moisture present but also on the

pore structure, chemical composition of the pore

solution, temperature and the presence of rebar or

cracks. Furthermore, the embedded sensors will create

additional interfaces and heterogeneities that could

disturb the surrounding SCI microstructure.

6.4 Electrical resistance tomography

Electrical resistance tomography (ERT) is another

method that allows non-destructive 3D visualization

of moisture ingress and structural inhomogeneity

(such as cracks, embedded rebar) in concrete from

surface measurements [133–137]. The method is

based on passing alternating currents through the

specimen and measuring the resulting potential
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differences using an array of surface-mounted elec-

trodes. The internal distribution of conductivity is then

mathematically reconstructed to form an image, from

which moisture or other features may be contrasted.

An extension of ERT is electrical impedance or

capacitive tomography. The obtained conductivity can

be converted to moisture content using experimen-

tally-derived relationships, but this is a non-trivial task

due to other influencing factors (e.g. pore structure,

pore solution composition) as discussed in the pre-

ceding section. While ERT may yield information

about moisture at the reinforcement depth (as a proxy

for the SCI), it is challenging to obtain reliable data in

the presence of embedded steel because the inversion

of resistivity becomes increasingly complex. Further-

more, the spatial resolution of ERT is insufficient to

provide void-scale or microstructural level

information.

6.5 Infrared spectroscopy

Infrared (IR) spectroscopy is a technique for chemical

analysis of solids, liquids or gases based on the

vibrational energy of the chemical bonds present. A

qualitative analysis (identification) of substances can

be performed by referring to the position/shape of the

absorption peaks in the IR spectrum, while quantita-

tive analysis considers peak intensities and requires

specific experimental calibration for the material

investigated. Free water can be detected, for example,

by the absorption bands at *3450 cm-1 and

*1640 cm-1 that are due to the O–H stretching and

H–O–H bending vibrations, respectively. Surface

adsorbed and chemically bound water will show slight

variations in the wave number due to hindered

vibrations. While few available studies show that IR

spectroscopy can detect changes in bulk moisture

content [138], further research is required to establish

its potential for characterising the local moisture state

at the SCI.

6.6 Ground-penetrating radar

Ground-penetrating radar (GPR) is a non-destructive

method based on the transmission of electromagnetic

waves and analyses of the reflected signals from

subsurface structures to detect changes in material

properties. The characteristics of wave propagation

are highly dependent on the dielectric properties of the

underlying medium, which in turn is moisture depen-

dent. For example, the dielectric permittivity is 1 for

air, *81 for water and *4–10 for concretes, depen-

dent on the saturation degree [139, 140]. These

characteristics support the use of GPR for evaluating

moisture content in cementitious materials if the

appropriate reference calibration exists [141, 142].

However, steel is an electromagnetic wave reflector

and has an infinite dielectric constant. The presence of

embedded steel rebars will significantly affect signals

and the ability of GPR to characterise the SCI. Signal

attenuation increases with an increase in sampling

depth and saturation degree. Furthermore, its spatial

resolution is of the order of several mm at best

[143, 144], which may be sufficient to detect large

voids in ideal situations. Comprehensive post-pro-

cessing, calibration and interpretation will be required

to understand radargrams, and we are not aware of any

meaningful applications on characterising the SCI yet.

6.7 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) has been used to

determine moisture profiles in a range of solid

materials including concrete [145]. For quantitative

analyses, the NMR signals are converted to water

contents using the appropriate calibration curve for the

actual concrete mix, determined from destructive

gravimetric measurement. However, its spatial reso-

lution is not considered sufficient to examine single

voids in concrete. A significant complication is the

presence of paramagnetic ions and the influence of

steel rebar on the magnetic field. This requires

correcting the electrical field using numerical meth-

ods, for example, based on the approach described in

[146]. The use of single-sided NMR ex-situ on

samples without reinforcement as a proxy will be

more straightforward. NMR is also affected by similar

limitations as those of other methods for characteris-

ing moisture at the SCI.

7 Discussion

7.1 Challenges and current limitations

Characterising the SCI is particularly challenging

because of its physically and chemically complex

nature that is multi-phase and multi-scale. Its
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characteristics are spatially heterogeneous and time-

dependent due to the many influencing factors, viz.

processing, design, execution, hydration, mechanical

loading, exposure conditions etc. Furthermore, steel

and concrete display vastly contrasting properties. The

SCI in actual structures is covered by a concrete layer,

which itself is complex and heterogeneous. Further-

more, the SCI is fragile and prone to changes during

sampling, preparation and characterisation. Labora-

tory studies of the SCI using relatively young, small-

scale specimens or model systems in controlled

exposure environments typically do not represent real

structures. Indeed, our previous reviews [1, 2] have

highlighted significant differences in the characteris-

tics of SCI obtained from laboratory prepared spec-

imens vs specimens retrieved from field structures.

Several factors need to be considered when select-

ing appropriate techniques for characterising the SCI.

These factors include the achievable length scale

(resolution, observation size), the property (physi-

cal/chemical) to be determined, whether or not a

qualitative and/or quantitative assessment is needed,

and what sensitivity, accuracy, and the spatial (lateral,

depth) and temporal resolution are required. The

ability to characterise the SCI in 3D is critical to avoid

misinterpretation. Furthermore, it is essential to con-

sider the requirements for sampling and sample

preparation, the possibility of inducing non-reversible

changes, and thereby preventing the ability to monitor

time-dependent changes occurring at the SCI. Last but

not least, the potential for field application of charac-

terisation techniques on actual structures is essential,

as discussed in the preceding paragraph.

Table 2 shows a summary of methods and their

evaluation according to the criteria listed above. The

information provided here complements Table 1,

which summarises the features that can be charac-

terised by each method, their location and scale. We

recommend reading both tables together in order to

gain a full appreciation of the state-of-art. It is clear

that none of the available techniques satisfies every

criterion or is sufficient on its own to provide the

required information for a complete characterisation

of the SCI. Thus, techniques need to be selected with

care taking into account the scientific questions under

study.

The review shows that there are good well-estab-

lished options for direct characterisation of mill-scale,

rust layer, concrete microstructure and interfacial

voids. The most viable and versatile quantitative

methods are based on microscopy, e.g. optical imaging

and SEM when combined with image analysis.

However, all established methods require destructive

sampling or preparation protocols that limit studies to

single-point measurements in time. Thus, they cannot

monitor microstructural changes or time-dependent

processes, e.g. pit stabilisation and growth, and

corrosion product formation. Nevertheless, several

promising non-destructive techniques have emerged

in recent years. More work is needed to fully establish

and exploit these for characterising the SCI (see

Sect. 7.2).

A common challenge for all imaging methods is

obtaining representative samples of the governing

features/processes at high spatial resolution. To illus-

trate this, Fig. 14 shows the field of view (FOV)

plotted against spatial resolution for a range of

techniques, based on published data relevant to the

SCI. Here spatial resolution is calculated as 2.39pixel

size according to the Nyquist criterion, while FOV is

taken as the largest image dimension reported in the

respective study. It can be seen that resolution

decreases with increasing image size and is larger

than one-thousandth of the FOV for most methods. In

theory, the FOV for OM, SEM and FIB-SEM can be

extended indefinitely (by stitching consecutive

images) without sacrificing resolution, but there are

practical limits to this in terms of time, effort and cost.

For X-ray and neutron imaging, there is an

inevitable trade-off between resolution and image

(specimen) size.

The achievable resolution and observation length

scale shown in Fig. 14 mean that most studies are

confined to small SCI regions that may not represent

actual structures. Indeed, some SCI features important

to corrosion do extend beyond this length scale [1, 2].

For example, cracks, slip and separation, settlement

and bleeding zones can occur over several cm to m

along the reinforcing steel bar, while having charac-

teristic dimensions in microns. In actual structures, the

macroscopic rebar geometry may influence corrosion

initiation by modifying the SCI locally viz. ribs,

intersections, and bent rebars. The length scale

required for characterising these properties and their

effects on corrosion remains an open question.

Currently, there are no proven techniques for

characterising moisture characteristics at the SCI, for

example, the amount, state (liquid/vapour) and spatial
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distribution. Little is known regarding the degree of

filling and adsorbed water film thickness in macro-

scopic interfacial voids. It is also not possible to

characterise the chemical composition of the aqueous

solution at the SCI. Another observation from Table 2

is the dearth of quantitative methods with good

resolution suitable for characterising SCI in actual

structures in the field. Available techniques can

provide bulk averaged information only and lack

well-documented evidence for studying the SCI due to

various complications described previously.

7.2 Future opportunities and research needs

This review has shown great opportunities in pursuing

and further developing the following characterisation

techniques and approaches to enhance our under-

standing of the fundamental processes occurring at the

SCI prior to, during, and after initiation of steel

corrosion.

It is recognised by the authors that progress can be

made in characterising mill scale and rust layers

through advanced electrochemical and imaging meth-

ods. As discussed in Sect. 6.1, conventional electro-

chemical techniques provide averaged properties

rather than localised information and spatial

Fig. 14 Correlation between achievable spatial resolution

(calculated from pixel size) and field of view for a range of

imaging techniques reviewed in this study. Data compiled from

[22, 25, 45, 62, 66, 67, 79–85, 92, 94, 95, 109, 110, 112–116].

Shaded boxes represent the relevant length scale for a particular

feature of interest
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distribution. However, other techniques less well-

known in the cement and concrete community may

overcome this limitation [8, 126]. These include

scanning electrochemical microscopy (SECM), loca-

lised electrochemical impedance spectroscopy (LEIS)

and scanning vibrating electrode technique (SVET).

When coupled with optical microscopy, we believe

that these techniques can provide valuable data on mill

scale and rust layers to further our understanding of

their role in corrosion processes. However, it should

be noted that these electrochemical methods are

carried out on metal surfaces immersed in simulated

aqueous electrolytes, as opposed to the actual SCI.

To the best of our knowledge, X-ray lCT has not

been applied to characterise mill scale, cracks or pre-

existing rust on ribbed/corrugated rebar. These fea-

tures are below the spatial resolution that lCT can

offer for specimens of realistic dimensions, thereby

rendering its use unviable. As such, future studies on

small-scale model systems are needed to overcome

this limitation. Other potential approaches to extend

the capability of lCT is integration with electrochem-

ical measurements [147] and comparing experimental/

theoretical linear attenuation coefficients to estimate

the chemistry of the mill scale/corrosion products [83].

The latter relies on the theoretical densities of various

iron oxides/hydroxides that may lead to discrepancies.

This is compounded by the fact that these products are

complex mixtures at the micron scale in a natural

corroding system. Nevertheless, we see value in

further exploring these approaches in future studies.

We believe that further advancement and applica-

tion of 3D imaging is the way forward for character-

ising interfacial voids and concrete microstructure.

For example, FIB-SEM tomography allows 3D char-

acterisation at very high (sub-micron) pore-scale

resolution. As discussed in Sect. 4.3.4, this technique

can yield detailed information about the phase

assemblage and microstructure of the cementitious

phases at the SCI. Moreover, FIB-SEM tomography

could potentially be used to study mill-scale and rust

layers embedded in concrete. However, its destructive

nature does not allow monitoring of processes and

microstructural changes in-situ and over time. Never-

theless, strategic sampling and collection of 3D data in

a statistical manner may enable the establishment of

‘‘digital twins’’ of the pore structure and solid phases

present. Combining these data with numerical mod-

elling at the pore scale, particularly ion and moisture

transport and chemical reactions of ferrous and other

species within this interfacial zone [148–153], is

expected to be instrumental in understanding pro-

cesses relevant to corrosion at high spatial resolution.

A powerful technique for 3D non-destructive in-

situ monitoring of local SCI features and processes

related to corrosion, albeit at lower spatial resolution

than FIB-SEM, is multimodal tomographic imaging,

particularly bi-modal X-ray and neutron imaging. The

major advantage of this as opposed to X-ray lCT on its

own is that the multimodal approach overcomes

challenges related to the presence of the steel, as

discussed in Sect. 4.3.1. Recent studies have shown

that features such as macroscopic interfacial voids of

various origins, local pitting corrosion, rust layer and

precipitated corrosion products in the concrete matrix

can be detected. Both spatial and temporal information

are indispensable for gaining mechanistic insights into

corrosion initiation and propagation, e.g., the role of

interfacial air voids, and the transport and precipita-

tion of corrosion products. Furthermore, neutron

imaging techniques, both radiography and tomogra-

phy, are considered highly promising for studying

moisture distribution at the SCI. More work is urgently

needed in this area.

Nuclear magnetic resonance (NMR), though not yet

widely applied to study the SCI, may prove to be a

valuable tool for characterising moisture distribution.

Certainly, further studies are required to demonstrate,

optimise and validate the use of NMR for character-

ising the SCI. Here, innovative approaches are needed

to overcome the limitations caused by iron as a

paramagnetic metal. This may include using advanced

computational techniques, e.g. [146], to correct for the

distorted electrical field or modification of experi-

mental design aspects such as the use of non-magnetic

metals (e.g. copper or others) as substitute for steel

reinforcement.

8 Conclusions

We evaluated over twenty methods for studying local

characteristics of the steel–concrete interface (SCI)

identified as the main parameters influencing corro-

sion initiation in previous reports by the RILEM TC

262-SCI. The key findings are:
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(a) The SCI is physically and chemically complex

with time-dependent properties that vary over

multiple length scales due to many interacting

factors. None of the existing methods was

deemed satisfactory on its own to provide a

complete characterisation of the main parame-

ters influencing corrosion initiation. Therefore,

combination of different methodologies is

required.

(b) Several established techniques are available for

direct quantitative characterisation of selected

features, namely mill scale and rust layers on the

steel surface, and the interfacial voids and

microstructure of the cementitious matrix at

the SCI. However, no proven techniques exist

for in-situ characterisation of the moisture

content, state and distribution, and electrolyte

solution composition at the SCI. Yet, we

consider these as the main factors influencing

corrosion.

(c) A significant limitation of many current estab-

lished techniques is that they are destructive,

and thus unsuitable for monitoring time-depen-

dent changes at the SCI or field application on

actual structures. Another challenge is the

conflict between achieving a representative field

of view and high spatial resolution, limiting

characterisation to small specimens of the SCI

that may not represent conditions in engineering

structures.

(d) We cannot yet reliably determine the location of

corrosion initiation with respect to other fea-

tures at the SCI. Conventional two-dimensional

characterisation may lead to misinterpretation

of the actual mechanism. Nevertheless, several

three-dimensional techniques have emerged in

recent years, and more work is needed to

establish and exploit these for characterising

the SCI fully.

(e) More research is needed to establish new or

improved protocols to achieve non-destructive

and representative characterisation of the SCI

without losing sensitivity or resolution. Consid-

ering the challenges and current limitations, the

way forward is to combine complementary

techniques operating at different principles and

length scales with statistical methods of sam-

pling and computational modelling.

(f) Several promising techniques were identified,

and we see immense potential in the further

development and application of these for future

research:

• Advanced electrochemical methods for

characterising mill scale and rust layers.

• FIB-SEM tomography for characterizing

interfacial voids and concrete microstruc-

ture, potentially in combination with numer-

ical modelling to provide an understanding

of reactive mass transport processes.

• X-ray imaging or bi-modal X-ray and neu-

tron imaging for spatial and temporal char-

acterisation of interfacial voids, concrete

microstructure and moisture, and mill scale

and rust layers.

• Nuclear magnetic resonance (NMR) for

characterising moisture distribution.
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