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Abstract. The motion of two contiguous incompressible and viscous fluids is described within the diffuse 

interface theory by the so-called Model H. The system consists of the Navier--Stokes equations, which are 
coupled with the Cahn--Hilliard equation associated to the Ginzburg--Landau free energy with physically 
relevant logarithmic potential. This model is studied in bounded smooth domains in \BbbR d, d = 2, and d = 3 

and is supplemented with a no-slip condition for the velocity, homogeneous Neumann boundary conditions 
for the order parameter and the chemical potential, and suitable initial conditions. We study uniqueness and 
regularity of weak and strong solutions. In a two-dimensional domain, we show the uniqueness of weak 
solutions and the existence and uniqueness 

  
of global strong solutions originating from an initial velocity u0 \in  V\sigma , namely, u(\Omega ) 

such that   
divu0 = 0. In addition, we prove further regularity properties and the validity of the instantaneous separation 

property. In a three-dimensional domain we show the existence and uniqueness of local strong solutions with 

initial velocity u0 \in  V\sigma .
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1. Introduction. In the diffuse interface theory, the motion of two incompress- ible 

and viscous fluids and the evolution of the interface that separates them are described 

by the Model H. The domain \Omega  of \BbbR d, d = 2 or d = 3, is filled with a 

  

mixture of two fluids with the same density; the concentrations of the fluids are \varphi 

i, i = 1,2, where \varphi i \in  [0,1] and \varphi 1 + \varphi 2 = 1. The physics of the Model 

H is such that the interface between the two fluids is assumed to be a narrow region 

with fi- nite thickness. The concentrations are uniform (equal to 0 or 1) in subregions 

of \Omega   

  

and vary steeply but continuously across the thin interface layer. This formulation 

  

allows large interface deformations and topological changes of the interfaces in the 
mixture. After the seminal work [57] on critical points of single and binary fluids, a 
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detailed derivation of the Model H was proposed in [53] and [78] for the flow driven by 

capillarity forces. The model is based on the balance of mass and momentum  
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2535 
that are combined with constitutive laws compatible with a version of the second law 

of thermodynamics. Model H has been employed in several numerical studies for 

concrete applications. Relevant examples are interface stretching during mixing [25], 

thermocapillary flows [62], droplet formation and collision, moving contact lines, and  

 large-deformation flows [60, 

68]. For a review on these topics we refer the reader to 

  

[10] and the references therein. Further generalizations of the Model H have been dis 
cussed for fluid mixtures with different densities in [8, 11, 18, 33, 69], and for contact 

angle problems and ternary fluids in [19, 65] and the references therein.  

Assuming that density differences are negligible, we consider two state variables: 

the volume-averaged fluid velocity u = u(x,t) and the difference of the fluids con - 

  

centrations (order parameter) \varphi  = \varphi (x,t), equal to \varphi  1  -  \varphi 2 in 

the notation above, where x \in  \Omega  \subset  \BbbR d, d = 2 or d = 3, \Omega  being 

a bounded domain with smooth bound ary \partial \Omega , and t the time. The 

evolution of the two state variables is governed by the Navier--Stokes--Cahn--Hilliard 

(NSCH) system, which reads in dimensionless form:  

  

div(\nu (\varphi )Du) + \nabla \pi  = \mu  \nabla \varphi , 

http://www.siam.org/journals/sima/51-3/M122345.html
http://www.siam.org/journals/sima/51-3/M122345.html
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(1.1)in \Omega  \times  (0,T), 

 + \cdot  \nabla \varphi  = 

\Delta \mu ,   

 \prime (\varphi ),    

 \mu  =  - \Delta \varphi  + \Psi  

  

subject to the boundary and initial conditions   

  

 = 0 on \partial 

\Omega  \times  (0,T), 

(1.2) 

in \Omega  . 

  

   1\bigl( \nabla u +(\nabla 

u)t\bigr)  

Here n is the unit outward normal vector to the boundary \partial \Omega , Du = 2 is the 

symmetric gradient, \pi  = \pi (x,t) is the pressure, and \mu  = \mu (x,t) is the socalled 

chemical potential. The potential \Psi  is the physically relevant homogeneous free 

energy density introduced in [22] and defined as  

  

(1.3) \Psi ( , 

  

where \theta  and \theta 0 are related to the absolute temperature of the mixture and 

the crit- ical temperature, respectively. These two constant parameters satisfy the 

physical relations 0 < \theta  < \theta 0. This condition implies the double-well form to 

the potential  

  

(1.3). The mathematical analysis of (1.1)--(1.2) may lead to a solution \varphi  with arbi- 

  

trary values in \BbbR  whatever the potential \Psi , but we have to keep in mind that, by 
its very definition,  - 1 \leq  \varphi  \leq  1 (\pm 1 represent the pure concentrations), 

and we call these physical solutions. Now, assuming that \nu 1 and \nu  2 are the 

viscosities of the two homogeneous fluids, the viscosity of the mixture is modeled by 

the concentration de-  

 \not = \nu 2), a typical form for 

pendent term \nu  = \nu (\varphi ). In the unmatched viscosity case (\nu 1 
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\nu  is the linear combination (see, e.g., [65] and Remark 2.1 below):  

  

(1.4). 

The particular case \nu 1 = \nu 2 is called matched viscosity case, and  \nu  is a positive 

 constant.

   

In the literature, the NSCH system has been widely studied by considering regular 

approximations of the logarithmic potential (1.3). Typical examples are polynomial- like 

functions, such as \Psi , where \kappa  > 0 is related to \theta  and 

\theta 0, and \pm \beta  are the two minima of \Psi . In the matched viscosity case, the 

mathematical analysis of problem (1.1)--(1.2) with regular potentials is now well 

established, at least for classical boundary conditions. We refer the reader to [17, 15, 

41, 44, 43, 48] (see also [16, 23, 46] for the analysis of similar systems). In the 

unmatched viscosity case,  

 the author in [17] proved the 

global existence of weak solutions and the existence 

  

and uniqueness of strong solutions (global if d = 2, local if d = 3). Concerning the 

longtime behavior, the existence of the trajectory attractor is showed in [44], while the 

convergence to equilibrium is established in [85] for periodic boundary conditions. 

However, in the case of polynomial potentials, it is worth recalling that it is not possible 

to guarantee the existence of physical solutions, that is, solutions for which  

  - 1 

\leq  \varphi (x,t) \leq  1, for almost every x \in  \Omega  

and t > 0.  

On the other hand, few results are available for the original Model H with logarith- 

mic potential (1.3). The NSCH system with unmatched viscosities and logarithmic 

potential has been only studied in [2], where existence of global weak ( physical) 

solutions and existence and uniqueness of strong solutions (global if d = 2, local if d = 3) 

  

are shown (see [2, Theorem 1 and 2]). In particular, in two dimensions, assuming u

(\Omega ) for r > 0, where V (\Omega ) = (V\sigma ,W \sigma )r,2 is an 

interpolation space, and V\sigma  and W\sigma  are defined below in section 2, and assuming 

a natural higher-order condition on \varphi 0 (cf. Theorem 4.1 below), the 

corresponding strong solution (u,\varphi ) is global in time and unique. In three 

dimensions, the local existence and uniqueness of  

  

strong solutions is achieved provided that the initial velocity  u0 belongs to V 

with . The restriction on the initial velocity in  V = 2 and 
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= 3) is due to the uniqueness result [2, Proposition 1], which requires that u 

\in  L\infty (0,T;W1,q(\Omega )), with q > 2 if d = 2 and q = 3 if d = 3, being not true for 

classical strong solutions of the Navier--Stokes equations for an initial velocity  

  

u0 \in  V\sigma . In addition, the author in [2] shows that any weak solution is more regular 

on the interval [T,\infty ), for some T > 0 which is not explicitly estimated. It satisfies  

the so-called asymptotic separation property (see [2, Lemma 12]), namely,  

  

(1.5) \exists \delta  > 0, \exists T > 0 :\| \varphi (t)\| L\infty (\Omega ) \leq  1  -  \delta 

 \forall t \geq  T. 

  

This is a key property in order to show that any single trajectory converges to an 

  

equilibrium [2, Theorem 3]. We also mention the results in [6, 45, 71], where the global 

existence of weak solutions to similar systems has been established. In [6] the author 

considers a version of the NSCH system for non-Newtonian fluids, in  

[45] the authors study the NSCH system with boundary conditions that account for a  

 moving contact line slip 

velocity, whereas in [71] the authors consider the NSCH-Oono 

  

system. For the sake of completeness, we refer the interested reader to [3, 1, 4, 5, 7] for 
the analysis of the NSCH system with different densities. Finally, we mention among 

many references [12, 13, 27, 28, 26, 31, 32, 37, 38, 39, 47, 51, 52, 54, 55, 56, 61, 64,  

63, 58, 68, 74, 75, 59, 76, 79, 83, 84] for the numerical analysis, in particular stability  

 and convergence analysis, 

numerical simulations, and control problems of the NSCH 

  

system. At this stage we note that to date some important issues are still unsolved, such 

as the uniqueness of weak solutions of the NSCH in dimension two as well as the 

uniqueness of strong solutions with initial velocity in V\sigma  in both two and three 

dimensions. It is not even known whether such properties hold in the simpler case with 

matched viscosities. Besides, uniqueness of weak solutions in dimension two is an open  

  

question even for the NSCH system with regular potential and unmatched viscosities.  

The aim of this work is to answer positively to the above mentioned open ques- 

tions. Our main results for the NSCH system with unmatched viscosities are the 

following: 

1. If d = 2, we show the uniqueness of weak (physical  ) solutions. 

2. If d = 2, we prove the global existence and uniqueness of strong solutions when 

u0 \in  V\sigma .   
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3. If d = 2, we show that any (weak or strong) solution becomes instantaneously 

more regular (that is, on [\tau ,\infty ) for any \tau  > 0) , and it satisfies the 

instanta- 

  

 neous separation property, namely,   

  

 (1.6)\forall \tau  > 0, \exists \delta  = \delta (\tau ) > 0 :\| \varphi (t)\| L\infty  

(\Omega ) \leq  1  -  \delta \forall t \geq  \tau . 

  

4. If d = 3, we prove the local existence and uniqueness of strong solutions when 

u0 \in  V\sigma .   

We observe that the technique here employed to prove the uniqueness of weak so-  

  

lutions in dimension two can be applied to show the same result for the following two 

cases: logarithmic potential and matched viscosities as well as regular potentials and 

unmatched viscosities (see Remark 3.2 and 3.3). It is worth mentioning that our method 

not only entails the uniqueness of weak solutions in dimension two but a continuous 

dependence estimate on the initial data with a time-dependent exponent.  

  

The mathematical analysis presented in this paper may be employed to investigate 

  

other diffuse interface models with logarithmic potential (1.3), also in connection with 

the study of optimal control problems and the analysis of numerical schemes. Among 

several models, we mention those systems that involve different laws for the velocity 

field, such as the Hele--Shaw and Brinkman approximations [29, 50] or regularized  

  

family of the Navier--Stokes equations [46] (see also [23]). It would be interesting as 

  

well to analyze modified equations of the Cahn--Hilliard type [19, 49, 70, 71] or the 
Allen--Cahn equation (see, e.g., [42]). A further important issue would be to extend the 

analysis to the nonisothermal version of the Model H introduced in [34, 35] and  

to the Model H with mass transfer and chemotaxis presented in [66].  

  

Plan of the paper. In section 2 we introduce the functions spaces, the main 

assumptions of the paper, and we report a result of existence of weak solutions. In 

section 3 we discuss the uniqueness of weak solutions in two dimensions. Section 4 is 

devoted to analysis of strong solutions, the instantaneous regularization of weak  

  

solutions, and the separation property in space dimension two. Section 5 is devoted to 

the study of strong solutions in space dimension three. We report in Appendixes A and 

B some mathematical tools regarding the Neumann and Stokes problems.  

Downloaded 06/09/22 to 86.186.108.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy 
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2. Preliminaries.   

2.1. Notation and functions spaces. Let X be a (real) Banach or Hilbert 

  

space with norm denoted by \|  \cdot  \| X. The boldface letter X stands for the vectorial 

space Xd (d is the spatial dimension), which consists of vector-valued functions u with 

all components belonging to X, with norm \| \cdot \| \bfX . Let \Omega  be a bounded 

domain in \BbbR d, where d = 2 or d = 3, with smooth boundary \partial \Omega . We 

denote by Wk,p(\Omega ), k \in  \BbbN , the Sobolev space of functions in Lp(\Omega ) 

with distributional derivatives of order less  
p(\Omega ) and by \| \cdot \| Wk,p(\Omega ) its norm. For  k \in  

\BbbN , the Hilbert space than or equal to k in L 

Wk,2(\Omega ) is denoted by Hk(\Omega ) with norm \| \cdot \| Hk(\Omega ). We denote by 

(\Omega ) the closure of (\Omega ) in H1(\Omega ) and by H - 1(\Omega ) its dual 

space. We define H = L2(\Omega ). Its inner product and norm are denoted by (\cdot 

,\cdot ) and \| \cdot \| , respectively. We set V = H1(\Omega ) with norm \|  \cdot  \| V , 

and we denote its dual space by V \prime  with norm  \|  \cdot  \| V \prime . The symbol \langle 

\cdot ,\cdot \rangle will stand for the duality product between V and V \prime . We denote 

by u the average of u over \Omega ; that is, u = | \Omega |  - 1\langle u,1\rangle  for all u 

\in  V \prime . By the generalized Poincar\'e inequality  

(see [80, Chapter II, section 1.4]), we recall that  is a norm on V 

equivalent to the natural one. We recall the following Gagliardo--Nirenberg and  

Agmon inequalities (see, e.g., [81])   

  

(2.1)\forall  u \in  V if d = 2, 

  

(2.2)\forall  u \in  V if d = 3, 

  

  

   2 

(2.3)\forall  u \in  H (\Omega ) if 

d = 2, 

   2 

(2.4)\forall  u \in  H (\Omega ) if d = 2,3, 

  

and the Brezis--Gallouet inequality (see [21])   

  

(2.5). 

  



2542 ANDREA GIORGINI, ALAIN MIRANVILLE, AND ROGER TEMAM  

  

  

  

  

  

  

  

  

  

  

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.  

We now introduce the Hilbert space of solenoidal vector-valued 

functions. We denote by(\Omega ) the 

space of divergence free vector fields in (\Omega ). We define H\sigma and 

V\sigma  as the closure of(\Omega ) with respect to the H  and H10(\Omega ) norms, 

respectively. We also use (\cdot ,\cdot ) and \| \cdot \|  for the norm and the inner 

product in H\sigma . The space V\sigma  is endowed with the inner product and norm 

(u,v)\bfV \sigma  = ( \nabla u,\nabla v) and \| u\| \bfV \sigma  = \| \nabla u\| , 

respectively. We denote by V\sigma \prime  its dual space. We recall that Korn's inequality 

entails \surd  \surd    

 \| \nabla u\|  \leq 2\| Du\|  \leq  2\| \nabla u\|  \forall  u \in  

V\sigma , 

where). In turn, the above inequality gives that u \rightarrow  \| Du\|  is a norm on 

V\sigma  equivalent to the initial norm. We consider the Hilbert space W\sigma  = 

H 
2(\Omega ) \cap  V\sigma  with inner product and norm (u,v)\bfW \sigma   = (Au,Av) and \| 

u\| \bfW \sigma  = 

\| Au\| , where A is the Stokes operator (see Appendix B for the definition and some 

properties). We recall that there exists C > 0 such that  

  

(2.6) \| u\| H2(\Omega ) \leq  C\| u\| \bfW \sigma \forall u \in  W\sigma . 

  

Finally, we introduce the trilinear continuous form on H10(\Omega ) 

  

, 

  

satisfying the relation b(u,v,v) = 0 for all u \in  V\sigma  and v \in  H1(\Omega ). 

  

 2.2. Main assumptions. We require that the viscosity \nu  \in  \scrC 2(\BbbR ) 

satisfies 

  

(2.7) 0 < 2\nu \ast  \leq  \nu (z) \leq  \nu \ast  \forall z \in  \BbbR , 

  

for some positive values \nu \ast ,\nu \ast . The singular potential \Psi  belongs to the 

class of  

functions \scrC ([ - 1,1]) \cap  \scrC 3( - 1,1) and has the form   

Downloaded 06/09/22 to 86.186.108.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy 
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(2.8) \Psi (, 

 with

   

  

(2.9) , and   

  

(2.10) \theta 0  -  \theta  = \alpha  > 0.   

  

  

We define F(z) = +\infty  for any z /\in  [ - 1,1]\prime \prime . We assume without loss of 

generality thatis convex and   

F(0) = 0. In addition, we require that F 

  

(2.11) F\prime \prime (z) \leq  CeC| F\prime (z)| \forall z \in  ( -  1,1) 

  

  

for some positive constant C. Also, we assume that there exists  \gamma  \in  (0,1) such 

that 

F\prime \prime  is nondecreasing in [1  -  \gamma ,1) and nonincreasing in ( - 1, - 1 + \gamma 

]. 

  

Remark 2.1. The above assumptions are satisfied and motivated by the logarith- mic 

potential (1.3). In that case, \Psi  is extended by continuity at z = \pm 1. Notice also that 

the viscosity function (1.4) can be easily extended on the whole \BbbR  in such way to 

comply (2.7). Moreover, other physically relevant profiles can be considered (up to  

  

a suitable extension), such as (see, e.g., [52, 36]) 

  

  

\nu 

1\nu 2 

 \nu (z) = z z ,

 or , 

  

  

where \nu 1 and \nu 2 are the constant viscosities of the two fluids.  

  



2544 ANDREA GIORGINI, ALAIN MIRANVILLE, AND ROGER TEMAM  

  

  

  

  

  

  

  

  

  

  

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.  

General agreement. Throughout the paper, the symbol C denotes a positive constant 

which may be estimated in terms of \Omega  and of the parameters of the system (see  

  

``Main assumptions""). Any further dependence will be explicitly pointed out when 

  

necessary. In particular, the notation C = C(\kappa 1,...,\kappa  n) denotes a positive 

constant which explicitly depends on the quantities \kappa i, i = 1,...,n . 

  

2.3. Existence of weak solutions. Let us introduce the notion of weak solu- tion.

   

  

Definition 2.2. Let T > 0 and d = 2,3. Given u 0 \in  H\sigma , \varphi 0 \in  V \cap  L\infty 

(\Omega ) with \| \varphi 0\| L\infty (\Omega ) \leq  1 and | \varphi 0|  < 1, a pair (u,\varphi ) 

is a weak solution to (1.1)--(1.2) on [0,T] if   

  

 u, 

\varphi  \in  L\infty (0,T;V ) \cap  L2(0,T;H2(\Omega )) \cap  H1(0,T ;V \prime ), 
  

\varphi  \in  L\infty (\Omega  \times  (0,T)), with | \varphi (x,t)|  < 1 

a.e. (x,t) \in  \Omega  \times  (0,T), 

  

and satisfies   

  

  

(2.12)\langle \partial tu,v\rangle  + b(u,u,v) + (\nu (\varphi )Du,Dv) = (\mu \nabla  

\varphi ,v) \forall v \in  V\sigma , 

(2.13) \langle \partial 

t\varphi ,v\rangle  + (u 

\cdot  \nabla \varphi 

,v) + (\nabla \mu 

,\nabla v) = 0  

 \forall v \in  V,   

for almost every t \in  (0,T), where \mu  \in  L2(0,T;V ) is given by   \mu  =  - \Delta 

\varphi  + \Psi \prime (\varphi ). 

Moreover, \partial n\varphi  = 0 a.e. on \partial \Omega  \times  (0,T), u(\cdot ,0) = u0, 

and  \varphi (\cdot ,0) = \varphi 0 in \Omega . 

  

Remark 2.3. Notice that (2.12) is equivalent to  

Downloaded 06/09/22 to 86.186.108.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy 
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\langle \partial tu,v\rangle   -  (u \otimes  u,\nabla v) + (\nu (\varphi )Du,Dv) = (\nabla 

\varphi  \otimes  \nabla \varphi ,\nabla v) \forall v \in  V\sigma , 

for almost every t \in  (0,T), where (v\otimes w)ij = viwj, i,j = 1, 2, in light of the equalities 

  

(2.14) (u \cdot  \nabla )u = div(u \otimes  u)  

 and   

. 

  

The following existence result of weak solutions has been proven in [2, Theorem  

1] (see also [71]).   

  

Theorem 2.4. Let d = 2,3. Assume that u0 \in  H\sigma , \varphi 0 \in  V \cap  L\infty 

(\Omega ) with \| \varphi 0\| L\infty (\Omega ) \leq  1 and | \varphi 0|  < 1. Then, for any T > 0, 

there exists a weak solution (u,\varphi ) to (1.1)--(1.2) on [0,T] in the sense of Definition 

2.2 such that  

  

  

(2.15) u \in  \scrC ([0,T],H\sigma ), if d = 2, u \in  \scrC w([0,T ],H\sigma ) if d = 3, 

(2.16)\varphi  \in  \scrC ([0,T],V ) \cap  L4(0,T;H2(\Omega )) \cap  L2(0 ,T;W2,p(\Omega 

)), 

  

  

where 2 \leq  p < \infty  is arbitrary if d = 2 and p = 6 if d = 3 . Moreover, given the energy 

of the system   

  

(2.17) \Psi (\varphi )dx, 

  

any weak solution satisfies the energy inequality   

  

  
  

for almost every 0 \leq  \tau  < T, including \tau  = 0, and every  t \in  [\tau ,T]. If d = 2, 

then 

(2.18) holds with equality for every 0 \leq  \tau  < t \leq  T.   

  

Downloaded 06/09/22 to 86.186.108.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy 
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Remark 2.5. We observe that any admissible initial condition in Theorem 2.4 is  

such that \Psi (\varphi 0) \in  L1(\Omega ), so that \scrE (u0,\varphi 0) < \infty . 

However, due to  | \varphi 0|  < 1, \varphi 0 

cannot be a pure concentration, i.e., \varphi 0 \equiv  1 or \varphi 0 \equiv   -  1. 

  

Remark 2.6. The regularity \varphi  \in  L4(0,T;H2(\Omega )) is not proved in [2, 71], 

but it has been recently shown in [50]. Given a weak solution ( u,\varphi ), it can be 

inferred from Theorem A.2 in Appendix A with f = \mu +\theta 0\varphi  \in  L2(0,T  ;V ) 

and u = \varphi  \in  L\infty (0,T;V ) 

(cf. also (4.23) below).   

  

3. Uniqueness of weak solutions in two dimensions. In this section we prove the 

uniqueness of weak solutions for the two-dimensional NSCH system with unmatched 

viscosities. The key idea is to derive a differential inequality involving norms (for the 

difference of two solutions) weaker than the natural ones given by the energy of the 

system (cf. (2.17)). We take full advantage of the regularity properties of  

  

the Neumann and Stokes operators which allow us to recover coercive terms. In such 

  

a way, we are able to handle the Korteweg force (i.e., the term \mu \nabla \varphi ) in 

the Navier-Stokes equations and the convective terms. This technique will be also 

employed to show the uniqueness of strong solutions if d = 3.  

  

 Theorem 3.1. Let d = 2. Given (u0,\varphi 0) be such that  u0 \in  H\sigma , 

\varphi 0 \in  V , 

\| \varphi 0\| L\infty (\Omega ) \leq  1, and | \varphi 0|  < 1, the weak solution to (1.1)--(1.2) on 

[0,T] with initial datum (u0,\varphi 0) is unique.  

Proof. Let (u1,\varphi 1) and (u2,\varphi 2) be two weak solutions to (1.1)--(1.2) on 

[0,T] with the same initial datum (u0,\varphi 0). We define u = u1  -  u2 and \varphi  = 

\varphi 1  -  \varphi 2. 

According to Remark 2.3, u and \varphi  solve   

  

\langle \partial tu,v\rangle   -  (u1 \otimes  u,\nabla v)  -  (u \otimes  u2,\nabla 

v) + (\nu ( \varphi 1)Du,\nabla v) 

  

+ ((\nu (\varphi 1)  -  \nu (\varphi 2))Du2,\nabla v) = (\nabla \varphi 1 \otimes  

\nabla \varphi ,\nabla v) 

(3.1)+ (\nabla \varphi  \otimes  \nabla \varphi 2,\nabla v)  

 \forall v \in  V\sigma , 
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(3.2)\langle \partial t\varphi ,v\rangle  + (u1 \cdot  \nabla \varphi ,v) + (u \cdot  

\nabla \varphi 2,v) + (\nabla \mu ,\nabla  v) = 0 \forall v \in  V, 

where \mu  =  - \Delta \varphi  + \Psi \prime (\varphi 1)  -  \Psi \prime (\varphi 2). Taking v 

= 1 in (3.2) and observing that the  

  

integrals over \Omega  of u1 \cdot  \nabla \varphi  and u \cdot  \nabla \varphi 2 vanish, 

we have \varphi (t) = \varphi (0) = 0 for all t \in  [0,T]. We rewrite (3.2) as  

  

(3.3)\langle \partial t\varphi ,v\rangle   -  (\varphi u1,\nabla v)  -  (\varphi 2u,\nabla v) 

+ (\nabla \mu , \nabla v) = 0 \forall v \in  V, 

  

and we recall the following estimates (cf. (2.15)--(2.16))  

  

(3.4) \| ui(t)\|  \leq  C0,\| \varphi i(t)\| V \leq  C0,\| \varphi i(t)\| L\infty (\Omega  ) \leq  1

 \forall t \in  [0,T], i = 1,2, 

where the positive constant C0 depends on ). Now, taking in (3.3) 

(see Appendix A for the definition of A0) and using (A.3), we obtain  

  

2 1 d \| \varphi \| 2 + (\mu 

,\varphi ) = \scrI 1 +  \scrI 2, dt

 \ast  

  

where  

  
  - 1  - 1 
(3.5) \scrI 1 = (\varphi u1,\nabla A0 \varphi ),\scrI 2 = (\varphi 2u ,\nabla A0 

\varphi ). 

  

By the assumptions on \Psi , we have   

  

(\mu ,\varphi ) = \| \nabla \varphi \| 2 + (\Psi \prime (\varphi 1)  -  \Psi \prime  (\varphi 

2),\varphi ) 

 \geq  \| \nabla \varphi \| 2  -  \alpha \| \varphi \| 2,   

  

where \alpha  is defined in (2.10). By definition of , we get 

(3.6)  
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and we end up with   

  

(3.7)  

Taking v u in (3.1) (see Appendix B for the definition of A), we find 

  

1 d 

(3.8) \|  \| 2

 \nu  D

 \nabla   - 1

 \scrI   \scrI 

 \scrI where 

 

. 

Recalling that div(t(\nabla v)) = \nabla (divv) and A - 1u \in  L 2(0,T;D(A)), and 

integrating by parts, we obtain   

 

=  - (u,div(  

(3.9) )\Delta A - 1u). 

  

By the properties of the Stokes operator (cf. Appendix B), there exists p \in  L2(0,T;V ) 

such that  - \Delta A - 1u + \nabla p = u a.e. in \Omega  \times  (0,T). By (B.5) and (B.7), 

we have  

(3.10)  

  

Therefore, we are led to   

)\Delta A  

(3.11)  

Here we have used divu = 0. We now set   
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and 

. 

   7 

(3.12) d \scrH  + \nu \ast  2 1\| \nabla \varphi \| 2 

\leq  \alpha 2\scrH  + \sum \scrI k, \| 

u\|  + 

dt 2

  
k=1 

  

where \scrI 1 and \scrI 2 are defined in (3.5). We proceed by estimating all the remainder 

terms on the right-hand side of (3.12). Hereafter the positive constant Ci, i \in  \BbbN , 

depends on \nu \ast , \nu \prime , \Omega , C0, and the constants that appear in the 

mentioned embedding results and 

interpolation inequalities. By the 

embedding  (\Omega ), the 

Poincar\'e inequality, and the uniform bound 

(3.4), we have 

and 

By (2.1), (2.6), and (3.4), we get  
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0, the logarithmic term on the right-hand side is assumed to be 

  

Thanks to Theorem 2.4 and the Sobolev embedding W2,3(\Omega ) \lhook \rightarrow  

W1,\infty (\Omega ), valid in space dimension two, we deduce that \scrY 1 belongs to L 

1(0,T). In addition, recalling 

from (3.4) that \| \nabla \varphi \|  \leq  C0, we have   

  

, 

we rewrite the differential inequality (3.13) as follows:  
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(3.14) . 

  

Note that 1 for the choice of C8. Since \scrY 2 \in  L2(0,T), \scrS  \in  L1(0,T), 

and 

\scrH (0) = 0, we can apply [67, Lemma 2.2] to conclude that  \scrH (t) = 0 for all t \in  

[0,T], 

 which implies the uniqueness 

of weak solutions.  

  

Remark 3.2. An immediate consequence of the argument performed in the proof of 

Theorem 3.1 is the uniqueness of weak solutions to the NSCH system in dimension  

 two with matched viscosities 

(i.e., \nu (s) = 1). In that particular case, let us consider (u1,\varphi 1) and (u2,\varphi 2) 

are two weak solutions to (1.1)--(1.2) on  [0 ] with initial data (u01,\varphi 01) and 

(u02,\varphi 02), respectively, where (u0i,\varphi 0i ), i = 1,2, comply the assumptions of 

Theorem 2.4 and \varphi 01 = \varphi 02. Then, following line by line the above proof and 

observing that  

d  

dt 

  

where \scrH  and \scrY 1 are defined above. Hence, we can infer from the Gronwall 

lemma the following continuous dependence estimate:  

  

  

\| u1(t)  -  u2(t)\| \bfV \sigma \prime  + \| \varphi 1(t)  -  \varphi 2(t)\| V0\prime  \leq  C\| u01 
 -  u02\| 

\bfV \sigma \prime  + C\| \varphi 01  -  \varphi 02\| V0\prime  

for all ]. Here, C is a positive constant depending on T and \scrE (u0i,\varphi 0i), 

i = 1,2, but is independent of the specific form of the initial data.  

Remark 3.3. The proof of Theorem 3.1 also allows us to deduce the uniqueness of  

  

weak solutions to problem (1.1)--(1.2) with unmatched viscosities and regular potential 
(cf. \Psi 0 in ``Introduction""). The only changes in the proof arise from the different 

regularity of weak solutions. Indeed, the global bound in L\infty  is not known in this case, 

but any weak solution satisfies \varphi  \in  

L2(0,T;H3(\Omega )) (see [17, 43]). Thus, the 

two terms which need a different control 

are \scrI 2 and . Nonetheless, they can 

be simply estimated in the following way 

and ), and, by using (2.1) 
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Since by interpolation (\Omega )), i = 1,2, it is easily 

seen that we end up with a differential equation having the same form of (3.14).  

  

Remark 3.4. In the three dimensional case, the above proof does not allow us to 
deduce even a weak-strong uniqueness property, which is classical with the Navier-- 

Stokes equations; that is, the weak solution is unique when a strong solution exists.  

In this case, this is due to the form of \scrI 4 involving both  u1 and u2. Hence, we only 

expect a (conditional) uniqueness result provided that both solutions u1 and u2 are more 

regular than Definition 2.2 (at least u1, u2 satisfy the classical condition in [81,  

Remark 3.81]).   

  

We conclude this section with a continuous dependence estimate in dual space 
norms with a time-dependent double exponential growth.  

 Proposition 3.5. Let d = 2. Consider two initial data  (u01,\varphi 01) and 

(u02,\varphi 02) 

  

such that u0i \in  H\sigma , \varphi 0i \in  V , \| \varphi 0i\| L\infty (\Omega ) \leq  1, and \varphi  

01 = \varphi 02 \in  ( - 1,1). The weak solutions (u1,\varphi 1), (u2,\varphi 2) on [0,T] to 

(1.1)--(1.2) with initial data (u01,\varphi 01) and 

(u02,\varphi 02), respectively, satisfy the continuous dependence estimate  

  

(3. 15), 
 where

   

 
  

Here, C is a positive constant depending on the norms of the initial data.  

  \scrI 3 different than that in the 

Proof. The argument is based on an estimate of proof of Theorem 3.1. Thanks to the 

product estimate (C.5) in Appendix C, using  

the properties of A0 and A (see Appendixes A and B) and (3.4), we have  
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Noting that \scrH  \leq  C11 by (3.4), we observe that C10 can be chosen sufficiently large 

such that log(  1. Exploiting the above estimate in the proof of Theorem 3.1, we 

eventually deduce the refined differential inequality for the difference of two solutions  

(cf. (3.14))   

  

(3.16) d \scrH  \leq  \scrY 3\scrH log\Bigl( C 10 \Bigr) .  

 dt \scrH    

After integration 

of 

(3.16), 

we 

obtain 

the 

follow

ing 

estima

te   

(3.17), 

  

where \scrY 3 \in  L1(0,T), for any T > 0, due to the regularity in Theorem 2.4. Noticing 

that \mu (s) = slog(Cs ) is an Osgood modulus of continuity, the above (3.17)--(3.16) also  

imply the uniqueness of weak solutions.  

Remark 3.6. We note that the estimate for the difference of two solutions (3.15) is 

not sufficient to guarantee the continuity of solutions with respect to the data in the  

  

norm of the energy space H\sigma  \times  V . A similar remark holds for the constant 

viscosity case (cf. Remark 3.2). Nevertheless, the continuous dependence in the energy 

space will be recovered by using the propagation of regularity and an interpolation 

technique in section 4.   

4. Global strong solutions and regularity in two dimensions. In this section we 

prove the global well-posedness of strong solutions for the NSCH system with 

unmatched viscosities in dimension two. Later on, some consequences will be inferred 

regarding the regularity and continuous dependence from the initial data.  

  

Theorem 4.1. Let d = 2, u0 \in  V\sigma  and \varphi 0 \in  H2(\Omega  ) be such that \| 

\varphi 0\| L\infty (\Omega ) \leq  1, | \varphi 0|  < 1, \mu 0 =  - \Delta \varphi 0 +\Psi \prime 

(\varphi 0) \in  V and \partial n\varphi 0 = 0 on \partial  \Omega . Then, for any T > 0, 

there exists a unique strong solution to (1.1)--(1.2) on [0,T] such that 

  

u \in  L\infty (0,T;V\sigma ) \cap  L2(0,T;W\sigma ) \cap  H1(0,T;H \sigma ), \pi  

\in  L2(0,T;V ), \varphi  \in  L\infty (0,T;W2,p(\Omega )) \cap  H1(0,T;V ),   
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\mu  \in  L\infty (0,T;V ) \cap  L2(0,T;H3(\Omega )) 

\ca

p  

H1(

0,T; 

V 
\prim

e ),   
where 2 \leq  p < \infty . The strong solution satisfies (1.1) a.e. in \Omega  \times  (0,T) 
and \partial n\mu  = 0 a.e. on \partial \Omega  \times  (0,T). In addition, given two strong 
solutions (u1,\varphi 1), (u2,\varphi 2) on 

  

[0,T] with initial data (u01,\varphi 01) and (u02,\varphi 02), respectively, we have the 

continuous dependence estimate   

  

, 
 where C is a positive constant 

depending on T and on the norms of the initial data. 
  

Let us briefly explain some technical points of the proof of Theorem 4.1. The 

argument relies on a priori higher-order energy estimates in Sobolev spaces, combined 

with a suitable approximation of the logarithmic potential and the initial datum. More  

  

precisely, we approximate the logarithmic potential \Psi  by means of a family of regular 
potentials \Psi \varepsilon  defined on the whole real line. Next, we need to perform a 

suitable cut- off procedure of the initial condition, since we cannot control immediately 

the norm of \nabla \mu \varepsilon (0) = \nabla ( - \Delta \varphi 0 +\Psi \prime \varepsilon 

(\varphi 0)) with \nabla \mu (0) = \nabla ( - \Delta \varphi  0 +\Psi \prime (\varphi 0)). To 

overcome this difficulty, we construct a preliminary approximation of the initial datum 

by exploiting  

  

the regularity theory of the Neumann problem with a logarithmic nonlinearity given in 

Appendix A. Our argument differs from the one used in [2], which is based on fractional 

time regularity and maximal regularity of a Stokes operator with variable viscosity.   

  

Proof of Theorem 4.1. We divide the proof into several steps.  

1. Approximation of the logarithmic potential. We introduce a family of regular  

potentials \Psi \varepsilon  that approximate the singular potential \Psi . For any 

 \varepsilon  \in  (0,1), we set 

  

\theta  

(4.2) \Psi , 

 where
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(4.3) , 

   \ast  \in  

By virtue of the assumptions on \Psi  stated in section 2, we infer that there exists 

 \varepsilon  

(0,\gamma ) (where \gamma  is defined in section 2) such that, for any \varepsilon  \in  

(0,\varepsilon \ast ], the approximating function \Psi \varepsilon  satisfies \Psi \varepsilon  \in  

\scrC 2(\BbbR ) and  

(4.4), 

  

where \alpha \widetilde  is a positive constant independent of \varepsilon , \alpha  is 

given by (2.10), and L is a positive constant that may depend on 

\varepsilon . Moreover, we have that \Psi  \varepsilon (z) \leq  \Psi (z) for all z \in  [ - 1,1], 

andfor all z \in  ( - 1,1) ( see, e.g., [40]). 

2. Approximation of the initial datum. We perform a cutoff procedure on the initial  

  

condition. To do so, we introduce the globally Lipschitz function hk : \BbbR  \rightarrow  

\BbbR , k \in  \BbbN , 

 such that   

 \left\{    

  - k, z <  - k,  

   

(4.5) hk(z) = z, z \in  [ - k,k ], 

   k, z > k.    

  

We define \~\mu 0,k = hk \circ \mu \~0, where \~\mu 0 =  - \Delta \varphi 0 +F\prime 

(\varphi 0) ( or equivalently \~\mu 0 = \mu 0 +\theta 0\varphi ). 

Since \~\mu 0 \in  V , the classical result on compositions in Sobolev spaces [77] yields 

\~  \mu 0,k \in  

V , for any k > 0, and \nabla \mu \~0,k = \nabla \mu \~0 \cdot  \chi [ - k,k](\mu \~0), which, 

in turn, gives  

  

(4.6) \| \mu \~0,k\| V \leq  \| \mu \~0\| V .   

  

For k \in  \BbbN , we consider the Neumann problem   
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,  on \partial \Omega . 

(4.7) in \Omega , 

  

  2(\Omega ), Thanks to 

Lemma A.1, there exists a unique solution to (4.7) such that\prime (\varphi 0,k) \in  H, 

which satisfies (4.7) a.e. in \Omega  and \partial \bfn \varphi 0  ,k = 0 a.e. on \partial 

\Omega . In addition,\varphi 0,k \in  H 

F 

by (A.6) and (4.6), we have   

  

(4.8) \| \varphi 0,k\| H2(\Omega ) \leq  C(1 + \| \mu \~0\|  ). 

  

Since \~\mu 0,k \rightarrow  \mu \~0 in H, Lemma A.1 also entails that \varphi 0,k 

\rightarrow  \varphi 0 in V . As a consequence, there exist \~m \in  (0,1), which is 

independent of k, and k sufficiently large such that 

  

(4.9) \| \varphi 0,k\| V \leq  1 + \| \varphi 0\| V ,| \varphi 0,k|  \leq  m <\~  1

 \forall k > k. 

  

In addition, by Theorem A.2 with f = \mu \~0k, we obtain  

\| F\prime (\varphi 0,k)\| L\infty (\Omega ) \leq  \| \mu \~0,k\| L\infty 

(\Omega   ) \leq  k. 

  

As a byproduct, there exists \delta  = \delta (k) > 0 such that  

  

(4.10) \| \varphi 0,k\| L\infty (\Omega ) \leq  1  -  \delta .  

  

At this point, since F\prime (\varphi 0,k) \in  V , it is easily seen 

that \varphi 0,k \in  H3(\Omega ). Finally, for any \varepsilon  \in  

(0,\varepsilon ), where, since F(z) = F\varepsilon ( z) for all z \in  [ - 1+\varepsilon ,1 - 

\varepsilon ], we infer from (4.10) that  - \Delta 

\varphi 0,k + F\varepsilon \prime (\varphi 0,k) = \mu \~0,k, which entails   

(4.11). 

  

  

3. Approximating problems. Let us introduce the Galerkin scheme. We consider the 

family of eigenfunctions \{ wj\} j\geq 1 of the homogeneous Neumann operator A1 =  - 

\Delta  + I (see Appendix A) and the family of eigenfunctions \{ wj\} j\geq 1 of the Stokes 

operator A (see Appendix B). In particular, we recall that w1 = 1 while any wi, i > 1, is 
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nonconstant with wi = 0. For any integer n \geq  1, we define the finitedimensional 

subspaces of V and V\sigma , respectively, by Vn = span\{ w1,...,wn\}  and Vn = span\{ 

w1,...,wn\} . We denote by \Pi n and Pn the orthogonal projections on Vn 

and Vn with respect to the inner product in H and in H\sigma , respectively. We consider 

 the 

approximating sequences 

  

(4.12)   

n n   n u

, 
 i=1 i=1   i=1 

solutions of the following approximating system   

  

(4.13)   

where   

  

(4. 15). 

  

The initial conditions are defined as   

  

(4.16) uand. 

  

  

Let us notice that \varphi 0,k \in  H3(\Omega ) with \partial 

\bfn \varphi 0,k = 0 on \partial \Omega . Since  

\partial \bfn u = 0 on \partial \Omega \} , we have that \varphi nk,\varepsilon (0) 

\rightarrow  \varphi 0,k in H3(\Omega ) as  n \rightarrow  \infty . In turn, this gives 

\varphi nk,\varepsilon (0) \rightarrow  \varphi 0,k in L\infty (\Omega ). Hence, there exist m, 

with \~m <  m < 1 (independent of n), 

 and 

n such that 

\langle \partial tunk,\varepsilon ,v\rangle  + b(unk,\varepsilon ,unk,\varepsilon ,v) + 

(\nu (\varphi nk,\varepsilon )Dunk,\varepsilon ,Dv) = ( \mu nk,\varepsilon \nabla 

\varphi k,\varepsilon n,v) 

(4.14)   

\langle \partial t\varphi nk,\varepsilon ,v\rangle  + (unk,\varepsilon  \cdot  

\nabla \varphi nk,\varepsilon ,v) + (\nabla \mu nk,\varepsilon ,\nabla v) = 0   

\forall v 

\in  Vn, 

\forall v 

\in  Vn, 
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(4.17)  

  

 
On account of Steps 1 and 2, for any k > k, we fix \varepsilon  \in  (0,\varepsilon ) with 

\varepsilon  depending on k, 

and n >n nof the form (4.12) which satisfy (4.13)--(4.16) for anywith n depending on k. 

The existence of a sequence of functions   t \in  [0,T] can be provedunk,\varepsilon ,\varphi 

nk,\varepsilon , and \mu k,\varepsilon  

in a standard way (see, e.g., [81]). In particular, the system (4.13)--(4.16) is equivalent 

to a Cauchy problem for a nonlinear system of ordinary differential equations in the 

unknowns gi, ki and li, i = 1,...,n. Thanks to the Cauchy--Lipschitz theorem, for any n > n, 

there exists a unique maximal solution to this system defined on some  

  

interval [0,tn]. Moreover, by the energy estimates we shall prove in the next step (cf.  

(4.20)), it is clear that tn = T.   

4. Energy estimates. Let us recall the above choices of the parameters, namely, for  

 
any k > k, we fix \varepsilon  \in  (0,\varepsilon ) and n > n. We now show uniform energy 

estimates with respect to the approximating parameters k, \varepsilon , and n. In 

particular, ci, i \in  \BbbN , denotes 

  

a positive constant, which depends on the parameters of the system, the constants 

  

arising from embedding and interpolation results and the energy \scrE (u0,\varphi 0), 

but is independent of the approximation parameters k, \varepsilon , and n. 

First, by taking v = 1 in (4.14), we have for all t \geq  [0,T]. 

We introduce the approximated energy    

\Psi \varepsilon (\psi )dx. 

In light of (4.9), (4.17), and \Psi \varepsilon (z) \leq  \Psi (z) for all 1], we deduce 

that 

\Psi  

(4.18) 
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Here we have used that \Psi  is bounded on [ - 1,1]. Taking v = unk,\varepsilon  in (4.13), v = 

\mu nk,\varepsilon  
n , and summing up the resulting equations, we in 

(4.14), multiplying (4.15) by \partial t\varphi k,\varepsilon   find

  

(4.19) d dt\scrE \varepsilon (uk,\varepsilon ,\varphi k,\varepsilon ) + \| \sqrt{} \nu (\varphi 

k,\varepsilon n )Duk,\varepsilon \| 2 +  \| \nabla \mu k,\varepsilon \| 2 = 0 

for almost every ). Owing to the Korn inequality and (4.18), after an inte

gration in time, we have 

where c2 depends on m. Testing (4.15) by  , we obtain 

. 

  

Thus, by the Poincar\'e inequality and (4.21), we have  

. 

 , we learn that   Accordingly, since 

  

(4.22) \| \mu nk,\varepsilon \| V \leq  c4(1 + \| \nabla \mu nk,\varepsilon \|  ). 

  

Next, testing (4.15) by and integrating by parts, we get 
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\| \Delta \varphi nk,\varepsilon \| 2 + (\Psi \prime \prime \varepsilon 

(\varphi nk,\varepsilon )\nabla \varphi nk,\varepsilon ,\nabla \varphi 

nk,\varepsilon ) = (  \nabla \mu nk,\varepsilon ,\nabla \varphi nk,\varepsilon ). 

  

By using (4.4) and (4.21), we deduce that   

(4.23)  

  

On the other hand, by comparison in (4.13) and in (4.14) and by exploiting (2.1),  

(4. 21), and (4.22), we infer that   

  

(4.24)\| \partial tunk,\varepsilon \| \bfV \sigma \prime  \leq  c6(1 + \| \nabla unk,\varepsilon \|  + \| 

\nabla   \mu nk,\varepsilon \| ), 

 and

  (4.25) \| \partial t\varphi nk,\varepsilon \| \ast  \leq  

c7(\| \nabla unk,\varepsilon \|  + \| \nabla  \mu nk,\varepsilon \| ). 

  

In light of the above estimates (4.20)--(4.25), we have  

  

unk,\varepsilon  is uniformly bounded in L\infty (0,T;H\sigma ) \cap  L2(0 ,T;V\sigma ) 

\cap  H1(0,T;V\sigma \prime  ),  is uniformly bounded in 

 is uniformly bounded in
 (0 ; ), 

with respect to the parameters , . 

5. Higher-order energy estimates. We are now in position to prove uniform higher- order 

Sobolev estimates. We will denote by c\prime i, i \in  \BbbN , a positive constant, which 

depends on the parameters of the system, the constants arising from embedding and 

interpolation results, and \scrE (u0,\varphi 0), but are independent of the approximation 

pa rameters k, \varepsilon , and n and of the norms \| u0\| \bfV \sigma  and . Taking v = 

\partial t\mu nk,\varepsilon  in (4.14), we obtain  

  

1 d 

 ) = 0. 

2 d 

  

Since ) = 0 for all t \in  [0,T], we have   
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Besides, we observe that 

. 

By (4.22), we get 

d 

d  

(4.26)\leq  (\partial tunk,\varepsilon  \cdot  \nabla \varphi nk,\varepsilon ,\mu nk,\varepsilon ) + 

c\prime 2(1 + \| unk,\varepsilon \| 2\bfL 3(\Omega ))(1 +  \| \nabla unk,\varepsilon \| 2 + \| \nabla \mu 

nk,\varepsilon \| 2). 

  

Taking v in (4.13), we have 

  



2562 ANDREA GIORGINI, ALAIN MIRANVILLE, AND ROGER TEMAM  

  

  

  

  

  

  

  

  

  

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.  

\| \partial tunk,\varepsilon \| 2 + b(unk,\varepsilon ,unk,\varepsilon ,\partial tunk,\varepsilon )  -  

(div(\nu (\varphi nk,\varepsilon )Duk,\varepsilon n) ,\partial tunk,\varepsilon ) = (\mu k,\varepsilon 

n\nabla \varphi nk,\varepsilon ,\partial tunk,\varepsilon ). 
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. 

Because of (4.12) and (4.20), we deduce that ) for all i = 1,...,n, and u

 )), which implies that 

Aunk,\varepsilon  
\in  L2(0,T;H\sigma ). By the theory of the Stokes 

operator (see Appendix B), there exists ) such that 

 - \Delta unk,\varepsilon  + \nabla pnk,\varepsilon  = Aunk,\varepsilon  a.e. in \Omega  \times  (0,T). In 

particular, we have 

  

(4.28) , 

where C is independent of k, \varepsilon , and n. Now we take v = Aunk,\varepsilon  in (4.13), 

and we 

 obtain 

Downloaded 06/09/22 to 86.186.108.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy 



2564 ANDREA GIORGINI, ALAIN MIRANVILLE, AND ROGER TEMAM  

  

  

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.  

12  t\| \nabla un \| 2 + b(unk,\varepsilon 

,unk,\varepsilon ,Aunk,\varepsilon )   
k,\varepsilon  

  

We observe that 
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 2 2 

. 

 = \ast  0 and summing up with (4.29), we arrive at 

 2 4 

  k,\varepsilon   Au  u  

 dt 4 2  4 

\leq  (\partial tunk,\varepsilon  \cdot  \nabla \varphi nk,\varepsilon ,\mu nk,\varepsilon ) + c\prime 

12\| \nabla unk,\varepsilon \| 4   
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(4.31) + c\prime 12\Bigl( (1 + \| unk,\varepsilon \| 2\bfL 3(\Omega ) + \| \varphi nk,\varepsilon \| 

4H2(\Omega ))(1 + \| \nabla unk,\varepsilon \| 2 + \| \nabla \mu nk,\varepsilon \| 2)\Bigr) , 

 where

   

  

(4.32) \Lambda (u . 

. 

Then, we arrive at   

  

. 
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. 

  

d dt\Lambda (unk,\varepsilon ,\varphi nk,\varepsilon ) + \nu \Bigl( \| 

Aunk,\varepsilon \| 2 + \| \partial tunk,\varepsilon \|   2 + \| \nabla \partial 

t\varphi k,\varepsilon n \| 2\Bigr)  

(4.36)  

where . Owing to (4.4), (4.20), and (4.35), we infer 

that 

 \int  T   

\Lambda (unk,\varepsilon 

(s),\varphi nk,\varepsilon (s))ds \leq  

c\prime 18. 0   

  

An application of the Gronwall lemma to (4.36) implies that  

  

(4.37) \Lambda (u . 

In order to find a uniform control of the right-hand side of (4.37), by using the Sobolev  
6(\Omega ), (4.8), and (4.9), we obtain   

embedding V \lhook \rightarrow  L 

 \Lambda (u

(0)) = \Lambda (Pnu0,\Pi n\varphi 0,k)   

 
UNIQUENESS AND REGULARITY FOR MODEL H  

   
In light of (4.8), (4.9), (4.11), and (4.16), we find   

  

   

\leq  \|   -  \Delta  

\leq  \|   -  \Delta 

 

\leq  \| \varphi k,\varepsilon (0) 

 n  -  \varphi 0,k\| H3(\Omega ) + \| F\varepsilon \prime (\varphi nk,\varepsilon (0))  -  

F\varepsilon \prime (  \varphi 0,k)\| V + C(\| \mu \~0\| V + \| \varphi 0\| V ) 

(4.38) = \| \Pi n\varphi 0,k  -  \varphi 0,k\| H3(\Omega ) + \| F\varepsilon \prime (\Pi n\varphi 0,k)  

-  F\varepsilon \prime ( \varphi 0,k)\| V + C(\| \mu 0\| V + \| \varphi 0\| V ). 

  

Recalling the bounds (4.10) and (4.17) and the relation  ), for all z \in  

[ - 1 + \varepsilon ,1  -  \varepsilon ] (cf. 0 < \varepsilon  < \varepsilon ), we deduce that
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k> k , \

v

\i

n  
(0 , \

v

) and 

(4.39)

 . 

   3( - 1,1), 

We notice that the quantity between brackets in (4.39) is finite since  F \in  \scrC  

and it only depends on k (cf. definition of \varepsilon ). Let us now recall that \Pi  

 n\varphi 0,k \rightarrow  \varphi 0,k 

 
in H3(\Omega ) as n \rightarrow  \infty . Thus, we infer from (4.38)--(4.39) that, for any 

fixed k > k (and \varepsilon  \in  (0,\varepsilon )), there exists

  

(4.40)  

where C is independent of , and \varepsilon . Finally, for any fixed k > k, 

\varepsilon  \in  (0,\varepsilon ), and 

n > n (where \varepsilon  and n depends on k), we infer from (4.37) and (4.40) that  

  

\Lambda (u . 

In view of (4.34), we have   

  

(4.41) , 

where C1 is a positive constant, which depends on  and \scrE (u0,\varphi 0), 

\| u0\| \bfV \sigma , and \| \mu 0\| V , but is independent of k, n, and \varepsilon . Moreover, 

an integration in time of (4.36)  

on the time 

interval [0,T] 

yields   

(4.42) 

where C2 and on the initial datum, but independent of k, \varepsilon , and n.

   

6. Passage to the limit. Thanks to the analysis performed in step 5, for any fixed n > n, 

we deduce from (4.41) and (4.42) that 

unk,\varepsilon  is uniformly bounded in

,  is uniformly bounded in 

L\infty (0,T;H2(\Omega )) \cap  H 1(0,T;V ), 

  

  is uniformly bounded in L\infty (0,T;V ).   
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By a standard compactness method, we are in position to pass to the limit first as n 

\rightarrow  \infty , then as \varepsilon  \rightarrow  0, and finally, as k \rightarrow  

\infty . As a result, we obtain the existence of a pair (u,\varphi ) such that   

  

u \infty  \cap  L2(0,T;W\sigma ) \cap  H1(0,T;  H\sigma ), \in  

L (0,T;V\sigma ) 

 \varphi  \in  L\infty (0,T;H2(\Omega )) \cap  H1(0,T;V ),   

  

\varphi  \in  L\infty (\Omega  \times  (0,T)), with | \varphi (x,t)|  < 1 

a.e. (x,t) \in  \Omega  \times  (0,T), 

  

 \prime (\varphi ) \in  L\infty (0,T;V 

). Morewhich satisfies (2.12) and (2.13), where \mu  =  - \Delta \varphi  + \Psi  

over, \partial \bfn \varphi  = 0 a.e. on \partial \Omega  \times  (0,T), u(\cdot ,0) = u0, and 

\varphi (\cdot ,0) = \varphi 0 in \Omega . Since \partial t\varphi  + u \cdot  \nabla 

\varphi  belongs to L2(0,T;V ) owing to the above regularity properties, we in fer from 

the classical regularity theory of the homogeneous Neumann operator that  

\mu  \in  L2(0,T;H3(\Omega )), \partial n\mu  = 0 a.e. on \partial \Omega  \times  (0,T) 

and  \partial t\varphi  + u \cdot  \nabla \varphi  = \Delta \mu  holds 

  

a.e. in \Omega  \times  (0,T). Finally, we can recover the pressure \pi  arguing as in [81, 

Propositions 1.1 and 1.2, Chapter III]. In particular, it is possible to show that there 

exists  

\pi  \in  L2(0,T;V ) such that \partial tu + (u \cdot  \nabla )u  -  div(\nu (\varphi )D u) + 

\nabla \pi  = \mu \nabla \varphi  holds a.e. in 

\Omega  \times  (0,T).   

7. Further regularity properties. From the regularity  \mu  \in  L\infty (0,T;V ), 

Theorem 

A.2 entails that \varphi  \in  L\infty (0,T;W2,p(\Omega )) and F\prime (\varphi ) \in  L\infty 

(0,T;Lp(\Omega )) for any 2 \leq   

p < \infty . Furthermore, thanks to the growth condition (2.11), we also deduce that  

F\prime \prime (\varphi ) \in  L\infty (0,T;Lp(\Omega )) for any p \in  (2,\infty ). Next, as a 

consequence, we prove that  

\partial t\mu  exists and belongs to L2(0,T;V \prime ). To this aim, given h > 0, we denote 

the difference quotient of a function . For any v \in  V 

  h\mu ,v) = withh\varphi ,\| 

v\| \nabla Vv) + (\leq  1, by using the boundary condition on\partial thF\prime (\varphi ),v)  

-  \theta 0(\partial th\varphi ,v). Since F\prime \prime  is convex, we find the control  \varphi 

, we observe that (\partial t 

(\nabla \partial t 

  

(\partial thF\prime (\varphi ),v) \leq  \bigm\| \bigm\| \bigm\| \int 01 \Bigl( sF\prime 

\prime (\varphi (\cdot  + h)) + (1  -  s)F\prime \prime (\varphi    )\Bigr) ds\bigm\| 

\bigm\| \bigm\| L3(\Omega )\| \partial th\varphi \| \| v\| L6(\Omega ) 
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(4.43)\leq  C\Bigl( \| F\prime \prime (\varphi (\cdot  + h))\| L3(\Omega ) + \| F\prime \prime 

(\varphi )\|   L3(\Omega )
\Bigr) \| \partial th\varphi \| . 

  

h\varphi  \rightarrow  \partial t\varphi  in L2(0,T;V ) and F\prime \prime (\varphi ) \in   
L\infty (0,T;L3(\Omega )), there exists a 

Recalling that \partial t 

positive constant C3, independent of h, such that \| \partial 
th\mu  \| L2(0,T;V \prime ) \leq  C3. 

This implies that \partial t\mu  \in  L2(0,T;V \prime ). In particular, we deduce that \mu  

\in  \scrC ([0,T],V ). 

8. Uniqueness and continuous dependence. The uniqueness of strong solutions is  

 an immediate consequence of 

Theorem 3.1. We conclude the proof by showing a 

  

continuous dependence estimate with respect to the initial conditions in higher-order 
norms than the dual norms employed in Theorem 3.1. We define u = u1  -  u2 and \varphi  

= \varphi 1  -  \varphi 2, where (u1,\varphi 1) and (u2,\varphi 2) are two strong solutions 

departing from (u01,\varphi 01) and (u02,\varphi 02) that satisfy u0i \in  V\sigma 
 and \varphi 

0i \in  H2(\Omega ) such that 

\| \varphi 0i\| L\infty (\Omega ) \leq  1, | \varphi 0i|  < 1, \mu 0i =  - \Delta \varphi 0i + \Psi \prime 

(\varphi 0i) \in   V and \partial \bfn \varphi 0i = 0 on \partial \Omega . We take v = u and 

v = \varphi  in (3.1) and (3.2), respectively. Adding the resulting equalities, we find   

  3 d

  \sum  

 d t\scrH 1 + (\nu (\varphi 1)Du,Du) + (\nabla \mu ,\nabla \varphi  ) = \scrJ k, 
   k=1 

 having 

set  such 
that 

(4.44) 

In what follows the positive constant , , , , and the con- 

(4.45) 
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Integrating by parts and using the embedding V \lhook \rightarrow  L 6(\Omega ), 

together with (4.44) and 

  

(4.45), we observe that 

 

3 

d 

   . 

d 

We now address the terms  

. 

By (4.44) and (4.45) and the embedding W2,3(\Omega ) \lhook \rightarrow  W1,\infty 

(\Omega ) valid in dimension 

  

two, we obtain 

  

and  

In view of the above estimates, we end up with the following differential inequality  

  

 \| \nabla  + 

 d \scrH 1 + \nu \ast u\| 21\| \Delta \varphi \| 2 \leq  C8\Bigl( 1 + \| u2\| 4\bfW 

1,3(\Omega )\Bigr) \scrH 1. 

 dt 2 8   

  

Therefore, since u2 \in  L4(0,T;W1,3(\Omega )), an application of the Gronwall lemma im 

plies the desired stability inequality (4.1).  

  

By virtue of the energy identity (cf. (2.18)) and the global well-posedness of the 
strong solutions, we can prove that the (unique) weak solution regularizes instanta- 

neously. That is, the weak solution is indeed a strong solution on \Omega  \times  (\tau 

,\infty ) for any 

\tau  > 0.   
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Theorem 4.2. Let d = 2, R > 0, m \in  ( - 1,1), and \tau  > 0 be given. Assume that 

(u0,\varphi 0) is an initial datum such that \scrE (u0,\varphi 0) \leq  R, \| \varphi 0\| L\infty 

(\Omega ) \leq  1 and \varphi 0 = m, and (u,\varphi ) is the weak solution departing from 

(u0,\varphi 0) . Then, there exist two positive constants M1 = M1(R,m,\tau ) and M2 = 

M2(R,m,\tau  ), independent of the specific 

  

datum (u0,\varphi 0), such that   

  

(4.46) , 
  

and   
  

(4.47)\| u\| L2(t,t+1;\bfW \sigma ) + \| \partial tu\| L2(t,t+1;\bfH \sigma ) + \| \partial t\varphi \|  

L2(t,t+1;V ) \leq  M2 \forall t \geq  \tau . 

  

In addition, for any p \geq  2, there exists a positive constant  M3 = M3(R,m,\tau 

,p) such that   

  

(4.48) . 

  

Proof. Let (u,\varphi ) be the global weak solution with initial condition (u0,\varphi 

0) given by Theorem 2.4. Due to (2.18), for any \tau  > 0, we infer from (2.18) that there 

exists  

  

\tau 0 \in  (0,\tau ) such that (u(\tau 0),\varphi (\tau 0)) satisfies the assumptions of 

Theorem 4.1 and  

  

(4.49) \scrE (u(\tau 0),\varphi (\tau 0)) \leq  R,\varphi (\tau 0) =  m. 

  

Taking (u(\tau 0),\varphi (\tau 0)) as initial datum, we have a global strong solution on 

the time interval [\tau 0,\infty ), which coincides with the weak solution due to Theorem 

3.1. Now, in order to show the uniform estimates (4.46)--(4.48), we consider the 

approximating solutions (unk,\varepsilon ,\varphi nk,\varepsilon ) constructed in the proof of 

Theorem 4.1 on the time interval  [\tau 0,\infty ) corresponding to the initial datum 

(u(\tau 0),\varphi (\tau 0)) . Thanks to (4.18) and (4.19), 

we have   

  

(4.50)   

\scrE \varepsilon (uk,\varepsilon n (t),\varphi k,\varepsilon n (t)) + \int  t+1 \Bigl( \nu \ast \| \nabla 

un (s)\| 2 + \| \nabla \mu   k,\varepsilon n (s)\| 

2\Bigr) ds \leq  c\~0 \forall t \geq  

\tau 0, k,\varepsilon  
t 

  

where \~c0 depends on R, but is independent of t. Then, following line by line steps 4  

  

and 5 in the proof of Theorem 4.1, we deduce the differential inequality (cf. (4.36)) 
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  , 

d 
UNIQUENESS AND REGULARITY FOR MODEL H 

  

where \Lambda (u  ) is defined in (4.32). Here, the positive constants \nu  and 

\~c1 depend on R, m, and the other parameters of the system but are independent of k, 

\varepsilon , and n. 

By (2.7) and (4.50), we notice that   

  

 \int  t+1   

\Lambda (unk,\varepsilon (s),\varphi nk,\varepsilon )(s)ds \leq  c\~2 \forall t \geq  

\tau 0. 
 t   

Hence, an application of the uniform Gronwall lemma (see [80, Chapter III, Lemma  

  

1.1]) to (4.51) with r = \tau   -  \tau 0 entails   

 n\| \bfV \sigma  + \| \mu nk,\varepsilon (t))\| V \leq  M1  \forall t \geq  

\tau , 

\| uk,\varepsilon (t) 

  

where M1 depends on R, m, and \tau , but is independent of (  u(\tau 0),\varphi (\tau 

0)). In addition, 

integrating in time (4.51) on (t,t + 1), for any t \geq  \tau , we are lead to  

  

\| 
u

nk,\varepsilon \| L2(t,t+1;\bfW \sigma ) + \| \partial t
u

nk,\varepsilon \| L2(t,t+1;\bfH \sigma ) + \| \partial 

t\varphi nk,\varepsilon  \| L2(t,t+1;V ) \leq  M2\forall t \geq  \tau . 

  

At this stage, passing to the limit in k, \varepsilon , and n as in the proof of Theorem 4.1 

and using the regularity in time of the strong solutions, the estimates (4.46) and (4.47)  

easily follow. In turn, we also infer the estimate (4.48) from Theorem A.2.   

  

As a consequence of Proposition 3.5 and Theorem 4.2, we deduce the continuous 

dependence of weak solutions with respect to the initial data in the energy space.  

  
Proposition 4.3. Let d = 2. Assume that a sequence of initial data  (u0n,\varphi 0n) and 

(u0,\varphi 0) are given such that u0n \in  H\sigma , \varphi 0n \in  V , \| \varphi 0n\| L\infty 

(\Omega ) \leq  1 and \varphi 0n = m with m \in  ( - 1,1) for all n, and (u0n,\varphi 0n) 
converges to (u0,\varphi 0) in H\sigma  \times V . Consider the solutions (un,\varphi n), 
(u,\varphi ) to (1.1)--(1.2) with initial data  (u0n,\varphi 0n) and (u0,\varphi 0), 
respectively. Then, for any t > 0, (un(t),\varphi n(t)) converges to  in H\sigma  

\times  V . 

 Proof. Let us fix t > 0. By assumption there exists  N0 > 0 such that \| u0n\|  + 

\| \varphi 0n\| V \leq  N0 and \| u0\|  + \| \varphi 0\| V \leq  N0. By Theorem 4.2 (with

 ) there exists 

N1 depending only on N0,m,t such that . Obviously, the 

same control in V\sigma  \times  H2(\Omega ) holds for (u,\varphi ). By Proposition 3.5 we 

infer that there exists N2 depending on N0 and m such that  
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e

 
, 

. 

Noticing that \scrY (t) \geq  N2, assuming that 1, by 

interpolation we have   

. 

The above inequality implies the desired conclusion.   

Our next result concerns the propagation of regularity for any weak solution and 
the validity of the instantaneous separation property from the pure concentrations  

(i.e., \pm 1) in dimension two. This is possible due to a suitable estimate of \Psi   \prime 

\prime (\varphi ) in 

Lp spaces, which allows us to show further a priori higher-order Sobolev estimates.  

  

Theorem 4.4. Let d = 2, R > 0, m \in  ( - 1,1), and \tau  > 0 be given. Assume that 

(u0,\varphi 0) is an initial datum such that \scrE (u0,\varphi 0) \leq  R, \| \varphi  0\| L\infty 

(\Omega ) \leq  1 and \varphi 0 = m, and 

(u,\varphi ) is the weak solution departing from (u0,\varphi 0). Then, there exists two 
positive constants M4 = M4(R,m,\tau ) and , independent of the specific 
datum (u0,\varphi 0), such that   

(4.52)  
 and   
  

(4.53)\| \partial tu\| L2(t,t+1;\bfV \sigma ) + \| \partial t\varphi \| L2(t,t+1;H2(\Omega )) \leq  M5

 \forall t \geq  \tau . 

  

Furthermore, there exists \delta  = \delta (R,m,\tau ) > 0 and M6 = M6(R,m,\tau ) such that 

  

and 

(4. 54). 

Proof. First, by replacing \tau  with  in Theorem 4.2, we can assume that the so- 

lution (u,\varphi ) satisfies the uniform estimates (4.46)--(4.48) on the time interval [

 
We proceed by showing additional higher-order a priori estimates on the solution. In  

 the sequel, ki, i \in  \BbbN , 

denotes a positive constant which depends on R, m, and \tau  but is independent of the 

specific initial datum. Given h > 0, repeating line by line the proof of the stability result 
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(4.1) in Theorem 4.1 (cf. step 8), where the difference of two solutions (u1  - u2,\varphi 1  

- \varphi 2) is replaced by (\partial thu,\partial  th\varphi ), we deduce the differential 

inequality   

  

\partial hu\| 2 + 1\| \Delta \partial th\varphi \| (4.55) d \scrH  + \nu \ast  \| \nabla 

2 \leq  k0(1 +   \| u\| 4\bfW 1,3(\Omega ))\scrH 2, 
 2 t 
 dt 2 8 

  

where 

 2 2   

and the positive constant k0 is independent of h but depends on  M1 and . Recalling 

that \| \partial thf\| L2(t,t+1

;H) \leq  \| ft\| L2(t,t+2;H),

   

where k1 is independent of h, but depends on . Hence, the uniform Gronwall lemma 

(see [80, Chapter III, Lemma 1.1]) with yields 

  

\| \partial thu\| L\infty (\tau ,\infty ;\bfH \sigma ) + \| \partial th\varphi \| L\infty 

(\tau ,\infty  ;H) \leq  M4, 

 and   

\| \partial thu\| L2(t,t+1;\bfV \sigma ) + \| \partial th\varphi \| L2(t,t+1;H2(\Omega )) \leq  M5

 \forall t \geq  \tau , 
UNIQUENESS AND REGULARITY FOR MODEL H 

  

  

where M4 and M5 depend on R, m, and \tau  but are independent of h, t, and the specific 

initial datum. A final passage to the limit as h \rightarrow  0 entails (4.52) and (4.53). 

We are now in position to prove the separation property. In light of (4.52), it is 

immediate to deduce that \partial t\varphi +u\cdot \nabla \varphi  \in  L\infty (\tau 

,\infty ;H). Then, the regularity theory of the Neumann  

 problem 

implies that 

  

  

(4.56) \| \mu \| L\infty (\tau ,\infty ;H2(\Omega )) \leq  k2.  

By Theorem A.2 with f = \mu +\theta 0\varphi  \in  L\infty (\Omega \times (\tau ,\infty 

)), we find  \| F\prime (\varphi )\| L\infty (\Omega \times (\tau ,\infty )) \leq k3. This, in turn, entails 

that there exists \delta  > 0 such that  

  

(4.57)   

  

  

Thanks to the regularity (4.48) and the separation property (4.57), and recalling 



2576 ANDREA GIORGINI, ALAIN MIRANVILLE, AND ROGER TEMAM  

  

  

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.  

\prime (\varphi   )\| L\infty (\tau ,\infty 

;H2(\Omega )) \leq  k4. Thus, that F \in  \scrC 3([ - 1 + \delta ,1  -  \delta ]), we deduce that \| 

F 

exploiting (4.56), the above control and the regularity theory of the Neumann problem, 

we get \| \varphi \| L\infty (\tau ,\infty ;H4(\Omega )) \leq  k5. Moreover, setting f = \mu \nabla 

\varphi   -  \partial tu  -  (u \cdot  \nabla )u, we infer from (4.46), (4.48), and (4.52) that, 

for any 1 < p < 2, there exists k6 such 

  

that \| f \| L\infty (\tau ,\infty ;\bfL p(\Omega )) \leq  k6, where k6 depends on p . Then, in light of 

(4.48), an application of Theorem B.3 (with r = \infty ) yields \| u\| L \infty (\tau ,\infty ;\bfW 

2,p(\Omega )) \leq  k7. Recalling the embedding W1,p \lhook \rightarrow  Lp\ast , where 

, and choosing , we obtain u \in  L\infty (\tau ,\infty ;W1,4(\Omega )). 

Thanks to this regularity, we observe that f \in  L\infty (\tau ,\infty ;H).   

Applying once again Theorem B.3, we find   

  

\| u\| L\infty (\tau ,\infty ;\bfW \sigma ) \leq  k8.  

  

Due to the continuity in time of the solution, we note that the above inequalities hold 

for any t \geq  \tau , giving the desired estimate (4.54) with M6 depending on k5 and k8. 

 

  

5. Local strong solutions in three dimensions.  In this section we study the 

well-posedness of strong solutions in dimension three.  

Theorem 5.1. Let d = 3. Assume that u0 \in  V\sigma 
 and \varphi 0 \in  H2(\Omega ) is such 

that 
  

\| \varphi 0\| L\infty (\Omega ) \leq  1, | \varphi 0|  < 1, \mu 0 =  - \Delta \varphi 0+\Psi \prime 

(\varphi 0) \in  V , and \partial n\varphi 0 = 0 on \partial \Omega . Then, there exist a time 

T\ast  > 0 and a unique strong solution to (1.1) --(1.2) on [0,T\ast ] satisfying 

  

u \in  L\infty (0,T\ast ;V\sigma ) \cap  L2(0,T\ast ;W\sigma ) \cap  H1(0,T\ast ; H\sigma ), \pi  \in  

L2(0,T\ast ;V ), 

\varphi  \in  L\infty (0,T\ast ;W2,6(\Omega )) \cap  H1(0,T\ast ;V ),   

  

\mu  \in  L\infty (0,T\ast ;V ) \cap  L2(0,T\ast ;H3(\Omega )).   

  

The strong solution satisfies (1.1) a.e. on (x,t) \in  \Omega  \times  (0,T\ast ) and \partial 

n\mu  = 0 a.e. on 

\partial \Omega  \times  (0,T\ast ).   

  

The proof of Theorem 5.1 relies on the argument employed in the proofs of The- 

orems 3.1 and 4.1. For the sake of brevity, we report only the main changes.  

  

Proof. We follow the proof of Theorem 4.1. For the same values of k, \varepsilon , 

and n as defined in steps 1--3, we obtain the approximating sequences ( u ) that 

solve (4.13)--(4.14) and (4.15). Before deriving uniform a priori estimates we 

specify that the positive constant, depends on the parameters of the 

system, the constants  
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in embedding and interpolation results, and \scrE (u0,\varphi  0), but is independent of 

the approximation parameters k, \varepsilon , and n and of the norms \| u0\| \bfV \sigma  and 

\| \mu 0\| V . It is easily seen that the energy estimates (4.20)--(4.25) also hold. In 

particular, we have (5.1) . 

  

Let us now proceed by showing higher-order Sobolev estimates. First, arguing as in  

step 5 we find   

 d2 

d 

. 

Next, we take v = Aunk,\varepsilon  in (4.13). We recall that there exists 

unk,\varepsilon  +\nabla pnk,\varepsilon  = pnk,\varepsilon  \in  L2(0,T;V ) satisfying  - \Delta 

Aunk,\varepsilon  a.e. in \Omega  ) and the estimates (4.28). Thus, 

we find 
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. 

(4.28). We have   
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 2 2 

 = \ast  0 and summing up to (5.4), we obtain 

 2 4 

) is the same as in (4.32). Owing to (2.2) and (5.1), we observe 

Thus, we deduce that   

  

(5.7) \Lambda (u  ) 

  . 

  

On the other hand, we have   

  

\Lambda (u . 

  

Exploiting (4.23), we are led to    

d dt\Lambda (unk,\varepsilon ,\varphi nk,\varepsilon ) + \nu \Bigl( \| 

Aunk,\varepsilon \| 2 + \| \partial tunk,\varepsilon \|   2 + \| \nabla \partial 

t\varphi k,\varepsilon n \| 2\Bigr)  

(5.8)  

  

where. In addition, following line by line the estimates 

performed  

  

in the proof of Theorem 4.1 for a uniform bound of the initial condition, we easily get  

(5.9)\Lambda (un\lambda (0),\varphi n\lambda (0)) \leq  C(1 + \| u0\| \bfV \sigma   + \| \mu 0\| V 

), 

  

where C is independent of k, \varepsilon , and n, provided that n is sufficiently large. 

Therefore, we infer from (5.8) and (5.9) that there exist a positive time T\ast , depending 

on \| u0\| \bfV \sigma  

 
and \| \mu 0\| V , and a positive constant C such that   
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\ast  

sup\Lambda (u 
0\leq t\leq T\ast  

  

 
where C is independent of k, \varepsilon , and n. A final passage to the limit allows us to 

recover the existence of a strong solution to the original problem (1.1)--(1.2). Moreover, 

the  

  

additional claimed regularities for \varphi  and \mu  can be easily deduced as in the 

proof of  

Theorem 4.1.   

We are left to prove the uniqueness of strong solutions. Given two strong solutions 

(u1,\varphi 1) and (u2,\varphi 2), defined on the time interval (0,T 
0) with the same initial 

datum 

(u0,\varphi 0), we define their difference u = u1  -  u2 and \varphi  = \varphi 1  -  \varphi 2. 

We observe that 

  

the regularity of strong solutions allows us to follow the argument in the proof of 

 Theorem 

3.1. Then, we have the differential inequality  

 d 1
   7 

(5.10)  \scrH  + \nu 
\ast \| u\| 2 + \| \nabla \varphi \| 2 \leq  
\alpha 2\scrH  + \sum \scrI k, dt 2  
 k=1 

  

where the terms \scrH  and \scrI k are defined as above.In light of the regularity  ui \in  

L\infty (0,T0;V\sigma ) and \varphi i \in  L\infty (0,T0;W2,6(\Omega )), i = 1,2, we can easily infer 

that  

  

  

for some positive constant C1. On the other hand, by using (2.2) and the boundedness of 

\nu \prime , we simply obtain   
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and   

 
  

for some positive constants C2 and C3. Collecting the above estimates together, we end 

up with   

d \scrH  \leq  C (1 + \| Du \| 23 

)\scrH . dt 4 2 L (\Omega )  

2(0,T0;L3(\Omega )), the uniqueness of strong solutions immediately follows   

Since Du2 \in  L from the Gronwall lemma.   

  

 Appendix A. On Neumann problems. For any  \lambda  \geq  0, let us 

consider the 

Neumann problem   

  

\Biggl\{  

 - \Delta u + \lambda u = f, in 

\Omega  , (A.1)   

 \partial \bfn u = 0, on \partial  \Omega . 

  

We introduce the operator B\lambda  \in  \scrL (V,V \prime ) defined by  

  

 
  

We consider the spaces   

  

, 

  

and we recall that . The restriction A0 of B0 to V0 being an 

isomorphism from V0 onto , we denote by  its inverse map. It is well 

known that for all is the unique u \in  V0 such that \langle A0u,v\rangle  = 

\langle f,v\rangle  

for all v \in  V . On account of the above definitions, we observe that  

  

(A.2) . 
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Owing to (A.2), it is straightforward to prove that  

is a norm on  equivalent to the natural one. In addition, for any  ), 

we have the chain rule   

  

  

(A.3),  a.e.  t \in  (0,T). 

  

Furthermore, due to regularity theory of the Neumann problem, we know that  

  

(A.4). 

  

  

For any \lambda  > 0, we also consider the operator A\lambda  =  - \Delta  + \lambda I as 

unbounded operator on H with domain D(A\lambda ) = \{ u \in  H2(\Omega ) : \partial \bfn 

u = 0 on \partial \Omega \} . It is well-known that A\lambda  is positive, unbounded, self-

adjoint operator in H with compact inverse (see, e.g.,  

[80, Chapter II, section 2.2]).   

Next, we introduce the homogeneous Neumann elliptic problem with a logarithmic 
convex nonlinear term, that is, with the same F as in (2.8)--(2.9),  

  

 \Biggl\{  - \Delta u + F\prime (u) = f,in \Omega  , 

(A.5)   

 \partial \bfn u = 0, on \partial \Omega . 

  

Under the assumptions in section 2, we have the following well-posedness and approx- 

imation result.   

Lemma A.1. Let \Omega  be a bounded domain in \BbbR d, d  = 2,3, with smooth 

boundary. Assume that f \in  H. Then, there exists a unique solution u to problem (A.5) 

such that u \in  H2(\Omega ), F\prime (u) \in  H and satisfies  - \Delta u + F\prime (u ) = f for 

almost every x \in  \Omega and \partial nu = 0 for almost every x \in  \partial \Omega . 

Moreover, we have   

(A.6) \| u\| H2(\Omega ) + \| F\prime (u)\|  \leq  C\bigl( 1 + \| f\| \bigr) . 

  

Let us assume that the sequence \{ fk\}  \subset  H, and f \in  H . We consider the solutions 

uk 

and u to problem (A.5) corresponding to fk and f, respectively. Then,  fk \rightarrow  f in 

H, as k \rightarrow  \infty , implies   
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(A.7) \| uk  -  u\| V \rightarrow  0, as k \rightarrow  \infty  . 

  

  

Proof. The existence of a solution u to problem (A.5) can be proved relying on 

  

the theory of maximal monotone operator. We define the functional on  H 

 
  

with domain D(\scrF ) = \{ u \in  H1(\Omega ) : \| u\| L\infty (\Omega ) \leq  1\} . We observe 

that \scrF  is a proper, lower semicontinuous and convex functional. Now, we consider 

the subdifferential \partial \scrF of \scrF , defined as w \in  \partial \scrF (u) if and only 

if, for all v \in  H, \scrF (v) \geq  \scrF (u) + (w,v  -  u). Then, \partial \scrF  is a maximal 

monotone operator on H (see [20]). Moreover, it is well known that D(\partial \scrF ) = 

\{ u \in  H2(\Omega ) : F\prime (u) \in  H,\partial \bfn   u = 0 on \partial \Omega \}  and 

\partial \scrF (u) = 

 - \Delta u + F\prime (u) (see [14, 9]). By (2.9), we deduce that \partial \scrF  is also 

coercive, namely, 

(\partial \scrF (u)  -  \partial \scrF (v),u  -  v) \geq  \theta \| u  -  v\| 2 for all u,v \in  

D(\partial  \scrF ), where \theta  is the same as in 

(2.9). In turn, this implies that \partial \scrF  is surjective on H. In addition, the estimate 

(A.6) can be proved as in [9, 29]. Finally, exploiting (2.9) once more, we can easily infer  

  

the uniqueness of solutions and the approximation result (A.7) to problem (A.5).  

  

We now report some elliptic estimates, whose proofs can be found in [2, 29, 49].  
  

Theorem A.2. Let \Omega  be a bounded domain in \BbbR d with smooth boundary. 

Assume that u is the solution to problem (A.5). We have the following:  

\bullet  Let d = 2,3 and f \in  Lp(\Omega ), where 2 \leq  p \leq  \infty  . Then, we 

have 

  

\| F\prime (u)\| Lp(\Omega ) \leq  \| f\| L p(\Omega ). 

  
\bullet  Let d = 2,3 and f \in  V . Then, we have    

. 

  

In addition, there exists a positive constant C = C(p) such that 

  

\| u\| W2,p(\Omega ) + \| F\prime (u)\| Lp(\Omega ) \leq  C\bigl( 1 + \| 

f\| V \bigr) , 
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where p = 6 if d = 3 and for any p \geq  2 if d = 2 . 

\bullet  Let d = 2 and f \in  V . Assume that F satisfies  
 \prime    
 F\prime \prime (s) \leq  eC| F (s)| +C\forall s \in  ( - 1,1) 

  

for some positive constant C. Then, for any p \geq  1, there exists a positive 

constant C = C(p) such that  

  

\| F\prime \prime (u)\| Lp(\Omega ) \leq  C\bigl( 1 +  eC\| f\| 2V \bigr) . 

  

 Appendix B. On Stokes operators. We consider the homogeneous Stokes  

  

First, we 

introduce the Stokes 

operator as the map Asuch 

that 

, 

namely, A 

is the 

canonical isomorphism from V\sigma  onto . We denote by A - 1 : Vthe inverse map of the 

Stokes operator. That is, given f, there exists 

a unique u = A - 1f \in  V\sigma  such that   

  

 (\nabla A - 1f ,\nabla v) = \langle f ,v\rangle  \forall v \in  V\sigma . 

  

It follows that is an equivalent norm on V\sigma 

\prime  and the chain rule  

 , a.e.  t \in  (0,T), 

  

holds for any f ). In order to recover the pressure p, the well-known 

De Rham result implies that if f \in  H - 1(\Omega ), there exists p \in  H (such that p = 0) 

such that \nabla p = \Delta u + f in the distributional sense. In addition, by [81, 

Proposition  

1.2] we know that   

  

problem 

(B.1) 

\left\{  

 - \Delta u + 

\nabla p = f , 

   

divu = 0,   u 

= 0, 

  

  

in 

\Omega  , 

  

in 

\Omega  
, on 

\partial  

\Omega 

. 
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(B.2) \| p\|  \leq  C\| f \| \bfH  - 1(\Omega ).  

  

Let us now report the regularity theory of the Stokes problem (B.1) (see [24]). As- 

suming that f \in  H, then there exist a unique u  and p \in  V (unique up to 

a constant) such that  - \Delta u + \nabla p = f a.e. in \Omega . Moreover, there exists a 

constant  

C such that   

  

(B.3) \| u\| \bfH 2(\Omega ) + \| p\| V \leq  C\| f \|  . 

  

We denote by P : H \rightarrow  H\sigma  the Helmholtz--Leray orthogonal projection 

from H onto H\sigma . We recall that P is a bounded operator from V into  , namely, 

there exists a positive constant C such that  

  

\| Pv\| \bfV  \leq  C\| v\| \bfV  \forall v \in  V . 

  

We also report that P\nabla v = 0 for any v \in  V . Next, we consider the Stokes operator 

as an unbounded operator on H\sigma  with domain D(A) = \{ u \in  V\sigma  : Au \in  H\sigma 

\} . It is well known that A is a positive, unbounded, self-adjoint operator in  H\sigma  

with compact 

inverse (see, e.g., [81]). In particular, we have   

  

 Au = P( - \Delta u)\forall u \in  D(A),whereD (A) = H2(\Omega ) \cap  V\sigma . 

  

Thanks to the above regularity results, we deduce that the operator A - 1 : H\sigma  

\rightarrow H2(\Omega ) \cap  V\sigma  is such that, for any f \in  H\sigma , there exist

) and p \in  V that 

solve   

  

(B.4)  - \Delta A - 1f + \nabla p = f .  

  

In turn, this entails that AA - 1f = f . Owing to (B.3), we have  

  

(B.5) \| A - 1f \| \bfH 2(\Omega ) + \| p\| V \leq  C\|  f \| . 

  

We are now in position to find an -estimate of the pressure p in (B.4) in terms of 

\| \nabla A - 1f \| . Let us first report a preliminary interpolation result (see [73]).  

Lemma B.1. Let \Omega  be a Lipschitz domain in \BbbR d, d = 2,3, with compact 

boundary. 
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Then, there exists a positive constant C such that 

  

(B.6)  

We have the following result.   

 Lemma B.2. Let and f \in  H\sigma . Then, there exists a positive constant C 

(independent of f) such that   

  

(B.7)  

Proof. Thanks to (B.2), we need to control  by means of \| f \| \sharp . To this 

end, let us consider v (\Omega ) with 1. By exploiting the integration by 

parts, we find   

  

 (f ,v) = (P( - \Delta )A - 1f ,v)   

  - 1   

 = ( - \Delta A f ,Pv)   

 \int    

 = (\nabla A - 1f ,\nabla Pv)  - \nabla A -  1fn \cdot  Pv d\sigma . 
 \partial \Omega    

We recall that the classical trace theorem implies . In addition, 

by the properties of the Helmholtz--Leray operator and the Poincar\'e inequality, we 

have . Then, we deduce that  

  

An application of Lemma B.1, 

together with (B.5), implies that 

 \| f \| \bfH  - 1(\Omega )\| \nabla A f \|  +\| \nabla A f \| 2\| f \| 2. 

  

Thus, the desired inequality (B.7) immediately follows.   

  

Finally, we consider the homogeneous Stokes problem with nonconstant viscosity 

depending on a given measurable function \varphi . The system reads as follows  

\left\{  

    - div(\nu (\varphi )Du) + \nabla \pi  = f , in \Omega , 

(B.8) divu = 0,  in \Omega , 

   u = 0,   on \partial \Omega , 

  

where the coefficient \nu  fulfils the assumptions stated in section 2. We report a regu-  
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larity result whose proof has been provided in [2, section 4, Lemma 4].  

  

Theorem B.3. Let d = 2, \varphi  \in  W1,r(\Omega ), with 2 < r \leq  \infty , and f \in  

Lp(\Omega ), with 

1 \leq  p < \infty . Assume that u \in  V\sigma  is a weak solution to (B.8), i.e., 

  

 (\nu (\varphi 

)Du,Dv) = (f,v) \forall v \in  V\sigma . 

  

Then, there exists C > 0, depending on r and p, such that  

  

(B.9)\| u\| \bfW 2,p\prime (\Omega ) \leq  C\bigl( 1 + \| \nabla \varphi \| \bfL r(\Omega )\bigr) 

\bigl( \| f\| \bfL  p(\Omega ) + \| \nabla u\| \bigr) , 
   

where , provided that p\prime  > 1.   

  

Appendix C. A product estimate in two dimensions. We report here a 

logarithmic estimate of the product of two functions in two dimensions. The following 

proof is based on an idea developed in [30] and [82] to control the convective term of 

the Navier--Stokes equations.  

  

Proposition C.1. Let \Omega  be a bounded domain in \BbbR 2 with smooth boundary. As- 

sume that f \in  V and g \in  V . Then, there exists a positive constant  C such that 

  

  

(C.1). 

  

Proof. Let us consider the operator A1 =  - \Delta  + I on H with domain D(A1) = 

\{ u \in  H2(\Omega ) : \partial \bfn u = 0 on \partial \Omega \}  defined in Appendix A. 

By the spectral theory, there exists a sequence of positive eigenvalues \lambda k (k \in  

\BbbN )  associated with A1 such that 

\lambda 1 = 1, \lambda k \leq  \lambda k+1 and \lambda k \rightarrow  \infty  as k goes to 

\infty . The sequence of eigenfunctions wk \in  D(A1) such that A1wk = \lambda kwk forms 

an orthonormal basis in L2(\Omega ) and an orthogonal basis in H1(\Omega ). In 

particular, we have the representation  

  

\infty   f = 

\sum (f,wk)wk.   

  
k=1 
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Let us fix N \in  \BbbN  whose value will be chosen later. We write  f as follows 

  
N 

 \sum  \bot    

(C.2) f = fn + fN,   
 n=0   

 where

   

. 

  

By using the above decomposition, the H\"older inequality, and subsequently (2.1) and  

(2.3), we find 

(C.3) . 

We now observe that  
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Here 

we have 

used the 

fact that ( 

2) = n is a 

finite 

sum of wk 

 k ( k) 

Then, we deduce that 

 n n H2(\Omega ) n V 

On the other hand, reasoning as above, we have   

  

 \| f\bot \| 2

 \leq  1\| f\bot \|  2 

Combining the above inequalities in (C.3) and applying the Cauchy--Schwarz inequal- 

ity, we get   

 N   

\| fg\|  \leq  C \sum  e

 
 n=0 e 2   

(C.4) 

Now, we choose 

the integer N   
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By using the above choice of N in (C.4), we eventually infer that  

  

, 

  

which implies the desired conclusion.    

  

For the purpose of this work we state an immediate generalization of (C.1), whose proof 

which can be inferred from that of Proposition C.1 is left to the interested reader.   

 \BbbR 2 with smooth boundary. 

AsProposition C.2. Let \Omega  be a bounded domain in sume that f \in  V , g \in  V, and h 

\in  V . Then, there exists a positive constant C such that   

  

(C.5) . 
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