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UNIQUENESS AND REGULARITY FOR THE
NAVIER--STOKES--CAHN--HILLIARD SYSTEM \ast

ANDREA GIORGINI\dageer ) ALAIN MIRANVILLE\ddageer AND ROGER TEMAM\S

Abstract. The motion of two contiguous incompressible and viscous fluids is described within the diffuse
interface theory by the so-called Model H. The system consists of the Navier--Stokes equations, which are
coupled with the Cahn--Hilliard equation associated to the Ginzburg--Landau free energy with physically
relevant logarithmic potential. This model is studied in bounded smooth domains in \BbbR 4, d =2, and d = 3
and is supplemented with a no-slip condition for the velocity, homogeneous Neumann boundary conditions
for the order parameter and the chemical potential, and suitable initial conditions. We study uniqueness and
regularity of weak and strong solutions. In a two-dimensional domain, we show the uniqueness of weak
solutions and the existence and uniqueness

o € H}
. of global strong solutions originating from an initial velocity uo\in V\sgma, namely, v u(\Omega )
yright; see https://epubs.siam.org/terms-privacy such that

divuo = 0. In addition, we prove further regularity properties and the validity of the instantaneous separation
property. In a three-dimensional domain we show the existence and uniqueness of local strong solutions with
initial velocity uo \in V\sigma.
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1. Introduction. In the diffuse interface theory, the motion of two incompress- ible
and viscous fluids and the evolution of the interface that separates them are described
by the Model H. The domain \Omega of \BbbR 4, d = 2 or d = 3, is filled with a

mixture of two fluids with the same density; the concentrations of the fluids are \varphi
i, 1=1,2, where \varphi i\in [0,1] and \varphi 1+ \varphi 2= 1. The physics of the Model
H is such that the interface between the two fluids is assumed to be a narrow region
with fi- nite thickness. The concentrations are uniform (equal to 0 or 1) in subregions
of \Omega

and vary steeply but continuously across the thin interface layer. This formulation

allows large interface deformations and topological changes of the interfaces in the
mixture. After the seminal work [57] on critical points of single and binary fluids, a
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detailed derivation of the Model H was proposed in [53] and [78] for the flow driven by
capillarity forces. The model is based on the balance of mass and momentum
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that are combined with constitutive laws compatible with a version of the second law
of thermodynamics. Model H has been employed in several numerical studies for
concrete applications. Relevant examples are interface stretching during mixing [25],
thermocapillary flows [62], droplet formation and collision, moving contact lines, and
large-deformation flows [60,
68]. For a review on these topics we refer the reader to

[10] and the references therein. Further generalizations of the Model H have been dis
cussed for fluid mixtures with different densities in [8, 11, 18, 33, 69], and for contact
angle problems and ternary fluids in [19, 65] and the references therein.

Assuming that density differences are negligible, we consider two state variables:
the volume-averaged fluid velocity u = u(x,t) and the difference of the fluids con -

centrations (order parameter) \varphi = \varphi (xt), equal to \varphi 1 - \varphi zin
the notation above, where x \in \Omega \subset \BbbR ¢, d = 2 or d = 3, \Omega being
a bounded domain with smooth bound ary \partial \Omega , and t the time. The
evolution of the two state variables is governed by the Navier--Stokes--Cahn--Hilliard
(NSCH) system, which reads in dimensionless form:

div(\nu (\varphi)Du) + \nabla \pi = \mu \nabla \varphi,

Copyright © by SIAM. Unauthorized reproduction of thi:


http://www.siam.org/journals/sima/51-3/M122345.html
http://www.siam.org/journals/sima/51-3/M122345.html

UNIQUENESS AND REGULARITY FOR MODEL H 2537

du+ (u-V)u —
divu =0,

(1.1)in
e u

\Omega \times (0,T),
+ \cdot \nabla \varphi =

\Delta \mu,

\prime (\ yarphi ),
\mu = -\Delta \varphi + \Psi

subject to the boundary and initial conditions

{uzO. Onpt = On -0

on \partial
w(-0) =0, 9(0)=%0 \times (0,T),

\Omega
(1.2)
in \Omega .

yright; see https://epubs.siam.org/terms-privacy
1\bigl(\ habla u +(\nabla

4)e\bigr)

Here n is the unit outward normal vector to the boundary \partial \Omega, Du =zis the
symmetric gradient, \pi = \pi (xt) is the pressure, and \mu = \mu (xt) is the socalled
chemical potential. The potential \Psi is the physically relevant homogeneous free
energy density introduced in [22] and defined as

0 ; o -

= (14 2)log(L+2) + (1= 2)log(1 — 2)) = 22* Vze[-1,1
13 \psi(?) =3 (1A oa(lr2) 4 (1= 2)log(1 —2)) - 5 11
where \theta and \theta o are related to the absolute temperature of the mixture and
the crit- ical temperature, respectively. These two constant parameters satisfy the
physical relations 0 < \theta < \theta o. This condition implies the double-well form to

the potential
(1.3). The mathematical analysis of (1.1)--(1.2) may lead to a solution \varphi with arbi-

trary values in \BbbR whatever the potential \Psi, but we have to keep in mind that, by
its very definition, - 1 \leq \varphi \leq 1 (\pm 1 represent the pure concentrations),
and we call these physical solutions. Now, assuming that \nu 1 and \nu 2 are the
viscosities of the two homogeneous fluids, the viscosity of the mixture is modeled by
the concentration de-

\not = \nu 2), a typical form for
pendent term \nu = \nu (\varphi). In the unmatched viscosity case (\nu 1
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\nu is the linear combination (see, e.g., [65] and Remark 2.1 below):

1+2 12
(1.4). v(z) =n——+m—— Vze[-11]

The particular case \nu 1= \nu 2is called matched viscosity case, and \nu is a positive
constant.

In the literature, the NSCH system has been widely studied by considering regular
approximations of the logarithmic potential (1.3). Typical examples are polynomial- like
functions, such as \Psi o(2) = §(z* — 52)2, where \kappa > 0 is related to \theta and
\theta o, and \pm \beta are the two minima of \Psi . In the matched viscosity case, the
mathematical analysis of problem (1.1)--(1.2) with regular potentials is now well
established, at least for classical boundary conditions. We refer the reader to [17, 15,
41, 44, 43, 48] (see also [16, 23, 46] for the analysis of similar systems). In the
unmatched viscosity case,

the author in [17] proved the
global existence of weak solutions and the existence

and uniqueness of strong solutions (global if d = 2, local if d = 3). Concerning the
longtime behavior, the existence of the trajectory attractor is showed in [44], while the
convergence to equilibrium is established in [85] for periodic boundary conditions.
However, in the case of polynomial potentials, it is worth recalling that it is not possible
to guarantee the existence of physical solutions, that is, solutions for which

-1
\leq \varphi (xt) \leq 1, for almost every x \in \Omega
and t > 0.

On the other hand, few results are available for the original Model H with logarith-
mic potential (1.3). The NSCH system with unmatched viscosities and logarithmic
potential has been only studied in [2], where existence of global weak ( physical)
solutions and existence and uniqueness of strong solutions (global if d = 2, local if d = 3)

are shown (see [2, Theorem 1 and 2]). In particular, in two dimensions, assuming u
0 € V3T (\Omega ) for r > 0, where V;H(\Omega ) = (Visigma ,W \sigma )r2 is an
interpolation space, and V\sigma and W\sigma are defined below in section 2, and assuming
a natural higher-order condition on \varphi o (cf. Theorem 4.1 below), the
corresponding strong solution (u,\varphi ) is global in time and unique. In three
dimensions, the local existence and uniqueness of

271(Q)
strong solutions is achieved provided that the initial velocity uobelongs to V

Co 1 14r :
with” = 3. The restriction on the initial velocity in v o (r>0ifd=2and

Copyright © by SIAM. Unauthorized reproduction of thi:
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oy 15
r> g ifds 3) is due to the uniqueness result [2, Proposition 1], which requires that u

\in L\infty (0, T;WL4(\Omega )), with q > 2 if d = 2 and q = 3 if d = 3, being not true for
classical strong solutions of the Navier--Stokes equations for an initial velocity

uo\in V\sigma. In addition, the author in [2] shows that any weak solution is more regular
on the interval [T, \infty ), for some T > 0 which is not explicitly estimated. It satisfies

the so-called asymptotic separation property (see [2, Lemma 12]), namely,

(1.5) \exists \delta >0, \exists T > 0 :\| \varphi (t)\| L\ (omega) \leq 1 - \delta
\forall t\geq T.

This is a key property in order to show that any single trajectory converges to an

equilibrium [2, Theorem 3]. We also mention the results in [6, 45, 71], where the global
) existence of weak solutions to similar systems has been established. In [6] the author
yright; see https#/gghﬂsjisdsel?% \%&%IHSCEP HEScH system for non-Newtonian fluids, in
[45] the authors study the NSCH system with boundary conditions that account for a
moving contact line slip

velocity, whereas in [71] the authors consider the NSCH-Oono

system. For the sake of completeness, we refer the interested reader to [3, 1, 4, 5, 7] for
the analysis of the NSCH system with different densities. Finally, we mention among
many references [12, 13, 27, 28, 26, 31, 32, 37, 38, 39,47, 51, 52, 54, 55, 56, 61, 64,
63,58, 68,74,75,59, 76,79, 83, 84] for the numerical analysis, in particular stability

and convergence analysis,
numerical simulations, and control problems of the NSCH

system. At this stage we note that to date some important issues are still unsolved, such
as the uniqueness of weak solutions of the NSCH in dimension two as well as the
uniqueness of strong solutions with initial velocity in V\sigma in both two and three
dimensions. It is not even known whether such properties hold in the simpler case with
matched viscosities. Besides, uniqueness of weak solutions in dimension two is an open

question even for the NSCH system with regular potential and unmatched viscosities.
The aim of this work is to answer positively to the above mentioned open ques-
tions. Our main results for the NSCH system with unmatched viscosities are the
following:
1. If d = 2, we show the uniqueness of weak (physical ) solutions.
2. 1fd =2, we prove the global existence and uniqueness of strong solutions when
uo\in V\sigma.

Copyright © by SIAM. Unauthorized reproduction of thi:



2540 ANDREA GIORGINI, ALAIN MIRANVILLE, AND ROGER TEMAM

3. If d = 2, we show that any (weak or strong) solution becomes instantaneously
more regular (that is, on [\tau,\infty ) for any \tau > 0), and it satisfies the
instanta-

neous separation property, namely,

(1.6)\forall \tau >0, \exists \delta = \delta (\tau) >0 :\| \varphi (£)\| Lty
(\omega) \leq 1 - \delta \forall t \geq \tau.

4. 1f d = 3, we prove the local existence and uniqueness of strong solutions when
uo \ln V\sigma .
We observe that the technique here employed to prove the uniqueness of weak so-

lutions in dimension two can be applied to show the same result for the following two
cases: logarithmic potential and matched viscosities as well as regular potentials and
yright; see https:/2 //Jpl%%tsclg?ﬁjc‘)/rgl 051t1es {see Remark 3.2 and 3.3). It is worth mentioning that our method
not only entails the umqueness of weak solutions in dimension two but a continuous

dependence estimate on the initial data with a time-dependent exponent.
The mathematical analysis presented in this paper may be employed to investigate

other diffuse interface models with logarithmic potential (1.3), also in connection with
the study of optimal control problems and the analysis of numerical schemes. Among
several models, we mention those systems that involve different laws for the velocity
field, such as the Hele--Shaw and Brinkman approximations [29, 50] or regularized

family of the Navier--Stokes equations [46] (see also [23]). [t would be interesting as

well to analyze modified equations of the Cahn--Hilliard type [19, 49, 70, 71] or the
Allen--Cahn equation (see, e.g., [42]). A further important issue would be to extend the
analysis to the nonisothermal version of the Model H introduced in [34, 35] and

to the Model H with mass transfer and chemotaxis presented in [66].

Plan of the paper. In section 2 we introduce the functions spaces, the main
assumptions of the paper, and we report a result of existence of weak solutions. In
section 3 we discuss the uniqueness of weak solutions in two dimensions. Section 4 is
devoted to analysis of strong solutions, the instantaneous regularization of weak

solutions, and the separation property in space dimension two. Section 5 is devoted to

the study of strong solutions in space dimension three. We report in Appendixes A and
B some mathematical tools regarding the Neumann and Stokes problems.
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2. Preliminaries.

2.1. Notation and functions spaces. Let X be a (real) Banach or Hilbert

space with norm denoted by \| \cdot \| x. The boldface letter X stands for the vectorial
space X9 (d is the spatial dimension), which consists of vector-valued functions u with
all components belonging to X, with norm \| \cdot \| \bx. Let \Omega be a bounded
domain in \BbbR ¢, where d = 2 or d = 3, with smooth boundary \partial \Omega . We
denote by Wkr(\Omega ), k \in \BbbN , the Sobolev space of functions in L?(\Omega )
with distributional derivatives of order less

r(\Omega ) and by \| \cdot \| wks(\omega) its norm. For k \in
\BbbN, the Hilbert space than or equal to kin L
Wk2(\Omega ) is denoted by H¥(\Omega ) with norm \| \cdot \| #x\0mega). We denote by
H(}(\Omega) the closure ofcf())o(\Omega) in H1(\Omega ) and by H-1(\Omega ) its dual
space. We define H = L2(\Omega ). Its inner product and norm are denoted by (\cdot
,\cdot ) and \| \cdot \|, respectively. We set I = H1(\Omega ) with norm \| \cdot \| v,
and we denote its dual space by V\prime with norm \| \cdot \| v\pime. The symbol \langle

\cdot,\cdot \rangle will stand for the duality product between Vand V \prime. We denote

by u the average of u over \Omega ; thatis, u = | \Omega | -!\langle u,1\rangle for all u
\in V\rrime By the generalized Poincar\'e inequality

(see [80, Chapter 1I, section 1.4]), we recall thatt —* ([|Vul[* + [@?)% is a norm on V
equivalent to the natural one. We recall the following Gagliardo--Nirenberg and
Agmon inequalities (see, e.g., [81])

1 1
1 4 < C'llullz lull &
@1\foran 1“1 = Clul ”“”‘]‘ u\in V ifd=2,
llulla) < Cllull? [|ull3:

(2.2)\forall u\in V ifd=3,

L
Jull o) < Cllul|? ”“”,312(9) 2

IVullri) < Cllullfwoyllullzigy (2-3)\forall u\in H (\Omega) if
d=2,
2

(2.4)\forall u\in H (\Omega) ifd=2,3,

and the Brezis--Gallouet inequality (see [21])

||U||uﬂ(ﬂ)
[[ullv

(2.5). lull ooy < C 'rf-Hv[log (e+ )]_ Vue H*(Q) ifd=2
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We (0 now introduce the Hilbert space of solenoidal | vector-valued
0.0 - functions. We denote Y by(\Omega ) the
0.0

space of divergence free vector fields in (\Omega ). We define Hisigma and
Visigma as the closure of(\Omega ) with respect to the H and Ho(\Omega ) norms,
respectively. We also use (\cdot,\cdot ) and \| \cdot \| for the norm and the inner
product in Hisigma . The space V\sigma is endowed with the inner product and norm
(4V)\btv 1sigma = ( \nabla y,\nabla ~— v) and — \| u\| v wm« = \| \nabla u\| ,
respectively. We denote by V\sigma \Prime its dual space. We recall that Korn's inequality
entails \surd \surd
\| \nabla v\| \leq 2\| Du\| \leq  2\| \nabla u\| \forall u\in
Du = 3(Vu + (Vu)' Visgnma,

where). In turn, the above inequality gives that v \rightarrow \| Du\| is a norm on

Visigma equivalent to the initial norm. We consider the Hilbert space Wisigma =

H
yright; see https://epyhOsiteno12(pIVRE¥aaWith inner product and norm (u,V)\bw 1sgme = (Au,Av) and \|
U\ | \bIW ysigna =
\| Au\|, where A is the Stokes operator (see Appendix B for the definition and some
properties). We recall that there exists € > 0 such that

(2.6) \| U\| Hz0\0mega) \leq C\| u\| \btw \sigma \forall u \in Wisigma.

Finally, we introduce the trilinear continuous form on Ho(\Omega )

2
) " Ov;
b(u, v, = Vv - wdr = i —~w; dx, Vu,v, H!(Q
h(u, v, w) Ay(u Yo - wdx E /zu O, w; da u, v, w € Hy(Q)

ij=1¢

satisfying the relation b(u,v,v) = 0 for all u \in V\siyme and v \in H!(\Omega ).

2.2. Main assumptions. We require that the viscosity \nu \in \scrC 2(\BbbR )

satisfies

(2.7) 0 <2\nuast \leq \nu (z) \leq \nu‘sst \forall z\in \BbbR,

for some positive values \nu \ast, | nu \ast, The singular potential \Psi belongs to the
class of

functions \scrC ([ - 1,1]) \cap \scrC3( - 1,1) and has the form
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(2.8) \Psi (,

&
v
>
\

o

: ¢r2:_ : 4.'3: ) i
oy )= oo ) =deo, I ,and

(2.10) \theta o - \theta = \alpha > 0.

We define F(z) = +\infty for any z /\in [ - 1,1]\prime \prime 'We assume without loss of
generality thatis convex and

F(0) = 0. In addition, we require that F

(2.11) F\prime\prime (7) \]eq CeCl Fwime (D \forall z \in (- 1,1)

for some positive constant C. Also, we assume that there exists \gamma \in (0,1) such
that
F\prime\prime jg nondecreasing in [1 - \gamma,1) and nonincreasingin (- 1, - 1 + \gamma

1.

Remark 2.1. The above assumptions are satisfied and motivated by the logarith- mic
potential (1.3). In that case, \Psi is extended by continuity at z=\pm 1. Notice also that
the viscosity function (1.4) can be easily extended on the whole \BbbR in such way to
comply (2.7). Moreover, other physically relevant profiles can be considered (up to

a suitable extension), such as (see, e.g., [52, 36])

1—2
B \nu v(z) = 1y e"BEDTD Y 2 e 1,1
(i) + )
\nu (z) = z ,
or ,

where \nu 1and \nu 2are the constant viscosities of the two fluids.
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General agreement. Throughout the paper, the symbol C denotes a positive constant
which may be estimated in terms of \Omega and of the parameters of the system (see

“Main assumptions""). Any further dependence will be explicitly pointed out when

necessary. In particular, the notation C = C(\kappa 1,..,\kappa n) denotes a positive

constant which explicitly depends on the quantities \kappa i, i=1,..,n.

2.3. Existence of weak solutions. Let us introduce the notion of weak solu- tion.

Definition 2.2. Let T > 0 and d = 2,3. Given u o \in H\sigma, \varphi o\in V\cap L\infty
(\Omega ) with \| \varphi o\| Lny \omega) \leq 1 and | \varphio| <1, a pair (u,\varphi)
is a weak solution to (1.1)--(1.2) on [0,T] if

yright; see https://epubs.siam.oggﬁ;e;rPG?,lp}r'iyle:fc)yﬁ L2(0,T;V,), due L%(O.T; V')
u,

\varphi \in L\nfty (0,T;V ) \cap L2%(0,T;H2(\Omega )) \cap H(0,T ;V \prime),

\varphi \in L\i"fy (\Omega \times (0,T)), with | \varphi (x,t)] <1
a.e. (xt) \in \Omega \times (0,7),

and satisfies

(2.12)\langle \partial w,v\rangle + b(u,u,v) + (\nu (\varphi )Du,Dv) = (\mu \nabla

\varphi ,v) \forall v \in V\sigma,

(2.13) \langle \partial
¢\varphi ,v\rangle + (u
\cdot \nabla \varphi
,v)  + (\nabla \mu
,\nablav) =0

\forall v \in V,

for almost every t \in (0,T), where \mu \in L2(0,T;V) is given by \mu = -\Delta
\varphi + \Psi \rrime (\varphi ).

Moreover, \partial n\varphi =0 a.e. on \partial \Omega \times (0,T), u(\cdot,0) = uo,
and \varphi (\cdot,0) = \varphi oin \Omega.

Remark 2.3. Notice that (2.12) is equivalent to

Copyright © by SIAM. Unauthorized reproduction of thi:



UNIQUENESS AND REGULARITY FOR MODEL H 2545

\langle \partial wu,v\rangle - (u\otimes u,\nabla v) + (\nu (\varphi)Du,Dv) = (\nabla
\varphi \otimes \nabla \varphi,\nabla v) \forall v \in Visigma,
for almost every t \in (0,T), where (v\otimes w);=viwj, i,j = 1, 2, in light of the equalities

(2.14) (u\cdot \nabla)u = div(u \otimes u)

1 .
UV = V(E\wﬁ S (e ) —div (Vg @ V)

and

The following existence result of weak solutions has been proven in [2, Theorem
1] (see also [71]).

Theorem 2.4. Let d = 2,3. Assume that uo \in Hsigma, \varphi o \in V \cap L\infty

yright; see https:/fABE&ah B MhasAkheY| Lim (\omega) \leq 1 and | \varphio| <1. Then, for any T >0,
there exists a weak solution (u,\varphi ) to (1.1)--(1.2) on [0,T] in the sense of Definition

2.2 such that

(2.15)  wu\in \scrC ([0,T],Hysigma), if d = 2, u \in \scrC w([0,T |,H\sigma) ifd = 3,
(2.16)\varphi \in \scrC ([0,T],V) \cap L*(0,T;H%(\Omega )) \cap L2(0,T;W?r(\Omega
),

where 2 \leq p < \infty is arbitrary ifd =2 and p = 6 ifd = 3. Moreover, given the energy
of the system

1 1
E(wp) = llul? + 5 IVl + [

(2.17) Jo\Psi (\varphi)dx,

any weak solution satisfies the energy inequality
t
-

@18 EGu)p) + [ (IVEIDUSI + IVa(s)I?) ds < Eulr). plr)

for almost every 0 \leq \tau < T, including \tau =0, and every  t\in [\tau,T]. Ifd =2,
then

(2.18) holds with equality for every 0 \leq \tau <t\leq T.

Copyright © by SIAM. Unauthorized reproduction of thi:



2546 ANDREA GIORGINI, ALAIN MIRANVILLE, AND ROGER TEMAM

Remark 2.5. We observe that any admissible initial condition in Theorem 2.4 is
such that \Psi (\varphi o) \in L'(\Omega ), so that \scrE (uo, \varphi o) < \infty .
However, due to | \varphio| <1, \varphio
cannot be a pure concentration, i.e., \varphi o\equiv 1 or \varphi o\equiv - 1.

Remark 2.6. The regularity \varphi \in L*(0,T;H%(\Omega )) is not proved in [2, 71],
but it has been recently shown in [50]. Given a weak solution ( u,\varphi ), it can be
inferred from Theorem A.2 in Appendix A with f= \mu +\theta o\varphi \in L2(0,T ;V)
and u = \varphi \in L\infy (0,T;V)

(cf. also (4.23) below).

3. Uniqueness of weak solutions in two dimensions. In this section we prove the
uniqueness of weak solutions for the two-dimensional NSCH system with unmatched
viscosities. The key idea is to derive a differential inequality involving norms (for the
difference of two solutions) weaker than the natural ones given by the energy of the
system (cf. (2.17)). We take full advantage of the regularity properties of

the Neumann and Stokes operators which allow us to recover coercive terms. In such

a way, we are able to handle the Korteweg force (i.e., the term \mu \nabla \varphi ) in
the Navier-Stokes equations and the convective terms. This technique will be also
employed to show the uniqueness of strong solutions if d = 3.

Theorem 3.1. Let d = 2. Given (uo,\varphi o) be such that uo\in Hsigma,
\varphio\in V,
\| \varphi o\| wmy (\omega) \leq 1, and | \varphio| <1, the weak solution to (1.1)--(1.2) on
[0, T] with initial datum (uo,\varphi o) is unique.
Proof. Let (u1,\varphi 1) and (uz,\varphi 2) be two weak solutions to (1.1)--(1.2) on
[0,T] with the same initial datum (uo, \varphi o). We define u = u1 - uzand \varphi =
\varphi1 - \varphi 2.

According to Remark 2.3, v and \varphi solve

\langle \partial w,v\rangle - (ui\otimes u,\nablav) - (v \otimes uz\nabla
v) + (\nu ( \varphi 1)Du,\nabla v)

+ ((\nu (\varphi 1) - \nu (\varphi z))Duz,\nabla v) = (\nabla \varphi 1 \otimes
\nabla \varphi,\nabla v)
(3.1)+ (\nabla \varphi \otimes \nabla \varphi 2, \nabla v)
\forall v\in V\sigma,

Copyright © by SIAM. Unauthorized reproduction of thi:



UNIQUENESS AND REGULARITY FOR MODEL H 2547

(3.2)\langle \partial \varphi ,v\rangle + (u1\cdot \nabla \varphi,v) + (u\cdot
\nabla \varphi »,v) + (\nabla \mu,\nabla v) =0 \forall v\in V,

where \mu = -\Delta \varphi + \Psi \prime (\varphi 1) - \Psi \prime (\varphi 2). Taking v
=1in (3.2) and observing that the

integrals over \Omega of u1 \cdot \nabla \varphi and u \cdot \nabla \varphi ; vanish,

we have \varphi (t) = \varphi (0) = 0 for all ¢t \in [0,T]. We rewrite (3.2) as

(3.3)\langle \partial \varphi ,v\rangle - (\varphiui,\nablav) - (\varphiu,\nabla v)
+ (\nabla \mu, \nablav) =0 \forall v\in V,

and we recall the following estimates (cf. (2.15)--(2.16))

(3.4) \|ui(®\| \leq Co\| \varphi i(t)\| v\leq Co,\| \varphi i(t)\| Ly (\omega ) \leq 1
yright; see https://epi§@xadhi Nig/khb-privlady

where the positive constant Co depends on E(uo. ¥0). Now, taking? = Ay 199in (3.3)

(see Appendix A for the definition of Ao) and using (A.3), we obtain

2__1d\| \varphi \| 2+ (\mu
,\varphi) =\scrl 1+ \scrl 2, dt

\ast

where Il = VA || and

-1 -1
(3.5) \scrl 1 = (\varphi ui,\nabla Ao \varphi ),\scrl 2= (\varphi 2u,\nabla Ao
\varphi).

By the assumptions on \Psi, we have

(\mu,\varphi) =\| \nabla \varphi \| 2+ (\Psi \prime (\varphi 1) - \Psi \prime (\varphi
2),\varphi)

\geq \| \nabla \varphi\| 2 - \alpha \| \varphi\|?2

where \alpha is defined in (2.10). By definition ofArT], we get
allgl? = a(VA; e, Vi)

< Livgpz + g2
(3.6) =73 g ¥l
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and we end up with

1d 1 a? .
3.7) §EHWH3 + §|\V’v9||2 < 7”@”5 +Iy + Is.

Takingv = A~luin (3.1) (see Appendix B for the definition of A), we find
1d

38) NNz g u:t((o) w A w= 4+ 4+ 5,

\nu D and

\nabla - 1 Ty = —((v(g1) — v(p2)) Dz, VA ),
Ty = (u; @ u, VA 'u) + (u @ us, VA '),
Is = (Vi1 @ Vo, VA ') + (Vip @ Vo, VA )

\scrl  \scrl

\scrl where

[ully = VA u]

Recalling that div({(\nabla v)) = \nabla (divv) and A - 'u \in L' 2(0,T;D(A)), and
integrating by parts, we obtain
(v(p1)Du, VA 'u) = (Vu, v(p)) DA™ u)
= - (wdiv(“(¥1) DA u))

1
= —(u,V (1) DA™ uVip1) — - (u, (1

(3.9) 2 )\Delta A-1u).

By the properties of the Stokes operator (cf. Appendix B), there exists p \in LZ(0,T;V)
such that - \Delta A-1u + \nabla p = u a.e. in \Omega \times (0,T). By (B.5) and (B.7),

we have
(3.10) Ipll < CIVA~ |z [[ullz, plv < Cllull.
Therefore, we are led to
1 . 1 1 .
7§(u"y(w)\DeltaA u) = 5(1’(501)% u) — 5(1/(991)%,%)

. 1
> . 2 - I o o).
(3.11) > vallull® + Q(V (¢1)Vpr1 - u,p)

Here we have used divu = 0. We now set
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1 5 1 _
H(t) = 5llu®lf + 5l )2, and

/ - 1 !
Zs = (u, V(1) DA™ 'uVy1), I; = 5 (¢1)Ver - u,p)
Summing (3.7) and (3.8), in light of (3.9) and (3.11), we arrive at

7
(3.12) d \scrH + \nu  — \ast21\| \nabla \varphi | 2
\leq \alpha 2\scrH + \sum \scrlx \|
u\| +
de 2
k=1

yright; see https://epubs.siam.org/terms-privacy

where \scrl 1and \scrl 2are defined in (3.5). We proceed by estimating all the remainder
terms on the right-hand side of (3.12). Hereafter the positive constant C;, i \in \BbbN,
depends on \nu \ast, \nu ‘\prime \Omega , Co, and the constants that appear in the
mentioned embedding results and
interpolation L = [lellwsllullzs @ el inequalities. By the
embedding V<3 L < LGl 4 Cilfur[Fagey ol (\Omes2 ) the
Poincar\'e inequality, 8 and the uniform bound
(3.4), we have

I> < |lpall oo (o lullll |«

and

Uy
< Zlul? + Gl
Zu < (lulluao) + luzlise ) ullVA ullus)
. 1 3 1 B 1 3
< C(llullFlwily, + lualilually, ) lulf ul?

.
<—*u2+C(u2+u2)u2.
By (2.1), (2.6), and (3.4), we get [| 2| s(lwillv, + luzlly, )l
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and
7 < (IVerle + IVe2lue@) IVl VA ul
< IVl + O (191w oy + V02w ) el

Being v’ globally bounded, by using (2.4) and the estimates for the pressure (3.10),
we find

Is < Cllul[| DA™ ul[[Ver [[Les o)
.
< Zu|* + Cs
< g llull®+

Vi ||im(g) Hu||?

and

I < C||Ver|lLa llwll|lp

< Cllgs

|La(o)

3 3 Sinll2
L>(0) lle1 ||H2(£2) wllllpll= 2l

% -1 1 i

yright; see https://epubs.siarn.org/terms-priva<c>p”(’01“%2(52) IVA™ [ [|ull*
< 2 ull? + Collpr oy Il

=73 6L 20 #e

Finally, regarding Z3, by using (2.5), we obtain

1
Iz = ( [ V' (spr + (1 — 8)p2) ds LpDug,VA_lu)
Jo
< ClIDus ([l Lo () [ VAT

el 20\ 2
< Crlluallv, IVl [1og (e + S )|l

Note that, when ¢ =
zero. Collecting the above estimates, we find the differential inequality

(3.13)
d Vs 5 1 9 2 llell 20 3
— . —_ ) < -] ErT—— y
G+ S Il + IVl < D+ Crllually, [Vl 0g (e + Hgi )|
where

Ni(t) = Cs(l +llur (Do) + lur WY, + llua(DIR,

+ Ve (t)“im(n) + HV‘PE(ﬂ”ix(sz) + HWI(UH'}#(Q))-

0, the logarithmic term on the right-hand side is assumed to be

Thanks to Theorem 2.4 and the Sobolev embedding W23(\Omega ) \lhook \rightarrow
Wi\infty (\Omega ), valid in space dimension two, we deduce that \scrY 1 belongs to L
1(0,T). In addition, recalling

from (3.4) that \| \nabla \varphi\| \leq Co, we have

||EP||H‘2(Q)) <o (CS(HVSQH + ”‘P”Hz(ﬂ)))

log (e +
( Vel Vel

Therefore, denoting

6(0) = IV, %200 = CrlluaOliv, - S0 = S (IVe O+ 102y )

we rewrite the differential inequality (3.13) as follows:
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



UNIQUENESS AND REGULARITY FOR MODEL H 2551

(3.14) ;%+g<ylu+y2[ﬁglog(§)]%.

S
Note that G 21 for the choice of Cs. Since \scrY 2\in L?(0,T), \scrS \in L1(0,7),

and
\scrH (0) = 0, we can apply [67, Lemma 2.2] to conclude that \scrH (£) = 0 for all ¢ \in
(0,77,

which implies the uniqueness
of weak solutions. O

Remark 3.2. An immediate consequence of the argument performed in the proof of
Theorem 3.1 is the uniqueness of weak solutions to the NSCH system in dimension

two with matched viscosities

(i.e., \nu (s) = 1). In that particular case, let us consider (u1, \varphi 1) and (uz,\varphi 2)

are two weak solutions to (1.1)--(1.2) on- 7 [0 ] with initial data (uo1,\varphi 01) and

(uoz, \varphi oz2), respectively, where (uo;, \varphi oi ), i = 1,2, comply the assumptions of

Theorem 2.4 and \varphi o1 = \varphi o2. Then, following line by line the above proof and
yright; see https://@gg%@g%ﬁggﬁgrmi)p%@ﬁd up with the differential inequality
dH S yl?-t-*.

dt

where \scrH and \scrY 1 are defined above. Hence, we can infer from the Gronwall
lemma the following continuous dependence estimate:

\| u1(t) - u2(E)\] \btv \sigma\prime + \| \varphi 1(t) - \varphi 2(t)\| vowrime \leq C\| uo1 = uoz\|
\BfV \sigma\prime + C\ | \varphi o1 - \varphi o2\| vorprime

forallt € [0, T]. Here, Cis a positive constant depending on T and \scrE (uo; \varphi o:),

i=1,2, butis independent of the specific form of the initial data.

Remark 3.3. The proof of Theorem 3.1 also allows us to deduce the uniqueness of

weak solutions to problem (1.1)--(1.2) with unmatched viscosities and regular potential

(cf. \Psi oin “Introduction""). The only changes in the proof arise from the different
regularity of weak solutions. Indeed, the global bound in L\i"fy is not known in this case,

but any weak solution v, ) 5 ) satisfies \varphi \in
L%(0,T;H3(\Omega )) L < g”“” +C2||992\|Lw(ﬂ)“99||*- (see[17,43]). Thus, the
two terms which need a different control
are \scrl 2 and Z7. Nonetheless, they can

be simply estimated 7. C||Ver in the following way

ooy llwllllpll L
3 3 Lok
< ClIVerllz lleall gz llulllipll= 1y

1 _ 1 7
< Clellfa @ IVA™ ulltflullt apqe € L0, 15V,

and, by using (2.1)
v . ) .
< lull + Collen e o lwlz-
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Since by interpolationyi € L*(0,T: L=(2)) N L*(0,T: H*(\Omega )),i = 1,2, itis easily
seen that we end up with a differential equation having the same form of (3.14).

Remark 3.4. In the three dimensional case, the above proof does not allow us to
deduce even a weak-strong uniqueness property, which is classical with the Navier--
Stokes equations; that is, the weak solution is unique when a strong solution exists.

In this case, this is due to the form of \scrl 4+involving both u1 and u2. Hence, we only
expecta (conditional) uniqueness result provided that both solutions u1and uzare more
regular than Definition 2.2 (at least u1, uz satisfy the classical condition in [81,

Remark 3.81]).

We conclude this section with a continuous dependence estimate in dual space
norms with a time-dependent double exponential growth.

Proposition 3.5. Let d = 2. Consider two initial data (uo1, \varphi o1) and
(uoz, \varphi o2)

yright; see https:/ /selP&}P ?ﬁ%b?ﬁ%te i E,iv\al?cyrphi or\in V, \| \varphi o\| Ly \omega) \leq 1, and \varphi
o1 = \varphi o2\in ( - 1,1). The weak solutions (ui,\varphi 1), (uz,\varphi 2) on [0,T] to
(1.1)--(1.2) with initial data (uo1,\varphi o1) and

(uoz,\varphi o2), respectively, satisfy the continuous dependence estimate

1§ Y3(s)ds

(3.15), H(t) < C(@) vt e [0,T]

where

1 1
H(1) = 3llw(0) — O + 5o (1) — 201
Vs(t) = C(1+ [ O, +lu@l, + Vel =)

+1902(0) ey + o182 )

Here, C is a positive constant depending on the norms of the initial data.
\scrl sdifferent than that in the
Proof. The argument is based on an estimate of proof of Theorem 3.1. Thanks to the
product estimate (C.5) in Appendix C, using
the properties of Aoand A (see Appendixes A and B) and (3.4), we have
T3 < C|| Dus|l[|lo VA ul|

nal=

: Jull + llllv
< CIDw Vel (VA ull + el ) [1o8 (Croa=iar 1 o))
Ol[)

1
< 1 IVel? + Col| Dus|[*H log (W)
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Noting that \scrH \leq C11by (3.4), we observe that C10 can be chosen sufficiently large

P
such that log(%) = 1. Exploiting the above estimate in the proof of Theorem 3.1, we
eventually deduce the refined differential inequality for the difference of two solutions
(cf. (3.14))

(3.16) —d\scrH \leq \scrY s\scrH log\Bigl( C__10\Bigr).
dt \scrH

After integration T va(s) ds

H(t) < CIU( o ) Vte[0,T]

of
(3.16),
we
obtain
the
follow
ing
estima
te

(3.17),

where \scrY 3\in L1(0,T), for any T > 0, due to the regularity in Theorem 2.4. Noticing
that \mu (s) = slog(s) is an Osgood modulus of continuity, the above (3.17)--(3.16) also
imply the uniqueness of weak solutions. O

Remark 3.6. We note that the estimate for the difference of two solutions (3.15) is
not sufficient to guarantee the continuity of solutions with respect to the data in the

norm of the energy space Hisigma \times V. A similar remark holds for the constant
viscosity case (cf. Remark 3.2). Nevertheless, the continuous dependence in the energy
space will be recovered by using the propagation of regularity and an interpolation
technique in section 4.

4. Global strong solutions and regularity in two dimensions. In this section we
prove the global well-posedness of strong solutions for the NSCH system with
unmatched viscosities in dimension two. Later on, some consequences will be inferred
regarding the regularity and continuous dependence from the initial data.

_ Theorem 4.1. Let d = 2, uo\in V\sigma and \varphi o\in H?(\Omega ) be such that \|
\varphi o\| Lnfy (Omega) \leq 1, | \varphi o| <1, \mu o= - \Delta \varphi o +\Psi \prime
(\varphi o) \in V and \partial »\varphi o = 0 on \partial \Omega . Then, for any T > 0,
there exists a unique strong solution to (1.1)--(1.2) on [0, T] such that

u \ln L\infty (O,T;V\sigma) \Cap LZ(O, T;W\sigma) \Cap Hl(O,T,H \sigma ), \pl
\in L2(0,T;V), \varphi \in L\infty (0, T;W2r(\Omega )) \cap H(0,T;V),
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\mu \in L\infty (0,T;V ) \cap L2(0,T;H3(\Omega ))

\ca

p

HY(

0,T;

%4

\prim

e)'
where 2 \leq p < \infty . The strong solution satisfies (1.1) a.e. in \Omega \times (0,T)
and \partial n\mu =0 a.e. on \partial \Omega \times (0,T). In addition, given two strong
solutions (u1, \varphi 1), (uz,\varphi 2) on

[0,T] with initial data (uo1,\varphi o1) and (uo2,\varphi o2), respectively, we have the
continuous dependence estimate

(4.1)
w1 (t) = wa(t)|| + lle1(£) — @2(t)|| < Cllugr — ozl + Cllgor — ozl V€ [0,T]

’

yright; see https: .siam. -pri . .
yright; see https://epubs.siam.org/terms-privacy where C is a positive constant

depending on T and on the norms of the initial data.

Let us briefly explain some technical points of the proof of Theorem 4.1. The
argument relies on a priori higher-order energy estimates in Sobolev spaces, combined
with a suitable approximation of the logarithmic potential and the initial datum. More

precisely, we approximate the logarithmic potential \Psi by means of a family of regular
potentials \Psi \varepsion defined on the whole real line. Next, we need to perform a
suitable cut- off procedure of the initial condition, since we cannot control immediately
the norm of \nabla \mu \varepsion (0) = \nabla ( - \Delta \varphi o +\Psi \Prime \ g epsiton
(\varphi o)) with \nabla \mu (0) = \nabla ( - \Delta \varphi o+\Psi \Prime (\varphi o)). To
overcome this difficulty, we construct a preliminary approximation of the initial datum
by exploiting

the regularity theory of the Neumann problem with a logarithmic nonlinearity given in
Appendix A. Our argument differs from the one used in [2], which is based on fractional
time regularity and maximal regularity of a Stokes operator with variable viscosity.

Proof of Theorem 4.1. We divide the proof into several steps.
1.  Approximation of the logarithmic potential. We introduce a family of regular

potentials \Psi |varepsiton that approximate the singular potential \Psi . For any
\varepsilon \in (0,1), we set

(4.2) \Psi,
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{ 2 1
Z}— g)lz—(1—¢) Vz>1-—¢
F.(z)= F(z) Vze[-14¢e1—¢]
1 .
Z— (-1+e&)[z—(-1+¢) Vz<-1+e
(4.3) = )
\ast \1n
By virtue of the assumptions on \Psi stated in section 2, we infer that there exists
\varepsilon

(0,\gamma ) (where \gamma is defined in section 2) such that, for any \varepsilon \in
(0,\varepsilon \ast], the approximating function \Psi \varepsiton Satisfies \Psi \varepsiton \In

\scrC 2(\BbbR ) and
(4.4) —a <V (2), —a<V/(:)<L VzeR

where \alpha \widetilde is a positive constant independent of \varepsilon , \alpha is
given by (2.10), |W(2)] < |¥(2)] and L is a positive constant that may depend on
\varepsilon . Moreover, we have that \Psi \varepsiton (z) \leq \Psi (z) forall z\in [-1,1],
andfor all z\in (-1,1) ( see, e.g., [40]).

2. Approximation of the initial datum. We perform a cutoff procedure on the initial

condition. To do so, we introduce the globally Lipschitz function hk: \BbbR \rightarrow
\BbbR, k\in \BbbN,

such that
\left\{
- kl zZ< - kl
(4.5) h«(z)= z z\in [-kk],
k z>k
We define \~\mu ox = hx \circ \mu \~o, where \~\mu o= - \Delta \varphi o +F\prime

(\varphi o) Cor equivalently \~\mu o= \mu o +\theta o\varphi).

Since \~\mu o\in V, the classical result on compositions in Sobolev spaces [77] yields
\~ \mu o \in
V, for any k > 0, and \nabla \mu \~ox=\nabla \mu \~o\cdot \chi -k (\mu \~o), which,
in turn, gives

(4.6) \[ \mu\~oi\| v\leq \| \mu \~o\|v.
For k\in \BbbN, we consider the Neumann problem

—Apok + F'(por) = o,k
3n'~Pn.A- =0,
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, on \partial \Omega.
(4.7) in \Omega,

2(\Omega ), Thanks to
Lemma A.1, there exists a unique solution to (4.7) such that\erime (\varphi ox) \in H,
which satisfies (4.7) a.e. in \Omega and \partial \bm \varphi o k=0 a.e. on \partial
\Omega . In addition, \varphi ox\in H
F
by (A.6) and (4.6), we have

(4.8) \| \varphi o\| H20\omegay\leq C(1 +\| \mu \~o\| ).

Since \~\mu ox \rightarrow \mu \~o0in H, Lemma A.1 also entails that \varphi ox
\rightarrow \varphi oin V . As a consequence, there exist \~m \in (0,1), which is

independent of k, and k sufficiently large such that
yright; see https://epubs.siam.org/terms-privacy

(4.9)  \| \varphiox\| v\leq 1 +\| \varphio\|v,| \varphiox| \leq m <\~ 1
\forall k > k.

In addition, by Theorem A.2 with f= \mu \~ox, we obtain

\| F\prime (\varphi ox)\| Lnty \Omega) \leq \| \mu \~ok\| Lunty
(\Omega )\leq k.

As a byproduct, there exists \delta = \delta (k) > 0 such that
(4.10) \| \varphi ok\| Lvnfy \Omega) \leq 1 - \delta.

At this point, _ o ., since F\erime (\varphi o) \in V, it is easily seen
that \varphi ok g = min{3d(k),c"} \in H3(\Omega ). Finally, for any \varepsilon \in
(0,\varepsilon ), where, since F(z) = F\varepsion ( z) for all z \in [ - 1+\varepsilon ,1 -
\varepsilon ], we infer | — Ay + Fl(wox)l|v < ||fio]v  from (4.10) that - \Delta
\varphi o+ F\varepsiton \P™¢ (\varphi ox) = \mu \~ok which entails

(4.11).

3. Approximating problems. Let us introduce the Galerkin scheme. We consider the
family of eigenfunctions \{ wj\} jgeq 1 of the homogeneous Neumann operator A1 = -
\Delta + I (see Appendix A) and the family of eigenfunctions \{ wj\} j\geq 1 of the Stokes
operator A (see Appendix B).-In particular, we recall that w1 = 1 while any w;, i > 1, is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



UNIQUENESS AND REGULARITY FOR MODEL H 2557

nonconstant with wi = 0. For any integer n \geq 1, we define the finitedimensional
subspaces of V and V\sigma, respectively, by Vi, = span\{ wy,..,ws\} and V. = span\{
wi,...,wn\} . We denote by \Pi »and Pnthe orthogonal projections on

and V,with respect to the inner product in H and in Hysigma, respectively. We consider

the
approximating sequences
(4.12)
n n nu
Fel@t) =Y giwi@), eho(a.t) =D ktwi(a),  piet) =Y L)
i=1 i=1 i=1

solutions of the following approximating system

\langle \partial tUnk,\varepsilon,V\rangle + b(lhlk,\Varepsilon,Unk,\varepsilon,v) + \forall v

) (\I’IU (_\varphi nk,\varepsi{on )DUnk,\varepsilon,DV) = ( \mu nk,\varepsilon \nabla \il’l Vn,
yright; see https://eq%;.lgm\%gjl}gmV]}rlvacy \forall v
\in Vn,
(4.14)

\langle \partial t\varphi nk\varepsiton,v\rangle + (unk\varepsiton \cdot
\nabla \varphi nk,\varepsilon,v) + (\nabla \mu nk,\varepsilon,\l’labla V) =0

(4.13)

where

(4.15). nu"}j,a = Hn( —Api .+ ‘Ilts(“rjfr))

The initial conditions are defined as

(4.16) uand. r(0) = Phug g:)}ff(()) = Il @0,k

3y — 300)) -
Let us notice that \varphi ox \in H3(\Omega ) with \partial D(A}) = {u € H(2)

\bfn \varphi ox= 0 on \partial \Omega . Since

\partial \vm u = 0 on \partial \Omega \} , we have that \varphi "k \varepsiton (0)

\rightarrow \varphi oxin H3(\Omega ) as n \rightarrow \infty . In turn, this gives

\varphi "\varepsiton (0) \rightarrow \varphi oxin L\"y (\Omega ). Hence, there exist m,

with \~m < m <1 (independent of n),
- and

n such that
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—=T e T l —
(4.17) [Pr O <m, lef (0)[|Loeo) <1 - 55(11') Vo > .

On account of Steps 1 and 2, for any k > k, we fix \varepsilon \in (0,\varepsilon ) with
\varepsilon depending on k,

and n >" nof the form (4.12) which satisfy (4.13)--(4.16) for anywith n depending on k.
The existence of a sequence of functions t\in [0,T] can be provedu”x\varepsiton,\varphi
. \varepsilon , and \mu k,\varepsilon

in a standard way (see, e.g., [81]). In particular, the system (4.13)--(4.16) is equivalent
to a Cauchy problem for a nonlinear system of ordinary differential equations in the
unknowns g;, kiand I;, i = 1,..,n. Thanks to the Cauchy--Lipschitz theorem, for any n > n,
there exists a unique maximal solution to this system defined on some

interval [0,t:]. Moreover, by the energy estimates we shall prove in the next step (cf.
(4.20)), itis clear that tn=T.

4. Energy estimates. Let us recall the above choices of the parameters, namely, for

any k > k, we fix \varepsilon \in (0,\varepsilon) and n > n. We now show uniform energy
estimates with respect to the approximating parameters k, \varepsilon , and n. In
particular, c;, i \in \BbbN , denotes

a positive constant, which depends on the parameters of the system, the constants

arising from embedding and interpolation results and the energy \scrE (uo,\varphi o),
but is independent of the approximation parameters k, \varepsilon , and n.

First, by taking v =1 in (4.14), we have [Pk (D) = [PE(0)] < Mor all t\geq [0, T].
We introduce the approximated energy

‘ 1 1 ‘
E(v,¢) = §||v|\2 + §||V'¢"|

2 /

!I\PSi \varepsilon (\pSl )dX
In light of (4.9), (4.17), and \Psi \varepsiton (z) \leq \Psi (z) for all* € [ 1,1], we deduce
that

n n 1 2 1 2 .
S:'(uk.:f(o)f H‘Qk:‘.—:(o)) = §||pﬂu(l” + EHVHNLPU.#-” + V/Q \PSI 5(9’)?5(0)) dzx

1 . 1 -
§||U0H2 + §||'~f9n||ff + C.
(4.18)
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Here we have used that \Psi is bounded on [ - 1,1]. Taking v = u\varepsiton in (4.13), v =
\mu " \varepsilon

n, and summing up the resulting equations, we in
(4.14), multiplying (4.15) by \partial :\varphi k\varepsiton find

n n n n
[4.19)Ldt\SCI‘E \varepsilon (uk,\varepsilon, \varphi k,\varepsilon) + \l \sqrt{} \nu (\varphi
k \varepsilon n )DUk,\VqrepsiIon \l 2+ \| \nabla \mu k,\varepsilon \| 2=0

for almost every ¢ € (OvT). Owing to the Korn inequality and (4.18), after an inte

yright; see https://epubs.siam.org/terms-privacy

i cllv
(4.20)

t
(i ) R0+ [ (Vg0

24 ||Vu.ﬂ£(s}\|2) ds<ecy Vtel[0,T).

In particular, by using (4.4), we have
(1.21) lug (Ol + i (Bl <er ¥ee[o,T].

In order to find an estimate on , we recall the inequality (see, e.g., [72, Propo-
sition A.1])

19 (o)l < o1+ (Ve ke — Phe) )
gration in time, we have
where cz2 depends on rrTTesting (4.15) by'ﬁo?f ~ Phe_ , we obtain
VR ll” + (Pelk o) ke — Phe) = (ke — Tiker Phe — Pric)

Thus, by the Poincar\'e inequality and (4.21), we have
(qji‘(‘p;’s)' ‘r;\;:s - ?:e) < C3||VJ""£.£“_
Accordingly, since el = (9L we learn that

(4.22) \| \mu nk\varepsiton \| v\leq c4(1 + \| \nabla \mu nk\varepsiton \| ).

Next, testing (4.15) by _A‘pzssand integrating by parts, we get
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\l \Delta \varphi nk,\varepsilon \| 2+ (\PSi \prime \prime \varepsilon
(\varphi nk\varepsilon )\nabla \varphi nk\varepsilon,\nabla \varphi
nk,\varepsilon) = ( \nabla \mu nk,\varepsilon,\nabla \varphi nk,\varepsilon )

By using (4.4) and (4.21), we deduce that
(4.23) HP?,eH%ﬂ(n) <es(1+ Vg ).

On the other hand, by comparison in (4.13) and in (4.14) and by exploiting (2.1),
(4.21), and (4.22), we infer that

[424)\| \partial tUnk,\varepsilon \l \bfV \sigma \prime \leq C6(1 + \| \nabla Unk,\varepsilon \| + \l
\nabla \mu nk,\varepsilon \l ),
and
(425) \l \partial r\varphi nk,\varepsilon \l \ast \leq
C7(\| \nabla Unk,\varepsilon \| + \| \nabla \mu nk,\varepsilon \l )

yright; see https://epubs.siam.org/terms-privacy
In light of the above estimates (4.20)--(4.25), we have

UMk \varepsilon iS uniformly bounded in L\infty (0, T;H\sigma ) \cap L%(0,T;V\sigma)

\cap H(0,T;V\sigma \Prime ), Ph e is uniformly bounded in

L2(0, 75 V)N L0, T3 H* () N HY (0,75 V') i s uniformly bounded in

L* \TVo ; )

with respect to the parameters k e, andn,
5. Higher-order energy estimates. We are now in position to prove uniform higher- order
Sobolev estimates. We will denote by c\prime; j \in \BbbN , a positive constant, which
depends on the parameters of the system, the constants arising from embedding and
interpolation results, and \scrE (uo, \varphio), but are independent of the approximation
pa rameters k, \varepsilon , and n and of the norms \| uo\| \bfV \sigma andlltollv. Taking v =
\partial t\mu nk\varepsilon in (4.14), we obtain

t”vnuﬁrf.lel‘z + (al.‘tz.ef ai“ﬁ}}:) + (aluz.sﬂ u?a ) v“fj.?:!s 1 d

2d

Since 3@?2.5(1) =0 forall t\in [0,T], we have
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1, . a? .
al|dpf | < §||Vf9t9°ﬂ.a\|2 + §\|aﬁﬂ?§.g||fv

Then, we infer from the assumptions on ¥ that

(Ousif o, Du ) = IV |12 + (W2 (o )Oeh o Do)
> Voo 1P — alloweh I

1 £ mn (_]42 L T
> SIVaRI - Sl I

. d
Outi v i - Vi) = 3 | (ui - Vi i )]
- (at u’.ﬁs . V@ﬂa #:’ée) - ("’.{:5 . vaﬁ@ﬁ,srﬂg.e )7 -

(ke es uk e - VOpr o) < llug i) VO ik el ze o)
< TIVOUR I + sy (L + VAP,
Accordingly, by using (4.25), we arrive at
1 n 2 n n n 1 n 2
A e )| +=Ivo ™|

Besides, we observe that

By (4.22), we get
d
dt 2 Hie ke Phoes Hie 4 tPk e

[426)\18(1 (\partial tUnk,\varepsilon \CdOt \nabla \Varphi nk,\varepsilon,\mu nk,\varepsilon) +
c\prime 2(1 + \ | unk\varepsilon \ | 2\bfL. 3(\0Omega))(1 + \| \nabla unk \varepsiton \ | 2+ \| \nabla \mu
nk,\varepsilon \| 2).

Taking v = dhuf iy (4.13), we have
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\l \partial tUnk,\varepsilon \l 2+ b(llnk,\varepsilon,Unk,\varepsilon, \partial tUnk,\varepsilon ) -
(diV[ \ nu (\ varphi nk,\varepsilon )Duk,\varepsilon n) , \partial tUnk,\varepsilon ) = (\mu k \varepsilon
n\nabla \varphi nk,\varepsilon, \partial tUnk,\varepsilon )
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By (2.1), (2.6), (2.7), and (4.21), we deduce that
b(u;ief uf-.esaf”f-,e) < ”uE,EHLd(Q) Hvu§5£|lL4(Q)“0fu2£H
n n .l 2 n
< Val|Vug | A |2 |0 ]

1 n p 3 p 3 4
< <0 | + i (Il Aug o2 + [V 1),

and
(div (v} ) D). Dy, )
= S ) A D)+ (V (7 ) D V. D)
< CllAug |l10vug N + ClIVer s o) [ Dug s o) |0 ug ||
< %H@tuﬁ.g\l2 + CllAwE |I° + erCllek el o Vg o[ A |
< gl I+ ¢ (IAuf I + 10l e V2 1P,
yright; see https://é%ﬁt{s@s?@rh.d’fg/%@ﬁﬂs -privacy
1k Vor e Oug ) < [lpg s IVer cllus o) | Ovug ||

1 [ n p n p mn p
< au()t“k,e”z + C%”’@k,a |}2H'2(Q)(1 + ||v#-k».e||2)-

Hence, we find
(4.27)
[0 up |I* < C&(HAUE.EIIZ Va1 + ok o) (U + Vi AP+ Vi

)

Because of (4.12) and (4.20), we deduce that¥i € L*(0, Ty for all i = 1,..,n, and u
i e L2(07T; D(A. ))’ Wthh

ke

implies  that )
, n e L20,T;V
AU"k,\varepsiIon \ln LZ(O, T;H\sigma ) By the theory of the Pr.c (

operator (see Appendix B), there exists ) such that

Stokes

- \Delta U, \varepsilon + \nabla p"k,\varepsilon = AU"k,\varepsiIon a.e.in \Omega \times (O,T) In
particular, we have

1 4 1
(4.28) oo < CIVag F|Aug)1E, lfllv < CllAug

.5”
’

where Cis independent of k, \varepsilon , and n. Now we take v = Au",\varepsiton in (4.13),
and we
obtain
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- (div (J/(\,OEE)D’U,;LE), Au’fe) = (ﬂ'ﬁ',evwz.:‘" Aus‘ts g

_(div (J/(ffgz,e)Duz‘e): Au’?a)
1

= 5 Wlei)Auf ., Aug ) — (V(E) Dui Vi o, Auj)

= S0P AuE o Aup) — (6], Vo Aug.)
~ /(1) DUl V.., Auf)

> v AP + ()T b A
— /(41 DUl Vel Au).

12_ t\l \nabla Un \l 2+ b(Unk,\varepsilon

,Unk,\varepsilon,AUnk,\varepsilon )
k \varepsilon

We observe that
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UNIQUENESS AND REGULARITY FOR MODEL H
By (2.1), (4.21), and (4.28), we have the following estimates:
—(V (k) VE Pi o A ) + (V (k) Dup Vo o A
< CIVeE el (I clliscoy + I1Duf Ny ) A |
< VECER oy (PN IR N + [T 1 [Aup [1F) [ Aug. |
< VaClgE Moy IV I I Au I+ Vg F | Aug 1) Aug. |
< AU + 1+ lpf e ) I Va2

and

A

b(u};,s' u;ﬁ-.s" Auze) ”uﬁ,e”Ld(ﬂ) ”vuz,‘g HLd(Q) HAu};a“

V.
%Ay,

IA

2+ |Vl |t

Also, we have

IA

1k s IV e o | Awg |
Py n n p n
E” ”’k.e”2 + Ci)“@k.e”ilz(ﬂ)(l + ”Vnu’k,sllg)'

yright; see https://epubs.siarﬁ%g)?e‘ﬁ%s-‘p‘%i%fi@)

IA

Hence, we are led to
]‘ d n Vs n

IV 7+ A
(4.29)

< o (IVuf I + (U el @) IV P + i e (14 1905 )
Multiplying (4.27) by w 4‘}06 >

1d n 2 Vi n 2 n o [||2
LIV A2+ w0

|+ (U N0k el o)) (1 + Vg 1P+ IIVM’S.gIIQ))-

(130) <y (IVup.

Adding (4.26) and (4.30), we find the differential inequality

d _ Vs , w ‘ 1
A™ g )+ T RPN R IVoek P
2 2
= et () and summing up with (4.29), we arrive at
2 4
__ k\varepsilon __Au — u _
de 4 2 4

\leq (\partial tUnk,\varepsilon \CdOt \nabla \varphi nk,\varepsilon,\ml,l nk,\varepsilon) + C\prime
12\| \nabla Unk,\varepsilon \l 4
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(4.3 1) + C\prime 12\Bigl( (1 + \| Unk,\varepsilon \| 2\bfL 3(\Omega) + \| \varphi nk,\varepsilon \l
4H2(\Omega ))[1 + \l \nabla Unk,\varepsilon \| 2+ \| \nabla \mu nk,\varepsilon \| ZJ\BigI') ,
where

1 1
Rerdhe) = 5IVUR|? + 5V

2 n n n
& + (uk,a ’ v@k,s’#’k.s

(4.32) \Lambda (u
We control the first term on the right-hand side of (4.31) as follows:

(Deuy . - Vg oo i o) S N0cug NIVeg cllus ol e )
w mn n
ZH@tuk,EHQ +C|| Vi

IA

iﬂm”lt:,g”%/

IA

w n n n
10w 1 + islleht Mz o) (1 + V0%

Then, we arrive at

d n T Vs n p w n 1 n p
EA(UJC,E: Pre) + IHAuk,sllz + leé‘euk,sllg + ZIIV&,%.EIIE

(4.33)
yright; see hitps://epubs:sifn{ PRRASIOIRRiVReY |[uf s ) + 107 Iz (1 + V|12 + IV ]1)).

Now we show that A(uj .} ) is bounded from below. By using (2.1) and exploiting
(4.20)-(4.22), we have

(uﬁ,s : v"pg‘aﬂ -u'g.s) < HU‘EE HLd(Q) HVQ;\LEH ||ME¢EHL4(Q)

< e Cllug 12 (Vg 12 ek - llv
1 n 1 n
S _”vu.‘c.e”2 + _Hv!u‘k,c"lz + C’l‘:)‘
4 4
Hence, we infer that
n T 1 n 2 1 n 2 ’
(434) A(uk,e’ ‘l‘ok.e) 2 _Hvuk,s H + E anukt’” — Ci5
Moreover, it is easily seen that
(4.35) Auf o 072) < o (14 VU 12 + [V . |2)

In sumimary, exploiting (4.23) and the Sobolev embedding V' — L*(Q), we are led to
rewrite (4.33) as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



2567

dfdt\Lambda (Unk, \;arepsilon, \Varphi nk,\varepsilon ) + \nu \Blgl( \|
Aunk\varepsilon \ | 2+ \| \partial tunk\varepsiton \| 2+ \| \nabla \partial
t\Varphi k \varepsilon n \l 2\Bigr)

(4 36) S C’i?(l +A2(u?£*kp£,£))‘

1 .
where v=gmin{l, v, @} Owing to (4.4), (4.20), and (4.35), we infer
that

\int 7

\Lambda (Unk,\varepsilon
(s),\varphi nk,\varepsilon (S))dS \leq
C\prime 18. (

An application of the Gronwall lemma to (4.36) implies that

(437) \Lambda (ube () @k (D) < A} (0), 7 (0)eis + ceeT Vi€ [0,T)

In order to find a uniform control of the right-hand side of (4.37), by using the Sobolev
6(\Omega ), (4.8), and (4.9), we obtain
embedding V \lhook \rightarrow L
\Lambda (u

7.2 (0), 91 2(0)) = \Lambda (Pauo,\Pi »\varphi ox)
1 1
3 IV Puol|® + IV (0) 17 + (Pawo - VIL ok, i -(0))

IA

1 , 1 .
5 IVuoll® + 5IVak - (O + [[Pawollusey I VInpo Il (0)]] o)
IV uoll* + C (1 + llpokll ) [k - (0) I3

< [[Vuol* + C(1+ llpoll3) [k - (0)I}-
UNIQUENESS AND REGULARITY FOR MODEL H

IA

In light of (4.8), (4.9), (4.11), and (4.16), we find

. (O)lv = T (—Agi - (0) + WLk - (0)|v
\leq \| - \Delta #¥.(0) + F (g - (O)lv + oller - (0)[|v
\leq \| - \Delta
@i, (0) + F(ef (0)) + Ao — Fl(pos)llv + Clllfiokllv + leollv)
\leq \| \varphi k\varepsiton (0)
n - \varphi ok\| H3(\Omega) + \| F\varepsilon \prime (\varphi nk\varepsiion (0)) -
Fyvarepsiton \prime (' \varphi ok)\| v+ C(\| \mu\~o\| v+\[ \varphi o\| v)

(4.38) =\|\Pin\varphiok - \varphi ok\| Hs(\Omega) + \ | F\varepsilon \prime (\Pi n\varphi o)
- F\varepsilon \prime ( \varphi ox)\| v+ C(\| \mu o\| v+ \| \varphi o\| v).

Recalling the bounds (4.10) and (4.17) and the relationf'(2) = Fi(z ), for all z\in
[- 1+ \varepsilon,1 - \varepsilon] (cf. 0 < \varepsilon < \varepsilon), we deduce that
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(4.39)
I EL (M p0.k) — FL(pok)llv
< ||Fi(Mno.r) — Fi(po i) | + [1F (o k) V(Ingo k. — wo.r)l
+ 1(F (Mo k) — FZ (p0.1)) Voo k|

< C( max F"(z)|+  max \Fm(zﬂ) 0,k — wo.kllv
2€[—145,1-7] 2€[—1+E,1—7]

3(-1,1),
We notice that the quantity between brackets in (4.39) is finite since F\in \scrC
and it only depends on k (cf. definition of \varepsilon ). Let us now recall that \Pi
n\varphi ok \rightarrow \varphi ox

in H3(\Omega ) as n \rightarrow \infty . Thus, we infer from (4.38)--(4.39) that, for any

fixed k > k (and \varepsilon \in (0,\varepsilon )), there exists
n > (cf. (4.16)) such that

(4.40) .- (O)lv < C(1+ [luollv + lleollv)  Vn >,

where C is independent of k, 1, and \varepsilon . Finally, for any — fixed k>k,

yright; see https://pmtepsidon oxitdi@nsvpreyasijon ), and

n > n (where \varepsilon and n depends on k), we infer from (4.37) and (4.40) that

\Lambda (uhe (1) ¥k, (1) < C(L+ lluollv + llollv)ers + cize=T Vi € [0,T]

In view of (4.34), we have

sup_[Vag, (Ol + sup [[Vig. (1)) < T,
(441) te[(l.T] fE[[].T]

— where C1is a positive constant, which depends on 7" and \scrE (uo, \varphi o),
\| uo\| \bfv \sgma, and \| \mu o\| v, but is independent of k, n, and \varepsilon . Moreover,
an integration in time of (4.36)

’

on the time
. T

interval . o n o : — 0,
el [ (1A @I 1o 9 + VO ) ds < Co. )

is a positive constant depending on

(4.42)

— where C2 T'and on the initial datum, but independent of k, \ varepsilon , and n.

6. Passage to the limit. Thanks to the analysis performed in step 5, for any fixed n > n,
k> e Had(Qe\frend(4.41) and (4.42) that

U™k, \varepsilon is uniformly bounded in
L=(0,T5V,) N L0, T3 W, ) N HY (0, T Hy )| Pk s uniformly bounded in
L\infty (0, T;H2(\Omega )) \cap H(0,T;V),

Mi.c is uniformly bounded in L\infty (0, T;V).
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By a standard compactness method, we are in position to pass to the limit first as n
\rightarrow \infty , then as \varepsilon \rightarrow 0, and finally, as k \rightarrow
\infty . As a result, we obtain the existence of a pair (u,\varphi) such that

u \infty \cap LZ(O, T;W\sigma) \Cap Hl(O, T; H\sigma ), \1n
L (0, T;V\sigma)

\varphi \in L\ifty (0,T;H2(\Omega)) \cap H(0,T;V),

\varphi \in L\i"fy (\Omega \times (0,T)), with | \varphi (xt)| <1
a.e. (xt) \in \Omega \times (0,7),

\prime (\ygrphi ) \in L\infy (0,T;V

). Morewhich satisfies (2.12) and (2.13), where \mu = - \Delta \varphi + \Psi

over, \partial \bfn \varphi =0 a.e. on \partial \Omega \times (0,T), u(\cdot,0) = uo, and

\varphi (\cdot ,0) = \varphi o in \Omega . Since \partial \varphi + u \cdot \nabla
yright; see https: //E%%’B%@ahﬁtﬂ%&%ﬁﬁs%%&) owing to the above regularity properties, we in fer from

the classical regularity theory of the homogeneous Neumann operator that

\mu \in L2(0,T;H3(\Omega)), \partial »\mu =0 a.e. on \partial \Omega \times (0,T)

and \partial {\varphi + u\cdot \nabla \varphi =\Delta \mu holds

a.e.in \Omega \times (0,T). Finally, we can recover the pressure \pi arguing as in [81,

Propositions 1.1 and 1.2, Chapter III]. In particular, it is possible to show that there

exists

\pi \in L2(0,T;V) such that \partial w + (u \cdot \nabla )u - div(\nu (\varphi)D u) +

\nabla \pi = \mu \nabla \varphi holds a.e. in

\Omega \times (0,T).

7. Further regularity properties. From the regularity \mu \in L\infty (0,T;V ),

Theorem

A.2 entails that \varphi \in L\infty (0,T;W?2?(\Omega )) and F\prime (\yarphi ) \in L\infty
(0,T;Lr(\Omega )) for any 2 \leq

p <\infty . Furthermore, thanks to the growth condition (2.11), we also deduce that

F\prime \prime (\ygrphi ) \in L\infty (0,T;LP(\Omega )) for any p \in (2,\infty ). Next, as a

consequence, we prove that

\partial {\mu exists and belongs to L2(0,T;V \prime), To this aim, given h > 0, we denote

ahp _ 1
the difference quotient of a function f by 0ff = 3 (ft+h) = f(t) por any v\in V
M mu ,v) = with"\varphi ,\|

v\| \nabla w) + (\leq 1, by using the boundary condition on\partial /*F\erime (\varphi ),v)

- \theta o(\partial ¢"\varphi ,v). Since F\prime\prime jg convex, we find the control \varphi

, we observe that (\partial ¢

(\nabla \partial

(\partial tnF\prime (\varphi ),v) \leq \bigm\| \bigm\ | \bigm\| \int o1 \Bigl( sF\prime
\prime (\varphi (\cdot + h)) + (1 - s)F\prime \prime (\varphi )\Bigr) ds\bigm\|
\bigm\ | \bigm\ | zs(\omega)\| \partial tn\varphi \| \| v\| Ls(\Omega)
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(4.43)\leq C\Blg]( \ | F\prime\prime (\ygrphi (\cdot + h))\| L3(\Omega)+ \| F\prime \prime
(\varphi)\| L3(\Omega]\Bigr) \| \partial #\varphi \|.

h\varphi \rightarrow \partial {\varphi in L2(0,T;V ) and F\prime\prime (\ygrphij ) \in
L\infty (0, T;L3(\Omega )), there exists a
Recalling that \partial ¢

positive constant (3, independent of h, such that \| \partial &\

mu \| r2(0,7;v\erime) \leq Cs.

This implies that \partial :\\mu \in L%(0,T;V \prime), In particular, we deduce that \mu

\in \scrC ([0,T],V).

8. Uniqueness and continuous dependence. The uniqueness of strong solutions is
an immediate consequence of

Theorem 3.1.  We conclude the proof by showing a

continuous dependence estimate with respect to the initial conditions in higher-order
norms than the dual norms employed in Theorem 3.1. We define v = u1 - uzand \varphi
= \varphi 1 - \varphi 2, where (u1,\varphi 1) and (uz, \varphi 2) are two strong solutions
departing from (uo1, \varphio1) and (uoz, \varphi o2) that satisfy uo;\in V\sigma and \varphi
oi\in H%(\Omega ) such that

\| \varphi oi\| L\infty&)mega)\leq 1, | \varphioi| <1, \muoi= -\Delta \varphi oi+ \Psi \prime
(\varphi oi) \in Vand \partial \bfa \varphi oi= 0 on \partial \Omega . We take v =u and
v =\varphi in (3.1) and (3.2), respectively. Adding the resulting equalities, we find

3 d
\sum
d_—t\scrH 1+ (\nu (\varphi 1)Du,Du) + (\nabla \mu,\nabla \varphi ) = \scr]
k=1
having

UNIQUENESS AND REGULARITY FOR MODEL H

My = 2l + 2ol

T =~ ((u-V)uz,u) — ((v(p1) — v(p2))Duz, Vu),
J2 = (Vg @ Vi, Vu) + (Ve @ Vg, Vu),

Ts = (pu1, Vo) + (p2u, V).

In light of the regularity of strong solutions, there exists a positive constant Cj

il oo 0,703 (0)) + 1@l oo o, w28(0)) + 1 (@il o= (0.7:L3(02)) < Co.

C; 1 € Ndepends on v, v Cy
stants appearing in embedding results. Due to the homogenecous Neumann boundary
condition, we also recall the basic inequality

lelle < llaellllell + llell®.
set such
that
(4.44)
In what follows the positive constant , , , and the con-
(4.45)
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Integrating by parts and using the embedding V \lhook \rightarrow L ¢(\Omega ),
together with (4.44) and

(4.45), we observe that
(Vi V) 2 18612 = (I (1) @y + 7 (e2) s el o 1A

1
> S lael? = Cullelly

1 . .
> EIIA@\IZ — Col|eo]l”.

Due to the Korn inequality and the above estimate, we obtain
1 . .
2 112 SRIPAIE
vV 4 AP < Clll + 3
3
d

d
We now address the terms-/%- By using (4.45), we have
< \% L: 5 Clle D E v
yright; see https://epubs.s‘ljglmToJJ %Lumsifl% 11\‘/;1(%)“”' Le@) + ”yHLﬁ(Q)” qule)H ul
< qI\V’ull2 + C|[Vuzlfsollul® + Cll Dusl[s ) el
Vs
4

By (4.44) and (4.45) and the embedding W23(\Omega ) \lhook \rightarrow Wm\infty
(\Omega ) valid in dimension

. 1 . . . ) .
< 2Vl + 518012 + Cs (Vs lull? + 1Dus s, lel?)

two, we obtain

Jo < (“v‘PlHLm(Q) + V@2 |lLe @) Vel | V|

v,
< IHV“”2 + Cy||Ve|?
. . 1 .
< 2|V + =||Ag|? + Cslell?,
<7 V| + 24|| ell* + Csllell
Tz < lellzscoyllullue @) IVell + [lull[[Vell

< Collollyr + [lu]l?
1 . . .
< 2 A0llZ 1 C ( 2 z).
- < Solael? + Cx(Jlol? + 1ul
In view of the above estimates, we end up with the following differential inequality

\| \nabla + -~
d\scrH 1+ \nu \astu\| 21\ | \Delta \varphi \| 2\leq Cs\Bigl( 1 +\| uz\| 4\bfw
13(\0mega )\ Bigr) \scrH 1.
de 2 8

Therefore, since vz \in L*(0, T;W»3(\Omega )), an application of the Gronwall lemma im
plies the desired stability inequality (4.1).0

By virtue of the energy identity (cf. (2.18)) and the global well-posedness of the
strong solutions, we can prove that the (unique) weak solution regularizes instanta-
neously. That is, the weak solution is indeed a strong solution on \Omega \times (\tau
,\infty ) for any
\tau > 0.
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Theorem 4.2. Letd =2, R >0, m\in (- 1,1), and \tau > 0 be given. Assume that
(uo,\varphi o) is an initial datum such that \scrE (uo,\varphi o) \leq R, \| \varphi o\| wyny
(\omega) \leq 1 and \varphi o = m, and (u,\varphi ) is the weak solution departing from
(uo,\varphi o) . Then, there exist two positive constants M1 = Mi(Rm,\tau ) and M> =
Ma2(Rm,\tau ), independent of the specific

datum (uo,\varphi o), such that

sup [|u(t)|lv, +sup [|u(t)|v < M;
(4.46) i>r >

’

and

(4.47)\| u\| L2(tt+1\bIW ogma) + \| \ partial tu\| L2(tt+1;\bf \oma) + \| \partial ¢\varphi \|
Le+1;v) \leq M2 \forall t \geq \tau.

. In addition, for any p \geq 2, there exists a positive constant M3 = Ms3(Rm,\tau
yright; see https://%B%ti{sc.%l%%?rg/terms -privacy

sup [[o(8) lwzr (o) + 1 F" (@) Lo (r,00:Lr(02)) < M3
(4.48) t>7 .

Proof. Let (u,\varphi ) be the global weak solution with initial condition (uo,\varphi
0) given by Theorem 2.4. Due to (2.18), for any \tau > 0, we infer from (2.18) that there
exists

\tau o \in (0,\tau ) such that (u(\tau o),\varphi (\tau o)) satisfies the assumptions of
Theorem 4.1 and

(4.49) \scrE (u(\tau o),\varphi (\tau o)) \leq R \varphi (\tauo)= m.

Taking (u(\tau o), \varphi (\tau o)) as initial datum, we have a global strong solution on
the time interval [\ tau o,\infty ), which coincides with the weak solution due to Theorem
3.1. Now, in order to show the uniform estimates (4.46)--(4.48), we consider the
approximating solutions (u"k\varepsiton ,\varphi "k\varepsiion ) constructed in the proof of
Theorem 4.1 on the time interval [|tau o \infty ) corresponding to the initial datum
(u(\tau o),\varphi (\tau o)) . Thanks to (4.18) and (4.19),

we have

(4.50)
\SCFE \varepsilon (Uk,\varepsilon n (t),\Varphi k,\varepsilon ™ (t)) + \int t+1 \Blgl( \nu \ast\l \nabla
un (S)\l 2+ \| \nabla \mu k \varepsilon n (S)\l
2\Bigr) ds \leq c\~o \forall ¢t \geq
\tau o, k\varepsilon

where \~codepends on R, but is independent of t. Then, following line by line steps 4

and 5 in the proof of Theorem 4.1, we deduce the differential inequality (cf. (4.36))
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(4.51)
d

A o) + v (| Aug P + 9 o2+ Vg 7)< a (14 A%(uf o))

— 7

UNIQUENESS AND REGULARITY FOR MODEL H

where \Lambda (ugeEe Vi{-f) is defined in (4.32). Here, the positive constants \nu and
\~c1depend on R, m, and the other parameters of the system but are independent of k,
\varepsilon , and n.

By (2.7) and (4.50), we notice that

\int ¢+1
\Lambda (u"k\varepsiion (5),\varphi "k\varepsiton ) (s)ds \leq c\~z \forall t \geq
\tau o.
t

Hence, an application of the uniform Gronwall lemma (see [80, Chapter III, Lemma
yright; see https://epubs.siam.org/terms-privacy

1.1]) to (4.51) with r = \tau - \tauoentails

n\| \b#V isigma + \| \mu nk,\varepsiton (t))\| v\leq M1 \forall ¢t \geq
\tau,
\| Uk \varepsiton (t)

where M1 depends on R, m, and \tau , but is independent of (  u(\tau o),\varphi (\tau
0)). In addition,
integrating in time (4.51) on (¢t + 1), for any t \geq \tau, we are lead to

u . u .
\| “nk\varepsiton \| L2(tt+1\bfW \sgma) + \ | \ partial ¢ " nk \varepsiton \| L2(tt+1\bfH \sgna) + \| \ partial

e\varphi ni\varepsion \| 12(tt+1;v) \leq M2\forall t \geq \tau.

At this stage, passing to the limit in k, \varepsilon , and n as in the proof of Theorem 4.1
and using the regularity in time of the strong solutions, the estimates (4.46) and (4.47)

easily follow. In turn, we also infer the estimate (4.48) from Theorem A.2. ]

As a consequence of Proposition 3.5 and Theorem 4.2, we deduce the continuous
dependence of weak solutions with respect to the initial data in the energy space.

Proposition 4.3. Let d = 2. Assume that a sequence of initial data (uon,\varphi on) and
(uo,\varphi o) are given such that uon\in Hysigma, \varphi on\in V, \| \varphi on\] Lty
(\omega) \leq 1 and \varphi on=m with m\in (- 1,1) for all n, and (uon, \varphi on)
converges to (uo,\varphi o) in Hisigma \times V. Consider the solutions (un,\varphi »),
(u,\varphi) to (1.1)--(1.2) with initial data (uon, \varphi Ong and (uo,\varphi o),
respectively. Then, for any t > 0, (un(t), \varphi »(t)) converges tolult), o(t in Hysigma
\times V.

Proof. Let us fix t > 0. By assumption there exists No> 0 such that \| uon\| +
\| \varphi on\| v\leq Noand \| uo\| +\| \varphio\| v\leq No. By Theorem 4.2 (with
T=3 ) there exists
N1 depending only on No,m,t such thatll @n (®)llv, + lon (@)l m2) < N1, Obviously, the
same control in Visigme \times H?(\Omega ) holds for (u,\varphi). By Proposition 3.5 we

infer that there exists N2 depending on Noand m such that
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r ”uUTl - uO”f + ”'SDUH - ‘1‘50“5 €
<N, ( )
Na

ln(t) = w(®)|F + lon(t) — o)1
where

LS ds

’

Y(t) = N (HHU-,. DI, Hlw@I, HIVen®) L) HIVeO L0 @) Hlien Ol @)

2 . I
Noticing that \scrY (t) \geq Nz, assuming that leon = uolly + llvon — wollx =1, by
interpolation we have

Jun(t) = w(O)]| + llgne) — o()
% (llun(®) = wOl, + l2a(®) = 2O ()

%

*

<c@mn —u(®)]|Z + llen(t) — (0]

1 3 1 1 won — wo|7 + PCon — © i Lo Nat
< O(NF + NN +N;)(” - ””jw o~ ol )
Ng
yright; see https://epubs.siam org/terms-privacy
e P TE Sbove 1negquzﬂnty11)m\1; 1és the desired conclusion. 0

Our next result concerns the propagation of regularity for any weak solution and
the validity of the instantaneous separation property from the pure concentrations
(i.e., \pm 1) in dimension two. This is possible due to a suitable estimate of \Psi  \prime
\prime (\yarphi ) in
Lp spaces, which allows us to show further a priori higher-order Sobolev estimates.

Theorem 4.4. Letd =2, R >0, m\in (- 1,1), and \tau > 0 be given. Assume that
(uo,\varphi o) is an initial datum such that \scrE (uo,\varphi o) \leq R, \| \varphi o\| runy
(\omega)\leq 1 and \varphi o= m, and
(u,\varphi ) is the weak solution departing from (uo,\varphi o). Then, there exists two
positive constants Ma= Ma(Rm,\tau) and Ms = Ms (f2,m,7) independent of the specific
datum (uo,\varphi o), such that
(4.52) 19wl oo (r,00:H,) + 1062| Loo (7,005 1) < My,

and

(4.53)\| \partial w\| r2(tt+1,\bfV 15gma) + \| \partial \varphi \| 12(5t+1;#2(\0mega)) \leq Ms
\forall t \geq \tau.

Furthermore, there exists \delta = \delta (R,m,\tau) > 0 and M¢= Ms(R,m,\tau ) such that

s ()l <19

and

(4.54). L.11p||u( Mw.,, +‘1]11:)H*/( N ) < Ms

Proof. First, by replacing \tau with 7 in Theorem 4.2, we can assume that the so-
lution (u,\varphi ) satisfies the uniform estimates (4.46)--(4.48) on the time interval [
5,00).

We proceed by showing additional higher-order a priori estimates on the solution. In
the sequel, ki, i \in \BbbN ,

denotes a positive constant which depends on R, m, and \tau but is independent of the

specific initial datum. Given h > 0, repeating line by line the proof of the stability result
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(4.1) in Theorem 4.1 (cf. step 8), where the difference of two solutions (u1 - uz,\varphi1
- \varphi 2) is replaced by (\partial /u,\partial ¢'\varphi), we deduce the differential
inequality

(4.55) d\scrH + \nuvast \| \nabla — \partial nu\| 2+ 1\| \Delta \partial tn\varphi \|

2\leq ko(1 + \| u\| 4\bfw 13(\0mega))\scrH 2,
2 t
det 2 8
1 1
where Mo = =07 ull® + =10} oI,
2 2

and the positive constant kois independent of h but depends onM3 Miand . Recalling

that \| \partial f\| L2(se+1
thanks to Theorem 4.2, we observe that

t+1
-
(Ha(3) + lu(s)lly a0 ) ds S ki ¥ 2 2,
[ 2 i \leq \| f\| 12(ees2),
where k1 is independent of h, but depends on Ms, Hence, the uniform Gronwall lemma

(see [80, Chapter III, Lemma 1.1]) with” = Zyields

\| \partial thu\| Lyny (\tau \infty ;\bfH \syma) + \| \partial cn\varphi \| pxnty
(\tau \infty ;H) \leq M4,
and
\| \partial tnu\| L2(tt+1;\btV \sgma) + \| \partial tn\varphi \| L2(tt+1;52(\0mega )) \leq Ms

\forall t \geq \tau,
UNIQUENESS AND REGULARITY FOR MODEL H

where Msand Ms depend on R, m, and \tau but are independent of h, t, and the specific
initial datum. A final passage to the limit as h \rightarrow 0 entails (4.52) and (4.53).
We are now in position to prove the separation property. In light of (4.52), it is
immediate to deduce that \partial :\varphi +u\cdot \nabla \varphi \in L\nfty (\tau
,\infty ;H). Then, the regularity theory of the Neumann

problem
implies that

(4.56) \| \mu \| pinsy (\tau \infty ;2(\0Omega )) \leq kz.

By Theorem A.2 with f= \mu +\theta o\varphi \in L\i"fty (\Omega \times (|tau ,\infty
)), we find \| F\prime (\varphi )\| Lyniy (\Omega \times (|tau \infty )) \l€q k3. This, in turn, entails
that there exists \delta > 0 such that

up 90 gy < 16
(4.57) t>r “m

Thanks to the regularity (4.48) and the separation property (4.57), and recalling
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\prime (\yarphi  )\| Lunfty (\tau \infty
;H2(\0mega)) \leq k4. Thus, that F\in \scrC3([ - 1 + \delta,1 - \delta ]), we deduce that \|
F
exploiting (4.56), the above control and the regularity theory of the Neumann problem,
we get \| \varphi \| rny (\tau \infty ;#s(\0Omega )) \leq ks. Moreover, setting f = \mu \nabla
\varphi - \partial w - (u\cdot \nabla )u, we infer from (4.46), (4.48), and (4.52) that,
forany 1 < p < 2, there exists ks such

that \| f \| Lunty (\tau \infty ;\bfL p(\Omega )) \leq ke, where ke depends on p . Then, in light of
(4.48), an application of Theorem B.3 (with r = \infty ) yields \| u\| L vinfty (\tau \infty ;\bfw
Zp(\Omega ) \leq kz. Recalling the embedding W' \lhook \rightarrow Lr\wst, where

p* p 2 and choosing ¥ = 3 we obtain v \in L\nfy (\tau \infty ;W24(\Omega )).
Thanks to this regularity, we observe that f \in L\infty (\tau,\infty ;H).
Applying once again Theorem B.3, we find

\| U\| Lyt (\tau \infty ;\bfW \yma) \l€q k8.

yright; see https:/{spuhss@ A BLRIHE M VEENe of the solution, we note that the above inequalities hold
for any t \geq \tau, giving the desired estimate (4.54) with M¢ depending on ks and ks.

|

5. Local strong solutions in three dimensions. In this section we study the
well-posedness of strong solutions in dimension three.

Theorem 5.1. Let d = 3. Assume that uo\in V\sigma and \varphio\in H2(\Omega ) is such
that

\| \varphi o\| Lymy (\omega) \leq 1, | \varphio| <1, \mu o= - \Delta \varphi o+\Psi \prime
(\varphio) \in V, and \partial n\varphi o= 0 on \partial \Omega. Then, there exist a time
T\ast > 0 and a unique strong solution to (1.1) --(1.2) on [0, T\ast] satisfying

u \ln L\infty (0, Thast ;V\sigma ) \Cap LZ(O, Thast ;W\sigma ) \Cap Hl(O, T\aSt; H\sigma ), \pl \ln
LZ (0’ T'\ast ; V )’

\varphi \in L\infty (0, T\ast;/26(\Omega )) \cap H!(0,T\ast;V),
\mu \in L\infty (0, T\ast; /) \cap L2(0,T\ast;H3(\Omega)).

The strong solution satisfies (1.1) a.e. on (x,t) \in \Omega \times (0,7T\*t) and \partial
n\mu =0 a.e.on

\partial \Omega \times (0,T\ast).

The proof of Theorem 5.1 relies on the argument employed in the proofs of The-
orems 3.1 and 4.1. For the sake of brevity, we report only the main changes.

Proof. We follow the proof of Theorem 4.1. For the same values of k, \varepsilon ,
and n as defined in steps 1--3, we obtain the approximating sequences ( uk.e &'DE-E) that
solve (4.13)--(4.14) d, iN and (4.15). Before deriving uniform a priori estimates we
specify that the positive constant, depends on the parameters of the
system, the constants
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in embedding and interpolation results, and \scrE (uo, \varphi o), but is independent of
the approximation parameters k, \varepsilon , and n and of the norms \ | uo\ | \bfv sigme and
\| \mu o\| v. It is easily seen that the energy estimates (4.20)--(4.25) also hold. In
particular, we have (5.4 14k ()1l + g (Dlv <& Vi€ [0.7]

Let us now proceed by showing higher-order Sobolev estimates. First, arguing as in
step 5 we find

IIV# AP+ (uf - Vo o2 HV@L@ - -
dz
d
v =0dyu} _ in (4.13).
(5:2) < (Qeup. - Vep i o)+ (14 [lug I ))(1+||V“ AP+ IV N17)

In order to recover estimates on the velocity field, we take first
This yields
yright; see https: //efubs s1arn org/terms- prlvacy _
Opu o|* + b(up oy uf o, Fhug ) — (div (v(pg ) Dup L), dvugl ) = (i Vol o, Opul )
By using (2.2), (2.6), we have
blug o up o, Opug ) < flug llus) Vg llus o) l|0ug |
n 13 1
< CIIVU cellZ 1A 12 (10w ||

< o I+ (1AL |7 + [V, I°).
Exploiting once more (2.2) and (2.6), we obtain
(div (A(g.) D), D)
= 1(’/(99'2',5)‘5“53.5: Orug ) + (V' (er ) Dui Vo o, Oruyl )

2

LS(Q) HDUE,E ||L3(SZ) 0wy ||

1
< 1ok oI + CllAug |* + Cllgi.

< S0 1P+ ¢ (IABE P + Nl e o | T )

On the other hand, by (4.22) we have

IA

12k el o) IV o5 < lla o) l| Qe . ||
Vor sy L+ 1Vug %)

(ur Vop .. Ovuft )

A

1

< n o |2 !/
o ll” + e
Collecting the above estimates, we arrive at

v P < ch (Il Aug |2 + IVug ]°

(5.3) + 1108 N2 IV NP + IVeR NI ) (1 + IIVME,EIV))-
Next, we take v = Au,\varepsiion in (4.13). We % (0,T recall that  there exists
D"k \varepsilon \1n LZ[O,T,V) satisfying - \Delta U"k,\varepsilon +\nabla P"k \varepsilon =

Aumk\varepsilon a.e. in \Omega ) and the estimates (4.28). Thus,

we find
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We address the right-hand side of the above differential inequality by using (2.2) and
—(V ek IV@L Pi e Aug ) + (V(9k ) Dul Vo o Aug; )

< ClIVgE oo (upz,gnba(m + ”Duﬁ.a”m(m) lAug. |

Loy
Epp o E + V1| A ] )HAUE.EII

< Clle cllmco Ik«

, 1 . 3 1 n i ‘
< Cllgt Mo (Ve I Awg N+ IV ug A 1) [ Awg |
< TIAUEIP + O+ o o) I VUi,

and

IA

b(uz,v uﬁ.e: Au?e) ” uﬁ.e ”L“(Q) Hvufe HL‘}(Q) HAUEE ”

V.
%A+ V|

IA

yright; see https://%ﬂﬂ’s‘?éi%?n.‘é’?gh@ﬁ%s -privacy
(“E.‘qu)z,sﬂ A”fg) < ””}L}:E”LG Q HV[PEEHLS(SB)”AHEE”
Vy n
= FHA rellfa) (L + Vag - 1%).

Combining these estimates, we obtain

||V ElP T A )
(5.4}
< C’w((l + Ik, ||H2(sz) NVl |° + [[Vai ) + [V ||L3(sz) (1 + (Vi I ))

Multiplying (5.3) by @ 4Uc;3 >
||v P4 AR + w0

(5.5}
< A (U 16k eIV I + IV 1+ IV07 | (1 + V87 19))-

Adding (5.2) to (5.5), we find the differential inequality

SN of) + AP+ Do+ IV
< (e Veq )+c’w((1+||w:,e||%z(s—a)>nw AP+ 19 ug |
(56) F U IV oy + e[+ IV 2 + 1905 1)),
where A(u} _, ¢} .
that
(e et < el 19 Ml
< JIVE P + SIVHE P + .
5 IV 7 + vl Aug 1 < o A~ OV A

+ (0 (er ) Dui Vg o Aug ) + (03 Vi o, A )
(4.28). We have
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= w0 and summing up to (5.4), we obtain

) is the same as in (4.32). Owing to (2.2) and (5.1), we observe
Thus, we deduce that

1 1
no 4 > n |2 \vaTi 2 _ .
(57) \Lambda (uk,&‘."n"k,e = 4” u’.’\:,é‘” + 4” ﬂk.&‘” (‘].J

On the other hand, we have

Exploiting (4.23), we are led to

d_dt\Lambda (unk \;arepsilon, \varphi nk\varepsiton ) + \nu \Bigl('\|
Aunk,\varepsilon \| 2+ \| \partial tunk\varepsiton \| 2+ \| \nabla \partial
t\ varphi k \varepsilon n \I z\Bigr)

< (1 A3 noan )
(5.8) =5 ( + A% (g ., (f‘k:g))

T — l 1 Lowi g . . . .
v=gmin{l, v, @} where. In addition, following line by line the estimates

performed

in the proof of Theorem 4.1 for a uniform bound of the initial condition, we easily get

(5.9)\Lambda (un\iambda (0),\varphi n\iambda (0)) \leq C(1 + \| uo\| \bfV sgma + \| \mu o\| v
)l

where C is independent of k, \varepsilon , and n, provided that n is sufficiently large.
Therefore, we infer from (5.8) and (5.9) that there exist a positive time T\ast, depending
on \l UO\l \bfV \sigma

and \| \mu o\| v, and a positive constant C such that
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,
e (1), @?.g(t))+£ (IIAHE?_S(S)||2+||0tUI’?.E (S)I|2+IIV0r¢'£f.g(S)||2) ds <€

\ast

sup\Lambda (u
0\leq t\leq Thast

where Cis independent of k, \varepsilon , and n. A final passage to the limit allows us to
recover the existence of a strong solution to the original problem (1.1)--(1.2). Moreover,
the

additional claimed regularities for \varphi and \mu can be easily deduced as in the
proof of
Theorem 4.1.
We are left to prove the uniqueness of strong solutions. Given two strong solutions

(us,\varphi 1) and (uz,\varphi 2), defined on the time interval (0,T o) with the same initial
datum

yright; see https://dpubi&intt ebowerdrfipashejr difference u = u1 - uzand \varphi = \varphi 1 - \varphi .
We observe that

the regularity of strong solutions allows us to follow the argument in the proof of

Theorem
3.1. Then, we have the differential inequality
d 1
7
(5.10) — - \scrH + \nu

\ast \| U\| 2+ \| \nabla \varphi \| 2\leq
\alpha 2\scrH + \sum \scrl k, dt 2
k=1

where the terms \scrH and \scrl xare defined as above.In light of the regularity u;\in
L\infty (0, To;Vysigma) and \varphi i\in L\i"fy (0, To;W2(\Omega)),i=1,2, we can easily infer
that

1 . Vs . . .
T+ T+ Ts + T+ Tr < IVl + Sl + Cu (Ilol2 + [ul?)

for some positive constant C1. On the other hand, by using (2.2) and the boundedness of
\nu \prime we simply obtain

Iy < Cllell ooyl DusllLs o) [ VA u||

1 2
< — IV« + (-
= 12” &JH s

| DI || ullZ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



UNIQUENESS AND REGULARITY FOR MODEL H 2581

and
7y < (Il s + uszllueo ) ulIVA ™ ulusgo

3 — 1
< C(Hu] ey + H1'L2||Lﬂ(sz))||u||2 IVA™ u2
Ve

<
-8

2 2
[l + Calwllz
for some positive constants Czand Cs. Collecting the above estimates together, we end
up with

—d\scrH \leq C (1 +\|Du\]| 2s
)\SCI‘H .dt 42L(\Omega)

2(0,To;L3(\Omega )), the uniqueness of strong solutions immediately follows

yright; see https:/&dss Bl iord/iem Prevacgnwall lemma. O
Appendix A. On Neumann problems. Forany  \lambda \geq 0, letus

consider the
Neumann problem

\Biggl\{
-\Deltau + \lambdau=f in
\Omega , (A.1)
\partial \bfau = 0, on \partial \Omega.

We introduce the operator Byiambda \in \scrL (V,V \rrime) defined by
(Byu,v) = ] (V- Vo + duv)dz Yu,v € V.
Q
We consider the spaces

Vo={veV:5=0}, V},':{fGV’:T:O}’

and we recall thatV = Vo @R and V' = Vi@ R The restriction Ao of Bo to Vo being an

isomorphism from Vo ontoVo’, we denote byA[Tl : Vi = Vits inverse map. It is well
known that for all/ € V0 A(Tlfis the unique u \in Vosuch that \langle Aou,v\rangle =
\langle fv\rangle

forall v\in V.On account of the above definitions, we observe that

Ay = [ V(A1) V(A de Vfige V]
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b=

Owing to (A.2), it is straightforward to prove that |/ ll+ == IVAG fIl = {f, A )

. . - . 1 v
is a norm on"0 equivalent to the natural one. In addition, forany = % € HY(0,T:Vy ),
we have the chain rule

1d

I (P 2
- 2d¢t ““’(T)H*

(ue (1), Ag 'u (1))

(A.3), a.e. t\in (0,7).

Furthermore, due to regularity theory of the Neumann problem, we know that

(A4). IVAT fllv <ClIf| VfeHNV]

For any \lambda > 0, we also consider the operator A\iambda = - \Delta + \lambda I as
unbounded operator on H with domain D(Aiambda) = \{ u \in H2(\Omega) : \partial \bm
u = 0 on \partial \Omega \} . It is well-known that A\imbda is positive, unbounded, self-
adjoint operator in H with compact inverse (see, e.g.,

[80, Chapter II, section 2.2]).
Next, we introduce the homogeneous Neumann elliptic problem with a logarithmic
convex nonlinear term, that is, with the same F as in (2.8)--(2.9),

\BiggI\{ _\Delta u + Fwrime (1) = fin \Omega ,
(A5)
\partial \bm u = 0, on \partial \Omega.

Under the assumptions in section 2, we have the following well-posedness and approx-

imation result.

Lemma A.1. Let \Omega be a bounded domain in \BbbR ¢, d = 2,3, with smooth
boundary. Assume that f\in H. Then, there exists a unique solution u to problem (A.5)
such that u \in H?(\Omega ), F\prime (y) \in H and satisfies - \Delta u + F\rrime (y ) = f for
almost every x \in \Omega and \partial nu = 0 for almost every x \in \partial \Omega .
Moreover, we have

(A.6) \| u\| 2 0mega) + \| Fvrime (u)\| \leq C\PI8IC1 + |\ \igI),

Let us assume that the sequence \{ fi\} \subset H, and f\in H. We consider the solutions
Uk

and u to problem (A.5) corresponding to fiand f, respectively. Then, fi \rightarrow fin
H, as k \rightarrow \infty, implies
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(A.7) \| ux - u\| v\rightarrow 0, as k \rightarrow \infty .

Proof. The existence of a solution u to problem (A.5) can be proved relying on

the theory of maximal monotone operator. We define the functionalon H

Fw) = [ FIVul? + Fu)da.
JO

with domain D(\scrF ) =\{u \in H'(\Omega ) : \| u\| o\ny \omega) \leq 1\}. We observe
that \scrF is a proper, lower semicontinuous and convex functional. Now, we consider
the subdifferential \partial \scrF of \scrF, defined as w\in \partial \scrF (u) if and only
if, for all v\in H, \scrF (v) \geq \scrF (u) + (w,v - u). Then, \partial \scrF is a maximal
monotone operator on H (see [20]). Moreover, it is well known that D(\partial \scrF ) =
\{ u\in Hz2(\Omega ) : F\prime (u) \in H,\partial \m u =0 on \partial \Omega \} and
yright; see https://ppypsigiagepre(teyms-privacy

- \Delta u + F\prime (u) (see [14, 9]). By (2.9), we deduce that \partial \scrF is also
coercive, namely,

(\partial \scrF (u) - \partial \scrF (v),u - v) \geq \theta \| u - v\| 2for all y,v \in
D(\partial \scrF ), where \theta is the same as in

(2.9). In turn, this implies that \ partial \scrF is surjective on H. In addition, the estimate
(A.6) can be proved as in [9, 29]. Finally, exploiting (2.9) once more, we can easily infer

the uniqueness of solutions and the approximation result (A.7) to problem (A.5). d
We now report some elliptic estimates, whose proofs can be found in [2, 29, 49].

Theorem A.2. Let \Omega be a bounded domain in \BbbR ¢ with smooth boundary.
Assume that u is the solution to problem (A.5). We have the following:

\bullet Letd = 2,3 and f\in Lr(\Omega ), where 2 \leq p \leq \infty . Then, we
have

\I F\prime (Ll)\l Lp(\Omega) \leq \l f\l L p(\Omega).

\bullet Letd = 2,3 and f\in V. Then, we have
[Aull < [[Vul 2V £]]Z

In addition, there exists a positive constant C = C(p) such that

\| u\| wap(\Omega) + \| F\prime (u)\| Lo(\Omega) \leq C\bigl( 1 + |
Al v\bigr),
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wherep =6 ifd=3and forany p\geq 2ifd=2.
\bullet Letd =2 and f\in V. Assume that F satisfies

\prime

F\prime \prime (5) \leq ec|F(s)| +c\forall s \in (-1,1)

for some positive constant C. Then, for any p \geq 1, there exists a positive
constant C = C(p) such that

\l F\prime \prime (Ll)\l Lp(\Omega ) \leq C\blgl( 1+ ec\|Al zv\bigr) )

Appendix B. On Stokes operators. We consider the homogeneous Stokes
problem
'V, >V,
" Vo First, we

yright; see https://epubs.siam.org/terms-privacy

in
(B.1) (Au,v) = (Vu,Vv) Yu,veV,
\Omega , introduce  the  Stokes
\left\{ in operator as the map Asuch
-\Deltau + \Omega that
\nablap =f, on
\partial ;s ’
divu=0, u \Omega
o 8 LV, eV ?amely, A
- : is the

canonical isomorphism from V\sigma onto . We denote by A-1: Vthe inverse map of the
Stokes operator. That is, given f, there exists

aunique u = A-1f\in V\sigme such that

(\nabla A-1f,\nabla v) = \langle f,v\rangle \forall v \in V\sigma.

I£1ls := VA f || = (f, A1 f)2

It follows that is an equivalent norm on V\sigma

\prime  and the 1d . chainrule

(1), A =57 ;
(f (1) f1) 2 dt £ @)l , a.e. t\in (0,7),

holds for any f € H'Y(0,T: V:T). In order to recover the pressure p, the well-known
De Rham result implies that if f \in H-1(\Omega ), there exists p \in H (such that p = 0)

such that \nabla p = \Delta u + f in the distributional sense. In addition, by [81,
Proposition

1.2] we know that
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(B.2) \I P\| \leq C\| f\| \bft -1(\0mega).

Let us now report the regularity theory of the Stokes problem (B.1) (see [24]). As-
suming that f \in H, then there exist a unique u< H*(2) NV, and p\in V (unique up to
a constant) such that - \Delta v + \nabla p = fa.e. in \Omega . Moreover, there exists a
constant

C such that

(B.3) \| u\| \bf200mega) + \| p\| v\leq C\| f\] .

We denote by P : H \rightarrow Hsigma the Helmholtz--Leray orthogonal projection
from H onto Hysigma. We recall that P is a bounded operator from V intoVNH,, namely,
there exists a positive constant C such that

\| Pv\| \btv \leq C\| v\| \bsv \forall v\in V.

We also report that P\nabla v=0 for any v \in V. Next, we consider the Stokes operator
as an unbounded operator on Hjsigms with domain D(A) = \{ u \in V\sigma : Au \in Hjsigma
\} . It is well known that A is a positive, unbounded, self-adjoint operator in Hsigma
with compact

inverse (see, e.g., [81]). In particular, we have

Au = P( - \Delta u)\forall u \in D(A),whereD (A) = H2(\Omega ) \cap V\sigma.

Thanks to the above regularity results, we deduce that the operator A -1 : Hjsigma
\rightarrow H2(\Omega ) \cap V\sigma is such that, for any f \in H\sigma, there exist

A~'f € D(Ajand p\in Vthat
solve

(B.4) -\Delta A-1f + \nablap =f.

In turn, this entails that AA-1f = f. Owing to (B.3), we have

(B.5) \| A1\ | b zpomega) + \| P\| v\leq €\ £\

We are now in position to find an L2 estimate of the pressure p in (B.4) in terms of
\| \nabla A-1f\| . Let us first report a preliminary interpolation result (see [73]).

Lemma B.1. Let \Omega be a Lipschitz domain in \BbbR ¢, d = 2,3, with compact
boundary.
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Then, there exists a positive constant C such that

1

Z YfeV

(B.6) Ifll2c00) < CIAIRIS
We have the following result.

lemmaB.2.Let d =2, 3and f\in H\sigma. Then, there exists a positive constant C
(independent of f) such that

(B.7) lpll < CIVA~'AIE A1

Proof. Thanks to (B.2), we need to control (17 e+ by means of \| f\| \sharp. To this
end, let us consider v& Hg](\Omega ) with lv ”Hé(“) <1 By exploiting the integration by
parts, we find

(f,v) = (P(-\Delta)A-1f,v)
-1
yright; see https://epubs.siam.org/terms-privﬁ&y‘ \Delta A f,Pv)
\int
= (\nabla A-1f,\nabla Pv) - \nabla A- 1fn \cdot Pvd\sigma.
\partial \Omega

We recall that the classical trace theorem implies ”P””fﬁ(ﬂﬂ) < C”P”“V. In addition,
by the properties of the Helmholtz--Leray operator and the Poincar\'e inequality, we

have“P”HV = C”U”Hé(“). Then, we deduce that

Ifller-1(0) < CIVATf || + CIIVAT flL2(a0).-

An application of Lemma B.1,

together  with <C 1 C 11 1 (B.5), implies that

\[F\ o -100mega)\| \nabla A f\[ +\| \nabla A f\[ 2\| f\| =

Thus, the desired inequality (B.7) immediately follows. d

Finally, we consider the homogeneous Stokes problem with nonconstant viscosity
depending on a given measurable function \varphi . The system reads as follows

\left\{
- div(\nu (\varphi)Du) + \nabla \pi =f, in \Omega,

(B.8) divu =0, in \Omega,
u=0, on \partial \Omega,

where the coefficient \nu fulfils the assumptions stated in section 2. We report a regu-
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larity result whose proof has been provided in [2, section 4, Lemma 4].

Theorem B.3. Let d = 2, \varphi \in W'r(\Omega ), with 2 < r\leq \infty, and f \in
Lr(\Omega ), with
1\leq p <\infty. Assume that u \in V\sigma is a weak solution to (B.8), i.e,

(\nu (\varphi
)Du,Dv) = (fv) \forall v\in V\sigma.

Then, there exists C > 0, depending on r and p, such that

(B-9)\| u\| \bfW 2p\prime (\Omega) \leq C\bigl( 1 +\| \nabla \varphi \| \bfL -(\0mega)\bigr)
\bigl( \| A\| \bfL. s\0mega) + \| \nabla u\| \bigr),

1 1

wherer’ — » T %, provided that p\prime > 1,
yright; see https://epubs.siam.org/terms-privacy
Appendix C. A product estimate in two dimensions. We report here a
logarithmic estimate of the product of two functions in two dimensions. The following
proof is based on an idea developed in [30] and [82] to control the convective term of
the Navier--Stokes equations.

Proposition C.1. Let \Omega be a bounded domain in \BbbR 2 with smooth boundary. As-
sume that f\in Vand g \in V. Then, there exists a positive constant  C such that

ALNE
(€1, 791 < Cl7lvlgl [ 10 (e )]

Proof. Let us consider the operator A1= - \Delta + I on H with domain D(41) =

\{u\in H?(\Omega ) : \partial \vsmu = 0 on \partial \Omega \} defined in Appendix A.
By the spectral theory, there exists a sequence of positive eigenvalues \lambda « (k \in
\BbbN ) associated with A1 such that

\lambda 1=1, \lambda r\leq \lambda r+1and \lambda \rightarrow \infty as k goes to
\infty . The sequence of eigenfunctions wk\in D(A41) such that Aiwk= \lambda rw«kforms
an orthonormal basis in LZ(\Omega ) and an orthogonal basis in H!(\Omega ). In
particular, we have the representation

\infty f:

\sum (fwik)wk.

k=1
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Let us fix N \in \BbbN whose value will be chosen later. We write fas follows

N
\sum \bot
(C.2) f= Ja+ fi
n=0

where

= Y (fww

ki A =eN+1

o= > (fown)wy,

kien < /Ap<entl

By using the above decomposition, the H\"older inequality, and subsequently (2.1) and
(2.3), we find

N

1£gl <> lfngll + £ 59l

n=0

n=0
N

N
< Ml @ gl + 1oy gl nagey

1 - 1 1 1 E
<CY N fall2 il Zo lgll + CILFNZ 12 1E gl 2 NlgllE
[C3) n=0 .

HflJ‘?ﬁ(Q) = Z |(f,wi)[?
We now observe that

kem< /A, <entl
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1 : o Here
< o > i |(fywi)[? = @an”?ﬂ(m'
) kien </ Ap<entl we have
D Al V. Ob ) hat f used the
1 . serving that
's, by the regularity theory of the Neumann problem, we have fact that (
) = ,is a
1allize) < ClA iz =C Y AL wdl = e
hien SV <ent? sum of wk
<C Z STV | fw P
E::e”S\/)\k <entl
< Ce
k(o H)
IF IR E < et |
Then, we deduce that = e
yright; see https://epubs.siam.org/terms-privacy n Ho\Omega) -
On the other hand, reasoning as above, we have
N OLEQ) 2N+ NV \| Abot \| 2
\leq I\| Abot \| 2

Combining the above inequalities in (C.3) and applying the Cauchy--Schwarz inequal-

ity, we get

N

\Ifg\| \leq € \SUm ¢

1 1 1 1
2| fullvllgll + € L3 v llgllZ gl

n=0 €2
1 lgll:
<l 3+ sl ”‘ i)
n=0
T 1 HQHV al 2 152 ?
< Clgll eV +1) + =7 S Ufall? + 1513
n=0
< N 1 1 HCJ”1
(C4) < Cligll{ etV +1) + x5 ||f||,,,.
Now, we so that choose
the integer ln( \ |q|” ) <N4l<l4t ln( |||(|;|||1i) N
g g
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By using the above choice of N in (C.4), we eventually infer that

Sllgllvy 1713
< i 2 llgllv
I£all < Clgllll £l [Chl (C gl ) + o} ’

which implies the desired conclusion. 0

For the purpose of this work we state an immediate generalization of (C.1), whose proof
which can be inferred from that of Proposition C.1 is left to the interested reader.

\BbbR 2 with smooth boundary.

AsProposition C.2. Let \Omega be a bounded domain in sume that f\in V, g \in V, and h
\in V. Then, there exists a positive constant C such that

(C.5)

yright; see https://epubsA%iﬁlﬁlécaﬁ/t Hnsé];{tigf_acy

Ifgl <C

|/l

v gl + 1) g (e L2 2Ly 2

edgm The authors wish to thank Yining Cao for her careful

reading of the manuscript and her helpful remarks.
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