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Abstract— This paper proposes an approach to model order
reduction of stable linear time-invariant models. The proposed
approach extends time-domain moment matching by the mini-
mization of the H∞ norm of the error dynamics characterizing
the difference between the full-order and reduced-order models
given fixed interpolation points. The optimal H∞ moment
matching problem is a constrained optimization problem with
bilinear constraints. Introducing a novel numerical procedure,
we minimize the approximation error, while respecting the
constraints and, thereby, find an suboptimal H∞ reduced-order
model. The effectiveness of the approach is illustrated in a
numerical example.

I. INTRODUCTION
Model order reduction techniques aim at reducing the

complexity of dynamical models. Hereto, many different
methods have been proposed in the literature, such as
balanced truncation [1], Hankel-norm approximations [5]
and the interpolation approach [4]. The moment matching
method, see [1], matches the moments of the reduced-
order model to the moments of the full-order model, where
moments are the coefficients of the Laurent series expansion
of the transfer function at complex interpolation points.
Restricting the interpolation points to the imaginary axis
makes moment matching particularly useful in applications
where an accurate description of the model is required at
specific frequencies such as resonance peaks.

In [2], a time-domain interpretation of moment matching
is given in terms of matching the steady-state response of the
reduced-order model to the steady-state response of the full-
order model for a specific class of input signals. This view
has led to a new parametrization of reduced-order models
that achieve moment matching, which enjoys a parametric
freedom that can be exploited to enforce additional properties
for the reduced-order model. For example, in [2], this free-
dom is exploited to achieve moment matching with, amongst
others, prescribed pole locations; prescribed zero locations;
and an L2-gain constraint. Besides that, in [10], a similar
freedom is used to fit the transient model response in addition
to moment matching.

The methods listed above do not exploit the parametric
freedom to minimize the H∞ norm or H2 norm of the error
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dynamics between the reduced-order and full-order model.
In that respect, the works in [8], [9] exploit this freedom
to minimize the H2 norm in a constrained optimization
problem with bilinear matrix inequality (BMIs) constraints.
The authors deal with the BMI constraints using gradient-
type methods and convex relaxations of the BMIs into linear
matrix inequalities (LMIs). Other related work, not in the
scope of time-domain moment matching, is the iterative
rational Krylov algorithm (IRKA) presented in [6]. IRKA
iteratively updates the interpolation points and, thereby,
converges to a model with an approximation error in the
H2 norm that satisfies the first-order minimality conditions.

In this paper, for a user-defined set of fixed interpolation
points, we exploit the parametric freedom in time-domain
moment matching to minimize an upper bound of the approx-
imation error measured in theH∞ norm. The interpretation is
that the peak error between the frequency response function
(FRF) of the full-order and reduced-order models is mini-
mized and that exponential stability is preserved. We first
formally pose the optimal H∞ moment matching problem
as a constrained optimization problem with BMI constraints.
After that, we parametrize three sets of models. The first
set contains all models that achieve moment matching. The
second set is a subset of the first set and characterizes by
BMI constraints all models that achieve moment matching
with an approximation error (measured in the H∞ norm)
smaller than a user-defined threshold. The third set is equiv-
alent to the second set, although parametrized differently,
which is exploited in the next step to solve the constrained
optimization problem.

We present a novel numerical procedure that is based
on the family of coordinate-descent algorithms (CDAs), see
[12]. A CDA splits the decision variables in the BMIs into
two groups such that fixing either one of the groups yields
LMIs. Iteratively, CDA fixes one of the groups such that
well-established LMI solvers can be used to minimize the
constrained optimization problem with LMI constraints. The
novel numerical procedure switches between the equivalent
model sets two and three, when CDA cannot further decrease
the objective of the constrained optimization problem in
one of the model sets and returns a suboptimal solution to
the optimal H∞ moment matching problem. In a numerical
example, we illustrate the effectiveness of the proposed
approach and show that, for the considered example, the
approximation error can be consistently reduced to within
a factor two of a fundamental lower bound in [3].

To summarize, this paper presents a model order reduction
technique for LTI models that matches the moments of the
full-order model and minimizes the approximation error in



the H∞ norm. The contributions of this paper are:

• the problem formulation for the optimal H∞ moment
matching problem;

• the parametrization of all models that satisfy the con-
straints of the optimal H∞ moment matching problem;

• a novel numerical procedure to find a suboptimal model
from the parametrized set.

• a numerical study to investigate properties of the novel
numerical procedure.

Notation: The symbols R,C,C0, and C− denote the set
of real numbers, complex numbers, complex numbers with
zero real part and complex numbers with negative real part,
respectively. The spectrum of a matrix A ∈ Rn×n is denoted
by σ(A). For a matrix A ∈ Rn×n, the notation He (A) is
short-hand for A>+A. The set of symmetric positive definite
matrices of dimension n× n is denoted by Sn.

II. PROBLEM SETTING

This section first introduces the considered class of LTI
models and defines moments. After that, the optimal H∞
moment matching problem is formulated.

A. Moments of LTI models

Consider the class of LTI models described by the follow-
ing state-space equations:

Σ(A,B,C) : ẋ = Ax+Bu, y = Cx, (1)

where x(t) ∈ Rn is the state, u(t) ∈ R is the input, y(t) ∈ R
is the output, and A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are the
model matrices. Throughout the paper we assume minimality
of model (1). The associated transfer function of model (1)
is defined as follows:

W (s) := C(sI −A)−1B. (2)

The 0-moments of model (1) are defined next.
Definition 1 ([2]): Let s? ∈ C \ σ(A). The 0-moment of

model (1) at s? is the complex number ηΣ
0 (s?) := W (s?).

B. Moment matching problem

Consider the model characterized as follows:

Σν(F,G,H) : ξ̇ = Fξ +Gu, ψ = Hξ (3)

with ξ(t) ∈ Rν , u(t) ∈ R, ψ(t) ∈ R and F ∈ Rν×ν , G ∈
Rν×1 and H ∈ R1×ν . The transfer function of this model is
defined as follows:

Ω(s) := H(sI − F )−1G. (4)

In this paper, we focus on matching the zeroth moments
and, in addition, minimize the mismatch between W (jω)
and Ω(jω), for all ω ∈ R, measured in the H∞ norm, and
preserve stability properties of the full-order model.

Assumption 1: The matrix A of the LTI model (1) is
Hurwitz, i.e., σ(A) ∈ C−.

Definition 2 ([11]): Consider model (1) with transfer
function W (s) ∈ C in (2) and suppose that Assumption 1

holds. The H∞ norm of the transfer function W (s), denoted
by ‖W (s)‖∞, is defined as follows:

‖W (s)‖∞ := sup
ω∈[0,∞)

|W (jω)|. (5)

Now, we are in a position to formally pose the optimal
H∞ moment matching problem.

Problem 1: Consider the full-order model (1) and any
given matrix S ∈ Rν×ν with simple eigenvalues σ(S) =
{s1, . . . , sν} on the imaginary axis. Suppose Assumption 1
holds. Consider the reduced-order model (3) characterized
by F,G and H . The optimal H∞ model matching problem
is the following constrained optimization problem:

min
F,G,H,γ

γ subject to (6a)

‖W (s)− Ω(s)‖∞ < γ, (6b)
F is Hurwitz, (6c)

ηΣ
0 (si) = ηΣν

0 (si), for all i = 1, . . . , ν. (6d)
Constraint (6b) minimizes the peak error between W (jω)

and Ω(jω), for all ω ∈ R. Constraint (6c) ensures that
the reduced-order model preserves the exponential stability
property of the full-order model. Constraint (6d) matches the
zeroth moments ηΣν

0 of the reduced-order model to the zeroth
moments of the full-order model ηΣ

0 . One could interpret
the minimum in this problem as an infimum, for which the
numerical solver should return a sufficiently accurate result.
The next section proposes the solution to Problem 1.

III. SOLUTION TO THE OPTIMAL H∞ MOMENT
MATCHING PROBLEM

A. Conceptual description of the approach

The solution strategy for Problem 1 works as follows. In
the first step, according to the framework of [2], a set of
reduced-order models is constructed such that constraint (6d)
is satisfied, i.e., the moments are matched. This set of models
enjoys a specific parametric freedom, which we exploit in
the second step to present two sets of models that satisfy
all constraints of Problem 1 for a given γ. In the third and
last step, we present a numerical procedure to minimize γ
such that the set of models that satisfies all constraints of
Problem 1 is non-empty, which in turn allows to select F,G
and H . The resulting reduced-order model then satisfies all
constraints of Problem 1 for the minimized γ.

B. Set of reduced-order LTI models satisfying constraint (6d)
of Problem 1

The set of models that satisfies the constraint (6d) of
Problem 1 is presented in the following theorem and is
parametrized by the matrix G ∈ Rν×1.

Theorem 1 ([2]): Consider the full-order model (1) char-
acterized by the matrices A,B and C, the matrix S ∈ Rν×ν
as given in Problem 1, and any matrix L ∈ R1×ν such that
the pair (S,L) is observable. For any G ∈ G with

G :=
{
G ∈ Rν×1 : σ(S) ∩ σ(S −GL) = ∅

}
, (8)

the reduced-order model (3) with matrices

F := S −GL, H := CΠ, (9)



LIγ(X , G) :=


A>X1 + X1A A>X3 + X3S −X3GL X1B + X3G C>

∗ S>X2 − L>G>X2 + X2S −X2GL X>3 B + X2G −H>
∗ ∗ −γ 0
∗ ∗ ∗ −γ

 (7)

where Π ∈ Rn×ν is the unique solution to the equation

ΠS = AΠ +BL, (10)

interpolates the moments of the full-order model (1) at the
eigenvalues of S. Furthermore, the set G characterizes all the
reduced-order models of order ν that interpolate the moments
of the full-order model (1) at the eigenvalues of S.

The set G presented in Theorem 1 contains all the models
that satisfy constraint (6d). In the next section, we charac-
terize a subset of G that, in addition to constraint (6d), also
satisfies the two constraints (6b) and (6c) for a fixed γ.

C. Set of reduced-order LTI models satisfying all constraints
of Problem 1

We use matrix inequalities to characterize the set of
models that satisfy all the constraints of Problem 1. In
particular, we use the so-called Bounded-Real Lemma.

Lemma 1 ([11]): Consider an LTI model characterized by
A,B, C. For any γ > 0,

σ(A) ∈ C− and
∥∥C(sI −A)−1B

∥∥
∞ < γ

hold true if and only if the following set of LMIs is feasibleA>X + XA XB C>
B>X −γI 0
C 0 −γI

 ≺ 0, X � 0. (11)

Using Lemma 1, we can construct the first set of models in
which the following partition of X is employed:

X :=

[
X1 X3

X>3 X2

]
,X1 ∈ Rn×n,X2 ∈ Rν×ν ,X3 ∈ Rn×ν .

Theorem 2: Consider the full-order model described by
the triple (A,B,C) in (1) and the set of reduced-order
models described by (F,H) in (9) and characterized by
G ∈ G in Theorem 1. Given a fixed γ > 0, for any
G ∈ GIγ ⊂ G with

GIγ :=
{
G ∈ Rν×1 : ∃X ∈ Sn+ν : LIγ(X , G) ≺ 0

}
, (12)

the constraints (6b) - (6d) of Problem 1 are satisfied, where
LIγ(X , G) is defined in (7). Furthermore, the set of reduced-
order models (3) characterized by G ∈ GIγ contains all
models that satisfy constraints (6b) - (6d) of Problem 1.
Moreover, if the full-order model characterized by A,B,C
is balanced1 with Hankel singular values2 h1 ≥ . . . ≥ hν ≥
hν+1 ≥ . . . ≥ hn, then the set GIγ is empty for γ < hν+1.

Proof: The proof is omitted for brevity.
Notice that the matrix LIγ(X , G) in (7) contains products

between G and X2,X3. In the scope of minimizing γ while
respecting the constraints of Problem 1, a formulation that

1A model is called balanced if its observability and controllability
Gramians are equal and diagonal.

2The Hankel singular values of a balanced model are the diagonal entries
of the Gramian matrix.

does not contain such products is favorable. Hereto, consider
the set GIIγ defined as follows:

GIIγ :=
{
G ∈ Rν×1 : ∃X ∈ Sn+ν ,

∃N ∈ Rn+2ν+2×n : LIIγ (X , N,G) ≺ 0
}
,

(13)

where LIIγ (X , N,G) is defined as follows:

LIIγ (X , N,G) :=

[
M0 M1

M>1 0ν×ν

]
+ He

(
N
[
M>2 −Iν

])
with

M0 =


A>X1 + X1A A>X3 + X3S X1B C>

∗ S>X2 + X2S X>3 B −H>
∗ ∗ −γ 0
∗ ∗ ∗ −γ

 ,
M>1 =

[
X>3 X2 0ν×1 0ν×1

]
,

M>2 =
[
0ν×n −GL G 0ν×1

]
.

The following theorem shows equivalence between the sets
GIγ in (12) and GIIγ in (13).

Theorem 3: The candidate G ∈ GIγ if and only if G ∈ GIIγ ,
where the set GIγ is defined in (12) and the set GIIγ in (13).

Proof: The proof is omitted for brevity.
The matrix LIIγ (X , N,G) does not contain products be-

tween X and G, but instead contains a product between N
and G. The availability of the two equivalent sets GIγ and GIIγ
is exploited in the numerical procedure to solve Problem 1,
as presented in the next section.

Remark 1: The sets GIγ and GIIγ described in Theorems 2
and 3 contain no conservatism, i.e., for a given γ, all models
with state dimension ν that satisfy the constraints (6b) - (6d)
of Problem 1 are characterized by each of these sets.

Remark 2: If the full-order model is balanced, then Theo-
rem 2 provides a lower bound for γ in constraint (6b), namely

‖W (s)− Ω(s)‖∞ ≥ hν+1, (14)

where hν+1 the (ν + 1)th largest Hankel singular value of
the full-order model. We note that (14) also holds without
constraint (6d) of Problem 1. Therefore, it is likely that this
bound is conservative in the scope of moment matching, i.e.,
respecting constraint (6d) of Problem 1.

D. Numerical procedure for solving the H∞ moment match-
ing problem

In the previous section, we have formulated sets GIγ and
GIIγ that parametrize all models that satisfy the constraints
of Problem (6) for a given γ > 0. In this section, we propose
a numerical procedure to minimize γ, while respecting the
constraints characterizing the sets GIγ and GIIγ .

It is well-known that H∞ model order reduction problems
lead to bilinear matrix inequalities (BMIs) constraints [7],
[3]. More particularly, as stated in [3], H∞ model order



reduction can be regarded as a special case of the reduced-
order H∞ controller synthesis problem, for which no LMI
formulation exists yet. In that respect, the results of this
paper are no exception, as the constraints in GIγ and GIIγ
are BMIs due to the products between the variables G and
X2,X3 in LIγ(X , G) and the products between N and G
in LIIγ (X , N,G). Solving optimization problems with BMI
constraints is a challenging task for which it is difficult to
guarantee convergence towards the global optimum [12].

One method to solve an optimization problem with BMI
constraints is the coordinate-descent algorithm (CDA) [12].
This algorithm splits the bilinear variables into two sets
such that fixing either one of the two sets turns the BMI
constraints into LMI constraints. CDA iteratively fixes one
set of variables and optimizes γ for the other, for example,
by a bi-section search over γ. Even without a formal proof
of convergence, CDA works well in practice and guarantees
a non-increasing sequence of γ over the iterations [12].

Let us focus on the constraints in GIγ first, for which the
CDA is listed in Algorithm 1. Here, the partitioning of X
in (??) is used and the iteration index is denoted in the
superscript. In Step 3 of this algorithm, for a given, fixed
G ∈ GIγ , the corresponding constrained optimization problem
is solved, where the constraints are LMIs in the variable
X . This step is nothing more than computing a tight upper
bound for ‖W (s)− Ω(s)‖∞. After that, in Step 4, for the
computed X2,X3 in Step 3, the corresponding constrained
optimization problem is solved, where the constraints are
again LMIs, but now in the variables X1 and G. This step
aims at finding a G such that ‖W (s)− Ω(s)‖∞ is decreased
for the given X2,X3. To launch this algorithm, an initial G[0]

is required that is inside the feasible set of the constraints,
i.e., G[0] ∈ GIγ . In the next section, we present a method to

Algorithm 1 CDA for LIγ(X , G)

Input: Model matrices A,B,C of full-order model (1),
matrices S,L as in Theorem 1, H as in (9), any vector
G[0] ∈ GI

γ[0] , γ[0] > 0, and an accuracy threshold ε > 0.
1: Iteration index i = 1.
2: while (γ[i−1] − γ[i])/γ[i] ≥ ε do
3: Solve the optimization problem(

·,X [i]
2 ,X [i]

3 , ·
)

= arg min
X1,X2,X3,γ

γ subject to

LIγ
([
X1 X3

∗ X2

]
, G[i−1]

)
≺ 0,

[
X1 X3

∗ X2

]
� 0.

4: Solve the optimization problem(
·, G[i], γ[i]

)
= arg min
X1,G,γ

γ subject to

LIγ

([
X1 X [i]

3

∗ X [i]
2

]
, G

)
≺ 0,

[
X1 X [i]

3

∗ X [i]
2

]
� 0.

5: Update i = i+ 1.
6: end

Output: Matrix GI = G[i−1] and scalar γI = γ[i−1].

construct such initial G[0]. Note that for CDAs, the sequence
γ[1], γ[2], . . . is non-increasing, as the solution to the previous
iteration is a feasible starting point of each optimization
problem in Steps 3 and 4.

Analogously to Algorithm 1, Algorithm 2 presents the
CDA for iterations in LIIγ (X , N,G). In Step 3, the variables
G is fixed, whereas in Step 4, the variable N is fixed.

The introduction of two CDAs enables switching between
Algorithms 1 and 2, when the respective CDA cannot de-
crease γ anymore. For example, suppose that Algorithm 1
is performed and returned GI ∈ GIγ . Then, the idea is to
use GI ∈ GIγ as a starting point for Algorithm 2, i.e.,
G

[0]
II = GI , and run Algorithm 2. Similarly, after running

Algorithm 2 and obtaining GII ∈ GIIγ , the idea is to use
G

[0]
I = GII to launch Algorithm 1. Note that this switching

is possible thanks to the equivalence between sets GIγ and
GIIγ , as presented in Theorem 3. The resulting numerical
procedure is formalized in Algorithm 3, where we choose
to start with the CDA in Algorithm 2, as this CDA appears
to converge quicker than the one in Algorithm 1. Studying
properties of Algorithm 3, e.g., convergence and robustness
with respect to the starting point, is a topic for future work.
Therefore, we cannot guarantee that this algorithm returns
an optimal model and we call the found model suboptimal.
A preliminary numerical study is presented in Section IV.

E. Finding an initial G[0]

In order to launch Algorithm 3, an initial G[0] ∈ GII
γ[0]

and γ[0] is required. Hereto, consider the result of Theorem
1, which states that any reduced-order model characterized
by G ∈ G satisfies constraint (6d). By observability of the
pair (S,L), which is assumed in Theorem 1, the eigenvalues
of F in (9) can be placed at any desired location by full-
state feedback. Placing the eigenvalues of F in the open
complex left-half plane, i.e., σ(F ) ∈ C−, yields a model

Algorithm 2 CDA for LIIγ (X , N,G)

Input: Model matrices A,B,C of full-order model (1),
matrices S,L as in Theorem 1, H as in (9), any vector
G[0] ∈ GI

γ[0] , γ[0] > 0, and an accuracy threshold ε > 0.
1: Iteration index i = 1.
2: while (γ[i−1] − γ[i])/γ[i] ≥ ε do
3: Solve the optimization problem(
·, N [i], ·

)
= arg min
X ,N,γ

γ

subject to LIIγ (X , N,G[i−1]) ≺ 0,X � 0.

4: Solve the optimization problem(
·, G[i], γ[i]

)
= arg min
X ,G,γ

γ

subject to LIIγ (X , N [i], G) ≺ 0,X � 0.

5: Update i = i+ 1.
6: end

Output: Matrix GII = G[i−1] and scalar γII = γ[i−1].



Algorithm 3 Combination of CDAs
Input: Model matrices A,B,C of full-order model (1),
matrices S,L as in Theorem 1, H as in (9), any vector
G

[0]
II ∈ GIIγ[0] , γ[0] > 0, and an accuracy threshold ε > 0.

1: Set iteration index k = 1.
2: while (γ[k−1] − γ[k])/γ[k] ≥ ε, do
3: Obtain G[k]

II = GII and γ[k] = γII by running
Algorithm 2 starting from G

[k−1]
I .

4: Set k = k + 1.
5: Obtain G[k]

I = GI and γ[k] = γI by running
Algorithm 1 starting from G

[k−1]
II .

6: Update k = k + 1.
7: end

Output: Matrix G = G
[k]
I and scalar γ = γ[k].

that satisfies constraint (6c). Since σ(F ) ∈ C−, the constraint
σ(F )∩σ(S) = ∅ in G is trivially satisfied and the constraint
(6b) is also satisfied for some γ? > 0. Therefore, any G[0]

that renders σ(F ) ∈ C− is a valid starting point with γ[0] =
γ?. In the examples presented in the next section, we select
the locations for the eigenvalues of F = S −G[0]

I L to be a
subset of the eigenvalues of A of the full-order model, which
is shown to work well in practice.

IV. ILLUSTRATIVE EXAMPLE

This section presents an example that shows the effective-
ness of our approach. The considered full-order model with
transfer function W (s) has state dimension n = 20 and is
already balanced. We apply the methods presented in this
paper to find reduced-order models with state dimensions
ν = 2, 4 and 6 and corresponding transfer functions Ων(s).

First, we select interpolation points si, i = 1, . . . , 6, on the
imaginary axis, as in Problem 1. Hereto, consider the FRF of
the full-order model depicted in Figure 1. Firstly, we would
like to match the moment that corresponds to the largest
resonance peak at f1 = 2.24 Hz. Secondly, we would like
to match the moment that corresponds to the second largest
resonance peak at f2 = 0.82 Hz. Lastly, to capture the low-
frequency behavior, we match the moment that corresponds
to f3 = 0.01 Hz. The frequencies f1, f2, f3 are marked with
a cross in Figure 1. We select the interpolation points si ∈
{±j ·2πf1,±j ·2πf2,±j ·2πf3}. For the ν = 2-dimensional
reduced-order model, we only match s1,2 corresponding to
the largest resonance peak, for the ν = 4-dimensional model,
we match s1,2,3,4 corresponding to the two largest resonance
peaks, and for the ν = 6-dimensional model, we match all
si, i = 1, . . . , 6, corresponding to frequencies f1, f2, and f3.
For each frequency, we define the matrix

Ξk =

[
0 2π · fk

−2π · fk 0

]
, Lk =

[
1 0

]
.

Under these choices, the conditions in Theorem 1 for the
pair (S,L) are satisfied for

S := blockdiag(Ξ1, . . . ,Ξν/2), L :=
[
L1 . . . Lν/2

]
.

Next, for each case of ν, we solve equation (10) for the

TABLE I: Considered studies.

Study ν hν+1 σ(S −G[0]L) γinit γfinal

1
2 0.777

p1 1.250 1.195
2 p2 44.084 1.218
3 p3 21.348 1.225
4

4 0.321
p1 and p2 1.244 0.557

5 p1 and p3 11.628 0.550
6 p2 and p3 16.236 0.557
7 6 0.038

p1, p2 and p3 0.797 0.066
8 Random 14.943 0.066

Fig. 1: Bode magnitude plot of the full-order model W (s)
and the reduced-order model Ω(s) of Studies 1, 4 and 7.

unique Π and define F and H according to (9), which
defines the set G. From the set G, we select an initial
G[0] ∈ GIγ? by pole placement. Hereto, we choose the
placement locations as a subset of the eigenvalues of A,
namely: p1 = {−0.337 ± 14.053j}, p2 = {−0.798 ±
5.2129j}, p3 = {−0.225,−10.490}. To assess sensitivity to
the pole locations of the initial reduced-order model, we run
Algorithm 3 multiple times for each ν, each time starting
with different initial locations as indicated in Table I, where
for ‘Random’, the pole locations are drawn from a normal
distribution and mirrored to C−. The approximation error in
the H∞ norm of the initial model with G[0] is included in
Table I in the column γinit. The optimization problem (6a)
in Problem 1 is solved using SeDuMi in Matlab.

Figure 1 depicts the magnitude of the FRF W (jω) and
the magnitude of the FRFs Ων(jω) for studies 1, 4, 7. The
FRFs obtained in Studies 2 and 3, Studies 5 and 6, and
Study 8 are left out of this figure as they are similar to the
FRFs in Study 1, Study 4 and Study 7, respectively. It can
be seen that for any ν, the error |W (jω)− Ων(jω)| is 0 at
the corresponding interpolation frequencies f1, f2, and f3,
i.e., for ν = 2 only f1, etc. This is a characteristic property
of moment matching. Secondly, it can be observed that
increasing ν yields a reduced-order model that significantly
more accurately matches the FRF of the full-order model.

The approximation error after application of Algorithm 3
is included in Table I in the column γfinal. Firstly, as expected,
a larger ν allows for a reduced approximation error thanks



Fig. 2: Iteration history of γ for the considered studies in Table I (left: ν = 2, middle: ν = 4, right: ν = 6). The dashed black
line corresponds to the lower bound based on the Hankel singular values. The circles correspond to switches in Algorithm
3 between Algorithms 1 and 2.

to the increased model flexibility. Secondly, it can be seen
that in all cases, the approximation error is significantly
reduced from γinit to γfinal; in all cases within a factor 2
of the fundamental lower bound hν+1, i.e., γfinal < 2 · hν+1.
Thirdly, it can be seen that in all considered cases, Algorithm
3 is robust for the initial starting G[0], as it converges to the
same level of approximation error in terms of γ for any
of the tested initial starting G[0]. Given the fact that the
approximation error is relatively close to the conservative
lower bound in (14) and given the robustness of Algorithm 3
against the initial starting G[0], we conclude that the proposed
method is effective. Nevertheless, studying the properties
of Algorithm 3 in terms of convergence and robustness
for the starting point remains a topic for future work. A
second conclusion is that placing the poles of the initial
reduced-order model to a subset of σ(A) is also effective.
For example, placing the poles of the initial reduced-order
model at p1 captures the largest resonance peak.

The iteration history for γ is depicted in Figure 2 for
each ν. Based on this figure, we would like to highlight two
important observations for the considered cases. Firstly, if we
have a reasonable initial G[0], then the algorithm converges
within a 100 iterations, for which the computational time is
approximately 10 minutes (on an Intel Core i7-7700HQ, 2.8
GHz processor). Secondly, the switching nature of Algorithm
3 helps to reduce γ. For example, in Study 8, several switches
are made between the CDAs in Algorithms 1 and 2, when
the corresponding algorithm failed to reduced γ further.
Thus, in the considered cases, Algorithm 3 avoids getting
stuck prematurely at suboptimal reduced-order models by
switching between the different CDAs.

V. CONCLUSIONS

This paper presents an optimal H∞ model order re-
duction by moment matching for exponentially stable LTI
models. The considered optimal H∞ moment matching
problem enforces exponential stability and minimizes the
approximation error measured in the H∞ norm in addition

to matching the zeroth moments. The proposed approach
exploits the freedom that time-domain moment matching
enjoys to characterize sets of all reduced-order models that
solve the optimal H∞ moment matching problem for a given
accuracy level. Based on these sets of models, a numerical
procedure that is an adapted version of the coordinate-
descent method, is presented that minimizes the approxima-
tion error numerically and, thereby, solves the H∞ moment
matching problem. Future work aims at analyzing properties
of the numerical procedure. In an example, we illustrated the
effectiveness and benefits of the proposed approach.
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