
IMPERIAL COLLEGE LONDON

DOCTORAL THESIS

Applications of the amalgam method to
the study of locally projective graphs

Author:
William GIULIANO

Supervisor:
Prof. Alexander A. IVANOV

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Mathematics
Imperial College London

April 23, 2022

https://www.imperial.ac.uk
https://www.imperial.ac.uk/people/a.ivanov
https://www.imperial.ac.uk/mathematics
https://www.imperial.ac.uk


i

Declaration of Originality

I, William GIULIANO, declare that this thesis and the research to which it refers are
the product of my own work except where acknowledged in accordance with the
standard referencing practices of the discipline.



ii

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Cre-
ative Commons Attribution Non-Commercial No Derivatives licence. Researchers
are free to copy, distribute or transmit the thesis on the condition that they attribute
it, that they do not use it for commercial purposes and that they do not alter, trans-
form or build upon it. For any reuse or distribution, researchers must make clear to
others the licence terms of this work.



iii

CARMELA - Ma comme, Marche'? Chillo ha faticato sempe. . .
EDUARDO - E ha fatto malissimo. Innanzi tutto, il lavoro fa male. Tanto vero,
che quando un medico visita un ammalato, come prima cosa gli dice: “Riposo
assoluto.” Non gli ho mai sentito dire: “Lavoro assoluto.”
VICENZINO - Mai, mai!
EDUARDO - E poi, il lavoro è un perditempo. Il tempo non bisogna perderlo
in cose inutili, bisogna utilizzarlo. C'è gente che perde tutta la giornata a lavo-
rare. Invece, guardate me: io non perdo un minuto. Da che m'alzo la mattina
a che vado a letto la sera, utilizzo tutta la giornata a passeggiare, a pensare, a
starmene seduto ai giardini pubblici guardando il mare, gli alberi. Se trovo qual-
cuno, faccio quattro chiacchiere, parlo coi discepoli. Insomma, io occupo tutto il
mio tempo come va occupato. Non perdo neanche un'ora, nemmeno un minuto.
VICENZINO - (entusiasmato batte le mani) Bene! Bene!
CARMELA - Giesù, Giesù, Giesù!
EDUARDO - C'è gente che lavora tutta una vita per riposare a settant'anni.
Lavorano magari quaranta o cinquant'anni, poi a settant'anni riposano. Io non
discuto il loro metodo: sarà eccellente. Ma io ho un sistema diverso. Io riposo
quaranta o cinquant'anni, poi a settant'anni, se sarà il caso, e se ci arriverò,
forse comincerò a lavorare. (alzandosi e avvicinandosi alla porta, nel men-
tre guarda sulla strada) Mi fanno ridere. Se voi vi affacciate sulla via, cosa
vedete? Case, case, case. E in ogni casa c'è della gente che lavora. Il calzolaio fa
le scarpe al barbiere, il barbiere fa la barba al sarto, il sarto cuce gli abiti al cal-
zolaio e al barbiere. Tutti lavorano, eppure tutti non desiderano che il momento
in cui potranno riposare. Quando, poi, dopo anni e anni di lavoro, si riposano,
sono talmente abituati a lavorare che a riposare si annoiano. È naturale: non
bisogna abituarsi al lavoro.
VICENZINO - Non bisogna! Non bisogna!
CARMELA - (a Vicenzino) Statte zitto, tu!
EDUARDO - Quando uno invece è abituato al riposo, non si può mai annoiare.
Alla domenica, per esempio, la gente sapete perché s'annoia? Perché non è abit-
uata al riposo, manca del necessario allenamento all'ozio. Perciò che io dico:
alleniamoci all'ozio e combatteremo la noia del giorno domenicale. È chiaro?
VICENZINO - (entusiasta) Chiarissimo!
EDUARDO - Del resto, voi credete che non far niente sia una cosa facile? Seh!
C'è un'abilità, una tecnica del non far niente. Tutti sono capaci di non far
niente. Bisogna vedere questo niente come lo fanno. Guardate Socrate, Platone,
Diogene! Non facevano niente, ma lo facevano in un modo perfetto. Diogene se
ne stava giornate intere seduto al sole, ogni tanto scambiava quattro chiacchiere
con un discepolo, parlava del più e del meno. Sapete dove dormiva? In una botte.
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E disprezzava il danaro: era orgoglioso della sua povertà. Diceva: “Omnia mea
mecum porto.” Per significare che tutta la sua ricchezza era il suo cervello. Che
uomo! Un giorno lo videro girare per Atene con una lanterna in mano: cer-
cava l'uomo. Sembra una sciocchezza, ma guardate che profondità. Uno gira
per Atene con una lanterna in mano. Che cosa cerca? L'uomo. Un'altra volta
l'Imperatore Alessandro si fermò davanti a lui e gli disse: “Diogene, cosa posso
fare per te?” Sapete che gli rispose Diogene? “Voglio che tu ti tolga tra me e il
sole.” Avete capito che testa, che carattere? Un'altra volta vide un bimbo che
beveva nel cavo della mano. Allora disse: “Quel ragazzo m'insegna che porto
con me molte cose inutili.” E spezzò il suo bicchiere. Ecco uno che non faceva
niente tutto il giorno, ma quel niente lo sapeva fare. Se avesse fatto il tornitore,
certo i suoi contemporanei avrebbero detto di lui: “Che tornitore, quel Diogene!
È proprio un bravo artigiano, un lavoratore onesto e coscienzioso!” Ma i posteri
non si sarebbero mai curati di lui. I posteri lo hanno esaltato, perché? Perché non
faceva niente tutto il giorno, perché pensava, perché non perdeva il suo tempo
a lavorare, ma lo utilizzava oziando. Di Eduardo Parascandolo, cara signorina
Carmela, parleranno i posteri.

— Armando Curcio, A che servono questi quattrini
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Since its birth in 1980 with the seminal paper [Gol80] by Goldschmidt, the amalgam
method has proved to be one of the most powerful tools in the modern study of
groups, with interesting applications to graphs.

Consider a connected graph Γ with a family L of complete subgraphs (called lines)
with α ∈ {2, 3} vertices each, and possessing a vertex- and edge-transitive group G
of automorphisms preserving L. It is assumed that for every vertex x of Γ, there is a
bijection between the set of lines containing x and the point-set of a projective GF(2)-
space. There is a number of important examples of such locally projective graphs, stud-
ied and partly classified by Trofimov, Ivanov and Shpectorov, where both classical
and sporadic simple groups appear among the automorphism groups.

To a locally projective graph one can associate the corresponding locally projective
amalgam A = {G(x), G{l}} comprised of the stabilisers in G of a vertex x and of a
line l containing it. The renowned Goldschmidt amalgams turn out to belong to this
family (α = 3), as well as their densely embedded Djoković-Miller subamalgams (α =
2). We first determine all the embeddings of the Djoković-Miller amalgams in the
Goldschmidt amalgams, by designing and implementing an algorithm in GAP [Gap]
and MAGMA [BCP97]. This gives, as a by-product, a list of some finite completions
for both the Goldschmidt and the Djoković-Miller amalgams.

Next, we consider two examples of locally projective graphs, special for being de-
void of densely embedded subgraphs, and we extend their corresponding locally
projective amalgams through the notion of a geometric subgraph. In both cases we
find a geometric presentation of the amalgams, which we use to prove the simple con-
nectedness of the corresponding geometry.

Finally, we use the Goldschmidt’s lemma to classify, up to isomorphism, certain
amalgams related to the Mathieu group M24 and the Held group He, as outlined
in [Iva18], and we give an explicit construction of the cocycle whose existence and
uniqueness is asserted in [Iva18, Lemma 8.5].
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Chapter 1

Background

1.1 Notation for groups

Since there is no general consensus on notation for groups and their extensions, we
begin by fixing our conventions.

If A and B are arbitrary groups, then A× B denotes a direct product, with normal
subgroups A and B; a (non-trivial) semidirect product, or split extension, with a
normal subgroup A and a complement B is denoted by A : B; a non-split extension
with a normal subgroup A and a quotient (but no subgroup) B is denoted by A · B.
Finally, A ◦ B is the notation for a central product of A and B, and A o B denotes the
wreath product of A and B.

The expression [n] denotes an unspecified group of order n, while n denotes the
cyclic group of that order, and mn a homocyclic group of order mn, i.e. the direct
product of n copies of the cyclic group of order m. In particular, if p is a prime, pn

denotes the elementary abelian group of order pn, and p2r+1
ε is the symbol for the

extraspecial group of order p2r+1 of type ε ∈ {+,−}. Furthermore, the symbols
D2n, Q8 ∼= 21+2

− and QD2n indicate, respectively, the dihedral group of order 2n, the
quaternion group of order 8, and the quasidihedral (or semidihedral) group of order
2n, with n ≥ 4. Finally, Sn and An denote the symmetric and the alternating group
on n letters, respectively.

We will often deal with groups that can be described as split or non-split extensions,
and since this description is generally far form being exact, whenever it is possible,
we will use the GAP [Gap] function IdGroup (or equivalently the MAGMA [BCP97]
function IdentifyGroup) to identify the groups uniquely, up to isomorphism. For a
group G, we will write ID = [a, b], where a is the order of G and b is the position
in which G occurs in the list of groups with that order. Whenever the isomorphism
type of G is not uniquely determined by its description as an extension, we prefer
the symbol ∼ to ∼=, and we rather use the more general term shape.

For other symbols which are not included here, the reader can consult the List of
Symbols 1.

1.2 Amalgams: preliminaries

We start by introducing the notion of a group amalgam and its role in modern alge-
braic combinatorics and group theory. This section has been inspired by [BS04; IS04].
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Definition 1. Let n ∈ N and I = {1, . . . , n}. An (abstract) amalgam A of rank n is a
set with a partial operation of multiplication and a collection of subsets {Ai}i∈I , called the
members of the amalgam, such that the following conditions hold:

(a) A =
⋃

i∈I Ai;

(b) the product ab is defined if and only if a, b ∈ Ai for some i ∈ I;

(c) the restriction of the multiplication to each Ai turns Ai into a group;

(d) the intersection Aij := Ai ∩ Aj is a subgroup in both Ai and Aj for all i, j ∈ I.

It follows that the groups Ai share the same identity element, which is then the only
identity element in A, and that a−1 ∈ A is well-defined for every a ∈ A. Abusing
the notation, we often write A = {(Ai, ∗i) | 1 ≤ i ≤ n} to indicate explicitly which
groups constitute the union of A. The main source of group amalgams is given by
a concrete amalgam, which is a finite collection of subgroups of a group, where the
group product in each member is the restriction of the product in the whole group.

One of the most important problems, if not the ultimate question, about an amalgam
is to determine its completion(s), defined as follows. A completion of an amalgam A
is a pair (A, ϕ), where (A, ·) is a group (the completion group) and ϕ is a mapping (the
completion map) from A to A, such that the restriction of ϕ to every member of A is a
group homomorphism:

ϕ(a ∗i b) = ϕ(a) · ϕ(b),

for every 1 ≤ i ≤ n and all a, b ∈ Ai. The completion (A, ϕ) is said to be faithful if ϕ
is injective and generating if A is generated by the image of ϕ. By abuse of notation,
it is not uncommon to say that A is a completion of A.

Among all completions of A, besides the ever-present trivial one, there is a ‘largest’
one, defined as follows. A completion (Â, ϕ̂) is called universal if for every comple-
tion (A, ϕ) there is a homomorphism ψ from Â into A, such that ϕ is the compo-
sition of ϕ̂ and ψ. The universal completion group, which is unique up to isomor-
phism, can be defined as the group U (A) having the following presentation [IS02,
Lemma 1.3.2]:

U (A) =
〈
th, h ∈ A | txty = tz, if x, y, z ∈ Ai for some i and x ∗i y = z

〉
.

Thus the generators of U (A) are indexed by the elements of A and the relations are
all the equalities that can be seen in the groups constituting the amalgam. There is
a natural bijection between the generating completions of A and the normal sub-
groups of the universal completion group U (A): if N is a normal subgroup of U (A),
then the corresponding completion group is the quotient of U (A) over N.

We say that an amalgam A collapses if its universal completion group is trivial, i.e.
U (A) = 1 [Gra06, Example 2.7]. The opposite extreme is represented by those amal-
gams having infinite completion groups that cannot be studied in any meaningful
way. A wider definition of group amalgams can be given in category-theoretical
terms, but since we never make use of it, we refer the interested reader to [Ser80;
GGH10; GLS96; AS92].

Rank 1 amalgams are nothing but groups, while amalgams of rank 2 are usually
treated in a slightly more refined, although equivalent, setting. They consist of
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three groups P1, P2 and B, together with a pair of injective group homomorphisms
ϕi : B −→ Pi for i ∈ {1, 2}. In the concrete case, which is how amalgams are usually
given, P1 and P2 are subgroups of an ambient group in such a way that B = P1 ∩ P2
(the so-called Borel subgroup of the amalgam), and ϕ1 and ϕ2 are the inclusion map-
pings. The notation {P1, P2; B} we use in this case, although suppressing (without
forgetting) the monomorphisms, has the advantage of stressing the importance of
the intersection, which indeed plays a crucial role in the whole theory. Sometimes,
in place of the two members and their intersection, we simply write their isomor-
phism types, even though this may not specify the amalgam uniquely: for example,
if we write {D8, D8; 22}, it is unclear which particular 22-subgroup of the two dihe-
dral groups should become the intersection.

It is known (see [Kur60] or [Can05, Lemma 37]) that for an amalgam of rank 2, the
universal completion is faithful and the universal completion group is isomorphic
to P1 ∗B P2, the free amalgamated product of P1 and P2 with respect to B, which is the
pushout in the category of groups [Löh17]:

B P2

P1 P1 ∗B P2

G

ϕ1

ϕ2

i2 f2
i1

f1

ψ

FIGURE 1.1: The free product of P1 and P2 amalgamated over B.

The group P1 ∗B P2, which is infinite whenever B is proper in both P1 and P2, contains
subgroups isomorphic to P1 and P2 which intersect in a subgroup isomorphic to B
(see [Rob96, Chapter 6, § 4]), and it is isomorphic to the free product of P1 and P2
factored by the normal subgroup generated by ϕ1(b)ϕ2(b−1) where b ∈ B.

Following [Pot09; Gol80], we give some more useful definitions. LetA = {P1, P2; B}
and B = {P′1, P′2; B′} be two amalgams. Then A and B have the same type provided
there exist isomorphisms τi : Pi −→ P′i such that Im(τi ◦ ϕi) = Im(ϕ′i), for i ∈ {1, 2}.
A morphism from A to B is a triple f = (α, β, γ) of group homomorphisms, as in
Figure 1.2, such that α ◦ ϕ1 = ϕ′1 ◦ β and γ ◦ ϕ2 = ϕ′2 ◦ β.

P1
ϕ1←−−− B

ϕ2−−−→ P2yα

yβ

yγ

P′1
ϕ′1←−−− B′

ϕ′2−−−→ P′2

FIGURE 1.2: A morphism of amalgams.

Such a morphism f of amalgams is injective, surjective or an isomorphism whenever
all the homomorphisms α, β and γ have the corresponding property. We say that
A′ = {P′1, P′2; B′} is a subamalgam of A = {P1, P2; B} if P′i ≤ Pi and P′i ∩ B = B′,
for i ∈ {1, 2}, in which case U (A′) ≤ U (A) (see [Can05, Lemma 54]). A normal
subgroup of an amalgam A = {P1, P2; B} is, by definition, a subgroup N of B, such
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that ϕi(N) E Pi for i ∈ {1, 2}. By Zorn’s lemma, there exists a unique maximal
normal subgroup of A, which is called the core of A. If the core is trivial, i.e. the
identity subgroup, then the amalgam is said to be simple.1 If N is a normal subgroup
of A = {P1, P2; B}, then {P1/ϕ1(N), P2/ϕ2(N); B/N} is also an amalgam called the
quotient of A modulo N. In particular, if N is the core of A, then this quotient is a
simple amalgam.

1.3 Some basic facts about graphs

We will recall here some basic facts about graphs, mainly to fix our terminology and
notation. If the contrary is not stated explicitly, all graphs in question are assumed
to be undirected, without loops and multiple edges.

For a graph Γ let V(Γ) and E(Γ) denote its vertex set and edge set respectively. An
automorphism of Γ is any permutation of the vertices of Γ preserving adjacency. Un-
der composition, the set of all such permutations of V(Γ) forms a group known as
the (full) automorphism group of Γ and denoted by Aut(Γ).

For any positive integer s, an s-arc (or a path of length s) in Γ is an ordered sequence
(x0, x1, . . . , xs) of s + 1 vertices, such that {xi−1, xi} is an edge of Γ for 1 ≤ i ≤ s
and xi−1 6= xi+1 for 1 ≤ i < s, that is, such that any two consecutive vertices are
adjacent and any three consecutive vertices are distinct. Arcs can be used to define
the distance dΓ(x, y) between vertices x, y ∈ V(Γ), which is the length of a shortest
path from x to y.2 If x0 = xs, then the arc is called a cycle of length s or simply an
s-cycle, and the girth of Γ is the length of its shortest cycle. Γ is said to be connected
if there is a path between every pair of its vertices, and a tree is a connected graph
without cycles.

Let Γ(x) denote the neighbourhood of x ∈ V(Γ) in Γ, i.e. the set of vertices adjacent
to x, and for a non-negative integer i put

Γi(x) = {y ∈ V(Γ) | dΓ(x, y) = i} ,

so that Γ0(x) = {x} and Γ1(x) = Γ(x). A graph Γ is said to be regular if |Γ(x)| = k
does not depend on the particular choice of x. In this case k is called the valency (or
degree) of Γ.

For a subset Ξ of the vertex set of Γ the subgraph induced by Γ on Ξ has Ξ as vertex
set and {x, y} is an edge in this subgraph if x, y ∈ Ξ and {x, y} ∈ E(Γ). A clique
is a subset of vertices of a graph such that every two distinct vertices are adjacent,
while an independent set (or coclique) is a set of vertices, no two of which are adjacent.
A graph is called k-partite if its vertex set can be partitioned into k different non-
empty independent sets, usually called the parts of the graph. When k = 2 (resp.
k = 3), the name bipartite (resp. tripartite) is more common. A graph is biregular of
valency {k1, k2} if it is bipartite and vertices in the ith part of the bipartition have
valency ki, for i = 1, 2. A graph is called complete if every pair of distinct vertices
is connected by a unique edge, and a complete graph on n vertices is denoted by
Kn. A complete k-partite graph is a k-partite graph in which there is an edge between

1Other authors use the terms primitive [Gol80] or faithful [Pot09] or effective [Gla03].
2If there is no path in Γ from x to y, then dΓ(x, y) = ∞.
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every pair of vertices from different independent sets. These graphs are described
by notation with a capital letter K subscripted by a sequence of the sizes of each
set in the partition. We will occasionally need the following definition, only for the
case k = 2. For a connected graph Γ of diameter d, the distance-k graph of Γ, for
k = 1, . . . , d, is a graph with the same vertex set and having edge set consisting of
pairs of vertices that lie a distance k apart.

If G is a group of automorphisms of Γ, that is a subgroup of Aut(Γ), then G is said
to be vertex-transitive, edge-transitive and s-arc transitive if it acts transitively on the
vertex set, the edge set and the set of s-arcs of Γ, respectively. If Ξ ⊆ V(Γ), then
G(Ξ) and G{Ξ} denote the pointwise and the setwise stabilisers of Ξ in G, respec-
tively. If H ≤ G{Ξ}, we write HΞ for the permutation group induced by H on Ξ,
so that abstractly HΞ ∼= H/H(Ξ). We write G(x, y, . . .) instead of G({x, y, . . .}) and
G{x, y, . . .} instead of G{{x, y, . . .}}. In particular, the permutation group G(x)Γ(x)

induced by the vertex stabiliser G(x) on Γ(x) is known as the subconstituent of G on
Γ. For a non-negative integer i let Gi(x) denote the vertex-wise stabiliser in G of the
ball of radius i centred at x, so that

Gi(x) =
⋂

dΓ(x,y)≤i

G(y).

Each Gi(x) is clearly a normal subgroup of G(x); in particular, G0(x) = G(x) and
G1(x) = G({x} ∪ Γ(x)) is the kernel of the action of G(x) on Γ(x). Then G(x)Γ(x)

is abstractly isomorphic to G(x)/G1(x), and the quotients Gi(x)/Gi+1(x) are known
as the distance factors. It is well known (see [Iva99, Lemma 9.1.2]) that G is 2-arc
transitive if and only if G is vertex-transitive and, for x ∈ V(Γ), G(x)Γ(x) is a doubly
transitive permutation group.

We conclude this section with the definition of a notion borrowed from algebraic
topology [Lei82]. Let Γ and Γ′ be two graphs, and let f : V(Γ′) −→ V(Γ) be a sur-
jection. Then f is said to be a covering map from Γ′ to Γ if for each v ∈ V(Γ′), the
restriction of f to the neighbourhood of v is a bijection onto the neighbourhood of
f (v) in Γ; in other words, f maps edges incident to v one-to-one onto edges incident
to f (v). If there is a covering map from Γ′ to Γ, we say that Γ′ covers Γ, and this,
intuitively, means that Γ looks everywhere locally like Γ′.

The universal cover U (Γ) of a connected graph Γ is the (possibly infinite) tree which
covers Γ. Unless Γ itself is a tree, in which case U (Γ) can be identified with Γ, U (Γ)
will be an infinite graph which covers any graph covering Γ.

1.4 Geometries: definitions and basic concepts

Geometries, as introduced by Tits in the 1950s, form a special class of incidence sys-
tems, where the incidence structure is expressed by a graph on a set of elements
which generalises the set of subspaces of a classical geometry. Each element bears a
type which is inspired by names such as ‘point’, ‘line’, ‘plane’ in elementary geome-
try or by the dimension of a subspace in classical geometries.

We begin with some definitions. Fairly comprehensive references for the material
in this section are [BC13; Pas94; Shu11]. Let I be a set, called the type set. A triple
Γ = (X, ∗, τ) is called an incidence system (or a pregeometry) over I if X is a set of
elements, ∗ is a binary, symmetric and reflexive relation defined on X (called the
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incidence relation) and τ is a mapping from X onto I (called the type function), such
that distinct elements x, y ∈ X which are incident, i.e. with x ∗ y, satisfy τ(x) 6= τ(y).

If A ⊆ X, we say that τ(A) is the type of A and its cotype is I r τ(A). The rank
of A is |τ(A)| and its corank is |I r τ(A)|. The rank of Γ is the cardinality of I, that
is the number of distinct types of elements. A flag of Γ is a (possibly empty) set of
pairwise incident elements of Γ, and flags of type I are called chambers. By Zorn’s
lemma, every flag is contained in at least one maximal flag, that is a flag not properly
contained in any other flag. In an incidence system Γ, chambers are maximal flags,
and if also the converse holds, then Γ is called a geometry over I.

In an incidence system Γ = (X, ∗, τ) over I, for each i ∈ I, we write Xi to denote
τ−1(i), the set of elements of type i, and so X is the disjoint union

⋃
i∈I Xi. Since dif-

ferent elements of the same type are never incident, the pair (X, ∗), ignoring loops,
is a multipartite graph, called the incidence graph of Γ, with partition (Xi)i∈I . An inci-
dence system is said to be connected if its incident graph is connected and non-empty.

A typical example of an incident system is given by the classical projective geometries:
the elements are the non-trivial proper subspaces of a vector space, two subspaces
are incident if one is contained in the other, and the type function records the alge-
braic dimension of any subspace.

While the elements of an incident system Γ over I remind us of the subspaces of a
classical geometry, the latter are also naturally represented by the set of elements
incident with them. This leads to the concept of a residue, central to any theory of
geometries and defined as follows.

Let Γ = (X, ∗, τ) be an incident system over I, and let F be a flag of Γ. Then the
residue of F in Γ is the incident system

ΓF = (XF, ∗|XF , τ|XF)

over the type set I r τ(F), where XF := {x ∈ X r F | x ∗ F} is the set of all elements
of X r F which are incident with every element of F. If Γ is a geometry, then so is
ΓF. An incident system Γ is said to be residually connected if for every flag F of Γ
(including the empty one) such that ΓF is of rank r ≥ 2, the graph whose vertices
are the elements of ΓF and whose edges are the pairs of incident elements of ΓF is
connected.

Let us illustrate these definitions on a familiar example, taken from [Ueb11; F.86].
Here and elsewhere, for a flag F = {x} consisting of a single element, its residue
will be denoted by Γx rather than Γ{x}. The cube determines a geometry Γ of rank
3 over {vertex, edge, face} (see Figure 1.3) consisting of 8 vertices, 12 edges and 6
faces, with symmetrised inclusion as incidence and the obvious type map suggested
by the names of the elements. There are 8 flags of type {vertex}, 8 · 3 = 24 flags
of type {vertex, edge} and 8 · 3 · 2 = 48 chambers, which are the sets of pairwise
incident elements consisting of exactly one vertex, one edge and one face.
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1 2

4 3

5 6

8 7

FIGURE 1.3: The cube as a geometry Γ of rank 3.

The residue Γ1 of the first vertex consists of the edges 12, 14, 15 and of the faces 1234,
1485, 1562; hence, it is the triangle shown in Figure 1.4.

12 14

15

1234

1562 1485

FIGURE 1.4: The residue of a vertex in Γ.

Let us now consider the residue of an edge. The residue Γ12 consists of the two
vertices 1, 2 and of the two faces 1234, 1562; hence, it is the digon displayed in
Figure 1.5.

1 2

1234

1562

FIGURE 1.5: The residue of an edge in Γ.

Finally, the residue Γ1234 of the bottom face consists of the four vertices 1, 2, 3, 4 and
of the four edges 12, 23, 34, 14; hence, it is the quadrangle shown in Figure 1.6.

1 2

34

12

23

34

14

FIGURE 1.6: The residue of a face in Γ.

The residue of the empty flag is the full cube, the residue of a chamber is empty, and
the other residues are less interesting. The cube geometry is residually connected.
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In geometry, as in every structure theory, the concepts of homomorphism, isomor-
phism and automorphism are essential. We begin with the definition of homomor-
phisms of a more general kind, called weak homomorphisms. Let Γ = (X, ∗, τ) and
Γ′ = (X′, ∗′, τ′) be two incident systems over some sets I and I′, respectively. A weak
homomorphism α : Γ −→ Γ′ is a map α : X −→ X′ such that, for all x, y ∈ X,

x ∗ y =⇒ α(x) ∗′ α(y) and τ(x) = τ(y) ⇐⇒ τ′(α(x)) = τ′(α(y)).

In other words, α preserves incidence and sends elements of the same type in I to
elements of the same type in I′. If, in addition, I = I′ and τ(x) = τ′(α(x)) for all
x ∈ X, then α is called a homomorphism.

An injective homomorphism Γ −→ Γ′ of incident systems is also called an embedding
of Γ into Γ′. A bijective weak homomorphism α whose inverse α−1 is also a weak ho-
momorphism is called a correlation. If α is a homomorphism and a correlation, then
we call α an isomorphism and write Γ ∼= Γ′. The correlations of Γ onto itself, called
auto-correlations, form a group under composition; similarly, the automorphisms of Γ,
i.e. the isomorphisms of Γ onto itself, also form a group called the automorphism
group of Γ and denoted by Aut(Γ). An automorphism group G of Γ, that is a sub-
group of Aut(Γ), is said to be flag-transitive if any two flags in Γ of the same type are
in the same G-orbit. A geometry Γ possessing a flag-transitive automorphism group
is called flag-transitive.

A surjective homomorphism α : Γ −→ Γ′ is said to be a covering of Γ′ if for every non-
empty flag F of Γ the restriction of α to the residue ΓF is an isomorphism onto Γ′α(F).
In this case Γ is said to be a cover of Γ′. If every covering of Γ′ is an isomorphism,
then Γ′ is said to be simply connected. If ψ : Γ̃ −→ Γ is a covering and Γ̃ is simply
connected, then ψ is the universal covering and Γ̃ is the universal cover of Γ.

The rank 2 geometries are the building blocks for higher rank geometries, and their
residues are commonly presented in the form of a diagram, a concise way of cap-
turing some characteristics of the geometry. Let i and j be two different types of a
geometry Γ, and let Γij be a typical residue of Γ over {i, j}. Let us first introduce the
following parameters as follows.

Assume that the shortest cycles (if there are any) of the incident graph of Γij have
length 2gij. Then gij = gji is the gonality of Γij, and all of the elements of Γij of type i
(resp. j) have the same properties. Let p (resp. l) be a typical element of type i (resp.
j) in Γij. Then the i-diameter dij (resp. the j-diameter dji) of Γij is the largest distance
from p (resp. l) to any element in the incident graph of Γij. The i-order si (resp. the
j-order sj) of Γij is the number of elements of type j (resp. i) incident to p (resp. l)
minus one, so that si + 1 is the number of chambers of Γ containing a given flag of
type I r {i}. If si = 1 for all i ∈ I, then Γ is called thin.

We summarise the information provided by the parameters as follows

i

si

j

sj

dij gij dji
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Important geometries are those where dij = gij = dji = g, which are knows as
generalised g-gons. In this case we use the picture

g

which is reduced to for g = 6, to for g = 4, to for g = 3
and to for g = 2.

For a geometry Γ of arbitrary rank, the corresponding diagram reveals at once the
parameters of all Γij, as one can see in the following diagram for the cube geometry,
where in order to obtain the diagram of the residue of an element of type i (which is
a flag of size 1) one has to remove from the diagram the node of type i along with all
the edges incident to this node.

1

v

1

e

1

f

1.5 The interplay between amalgams, graphs and geometries

In this section we begin by describing how group amalgams and graphs are related
from our point of view, through the definition of the coset graph. Following [KS04;
PR02b; Gol80], we will introduce this notion for amalgams of rank 2, but everything
can be generalised to amalgams of higher rank.

Let G be a group, and let P1 and P2 be two different finite subgroups of G with
P1 ∩ P2 = B. The (right) coset graph Γ = Γ(G, P1, P2, B) of G with respect to P1 and P2
is the bipartite graph with vertex set

V(Γ) = {Pig | g ∈ G, i ∈ {1, 2}}

and adjacency relation ∼ defined by P1x ∼ P2y if and only if P1x ∩ P2y 6= ∅. It is
easy to see that in this case P1x ∩ P2y is a coset of B, so that there is a one-to-one
correspondence between edges of Γ and cosets of B in G. The group G acts naturally
on Γ by right multiplication

g : V(Γ) −→ V(Γ) with Pix 7→ Pixg (g ∈ G),

preserving the two parts together with the adjacency relation. We now collect some
properties of this action and of the coset graph:

(a) G has two orbits on V(Γ), and P1 and P2 are representatives of these orbits; for
every α ∈ V(Γ), the stabiliser G(α) is G-conjugate to either P1 or P2.

(b) G acts transitively on E(Γ) and every edge stabiliser in G is G-conjugate to B.

(c) Each vertex Pix lies on [Pi : B] edges.

(d) G(α) acts transitively on Γ(α), α ∈ V(Γ), in particular

|Γ(α)| = |G(α) : G(α) ∩ G(β)| for β ∈ Γ(α).
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(e) The kernel of the action of G on Γ is the normal core BG of B in G.

(f) Γ is connected if and only if G = 〈P1, P2〉.

(g) Γ is a tree if and only if G is the universal completion of the amalgam
{P1, P2; B}, i.e. G = P1 ∗B P2.

Amalgams can encode some of the information coming from a flag-transitive geom-
etry, as explained below, where our main references is [Iva99]. The reader interested
in further results on the interaction between group theory and incidence geometry
is referred to [Asc83].

Let Γ = (X, ∗, τ) be a geometry over the set I = {1, . . . , n} and let G be a flag-
transitive automorphism group of Γ. Corresponding to Γ and G, there is an amalgam
A = A(Γ, G) defined as follows. Let F = {x1, x2, . . . , xn} be a maximal flag in Γ, and
define A to be the union

⋃n
i=1 Gi, where Gi := G(xi) denotes the stabiliser of xi in G.

Since G is flag-transitive, it follows that A is independent (up to conjugation) of the
choice of F. In general, for ∅ 6= F0 ⊆ F, the stabiliser in G of F0 is known as a parabolic
subgroup, or just a parabolic. Parabolics are ordered by inclusion, which corresponds
to the reverse inclusion of the associated flags. The maximal parabolic subgroups, or
just maximal parabolics, are the stabilisers of one-element subflags, and thus we call
A the amalgam of maximal parabolics in G associated with the flag F.

By the flag-transitivity assumption, G acts transitively on the set Xi of elements of
type i in Γ, so that there is a canonical way to identify Xi with the set of right cosets
of Gi in G by associating to y ∈ Xi the coset Gih such that xh

i = y. This coset consists
of all the elements of G which map xi onto y, and the mapping

y 7→ Gih

establishes an isomorphism of Γ onto Γ(G,A), the incidence system whose elements
of type i are the right cosets of Gi in G and in which two elements are incident if and
only if the intersection of the corresponding cosets is non-empty.

Then on the one hand Γ ∼= Γ(G,A) and on the other hand G is a faithful completion
group ofA. If G′ is another faithful completion group ofA, the mapping of Γ(G′,A)
onto Γ(G,A) induced by a homomorphism ϕ : G′ −→ G is a covering of geometries.
In particular, by taking G′ to be the universal completion U (A) of A, we obtain that
Γ(U (A),A) is the universal cover of Γ ∼= Γ(G,A) (see [Pas85; Tit86]). Therefore, a
flag-transitive geometry is simply connected if and only if a flag-transitive automor-
phism group G of Γ is the universal completion of the amalgam of maximal parabolic
subgroups associated with the action of G on Γ.
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Chapter 2

The Djoković-Miller subamalgams
of the Goldschmidt amalgams

In this chapter we introduce the objects at the heart of our discussion, namely the
locally projective graphs and their corresponding amalgams. Our main references for
this chapter are [Iva21] and [Iva18, Chapter 10].

2.1 Locally projective graphs and amalgams

The amalgams in which we are interested come from a particular class of graphs,
introduced in the following definition.

Definition 2. Let Γ be a connected graph, let G be a group of automorphisms of Γ and let
n, α ∈ N, with n, α ≥ 2. Then Γ is said to be locally projective of type (n, α) with respect
to the action of G if the following conditions hold:

(i) G acts vertex- and edge-transitively on Γ;

(ii) there is a family L of complete subgraphs in Γ (called lines) having α vertices each,
such that L is preserved by G and every edge of Γ is contained in a unique line from
L;

(iii) every vertex x of Γ is contained in exactly 2n − 1 lines, and the stabiliser G(x) of x
in G induces on this (2n − 1)-set of lines the natural doubly transitive action of the
group Ln(2) as on the set of points of the corresponding projective GF(2)-geometry
πx;

(iv) the stabiliser in G of a line acts doubly transitively on the vertex set of the line;

(v) if α = 2, then G is not transitive on 3-paths in Γ and, for {x, y} ∈ E(Γ), an element
swapping x and y induces a collineation1 between the residue of y in πx and the residue
of x in πy.

We assume that α is either 2 or 3. If α = 2, then L = E(Γ); if α = 3, then L is a family
of triangles in Γ and the setwise stabiliser G{l} in G of a line-triangle l induces on its
vertices the symmetric group S3 ∼= L2(2). Since any two lines intersect in at most one
vertex, the valency of Γ is (α− 1) · (2n − 1). The GF(2)-vector space whose non-zero
vectors are indexed by the lines passing through x will be called the natural module
of the group Ln(2) induced by G(x) on the set of these lines.

1A collineation is an isomorphism between two projective geometries.
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Definition 3. Let Γ be a locally projective graph of type (n, α) with respect to a group G, let
x ∈ V(Γ) and let l be a line containing x. Then the amalgam

A = {G(x), G{l}}

is said to be a locally projective amalgam of type (n, α).

The locally projective amalgams of type (2, 2) were classified at the end of the 1970s
by Djoković and Miller [DM80] and for this reason we will call them the Djoković-
Miller amalgams. We will describe them in the following section, together with the
so-called Goldschmidt amalgams [Gol80], which are, with only a few small exceptions,
the locally projective amalgams of type (2, 3). More recently Ivanov and Shpectorov
[IS04] gave a complete classification of those of type (n, 2) for all n ≥ 3. The classi-
fication, which makes use of a result of Trofimov [Tro03], is given in the following
theorem [IS04, Theorem 1].

Theorem 1. Let G be a group acting locally projectively of type (n, 2) on a graph Γ for some
n ≥ 3, and let A = {G(x), G{l}} be the corresponding locally projective amalgam. Then
one of the following three possibilities holds:

(i) A is isomorphic to the locally projective amalgam associated with the natural action of
the affine group AGLn(2) on the corresponding n-dimensional GF(2)-vector space;

(ii) A is isomorphic to the locally projective amalgam associated with the natural action of
the orthogonal group O+

2n(2) on the corresponding dual polar space graph;

(iii) A is isomorphic to one of the twelve exceptional amalgams in [IS04, Table 1, p. 31].

2.2 The Djoković-Miller and the Goldschmidt amalgams

In [DM80] the authors consider a connected graph Γ of valency three and a subgroup
G of Aut(Γ) acting regularly, i.e. sharply transitively, on the set of s-arcs of Γ. The
study of the subject was started by Tutte [Tut47; Tut66], who proved that s ≤ 5
and that the girth of Γ is at least 2s − 2. The s-regularity of G also implies that
|G(x)| = 3 · 2s−1 for every x ∈ V(Γ) and |G(x, y)| = 2s−1 for every {x, y} ∈ E(Γ).

Djoković and Miller associate to G the rank 2 amalgam

{G(x), G{x, y}; G(x, y)} ,

which is independent (up to isomorphism) of the chosen edge {x, y}, and succeed in
describing the structure of its members in terms of certain canonical generators. The
conclusion is summarised in Table 2.1 , which contains the list of the Djoković-Miller
amalgams, denoted by DMi for 0 ≤ i ≤ 6, corresponding to the possible values of
s, and some finite simple groups as completions. We notice that the first amalgam
DM0 does not fall within the locally projective class, and that the second member
of DM6, with ID = [32, 43], can be equivalently described as the holomorph of the
cyclic group of order 8 or the automorphism group of D16.

We now move to a brief description of the Goldschmidt amalgams and to their re-
lationship with the Djoković-Miller amalgams, through the introduction of certain
subgraphs of locally projective graphs which deserve a special name, also used for
the corresponding amalgams.



Chapter 2. The Djoković-Miller subamalgams of the Goldschmidt amalgams 13

s Djoković-Miller amalgams Some simple completion groups

1 DM0 = {3, 2; 1} A9, A10, A11, A12, M12, M24, J1, J2, J3, G2(3)

2 DM1 =
{

S3, 22; 2
}

A10, J1, J2, J3, G2(3), G2(4), 2F4(2)′, HS

2 DM2 = {S3, 4; 2} A9, U3(4), M24, J3, 2F4(2)′, Ω−8 (2),
3D4(2)

3 DM3 =
{

D12, D8; 22} L2(71), L2(73), L2(97), L2(167), 3D4(2)

4 DM4 = {S4, D16; D8} A10, A13, L2(17), L2(31), L2(47), L2(79)

4 DM5 = {S4, QD16; D8} A26, A29, L3(3), L3(11), U3(7), U3(13), J3

5 DM6 =
{

2× S4, 8 : 22; 2× D8
}

A26, A29, A36, A42, A44, A45, A48

TABLE 2.1: The Djoković-Miller amalgams.

In [Gol80], a remarkable paper that marked the birth of the amalgam method, Gold-
schmidt considered the situation of a group generated by two finite subgroups P1
and P2 which satisfy

(i) P1 ∩ P2 = B;

(ii) [P1 : B] = 3 = [P2 : B];

(iii) no non-trivial subgroup of B is normal in both P1 and P2.

The approach adopted by Goldschmidt used the embeddings of B into P1 and P2 to
construct the universal completion group Ĝ = P1 ∗B P2 of the corresponding amal-
gam and then examine its action on the coset graph Γ(Ĝ, P1, P2, B), which is a tree by
the universality property. Using this geometric framework Goldschmidt was able to
successfully determine all the fifteen possibilities for the triple of groups {P1, P2; B};
one consequence of his result is that B is a 2-group of order at most 27.

We now introduce the notion of a densely embedded subgraph, for which we require a
further piece of notation. For a group G acting on a graph Γ locally projectively of
type (n, 3) for n ≥ 2, we denote by G1/2(x) the largest subgroup of G(x) which sta-
bilises every line passing through x ∈ V(Γ), so that we have the following sequence
of subgroups

G(x) D G1/2(x) D G1(x) D G2(x) D · · ·

which always terminates at G6(x) = 1 in the case α = 22, due to a remarkable result
of Trofimov, announced and proved in a sequence of papers from the beginning of
the 1990s.

Definition 4. Suppose that G acts on Γ locally projectively of type (n, 3) for n ≥ 2, and
let ∆ be a connected subgraph in Γ. Then ∆ is said to be densely embedded in Γ if the
following conditions hold:

2A similar bound for locally projective graphs of type (n, 3) is still not known and considered an
important open question.
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(i) the subgroup H of G which stabilises ∆ as a whole induces on it a locally projective
action of type (n, 2), possibly with a non-trivial kernel;

(ii) if x ∈ ∆, then H(x) contains G1(x) and H(x)/G1(x) is an Ln(2)-complement to
G1/2(x)/G1(x) in G(x)/G1(x).

It is implicit in the definition above that a densely embedded subgraph exists only
if G(x)/G1(x) splits over G1/2(x)/G1(x). In fact densely embedded subgraphs exist
quite often [Iva21, Table 2] and their existence for n ≥ 3 has been recently established
under certain hypotheses [Iva21]. We analyse the case n = 2 and give a complete list
of the Goldschmidt amalgams that admit Djoković-Miller densely embedded suba-
malgams. The procedure for constructing densely embedded subgraphs consists of
the following steps [Iva18, p. 145], motivated in [Iva21, Theorem 16]:

(a) assuming that G(x) splits over G1/2(x), take the preimage under the mapping
q : G(x)→ G(x)/G1(x) of an Ln(2)-complement of the subgroup G1/2(x)/G1(x)
and denote it by H1;

(b) intersect H1 with the pointwise stabiliser G(l) = G(x, y, z) of l = {x, y, z} to
obtain the subgroup H12;

(c) search for elements σ ∈ G{l} which normalise H12 and swap x either with y
or with z;

(d) if and when the required σ has been found, put H2 = 〈H12, σ〉G, H = 〈H1, H2〉G
and define ∆ to be the subgraph on the set of images of x under H.

The conditions listed above are only necessary, so that if no σ is found, then the graph
Γ does not admit any densely embedded subgraphs. If, instead, such an element σ
exists, then the corresponding subamalgam of {G(x), G{l}} is {H1, H2; H12}, where
H1 = H(x), H12 = H(x, y, z) and H2 is either H{x, y} or H{x, z}. We also notice that
H represents an instance of a completion of {H1, H2; H12} which, in the case where
G is the universal completion of {G(x), G{l}}, is indeed the universal completion
H1 ∗H12 H2 of the corresponding densely embedded subamalgam (cf. 10).

We systematically applied the recipe above to the Goldschmidt amalgams, by first
constructing the corresponding graphs as follows. Any faithful generating comple-
tion group G of a Goldschmidt amalgam {P1, P2; B} gives rise to the coset graph
Γ = Γ(G, P1, P2, B), which is a connected 3-regular graph on which G operates as
an edge-transitive group of automorphisms with vertex stabilisers isomorphic to P1
or P2 and edge-stabiliser isomorphic to B. Since Γ is connected and bipartite, its
distance-2 graph Ξ has two connected components Ξ(1) and Ξ(2), each of which is a
6-regular graph acted on by G locally projectively of type (2, 3) in most cases. The
lines of each component are the (maximal) cliques of size 3 and correspond to the
vertices of the other component, in a duality reflected also by the corresponding
stabilisers, isomorphic to P1 and P2.

Figure 2.1 shows the neighbourhood of a vertex in a locally projective graph of type
(2, 3), with the three lines containing it and the green part representing its intersec-
tion with a densely embedded subgraph.
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FIGURE 2.1: The neighbourhood of a vertex with the three lines.

We now list explicitly the fifteen Goldschmidt amalgams, organised into five tables,
one for each class3. For each member Pi we give the structure of its distance factors

Mβ
α := Gα(x)/Gβ(x),

where x ∈ Ξ(i) and G is a completion group. Unlike other properties of Ξ, such as
the number of vertices and edges or the diameter, these quotients do not depend on
G, but only on the local structure of Ξ. The entry in the last column and in the corre-
sponding row is the Djoković-Miller densely embedded subamalgam if it exists, in
which case we give a proof. As the embeddings are independent of the completion
of the Goldschmidt amalgam, in each proof we choose one of it, G, not necessar-
ily the one indicated in the third column of [Gol80, Table 1], and with the aid of
MAGMA [BCP97] we explicitly construct the densely embedded Djoković-Miller
subamalgam, together with the corresponding completion group H. A line — indi-
cates that no Djoković-Miller subamalgam is densely embedded in the correspond-
ing Goldschmidt amalgam, mainly because no σ as in the condition (c) above can be
found. The list of embeddings shown in each table is complete, in the sense that no
other embeddings are possible: the ‘negative’ cases are not accompanied by a cor-
responding proof, although they have all been checked computationally. Therefore
in each of the following theorems, a statement like ‘the Djoković-Miller amalgam Y
is densely embedded in the Goldschmidt amalgam X ’ must be interpreted as ‘Y is
the only Djoković-Miller amalgam which is embedded in the Goldschmidt amalgam
X ’.

What follows is our main result of this chapter: the information on the distance
factors verifies (with a different method) and completes the content of [Iva18, Ta-
ble 10.3], while the embedding of the Djoković-Miller amalgams into the Gold-
schmidt amalgams represents a modest contribution towards the classification
project of locally projective graphs.

Table 2.2 shows the four Goldschmidt amalgams of class 1, namely G1, G1
1 , G2

1 and
G3

1 , whose Borel subgroup B is isomorphic to 1, 2, 2 and 22 respectively. We notice
that G1 and G2

1 do not satisfy the defining conditions for a locally projective amal-
gam, but they are included anyway for completeness. For additional material on
completions of the Goldschmidt amalgams of class 1 we direct the reader to [BR06].

Theorem 2. The Djoković-Miller amalgamDM1 =
{

S3, 22; 2
}

is densely embedded in the
Goldschmidt G3

1-amalgam
{

D12, D12; 22}.

3Following [Che86] we say that a Goldschmidt amalgam is of class n if it isomorphic to Gn or Gi
n for

some i.
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Name Pi M1/2
0 M1

1/2 M1
0 M2

1 M3
2 DMi

G1

3 3 1 3 1 1 —

3 3 1 3 1 1 —

G1
1

S3 S3 1 S3 1 1 —

S3 S3 1 S3 1 1 —

G2
1

S3 S3 1 S3 1 1 —

6 3 2 6 1 1 —

G3
1

D12 S3 2 D12 1 1 DM1

D12 S3 2 D12 1 1 DM1

TABLE 2.2: The Goldschmidt amalgams of class 1.

Proof. As the Goldschmidt G3
1-amalgam is ‘symmetric’4, we can consider only one

connected component, say Ξ(1), of the distance-2 graph Ξ of Γ(G, P1, P2, B), where
G = 〈(3, 11, 9, 7, 5)(4, 12, 10, 8, 6), (1, 2, 8)(3, 7, 9)(4, 10, 5)(6, 12, 11)〉 ∼= L2(11) is a
completion group. For a vertex x ∈ Ξ(1) and for a line l = {x, y, z} we have:

G(x) = 〈(1, 5)(2, 6)(3, 4)(7, 8)(9, 11)(10, 12), (1, 9)(2, 11)(3, 7)(4, 12)(5, 10)(6, 8)〉 ,
G{l} = 〈(1, 8)(2, 9)(3, 5)(4, 12)(6, 7)(10, 11), (1, 6, 11, 12, 9, 5)(2, 4, 10, 7, 8, 3)〉 ,

both isomorphic to D12
∼= 2 × S3, with intersection G(x) ∩ G{l} ∼= 22. The sub-

group G1/2(x) = Z(G(x)) = 〈(1, 7)(2, 12)(3, 9)(4, 11)(5, 8)(6, 10)〉 ∼= 2 has two non-
conjugate complements in G(x), but only one of them,

H1 = 〈(1, 8)(2, 10)(3, 11)(4, 9)(5, 7)(6, 12), (1, 4, 6)(2, 3, 5)(7, 11, 10)(8, 12, 9)〉 ∼= S3,

intersects G(l) = G(x, y, z) = 〈(1, 12)(2, 7)(3, 10)(4, 8)(5, 11)(6, 9)〉 ∼= 2 non trivially
in H12 = G(l). The permutation σ = (1, 8)(2, 9)(3, 5)(4, 12)(6, 7)(10, 11) ∈ G{l}
normalises H12 and swaps x with y, so that H2 = 〈H12, σ〉 ∼= 22 and H ∼= A5. Further
details of the embedding of the Djoković-Miller amalgam DM1 in the Goldschmidt
G3

1-amalgam can be found in Appendix A.

Table 2.3 shows the five Goldschmidt amalgams of class 2, namely G2, G1
2 , G2

2 , G3
2 and

G4
2 , whose Borel subgroup B is isomorphic to 22, D8, D8 , 23 and 2× D8 respectively.

Before proving the next theorem, we notice that although it is about a case which is
not a locally projective one, the usual technique works and produces an unexpected
embedding.

4By this we mean that there is an automorphism of the amalgam which permutes P1 and P2. See
Appendix A for some remarks about this fact.
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Name Pi M1/2
0 M1

1/2 M1
0 M2

1 M3
2 DMi

G2

A4 3 22 A4 1 1 DM0

D12 S3 1 S3 2 1 —

G1
2

S4 S3 22 S4 1 1 —

D24 S3 2 D12 2 1 DM3

G2
2

S4 S3 22 S4 1 1 —

(2× 6) : 2 S3 2 D12 2 1 DM3

G3
2

2× A4 3 23 2× A4 1 1 —

22 × S3 S3 1 S3 22 1 —

G4
2

2× S4 S3 23 2× S4 1 1 DM1

S3 × D8 S3 2 D12 22 1 —

TABLE 2.3: The Goldschmidt amalgams of class 2.

Theorem 3. The Djoković-Miller amalgam DM0 = {3, 2; 1} is densely embedded in the
Goldschmidt G2-amalgam

{
A4, D12; 22}.

Proof. We consider the connected component of the distance-2 graph Ξ of the coset
graph Γ(G, P1, P2, B), with G = 〈(1, 2, 3, 4, 5, 6, 7), (1, 2, 3)〉 ∼= A7, where the stabilis-
ers in G of a vertex x and of a line l = {x, y, z} can be described respectively as the
following subgroups of G:

G(x) = 〈(1, 5, 6)(2, 4, 3), (1, 2)(4, 5)〉 ∼= A4,
G{l} = 〈(3, 6)(5, 7), (1, 2)(3, 6)(4, 5, 7)〉 ∼= D12.

As G1(x) = Z(G(x)) ∼= 1 and G1/2(x) = 〈(3, 6)(4, 5), (1, 2)(4, 5)〉 ∼= 22, we can still
consider representatives for the conjugacy classes of complements of G1/2(x)/G1(x)
in G(x)/G1(x), as subgroups of G(x), and we obtain H1 = 〈(1, 5, 6)(2, 4, 3)〉 ∼= 3.
The intersection of H1 with G(l) = 〈(1, 2)(3, 6)〉 ∼= 2 gives the trivial subgroup H12,
and the element σ = (3, 6)(5, 7) ∈ G{l} swaps x with y generating H2 ∼= 2. Finally,
the subgroup H of G generated by H1 and H2 is isomorphic to L3(2) and stabilises a
3-regular subgraph with 56 vertices and 84 edges. Further examples of embeddings
are given in Table A.2.

Theorem 4. The Djoković-Miller amalgam DM3 =
{

D12, D8; 22} is densely embedded in
the Goldschmidt G1

2-amalgam {D24, S4; D8}.

Proof. We do our analysis in the group G = 〈(1, 6), (1, 2, 7, 4)(3, 5, 6)〉 ∼= S7, which
is a faithful completion of Goldschmidt G1

2-amalgam. We consider the connected
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component of the distance-2 graph Ξ of Γ(G, P1, P2, B) where the stabilisers in G of
a vertex x and of a line l = {x, y, z} can be described respectively as the following
subgroups of G:

G(x) = 〈(4, 5)(6, 7), (1, 7, 6)(2, 5, 3, 4)〉 ∼= D24,
G{l} = 〈(1, 4, 3)(2, 6, 5), (1, 4)(2, 3)(5, 6)〉 ∼= S4.

The vertex-wise stabilisers of the neighbourhood of x and of l are respectively

G1(x) = Z(G(x)) = 〈(2, 3)(4, 5)〉 ∼= 2,

G(l) = G(x, y, z) = 〈(2, 3)(4, 5), (1, 6)(4, 5)〉 ∼= 22.

The group M1
0 := G(x)/G1(x) ∼= D12

∼= 2×S3 possesses two (normal) S3-subgroups,
whose preimages under the quotient map q : G(x) −→ M1

0 are dihedral groups of
order 12: one intersects G(l) in G1(x), while the other one, which is the required H1,
in H12 = G(l). The element σ = (1, 2, 6, 3) ∈ NG{l}(H12) fixes y, swaps x with z and
gives H2 = 〈H12, σ〉 ∼= D8. Finally, H ∼= 2× S5 and the subgraph stabilised by H is 3-
regular with 20 vertices and 30 edges. For more embeddings of the Djoković-Miller
amalgam DM3 in the Goldschmidt G1

2-amalgam, see Table A.3.

Theorem 5. The Djoković-Miller amalgam DM3 =
{

D12, D8; 22} is densely embedded in
the Goldschmidt G2

2-amalgam {S4, (2× 6) : 2; D8}.

Proof. For the Goldschmidt G2
2-amalgam we choose the same completion group indi-

cated by Goldschmidt [Gol80, Table 1], that is G = 〈(1, 2, 3, 4, 5, 6, 7), (5, 6, 7)〉 ∼= A7.
The corresponding coset graph Γ(G, P1, P2, B) has 105 + 105 vertices and 315 edges,
and we consider the connected component of its distance-2 graph where the sta-
bilisers in G of a vertex and of a line-triangle have, respectively, ID = [24, 8] and
ID = [24, 12]. More explicitly, if l = {x, y, z} is such a triangle, we have:

G(x) = 〈(3, 4)(6, 7), (1, 3)(2, 4)(5, 6, 7)〉 ,
G(y) = 〈(4, 7)(5, 6), (1, 5)(2, 6)(3, 4, 7)〉 ,
G(z) = 〈(2, 7)(3, 5, 4, 6), (1, 7)(5, 6)〉 ,

with shape (2× 6) : 2 ∼ 3 : D8 ∼ 22 : S3, and

G{l} = 〈(1, 3, 5)(2, 4, 6), (3, 6)(4, 5)〉 ∼= S4,
G(x) ∩ G{l} = 〈(1, 3, 2, 4)(5, 6), (1, 2)(5, 6)〉 ∼= D8.

The vertex-wise stabiliser of the neighbourhood of x, which coincides with the centre
and the Frattini subgroup of G(x), is G1(x) = 〈(1, 2)(3, 4)〉 ∼= 2, which gives the
natural projection homomorphism q : G(x) −→ M1

0
∼= D12. The complete preimages

in G(x) of the two S3-subgroups of M1
0 are 〈(5, 6, 7), (1, 3, 2, 4)(5, 7)〉 ∼= 3 : 4 and

H1 = 〈(3, 4)(6, 7), (5, 6, 7), (1, 2)(3, 4)〉 ∼= D12.

As the latter contains the subgroup G(l) = 〈(1, 2)(5, 6), (3, 4)(5, 6)〉 ∼= 22, this one is
also H12. The element σ = (1, 2)(3, 6, 4, 5) ∈ NG{l}(H12), which swaps x with y, gen-
erates with H12 the subgroup H2 ∼= D8. Finally, H = 〈H1, H2〉G ∼= S5 is a completion
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group of the DM3-subamalgam corresponding to the densely embedded subgraph
on xH, which is isomorphic to the Petersen graph.

We conclude the analysis of the Goldschmidt amalgams of class 2 with the following
theorem.

Theorem 6. The Djoković-Miller amalgamDM1 =
{

S3, 22; 2
}

is densely embedded in the
Goldschmidt G4

2-amalgam {2× S4, S3 × D8; 2× D8}.

Proof. Also for the Goldschmidt G4
2-amalgam we abide by [Gol80, Table 1] and con-

sider G = 〈(1, 2, 3, 4, 5, 6, 7), (1, 2)〉 ∼= S7 as a faithful completion group. For one of
the two connected components of the distance-2 graph of Γ(G, P1, P2, B) we have:

G(x) = 〈(1, 6, 2, 5, 3, 4), (1, 5)(2, 3)(4, 6)〉 ∼= 2× S4,
G{l} = 〈(1, 4)(2, 5), (6, 7), (2, 4)(3, 7, 6)〉 ∼= S3 × D8,
G(l) = 〈(1, 2)(4, 5), (1, 5)〉 ∼= D8.

As G1(x) is the trivial subgroup, M1
0
∼= G(x). This group possesses eight S3-

subgroups evenly divided into two conjugacy classes, whose representatives inter-
sect G(l) either trivially or in a subgroup of order 2. We choose

H1 = 〈(2, 3)(4, 6), (1, 3, 2)(4, 5, 6)〉 ∼= S3,

so that H12 = 〈(1, 2)(4, 5)〉 ∼= 2. The transposition σ = (6, 7) normalises H12, swaps
x with y yielding H2 = 〈H12, σ〉 ∼= 22 and H ∼= S3 × S4. For further embeddings of
DM1 in the Goldschmidt G4

2-amalgam, see Table A.5.

We now move to the Goldschmidt amalgams of class 3, namely G3 and G1
3 , whose

Borel subgroup is isomorphic to D8 and 2 × D8 respectively. The completions of
these two amalgams, which both contain densely embedded subamalgams, have
been extensively studied in [Thi93; PR02a; PR01b; PR00; PR02b; Vas14], and G1

3 will
reappear in a different form in the last chapter. We begin with G3, for which the
following theorem holds.

Name Pi M1/2
0 M1

1/2 M1
0 M2

1 M3
2 DMi

G3

S4 S3 22 S4 1 1 DM1, DM2

S4 S3 22 S4 1 1 DM1, DM2

G1
3

2× S4 S3 22 S4 2 1 DM3

2× S4 S3 22 S4 2 1 DM3

TABLE 2.4: The Goldschmidt amalgams of class 3.

Theorem 7. The Djoković-Miller amalgams DM1 =
{

S3, 22; 2
}

and DM2 = {S3, 4; 2}
are densely embedded in the Goldschmidt G3-amalgam {S4, S4; D8}.
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Proof. It is well known [Vas14] that, for certain values of n, the alternating group An
is a completion group of the Goldschmidt G3-amalgam. We choose the minimal n
and take G = 〈(1, 2, 3, 4, 5), (4, 5, 6)〉 ∼= A6, so that we have:

G(x) = 〈(1, 3, 5)(2, 4, 6), (1, 6)(2, 5)〉 ∼= S4,
G{l} = 〈(2, 6, 5), (1, 6, 2, 5)(3, 4)〉 ∼= S4,
G(x) ∩ G{l} = 〈(3, 4)(5, 6), (1, 5)(2, 6)〉 ∼= D8.

By taking the complete preimage in G(x) under q : G(x) −→ M1
0
∼= S4 of an S3-

subgroup, we obtain H1 = 〈(1, 5)(2, 6), (1, 5, 4)(2, 6, 3)〉 ∼= S3. This subgroup inter-
sects G(l) = 〈(1, 5)(2, 6), (1, 6)(2, 5)〉 ∼= 22 in H12 = 〈(1, 5)(2, 6)〉 ∼= 2. The elements
σ1 = (2, 6)(3, 4) and σ2 = (1, 6, 5, 2)(3, 4) both normalise H12 and swap x with y,
yielding

H(1)
2 = 〈H12, σ1〉 ∼= 22, H(2)

2 = 〈H12, σ2〉 ∼= 4

and
H(1) = 〈H1, σ1〉 ∼= A5, H(2) = 〈H1, σ2〉 ∼ 32 : 4,

where H(2) has ID = [36, 9]. For further embeddings of DM1 and DM2 in the
Goldschmidt G3-amalgam, see Table A.6.

Theorem 8. The Djoković-Miller amalgam DM3 =
{

D12, D8; 22} is densely embedded in
the Goldschmidt G1

3-amalgam {2× S4, 2× S4; 2× D8}.

Proof. As the Goldschmidt G3-amalgam, also G1
3 is ‘symmetric’, so that we can con-

sider only one connected component of the distance-2 graph of Γ(G, P1, P2, B), where
G = 〈(1, 2, 3, 4, 5, 6), (1, 2)〉 ∼= S6 is the chosen completion group. For a vertex x and
for a line-triangle l = {x, y, z} we have:

G(x) = 〈(4, 6), (1, 6, 2)(3, 5)〉 ∼= 2× S4,
G{l} = 〈(3, 4)(5, 6), (1, 5, 6, 2, 3, 4)〉 ∼= 2× S4,
G(x) ∩ G{l} = 〈(1, 4)(2, 6), (3, 5), (1, 2)〉 ∼= 2× D8.

We notice that, although isomorphic, G(x) and G{l} play different roles and are
not conjugate in G. The kernel of the action of G(x) on the neighbourhood of x is
G1(x) = Z(G(x)) = 〈(3, 5)〉 ∼= 2, so that M1

0
∼= S4

∼= 22 : S3. The complete preimage
of one of the four S3-subgroups of M1

0 is H1 = 〈(2, 4), (1, 2, 4)(3, 5)〉 ∼= D12, which
intersects G(l) = 〈(4, 6), (3, 5), (1, 2)(3, 5)(4, 6)〉 ∼= 23 in H12 = 〈(1, 2), (3, 5)〉 ∼= 22.
The elements σ1 = (1, 4)(2, 6)(3, 5) and σ2 = (1, 4, 2, 6) both normalise H12 and swap
x with z, yielding respectively

H(1) = 〈H1, σ1〉 ∼= S3 o 2 and H(2) = 〈H1, σ2〉 ∼= S5.

The group H(1), which has ID = [72, 40], stabilises a 3-regular bipartite graph, while
the subgraph on the set of images of x under H(2) is the Petersen graph.

The Goldschmidt amalgams of class 4 and 5 exhibit a much more complicated struc-
ture than the others and are constructed using certain automorphisms of the direct
product of two cyclic groups of order 4 [Gol80, (3.6)]. With the aid of [Dok], we begin
with a few comments on the structure of the groups shown in Tables 2.5 and 2.6.
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In the Goldschmidt G4-amalgam5 the first member P1 has ID = [96, 64] and shape
42 : S3 ∼ 22 · S4, where the action of S3 on 42 is faithful; the second member P2,
with ID = [96, 67], is the unitary group on GF(3)2 and its shape can be described as
(4 ◦ Q8) · S3 ∼ (4 ◦ D8) · S3 ∼ 4 · S4; the Borel subgroup B ∼= 4 o 2 has ID = [32, 11].
As for the G1

4-amalgam, P1 has ID = [192, 956] and shape 42 : D12 ∼ 23 · S4, where
the action of D12 on 42 is faithful; P2 has ID = [192, 988] and shape 21+4

+ : S3 ∼
(D8 ◦ D8) : S3 ∼ (Q8 ◦ Q8) : S3 ∼ Q8 · S4; the Borel subgroup B ∼ 23 · D8 ∼ 42 : 22

has ID = [64, 134] and can be identified with the holomorph of D8.

Finally, there are two Goldschmidt amalgams of type 5, namely G5 and G1
5 . In the

former, P1 and B are the same as in the G1
4-amalgam, while P2 has ID = [192, 1494],

shape 21+4
+ : S3 ∼ Q8 : S4 ∼ 23 · S4 and can be identified with the holomorph of

Q8. As for the G1
5-amalgam, P1 has ID = [384, 5677], P2 has ID = [384, 5608] and the

Borel subgroup B ∼ 42 : D8 has ID = [128, 932].

Name Pi M1/2
0 M1

1/2 M1
0 M2

1 M3
2 DMi

G4

42 : S3 S3 22 S4 22 1 —

(4 ◦Q8) · S3 S3 22 S4 4 1 —

G1
4

42 : D12 S3 22 S4 23 1 —

21+4
+ : S3 S3 23 2× S4 4 1 —

TABLE 2.5: The Goldschmidt amalgams of class 4.

Name Pi M1/2
0 M1

1/2 M1
0 M2

1 M3
2 DMi

G5

42 : D12 S3 22 S4 23 1 —

(Q8 ◦Q8) : S3 S3 22 S4 22 2 DM6

G1
5

42 : ((2× 6) : 2) S3 23 2× S4 23 1 —

(Q8 ◦Q8) · D12 S3 22 S4 23 2 —

TABLE 2.6: The Goldschmidt amalgams of class 5.

Theorem 9. The Djoković-Miller amalgam DM6 =
{

2× S4, 8 : 22; 2× D8
}

is densely
embedded in the Goldschmidt G5-amalgam.

5For completions of this amalgam in dimension 3 see [PR01a].
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Proof. We work inside the completion group G = 〈a, b, c〉 ∼= M12, where

a := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
b := (3, 7, 11, 8)(4, 10, 5, 6),
c := (1, 12)(2, 11)(3, 6)(4, 8)(5, 9)(7, 10).

The coset graph Γ(G, P1, P2, B) has 990 vertices, 1485 edges, diameter 12 and girth
16. For one of the connected components of its distance-2 graph we have:

G(x) =
〈

a−1b−1cb2acba, bc(b−1a−1)2a−1c
〉
∼ 21+4

+ : S3,

G{l} =
〈

cab−1cb2ac, cbca−1b−1abca
〉
∼ 42 : D12,

G(x) ∩ G{l} =
〈
(a−1b)2a−4, cb2a−1b−1ab2c, ab−1ca−1b−1a−2c

〉
∼ 42 : 22.

The subgroup G1(x) =
〈

abca−1b2acb−1a−1, cab2a2b2c, caba2b−1a2cb
〉 ∼= 23 is char-

acteristic in G(x) and gives M1
0
∼= S4. By taking the complete preimage of an S3-

subgroup of M1
0, we obtain:

H1 =
〈

b−1a−1(bc)2ab, a−2ca2caba−1
〉
∼= 2× S4,

which intersects G(l) =
〈
cb2a−1b−1ab2c, bacb2aca−1b, (ba−1)2a−2b−1a2〉 ∼ 4 : D8 in

H12 =
〈

ca2(cb−1a−1)2b, abaca−1bcacb, ba−1b−1cb−1a−1b−1ca−1
〉
∼= 2× D8.

The element σ = ab−1aca2b ∈ NG{l}(H12) swaps x with z and together with H12

generates H2 ∼= 8 : 22, which has ID = [32, 43]. The subgroup H = 〈H1, H2〉 ≤ G,
with ID = [1440, 5841], is isomorphic to Aut(S6), and stabilises a 3-regular subgraph
with 30 vertices, 45 edges, diameter 4 and girth 8.
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Chapter 3

An exceptional example related to
the group G2(3)

The purpose of this chapter is to describe a locally projective amalgam of type (3, 3)
considered in [AS83; Iva18] and coming from a geometry discovered by Cooperstein
[Coo89]. Before describing this amalgam, whose exceptionality mainly lies in the
number of classes of geometric subgraphs contained in its universal cover graph, we
present a classical example related to symplectic and orthogonal spaces.

3.1 Geometric subgraphs and a classical example

In this section we introduce the notion of a geometric subgraph, which plays an im-
portant role in the theory of locally projective graphs. These subgraphs were intro-
duced in [Iva99, Chapter 9, § 5] for locally projective graphs of type (n, 2) defined
more generally over GF(q), and for some classes of geometries, including the classi-
cal ones, they enable to reconstruct the elements of higher type. After recalling that
for a locally projective graph Γ of type (n, 3) with respect to the action of a group
G ≤ Aut(Γ), every vertex x is equipped with a projective geometry πx on Γ(x) in-
variant under the action of G(x), we give the following definition, following [Iva21].

Definition 5. A connected subgraph Ξ(k) in Γ is said to be geometric at level k, where
1 ≤ k ≤ n− 1, whenever together with an edge it always contains the line on this edge, and
the following conditions hold:

(i) if x ∈ Ξ(k), then the set of neighbours Ξ(k)(x) of x in Ξ(k) is a k-dimensional subspace
in πx and the setwise stabiliser of Ξ(k)(x) in G(x) stabilises Ξ(k);

(ii) the stabiliser X(k) of Ξ(k) in G acts on Ξ(k) locally projectively of type (k, 3).

The kernel of the action of X(k) on Ξ(k) will be denoted by K(k). For k = 1, the
geometric subgraphs are just the lines, while a geometric subgraph Ξ(2) at level 2
(called a plane) is regular of valency 6, and its stabiliser X(2) modulo its vertex-wise
stabiliser K(2) is a completion of a Goldschmidt amalgam{

X(2)(x)/K(2), X(2){l}/K(2)
}

.
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In general, geometric subgraphs might not exist, although in most cases a locally
projective graph Γ contains at least one family of them, and the universal cover of Γ
contains a complete set of geometric subgraphs for all levels [Iva18, Theorem 10.11].

In the second part of this section, following [Iva21] and [Iva18, Chapter 10, § 7], we
present a classical example of a locally projective graph of type (3, 3) and describe
its densely embedded and geometric subgraphs. For a similar example in higher
dimension and with more details the reader is advised to consult [Iva04, Chapter 2].

Let V be a 6-dimensional GF(2)-vector space equipped with a non-degenerate sym-
plectic form f , that is a map

f : V ×V −→ GF(2)

satisfying the following conditions:

(a) f (u + v, w) = f (u, w) + f (v, w) and f (u, v + w) = f (u, v) + f (u, w) for all
u, v, w ∈ V (bilinear),

(b) f (u, v) = f (v, u) for all u, v ∈ V (symmetric),

(c) f (u, u) = 0 for all u ∈ V (alternating),

(d) f (u, v) = 0 for all v ∈ V implies u = 0 (non-degenerate).

The dual polar graph associated with the pair (V, f ) is the graph Γ defined as follows:
its vertices are the maximal totally isotropic subspaces of V with respect to f , that
is the 3-dimensional subspaces on which the form f vanishes completely; two such
subspaces are adjacent in Γ if and only if their intersection has codimension 1 in each
of them. It is well known that the number of 3-dimensional subspaces of V is given
by the Gaussian binomial coefficient(

6
3

)
2
=

(1− 26)(1− 25)(1− 24)

(1− 2)(1− 22)(1− 23)
= 1395,

and that only ∏2
i=0(2

3−i + 1) = 135 of them are totally isotropic with respect to f
(see, for example, [BCN89, Lemma 9.4.1]). The graph Γ, constructed with the aid
of MAGMA [BCP97], is 14-regular with 135 vertices, 945 edges, diameter 3, girth 3,
and it is locally projective of type (3, 3) with respect to G = Aut(Γ) ∼= Sp6(2). The
corresponding locally projective amalgam is {G(x), G{l}}, with G(x) ∼ 26 : L3(2)
and G{l} ∼ 21+4

+ : (S3 × S4) ∼ (22 × 21+4
+ ) : (S3 × S3) intersecting in a subgroup of

shape 21+4
+ : (2× S4).

Now we choose a quadratic form q of plus type (see [Iva04, Chapter 1] or [Rot95,
Chapter 8] for details) whose associated bilinear form is f and consider the subgraph
∆ of Γ formed by the 3-dimensional subspaces totally singular with respect to q, i.e.
those on which q vanishes totally. This subgraph is locally projective of type (3, 2)
with respect to the group H = Aut(∆) ∼= O+

6 (2) ∼= S8, and it is densely embedded in
Γ, as verified with the code in Appendix A. The group H turns out to be a completion
of the corresponding subamalgam {H1, H2; H12}, where H1

∼= AGL3(2) ∼= 23 : L3(2)
has ID = [1344, 11686], H2 ∼ 24 : S4 ∼ 21+4

+ : D12 has ID = [384, 5602] and their
intersection H12 ∼ 23 : S4 ∼ 21+4

+ : S3 has ID = [192, 1493].

The only interesting geometric subgraphs of Γ are those at level 2, which are gener-
alised quadrangles of order (2, 2) associated with the group Sp4(2) ∼= S6, completion
of the Goldschmidt G1

3-amalgam. We conclude with Figure 3.1, which shows the
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neighbourhood of a vertex in Γ, with the seven lines containing it and the green part
representing its intersection with the subgraph ∆.

FIGURE 3.1: The neighbourhood of a vertex with the seven lines.

3.2 The octonion algebra over GF(3)

Since the amalgam we want to consider comes from a geometry for G2(3), we begin
with the description of this group in its relation to the octonion algebra over GF(3)
following [Wil09; Coh80; Bae02].

The octonions over GF(3)1 form a non-commutative, non-associative, 8-dimensional
unital algebra O of size 38 with basis {e0 = 1, e1, e2, e3, e4, e5, e6, e7}. The most ele-
mentary way to construct this algebra is through its multiplication table, given for
reference in Table 3.1, from which one can learn the following pieces of information:

• e1, . . . , e7 are square roots of −1:

e2
i = −1 for 1 ≤ i ≤ 7,

• ei and ej anticommute when i 6= j:

eiej = −ejei = ek

whenever (i, j, k) is one of the 3-cycles (1 + r, 2 + r, 4 + r), with i, j, k and r
running through the integers modulo 7 and taking their values in {1, 2, . . . , 7},

• the multiplication is non-associative:

(e1e2)e3 = e4e3 = −e6 but e1(e2e3) = e1e5 = e6,

• the ‘index cycling’ identity holds:

eiej = ek =⇒ ei+1ej+1 = ek+1,

i.e. the table is invariant under the map α : et 7→ et+1,

• the ‘index doubling’ identity holds:

eiej = ek =⇒ e2ie2j = e2k

1The same construction works over any field of characteristic not 2.
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i.e. the table is invariant under the map β : et 7→ e2t,

• the table is also invariant under the map

γ : (e1, e2, e3, e4, e5, e6, e7) 7→ (e1, e4,−e3,−e2, e6,−e5,−e7)

in the sense that eiej = ek =⇒ γ(ei)γ(ej) = γ(ek).

1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

TABLE 3.1: The octonion multiplication table.

The full multiplication table is conveniently encoded in the Fano plane, shown in
Figure 3.2. The product of any two ‘imaginary units’ is given by the third one on the
unique line connecting them, with the sign determined by the relative orientation.

e5

e3

e7 e6

e1

e2

e4

FIGURE 3.2: The octonion multiplication through the Fano plane.
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The conjugate of an octonion x = ∑7
i=0 αiei, αi ∈ GF(3), is given by

x̄ = α0e0 −
7

∑
i=1

αiei

so that conjugation x 7→ x̄, which is the GF(3)-linear map fixing e0 = 1 and negating
e1, . . . , e7, is an antiautomorphism (i.e. xy = ȳx̄ ∀x, y ∈ O) of order 2 (i.e. ¯̄x = x
∀x ∈ O). We also define the real part of x by

Re(x) = 1
2 (x + x̄) = α0e0

and the imaginary part of x by

Im(x) = 1
2 (x− x̄) =

7

∑
i=1

αiei

so that x̄ = 2 Re(x)− x = x− 2 Im(x) is expressible as a linear combination of 1 and
x. There is a natural non-singular quadratic form (the norm)

q : O −→ GF(3), x 7→ xx̄ = x̄x =
7

∑
i=0

α2
i ∀x ∈ O

which is multiplicative, i.e. q(xy) = q(x)q(y) for any x, y ∈ O, thus endowing O

with the structure of a composition algebra over GF(3). The bilinear form associated
to q is given by

f (x, y) := q(x + y)− q(x)− q(y) = 2 Re(xȳ) = xȳ + yx̄

and therefore it is twice the usual inner product, under which {e0 = 1, e1, . . . , e7} is
an orthonormal basis of O.

It is well known (see for example [Wil09; Con+85]) that G = Aut(O) is the excep-
tional group of Lie type G2(3), which is simple of order 4 245 696 = 26 · 36 · 7 · 13.
Of interest to us will be the set B = {±e0,±e1, . . . ,±e7} of the basis octonions and
their additive inverses. This set, which we will call a base, is closed under multi-
plication and in fact it has the structure of a Moufang loop, which means that it is a
quasigroup with an identity element which satisfies certain identities knows as the
Moufang laws. Ignoring the signs for the moment, we see that the maps α, β and
γ correspond respectively to the permutations (1, 2, 3, 4, 5, 6, 7), (1, 2, 4)(3, 6, 5) and
(2, 4)(5, 6), which generate L3(2). Thus there is a homomorphism from the stabiliser
of B in G onto L3(2) whose kernel is a group of order 23, as we may change sign
independently on e1, e2 and e4, and then the other signs are determined. In fact,
the resulting group is the unique2 non-split extension 23 · L3(2) (see [Coh80; Cox46;
Abb+99]).

2To be precise, there is another group with this shape, but it is isomorphic to 22 × SL2(7).
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3.3 The Cooperstein geometry

The purpose of this section is to describe the Cooperstein geometry, a flag-transitive
GAB3 having G2(3) as automorphism group. This rank 3 geometry, explicitly con-
structed in [Coo89] making use of the octonion algebra O over GF(3), consists of
three types of objects, called points, lines and planes, so that the residue of a point is
a generalised hexagon, the residue of a line is a complete bipartite graph, and the
residue of a plane is a projective plane, as shown in the following diagram.

2 2 2

Before describing the geometry, for an alternative and equivalent construction of
which the reader is referred to [DHV05], we remind a few definitions. Generalised
polygons, introduced by Tits [Tit59] in an attempt to find geometric models for sim-
ple groups of Lie type, have already been mentioned in Section 1.4, and reasonably
comprehensive references for them can be found in [BM94; Mal11]. A generalised
d-gon can be defined as a point-line geometry whose bipartite incidence graph has
diameter d and girth 2d. If we assume, to exclude trivial cases, that the geometry is
thick, namely that each line contains at least three points and each point lies on at
least three lines, then there are constants s ≥ 2 and t ≥ 2 such that each line contains
exactly s + 1 points and each point lies on exactly t + 1 lines, and (s, t) is called the
order of the generalised d-gon. The celebrated theorem of Feit and Higman [FH64]
shows that a finite thick generalised d-gon can only exist when d ∈ {2, 3, 4, 6, 8}.
Generalised digons (2-gons) are geometries whose incidence graphs are complete
bipartite, while a generalised triangle (3-gon) is precisely a projective plane. As far
as generalised hexagons (6-gons) are concerned, there are only two known infinite
families of them with an order (s, t), each parametrised by a finite field. The fam-
ily in which we are interested is comprised of the so-called split Cayley hexagons of
order (q, q), which are related to the group G2(q) in the sense that they are rank 2
geometries defined by the two classes of maximal parabolic subgroups of G2(q). In
particular, for q = 2, as proved in [CT85], up to isomorphism there are exactly two
generalised hexagons of order (2, 2). Each is the dual4 of the other and is related
to the group G2(2), hence the name G2(2)-hexagon we use for one of them. There
are 63 points and 63 lines, and each point (respectively line) is incident with exactly
3 lines (respectively points). For more details and a nice visual presentation of the
G2(2)-hexagons, see [Sch99] or [Bam+17, Fig. 1].

Following [Coo89; BC13], we now give a construction of the G2(2)-hexagon as the
geometry of non-isotropic points in a 3-dimensional unitary space. Let K = GF(9)
and equip V = K3 with the standard hermitian form5 h : V ×V −→ K defined as

h(x, y) =
3

∑
i=1

x3
i yi for all x, y ∈ V.

3Geometries that are almost buildings (GABs), introduced by Tits, are special geometries in which
all rank 2 residues are generalised polygons.

4The dual of a point-line geometry is obtained by interchanging the roles of points and lines.
5The same construction works with any non-degenerate hermitian form.
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Let P be the the set of non-isotropic points of the underlying projective space, that is,
P = {〈x〉 | x ∈ V, h(x, x) 6= 0}, and define a graph on P as follows: 〈x〉 ∼ 〈y〉 if and
only if h(x, y) = 0. Let L be the collection of maximal cliques in Γ = (P,∼), which
have size three and correspond to orthonormal bases of V (up to scalar multiples for
the basis vectors). Then, as shown in [BC13, Example 2.2.15], (P, L, ∗), where * is the
symmetrised containment, is a generalised hexagon.

We first collect some facts about the graph Γ, starting with its vertex set V(Γ) = P.
The following Gaussian binomial coefficient counts the number of 1-dimensional
subspaces of V (

3
1

)
9
=

1− 93

1− 9
= 91,

among which 93/2 + 1 = 28 (see, for example, [BCN89, Lemma 9.4.1]) are totally
isotropic with respect to h. With the aid of GAP [Gap] and MAGMA [BCP97], we
check some other properties of Γ, shown in Table 3.2.

|V(Γ)| 63

|E(Γ)| 189

G = Aut(Γ) G2(2)

diameter 3

girth 3

valency 6

TABLE 3.2: Some properties of the graph Γ = (P,∼).

If x ∈ P is a point and l ∈ L is a line, i.e. a maximal clique of Γ, we have:

G(x) ∼ 21+4
+ : S3 and G{l} ∼ 42 : D12,

with ID = [192, 988] and ID = [192, 956] respectively. These two subgroups are
precisely the maximal parabolics of G (see, for example, [Wil09]), so that the G2(2)-
hexagon (P, L, ∗) can be equivalently constructed as the coset graph of G with re-
spect to G(x) and G{l}, with Γ being (isomorphic to) one of the two connect compo-
nents of its distance-2 graph.

We can now describe the Cooperstein geometry, following [Coo89] and retaining the
notation of the previous section. Let K = 〈e0, e1〉, considered as the field with nine
elements, and let W = e⊥0 = 〈e1, . . . , e7〉, so that q|W is a non-degenerate quadratic
form with maximal Witt index. Set V = 〈e2, . . . , e7〉 = W ∩ e⊥1 , so that V becomes
a 3-dimensional vector space over K by restriction of the multiplication µ of O to
K × V. Next define h : V × V −→ K to be p ◦ µ, where p is the projection of O onto
K, so that h is a non-degenerate hermitian form on V with associated automorphism
given by the restriction of octonion conjugation to K.
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Let us now consider the following three sets of points, lines and planes, respectively:

P = 〈e1〉G = {〈w〉 | w ∈W, q(w) = 1} ,

L = {〈e1〉 , 〈e2〉 , 〈e4〉}G ,

Π = {〈e1〉 , 〈e2〉 , 〈e3〉 , 〈e4〉 , 〈e5〉 , 〈e6〉 , 〈e7〉}G .

Then [Coo89, Theorem 5.1] shows that Γ = (P ∪ L ∪ Π, ∗, τ), where * is the sym-
metrised inclusion and τ the obvious type function, is a rank 3 geometry; moreover,
if p ∈ P, l ∈ L, π ∈ Π, then Γπ is a projective plane of order 2, Γp is a generalised
hexagon and Γl is the complete bipartite graph K3,3.

3.4 The amalgam A and the Cooperstein graph

The amalgam in which we are interested is comprised of the stabilisers of the objects
in a maximal flag, as described in the previous section. We first begin with the rank 2
amalgam A := {G1, G2; G12}, whose members G1 and G2 are the following maximal
subgroups of G ∼= G2(3):

• G1 ∼ 23 · L3(2),

• G2 ∼ (21+4
+ : 32) : 2 ∼ 21+4

+ : (32 : 2) ∼ SL2(3) : S4 ∼ Q8 · (3 : S4),

• G12 := G1 ∩ G2 ∼ 21+4
+ : S3 ∼ Q8 : S4 ∼ 23 · S4.

The group G1 has ID = [1344, 814] and, as already mentioned, is the stabiliser in G
of the base {±e0,±e1, . . . ,±e7}. The second member G2, with ID = [576, 8282], is the
stabiliser of a quaternion subalgebra of O and it is isomorphic to SO+

4 (3) (see [Wil09,
Chapter 4, § 3.6]). Their intersection G12, with ID = [192, 1494], already appeared
in Chapter 2 as a member of the Goldschmidt G5-amalgam and is chosen such that
[G1 : G12] = 7 and [G2 : G12] = 3.

Following [AS83], we provide a few details and remarks about the groups involved
in our construction. If we denote by B a Sylow 2-subgroup of G, then B ∼= Hol(D8)
has ID = [64, 134] and coincides with the Borel subgroup of the Goldschmidt G1

4- and
G5-amalgams. Its centre Z(B) ∼= 2 contains an involution w such that G2 = CG(w)
has two subnormal subgroups6 Ki

∼= SL2(3), 1 ≤ i ≤ 2. Let Qi := Ki ∩ B ∼= Q8 and
let W ∼= 42 be the largest abelian normal subgroup of B. Then N := NG(W), having
shape 42 : D12 ∼ 23 · S4 and ID = [192, 956], is the first member of the Goldschmidt
G1

4- and G5-amalgams.

Before we proceed, we remind some standard notation. If p is a prime number
and G a finite group, Op(G) denotes the p-core of G, which is the largest normal
p-subgroup of G, and Op(G) the smallest normal subgroup H of G such that G/H
is a p-group. The group G2 has four subgroups X1, X2, Y1 and Y2 of index 3 con-
taining B, all of shape 21+4

+ : S3. The subgroups X1 and X2 have ID = [192, 988] and
O2(Xi) = Ki, while Y1 and Y2 have ID = [192, 1494], with O2(Yi) ∼ 21+4

+ : 3 ∼ Q8 : A4
and O2(O2(Yi)) = Q1Q2 ∼= Q8 ◦ Q8 ∼= D8 ◦ D8 ∼= 21+4

+ . There is an outer automor-
phism α of G acting on B, W, Y1 and Y2, and interchanging X1 and X2. We have

6A subgroup H of a group G is termed subnormal if there exists a finite chain of subgroups of G,
each one normal in the next, beginning at H and ending at G.
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that
Mi = 〈Xi, N〉G ∼= G2(2) ∼= U3(3) : 2,

and evidently α interchanges M1 and M2. Finally,

G1 = 〈Y1, N〉G ∼= 23 · L3(2) and 〈Y2, N〉G = G ∼= G2(3).

The triple {G1, G2, Mi} for i = 1 or 2 yields the Cooperstein geometry, while the
choice {M1, G2, M2} leads to another geometry for G2(3), the third listed in [AS83,
Table 1].

Using the functions Amalgams and Simple [Can05] and Goldschmidt in Appendix B,
we verify that there is a unique isomorphism class of (simple) amalgams having the
type of A, and we find a presentation for its universal completion group G1 ∗G12 G2.
The coset graph Γ = Γ(G, G1, G2, G12) has 10530 vertices, 22113 edges, diameter 10
and girth 12. The 14-regular connected component of the distance-2 graph of Γ is
locally projective of type (3, 3) with respect to the action of G ∼= G2(3), and we will
call it the Cooperstein graph. Following [Iva18, Chapter 10, § 6], we notice that in the
Cooperstein graph there are three G-orbits of planes: the representatives of two of
them are isomorphic to the point graph of the G2(2)-generalised hexagon (realising
the Goldschmidt G1

4-amalgam), while the representatives of the third orbit realise
the Goldschmidt G5-amalgam.

The full automorphism group of Γ, which is Aut(G) ∼= G2(3) : 2, leads to another
locally projective action [Iva18, Chapter 10, § 6.3], permutes the two orbits of planes
and, when lifted to an automorphism of the universal cover of Γ, stabilises the third
one, thus realising the Goldschmidt G1

5-amalgam.

3.5 Some presentations following Goldschmidt

Throughout this subsection we continue the earlier notation for the groups intro-
duced above and, following Goldschmidt [Gol80], we give a presentation of the
amalgam A together with its four subamalgams listed below

B1 = {N, X1; B} , B2 = {N, X2; B} , B3 = {N, Y1; B} , B4 = {N, Y2; B} .

We start with the following two elements of G, realised as a group of 8× 8 matrices
over GF(3):

a =



1 0 0 1 1 0 0 1
0 1 0 2 2 0 0 2
1 2 2 2 2 1 1 1
0 0 0 1 1 2 2 1
2 1 1 0 1 2 2 0
0 0 0 2 1 2 2 1
1 2 0 2 1 2 0 2
0 0 0 0 1 0 0 1


, b =



2 2 2 1 1 2 2 0
2 2 1 2 2 1 1 0
1 2 2 0 2 2 2 1
0 0 1 0 1 0 1 0
2 1 0 1 1 2 0 0
0 0 0 2 1 2 2 1
2 1 0 0 1 2 0 2
1 2 2 2 1 1 1 0


.

One can check that a and b have both order 4, commute and therefore generate the
subgroup W ∼= 42, whose automorphism group is used by Goldschmidt [Gol80] to
define the amalgams of class 4 and 5.
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The automorphisms of W which will play an important role in our construction are
the following maps:

s :

{
a 7→ b
b 7→ a

t :

{
a 7→ a−1 = a3

b 7→ b−1 = b3

x :

{
a 7→ b
b 7→ a−1b−1 = a3b3

which are realised as the following matrices

s =



0 1 0 1 1 0 0 2
1 0 0 2 2 0 0 1
1 2 0 1 1 2 2 0
0 0 0 0 1 0 0 2
0 0 0 2 2 1 2 1
1 2 1 1 2 2 1 0
1 2 1 0 0 2 1 1
0 0 0 1 2 1 2 1


, t =



2 2 2 2 0 0 0 2
2 2 1 1 0 0 0 1
2 1 1 0 1 1 1 2
2 1 2 1 0 0 0 2
0 0 0 1 1 2 1 2
0 0 0 1 2 1 1 2
1 2 1 1 1 1 2 0
0 0 0 2 2 2 2 2


,

x =



2 2 0 2 1 2 2 2
2 2 0 1 2 1 1 1
0 0 0 2 1 0 0 1
0 0 1 1 2 1 2 0
2 1 0 2 2 2 2 1
2 1 0 1 1 1 1 2
0 0 0 2 2 0 0 2
0 0 2 1 1 1 2 0


.

The elements s and t are involutions, while x has order 3, and together they generate
a subgroup isomorphic to D12. The following set of relators

RB =
{

a4, b4, [a, b], s2, t2, [s, t], asb−1, bsa−1, ata, btb
}

gives a presentation of the group

B = 〈a, b, s, t | R〉 ∼ 42 : 22

which, as explained in [Gol80, p. 390], admits also the following description

B = 〈Q1Q2, bt〉 ∼ 21+4
+ : 2,

where Q1 =
〈

abs, sa2〉 ∼= Q8, Q2 =
〈

ab, tsa2〉 ∼= Q8, Q1Q2 ∼= Q8 ◦ Q8 ∼= 21+4
+ ,

(bt)2 = 1, and Z(B) =
〈

a2b2〉 ∼= 2.
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By adjoining x and the following set of relators

RN =
{

x3, xxs, [x, s]3, [x, t], axb−1, bxba
}

,

we obtain a presentation of the group

N = 〈a, b, s, t, x | RB ∪ RN〉 ∼ 42 : D12.

Next we find presentations for the groups X1, X2, Y1 and Y2, by describing the action
of an element of order 3 on the generators abs, sa2, ab, tsa2 and bt of the common
subgroup B:

Y1 = 〈a, b, s, t, y | RY1〉 ,

X1 = 〈a, b, s, t, z | RX1〉 ,

Y2 = 〈a, b, s, t, u | RY2〉 ,

X2 = 〈a, b, s, t, v | RX2〉 ,

where

RY1 = RB ∪
{

y3, (abs)yba3, (sa2)ysba, (tsa2)ytsba3, (ab)ytsa2, ybtytb2
}

,

RX1 = RB ∪
{

z3, (abs)zba3, (sa2)zsb3a3, (tsa2)ztsb2, (ab)zb3a3, zbtz
}

,

RY2 = RB ∪
{

u3, (abs)uba3, (sa2)usb3a3, (tsa2)ub3a3, (ab)utsba3, ubtutsb2
}

,

RX2 = RB ∪
{

v3, (abs)vsb3a3, (sa2)vsb2, (tsa2)vtsba3, (ab)vtsa2, vbtvtsba3
}

.

The group Y1 forms with N the subamalgam B3, which has the same type of the
Goldschmidt G5-amalgam. However, as described in [Gol80, p. 391], B3 is not simple
as the subgroup

〈
a2, b2, t

〉 ∼= 23 is normal in both of its members, and has G1 as a
completion group:

G1 = 〈N, Y1〉 =
〈

a, b, s, t, x, y | RN ∪ RY1 ∪ {byx2yxy2xa3}
〉 ∼= 23 · L3(2).

The groups X1 and X2 form with N the subamalgams B1 and B2 respectively. These
can be identified with the amalgam of maximal parabolics in G2(2), and with the
Goldschmidt G1

4-amalgam, with completions given, respectively, by

M1 = 〈N, X1〉 =
〈

a, b, s, t, x, z | RN ∪ RX1 ∪ {(x2z2)3b2ax(z2x2)2z}
〉 ∼= G2(2),

M2 = 〈N, X2〉 =
〈

a, b, s, t, x, v | RN ∪ RX2 ∪ {(x2v2)3b3x2v2a3xv2xv}
〉 ∼= G2(2).

The groups Y2 and N, which generate in G the whole group〈
a, b, s, t, x, u | RN ∪ RY2 ∪ {(x2u2)12, (xu2)2(x2u2)4xa2u2(x2u)3xux2u}

〉
∼= G2(3),

are the members of the subamalgam B4, which is the Goldschmidt G5-amalgam.
Altogether the four groups X1, X2, Y1 and Y2 generate the group G2, which intersects
G1 in G12 = N:

G2 = 〈X1, X2, Y1, Y2〉 = 〈a, b, s, t, y, z, u, v | RX1 ∪ RX2 ∪ RY1 ∪ RY2 ∪ R2〉 ,
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where

R2 = {vzv2, za2b2u2(sty2u)−1, za3b2st(by2zu2)−1, zsu2(styz2)−1, z−1avu−1va}.

Finally
〈G1, G2〉 = 〈a, b, s, t, x, y, z, u, v | RG1 ∪ RG2 ∪ RG〉 ∼= G2(3),

where RG1 and RG2 denote respectively all the relators of G1 and G2, and

RG = {xby2x2y2b3y2x2y2byxyx2(avu2)−2,

y(uv2a2)−1,

xbx2a3,

(xy)2x2(avu2a2)−1,

xu2x2v2(x2u2)2x2v2b3xu2x2vx2u,

x2vxv2x2v2xvx2v2xv2}.

The first four relators describe the intersection G12, while the last two are needed to
obtain G2(3).

3.6 Incorporating G3

In this section we address a question that has its origin in the observation that B4
is isomorphic to an amalgam realised in the Mathieu group M12. It is well known
[Con+85; Wil09] that M12 possesses two conjugacy classes of maximal subgroups of
order 192. One class consists of the 495 stabilisers of tetrads, i.e. 4-subsets of the 12-
set upon which M12 acts, and they have ID = [192, 1494]; the subgroups in the other
class stabilise a partition of the 12-set into three 4-subsets and have ID = [192, 956].

We aim to extend A to a rank 3 amalgam by adjoining as a third member the sta-
biliser G3 of a geometric subgraph at level 2. As we have already mentioned, if G3
is chosen to be M1 or M2, then the triple {G1, G2, G3} is the amalgam of maximal
parabolics in G2(3) associated to the Cooperstein geometry. We consider the case
G3 ∼= M12 and construct the universal completion of the corresponding amalgam. In
order to do that we first need to recall the following quite old result [Neu54, The-
orem 4.1], which describes some special subgroups of a free amalgamated product.

Theorem 10 (Hanna Neumann, 1948). Let P = G1 ∗G12 G2 be the free product of groups
G1 and G2 with an amalgamated subgroup G12. In G1 (resp. G2) let there be given a sub-
group H1 (resp. H2) which intersects G12 in a fixed subgroup H12,

Hi ≤ Gi, Hi ∩ G12 = H12, i = 1, 2.

Then the subgroup of P generated by H1 and H2 is their free product with amalgamated H12,

〈H1, H2〉P ∼= H1 ∗H12 H2.

If, in particular, the subgroups H1 and H2 have trivial intersection with G12, then they
generate their ordinary free product.
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We apply the result above to the case where P is the universal completion group of
A and H1, H2 the two members of the subamalgam B4. The group G ∼= G2(3) is a
completion of A, so that there is a surjective homomorphism

ϕ : Ĝ := G1 ∗G12 G2 −→ G,

which can be restricted to the stabiliser 〈N, Y2〉Ĝ ∼= N ∗B Y2 of the geometric sub-
graph in the universal completion group, yielding

ψ := ϕ|N∗BY2 : N ∗B Y2 −→ M12.

By taking its kernel and its normal closure, we notice that〈 N︷ ︸︸ ︷
x, a, b, s, tx, a, b, s, t, u︸ ︷︷ ︸

Y2

| RN ∪ RY2 ∪ {r1}
〉
∼= M12,

where r1 = x−1u−1xu−1x−1u−1x−1u−1b−1xuxu−1x−1u−1x−1u, and〈 N︷ ︸︸ ︷
x, a, b, s, tx, a, b, s, t, u︸ ︷︷ ︸

Y2

| RN ∪ RY2 ∪ {r2, r3}
〉
∼= G2(3),

where r2 = (x2u2)12 and r3 = (xu2)2(x2u2)4xa2u2(x2u)3xux2u.

We addressed the problem of determining structural information about the follow-
ing finitely presented groups:

X = 〈a, b, s, t, x, y, z, u, v | RG1 ∪ RG2 ∪ {r1}〉

and
Y = 〈a, b, s, t, x, y, z, u, v | RG1 ∪ RG2 ∪ {r2, r3}〉 ,

the former being the universal completion group of the amalgam {G1, G2, G3} with
G3 ∼= M12. The main result of this chapter is given by the following theorem.

Theorem 11. The group X is perfect, i.e. X = X′, and has no simple quotients up to order
108, and the group Y is not isomorphic to G2(3).

Proof. With the aid of MAGMA [BCP97], we checked that X is perfect and has no
simple quotients up to order 108:

> load "X_and_Y";
Loading "X_and_Y"
> IsPerfect(X);
true
> x:=Simplify(X);
> S := SimpleQuotients(x,1,10^8);
> #S;
0

but unfortunately we were not able to say more about X, in particular if it trivial or
not.
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More successful was the analysis of the group Y, which we managed to prove not
isomorphic to G2(3). The strategy adopted, which comes from an idea suggested by
D. Holt 7, is described as follows. For a homomorphism f from a finitely presented
group G onto a transitive permutation group H, the MAGMA [BCP97] command
sub< G | f >, which is very useful and does not appear to be widely known, re-
turns the inverse image under f of the point stabiliser in H. In our case MAGMA
[BCP97] finds two such surjective homomorphisms Y −→ H ∼= G2(3), where H
is chosen to be PrimitiveGroup(2808,1), and for each of them we compute the
elementary divisors of the quotient groups V/V ′ and V ′/V ′′, where V is the cor-
responding subgroup of Y of index 2808. In both cases we find V/V ′ ∼= 3 and
V ′/V ′′ ∼= 7, thus contradicting the information contained in Table 3.3. This table lists
the 10 conjugacy classes of maximal subgroups of G2(3); for each class we choose a
representative A, whose index and derived length are shown in the second and third
column respectively, while in the last two columns we give the isomorphism type of
A/A′ and A′/A′′.

# Index Derived length A/A′ A′/A′′

1 351 1 2 1

2 351 1 2 1

3 364 6 2 3

4 364 6 2 3

5 378 1 2 1

6 378 1 2 1

7 2808 1 3 1

8 3159 0 1 1

9 3888 0 1 1

10 7371 4 2 32

TABLE 3.3: The conjugacy classes of maximal subgroups of G2(3).

We conclude with the MAGMA [BCP97] output which shows the result presented
above.

YY := Simplify(Y);
h := Homomorphisms(YY,PrimitiveGroup(2808,1)); /* #h; 2 */
/* CompositionFactors(Image(h[1]));

G
7D. Holt, private communication, 2019.
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| G(2, 3)
1

*/
V := sub< YY | h[1] >;
/* AQInvariants(V); [ 3 ] */
V := Rewrite(YY,V); D:=DerivedGroup(V);
/* AQInvariants(D); [ 7 ] */

/* CompositionFactors(Image(h[2]));
G
| G(2, 3)

1
*/
V := sub< YY | h[2] >;
/* AQInvariants(V); [ 3 ] */
V := Rewrite(YY,V); D:=DerivedGroup(V);
/* AQInvariants(D); [ 7 ] */

3.7 One is not enough

This last section, in which we continue our earlier notation, is devoted to answer
a question about another geometry related to the group G2(3) described in [HS05].
Here the authors study the amalgam

B̂ :=
{

Ĝ1, Ĝ2, M1

}
,

where Ĝ1 ∼ (23 · L3(2)) : 2 and Ĝ2 ∼ 21+4
+ · (S3 × S3) are maximal subgroups of

Aut(G2(3)). This amalgam corresponds to the amalgam

B := {G1, G2, M1, M2}

of maximal subgroups of G ∼= G2(3).

The cosets geometries corresponding to the amalgams {G1, G2, M1} and {G1, G2, M2}
are isomorphic to the Cooperstein geometry, which is not simply connected. Using
the presentations of the groups in Section 5, we first check that U (B) ∼= G2(3), and
then we prove that the universal completion of the amalgam obtained from B by
removing one Mi

∼= G2(2), is not isomorphic to G2(3)8.

Theorem 12. The universal completion of the amalgam B is the following finitely presented
group

U = 〈a, b, s, t, x, y, z, u, v | RU〉 ,

where
RU = RG1 ∪ RG2 ∪ {(x2z2)3b2ax(z2x2)2z, (x2v2)3b3x2v2a3xv2xv}.

The group U is isomorphic to G2(3).

8In [Gra+08] it is wrongly stated that the universal completion group of the amalgam {G1, G2, Mi}
is the group G2(Q2).
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Proof. We construct the group U in MAGMA [BCP97] and apply to it the command
Simplify, which returns a new group isomorphic to U defined by a simpler presen-
tation. We check that the order of this group is 4 245 696 and we explicitly find an
isomorphism with G2(3).

UU := Simplify(U);
/* Order(UU); 4245696 */
S := SimpleQuotients(Simplify(UU),1,10^8);
/* #S; 1 */
c := CompositionFactors(Image(S[1][1]));
/* c;

G
| G(2, 3)

1
*/
K := Kernel(S[1][1]);
/* Order(K); 1 */

By removing one of the last two relators in RU , we get a group which is not isomor-
phic to G2(3).

Theorem 13. The universal completions of the amalgams {G1, G2, M1} and {G1, G2, M2}
are, respectively, the following finitely presented groups

T1 =
〈

a, b, s, t, x, y, z, u, v | RG1 ∪ RG2 ∪ {(x2z2)3b2ax(z2x2)2z}
〉

and
T2 =

〈
a, b, s, t, x, y, z, u, v | RG1 ∪ RG2 ∪ {(x2v2)3b3x2v2a3xv2xv}

〉
.

Each of them is not isomorphic to G2(3).

Proof. We adopt the same technique used in Section §6 for the group Y and for each
i ∈ {1, 2} we find two homomorphisms Ti −→ H ∼= G2(3). In both cases we find a
contradiction with Table 3.3.
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Chapter 4

Another ‘special’ example of a
locally projective graph of type
(3,3)

The list of all known locally projective graphs of type (n, 3) is shown in [Iva21, Ta-
ble 2], from which one can see that most of them admit densely embedded sub-
graphs. Among the few exceptions, the graph considered in Chapter 3, and the one
described here and constructed in [GLP05]. The first sections of this chapter are de-
voted to the description of such a graph, whose automorphism group, Ω+

8 (2) : S3,
is a maximal subgroup of the Fisher group Fi22 (see [Con+85]). In the final section
we address the problem of finding a geometric presentation of a certain rank 3 amal-
gam related to a geometry coming from the locally projective graph, and we prove
computationally the simple connectedness of the geometry.

4.1 Construction and some properties

In this section we describe a 3-arc transitive locally projective graph of type (3,3)
arising from a biregular graph of valency {3, 7} constructed in [GLP05]. We first
provide a brief outline of the geometry associated with the 8-dimensional orthogonal
groups. For more details, the reader may refer to [Kle87].

Let V be an 8-dimensional vector space over GF(2) equipped with a non-degenerate
quadratic form Q, that is, Q : V −→ GF(2) is a function such that

Q(λv) = λ2Q(λ) for all λ ∈ GF(2) and v ∈ V

and the associated bilinear form

V ×V −→ GF(2)
(v, w) 7→ Q(v + w)−Q(v)−Q(w)

is non-degenerate. A subspace W of V is called totally singular if Q(v) = 0 for all
vectors v ∈W. We let Q have maximal Witt index, that is the maximal totally singular
subspaces of V have dimension 4.

We denote the set of all totally singular 1-spaces of V by P and the set of totally
singular 4-spaces by S . The simple group T ∼= Ω+

8 (2) ∼= D4(2) 1 acts transitively on

1In [Con+85] this group is denoted by O+
8 (2).
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P and has two orbits S1 and S2 on S . Two totally singular 4-spaces lie in the same
T-orbit if and only if their intersection has even dimension. Let

∆1 =
{
{U, S, R} | U ∈ P , S ∈ S1, R ∈ S2, dim(S ∩ R) = 3 and U < S ∩ R

}
,

B1 =
{
{U, S} | U ∈ P , S ∈ S1 and U < S

}
,

B2 =
{
{S, R} | S ∈ S1, R ∈ S2, and dim(S ∩ R) = 3

}
,

B3 =
{
{U, R} | U ∈ P , R ∈ S2 and U < R

}
,

and let ∆2 = B1 ∪ B2 ∪ B3. We now define Γ to be the bipartite graph with vertex
set ∆1 ∪ ∆2, such that two vertices {U, S, R} and {X, Y} are adjacent if and only if
{X, Y} ⊆ {U, S, R}.

It is easy to check that there are 270 totally singular 4-spaces in V and that these are
divided equally between S1 and S2. Moreover, we have the following numerology:

|∆1| = 14175, |B1| = |B2| = |B3| = 2025, so that |∆2| = 6075.

Each vertex in ∆1 is adjacent to precisely three vertices in ∆2 while every vertex in
∆2 is adjacent to 7 vertices in ∆1. Thus Γ is biregular of valency {3, 7}.

Table 4.1 summarises some properties of the graph Γ, which we checked using
MAGMA [BCP97].

|V(Γ)| 20250

|E(Γ)| 42525

G = Aut(Γ) Ω+
8 (2) : S3

diameter 12

girth 8

TABLE 4.1: Some properties of the graph Γ.

Given a vertex v of valency 3 and an adjacent vertex w of valency 7, we have

G(v) ∼
[
211] : (S3 × S3), G(w) ∼

[
29] : (2× L3(2)), G(v, w) ∼

[
211] : D12,

where the normal subgroup in each semidirect product is not elementary abelian.

The distance factors are as follows:

• G(v)/G1(v) ∼= S3;

• G1(v)/G2(v) ∼ 26 : S3;

• G2(v)/G3(v) ∼= 1;

• G3(v)/G4(v) ∼= 23;

• G4(v)/G5(v) ∼= 1;

• G6(v) ∼= 1.

• G(w)/G1(w) ∼= L3(2);

• G1(w)/G2(w) ∼= 2;

• G2(w)/G3(w) ∼= 26;

• G3(w)/G4(w) ∼= 1;

• G5(w) ∼= 1.
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where G1(v)/G2(v) ∼ 26 : S3 ∼ 24 : S4 has ID = [384, 20164].

4.2 The distance-2 graph of Γ and the graph Ξ

As we did already for the Goldschmidt amalgams in Chapter 2, we carry on our
analysis in the distance-2 graph of Γ. Since Γ is connected and bipartite, the distance-
2 graph of Γ has two connected components, and let Ξ be the one containing all
the vertices of valency 7. Then Ξ is locally projective of type (3, 3) and some of its
properties are summarised in Table 4.2.

|V(Ξ)| 6075

|E(Ξ)| 42525

G = Aut(Ξ) Ω+
8 (2) : S3

valency 14

diameter 6

girth 3

TABLE 4.2: Some properties of the graph Ξ.

1 14

28

84

16

112

28

112

336

224

224

224

1344

128

896

1792

512
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3

4

4

11 2
4
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FIGURE 4.1: The distance diagram of Ξ.

Figure 4.1 gives the distance diagram of the graph Ξ according to the orbits of a vertex
stabiliser as determined using MAGMA [BCP97]. Each orbit of G(x) on V(Ξ) is
denoted by a circle containing the number of vertices in the orbit. An edge from an
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orbit S to an orbit T with number a attached at the end connected to S means that
each vertex in S is adjacent to a vertices in T. The remaining number next to the orbit
S is the number of vertices of S adjacent to a fixed vertex of S. If this number is zero,
then we do not write anything.

4.3 The subgraph Λ of Ξ

We now construct a subgraph of Γ, following the notation in [GLP05]. We fix a
totally singular 2-space L ∈ L and consider the vertices of Γ incident to L. There are
three totally singular 1-spaces U1, U2, U3 ∈ P contained in L and six totally singular
4-spaces containing L: S1, S2, S3 ∈ S1 and R1, R2, R3 ∈ S2.
These nine subspaces together with the twenty-seven pairs

{
Ui, Sj

}
, {Ui, Rk},{

Sj, Rk
}

with 1 ≤ i, j, k ≤ 3 form respectively the vertices and the edges of a
complete tripartite graph K3,3,3, which is 6-regular with automorphism group of
shape (S3 × S3 × S3) : S3. We now define K to be the subgraph of Γ induced on the
subset of V(Γ) whose elements are the triples of vertices of K3,3,3 taken from pair-
wise different parts (vertices of valency 3) and the edges of K3,3,3 (vertices of valency
7). Since K is bipartite, we isolate again the vertices of valency 7 by considering the
distance two graph of K, and define Λ to be corresponding subgraph of Ξ.

4.4 The amalgam A and its presentation

In this section we construct a rank 3 amalgam A = {G1, G2, G3} inside the group
G = Aut(Ξ) ∼ Ω+

8 (2) : S3, where the three members are defined as follows:

• G1 ∼
[
29] : (2× L3(2)) is the stabiliser in G of a vertex of Ξ;

• G2 ∼
[
211] : (S3 × S3) is the stabiliser in G of a line-triangle of Ξ;

• G3 ∼ (21+8
+ : (S3 × S3 × S3)) : S3 is the stabiliser in G of the subgraph Λ.

In order to consider the correct intersections Gij := Gi ∩ Gj (1 ≤ i < j ≤ 3) shown
in Table 4.3, where the entry in the ith row and jth column is the index

[
Gi : Gij

]
, we

proceed as follows.

G1i G2i G3i

G1 1 7 7

G2 3 1 3

G3 27 27 1

TABLE 4.3

We fix {U, S, R} ∈ ∆1 and look for the totally singular 2-spaces L containing U and
contained in S and R. It turns out that there are three such L and, if T ∼= Ω+

8 (2), we
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have
|(TS ∩ TR) ∩ TL| = 12288, |(TU ∩ TS ∩ TR) ∩ TL| = 4096,

where TU , TS and TR have all shape 26 : A8, while TL ∼ 21+8
+ : (S3 × S3 × S3).

We now give a geometric presentation of the amalgam A, by which we mean the fol-
lowing: a set of generators and a set of relations such that, for every member Gi
of the amalgam, the generators contained in Gi together with the relations only in-
volving the elements of Gi constitute a presentation of Gi. Tits’s lemma [Tit86] (see
also [Pas94, Theorem 12.28]) provides a geometric way to prove that certain groups
can be identified as universal completion groups of certain amalgams. More pre-
cisely, the universal completion group of the amalgam of the parabolic subgroups of
a group G acting flag-transitively on a geometry Γ equals G if and only if Γ is simply
connected. We apply Tits’s lemma to the amalgam A and in Theorem 14 show that
the corresponding geometry is simply connected.

We start with G123 := G1 ∩ G2 ∩ G3 and extend it to G12, G13 and G23 by adjoining in
each case an element of order 3 together with a few extra relations. The group G123
admits various descriptions as a split and non-split extension, among which

27 : (2 o 22) ∼ (22 × 21+4
+ ) · (D8 × D8) ∼ 26 : (D8 o 2) ∼ 25 · ((22 × D8) : D8),

and can be presented as follows

G123 = 〈a, b, c, d | R〉 ,

where

R ={a2, b4, c2, d2, (ac)2, (db2)2, (b−1d)4, (abdb)2, (ad)4, (cb−1cb)2, (cb−1)4, (cd)4,

(dabda)2, cb−1cdcbcb−1db, abab2ab−1ab2, cdbadcdab−1d, acbab−1ab−1ab−1cb2,

acbcdcb−1acb−1db, (cbdadb−1)2}.

The group G12, obtained by adding an element x together with the set Rx of relators,
has the following structure

27 : (23 : S4) ∼ 26 · (24 : S4) ∼ 25 · (26 : D12) ∼ 24 · (26 : S4)

and presentation
G12 = 〈a, b, c, d, x | R ∪ Rx〉 ,

where

Rx = {x3, x−1caxa, xb2x−1ab2a, xdbcb−1dx−1c, dx−1bcb−1xdc, axbdab2xd}.

The group G13, obtained by adding an element y together with the set Ry of relators,
has the following structure

(23 : 21+4
+ ) · (22 × S4) ∼ 27 : (24 : D12) ∼ 26 · (25 : D12) ∼ 25 · (24 : (D8 × S3))

and presentation
G13 =

〈
a, b, c, d, y | R ∪ Ry

〉
,
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where

Ry ={y3, (cy−1)2, ycdcy−1d, (y−1d)3, cb2ycb2y, b−1dycb−1cy−1d, b−1yb2y−1byb2y−1,

ayb2y−1ayb2y−1, (ayay−1)2, y−1b2y−1b2y−1ab2a, ay−1cab−1cdyb, dycab−1cy−1ba,

y−1by−1b−1aby−1b−1da, ab−1ab−1ab−1ab−1yb2y−1}.

Finally, the group G23, obtained by adding an element z together with the set Rz of
relators, has the following structure

(21+4
+ : 23) · (22 × S4) ∼ (22 × 21+4

+ ) · (D8 × S4) ∼ (22 × 42) : (24 : S4)

and presentation
G23 = 〈a, b, c, d, z | R ∪ Rz〉 ,

where

Rz ={z3, z−1adazd, bcdcb−1z−1dz, dab2z−1b2daz−1, azb2z−1az−1b2z, czb2z−1czb2z−1,

(az−1)4, (czcz−1)2, zb2adb−1adz−1c}.

We now observe that

G1 = 〈G12, G13〉 , G2 = 〈G12, G23〉 , G3 = 〈G13, G23〉 ,

so that it is not difficult to find presentations for the three members.

The group G1 ∼ 27 : AGL3(2) can be presented as

G1 =
〈

a, b, c, d, x, y | R ∪ Rx ∪ Ry ∪ Rxy
〉

,

where

Rxy = {y−1xbcb−1x−1yd, xy−1x−1cy−1x−1y−1, xay−1x−1ayxy}.

The group G2 ∼
[
29] · (S3 × S4) ∼ (22 × 42) · (21+4

+ : (S3 × S3)) can be presented as

G2 = 〈a, b, c, d, x, z | R ∪ Rx ∪ Rz ∪ Rxz〉 ,

where
Rxz = {[x, z] , czxdcxdz−1, cz−1cx−1az−1ax}.

The third member G3 ∼
[
211 · 33] : D12 ∼

[
210 · 33] : S4 can be presented as

G3 =
〈

a, b, c, d, y, z | R ∪ Ry ∪ Rz ∪ Ryz
〉

,

where
Ryz = {zdyday−1za, y−1zcz−1yzcz−1, y−1zy−1z−1yzyz−1}.

The universal completion of A is the group A with the following presentation

A =
〈

a, b, c, d, x, y, z | R ∪ Rx ∪ Ry ∪ Rz ∪ Rxy ∪ Rxz ∪ Ryz
〉

.

The following theorem is the final and main result of the chapter.

Theorem 14. The group A is isomorphic to G ∼= Ω+
8 (2) : S3.
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Proof. By enumerating the cosets of A over the identity subgroup2, it turns out that
A ∼= G, so that the G is the universal completion of A, thus confirming a result of
Pasini [Pas].

2The computation was performed by Prof. Eamonn O’Brien on machines with large resources (1 TB
of RAM).
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Chapter 5

The M24-He dichotomy

The purpose of this chapter is to answer a question exposed in [Iva18, Chapter 8]
about two locally isomorphic geometries related to the Mathieu group of degree 24
and to the sporadic Held group. In the first two sections we give a brief overview of
the origin of the problem, describe a rank 2 amalgam and apply to it the powerful
tool of Goldschmidt’s lemma; in the last section we explicitly find the generating
cocycle whose existence is asserted in [Iva18, Lemma 8.4].

5.1 Introduction

In [RS84] the authors consider various minimal parabolic geometries for sporadic
simple groups, among which two locally isomorphic ones having the following dia-
gram

∼X1

2

X2

2

X3

2

where the subdiagram
∼

indicates the rank 2 tilde geometry, which is a triple
cover of the classical generalised quadrangle of order (2, 2) associated with the non-
split extension 3 · S6 ∼= 3 · Sp4(2).

In both cases the stabilisers of a point, of a line and of a plane have the following
structure, respectively:

X1 ∼ 21+6
+ : L3(2), X2 ∼ 26 : (S3 × S4), X3 ∼ 26 : (3 · S6).

More information about these geometries, one related to the Mathieu group M24 and
the other one to the Held group He, can be found in [Iva99; Giu+16; Iva18]. In par-
ticular, in [Iva18, Chapter 8] the author intends to prove what he calls the dichotomy
principle, i.e. Theorem 8.2. Before reformulating it in our notation, we introduce
the amalgam A = {G1, G2; G12}, which is strictly related to the Goldschmidt G1

3-
amalgam. The members ofA are described as follows, where G3 ∼= X3 ∼ 26 : (3 · S6)
is isomorphic to the sextet subgroup of M24 and N = O2(G3) ∼= 26:

• G1 = N : H ∼ 26 : (2× S4) is the normaliser in G3 of a 22-subgroup of N;

• G2 = N : K ∼ 26 : (2× S4) is the centraliser in G3 of an involution of N;
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• G12 = N : (H ∩ K) ∼ 26 : (2× D8) is a Sylow 2-subgroup of G1 and G2.

The amalgam A does not fall within the list given by Goldschmidt [Gol80], even
if [G1 : G12] = [G2 : G12] = 3, as N / G12 is normal in both G1 and G2. Moreover,
we notice that the two members G1 and G2, despite having the same shape, are not
isomorphic.

We are now ready to formulate the following theorem [Iva18, Theorem 8.2], whose
motivation lies in [Iva18, Theorem 2.2].

Theorem 15. The universal completion Ĝ of the amalgam A contains precisely two com-
plements E(1) and E(2) to N in CĜ(N). If

D(i) := {G1, G2, Ĝ/E(i)},

then D(1) and D(2) are the rank 3 amalgams related to the above-mentioned geometries with
M24 and He being the corresponding universal completion groups.

The amalgams D(1) and D(2) are not isomorphic; however,

Ĝ/E(1) ∼= Ĝ/E(1) ∼= G3.

Furthermore, G3/N ∼= 3 · S6 is a faithful generating completion of the quotient of A
modulo N, which is the Goldschmidt G1

3-amalgam {2× S4, 2× S4; 2× D8}.

5.2 Presenting A and Goldschmidt’s lemma

In this section, inspired by and using the same notation of [Iva18], we construct the
amalgamA inside the group G ∼= L5(2), which is the only simple group, besides M24
and He, having the centraliser of an involution with shape 21+6

+ : L3(2) [Hel69]. It
is well known that, for n ≥ 2, the group Ln(q) is generated by elementary transvec-
tions, which we denote by τij (i 6= j). Thus, τij is the n× n matrix that differs from
the identity matrix in that it has 1 as its ij entry.

By keeping the same notation of the previous section, we have the following:

• G =
〈
τij | 1 ≤ i, j ≤ 5, i 6= j

〉 ∼= L5(2);

• N = 〈τ31, τ32, τ41, τ42, τ51, τ52〉 ∼= 26;

• H = 〈τ21, τ45, τ53, τ54〉 ∼= 2× S4;

• K = 〈τ21, τ34, τ43, τ54〉 ∼= 2× S4;

• Z(H) = Z(K) = 〈τ21〉 ∼= 2;

• H ∩ K = 〈τ21, τ43, τ54〉 ∼= 2× D8;

• G1 = 〈N, H〉 ∼ 26 : (2× S4);

• G2 = 〈N, K〉 ∼ 26 : (2× S4);

• G12 = 〈N, H ∩ K〉 ∼ 26 : (2× D8).

We now wish to determine the number of isomorphism classes of amalgams of the
same type as A; this task, which is one of the most important goals in the whole
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theory of amalgams, has its motivation in the following situation. Let P1 and P2 be
two groups, and let B1 and B2 be two isomorphic subgroups of P1 and P2 respectively.
If ψ is an isomorphism from B1 to B2, then we can construct an amalgam P1 ∪ P2 by
identifying x ∈ B1 with ψ(x) ∈ B2. A natural question is the following: given P1,
P2, B1 and B2, how many non-isomorphic amalgams can be constructed in this way,
when we take all possible ψ? The answer is given by Theorem 16 [Gol80, (2.7)].

Theorem 16 (Goldschmidt’s lemma). LetA = {P1, P2; B} be an amalgam of rank 2. For
i ∈ {1, 2}, let Ni := NAut(Pi)(B) = {α ∈ Aut(Pi) | α(B) = B}, let ϕi : Ni → Aut(B) be
the homomorphisms mapping a ∈ Ni onto its restriction to B, and let Ai := ϕi(Ni). Then
two elements α and β of Aut(B) produce isomorphic amalgams if and only if A1αA2 =
A1βA2. In other words, the number of non-isomorphic amalgams with the type of A coin-
cides with the number |A1\Aut(B)/A2| of double cosets of A1 and A2 in Aut(B).

We notice that, as A1 and A2 both contain Inn(B), the computation can be performed
in Out(B) instead of Aut(B), by considering the number of double cosets of the
images O1 and O2 of A1 and A2 respectively in Out(B).

We apply Goldschmidt’s lemma to the amalgam A, using the function Goldschmidt
designed and implemented in [Gap] (see Appendix B), and checking the result with
the MAGMA [BCP97] function Amalgams [Can05]. The final result

|A1\Aut(G12)/A2| = |O1\Out(G12)/O2| = 6

is somehow expected, being the same for an amalgam of type {2× S4, 2× S4; 2×D8}
(see [Can05, Example 2]). More details about the output are given in Table 5.1.

Group Shape(s)

Aut(G1) (26 : 3) : 21+4
+ ∼ 27 : (2× S4) ∼ 25 : (24 : D12)

Aut(G2) (22 × 21+4
+ ) : (23 × S3) ∼ 26 : (22 × S4) ∼ 25 : (23 : S4)

Aut(G12)
[
211] : 3 ∼ 28 ·Hol(D8) ∼ 27 · (23 o 2)

A1 (25 : 4) : 23 ∼ 26 : (2× D8) ∼ 25 : 21+4
+ ∼ 24 : (2 o 22)

A2 (22 × 21+4
+ ) : 24 ∼ 26 : (22 × D8) ∼ 25 : (2 o 22)

Out(G12) 22 o 2

O1 2

O2 22

TABLE 5.1: The machinery of Goldschmidt’s lemma applied to A.

The other important piece of information coming from the application of Gold-
schmidt’s lemma is given by the representatives ϕi (1 ≤ i ≤ 6) of the double cosets,
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which are automorphisms of G12, with ϕ1 = idAut(G12). By using each of these auto-
morphisms ϕi’s we construct the universal completion Âi = G1 ∗ϕi G2 of the corre-
sponding amalgam Ai, shown in Appendix B. In the following two tables we give
the images under the ϕi’s of the generators τij (denoted by ij for brevity) of N and
H ∩ K respectively.

31 32 41 42 51 52

ϕ1 31 32 41 42 51 52

ϕ2 31 · 51 · 52 32 41 42 51 52

ϕ3 51 · 52 · 53 41 · 42 · 43 · 51 · 52 · 53 51 · 52 41 · 42 · 51 · 52 51 41 · 51

ϕ4 51 · 52 · 53 41 · 42 · 43 · 51 · 52 · 53 51 · 52 41 · 42 · 51 · 52 51 41 · 51

ϕ5 31 32 · 51 41 42 51 52

ϕ6 31 · 51 · 52 32 · 51 41 42 51 52

TABLE 5.2: The images of the generators of N under the ϕi’s.

21 43 54

ϕ1 21 43 54

ϕ2 21 · 53 43 54

ϕ3 53 · 54 31 · 32 · 41 · 42 21 · 31 · 41

ϕ4 53 · 54 31 · 32 · 41 · 42 · 51 · 52 21 · 31 · 41 · 52 · 53

ϕ5 21 43 54

ϕ6 21 · 53 43 54

TABLE 5.3: The images of the generators of H ∩ K under the ϕi’s.

In [Giu+16] the authors consider the amalgam B = {X1, X2; X12}, with the intersec-
tion X12 ∼ 21+6

+ : S4, and use Goldschmidt’s lemma to obtain the amalgams of the
same type as B in the different isomorphism classes. The result is a list of four amal-
gams Bσ for σ ∈ {id, α, β, αβ}, where α and β are suitable automorphisms of X12.
Among the four amalgams, the simple ones are Bβ and Bαβ; the former admits A16
as a completion group, while the sporadic groups M24 and He are completions of
the latter. We notice that in our notation ϕ2 corresponds to β, while ϕ6 corresponds
to αβ.
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5.3 The strategy

In this section we classify the completions of the Goldschmidt G1
3-amalgam isomor-

phic to G := G3, by constructing explicitly the generating cocycle whose existence is
asserted in [Iva18, Lemma 8.4]. The starting point is the observation that the Gold-
schmidt G1

3-amalgam possesses two inequivalent completion groups isomorphic to
G, in the sense explained in Appendix A. These two completions give rise to isomor-
phic coset graphs with 5760 vertices, 8640 edges, diameter 16 and girth 16, as shown
in Table A.7. However, when considering the two connected components of their
distance-2 graph, the resulting locally projective graphs are not isomorphic, as also
reflected in the different completion groups of the corresponding densely embedded
subgraphs. The same phenomenon occurs for the completion group 26 : (3 · A6) of
the Goldschmidt G3-amalgam (see Table A.6).

The second observation is the fact that among the amalgams Ai, only A2 and A6
admit 3 · S6 and G as completion groups. The latter completion makes A2 and A6
distinguishable from each other, as in this case we find four inequivalent epimor-
phisms

ψi : Â6 −→ H ∼= G (1 ≤ i ≤ 4),

while only two from Â2; here H is chosen to be PrimitiveGroup(64,47). By adopt-
ing the same technique explained in Chapter 3, we use the MAGMA [BCP97] com-
mand sub< G | f > to determine the preimage in Â6 of the point stabiliser of H,
which is isomorphic to 3 · S6. If Vi denotes such a preimage under ψi, then Vi is a
subgroup of Â6 of index 64 and

Vi/V ′i ∼=
{

2, if i ∈ {1, 4}
62, if i ∈ {2, 3}

We now describe the strategy followed to find the cocycle. We start with a generating
Goldschmidt G1

3-amalgam T (0) = {H(0), K(0); H(0) ∩K(0)} inside the group G, where
H(0) := j1(P1) ∼= 2× S4 and K(0) := j2(P2) ∼= 2× S4, so that H(0) ∩ K(0) ∼= 2×D8 and〈

H(0), K(0)
〉

G
= G, according to the commutative diagram shown in Figure 5.1.

P1

B P1 ∗B P2 G

P2

e1

j1
ϕ1

ϕ2

e2

j2

FIGURE 5.1: The group G as a completion of the amalgam {P1, P2; B}.

We can present G as follows:

G = 〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 | R1 ∪ R2 ∪ R3〉 ,
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where

R1 =
{

a2
5, a2

6, [a6, a5] , a2
7, [a7, a5] , [a7, a6] , a2

8, [a8, a5] , [a8, a6] , [a8, a7] , a2
9, [a9, a5] ,

[a9, a6] , [a9, a7] , [a9, a8] , a2
10, [a10, a5] , [a10, a6] , [a10, a7] , [a10, a8] , [a10, a9]

}
is the set of relators defining N = O2(G) = 〈a5, a6, a7, a8, a9, a10〉 ∼= 26,

R2 =
{

a2
1a2a−1

3 a2a2
3a−1

2 a−1
3 a−1

4 , a−1
1 a2a1a−1

2 a−1
3 a2a−2

4 , a−1
1 a3a1a3a2a−2

3 a2
2a3a−1

2 a−1
4 ,

a5
2a−5

3 , a5
2a−1

3 a−1
2 a−1

3 a−1
2 a−1

3 a−1
2 a−1

4 , a−1
2 a−1

3 a2a3a−1
2 a−1

3 a2a3a−2
4 ,

a−2
2 a−1

3 a2a2
3a−2

2 a−1
3 a2a2

3a−1
4 , a−1

1 a4a1a−2
4 ,

[
a2, a−1

4

]
,
[

a3, a−1
4

]
, a3

4

}
are the relators defining a complement C = 〈a1, a2, a3, a4〉 ∼= 3 · S6 to N in G, and

R3 =
{
[a1, a5] , a−1

1 a6a1a−1
9 a−1

8 a−1
7 a−1

6 a−1
5 , a−1

1 a7a1a−1
10 a−1

8 , a−1
1 a8a1a−1

10 a−1
9 a−1

8 ,

a−1
1 a9a1a−1

7 a−1
5 , a−1

1 a10a1a−1
10 a−1

9 a−1
8 a−1

7 a−1
6 a−1

5 , a−1
2 a5a2a−1

10 a−1
8 a−1

7 a−1
5 ,

a−1
2 a6a2a−1

10 a−1
5 , a−1

2 a7a2a−1
10 a−1

9 a−1
8 a−1

7 a−1
6 , a−1

2 a8a2a−1
10 a−1

7 a−1
5 ,

a−1
2 a9a2a−1

10 a−1
9 a−1

8 a−1
5 , a−1

2 a10a2a−1
10 a−1

9 a−1
8 a−1

6 a−1
5 , a−1

3 a5a3a−1
8 a−1

6 a−1
5 ,

a−1
3 a6a3a−1

8 a−1
6 , a−1

3 a7a3a−1
6 , a−1

3 a8a3a−1
7 a−1

5 , a−1
3 a9a3a−1

10 a−1
7 a−1

5 ,

a−1
3 a10a3a−1

10 a−1
9 a−1

8 a−1
6 a−1

5 , a−1
4 a5a4a−1

8 a−1
7 a−1

6 a−1
5 , a−1

4 a6a4a−1
7 a−1

5 ,

a−1
4 a7a4a−1

8 , a−1
4 a8a4a−1

8 a−1
7 , a−1

4 a9a4a−1
10 a−1

9 a−1
8 , a−1

4 a10a4a−1
9 a−1

8 a−1
7
}

are those defining the action of C on N.

As for the members of T (0), they have the following presentation:

H(0) =
〈

a−1
2 a1a2a−1

3 a−1
1 a−1

10 a−1
2 a1, a−3

1 a−1
4 a3a2a1a−1

3 a4a−1
9 a−1

7

〉
and

K(0) =
〈

a−1
2 a6a−1

4 a−1
2 a−1

1 a−1
3 a−1

2 a3a2
1, a−1

2 a3a−1
1 a2

3a−1
1 a−1

4 a−1
5 a4

〉
intersecting in

H(0) ∩ K(0) =
〈

a−3
1 a−1

4 , a−3
1 a−1

2 a3a−1
1 a2

3a−1
1 a4a−1

5 a4, a−1
1 a−1

2 a7a3a−1
2 a−1

3 a4
1

〉
.

We are looking for amalgams T (s) = {H(s), K(s); H(s) ∩ K(s)} in G isomorphic to T (0)

and having the same image in G/N ∼= 3 · S6. Thus we need an isomorphism

σ : T (0) −→ T (s)

such that t ∈ T (0) and σ(t) ∈ T (s) induce the same automorphism of N, i.e. such
that they have the same image under the map

ψ : G −→ Aut(N),

defined for each g ∈ G by n 7→ gng−1 for all n ∈ N. Therefore,

ψ(t) = ψ(σ(t)) =⇒ ψ(t−1σ(t)) = 1Aut(N) =⇒ t−1σ(t) ∈ ker(ψ) = CG(N) = N
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which implies σ(t) = ts(t) for some s(t) ∈ N. The function

s : T (0) −→ N,

defined by t 7→ s(t), is a 1-cocycle (or crossed homomorphism) when restricted to
each of H(0) and K(0), as

s(xy) = (xy)−1σ(xy) = y−1x−1σ(x)σ(y) = y−1s(x)σ(y) = y−1s(x)yy−1σ(y) = s(x)ys(y)

for all x and y in H(0) and K(0) separately.

We first observe that H(0) normalises the subgroup T = 〈a5a6a7a8, a5a10〉 ∼= 22 of
N, while K(0) ≤ CG(a5a6a7a8), and then we find in C = 〈a1, a2, a3, a4〉 ∼= 3 · S6 the
unique amalgam T (s) = {H(s), K(s); H(s) ∩ K(s)} which corresponds to T (0), in the
sense that H(s) ≤ NG(T) and K(s) ≤ CG(a5a6a7a8), and such that

〈
H(s), K(s)

〉
G
= C.

This gives:
H(s) =

〈
a3a−1

2 a−1
3 a1, a−1

4 a−2
2 a−1

3 a4

〉
and

K(s) =
〈

a−3
1 a−2

2 a1a−1
3 a1a−1

4 , a−1
3 a2

1a3a3
1

〉
intersecting in

H(s) ∩ K(s) =
〈

a−2
2 a1a−1

3 a1, a−2
3 a−1

2 a1a−1
2 a−1

4 , a−1
4 a3a2a1a−1

3

〉
.

In order to establish the isomorphism σ described above, we look at all surjective
homomorphisms f : G −→ C that map H(0) to H(s) and K(0) to K(s). There are 16 of
them, which correspond to the 16 inner automorphisms induced by the elements of
H(s) ∩ K(s), and each f , by restriction and corestriction, establishes an isomorphism
σ = (σH, σK) from T (0) to T (s), with σH : H(0) ∼=−→ H(s) and σK : K(0) ∼=−→ K(s). Only
one of them is such that

ψ(h0) = ψ(σH(h0)) and ψ(k0) = ψ(σH(k0)) for all h0 ∈ H(0), k0 ∈ K(0).

h0 s(h0)

a−1
2 a1a2a−1

3 a−1
1 a−1

10 a−1
2 a1 a−2

1 a−1
2 a−1

1 a−1
10 a−1

2 a1

a−3
1 a−1

4 a3a2a1a−1
3 a4a−1

9 a−1
7 a−1

9 a−1
7

TABLE 5.4: The cocyle s on H(0).

In Table 5.4 we list the generators of H(0) with their images under the cocycle
s : H(0) −→ N, and in Table 5.5 we display the same for K(0).

By the existence and uniqueness (up to conjugation) of the generating cocycle s, we
know that N possesses exactly two complements E(1) and E(2) to N in the centraliser
of N of the universal completion group Â6 of the amalgam A6.

Finally, following [Iva18, § 8.5], we produce an explicit construction of the quotient

F = Â6/(E(1) ∩ E(2)) ∼ 212 : (3 · S6) ∼ 26 : (26 : (3 · S6)).
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k0 s(k0)

a−1
2 a6a−1

4 a−1
2 a−1

1 a−1
3 a−1

2 a3a2
1 a−1

9 a−1
7

a−1
2 a3a−1

1 a2
3a−1

1 a−1
4 a−1

5 a4 a−1
4 a−1

5 a4

TABLE 5.5: The cocyle s on K(0).

Using the GAP [Gap] function SubdirectProduct, we find F as the subdirect prod-
uct of G and G with respect to the canonical epimorphisms, i.e. the subgroup of the
direct product G× G = {(g1, g2) | g1, g2 ∈ G} consisting of the elements (g1, g2) for
which q1(g1) = q2(g2). In category theory this is known as the pullback of the dia-
gram consisting of the two morphisms q1 and q2 having C as a common codomain,
as illustrated in Figure 5.2.

F = G×C G G

G C

p1

p2

q2

q1

FIGURE 5.2: The group F as a subdirect product of G and G.

We check that O2(F) ∼= 212 contains three 26-subgroups that are normal in F; they
are the images of N, E(1) and E(2). To conclude, the group F is not a completion of
the Goldschmidt G1

3-amalgam, and MAGMA [BCP97] finds six inequivalent epimor-
phisms Â6 −→ F whose kernels have all abelianisation isomorphic to Z⊕ · · · ⊕Z︸ ︷︷ ︸

2881

.
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Appendix A

Some further embeddings

In this Appendix we give some further examples of embeddings of the Djoković-
Miller subamalgams in the Goldschmidt amalgams. In the following tables the first
and the last columns give respectively a completion group G of the given Gold-
schmidt amalgam and the subgroup H (obtained as explained in Chapter 2), which is
a completion group of the corresponding Djoković-Miller densely embedded suba-
malgam. When the isomorphism type of H is not uniquely determined by its struc-
ture, whenever possible and only the first time it appears, we add its ID description;
sometimes, for typographical reasons, we abbreviate as A2 the direct square A× A
of a group A. The remaining columns of the tables record the number of vertices,
edges, the diameter d(Γ) and the girth g(Γ) of the associated coset graph Γ, obtained
with the aid of the algebra package MAGMA [BCP97]. Note that as Γ is bipartite, its
girth is always even, and that in some cases the subgroup H is the whole of G.

Sometimes, for a given completion group G, we found two different subgroups H.
These cases correspond to inequivalent epimorphisms of the universal completion
P1 ∗B P2 of the Goldschmidt amalgam onto G, where two such homomorphisms
f1, f2 : P1 ∗B P2 −→ G are considered equivalent if they differ by an automorphism
of G, i.e. if there exists an element α ∈ Aut(G) such that f1(x) = f2(x)α for all
x ∈ P1 ∗B P2. For a ‘symmetric’ Goldschmidt amalgam, the presence of these in-
equivalent completions breaks its symmetry when mapped to G, and results in two
non-isomorphic locally projective graphs Ξ(1) and Ξ(2). In a few cases, typically
when there are more than two inequivalent (isomorphic) completion groups, the
corresponding coset graphs are not isomorphic, usually with different diameter or
girth; in these cases, in the table we devote a row for each isomorphism class of Γ.

For each of the following embeddings of a Djoković-Miller subamalgam in a Gold-
schmidt amalgam (P1, P2; B), the following approach, inspired by [PR01b], was
adopted. Starting with the free amalgamated product P1 ∗B P2, given as a finitely
presented group, the MAGMA [BCP97] LowIndexNormalSubgroups routine was
used to produce all normal subgroups of P1 ∗B P2 of index less than or equal to n,
for a suitable n ∈ N. The completion groups G were obtained as the corresponding
factor groups, as explained in Section 1.2.

A.1 Embeddings of DM1 in G3
1

In Table A.1 we record the complete list of the embeddings of the Djoković-Miller
subamalgamDM1 in the Goldschmidt G3

1-amalgam with completion group G, such
that 120 ≤ |G| ≤ 36 050, obtained from the free amalgamated product D12 ∗22 D12
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with the following presentation〈
a, b, c, d | a2, b3, c2, d3, (ac)2, (ba)2, (dc)2, adad−1, cbcb−1

〉
.

An asterisk after the structure of a group indicates the presence of three inequivalent
completions which give rise to two non-isomorphic coset graphs, indistinguishable
from each other in terms of the properties that we have considered. In the last part
of the table, after the dashed line, we add a few more completions found with the
GAP [Gap] function GQuotients.

G |V(Γ)| |E(Γ)| d(Γ) g(Γ) H

S5 20 30 5 6 S4

2× S5 40 60 6 8 2× S4

31+2
+ : D12 54 81 6 8 S3 × S3

32 : D12, [108, 17]

PGL2(7) 56 84 7 8 PGL2(7)

4 · S5 80 120 8 10 4 · S4, [96, 193]

(A4 × A4) : 22 96 144 7 8 2× S4

L2(11) 110 165 7 10 A5

2× PGL2(7) 112 168 10 8 2× PGL2(7)

S3 × S5 120 180 8 8 2× S4

S3 × S4

(3× 31+2
+ ) : D12 162 243 8 12 32 : D12

L2(13) 182 273 9 12 L2(13)

21+4
+ : (S3 × S3) 192 288 12 8 2× S4

2× L2(11)∗ 220 330 10 10 2× A5

SL2(7) : 22 224 336 10 12 SL2(7) : 22

SL2(5) : D12 240 360 10 12 4 · S4

GL2(3) : S3, [288, 847]

(23 × 6) · (S3 × S3) 288 432 9 12 S3 × S4

S3 × PGL2(7) 336 504 10 12 2× PGL2(7)

continues on next page
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S3 × PGL2(7)

(32 × A5) : 22 360 540 10 12 S3 × S4

2× L2(13)∗ 364 546 12 12 2× L2(13)

(SL2(3)× SL2(3)) : 22 384 576 12 12 4 · S4

(24 : 22) : (S3 × S3) 384 576 10 12 4 · S4

42 : D12, [192, 956]

22 × L2(11) 440 660 10 12 22 × A5

(32 × 9) · (S3 × S3) 486 729 12 12 31+2
+ · D12, [324, 41]

34 · (S3 × S3) 486 729 12 12 32 : D12

21+4
+ : (32 : D12) 576 864 14 12 S3 × S4

25 : S5 640 960 12 10 42 : D12

S3 × L2(11) 660 990 12 12 2× A5

S3 × A5

SL2(7) : D12 672 1008 14 12 SL2(7) : 22

SL2(7) : D12

SL2(5) : (S3 × S3) 720 1080 12 12 GL2(3) : S3

22 × L2(13) 728 1092 14 12 22 × L2(13)

23 · ((A4 × A4) : 22) 768 1152 14 12 4 · S4

42 : D12

PGL2(17) 816 1224 11 14 PGL2(17)

S7 840 1260 14 10 2× A5

S7

(22 × 62) · (S3 × S3) 864 1296 12 12 S3 × S4

62 : D12, [432, 523]

SL2(11) : 22 880 1320 12 14 Q8 · A5, [480, 959]

L3(2) : (S3 × S3) 1008 1512 12 16 L3(2) : D12

L2(23) 1012 1518 12 16 L2(23)

continues on next page
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(32 × A5) : D12 1080 1620 12 12 S3 × S4

S3 × L2(13) 1092 1638 12 12 2× L2(13)

S3 × L2(13)

PGL2(19) 1140 1710 12 14 PGL2(19)

(3×Q2
8) · S2

3 1152 1728 14 14 GL2(3) : S3

(2× 6) · (A2
4 : 22) 1152 1728 14 12 GL2(3) : S3

42 : S2
3, [576, 5053]

(26 : 32) : D12 1152 1728 13 12 S3 × S4

25 · (2× S5) 1280 1920 13 16 23 · (2× S4)

26 : S5 1280 1920 13 12 42 : D12

(24 × 4) · S5 1280 1920 13 10 23 · (2× S4)

D12 × L2(11) 1320 1980 14 12 22 × A5

D12 × A5

L2(16) : 2 1360 2040 17 10 2× A5

SL2(13) : 22 1456 2184 14 14 SL2(13) : 22

34 · (32 : D12) 1458 2187 12 12 32 : D12

31+2
+ · D12

(33 × 9) · (S3 × S3) 1458 2187 16 12 31+2
+ · D12

(32 × 9) · (32 : D12) 1458 2187 12 12 33 · S2
3, [972, 100]

92 : D12, [972, 115]

24 · ((A4 × A4) : 22) 1536 2304 14 12 4 · S4

23 · (2× S4)

((22 × D8) : D8) : S2
3 1536 2304 13 12 23 · (2× S4)

44 : (S3 × S3) 1536 2304 15 12 42 : D12

34 : S5 1620 2430 12 10 33 : S4, [648, 703]

2× PGL2(17) 1632 2448 14 16 2× PGL2(17)

2× S7 1680 2520 14 14 22 × A5

continues on next page



Appendix A. Some further embeddings 58

2× S7

(3× 6) · ((A4 × A4) : 22) 1728 2592 14 12 S3 × S4

62 : D12

L3(3) : 2 1872 2808 13 12 L3(3) : 2

L3(3) : 2 1872 2808 14 12 4 · S4

L3(3) : 2

(24 × S3) : S5 1920 2880 13 12 42 : D12

42 : (S3 × S3)

U3(3) : 2 ∼= G2(2) 2016 3024 15 12 4 · S4

PGL2(7)

SL2(7) : (S3 × S3) 2016 3024 16 16 SL2(7) : D12

2× L2(23)∗ 2024 3036 16 16 2× L2(23)

(32 × SL2(5)) : D12 2160 3240 16 16 GL2(3) : S3

D12 × L2(13) 2184 3276 14 16 22 × L2(13)

D12 × L2(13)

2× PGL2(19) 2280 3420 14 16 2× PGL2(19)

(22 × 6) · ((A4 × A4) : 22) 2304 3456 16 12 GL2(3) : S3

42 : (S3 × S3)

21+6
− · (32 : D12) 2304 3456 14 16 GL2(3) : S3

53 · S5 2500 3750 17 16 53 : S4

3 · S7 2520 3780 14 14 S3 × A5

3 · S7

3 · S7 2520 3780 14 16 S3 × A5

3 · S7

3 · S7 2520 3780 14 10 2× A5

3 · S7

3 : S7 ∼ A7 : S3 2520 3780 14 16 S3 × A5

continues on next page
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S7

(25 : SL2(5)) : 22 2560 3840 16 16 23 · (2× S4)

(4 ◦ 21+4
+ ) · (2× S5) 2560 3840 16 12 42 : D12

21+6
− : S5 2560 3840 13 16 23 · (2× S4)

27 · S5 2560 3840 16 12 42 : D12

(25 × 4) : S5 2560 3840 13 16 23 · (2× S4)

(2× 63) · (S3 × S3) 2592 3888 16 12 62 : D12

PΣL2(25) 2600 3900 15 10 2× A5

PΣL2(25) 2600 3900 14 12 52 : D12, [300, 25]

SL2(11) : D12 2640 3960 16 16 Q8 · A5

SL2(5) : D12

L2(16) : 22 2720 4080 17 16 22 × A5

(32 × L3(2)) : D12 3024 4536 16 18 (32 × L3(2)) : 22

25 · ((A4 × A4) : 22) 3072 4608 16 16 23 · (2× S4)

24 · (21+4
+ : S2

3) 3072 4608 15 12 42 : D12

(33 × A5) : D12 3240 4860 16 12 S3 × S4

62 : D12

(33 × 6) : S5 3240 4860 18 10 (32 × 6) : S4

SL2(17) : 22 3264 4896 16 16 SL2(17) : 22

L3(2) : S5 3360 5040 13 16 L3(2) : S4

(2 · A7) : 22 3360 5040 14 16 Q8 · A5

(2 · A7) : 22

(32 ×Q8 ×Q8) · S2
3 3456 5184 16 16 GL2(3) : S3

(3× SL2(3)) : D12

62 · ((A4 × A4) : 22) 3456 5184 14 12 GL2(3) : S3

122 : D12

(24 : 22) : (31+2
+ : D12) 3456 5184 14 12 42 : (S3 × S3)

continues on next page
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(3× SL2(3)) : D12

(25 × 6) · (32 : D12) 3456 5184 14 12 S3 × S4

62 : D12

(A4 × A4 × A4) : D12 3456 5184 16 12 S3 × S4

(26 : 32) : D12

(A4 × A4 × A4) : D12 3456 5184 18 12 32 : D12

S3 × S4

26 · PGL2(7) 3584 5376 15 14 26 · PGL2(7)

GL3(3) : 2 3744 5616 16 12 GL3(3) : 2

GL3(3) : 2 3744 5616 18 12 4 · S4

GL3(3) : 2

54 : (S3 × S3) 3750 5625 19 12 52 : D12

(24 : SL2(5)) : D12 3840 5760 16 16 23 · (2× S4)

(22 × 6) · (2× S4)

25 · (S3 × S5) 3840 5760 16 16 23 · (2× S4)

(22 × 6) · (2× S4)

(25 × S3) : S5 3840 5760 18 12 42 : D12

42 : (S3 × S3)

S3 × S3 × L2(11) 3960 5940 16 12 D12 × A5

U3(3) : 22 4032 6048 18 12 4 · S4

2× PGL2(7)

22 × L2(23) 4048 6072 18 16 22 × L2(23)

PGL2(29) 4060 6090 16 16 PGL2(29)

L2(37) 4218 6327 14 18 L2(37)

SL2(13) : D12 4368 6552 18 16 SL2(13) : 22

SL2(13) : D12

(33 × 9) · (32 : D12) 4374 6561 16 12 33 · (S3 × S3)

continues on next page
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92 : D12

(3× 92) · (32 : D12) 4374 6561 14 16 (32 × 9) · S2
3

35 · (32 : D12) 4374 6561 16 12 31+2
+ · D12

33 · (S3 × S3)

34 · (31+2
+ : D12) 4374 6561 16 12 33 · (S3 × S3)

92 : D12

(32 × 92) · (S3 × S3) 4374 6561 18 12 31+2
+ · D12

92 : D12

33 · (33 · (S3 × S3)) 4374 6561 14 12 31+2
+ · D12

33 · (S3 × S3)

(32 × 31+2
+ ) · (32 : D12) 4374 6561 14 12 31+2

+ · D12

33 · (S3 × S3)

(33 : 31+2
+ ) · (S3 × S3) 4374 6561 20 12 32 : D12

31+2
+ · D12

(33 : 33) · (S3 × S3) 4374 6561 14 12 31+2
+ · D12

SL2(19) : 22 4560 6840 16 18 SL2(19) : 22

(23 × 6) · ((A4 × A4) : 22) 4608 6912 16 16 GL2(3) : S3

(22 × 6) · (2× S4)

((2× 6× D8) : D8) · S2
3 4608 6912 16 12 (22 × 6) · (2× S4)

(43 × 12) · (S3 × S3) 4608 6912 20 12 42 : (S3 × S3)

((Q8 ×Q8) : A4) · S2
3 4608 6912 16 12 GL2(3) : S3

S4 × S4

35 : S5 4860 7290 20 10 33 : S4, [648, 703]

L2(17) : D12 4896 7344 16 16 2× PGL2(17)

L2(17) : D12

PGL2(31) 4960 7440 16 16 PGL2(31)

(52 × 10) · S5 5000 7500 18 16 (52 × 10) : S4

continues on next page
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S3 × S7 5040 7560 18 16 22 × A5

S3 × S7

2× (3 : S7) 5040 7560 18 16 D12 × A5

2× S7

(3 · A7) : 22 5040 7560 16 14 D12 × A5

(3 · A7) : 22

(3 · A7) : 22 5040 7560 16 16 D12 × A5

(3 · A7) : 22

(3 · A7) : 22 5040 7560 16 16 22 × A5

(3 · A7) : 22

(2× 4) · (25 : S5) 5120 7680 16 16 23 · (2× S4)

23 · (2× S4)

(26 : SL2(5)) : 22 5120 7680 16 16 23 · (2× S4)

((2× 4× D8) : 22) : S5 5120 7680 16 16 23 · (2× S4)

((23 × D8) : 22) · S5 5120 7680 18 12 42 : D12

(21+4
− : 23) · S5 5120 7680 16 16 23 · (2× S4)

21+4
+ : ((3× 31+2

+ ) : D12) 5184 7776 20 12 62 : D12

2× PΣL2(25) 5200 7800 15 16 22 × A5

2× PΣL2(25) 5200 7800 20 12 52 : D12

3 : (L3(3) : 2) 5616 8424 16 16 GL2(3) : S3

L3(3) : 2

(A4 × A4) : (2× S5) 5760 8640 16 16 S4 × S4

(24 : A5) : (S3 × S3) 5760 8640 16 12 42 : (S3 × S3)

2× L2(37)∗ 8436 12654 18 18 2× L2(37)

L2(47) 8648 12972 19 20 L2(47)

L2(59) 17110 25665 17 20 L2(59)

L2(61) 18910 28365 17 18 L2(61)

continues on next page
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L2(71) 29820 44730 23 14 L2(71)

L2(73) 32412 48618 21 22 L2(73)

L2(83) 47642 71463 20 18 L2(83)

PGL2(41) 11480 17220 17 18 PGL2(41)

PGL2(43) 13244 19866 18 18 PGL2(43)

PGL2(53) 24804 37206 19 22 PGL2(53)

PGL2(67) 50116 75174 21 22 PGL2(67)

S8 6720 10080 16 14 PGL2(7)

2× S8 13440 20160 18 16 2× PGL2(7)

S9 60480 90720 20 16 S4 × A5

S9

S9 60480 90720 22 16 S4 × A5

S9

S9 60480 90720 20 18 S9

TABLE A.1: Some more embeddings of DM1 in G3
1 .

A.2 Embeddings of DM0 in G2

In Table A.2 we record the complete list of the embeddings of the Djoković-Miller
subamalgamDM0 in the Goldschmidt G2-amalgam with completion group G, such
that 324 ≤ |G| ≤ 50 500 obtained from the free amalgamated product A4 ∗22 D12
with the following presentation〈

a, b, c | a3, b3, c2, cbcb−1, (a−1c)3, (aca2)2, (ba−1ca)2
〉

.

In this case an asterisk after the structure description of G indicates the presence of
two inequivalent completions isomorphic to G, which results in two choices for H:
apart form the one written in the corresponding row, there is always G itself, which
is omitted. We notice that in these cases the corresponding coset graphs are always
isomorphic.
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G |V(Γ)| |E(Γ)| d(Γ) g(Γ) H

33 : A4 54 81 6 8 33 : A4

L2(11)∗ 110 165 7 10 A5

L2(13)∗ 182 273 8 12 13 : 6

3× L2(11)∗ 330 495 10 12 3× A5

A7 420 630 10 12 L3(2)

3× L2(13)∗ 546 819 12 12 13 : 6

L3(3)∗ 936 1404 12 12 AGL2(3)

L2(23)∗ 1012 1518 12 16 L2(23)

3× A7 1260 1890 14 12 3× L3(2)

3 · A7 1260 1890 16 12 3× L3(2)

3 · A7 1260 1890 14 12 L3(2), 3× L3(2)

L2(25)∗ 1300 1950 14 12 L2(25)

A4 × L2(11) 1320 1980 12 16 A4 × A5

(33 : 31+2
+ ) : A4 1458 2187 12 12 (33 : 31+2

+ ) : A4

A4 × L2(13)∗ 2184 3276 16 12 D26 : A4

SL2(11) : A∗4 2640 3960 16 16 SL2(5) : A4

3× L3(3)∗ 2808 4212 16 12 33 : GL2(3)

3× L2(23)∗ 3036 4554 16 16 3× L2(23)

3× (3 · A7) 3780 5670 16 12 3× L3(2)

3× L2(25) 3900 5850 16 12 3× L2(25)

L2(37)∗ 4218 6327 15 16 L2(37)

SL2(13) : A∗4 4368 6552 16 16 (13×Q8) · 6

34 · (33 : A4) 4374 6561 20 12 34 · (33 : A4)

A4 × A7 5040 7560 18 16 A4 × L3(2)

TABLE A.2: Embeddings of DM0 in G2, with 324 ≤ |G| ≤ 50 500.
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A.3 Embeddings of DM3 in G1
2

In Table A.3 we record the complete list of the embeddings of the Djoković-Miller
subamalgamDM3 in the Goldschmidt G1

2-amalgam with completion group G, such
that 648 ≤ |G| ≤ 100 000 obtained from the free amalgamated product S4 ∗D8 D24
with the following presentation〈

a, b | a2, (b3a)3, b12, ab4(b2a)2b3ab−3ab−1, (ab3ab−3)3
〉

.

G |V(Γ)| |E(Γ)| d(Γ) g(Γ) H

33 : S4 54 81 6 8 S3 o 2

PGL2(11)∗ 110 165 7 10 PGL2(11)

PGL2(13)∗ 182 273 8 12 PGL2(13)

L2(11) : S∗3 330 495 10 12 PGL2(11)

S7 420 630 10 12 2× S5

L2(23)∗ 506 759 11 12 L2(23)

L2(13) : S∗3 546 819 12 12 PGL2(13)

L2(25) 650 975 13 10 S5

L3(3) : 2∗ 936 1404 12 12 31+2
+ : D8, [216, 87]

2× L2(23)∗ 1012 1518 12 16 2× L2(23)

A7 : S3 ∼ 3 : S7 1260 1890 14 12 2× S5

3 · S∗7 1260 1890 14 12 2× S5

3 · S7 1260 1890 16 12 2× S5

2× L2(25) 1300 1950 14 12 2× S5

L2(11) : S∗4 1320 1980 12 16 L2(11) : D8

(33 : 31+2
+ ) : S4 1458 2187 12 12 31+2

+ : D8

L2(13) : S∗4 2184 3276 16 12 L2(13) : D8

SL2(11) : S∗4 2640 3960 16 16 SL2(11) : D8

L3(3) : S∗3 2808 4212 16 12 31+2
+ : D8

S3 × L2(23)∗ 3036 4554 16 16 2× L2(23)

continues on next page
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(3 · A7) : S3 3780 5670 16 12 2× S5

S3 × L2(25) 3900 5850 16 12 2× S5

PGL2(37)∗ 4218 6327 15 16 PGL2(37)

L2(47)∗ 4324 6486 16 16 L2(47)

SL2(13) : S∗4 4368 6552 16 16 SL2(13) : D8

34 · (33 : S4) 4374 6561 20 12 31+2
+ : D8

L2(49) 4900 7350 15 14 PGL2(7)

A7 : S4 ∼ A4 : S7 5040 7560 18 16 22 : S5, [480, 951]

TABLE A.3: Embeddings of DM3 in G1
2 , with 648 ≤ |G| ≤ 100 000.

A.4 Embeddings of DM3 in G2
2

In Table A.4 we record the complete list of the embeddings of the Djoković-Miller
subamalgamDM3 in the Goldschmidt G2

2-amalgam with completion group G, such
that 648 ≤ |G| ≤ 100 000 obtained from the universal completion group with the
following presentation〈

a, b, c, d | a2, b2, c2, d3, dbd−1b, (cd−1)2, (ba)3, cbcacab, acbabcab
〉

.

G |V(Γ)| |E(Γ)| d(Γ) g(Γ) H

33 : S4 54 81 6 8 S3 o 2

A7 210 315 8 10 S5

2× A7 420 630 10 12 2× S5

3 · A7 630 945 14 10 S5

S3 × A7 1260 1890 14 12 2× S5

2× (3 · A7) 1260 1890 16 12 2× S5

33 · (33 : S4) 1458 2187 12 12 31+2
+ : D8, [216, 87]

S3 × (3 · A7) 3780 5670 16 12 2× S5

L2(25) : S3 3900 5850 16 12 2× S5

continues on next page
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33 · (33 : S4) 4374 6561 20 12 31+2
+ : D8

S4 × A7 5040 7560 18 16 22 : S5, [480, 951]

TABLE A.4: Embeddings of DM3 in G2
2 , with 648 ≤ |G| ≤ 100 000.

A.5 Embeddings of DM1 in G4
2

In Table A.5 we record the complete list of the embeddings of the Djoković-Miller
subamalgamDM1 in the Goldschmidt G4

2-amalgam with completion group G, such
that 648 ≤ |G| ≤ 100 000 obtained from the universal completion group with the
following presentation

〈a, b, c, d, e | R〉 ,

where

R = {a2, b3, c2, d3, e2, (ce)2, (cd2)2, [d, a] , [c, b] , (ca)2, (ab2)2, [e, d] , (caeb)2, (ea)4, (cb2e)3}.

G |V(Γ)| |E(Γ)| d(Γ) g(Γ) H

33 : (2× S4) 54 81 6 8 2× S4, 32 : D12

S7 210 315 8 10 S3 × S4, S7

2× S7 420 630 10 12 S3 × S4, 2× S7

(3 · A7) : 2 630 945 14 10 62 : D12, (3 · A7) : 2

PΣL2(25) 650 975 13 10 2× A5, 52 : D12

S3 × S7 1260 1890 14 12 S3 × S4, S3 × S7

Aut(M12) 7920 11880 18 12 PGL2(11), Aut(M12)

TABLE A.5: A few more embeddings of DM1 in G4
2 .

A.6 Embeddings of DM1 and DM2 in G3

Table A.6 shows some more embeddings of the Djoković-Miller subamalgamsDM1
and DM2 in the Goldschmidt G3-amalgam. In the first part of the table we give
the complete list of the completion groups of the Goldschmidt G3-amalgam, with
360 ≤ |G| ≤ 67 500, while in the second part, after the dashed line, we add some
more linear groups as completions. The completion groups are obtained as quotients
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of the universal completion group with the following presentation〈
a, b, c, d | a2, b2, c2, d2, (db)2, (dc)3, (cb)3, (dbc)4, (acbcdc)3, (abacbdcbd)2, (cbdcbda)3

〉
.

An asterisk following the group structure indicates the presence of two inequivalent
completions which, however, give rise to isomorphic coset graphs.

G |V(Γ)| |E(Γ)| d(Γ) g(Γ) H(1) H(2)

A6 30 45 4 8 A5 32 : 4

3 · A6 90 135 8 10 A5 31+2
+ : 4

L2(17)∗ 204 306 9 12 L2(17) L2(17)

L3(3) 468 702 13 12 32 : D12 L3(3)

L2(23)∗ 506 759 10 14 L2(23) L2(23)

L2(25) 650 975 11 12 L2(25) S5

L2(31)∗ 1240 1860 15 16 L2(31) L2(31)

L3(2)× L3(2) 2352 3528 15 14 S4 × S4 L3(2)

L2(41)∗ 2870 4305 14 14 L2(41) L2(41)

28 : L3(2)∗ 3584 5376 17 12 42 : D12 28 : L3(2)

L2(47)∗ 4324 6486 15 18 L2(47) L2(47)

SL2(7) : L3(2) 4704 7056 15 16 SL2(3) · (2× S4) 2× L3(2)

73 · L3(2)∗ 4802 7203 14 18 73 : S4 73 · L3(2)

L3(2)× A∗6 5040 7560 14 18 S4 × A5 (32 : 4)× L3(2)

26 : (3 · A6)∗ 5760 8640 16 16 22 × A5 26 : (31+2
+ : 4)

26 : A5 26 : (31+2
+ : 4)

L2(71)∗ 14910 22365 18 20 L2(71) L2(71)

L2(73)∗ 16206 24309 16 22 L2(73) L2(73)

L2(79)∗ 20540 30810 18 20 L2(79) L2(79)

L2(89)∗ 29370 44055 19 22 L2(89) L2(89)

L3(5)∗ 31000 46500 22 12 52 : D12 52 : GL2(5)

L2(97)∗ 38024 57036 21 20 L2(97) L2(97)

continues on next page
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L2(103)∗ 45526 68289 18 22 L2(103) L2(103)

L2(113)∗ 60116 90174 21 22 L2(113) L2(113)

TABLE A.6: A few more embeddings of DM1 and DM2 in G3.

A.7 Embeddings of DM3 in G1
3

Table A.7 shows some more embeddings of the Djoković-Miller subamalgam DM3
in the Goldschmidt G1

3-amalgam with completion group G, such that 720 ≤ |G| ≤
100 000 obtained from the universal completion group with the following presenta-
tion

〈a, b, c | R〉 ,

where

R ={a6, b2, c6, a3c−1bcbc−1, (c−1bc−1a)2, bc3bc−3, (bc−1)4, a−1cbc−2ba−1c−1bc−1,

cbacbcac−2b, (bc−1bc)3, c−1a−3ca−1c−2bcba−1bc2bc−1a−1c−2bcba−1}.

G |V(Γ)| |E(Γ)| d(Γ) g(Γ) H

S6 30 45 4 8 S3 o 2, S5

3 · S6 90 135 8 10 S5, 31+2
+ : D8

L3(3) : 2 468 702 13 12 31+2
+ : D8, L3(3) : 2

PΣL2(25) 650 975 11 12 2× S5, PΣL2(25)

L3(2) o 2 2352 3528 15 14 PGL2(7), S4 o 2

26 : (3 · S6) 5760 8640 16 16 22 : S5, 26 : (31+2
+ : D8)

26 : S5, 26 : (31+2
+ : D8)

TABLE A.7: A few more embeddings of DM3 in G1
3 .

A.8 The MAGMA code

In this last section we show the MAGMA[BCP97] code used to construct the locally
projective graphs in Chapter 2.

e := [<x,Sphere(x,2)> : x in V];

Gamma_2, V2, E2 := Graph< Set(V) | e>;

Xi, VV, EE := StandardGraph(sub< Gamma_2 | Components(Gamma_2)[i]>);
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A, GV, GE := AutomorphismGroup(Xi);
G:=[x : x in LowIndexSubgroups(A,1000) | IsIsomorphic(x,g) ne false][1];

T:=AllCliques(Xi,3);

l:=T[1];

x:=VV!SetToIndexedSet(l)[1];
y:=VV!SetToIndexedSet(l)[2];
z:=VV!SetToIndexedSet(l)[3];

T_x:=[ t : t in T | x in t and t ne l];
m:=T_x[1];
n:=T_x[2];

G_x:=Stabiliser(G,GV,x);
G_y:=Stabiliser(G,GV,y);
G_z:=Stabiliser(G,GV,z);

G1_x:=&meet{Stabiliser(G,GV,SetToIndexedSet(Ball(x,1))[i]) : i in [1..#Ball(x,1)]};
G2_x:=&meet{Stabiliser(G,GV,SetToIndexedSet(Ball(x,2))[i]) : i in [1..#Ball(x,2)]};
G3_x:=&meet{Stabiliser(G,GV,SetToIndexedSet(Ball(x,3))[i]) : i in [1..#Ball(x,3)]};

G_l:=Stabiliser(G,GV,l);
G_m:=Stabiliser(G,GV,m);
G_n:=Stabiliser(G,GV,n);

G12_x:=G_l meet G_m meet G_n;
G_xyz:=G_x meet G_y meet G_z;

M_0_12:=G_x/G12_x;
M_12_1:=G12_x/G1_x;
M_0_1:=G_x/G1_x;
M_1_2:=G1_x/G2_x;
M_2_3:=G2_x/G3_x;

print IdentifyGroup(G_x), IdentifyGroup(M_0_12), IdentifyGroup(M_12_1),
IdentifyGroup(M_0_1), IdentifyGroup(M_1_2), IdentifyGroup(M_2_3);
if CanIdentifyGroup(Order(G)) then print
IdentifyGroup(G), #V, #E, Diameter(Gamma), Girth(Gamma);
else print Order(G), #V, #E, Diameter(Gamma), Girth(Gamma);
end if;

And finally the MAGMA[BCP97] code used to find the densely embedded subamal-
gams.

H1 := Complements(G_x,G12_x,G1_x);

H12 := [h1 meet G_xyz : h1 in H1];

j:=[j: j in [1..#H1] | IdentifyGroup(H12[j]) eq ID][1];
O := Orbits(H1[j],GV);
S:=[[a,b] : a, b in [1..#O] | a le b and O[a] join O[b] eq Sphere(x,1)];
if H1[j] eq Stabiliser(G_x,GV,O[S[1][1]]) and
H1[j] eq Stabiliser(G_x,GV,O[S[1][2]]) then
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SIGMA := [sigma : sigma in G_l | H12[j]^sigma eq H12[j] and
(Image(sigma,GV,x) eq y or Image(sigma,GV,x) eq z)];

H2 := [sub<G_l | H12[j], sigma> : sigma in SIGMA];

H := [sub<G|H1[j],Generators(h2)> : h2 in H2];
HH := [sub<G|H1[j],sigma > : sigma in SIGMA];
if H eq HH then

print "H1: ", [IdentifyGroup(x) : x in H1];
print "H12: ", [IdentifyGroup(x) : x in H12];
print "H2: ", [IdentifyGroup(x) : x in H2];
if forall(k){ H[x] : x in [1..#H] | CanIdentifyGroup(Order(H[x]))}
then print "H: ", [IdentifyGroup(x) : x in H];
else print "Order of H: ", [Order(x) : x in H];
end if; end if; end if;
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Appendix B

Some presentations in MAGMA

B.1 The groups from Chapter 3

G2_2 := Group< c, d |
c^2, d^4, (c*d)^7, (c,d)^6, (c*d*(c*d^2)^3)^2, (d^2,c*d*c)^3 >;

B<a,b,s,t> := Group< a, b, s, t |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a,b^t*b >;
/* IdentifyGroup(B); <64, 134> */

N<a,b,s,t,x> := Group< a, b, s, t, x |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a, b^t*b,
x^3, x*x^s, (x,s)^3, (x,t), a^x*b^-1, b^x*b*a >;
/* IdentifyGroup(N); <192, 956> */

Y1<a,b,s,t,y> := Group< a, b, s, t, y |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a,b^t*b,
y^3, (a*b*s)^y*b*a^3, (s*a^2)^y*s*b*a, (t*s*a^2)^y*t*s*b*a^3,
(a*b)^y*t*s*a^2, y^(b*t)*y*t*b^2 >;
/* IdentifyGroup(Y1); <192, 1494> */

X1<a,b,s,t,z> := Group< a, b, s, t, z |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a,b^t*b,
z^3, (a*b*s)^z*b*a^3, (s*a^2)^z*s*b^3*a^3, z^(b*t)*z, (a*b)^z*b^3*a^3,
(t*s*a^2)^z*t*s*b^2 >;
/* IdentifyGroup(X1); <192, 988> */

Y2<a,b,s,t,u> := Group< a, b, s, t, u |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a,b^t*b,
u^3, (a*b*s)^u*b*a^3, (s*a^2)^u*s*b^3*a^3, (a*b)^u*t*s*b*a^3,
u^(b*t)*u*t*s*b^2, (t*s*a^2)^u*b^3*a^3 >;
/* IdentifyGroup(Y2); <192, 1494> */

X2<a,b,s,t,v> := Group< a, b, s, t, v |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a,b^t*b,
v^3, (a*b*s)^v*s*b^3*a^3, (s*a^2)^v*s*b^2, (a*b)^v*t*s*a^2,
(t*s*a^2)^v*t*s*b*a^3, v^(b*t)*v*t*s*b*a^3 >;
/* IdentifyGroup(X2); <192, 988> */

G1<a,b,s,t,x,y> := Group< a, b, s, t, x, y |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a, b^t*b,
x^3, x*x^s, (x,s)^3, (x,t), a^x*b^-1, b^x*b*a,
y^3, (a*b*s)^y*b*a^3, (s*a^2)^y*s*b*a, (t*s*a^2)^y*t*s*b*a^3,
(a*b)^y*t*s*a^2, y^(b*t)*y*t*b^2, b*y*x^2*y*x*y^2*x*a^3 >;
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/* IdentifyGroup(G1); <1344, 814> */

M1<a,b,s,t,x,z> := Group< a, b, s, t, x, z |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a, b^t*b,
x^3, x*x^s, (x,s)^3, (x,t), a^x*b^-1, b^x*b*a,
z^3, (a*b*s)^z*b*a^3, (s*a^2)^z*s*b^3*a^3, z^(b*t)*z, (a*b)^z*b^3*a^3,
(t*s*a^2)^z*t*s*b^2, (x^2*z^2)^3*b^2*a*x*(z^2*x^2)^2*z >;
/* CompositionFactors(PermutationGroup(M1));

G
| Cyclic(2)
*
| 2A(2, 3) = U(3, 3)

1

#Kernel(Homomorphisms(M1,PermutationGroup(G2_2))[1]);
1 */

M2<a,b,s,t,x,v> := Group< a, b, s, t, x, v |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a, b^t*b,
x^3, x*x^s, (x,s)^3, (x,t), a^x*b^-1, b^x*b*a,
v^3, (a*b*s)^v*s*b^3*a^3, (s*a^2)^v*s*b^2, (a*b)^v*t*s*a^2,
(t*s*a^2)^v*t*s*b*a^3, v^(b*t)*v*t*s*b*a^3,
(x^2*v^2)^3*b^3*x^2*v^2*a^3*x*v^2*x*v >;
/* CompositionFactors(PermutationGroup(M2));

G
| Cyclic(2)
*
| 2A(2, 3) = U(3, 3)

1

#Kernel(Homomorphisms(M2,PermutationGroup(G2_2))[1]);
1 */

G2<a,b,s,t,y,z,u,v> := Group< a, b, s, t, y, z, u, v |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a,b^t*b,
y^3, (a*b*s)^y*b*a^3, (s*a^2)^y*s*b*a, (t*s*a^2)^y*t*s*b*a^3,
(a*b)^y*t*s*a^2,y^(b*t)*y*t*b^2, z^3, (a*b*s)^z*b*a^3, (s*a^2)^z*s*b^3*a^3,
z^(b*t)*z,(a*b)^z*b^3*a^3, (t*s*a^2)^z*t*s*b^2, u^3, (a*b*s)^u*b*a^3,
(s*a^2)^u*s*b^3*a^3, (a*b)^u*t*s*b*a^3, u^(b*t)*u*t*s*b^2,
(t*s*a^2)^u*b^3*a^3, v^3, (a*b*s)^v*s*b^3*a^3, (s*a^2)^v*s*b^2,
(a*b)^v*t*s*a^2, (t*s*a^2)^v*t*s*b*a^3, v^(b*t)*v*t*s*b*a^3, v^z*v^2,
z*a^2*b^2*u^2*(s*t*y^2*u)^-1, z*a^3*b^2*s*t*(b*y^2*z*u^2)^-1,
z*s*u^2*(s*t*y*z^2)^-1, z^-1*a*v*u^-1*v*a >;
*/ IdentifyGroup(G2); <576, 8282> */

G<a,b,s,t,x,y,z,u,v> := Group< a, b, s, t, x, y, z, u, v |
a^4, b^4, (a,b), s^2, t^2, (s,t), a^s*b^-1, b^s*a^-1, a^t*a,b^t*b,
x^3, x*x^s, (x,s)^3, (x,t), a^x*b^-1, b^x*b*a,
y^3, (a*b*s)^y*b*a^3, (s*a^2)^y*s*b*a, (t*s*a^2)^y*t*s*b*a^3,
(a*b)^y*t*s*a^2, y^(b*t)*y*t*b^2, b*y*x^2*y*x*y^2*x*a^3,
z^3, (a*b*s)^z*b*a^3, (s*a^2)^z*s*b^3*a^3,
z^(b*t)*z,(a*b)^z*b^3*a^3, (t*s*a^2)^z*t*s*b^2, u^3, (a*b*s)^u*b*a^3,
(s*a^2)^u*s*b^3*a^3, (a*b)^u*t*s*b*a^3, u^(b*t)*u*t*s*b^2,
(t*s*a^2)^u*b^3*a^3, v^3, (a*b*s)^v*s*b^3*a^3, (s*a^2)^v*s*b^2,
(a*b)^v*t*s*a^2, (t*s*a^2)^v*t*s*b*a^3, v^(b*t)*v*t*s*b*a^3, v^z*v^2,
z*a^2*b^2*u^2*(s*t*y^2*u)^-1, z*a^3*b^2*s*t*(b*y^2*z*u^2)^-1,
z*s*u^2*(s*t*y*z^2)^-1, z^-1*a*v*u^-1*v*a,
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x*b*y^-1*x^-1*y^-1*b^-1*y^-1*x^-1*y^-1*b*y*x*y*x^-1*(a*v*u^-1)^-2,
y*(u*v^-1*a^2)^-1, x*b*x^-1*a^-1, (x*y)^2*x^-1*(a*v*u^-1*a^2)^-1,
x*u^-1*x^-1*v^-1*x^-1*u^-1*x^-1*u^-1*x^-1*v^-1*b^-1*x*u^-1*x^-1*v*x^-1*u,
x^-1*v*x*v^-1*x^-1*v^-1*x*v*x^-1*v^-1*x*v^-1 >;

B.2 The Goldschmidt’s lemma and the six amalgamsAi from
Chapter 5

In this section we list the presentations of the universal completion groups of the
six amalgams Ai from Chapter 5, preceded by a GAP [Gap] implementation of the
Goldschmidt’s lemma.
Goldschmidt := function (G1,G2,G12)
local Aut_1, Aut_2, Aut_12, iso1, iso2, N_1, N_2, psi_1, psi_2, A_1, A_2, Inn_12, q, Out_12, O_1, O_2, n, m, i, fpa;
fpa:=[];;
Aut_1 := AutomorphismGroup(G1);;
Aut_2 := AutomorphismGroup(G2);;
Aut_12 := AutomorphismGroup(G12);;
iso1 := NiceMonomorphism(Aut_1);;
iso2 := NiceMonomorphism(Aut_2);;
N_1 := PreImage(iso1,AsGroup(Filtered(AsList(Image(iso1)), x->Image(PreImage(iso1,x),G12)=G12)));;
N_2 := PreImage(iso2,AsGroup(Filtered(AsList(Image(iso2)), x->Image(PreImage(iso2,x),G12)=G12)));;
psi_1 := GroupHomomorphismByFunction(N_1,Aut_12,a->RestrictedMapping(a,G12));;
psi_2 := GroupHomomorphismByFunction(N_2,Aut_12,a->RestrictedMapping(a,G12));;
A_1 := Image(psi_1);;
A_2 := Image(psi_2);;
Inn_12 := InnerAutomorphismsAutomorphismGroup(Aut_12);;
q := NaturalHomomorphismByNormalSubgroup(Aut_12,Inn_12);;
Out_12:=Image(q);;
O_1 := Image(q,A_1);;
O_2 := Image(q,A_2);;
n := DoubleCosetRepsAndSizes(Aut_12,A_1,A_2);;
m := DoubleCosetRepsAndSizes(Out_12,O_1,O_2);;
if Length(n)=Length(m) then
for i in [1..Length(n)] do
fpa[i]:=FreeProductWithAmalgamation(G1,G2,n[i][1]);;
Print([i,GeneratorsOfGroup(fpa[i]),RelatorsOfFpGroup(fpa[i])],"\n");od;fi;
return;
end;;

> A1;
Finitely presented group A1 on 5 generators
Relations

f1^2 = Id(A1)
(f3 * f2)^2 = Id(A1)
f3^4 = Id(A1)
(f3 * f2^-2)^2 = Id(A1)
f2^6 = Id(A1)
f2^-1 * f1 * f2^2 * f1 * f2^-1 = Id(A1)
f1 * f2^-1 * f1 * f2^-1 * f1 * f2 * f1 * f2 = Id(A1)
(f3 * f1)^4 = Id(A1)
(f3 * f1 * f3^-1 * f1)^2 = Id(A1)
f3^-1 * f2^-1 * f3^2 * f2^-3 * f3 * f2^2 = Id(A1)
f1 * f3 * f1 * f2^-1 * f3 * f2^-1 * f1 * f3 * f1 * f2 * f3^-1 * f2 = Id(A1)
(f3^-1 * f1 * f2^-1)^4 = Id(A1)
f3^2 * f2^-1 * f3 * f2^-1 * f1 * f3^-1 * f2 * f3^-2 * f2^-1 * f1 = Id(A1)
(f1 * f3 * f1 * f2)^4 = Id(A1)
f4^4 = Id(A1)
f5^6 = Id(A1)
(f4 * f5^-1)^4 = Id(A1)
(f4^-1 * f5 * f4 * f5^-1 * f4^-1)^2 = Id(A1)
(f4^-1 * f5^-1 * f4^-1 * f5 * f4^-1)^2 = Id(A1)
(f4^-1 * f5^2)^4 = Id(A1)
(f4^-1 * f5^-2)^4 = Id(A1)
f4^-1 * f5^-1 * f4^2 * f5^-2 * f4^-2 * f5^-1 * f4^-2 * f5^-2 * f4^-1 = Id(A1)
f4^-1 * f5^-1 * f4^-1 * f5^-1 * f4^-1 * f5^-1 * f4 * f5^3 * f4^-2 * f5^2 = Id(A1)
f5^-2 * f4 * f5^-1 * f4^-1 * f5^-1 * f4^-1 * f5^-1 * f4^-1 * f5^2 * f4^2 * f5^-1 = Id(A1)
f5 * f4 * f5^-1 * f4^-1 * f5^2 * f4 * f5 * f4^-1 * f5^2 * f4 * f5^-1 * f4^-1 = Id(A1)
f5^-2 * f4^-1 * f5^-1 * f4^-1 * f5 * f4^-1 * f5^-2 * f4^-1 * f5 * f4^-1 * f5^2 * f4 * f5^-1 = Id(A1)
f3^-1 * f2 * f3^-2 * f2 * f4^2 * f5 * f4^2 * f5^-1 = Id(A1)
f3 * f2 * f3^-1 * f2 * f4^2 = Id(A1)
f1^-1 * f3^-1 * f1^-1 * f3 * f5^-2 * f4 * f5^-1 * f4^-1 * f5^-1 * f4 * f5^-1 * f4^-1 * f5 = Id(A1)
f2 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f2^-1 * f4^2 * f5^-3 * f4^-2 * f5^3 = Id(A1)
f1^-1 * f4 * f5 * f4^2 * f5 * f4^2 * f5^-1 * f4 * f5^-1 * f4 * f5^-1 * f4^-1 * f5 = Id(A1)
f2 * f1^-1 * f2^-1 * f1^-1 * f4 * f5 * f4 * f5^2 * f4^2 * f5^-1 * f4^-1 * f5^-2 * f4^-1 * f5^4 = Id(A1)
f3^-1 * f2 * f3^-3 * f2 * f4 * f5 * f4^2 * f5^-1 = Id(A1)
f2^-3 * f4 * f5 * f4 * f5^2 * f4^2 * f5^-1 * f4^-1 * f5^-2 * f4^-1 * f5 = Id(A1)

> A2;
Finitely presented group A2 on 5 generators
Relations

f1^2 = Id(A2)
f3^4 = Id(A2)
(f3 * f2)^2 = Id(A2)



Appendix B. Some presentations in MAGMA 75

f1 * f2^2 * f1 * f2^-2 = Id(A2)
(f2^2 * f3^-1)^2 = Id(A2)
f2^6 = Id(A2)
f1 * f2 * f1 * f2 * f1 * f2^-1 * f1 * f2^-1 = Id(A2)
(f3 * f1)^4 = Id(A2)
f3^2 * f2^-1 * f3 * f1 * f2^-1 * f3 * f2^-1 * f3^-2 * f1 * f2 = Id(A2)
f3^-1 * f2 * f3^-1 * f1 * f3^2 * f2^-1 * f3 * f2^-1 * f1 * f2^-1 * f3^-1 = Id(A2)
(f3 * f2 * f1 * f2^-1 * f3^-1 * f1)^2 = Id(A2)
f3^-1 * f2^2 * f1 * f3 * f2^-1 * f3 * f2^-1 * f1 * f3 * f2^-1 * f3 * f2 * f1 * f2 * f3^-1 * f2^-1 * f1 = Id(A2)
f4^4 = Id(A2)
f5^6 = Id(A2)
(f4^-2 * f5^-1 * f4 * f5)^2 = Id(A2)
(f4^-2 * f5 * f4^-1 * f5^-1)^2 = Id(A2)
(f4^-1 * f5^-2)^4 = Id(A2)
(f5^2 * f4 * f5^-2 * f4^-2)^2 = Id(A2)
(f4^-2 * f5^-2 * f4 * f5^2)^2 = Id(A2)
f4 * f5^-1 * f4^-1 * f5 * f4^-1 * f5^-2 * f4 * f5^-1 * f4^-1 * f5^-2 * f4^-1 * f5 = Id(A2)
f4 * f5^3 * f4^-1 * f5^-3 * f4 * f5^-3 * f4^-1 * f5^-3 = Id(A2)
f5 * f4 * f5 * f4 * f5^-2 * f4 * f5^2 * f4^-1 * f5 * f4^-1 * f5^-2 * f4^-1 * f5 = Id(A2)
f5^-1 * f4^-1 * f5^2 * f4 * f5^-2 * f4^-1 * f5^-1 * f4 * f5^2 * f4^-1 * f5^-2 * f4 = Id(A2)
f5^2 * f4^-2 * f5^-1 * f4^-2 * f5^-2 * f4^-1 * f5 * f4^-1 * f5 * f4^-1 * f5 * f4 * f5 * f4^-2 * f5 = Id(A2)
f3^-1 * f2 * f3^-2 * f2 * f4^2 * f5 * f4^2 * f5^-1 = Id(A2)
f3 * f2 * f3^-1 * f2 * f4^2 = Id(A2)
f1^-1 * f3^-1 * f1^-1 * f3 * f5^-2 * f4 * f5^-1 * f4^-1 * f5^-1 * f4 * f5^-1 * f4^-1 * f5 = Id(A2)
f2 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f2^-1 * f4^2 * f5^-3 * f4^-2 * f5^3 = Id(A2)
f1^-1 * f4 * f5 * f4^2 * f5 * f4^2 * f5^-1 * f4 * f5^-1 * f4 * f5^-1 * f4^-1 * f5 = Id(A2)
f2 * f1^-1 * f2^-1 * f1^-1 * f4 * f5 * f4 * f5 * f4^2 * f5 * f4 * f5^-1 * f4 * f5^-1 * f4 * f5 * f4 = Id(A2)
f3^-1 * f2 * f3^-3 * f2 * f4 * f5 * f4^2 * f5^-1 = Id(A2)
f2^-3 * f4 * f5 * f4 * f5^2 * f4 * f5^-1 * f4 * f5^-1 * f4 * f5 * f4 * f5^3 = Id(A2)

> A3;
Finitely presented group A3 on 5 generators
Relations

f1^2 = Id(A3)
f3^4 = Id(A3)
(f3 * f2)^2 = Id(A3)
(f3 * f2^-2)^2 = Id(A3)
f1 * f2^2 * f1 * f2^-2 = Id(A3)
f2^6 = Id(A3)
f1 * f2 * f1 * f2 * f1 * f2^-1 * f1 * f2^-1 = Id(A3)
(f3 * f1)^4 = Id(A3)
(f1 * f3 * f1 * f3^-1)^2 = Id(A3)
(f2^-1 * f3^-1 * f1)^4 = Id(A3)
f3^2 * f2^-1 * f3 * f1 * f3 * f2 * f3^-1 * f2^-1 * f3 * f1 * f2^-1 = Id(A3)
f4^4 = Id(A3)
f5^6 = Id(A3)
(f5^-1 * f4)^4 = Id(A3)
(f4^-2 * f5 * f4^-1 * f5^-1)^2 = Id(A3)
(f5 * f4^-2 * f5^-1 * f4)^2 = Id(A3)
(f4 * f5^2)^4 = Id(A3)
f4 * f5^2 * f4^2 * f5^-2 * f4 * f5^2 * f4^-2 * f5^-2 = Id(A3)
(f4^-2 * f5^-1 * f4^-2 * f5^-2)^2 = Id(A3)
f5^-2 * f4^2 * f5^2 * f4^-1 * f5^-2 * f4^-2 * f5^2 * f4^-1 = Id(A3)
f4^-1 * f5^-1 * f4 * f5 * f4 * f5^-2 * f4 * f5^-1 * f4^-1 * f5^-2 * f4^-1 * f5 = Id(A3)
f4^2 * f5^-1 * f4^-1 * f5^-1 * f4^-2 * f5^-1 * f4 * f5^-2 * f4^-1 * f5^-2 * f4 * f5^-1 = Id(A3)
f5^3 * f4^-1 * f5^-3 * f4 * f5^-3 * f4^-1 * f5^-3 * f4 = Id(A3)
f3^-1 * f2 * f3^-2 * f2 * f4 * f5 * f4 * f5 * f4 * f5^-2 * f4 * f5^2 * f4 * f5^-3 * f4^-1 * f5^2 = Id(A3)
f3 * f2 * f3^-1 * f2 * f4^2 * f5^-3 * f4^-2 * f5 * f4 * f5^-3 * f4^-1 * f5^-1 = Id(A3)
f1^-1 * f3^-1 * f1^-1 * f3 * f4 * f5 * f4 * f5^2 * f4^2 * f5^-2 * f4 * f5^2 * f4 * f5^3 = Id(A3)
f2 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f2^-1 * f4^2 * f5^-3 * f4^-2 * f5^3 = Id(A3)
f1^-1 * f4^-1 * f5^-1 * f4 * f5 * f4^2 * f5^-2 * f4 * f5 * f4^-1 * f5 * f4^-1 = Id(A3)
f2 * f1^-1 * f2^-1 * f1^-1 * f5 * f4^-1 * f5^-1 * f4 * f5^-1 * f4 * f5^-1 * f4^-1 * f5^4 = Id(A3)
f3^-1 * f2 * f3^-3 * f2 * f4^2 * f5 * f4^-2 * f5^-2 * f4^-1 * f5^-1 * f4^2 * f5^3 * f4^-1 * f5^3 = Id(A3)
f2^-3 * f5 * f4^2 * f5^-1 = Id(A3)

> A4;
Finitely presented group A4 on 5 generators
Relations

f1^2 = Id(A4)
f3^4 = Id(A4)
(f3 * f2)^2 = Id(A4)
(f3 * f2^-2)^2 = Id(A4)
f1 * f2^2 * f1 * f2^-2 = Id(A4)
f2^6 = Id(A4)
f1 * f2 * f1 * f2 * f1 * f2^-1 * f1 * f2^-1 = Id(A4)
(f3 * f1)^4 = Id(A4)
(f1 * f3 * f1 * f3^-1)^2 = Id(A4)
f3^2 * f2^-1 * f3 * f1 * f3 * f2 * f3^-1 * f2^-1 * f3 * f1 * f2^-1 = Id(A4)
(f2^-1 * f3^-1 * f1)^4 = Id(A4)
f4^4 = Id(A4)
f5^6 = Id(A4)
(f4^-2 * f5^-1 * f4 * f5)^2 = Id(A4)
f4^2 * f5 * f4^-1 * f5^-1 * f4^-2 * f5 * f4^-1 * f5^-1 = Id(A4)
f4^2 * f5^-1 * f4^-2 * f5^-2 * f4^-2 * f5^-1 * f4^-2 * f5^-2 = Id(A4)
(f4 * f5^2 * f4^-1 * f5^-2 * f4)^2 = Id(A4)
f5^-1 * f4^-1 * f5^2 * f4^2 * f5^3 * f4 * f5^-1 * f4^-1 * f5^-1 * f4^-1 = Id(A4)
f4^-1 * f5^2 * f4^-1 * f5 * f4 * f5^-1 * f4 * f5^-1 * f4 * f5 * f4^-1 * f5^2 = Id(A4)
f4^-1 * f5^-1 * f4 * f5 * f4^-1 * f5^-2 * f4 * f5^-1 * f4^-1 * f5^-2 * f4 * f5 = Id(A4)
f4^-1 * f5^2 * f4 * f5^-3 * f4^-1 * f5^2 * f4^-1 * f5^-2 * f4^-1 * f5 * f4^-1 * f5^-2 = Id(A4)
f5^-2 * f4^2 * f5^3 * f4^-1 * f5^-1 * f4^-1 * f5^-1 * f4^-1 * f5^-1 * f4^-1 * f5^-1 * f4^-2 * f5^-1 = Id(A4)
f5 * f4^-1 * f5 * f4^2 * f5^2 * f4^-1 * f5 * f4^-2 * f5^2 * f4^-1 * f5 * f4^-2 * f5^2 * f4^-1 * f5 * f4^-2 * f5 = Id(A4)
f3^-1 * f2 * f3^-2 * f2 * f4 * f5 * f4 * f5 * f4^2 * f5 * f4^2 * f5^-2 * f4 * f5^2 * f4 = Id(A4)
f3 * f2 * f3^-1 * f2 * f5^-2 * f4 * f5^-1 * f4^-2 * f5^-1 * f4 * f5 * f4^-1 * f5 * f4^-1 = Id(A4)
f1^-1 * f3^-1 * f1^-1 * f3 * f4 * f5 * f4 * f5^2 * f4^2 * f5^-2 * f4 * f5^2 * f4 * f5^3 = Id(A4)
f2 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f2^-1 * f4^2 * f5^-3 * f4^-2 * f5^3 = Id(A4)
f1^-1 * f4^-1 * f5^-1 * f4 * f5 * f4^2 * f5^-2 * f4 * f5 * f4^-1 * f5 * f4^-1 = Id(A4)
f2 * f1^-1 * f2^-1 * f1^-1 * f5 * f4^-1 * f5^-1 * f4 * f5^-1 * f4 * f5^-1 * f4^-1 * f5^4 = Id(A4)
f3^-1 * f2 * f3^-3 * f2 * f5^-1 * f4 * f5^2 * f4 * f5^3 = Id(A4)
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f2^-3 * f5 * f4^2 * f5^-1 = Id(A4)

> A5;
Finitely presented group A5 on 5 generators
Relations

f1^2 = Id(A5)
(f3 * f2)^2 = Id(A5)
f3^4 = Id(A5)
(f3 * f2^-2)^2 = Id(A5)
f1 * f2^2 * f1 * f2^-2 = Id(A5)
f2^6 = Id(A5)
f1 * f2^-1 * f1 * f2^-1 * f1 * f2 * f1 * f2 = Id(A5)
(f3 * f1)^4 = Id(A5)
(f1 * f3 * f1 * f3^-1)^2 = Id(A5)
f3^-1 * f2^-1 * f3^2 * f2^-3 * f3 * f2^2 = Id(A5)
f3^-2 * f2^-1 * f3 * f2^-1 * f1 * f2 * f3^-1 * f2 * f3^-2 * f1 = Id(A5)
(f2^-1 * f3^-1 * f1)^4 = Id(A5)
f4^4 = Id(A5)
f5^6 = Id(A5)
(f4 * f5^-1 * f4^-2 * f5)^2 = Id(A5)
(f5 * f4^-2 * f5^-1 * f4)^2 = Id(A5)
(f4^-1 * f5^-2)^4 = Id(A5)
f5^2 * f4^2 * f5^-2 * f4 * f5^2 * f4^-2 * f5^-2 * f4 = Id(A5)
f4 * f5^2 * f4^2 * f5 * f4^-2 * f5^2 * f4^-2 * f5 * f4 = Id(A5)
f4^-1 * f5^2 * f4^-1 * f5^-1 * f4 * f5 * f4^-1 * f5^-1 * f4^-1 * f5^2 * f4 * f5 = Id(A5)
f5 * f4 * f5^3 * f4^-1 * f5^-3 * f4 * f5^-3 * f4^-1 * f5^2 = Id(A5)
f4 * f5^2 * f4^-1 * f5^-3 * f4 * f5 * f4^-1 * f5^-2 * f4 * f5^-3 * f4^-1 * f5^-1 = Id(A5)
(f5^2 * f4 * f5^-2 * f4^-1 * f5^-3 * f4^-1)^2 = Id(A5)
f3^-1 * f2 * f3^-2 * f2 * f4^2 * f5 * f4^2 * f5^-1 = Id(A5)
f3 * f2 * f3^-1 * f2 * f4^2 = Id(A5)
f1^-1 * f3^-1 * f1^-1 * f3 * f5^-2 * f4 * f5^-1 * f4^-1 * f5^-1 * f4 * f5^-1 * f4^-1 * f5 = Id(A5)
f2 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f2^-1 * f4^2 * f5^-3 * f4^-2 * f5^3 = Id(A5)
f1^-1 * f4 * f5 * f4^-1 * f5^-2 * f4 * f5 * f4 * f5^-1 * f4 * f5 * f4 = Id(A5)
f2 * f1^-1 * f2^-1 * f1^-1 * f4 * f5 * f4 * f5^2 * f4^2 * f5^-1 * f4^-1 * f5^-2 * f4^-1 * f5^4 = Id(A5)
f3^-1 * f2 * f3^-3 * f2 * f4 * f5 * f4^2 * f5^-1 = Id(A5)
f2^-3 * f4 * f5 * f4 * f5^2 * f4^2 * f5^-1 * f4^-1 * f5^-2 * f4^-1 * f5 = Id(A5)

> A6;
Finitely presented group A6 on 5 generators
Relations

f1^2 = Id(A6)
f3^4 = Id(A6)
(f3 * f2)^2 = Id(A6)
f1 * f2^-2 * f1 * f2^2 = Id(A6)
f2^6 = Id(A6)
(f3 * f2^-2)^2 = Id(A6)
f1 * f2 * f1 * f2 * f1 * f2^-1 * f1 * f2^-1 = Id(A6)
(f1 * f3^-1 * f1 * f3)^2 = Id(A6)
(f3 * f1)^4 = Id(A6)
f3^2 * f2^-1 * f3 * f1 * f3^-2 * f2^-2 * f3^-1 * f1 * f2^-1 = Id(A6)
f3 * f2^-1 * f1 * f2 * f3^-1 * f1 * f2^-1 * f3^-1 * f1 * f2^-1 * f3^-1 * f1 = Id(A6)
f4^4 = Id(A6)
f5^6 = Id(A6)
(f4^-1 * f5)^4 = Id(A6)
f5^-1 * f4^2 * f5 * f4^-1 * f5^-1 * f4^-2 * f5 * f4^-1 = Id(A6)
(f5 * f4^-2 * f5^-1 * f4)^2 = Id(A6)
(f5^2 * f4)^4 = Id(A6)
(f4^-2 * f5^-1 * f4^-2 * f5^-2)^2 = Id(A6)
f4^-1 * f5^-3 * f4^-1 * f5 * f4 * f5 * f4 * f5 * f4 * f5^-2 * f4^-1 = Id(A6)
f4 * f5^-1 * f4^-1 * f5 * f4 * f5^-2 * f4 * f5^-1 * f4^-1 * f5^-2 * f4 * f5 = Id(A6)
f5^3 * f4 * f5^-3 * f4^-1 * f5^-3 * f4 * f5^-3 * f4^-1 = Id(A6)
f5 * f4^-1 * f5^3 * f4 * f5^-1 * f4 * f5 * f4 * f5^-3 * f4^-1 * f5^-1 * f4^-1 = Id(A6)
f4 * f5 * f4^-2 * f5^3 * f4^-2 * f5^-3 * f4 * f5 * f4 * f5 * f4 * f5 = Id(A6)
f3^-1 * f2 * f3^-2 * f2 * f4^2 * f5 * f4^2 * f5^-1 = Id(A6)
f3 * f2 * f3^-1 * f2 * f4^2 = Id(A6)
f1^-1 * f3^-1 * f1^-1 * f3 * f5^-2 * f4 * f5^-1 * f4^-1 * f5^-1 * f4 * f5^-1 * f4^-1 * f5 = Id(A6)
f2 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f1^-1 * f2^-1 * f1^-1 * f3^-1 * f2^-1 * f4^2 * f5^-3 * f4^-2 * f5^3 = Id(A6)
f1^-1 * f4 * f5 * f4^-1 * f5^-2 * f4 * f5 * f4 * f5^-1 * f4 * f5 * f4 = Id(A6)
f2 * f1^-1 * f2^-1 * f1^-1 * f4 * f5 * f4 * f5 * f4^2 * f5 * f4 * f5^-1 * f4 * f5^-1 * f4 * f5 * f4 = Id(A6)
f3^-1 * f2 * f3^-3 * f2 * f4 * f5 * f4^2 * f5^-1 = Id(A6)
f2^-3 * f4 * f5 * f4 * f5^2 * f4 * f5^-1 * f4 * f5^-1 * f4 * f5 * f4 * f5^3 = Id(A6)
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