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Abstract 
 

Diagnostic tests play a crucial role in the control and surveillance of infectious diseases, and to ensure 

effective clinical management. Novel diagnostic tests are traditionally evaluated in terms of their 

accuracy (sensitivity and specificity). Using mathematical models, I examine the impact of different 

novel diagnostic tests on the tuberculosis (“TB”) and severe acute respiratory syndrome coronavirus 2 

(“SARS-CoV-2”) epidemics, and investigate how the context in which these tests are used may affect 

this impact.  

 

In chapter 3, I evaluate the use of a hypothetical biomarker test that can detect individuals at imminent 

risk of progressing to active TB disease (incipient TB) and subsequent TB preventive treatment 

(“TPT”) initiation in a high TB burden setting. I demonstrate that biomarker-led TPT can have a 

significant impact on TB incidence in a high TB burden setting; however, the cost of implementing 

such a strategy is likely to be prohibitive given the testing effort needed to identify those with 

incipient TB, even if testing is targeted to populations at high risk of TB.   

 

Next, in chapter 4, I evaluate the use of urine-based tests for active TB disease, in a high TB and HIV 

burden setting. Although current urine-based tests for TB suffer from poor sensitivity, these tests are 

continuously improving, and are essential for TB diagnosis amongst patient subgroups who struggle 

to produce quality sputum and who are therefore missed by traditional methods of TB diagnosis. I 

demonstrate that although urine-based diagnostic tests reduce mortality amongst people living with 

HIV, population-level epidemiological impact is not seen unless the tests are deployed outside of HIV 

care and into routine TB care. 

 

In chapter 5, I investigate the cost and epidemiological impact of expanding different TB public-

private sector engagement services. My results reveal that services involving the use of Xpert, a 

highly accurate but costly test for diagnosing active TB disease are epidemiologically impactful, but 

costly, and thus have the highest cost per TB case or TB death averted than other services.    

 

Finally, in chapter 6, I explore the context under when cheap but less accurate rapid antigen 

diagnostic tests (“Ag-RDTs”) offer greater public health value than more accurate but costly nucleic 

acid amplification tests (“NAATs”) that often have high turnaround times. My results highlight that 

Ag-RDTs-led strategies, despite their imperfect sensitivity and specificity, are more impactful at a 

lower cost than NAATs under different use-cases.  
 

Overall, the context in which diagnostic tests are used is crucial in anticipating their impact. Factors, 

including but not limited to testing eligibility, levels of current testing and turnaround time, can affect 
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the potential epidemiological impact of a diagnostic test. Thus, future evaluation of diagnostic tests 

should move away from focussing exclusively on accuracy and move towards clearly defining 

different use-cases and investigating which factors other than accuracy, may affect the 

epidemiological impact of a diagnostic test.   
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IGRA Interferon-gamma release assay 
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Chapter 1: Introduction  
 

1.1. The importance of diagnostic tests  
 
Diagnostic tests are used to detect the presence of a pathogen or evidence of a recent infection. Once a 

diagnosis has been made, an appropriate course of action can be taken by the clinician; this may 

include treatment commencement, surgery or contact tracing.  Diagnostic tests are important for 

several reasons: 

 

1) Effective clinical management. It is not always feasible to treat all patients suspected of having a 

disease due to the cost and risk of side effects from treatment; instead, diagnostic tests help the 

clinician rule-in or rule-out certain hypotheses. The earlier an infection is detected, the quicker the 

appropriate course of action can be pursued. This in turn, reduces the likelihood of the patient 

suffering from severe outcomes and increases the likelihood of treatment success (1–3). Timely 

detection and thus, early treatment initiation, may also reduce the time until recovery, and allow 

patients to return to work sooner, reducing societal costs.  

 

2) Appropriate disease control. Detecting infectious individuals and their contacts is crucial for 

outbreak control to reduce onward transmission. Diagnostic tests can also be used for screening of 

the population to reduce transmission from asymptomatic individuals. Finally, another form of 

disease control is prevention; for example, detecting latent tuberculosis (“TB”), or detecting 

abnormal pre-cancerous cells in the cervix.  

 

3) Disease surveillance. Surveillance is needed to prevent and control disease. It informs 

governments on the levels of circulating diseases, whether a change in policy is needed, and if the 

health system has sufficient capacity to respond. It also enables scientists to track trends and 

monitor what interventions are or are not working.  

 

1.2. Thesis overview 
 
The overarching aims of this thesis are to examine the impact that novel diagnostic tests may have on 

infectious disease epidemics, and to investigate how the context in which tests are used in is important 

in determining epidemiological impact. The focus will be on TB, which is the leading cause of death 

from an infectious disease. With the emergence of a novel coronavirus, severe acute respiratory 

syndrome coronavirus 2 (“SARS-CoV-2”) at the end of 2019, I had the opportunity to apply the 
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concepts and approaches I learnt from modelling TB diagnostics to SARS-CoV-2 diagnostics. The 

purpose of each chapter is as follows:  

 

• Chapter 2: A review of the literature which informed the subsequent chapters. I first provide 

an overview of diagnostic tests, followed by the epidemiology of TB and SARS-CoV-2, with 

a particular emphasis on diagnosis. I also review the differences between the South African 

and Indian healthcare setting, two settings with a high TB burden. Finally, I review common 

methodologies used to examine the potential impact of diagnostic tests.  

 

• Chapter 3: Investigating the impact of detecting incipient TB on the TB epidemic in India. I 

develop a mathematical model of TB transmission that incorporates mixing between high-risk 

and low-risk populations. I further examine the cost-drivers of such an intervention, under 

what circumstances it may be considered cost-effective, and how results differ across 

different risk groups.  

 

• Chapter 4: Investigating the impact of detecting active TB disease amongst people living 

with HIV with a urine-based test on the TB epidemic in South Africa. I develop a 

mathematical model of TB that incorporates HIV co-infection. I also differentiate between 

different patient sub-groups, in order to examine how test eligibility may impact results.   

 

• Chapter 5: Investigating the impact and cost of private sector engagement in India on the TB 

epidemic. I develop a mathematical model of TB transmission incorporating drug resistance 

and differentiating between the public and private healthcare sector. I also develop a costing 

model to estimate the cost of scaling up these different engagement services.  

 

• Chapter 6: Quantifying the trade-off between accurate but expensive and slow tests, with 

less accurate but cheaper and faster tests, for SARS-CoV-2. I develop a decision-tree to 

evaluate the impact of these tests under two use-cases (a community and hospital setting). I 

examine which variables are most influential in determining the value of these tests.   

 

• Chapter 7: Discussing and concluding the findings of this thesis.    
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Chapter 2: Literature Review   

2.1. The characteristics of diagnostic tests  

2.1.1. Sensitivity and specificity  
The performance of a test is determined by its sensitivity and its specificity. Sensitivity is a test’s 

ability to classify an infected individual as a true positive, whereas specificity is a test’s ability to 

classify a disease-free individual as a true negative (table 2.1). To determine the sensitivity and 

specificity of a new diagnostic test, the test is compared to the best currently available test, called a 

gold standard. If the best available test does not perform well, an alternative strategy is a composite 

reference standard, which involves combining several diagnostic tests (4). There is a trade-off 

between the sensitivity and specificity of a test, which will depend on the cut-off chosen for a positive 

diagnosis. Receiving operating curves (“ROC”) compare the accuracy of different cut-off points, by 

plotting the rate of true positives (sensitivity) against the rate of false positives (1 – specificity) (fig 

2.1). A line with gradient y=x indicates a test that performs no better than chance. The greater the area 

under the curve, the greater its accuracy.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1. Example of a ROC curve. The blue-dashed line represents a test that performs no better than 
chance. Tests that perform better than chance lie to the left; the greater the area under the curve, the more 
accurate a test. In other words, the red-line represents a test that is more accurate than a test that is represented 
by the green-line; both in turn, are more accurate than a test represented by the blue-dashed line.  
 

 

2.1.2. Positive and negative predictive values   
The positive predictive value (“PPV”) and the negative predictive value (“NPV”) are calculated by 

combining the measures of sensitivity and specificity with disease prevalence. The PPV is defined as 

the proportion of those with a positive test that have the disease; NPV is defined as the proportion of 
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those with a negative test that do not have the disease (table 2.1). Increasing the prevalence of a 

disease increases the PPV and decreases the NPV.  

 
New test result Disease status (according to the gold standard) 

Positive Negative 

Positive True positive (“TP”) False positive (“FP”) 

Negative False negative (“FN”) True negative (“TN”) 

 Sensitivity = TP / (TP + FN) Specificity = TN / (TN + FP) 

PPV = TP / (TP + FP) NPV = TN / (TN + FN) 

 

Table 2.1. Calculating sensitivity, specificity, positive predictive value, and negative predictive value.   
 

2.1.3. Target product profiles  
The ideal characteristics of a diagnostic test, including sensitivity and specificity, are outlined in 

target product profiles (“TPP”). A TPP is a tool used to plan for the development of new products, 

listing the ideal characteristics a new product, whether a new drug, vaccine or test, should have, and 

the target population. TPPs are used by industry, but also by the World Health Organisation (“WHO”) 

to help inform product developers, R&D and other agencies, what the priorities are and what products 

are urgently needed across a range of diseases.  

 

What these ideal characteristics are is highly dependent on the setting the new test is aimed towards, 

and what the setting considers the most important outcome; for example, whether the aim of the test is 

to reduce transmission, reduce costs, or to guide clinical management.  One important test 

characteristic is test accuracy, which is determined by sensitivity and specificity. Whether a test with 

high sensitivity but lower specificity is favoured, or vice versa, will depend on the setting, disease, 

and the relative magnitude of outcomes for true positives versus false negatives and true negatives 

versus false positives.  For example, a test with high sensitivity may be favoured for a disease with 

high severity to reduce the chance of a misdiagnosis and for timely treatment initiation, whereas if the 

prevalence of a disease is low, a test with high specificity may be favoured to reduce the risk of false 

positives and unnecessary treatment. Other test characteristics that are often considered include cost, 

infrastructure requirements (including training requirements for healthcare workers and electricity 

requirements) and turnaround time. Again, the relative importance of these additional characteristics 

is highly setting-dependent. For example, a diagnostic test whose aim is to detect a disease in hard-to-

reach areas that have little health infrastructure, would need to be suitable at the point-of-care, and 

should ideally meet the ‘ASSURED’ criteria: Affordable, Sensitive, Specific, User-friendly 

(minimum training required), Robust and rapid, Equipment-free, and Deliverable to the target 

population (5). On the other hand, in a setting concerned less about speed but more about accuracy, 
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for example for disease surveillance, then a highly sensitive and specific laboratory-based test is 

required.  

 

2.2. Tuberculosis  

2.2.1. Epidemiology 
Tuberculosis (“TB”), caused by the bacterium Mycobacterium tuberculosis (“MTB”), is a leading 

cause of death, globally, from an infectious disease (6). In 2019, there were an estimated 8.9-11.0 

million new cases and 1.20-1.50 million TB deaths (6). TB affects mainly low- and middle- income 

countries (“LMICs”), with just under half of incident cases in 2019 occurring in just five countries 

(India, Indonesia, China, the Philippines, and Pakistan) (6).  

 

2.2.2. Natural history  
TB is an airborne disease and is transmitted by aerosol droplets (7). According to current 

understanding of the natural history of TB, there are two main stages: latent infection (“LTBI”) and 

active disease, both of which are described in further detail below. Traditionally, LTBI and active 

disease have been treated as two separate entities; however, increasing evidence suggests they should 

be considered to be at opposite ends of a spectrum, with individuals moving forward or backward 

along this spectrum depending on various factors, including immune status (8,9) (fig 2.2).  

 

Figure 2.2. The different stages of TB infection and how they manifest. Adapted from Barry et al 2009 (9), 
Drains et al 2018 (10) and Pai et al 2016 (8). Note, not all individuals exposed to MTB will develop LTBI. 
Recovery may be due to TB treatment or self-cure.  
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2.2.2.1. Latent tuberculosis 
Upon infection with MTB, the host’s immune system is activated; in the majority, MTB replication is 

contained within granulomas containing macrophages, and T and B cells. If the immune system fails 

to eliminate the infection, a balance is achieved where MTB replication and dissemination is 

prevented, and immunopathology is limited (11); these individuals are described as having LTBI. 

LTBI individuals are asymptomatic, non-infectious and the only evidence of infection is an immune 

response when presented with MTB antigens (12). Traditionally, it was estimated that one third of the 

world population has LTBI (13); however, a more recent estimate suggests just under a quarter (14).   

 

The risk of developing active TB disease changes over time and is age dependent. It is estimated that 

the risk of developing disease within the first five years of initial infection (fast progressors) is 4% if 

infected as a child (ages 0-10 years), increasing to 14% for those over the age of 20 years (15). LTBI 

can also progress to active disease many years after initial infection as endogenous reactivation or 

exogenous reinfection. Thus, the lifetime risk of developing active disease amongst those with LTBI 

is only 5-10% (6). There are several risk factors for disease progression, including but not limited to, 

recent TB infection (14), age (15), HIV co-infection (16,17), diabetes (18) and malnutrition (19,20). 

Risk factors are discussed in greater detail on page 22. Progression to active disease can be prevented 

by TB preventive treatment (“TPT”) or vaccination; I discuss TPT in further detail on page 32.   

 

2.2.2.2. Incipient tuberculosis 

Between LTBI and active disease, there is a stage called incipient TB (21). Throughout, I follow the 

definition by Drain et al (10): individuals at this stage are at imminent risk of progressing to active 

disease in the absence of any intervention, but are asymptomatic and have no microbiological 

evidence of active disease. Using this definition, these individuals are unlikely to be infectious. It 

should be noted that across the literature, definitions for what comprises incipient TB differ. For 

example, the WHO defines it more broadly as “the prolonged asymptomatic phase of early disease 

during which pathology evolves, prior to clinical presentation as active disease”; this definition 

groups together incipient TB and subclinical TB,. I discuss in further detail the progress being made 

in detecting incipient TB in chapter 3.   

 

2.2.2.3. Subclinical tuberculosis 
Subclinical TB is defined as individuals with bacteriologically confirmed TB, but with no 

presentation of clinical symptoms. These individuals may contribute to onwards transmission (22–

24). Until recently, the importance of subclinical TB has been largely overlooked. Recent studies that 

have analysed TB prevalence surveys found that around half of bacteriologically confirmed TB did 

not report symptoms (22,25). A modelling study suggests that subclinical TB may reduce the impact 
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of interventions (26). Many questions remain, such as how does the prevalence of subclinical TB vary 

across populations, and how much TB morbidity and mortality could be averted by targeting 

individuals with subclinical TB (10).  

 

2.2.2.4. Active tuberculosis 

An individual develops active disease when the balance between the immune system and MTB is 

disrupted, a process known as endogenous reactivation; MTB escapes from the granulomas and start 

replicating, leading to a pro-inflammatory response (11). Once an individual develops active disease, 

they are symptomatic and infectious. Typical symptoms include fever, night sweats, chest pain and 

coughing. However, symptoms will depend where the disease has established itself in the body (27).   

 

Active TB disease presents itself in two ways: pulmonary and extrapulmonary. Pulmonary TB is 

when the disease affects the lungs, whereas extrapulmonary TB is when the disease affects other sites 

(for example, the lymph nodes). The majority of active disease cases are pulmonary, with only 16% 

of incident cases notified in 2019 being extrapulmonary (6). Extrapulmonary TB often goes 

undetected; a sputum sample is required for most current TB diagnostic tests, however patients with 

extrapulmonary TB are unlikely to have MTB in their sputum (because the MTB is present in organs 

other than the lungs). Further details on TB diagnostics are discussed on page 23.   

 

2.2.2.5. Tuberculosis recurrence 

TB can recur in two ways: exogenous reinfection or relapse. Exogenous reinfection is when an 

individual who has previously been infected with TB acquires a new infection, whereas an individual 

is said to have relapsed if they become reinfected with the original infection after successful treatment 

completion or self-cure. Prior infection is not completely protective against reinfection; a review 

estimated that prior infection confers 79% protection (28), although results differ substantially 

between studies (28–30). Risk factors for recurrent TB include HIV coinfection (31,32), being of an 

older age when experiencing a first episode of TB (33), and incomplete treatment (34,35).  

 

The relative contribution of exogenous reinfection and relapse to TB recurrence is debated. It is 

generally believed that the risk of exogenous reinfection increases alongside the incidence of TB (15). 

Marx et al (36) carried out a longitudinal study in South Africa, and using DNA fingerprinting of 

MTB strains, found that relapse occurred predominantly in the first year after treatment completion, 

whilst exogenous reinfection dominated after the first year.  

 

Studies from the pre-antibiotic and post-antibiotic era suggest that exogenous reinfection contributes 

more to transmission than endogenous reactivation (37). Pre-antibiotic era studies indicate that the 
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vast majority of active disease occurred within two years of infection (38,39); however, post-

antibiotic era studies suggest that although isoniazid (an antibiotic that prevents LTBI from 

developing to active disease) reduced the likelihood of developing active disease in the first year, this 

difference was insignificant after the first year (40,41). Again, this supports the idea that most TB 

transmission is occurring in the first few years after infection (including exogenous reinfection), and 

not several years after infection due to endogenous reactivation. In lower TB burden countries, a 

greater proportion of cases are due to endogenous reactivation as a result of the low risk of 

transmission (37).  

 
2.2.3. Risk factors for tuberculosis  

Below, I discuss the main risk factors that increase an individual’s risk of progression to active 

disease.  

 

2.2.3.1. HIV 

HIV is the strongest risk factor for the development of active disease, and increases the risk of 

reactivation between 15-22 times (42). This increased risk is due to the impairment of the host’s cell-

mediated immune response by HIV (16). TB is the leading cause of death in PLHIV, with one third of 

all deaths from AIDS due to TB (42,43). The risk of TB-related deaths is twice as high in PLHIV than 

amongst HIV negatives (44). Unfortunately, as PLHIV become increasingly immunosuppressed, they 

are more likely to develop extrapulmonary TB (45,46), making TB harder to detect. In 2018, 44% of 

TB-HIV coinfection did not access care (42). Autopsy studies highlight further the under-diagnosis of 

TB amongst PLHIV, which is often only revealed once the patient has died (47–51). The African 

region has the highest rate of TB-HIV coinfections, with HIV being a major driver of the TB 

epidemic; for example in South Africa, an estimated 59% of TB cases are coinfected with HIV (6). 

The WHO recommends routine HIV testing amongst all patients diagnosed with TB, and for PLHIV 

to be routinely screened for TB symptoms. PLHIV with LTBI should also be initiated onto TPT to 

prevent the development of active disease (42). The WHO further recommends antiretroviral therapy 

(“ART”) initiation for all PLHIV coinfected with TB. A meta-analysis suggest that ART reduces the 

risk of developing TB by 65%, regardless of baseline CD4 cell count (52). Unfortunately, in 2019 

only around 49% of PLHIV and TB were on ART (6).  

 

2.2.3.2. Other risk factors  

Other risk factors include age, diabetes, malnutrition, tobacco smoke and indoor air pollution. 

Comstock et al found that children under the age of four had the highest rates of TB disease with a 

second peak in older adolescents (53). Children have under-developed immune systems and are thus 

less able to control initial infection, whereas hormone modulation of the immune system may play a 
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role amongst adolescents (54). Overall, the risk of developing active TB disease amongst children 

follows the shape of a parabola: children under the age of 2 have the highest risk of developing active 

disease, with the risk decreasing as they grow older, but increasing again when they reach 

adolescence (55). There is inconclusive evidence about whether old age increases your risk of 

developing active disease (56).  

 

It is estimated that diabetes increases the odds of an individual developing active disease by 2-4 times 

(18,57,58) through host immune function impairment (57). In addition, diabetes increases the risk of 

adverse TB treatment outcomes (59). Unfortunately, diabetes is becoming a global health problem, 

due to rising levels of obesity, with the biggest increase expected to occur in LMICs (60). There is 

concern that this increase in diabetes will counteract efforts achieved by TB control programmes (61). 

A randomised control trial, PROTID, is currently underway to generate evidence on the use of TPT 

amongst people with TB and diabetes (62).   

 

In 2013, the WHO estimated that one quarter of all new TB cases was attributed to under-nutrition 

(63). Malnutrition impairs the host cell-mediated immune response, increasing susceptibility to TB 

infection, the risk of progression to active disease once infected (19,20) and the risk of drug toxicity 

(64,65). It is estimated that being underweight increases the risk of developing active disease by 2 to 3 

times (17). Unfortunately, malnutrition increases an individual’s susceptibility to infection, whilst 

infection increases an individual’s risk of malnourishment for reasons including malabsorption of 

nutrients, loss of appetite and weight loss (66).  

 

Tobacco smoke and indoor air pollution can alter the immunological response of the lung to MTB 

(67), as well as damaging the cilia in the airway (68). Meta-analyses have found evidence that 

smoking and air pollution increases the host susceptibility to TB infection, the risk of developing 

active TB disease and the risk of recurrent TB (69,70).  

 
2.2.4. Diagnosing tuberculosis 

2.2.4.1. Latent tuberculosis infection 

Although high TB burden countries focus mainly on detecting and treating active disease, modelling 

studies suggest that if TB elimination is to be achieved, LTBIs need to be targeted (71–74). 

Nevertheless, it is estimated that only around 72% of patients intended to be screened for LTBI 

received a test, of which 93% received a test result (75).   

 

The major limitation of diagnostic tests for LTBI is the lack of a gold standard for diagnosing LTBI; 

thus, the sensitivity and specificity of tests cannot be directly estimated. Instead, surrogates are used 
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to estimate the specificity and sensitivity of these tests. For example, patients with confirmed active 

TB disease are often used as surrogates to estimate the sensitivity of a LTBI diagnostic test, under the 

assumption that a LTBI test with 100% sensitivity would identify surrogates with confirmed active 

TB disease as having LTBI. On the other hand, healthy individuals with a low risk of disease are often 

used as surrogates to estimate the specificity of a LTBI diagnostic test, under the assumption that a 

test with 100% specificity would correctly identify these surrogates as not having LTBI disease. The 

disadvantage of using patients with active TB disease as surrogates is that these individuals tend to be 

immunosuppressed and thus, sensitivity may be underestimated in such studies (76). It is also 

complicated to compare studies that have used different types of surrogates, as well as comparing 

studies that evaluate tests in different epidemiological settings, with varying levels of TB incidence 

and risk factors.  

 

Finally, current LTBI diagnostic tests measure the sensitisation of a patient’s immune system to MTB. 

Therefore, they do not indicate whether a patient is still infected and cannot determine a patient’s drug 

sensitivity status (77). Despite this, meta-analyses have shown that at-risk patients who test positive 

are still more likely to develop disease and benefit from TPT (78,79). Below, I discuss the main tests 

available (a summary is provided in table 2.2).  

 
Tuberculin skin test  

The tuberculin skin test (“TST”), also known as the Mantoux test, is the classical method to diagnose 

TB infection. When an individual is initially infected with TB, T-cells are sensitized; thus, when 

tuberculin from the TST is injected into the arm of an individual with LTBI, memory T cells are 

recruited to the injection site, typically 48-72 hours later. The memory T cells release lymphokines, 

resulting in the induration of the skin (80). The diameter of the induration is measured and interpreted 

according to different cut offs. In immunocompromised patients, such as those with HIV infection, 

the cut-off values are lowered, to reflect the host’s decreased ability to produce an adequate immune 

response (81).  

 

In terms of application, the TST is simple, easy to perform and suitable for rural settings that have 

limited laboratory infrastructure (82). However, the TST needs to be refrigerated and requires at least 

two healthcare visits, increasing the risk of lost to follow up (76). TST results are also subject to 

reader variability (83).  

 

The specificity of TST is heterogeneous depending on the population examined, including whether or 

not a population has been vaccinated with the Bacillus Calmette-Guérin (“BCG”) vaccine and 

exposure to environmental mycobacteria (84,85). The tuberculin used in the TST is a mixture of 

antigens, shared by MTB, M. bovis BCG and environmental mycobacteria; thus, the immune system 
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of an individual vaccinated with the BCG or who has been exposed to environmental mycobacteria 

may therefore present as a false positive during a TST (84). For example, a meta-analysis, that 

estimated pooled specificity exclusively from studies that had tested healthy individuals with low-risk 

of TB found non-BCG vaccinated populations had a pooled specificity of 97%, which decreased to 

59% amongst vaccinated populations (86). However, the impact of BCG vaccination on TST is 

dependent on the age when the BCG was administered. Studies have shown that if the BCG is 

administered during infancy and it has been more than 10 years, the effect on TST is negligible (84). 

Finally, the specificity of the TST is reduced further by the booster phenomenon; the more TSTs a 

patient receives, a greater reaction to the test is seen, increasing the number of false positives 

(84,87,88).   

 

TST sensitivity is dependent on the cut-off point chosen; by decreasing the cut-off points test 

sensitivity improves, but at the expense of specificity (89). A meta-analysis that estimated pooled 

sensitivity exclusively from studies that used active TB disease as a surrogate for LTBI and that used 

a cut-off of less than 10mm, estimated a sensitivity of 77% (85), whereas another meta-analysis that 

used a cut-off of less than 15mm, estimated a pooled sensitivity of 64% (90). TST has low sensitivity 

in immunocompromised patients (i.e., PLHIV). These patients tend to present an anergic response, 

increasing the risk of a false-negative result (85).  

 

The NPV for TST is high; in other words, the chance an individual develops active TB disease is low 

if they are TST-negative. A meta-analysis estimated a pooled NPV of 99.4% (91). On the other hand, 

the PPV of TST is low, at around 1.5%, increasing to 2.4% amongst high-risk groups (91), suggesting 

that TST is poor at identifying individuals who are at high risk of developing active TB disease. 

Nevertheless, numerous studies have shown the benefit of TPT amongst individuals with a positive 

TST result (76,79).   

 

Interferon-gamma release assays 

Interferon-gamma release assay (“IGRAs”) are in vitro blood tests measuring interferon-gamma 

(“IFN-g”) released by T cells in response to stimulation by MTB antigens. The two most common 

commercially available IGRAs are: QuantiFERON-TB Gold In-Tube (“QFT-GIT”, Cellestis, 

Australia) and T.SPOT.TB (Oxford Immunotec, UK). A new version of QFT-GIT, QuantiFERON-TB 

Gold Plus (“QFT-Plus”) was released in 2015. The broad difference between the two tests is in the 

way they detect IFN-g: QFT detects the concentration of IFN-g using an enzyme-linked 

immunosorbent assay (92), whereas T.SPOT.TB measures the number of IFN-g releasing T cells 

using an enzyme-linked immunospot assay (93). Upon MTB infection, an individual’s T cells are 

sensitised; thus, when the individual is stimulated with TB antigens from an IGRA, the T cells release 
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higher levels of IFN-g than a non-infected individual (94). An individual is classified as infected with 

TB if the IFN-g response is above the test cut-off. Like the TST, IGRAs cannot differentiate between 

LTBI and active disease (94).  

 

In terms of application, IGRAs are advantageous as only a single healthcare visit is required. 

Furthermore, the interpretation of IGRA results are less subjective than TST (90,95,96). Nevertheless, 

IGRAs are more expensive than TST (90), and unlike TST, the tests involve taking blood samples, 

and require specialized equipment and trained personnel (90). Thus, in low-income settings with poor 

access to laboratory facilities, TST may be favoured. IGRAs suitable at the point-of-care are currently 

under development (97).  

 
In terms of performance, IGRAs are more specific than TST, because the MTB antigens used are 

highly specific to MTB  (98), reducing the risk of cross-reactivity. IGRAs may therefore be useful in 

individuals who have received the BCG vaccine after infancy (84,85,99) or amongst those that have 

received booster BCG vaccinations (100). In addition, serial testing can be performed without 

stimulating the booster phenomenon (99). Overall, a meta-analysis that estimated pooled specificity 

from studies exclusively using healthy individuals with low-risk of TB, estimated T.SPOT.TB to have 

a pooled specificity of 77% versus 57% for TST. In the same study, pooled specificity for QFT-GIT 

was similar to that of TST, at 71% and 70%, respectively (90). Another meta-analysis, again using 

healthy individuals with low-risk of TB as surrogates, estimated QFT-GIT to have a pooled 

specificity of 99% and 96%, amongst BCG-unvaccinated and BCG-vaccinated individuals (versus 

97% and 59% for TST, respectively) (85).  

 

Generally, studies have found IGRAs, especially T.SPOT.TB, to have higher sensitivity than TST. A 

meta-analysis that used active TB as a surrogate marker estimated the pooled sensitivity of 

T.SPOT.TB and QFT-GIT as 90% and 75%, respectively (versus 64% for TST) (90). QFT-Plus, is 

estimated to have even higher sensitivity for LTBI than QFT-GIT (101). There is conflicting evidence 

whether IGRAs have improved sensitivity amongst immunodeficient hosts compared to TST 

(94,102).  

 

Like TST, it is estimated that IGRAs have high NPV. Meta-analyses estimate an NPV of over 99% 

(104,105). It is suggested that the ability of IGRAs to predict progression to active disease is only 

modest, although likely higher than the TST. A meta-analysis estimated the pooled PPV for IGRAs to 

be 2.7%, increasing to 6.8% amongst high-risk groups (compared to 1.5% and 2.4% for TST, 

respectively) (104). A more recent meta-analysis concluded similarly (105).   
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Overall, IGRAs may be useful in settings where post-infancy BCG-vaccination is common (85) and 

in high-income countries (“HICs”) with a low burden of TB, due to their high specificity and 

logistical advantages. TSTs are still preferred in high TB burden LMICs (82).  

 

C-Tb 

A new generation of skin tests are under development, one of which is C-Tb (Statens Serum Institute, 

Denmark). The C-Tb combines the advantages of TST and IGRAs. It is a skin test, like TST, making 

it easier to use in the field, but uses two of the three antigens used in IGRAs, in order to have high 

specificity (106).  

 

C-Tb requires 48 to 72 hours of incubation and a cold chain supply. Unlike TST which requires 

different cut-off points depending on the at-risk population, C-Tb has one universal cut-off, increasing 

its ease of use (107). Further studies are needed to determine the cost-effectiveness and acceptability 

of the test. 

 

Phase III clinical trials found C-Tb to be safe (108) and suggest a specificity similar to QFT-GIT that 

is unaffected by BCG vaccination (109). Using active TB as a surrogate marker, sensitivity was 

estimated at 75% with similar results in HIV-positive and HIV-negative patients, although test 

sensitivity did decrease amongst HIV-positive patients with CD4 cell counts < 100 cells/mm3 (110). It 

is unlikely that C-Tb will have a higher PPV than IGRAs for the development of active TB, 

considering that they are based on the same antigens (111). 

 

Overall, the improved specificity of the C-Tb amongst BCG vaccinated individuals and ease of use in 

the field, may improve LTBI diagnosis in resource-limited settings, where IGRAs are too costly and 

problematic to use (112).  
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Test Sensitivity Specificity PPV NPV Sample 
type 

Infrastructure 
required 

Relative cost 

 
TST 

 
64 – 77% 

 
57 – 97% 

 
1.5 – 
2.4% 

 
>99% 

 
Skin 

Primary care 
clinics, but requires 

refrigeration and 
trained healthcare 

workers 

 
Medium 

 
IGRAs 

 
69 – 94% 

 
71 – 99% 

 
2.7 – 
6.8% 

 
>99% 

 
Blood 

Laboratory 
infrastructure and 

highly skilled 
healthcare workers 

needed 

 
High 

C-Tb 75%* 99%* N/A N/A Skin Primary care 
clinics, but requires 

refrigeration 

Medium 

 

Table 2.2. Summary of the main diagnostic tests for latent TB infection. Relative cost indicates how the cost 
of each test compares to each other. *Based on an individual study 
 

2.2.4.2. Active tuberculosis 

Due to the infectious nature of active TB disease, TB control efforts have traditionally focused on 

diagnosing and treating these individuals. Not only does detecting active TB disease in a timely 

manner reduce onward transmission, it also reduces the risk of severe clinical disease. Unlike LTBI 

diagnosis, a gold standard exists, making it easier to estimate the accuracy of new diagnostic tests. 

However, out of the 10 million new TB cases in 2019, only 7.1 million were diagnosed (6). In this 

section, I will explore the most common tests used to diagnose active TB disease (summarised in 

table 2.3).  

 

Mycobacterial culture 

Mycobacterial culture is considered to be the gold standard by the WHO for diagnosing active TB 

disease (113); however, it is rarely used in day-to-day diagnosis. It was previously used for in vitro 

phenotypic testing for drug resistance (114). Mycobacterial culture involves taking a sample from a 

patient with suspected TB and plating the sample on a solid or liquid medium in a laboratory. Due to 

the slow growing nature of mycobacteria, it typically takes 6-8 weeks, but can be as high as 12 (113). 

Specialised laboratory equipment and skilled laboratory workers are required due to the risk of 

laboratory-acquired TB when handling mycobacterial cultures (115). Thus, the per-test cost is high 

(116,117).   

 

Sputum smear microscopy 

Sputum smear microscopy has been the primary test used to diagnose active TB disease for over 100 

years. A patient with suspected TB expectorates a sample of sputum; the sample is then prepared 

using an acid-fast stain procedure (a ‘smear’) and examined under a microscope. Typically, this 
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procedure is repeated twice. The number of acid-fast bacilli present in a smear indicates how 

infectious the patient is (46).   

 

Depending on the result of a smear test, a patient can be diagnosed as either being smear positive or 

smear negative. Someone who is smear negative has clinical or radiological evidence of TB but has a 

negative result. Although smear negative infections are less infectious, they are responsible for around 

13-20% of transmission (118–121). If smear-positives are indeed more infectious than smear-

negatives, the main advantage of sputum smear microscopy is that it identifies the most infectious 

patients; in other words, patients that are more likely to transmit at higher rates (122). Furthermore, a 

study estimated that smear positive TB has TB-specific mortality rates 15 times higher than smear-

negative TB (123). HIV coinfection increases the risk of smear negative results; Lawn et al found that 

between 1996 and 2004, as HIV prevalence was increasing, the rates of smear negative TB increased 

over 4-fold, whereas the rates of smear positive increased less than 2-fold (124).  

 

The risk of healthcare workers (“HCWs”) becoming infected whilst handling samples is lower than 

for mycobacterial cultures; thus, less training is required, and the test can be performed in primary-

care clinics. Once initial equipment, such as microscopes, are purchased, sputum smear microscopy is 

inexpensive. It is also relatively quick to perform, typically requiring a few hours. Nevertheless, 

although it is easier to train HCWs to perform sputum smear microscopy than mycobacterial culture, 

skilled interpretation of the smears and a constant supply of reagents are needed (125). 

 

Sputum smear microscopy relies on the patient expectorating sputum, ideally twice. Testing that is 

reliant on sputum is problematic amongst PLHIV, and patients with extrapulmonary or paucibacillary 

TB (i.e. children) (126,127). PLHIV are more likely to have extrapulmonary TB and struggle to 

produce sputum (128). Those with extrapulmonary TB in the absence of pulmonary involvement, 

have insufficient bacillary load in their sputum to be detectable by microscopy (129,130). Thus, some 

studies have reported sputum smear microscopy to have low sensitivity. One meta-analysis amongst 

PLHIV and HIV-negative individuals estimated the pooled sensitivity to be 64% (131), whereas a 

meta-analysis focussing exclusively on PLHIV calculated the pooled sensitivity to be 40% (132). It is 

estimated that sputum smear microscopy misses around 40-60% of TB cases (133). Overall, sputum 

smear microscopy has high specificity, at around 98% (131).  

 

Xpert® MTB/RIF 

Xpert® MTB/RIF (“Xpert”; Cepheid, USA) is a rapid molecular diagnostic test recommended by the 

WHO for use in adults and children (113). It is an automated real-time PCR assay using the 

GeneXpert platform and is typically performed on sputum. It can also detect rifampicin resistance. 

This ability to detect rifampicin resistance has led to a shift from phenotypic drug testing to genotypic 
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drug testing, allowing for quick identification (114). By the end of 2016, it was estimated, that 28 out 

of the 48 countries in the WHO’s list of high burden countries have adopted the use of Xpert (113). 

Unfortunately, the roll-out has been impeded by several issues including poor policy adoption, 

insufficient comprehensive training amongst HCWs, lack of quality assurance, challenges in settings 

with unstable power supplies, poor equipment maintenance and weak supply chains (134–137). 

 

In terms of logistics, an Xpert test is quick and provides results usually within two hours. If Xpert is 

placed in primary care clinics, a higher proportion of patients have a same-day diagnosis and same-

day treatment initiation than sputum smear microscopy (133). This quick turnaround time, the time 

from sputum collection to a patient receiving test results, reduces lost-to-follow up, decreases delays 

in TB treatment initiation (138,139) and thus, can potentially improve patient outcome. Studies show 

that Xpert can be performed by minimally trained HCWs (133,139,140); however, many countries 

have placed Xpert in centralised laboratories which can increase turnaround time (141).  

 

Logistical disadvantages include its higher cost compared to sputum smear microscopy; however, it 

has been suggested that the cost could be compensated by the test’s faster turnover, and therefore, 

higher diagnostic yield (142). Pooled-sputum strategies are also being investigated to further reduce 

costs (143). Xpert also has high infrastructure requirements, requiring stable temperature, humidity 

and power supply; this is problematic in many high TB burden settings (134). These requirements 

have led to a relatively high failure rate, ranging between 5-17% depending on the setting (144,145). 

Finally, like sputum smear microscopy, a sputum sample is required.  

 

In terms of performance, the main advantage of Xpert is that it can detect around 67% of TB cases 

that are missed by sputum smear microscopy, due to its higher sensitivity and lower threshold of 

detection (146). Overall pooled sensitivity is estimated to be around 89%; this increases to 98% 

amongst smear-positive, culture-positive patients (147). However, sensitivity suffers in sub-groups 

that find it more difficult to self-expectorate sputum; for example, a meta-analysis calculated a pooled 

sensitivity of 87% amongst pulmonary TB patients, but this decreased to 80% in extrapulmonary TB 

patients (148). Similarly, a meta-analysis estimated the pooled sensitivity to be around 79% in PLHIV 

(147,149). Specificity is consistently high at around 99% (147). 

 

Despite the improved diagnostic performance of Xpert relative to sputum smear microscopy, the rates 

of TB treatment initiation, risk of mortality and treatment outcomes between the two diagnostic tests 

have stayed the same (133,138,150–153). One potential explanation is where Xpert tests are being 

carried out; if the machines are in laboratories or centralised health facilities instead of primary care 

clinics, the turnaround time is increased (150). This increases the risk of loss-to-follow up and onward 

transmission and fails to make use of the major advantage of Xpert – its speed. Unfortunately, 
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economic evaluations suggest that the unit cost of an Xpert test is greater at the point-of-care than at 

centralised healthcare facilities; the latter being able to test a higher volume of samples (140,154). 

Another explanation is high background rates of empirical treatment (where a patient initiates TB 

treatment based on clinical symptoms, despite a negative diagnostic test result). If a combination of 

smear microscopy and clinical judgement is relatively accurate, then the incremental benefit of Xpert 

is reduced (151,155,156). High rates of empirical treatment in cohorts tested with sputum smear 

microscopy will negate the improved diagnostic accuracy of Xpert. Thus, the incremental benefit of 

Xpert may be greater in countries with lower rates of empirical treatment (133).  

 

Urine-lipoarabinomannan tests 

To circumvent the issues surrounding sputum samples, there has been a drive to develop non-sputum-

based diagnostic tests. A particular focus has been placed on urine; studies have found that over 90% 

of PLHIV can produce a urine sample, compared to 50% for sputum (157–159). Furthermore, urine 

collection is less invasive than sputum collection, and carries a lower infection risk. Using lateral-flow 

technology, a mycobacterial antigen, lipoarabinomannan (“LAM”), is detectable. LAM is a glycolipid 

component of the MTB cell wall (160), whose function includes inhibiting host macrophages and 

proinflammatory cytokines (161). Two lateral flow LAM tests exist: Alere DetermineTM LAM Ag 

(“AlereLAM”; Abbott, USA) and Fujifilm SILVAMP TB LAM (“FujiLAM”; Fujifilm, Japan). I 

discuss the logistical advantages and diagnostic performance of both tests in greater detail in Chapter 

4.  

 

Chest radiography 

Although not recommended by the WHO as a diagnostic tool, chest radiography which identifies lung 

abnormalities, is frequently used, especially in the private sector in India (162) and for mass-screening 

efforts in Russia (163). Chest radiography is highly sensitive for pulmonary TB, ranging between 87-

98% (162); however, it has poor specificity, ranging between 46-89%, as many lung abnormalities 

identified by the test are shared with other lung pathologies (162). In addition, chest radiography has 

significant inter-observer variation. Consequently, the WHO currently only recommends chest 

radiography in combination with bacteriological confirmation.  

 

In terms of logistics, chest radiography has traditionally been challenging. Patients are exposed to 

radiation, and special equipment, power and highly skilled HCWs are needed, all of which limit 

access in rural and hard-to-reach areas (162). Nevertheless, advances in digital technologies has 

reduced the amount of radiation a patient is exposed to, and portable chest radiography and objective 

tools to interpret X-rays are under development (162,164).  
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Table 2.3. Summary of the main diagnostic tests for active TB disease. Relative cost indicates how the cost 
of each test compares to each other. * Amongst PLHIV with signs and symptoms of TB only; #  Based on two 
studies only (165,166)  
 
2.2.5. Treatment of tuberculosis  
Below, I briefly discuss current treatment regimens for both LTBI and active TB disease, in addition 

to the emerging threat of antibiotic drug resistance.   

 

2.2.5.1. Preventive treatment  
The ability of TPT to prevent progression to active disease was first demonstrated in the 1950s and 

1960s, when controlled isoniazid prophylaxis trials were carried out amongst children (167), contacts 

of people with known TB (168,169) and the community (170). The majority of the studies were 

carried out in the United States. More recently, a meta-analysis concluded that TPT reduces the risk of 

PLHIV developing active disease (79). A long-term trial found TPT reduces mortality in PLHIV, 

even amongst those on ART and those with high CD4 counts, concluding that TPT should be offered 

to all PLHIV (171).  

 

In 2018, the United Nations held its first meeting on TB, and made a commitment to provide TPT to 

30 million people globally between 2018 and 2022, in order to push towards TB elimination (172). In 

2019, the number of individuals started on TPT increased to 4.1 million, a substantial increase from 1 

million in 2015 (6). Nevertheless, around 70% of individuals are lost before TPT initiation, and only 

around 60% complete treatment (75).  

Test Sensitivity Specificity Sample 
type 

Infrastructure 
required 

Relative cost 

Mycobacterial 
culture 

100% 100% Blood, 
sputum, 

urine 

Specialised laboratory 
equipment; highly 

trained workers 

High 

Sputum smear 
microscopy 

40-64% 97-99%  Sputum Primary care clinics; 
skilled interpretation 

needed 

Medium 

 
Xpert MTB/RIF 

46-89% 98-99% Sputum Ideally primary care 
clinics, but often 

found in centralised 
laboratories; high 

infrastructure 
requirement 

High 

Alere Determine 
LAM Ag 

12-67%* 85-98%* Urine Primary care clinics; 
minimum training 

required; point-of-care 

Low 

Fujifilm SILVAMP 
TB LAM 

36-84%* # 85-98%* # Urine Primary care clinics; 
minimum training 

required; point-of-care 

Low 

Chest X-ray 87-98% 46-89% N/A Primary care clinics, 
however some are 

now portable; skilled 
interpretation needed 

Medium 
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Currently, around 60% of the high TB-HIV burden countries provide TPT to PLHIV initiating ART; 

however globally, TPT coverage is estimated to be around 50% (6). The reasons behind the slow 

scale-up of TPT amongst PLHIV include miscommunication between the TB and HIV programmes, 

supply chain issues and fear amongst HCWs that isoniazid uptake may increase drug resistance 

(173,174). Another issue is the low coverage of TPT amongst household contacts of diagnosed cases. 

The WHO currently recommends TPT amongst all household contacts of people with 

bacteriologically confirmed pulmonary TB (175). However, less than 20% of children under the age 

of 5 and less than 1% of those over the age of 5 that were household contacts of a positive TB case 

were initiated onto TPT (6,176).  

 

There are currently 6 WHO-recommended TPT regimens (table 2.4). Traditionally, the standard 

course of TPT consists of a long course of daily isoniazid for either 6- (“6H”) or 9- (“9H”) months. A 

meta-analysis found that 6H had an efficacy of 69%, with the efficacy increasing to over 90% for 9H 

or longer (up to 12 months) regimens (177). Although effective at reducing the risk of active TB 

disease, patients have an increased risk of hepatotoxicity (178–180), and adherence is poor, in some 

cases less than 50%, due to the long duration of treatment (181). The protective effect of isoniazid 

TPT may wane (182), in some cases, immediately after treatment has stopped. This may be due to 

reactivation, if LTBI was inadequately treated, or due to reinfection (41). 

 
TPT regimen Prescription 

6H Daily dose of isoniazid for 6 months 
9H Daily dose of isoniazid for 9 months 

3HP Weekly dose of rifapentine and isoniazid for 3 months 
3HR Daily dose of rifampicin and isoniazid for 3 months 
1HP Daily dose of rifapentine and isoniazid for 1 month 
4R Daily dose of rifampicin for 4 months 

 

Table 2.4. Summary of the WHO-recommended TB preventive treatment regimens.  

 
Recently, the addition of rifamycins, a group of antibiotics that include rifampicin and rifapentine, 

have shorten the length of TPT regimens. Compared to long course isoniazid, studies suggest these 

regimens are non-inferior, improve patient adherence, have higher treatment completion rates and 

have fewer frequent adverse events (183–187). As the shorter regimens are relatively new, and thus 

costly, there has been an effort to reduce the cost of these regimens. Despite these efforts, less than 

30% of high TB burden countries have started using 3HP; the remaining 70% exclusively recommend 

the use of 6H (6).  
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2.2.5.2. Active disease treatment  
If the patient has drug-susceptible TB (“DS-TB”), active disease can be cured by a 6-month daily 

course of 4 antibiotics, commonly rifampicin, isoniazid, pyrazinamide and ethambutol 

(“2HRZE/4HR”). The first two months, referred to as the intensive phase, involves the patient taking 

all 4 antibiotics; the last 4 months, the continuation phase, involves the patient taking only 2 

antibiotics, isoniazid and rifampicin (188). The same course of treatment is recommended for patients 

with extrapulmonary TB; although, those with a severe form of extrapulmonary TB may need to 

extend treatment to 9 months (189). Fixed dose combinations (“FDCs”) were developed to reduce a 

patient’s pill burden, to improve adherence and reduce the risk of drug resistance (190). However, a 

meta-analysis found that although FDCs simplify treatment for patients, it does not necessarily 

improve treatment outcome, nor compliance (191).  

 

Globally, the treatment coverage for active TB disease was 71% in 2019; substantial progress has 

been made, considering that treatment coverage was only 59% in 2015. In 2019, treatment success 

rate was estimated at 85%, again varying substantially across countries and regions; amongst PLHIV, 

the rate of treatment success decreases to 76% due to PLHIV facing delays in diagnosis and treatment 

initiation (6).  

 

The WHO estimated the median cost of treating DS-TB in 2019 was USD 860, with the cost 

decreasing in countries with a lower gross domestic product (“GDP”) per capita (6). 

 

2.2.5.3. Drug resistance 
Different types of drug-resistance (“DR-TB”) exist including rifampicin-resistant TB (“RR-TB”); 

multi-drug resistant TB (“MDR-TB”) where individuals are resistant to rifampicin and isoniazid; 

MDR-TB with additional resistance to fluoroquinolones; and extensively drug-resistant TB (“XDR-

TB”) where individuals are resistant to rifampicin, isoniazid, fluoroquinolones and to at least one of 

the injectable second-line drugs.  

 

Individuals develop DR-TB through treatment mismanagement (for example, if the supply of drugs is 

interrupted during the treatment or a wrong dosage is prescribed) or transmission from a patient with 

DR-TB. There is conflicting evidence on whether DR-TB transmits just as easily as DS-TB (192). 

However, a modelling analysis by Kendall et al suggests that the majority of MDR-TB stems from 

transmission instead of treatment-related acquisition of resistance (193). These results indicate that 

focussing exclusively on improving drug-susceptible treatment is unlikely to have a significant impact 

on reducing MDR-TB incidence.   
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RR- and MDR-TB patients are treated with second-line drugs. A meta-analysis suggests that the time 

to treatment initiation is extremely variable, and can take as long as 81 days from specimen collection 

(194). It is recommended that patients are given a combination of four drugs, three from Group A 

drugs (that includes fluoroquinolones) and one from Group B (clofazimine or cycloserine). XDR-TB 

patients have access to an even smaller pool of antibiotics and must take the drugs for around 18-20 

months with a high risk of severe side effects (195).  

 

Treatment success rate is poor for RR- and MDR-TB; in 2019, the treatment success rate was 

estimated to be 57%, with the remaining 43% having failed treatment (7%), died (15%), or were lost 

to follow up (21%). Overall, the WHO estimated treatment success for MDR-TB for the Southeast 

Asia and Africa regions in 2017 to be 52% and 64%, respectively; this rate decreases to 37% and 59% 

for XDR-TB, respectively (196).   

 

The drugs for DR-TB are also costly. In 2019, the median cost of MDR-TB treatment was estimated 

at USD 5,659 per patient; like with DS-TB, the cost decreases with GDP per capita. The cost has also 

decreased year on year, partly due to decreasing the duration of hospitalisation and development of 

newer treatment regimens (6). As the burden of MDR-TB increases, the funding required for MDR-

TB will increase to an estimated USD 5.7 billion in 2022 (6).   

 

2.2.6. Policy  

In 1995, the first major TB strategy, Directly Observed Treatment, Short course (“DOTS”), was 

launched by the WHO. The aim was to create a global systematic TB response through efforts such as 

directly observed TB treatment to increase treatment completion, as well as ensuring a continuous 

supply of medication (71). Raviglione et al (197) found that amongst countries that had adopted 

DOTS, treatment cure rates improved (76% compared to 42% in non-DOTS countries). Globally, it is 

estimated that case detection rates increased from 11% in 1995 to 45% in 2003 (198).   

 

Although DOTS progressed TB control in the late 1990s and early 2000s, more action was needed to 

tackle issues such as DR-TB, the quality of TB care in the private sector and TB prevention. 

Consequently, additional strategies have been launched, including the Global Plan to Stop TB in 2006 

and more recently, the End TB Strategy in 2015. The aims of the latter include reducing TB deaths 

and incidence by 95% and 90%, respectively, by 2035 compared to 2015. The first milestone was in 

2020, where the aim was to reduce TB deaths and incidence by 35% and 20%, respectively (199). 

Although TB incidence is decreasing globally, this decrease was not enough to reach the first 

milestone, with only a 9% reduction in global incidence between 2015 and 2019 (6). Progress in 



 36 

reducing TB mortality was even slower, with only a 14% reduction in TB mortality between 2015 and 

2019, globally (6).  

 

Although substantial progress has been made in the last decade, many barriers remain if the End TB 

Strategy aims are to be achieved. The Lancet Commission recommend five priority investments: (1) 

Ensure accurate rapid diagnostic tests and treatment are available to all those seeking care; (2) Reach 

high-risk populations and ensure they have access to treatment and care; (3) Increase investment in 

TB research, especially in developing new diagnostics, treatments and vaccines; (4) Increase 

investment in TB programmes; (5) Ensure countries are held accountable (200).  

 

Unfortunately, the novel coronavirus disease 2019 (“COVID-19”) pandemic at the end of 2019, 

caused by the severe acute respiratory syndrome coronavirus 2 (“SARS-CoV-2”), threatens to reverse 

this progress. The COVID-19 pandemic has placed countries under huge economic strain, and so TB 

budgets are likely to decrease (6). The lockdowns enforced by governments to control the spread of 

SARS-CoV-2 has led to prolonged household TB exposure, decreased TB case detection and has 

disrupted TB services (6,201). Multiple modelling studies have analysed the impact that disruption on 

TB services will have on TB incidence and mortality, concluding that TB levels could revert back to 

numbers seen in 2015 (202–204).  

 

In the following section, I discuss in further detail two settings that I focus on in this thesis. These two 

settings are India, which has the world’s highest absolute burden of TB, and South Africa, which has 

the world’s highest rates of TB (6).  

 

2.2.7. India  

2.2.7.1. An overview of tuberculosis in India  

Globally, India has the highest number of TB cases. Substantial progress has been made, and 

incidence has decreased from approximately 300 per 100,000 in 2000 to 193 per 100,000 in 2019 (6). 

Similarly, TB mortality amongst HIV-negatives has decreased from 60 per 100,000 in 2000 to 32 per 

100,000 in 2019 (6). Factors that have fuelled the TB epidemic in India, include poverty, 

overcrowding, malnutrition, and high rates of tobacco smoking, all of which leave individuals more 

vulnerable to developing active disease (113,205). Although DR-TB and HIV/TB co-infection 

accounts for less than 5% and 4% of incident-TB cases in India, respectively (113), DR-TB is 

increasing, fuelled by the mismanagement of TB cases by the private healthcare sector. In India, the 

private healthcare sector plays a major role in healthcare provision due to an underfunded public 

sector (206–208).  
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2.2.7.2. Public healthcare sector  
Healthcare offered by the government is, for the majority, cost-free and available to all citizens; 

however, there is heterogeneity between states (207,209) as healthcare expenditure is the 

responsibility of both the states and central government (210). This has led to a fragmented health 

sector (211) and vastly different public health spending per capita across states (212). Further 

heterogeneity lies between urban and rural areas; those living in urban areas tend to have greater 

access to public health facilities than those living in rural areas (207,211,213).  

 

The Government of India, in the past couple of decades, has launched a variety of initiatives to 

improve the health of the population by increasing healthcare coverage and accessibility. Since 1962, 

India has had a National TB programme (“NTP”). In 1992, a study revealed that the NTP failed to 

meet many of its objectives due to a lack of funding. Many issues were raised, including drug 

shortages, lack of consensus surrounding treatment and incorrect diagnostic tools being used (clinical 

and radiological diagnosis were preferred over sputum smear microscopy) (214). Thus, to strengthen 

the NTP, the National TB Elimination Programme (“NTEP”, formerly known as the Revised National 

TB Control Programme, “RNTCP”) was developed and scaled-up from 1997. Its main target was to 

adopt DOTS, and for India to achieve 70% case detection and 85% cure rate. Since 2007, these targets 

have been achieved, and the rate of TB mortality has decreased (113). In 2012, TB was made a 

notifiable disease and the NTEP developed an online reporting platform, NIKSHAY, for public and 

private providers to notify TB cases. Despite this, notifications from the private sector remain low 

(215).  

 

2.2.7.3. Private healthcare sector 
In the past couple of decades, the private sector in India has grown rapidly (211,216). The private 

sector encompasses allopathic (degree and non-degree (217)) providers, chemists, and non-allopathic 

providers (ayuverdic and homeopathic practitioners). Reasons behind individuals seeking care in the 

private sector include: accessibility (209,211), flexible payment options (218–220), convenient 

opening times (211,221), shorter waiting times (209,221,222) and mistrust in government services 

(222).  

 

It is estimated that around half of TB patients seek care and are treated in the private sector (223–

225). However, it is difficult to get a precise number, for despite the Government of India making TB 

a notifiable disease, many private providers fail to notify for fear of losing their patients (226). A 

community survey found that 91% of private providers were aware that TB is a notifiable disease; 

however, 82% were unaware of the reporting system NIKSHAY (215). Drug sales data have provided 

an indication to the large extent to which patients are reliant on the private sector for TB treatment; 
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the study estimated that in 2014 between 1.19 and 5.34 million TB cases were treated in the private 

sector, more than twice the amount that was previously assumed (227).   

 

The quality of care received in the private sector, varies hugely. A systematic review, assessing both 

public and private providers on their knowledge on the use of sputum smear microscopy and DS-TB, 

estimated that less than one half and one third had correct knowledge, respectively (228). A study in 

Chennai found that consulting an informal provider increased the delay from symptom onset to 

treatment initiation by 23 days (229).  However, another study found that private providers were no 

worse than public providers in terms of diagnosis and treatment (230).  

 

As a result of seeking care privately, many Indian households face catastrophic healthcare expenditure 

(231); defining catastrophic health expenditure as 10% of total household consumption or 

expenditure, it is estimated that around 17% of patients face catastrophic health expenditure (113). 

Out-of-pocket (“OOP”) payments are one of the main causes of debt, and thus, poverty, in India 

(207,231).  

 

2.2.7.4. Public-private sector partnerships 

Since the early 2000s, the RNTCP has recognised the importance of engaging the private sector. 

Collaborations between the public sector and private providers are known as public-private mix or 

public-private partnerships (“PPP”). These projects include providing training for private laboratories, 

reaching out to private providers to encourage them to notify their TB patients, and encouraging 

private providers to refer their TB patients to the public sector for treatment (232,233).  

 

However, uptake of PPP schemes has been low in many states (234). Reasons behind private 

providers refusing to sign up to PPP schemes, include concerns about a lack of return benefit for their 

engagement, lack of trust in the government, lack of flexibility and the viability of such schemes 

(235,236). Another reason for the slow uptake of PPP schemes is their affordability. However, three 

recent pilot programmes carried out across India found that these programmes were comparable in 

cost to what is already being spent in the public sector; these pilots provided monetary incentives to 

private providers and utilised private provider support agencies to train private providers (237).   

 

Modelling studies have examined the impact private sector engagement may have on the TB 

epidemic. One study highlighted the fact that unless the private sector is engaged and is encouraged to 

increase their use of Xpert, a limited impact on the TB epidemic will be seen (238). Nevertheless, 

another study suggests that engaging the private sector will not be enough for India to reach TB 
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elimination, likely due to the large amount of transmission occurring before a patient first seeks care 

(239).   

 

2.2.7.5. Cascade of care  

In 2016, it was estimated that around 26% of TB patients in India were ‘missing’ (206). Care cascades 

can help identify at which stage these patients are being lost. Delays in diagnosing TB and initiating 

treatment increases the risk of onward TB transmission, increases the risk of morbidity and mortality, 

and incomplete and inappropriate treatment increases the risk of drug resistance.  

 

A systematic review (224) of the Indian TB care cascade estimated the median duration of the total 

pathway (from onset of symptoms to treatment initiation) to be 52 days (interquartile range, (“IQR”): 

47-62 days), when combining data from the public and private sector. Table 2.5 shows a breakdown 

of the delays that can occur throughout the cascade of care.  

 
Type of delay Definition Delay (median, days) 
Patient delay From onset of symptoms to first consultation with a healthcare 

practitioner 
18 (IQR: 14-27) 

Diagnostic delay From first consultation with a healthcare practitioner to 
receiving a TB diagnosis 

31 (IQR: 25-25) 

Treatment delay From receiving a TB diagnosis to initiating TB treatment 3 (IQR: 2-4) 
  

Table 2.5. Delays experienced from the onset of TB symptoms to initiating TB treatment. Data from 
Sreeramareddy et al (224), combining both the public and private sector.  
 
 
It is estimated that a patient, on average, consults 2.7 providers before receiving a diagnosis (224). In 

2013, out of the total number of incident TB cases, 68% of TB patients accessed TB tests (either in 

the public or private sector), 57% were diagnosed with TB, 50% initiated treatment, 43% completed 

treatment successfully, and 37% achieved one-year recurrence-free survival (240,241) (fig 2.3). Thus, 

the largest gaps in the Indian TB care cascade are individuals not accessing a TB test and receiving a 

TB diagnosis (241). Overall, the care cascade completion rate for all forms of TB is around 43%, and 

decreases to 7% amongst MDR-TB (241).  
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Figure 2.3. Tuberculosis care cascade losses in the public sector, India. Values were extracted from a meta-
analysis by Subbaraman et al. (240).   
 

 

2.2.8. South Africa  

2.2.8.1. An overview of tuberculosis in South Africa  

The TB epidemic in South Africa is driven by HIV; in 2018, it was estimated that around 59% of 

incident TB cases were co-infected with HIV (113). The government implemented the WHO’s 

strategy of DOTS in 1994; however, as a consequence of the growing HIV epidemic, it had little 

impact on TB incidence (242). The growing TB and HIV epidemics were made worse by the weak 

health system and lack of coordination across the country. Globally, South Africa was amongst the 

slowest to expand ART for PLHIV, and it was not until 2003, ART became available at public 

services (242). As a result, adult life expectancy dropped from 63 years in 1990 to 54 years in 2003 

(243).  

 

As a result of the emergence of XDR-TB in 2005 (244), the government released the South African 

TB Strategic Plan in 2007. The aim was to make high quality diagnostic and treatment services 

accessible to all TB patients and ensure adequate funding (245). In 2009, the government released a 

further plan, aimed at reforming its health sector, with a particular focus on HIV and TB (246). The 

reforms saw large increases in the number of people tested for HIV and TB, improved ART coverage 

and an increase in the number of clinics offering DR-TB treatment. In 2011, the government 

recommended Xpert as the initial test for both TB and DR-TB; since then, Xpert has been widely 

implemented across South Africa. In 2014, the ratio of sputum smear microscopy tests to Xpert 

cartridges was 1.6, the lowest amongst high TB burden countries analysed (247). South Africa now 

has the largest number of people on ART worldwide (248). Since ART reduces the risk of developing 
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active TB disease amongst co-infected patients (52), the rollout of ART has contributed substantially 

to the decline of TB incidence and mortality in South Africa (249,250).  

 

2.2.8.2. The South African healthcare system 

The public sector is under-funded relative to the size of the population it treats; for example, in 2011, 

out of the 8.3% of GDP spent on health, only half was spent in the public sector, despite the sector 

treating over 84% of the population (251,252). The quality of care received in the private sector, like 

India, varies (252). 

 

In 2015, the government introduced a new system of healthcare financing called the National Health 

Insurance. The aim of the new system was to provide access to ‘appropriate, efficient and quality 

health services’ to the entire population across 14 years, and remove OOP payments (251); in other 

words, providing universal healthcare coverage. PPPs were trialled for the National Health Insurance 

scheme. For example, private general practitioners were asked to provide public sector care; however, 

uptake was low due to poor compensation (253). Another example of a PPP is in HIV care; 

partnerships were created with private general practitioners to oversee the treatment of public sector 

patients, to reduce some of the burden on the public sector (254). Studies have found the partnerships 

to be successful, and that retention was high amongst the providers (255,256).  

 

The majority of TB patients are treated in the public sector (257); it was estimated that 93% of TB 

tests and treatment were provided by the public sector in 2012 (258). All patients initiating TB 

treatment are noted in the electronic TB register. The majority of HIV and TB services are separated 

amongst primary healthcare clinics in South Africa. Most of the public TB services offer on-site HIV 

testing and referral for HIV care, whereas HIV services tend to refer presumptive TB patients for both 

screening and treatment (259).  

 

2.2.8.3. Cascade of care 

Due to the large number of public primary healthcare facilities, it is estimated that only 3-5% of TB 

patients are unable to access TB diagnostic tests (fig 2.4) (206,257). It is estimated that 14% of 

patients that seek a test, do not receive a diagnosis (fig 2.4) (257). In rural Eastern Cape Province, it is 

estimated that the median time from sputum collection to receiving a MDR-TB diagnosis was 27 days 

(IQR: 2-45 days), ranging from a day (IQR: 1-4 days) with Xpert to 45 days (IQR: 39-59 days) with a 

culture drug sensitivity test (260). Despite widescale implementation of Xpert, a nationwide 

retrospective cohort study analysing 2013 data found that although Xpert has reduced the treatment 

initiation delay and has improved case detection for DR-TB, the pre-treatment loss to follow-up gap 

has remained the same (261). Of the patients who receive a TB diagnosis, 15% do not initiate 
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treatment (fig 2.4) (257). This loss may be due to poor communication between patients and HCWs, 

and lack of counselling (262). A meta-analysis calculated the care cascade completion rate to be 53% 

and 22% for all forms of TB and MDR-TB, respectively (fig 2.4) (241,257). The largest gap in the 

South African care cascade is treatment completion; of the patients who initiated treatment in 2013, 

24% did not achieve treatment success (fig 2.4) (257).    

 

 

 

 

 

 

 

 

 
Figure 2.4. Tuberculosis care cascade losses in South Africa for all patients. Values were extracted from a 
meta-analysis by Naidoo et al. (257). Losses are an average of the private and public healthcare sector.  
 
 

2.3. Coronavirus disease 2019 
 

With the emergence of severe acute respiratory syndrome coronavirus 2 (“SARS-CoV-2”) at the end 

of 2019, I had the opportunity to apply the concepts and approaches I learnt from modelling TB 

diagnostics to SARS-CoV-2 diagnostics. In this section, I provide a brief overview of the 

epidemiology of SARS-CoV-2, as well as the progress that has been made in diagnostics, treatment, 

and vaccines.  

 

2.3.1. Epidemiology 

The WHO was first notified of cases of SARS-CoV-2 in Wuhan City, China on 31st December 2019. 

It was quickly evident that the virus was spreading via human-to-human transmission (263). The 

majority of cases initially went undocumented, allowing for the rapid global spread of the virus (264–

266). On the 20th January, Japan, Thailand and South Korea reported the first cases of COVID-19 

outside of China (267). On the 11th March the WHO declared COVID-19 a pandemic (268). At this 

point, many countries had placed nationwide restrictions.  
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2.3.2. Natural history  
SARS-CoV-2 is spread via respiratory droplets. Viral load peaks around the onset of symptoms and, 

for the majority, becomes undetectable within 2 weeks of symptom onset (269–272). Transmission 

may be possible up to 8 days after symptom onset (271,273).  

 

Upon infection, SARS-CoV-2 targets cells in the respiratory tract (271). Dysregulation of the immune 

response, along with cytokine storms have been noted amongst severely ill hospitalised patients (274–

276). The incubation period, the time from infection to symptom onset, ranges between 2 and 11 days, 

with a median of around 5 days (277–281). Although reinfection can occur (282,283), a study found 

that amongst 12,500 HCWs, those that had been infected, had a reduced risk of developing COVID-

19 6-months after infection (284). Another study estimated that over 95% of subjects with prior 

infection had immunological memory even 8 months after infection (285).  

 

Studies have reported varying rates of asymptomatic infection; it is difficult to ascertain the true 

prevalence of asymptomatic infections if patients are not followed up. For example, a study conducted 

in a nursing facility, found that 56% were asymptomatic when tested, of which 89% went on to 

develop symptoms (286). The true prevalence of asymptomatic infection may also be underestimated 

as asymptomatic cases may never seek diagnosis or care. One meta-analysis suggests that around 17% 

of cases are asymptomatic, whereas a modelling study estimated the proportion of asymptomatic 

cases in an outbreak in Vo’, Italy, was as high as 42.5% (287). Transmission may occur via 

asymptomatic, pre-symptomatic and symptomatic patients (277,288,289); however, over half of 

transmission may be due to pre-symptomatic cases (272,290).  A meta-analysis found the relative risk 

of transmission by asymptomatics was 42% lower than of symptomatic cases (291); another meta-

analysis found that the transmission potential of pre-symptomatic cases was comparable to 

symptomatic cases, but lower in asymptomatic cases (292).  

 

Amongst symptomatic patients, the majority develop symptoms 5 days after infection, with 97.5% 

developing symptoms within 11.5 days (278,293). The most common symptoms include fever, dry 

cough, fatigue, headaches and shortness of breath (281,293–296). As the pandemic progressed, 

olfactory and gustatory symptoms, such as loss of smell or taste, and diarrhoea also became apparent 

(297). Older individuals and those with comorbidities such as diabetes and cardiovascular disease are 

more likely to be hospitalised with respiratory distress and multiorgan failure, and require intensive 

care (294,298–300). The proportion of infected individuals requiring hospitalisation increases with 

age, ranging from less than 1% amongst those aged less than 20 years to 18% amongst those aged 

over 80 years (301,302).  
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2.3.3. Diagnosis of coronavirus disease 2019 
At the start of the pandemic, diagnostics were vital in reducing the spread of COVID-19 due to the 

lack of vaccines and effective treatments. Diagnostic tests enable the differentiation between COVID-

19 and other respiratory conditions, as well as the identification of asymptomatic infection. Table 2.6 

provides a summary of the main diagnostic tests for COVID-19. I compare and discuss the different 

diagnostic tests for COVID-19 in greater detail in Chapter 6.   

 

Many countries, including HICs, have faced challenges in scaling up diagnosis; these challenges 

include the need for rapid specimen collection and delivery, insufficient laboratory testing capacity, 

supply chain issues, and regulatory hurdles (303). Consequently, the majority of countries prioritised 

testing for specific sub-groups of the population, such as hospitalised patients presenting with 

COVID-19 symptoms (303). There is an urgent need for point-of-care diagnostic tests to ease the 

pressure from laboratories and reduce turnaround time. The Foundation for Innovative New 

Diagnostics (“FIND”), a non-profit whose aim is to accelerate the development, evaluation and 

delivery of diagnostic tests, are currently evaluating a range of diagnostic tests for COVID-19.   

 

 
Table 2.6. Summary of the main diagnostic tests for COVID-19. * Sensitivity varies hugely depending on 
sample type and at what time the sample was taken. For example, serological tests have a sensitivity close to 
zero, early on during the course of infection; **Suitable at the point-of-care, although the sensitivity and 
specificity of these tests at the point-of-care have not been tested.  
 

2.3.4. Treatment of coronavirus disease 2019 

The clinical management of hospitalised cases involves alleviating symptoms and supplemental 

oxygen. Many drugs to treat other diseases, ranging from antivirals to anti-inflammatory drugs, are 

being repurposed and tested in clinical trials.   

 

Corticosteroids are anti-inflammatory drugs, that lower inflammation in the body and therefore reduce 

the risk of respiratory failure; however, they also inhibit the immune response and thus, reduce viral 

clearance. A clinical trial on dexamethasone, a corticosteroid, found that amongst patients on 

Test Pooled 
sensitivity* 

Pooled 
specificity 

Sample type Infrastructure required Relative 
cost 

Nucleic acid 
amplification tests  

71-98% 99-100% Generally, 
nasopharyngeal or 

oropharyngeal   

Specialised laboratory 
equipment; highly trained 

workers 

High 

 
 
Serological tests 

66-98% 96-99% Blood Depends on the type of test: 
ELISA- or 

chemiluminescent-based 
tests require specialised 

laboratory equipment; lateral 
flow tests are suitable at the 

point-of-care 

Low 

Rapid antigen 
diagnostic tests 

56-98% 97-100% Nasopharyngeal  Suitable at the point-of-
care** 

Low 
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mechanical ventilation, those receiving the drug had a significant lower risk of death than those 

receiving a placebo (rate ratio of 0.64); the risk of death was also lower amongst patients receiving 

oxygen but not mechanical ventilation (rate ratio of 0.82) (304). As a result, the WHO strongly 

recommends that corticosteroids be given for the treatment of patients with severe COVID-19 (305).  

 

A wide range of antivirals are ongoing trials to determine their efficacy against SARS-CoV-2, 

including remdesivir and hydroxychloroquine. Remdesivir was initially developed for treating Ebola 

but was shown to be ineffective (306), whilst hydroxychloroquine is used to treat a wide range of 

diseases, including malaria. Both drugs were shown to have antiviral properties and were effective in 

controlling SARS-CoV-2 in vitro (307); however, clinical trials have not shown promising results for 

either drug (308–311).  

 

2.3.5. Vaccines 
Vaccines against COVID-19 are being developed at astonishing speed, of which several have received 

Emergency Use Listing by the WHO. These include the BNT162b2 (Pfizer/BioNTech), mRNA-1273 

(Moderna), ChAdOx1 (AstraZeneca/University of Oxford) and Ad26.COV2.S (Janssen). BNT162b2 

and mRNA-1273 are RNA vaccines, whereas ChAdOx1 and Ad26.COV2.S are recombinant 

vaccines. Trials have suggested that these vaccines have high efficacy, greater than 85%, against 

severe COVID-19 (312–315). Unfortunately, the trials were not geared to investigate whether the 

vaccines reduce transmission; trials are currently underway to assess this. At the time of writing, 

preliminary data suggests that the vaccines reduce transmission. One study from Israel suggests that 

individuals with SARS-CoV-2 infections that occurred after inoculation with the first dose of the 

BNT162 vaccine had reduced viral loads, suggesting these individuals were less infectious than non-

vaccinated individuals (316). Another study conducted by Public Health England showed that the 

likelihood of household transmission from vaccinated individuals diagnosed with COVID-19 was 

reduced by 40-50% after one dose of the ChAdOx1 and BNT162b2 vaccines (317).    

 

Vaccine uptake has been high amongst HICs and as a result, the number of hospitalisations has 

substantially decreased (318,319). Unfortunately, vaccine uptake remains low in LMICs. The WHO 

has launched COVAX, an initiative to provide COVID-19 vaccines for LMICs. Nevertheless, until 

vaccines become readily available to all countries, testing will remain a key part in the response 

against COVID-19.  
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2.4. Mathematical modelling of infectious diseases 

 

2.4.1. What is mathematical modelling?  

A mathematical model is a mathematical framework used to understand or make predictions about a 

system. In the field of infectious diseases, models are used to elucidate infectious disease dynamics, 

including pathogen evolution, intra- and inter-population spread and within-host dynamics. 

Understanding and predicting the spread of infectious diseases help inform decision making. 

However, it is important to keep in mind the limitations of models. Mathematical models rely heavily 

on data, and thus, are only as good as the quality of data. Thus, modelling is a balancing act between 

simplifying and adding complexity; too simple and the model does not represent reality closely 

enough, but too complex, and the amount of data needed and potential sources of error increase. 

 

2.4.2. Types of mathematical models 

A model can be either deterministic or stochastic. A deterministic model describes the average 

behaviour of a system, ignoring stochasticity that may occur at the individual level, whereas 

stochastic models incorporate stochasticity. Thus, in a deterministic model each parameter is assigned 

a fixed value that represents the average behaviour of the population, whereas in a stochastic model 

the parameters are assigned probability distributions (320). Stochastic models are often used to model 

outbreaks, where the number of infected individuals is low and thus, where stochastic variation 

becomes increasingly important (320). In this thesis, I exclusively use deterministic models. 

Deterministic and stochastic models can also be further sub-divided into dynamic and static models.  

 

2.4.2.1. Dynamic models 
Dynamic models are systems whose states change and interact over time. A commonly used dynamic 

model is a compartmental model. A compartmental model stratifies the population into compartments 

representing mutually exclusive states of health, relevant to the disease of interest. Fig 2.5 summarises 

common compartmental models. Most diseases have a more complex natural history and require more 

health states than the ones described in fig 2.5; for example, models can start incorporating care 

seeking behaviour or stratify by age structure. Model parameters describe the flow between 

compartments (table 2.7 defines the common parameters used for the different types of 

compartmental models described in fig 2.5). Therefore, the number of individuals entering or leaving 

a compartment within a given timeframe is dependent on per-capita rates and the number of 

individuals subjected to these rates. Ordinary differential equations (“ODEs”) are used to describe the 

rate of change of the population in the different health states over time.   
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Figure 2.5. Basic examples of compartmental models of infectious diseases. Many models follow these core 
structures, but have additional compartments to represent additional disease states, care seeking behaviour, 
population structure and interventions. Note, that beta (β, the per capita rate of transmission) is determined by 
the rate of contact between individuals and the probability of transmission between an infectious individual and 
a susceptible individual. By multiplying the proportion of the population that is infectious (I/N), we get the force 
of infection ( "#

$
 ), in other words, the risk of an uninfected individual becoming infected. This assumes that the 

number of contacts depends on population size (frequency dependent transmission). Alternatively, density 
dependent transmission (βI) assumes individuals have a fixed number of contacts. The dependency of the force 
of infection on disease prevalence and the number of susceptibles means that transmission is a non-linear, 
dynamic process, with the individual risk of infection changing over time.   
 

Symbol Parameter definition 
𝒃 Birth rate 
𝝁𝟏 Background death rate 
𝝁𝟐 Disease-induced death rate 
𝜷 Rate of transmission 
𝝋 Rate of recovery 

1/𝝆 Mean duration of latency 
 

Table 2.7. Commonly used parameters in the mathematical modelling of infectious diseases. Note, 
parameters are per-capita rates in deterministic models (the average rate per person in a population), whereas in 
a stochastic model, the parameters are assigned a probability distribution.  
 

2.4.2.2. Static models 
Unlike dynamic models whose states change and interact, states in a static model do not. Although 

transmission dynamic models tend to be more appropriate when modelling infectious diseases, they 

are more complex and tend to require more data. Static models may be useful when modelling 

interventions that have no effect on the force of infection, for example modelling the impact of a drug 
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that reduces disease severity but not transmission (321). A common example of a static model is a 

decision tree.  

 

A decision tree is a model consisting of branches used to represent a set of decisions and outcomes 

(i.e., cost or health status) for a patient or cohort. Each node represents either a choice (i.e. which 

diagnostic test should be used, or should treatment be initiated?), or a probability (i.e. probability of 

death) (322) (fig 2.6). Decision tree modelling is often used in health economics to compare the costs 

and effectiveness of competing interventions.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.6. An example of a decision tree evaluating the use of a diagnostic test. From there, further states 
can be added to describe the outcome in terms of the cost and effects on health (i.e., recovery or death) of 
misdiagnosis and correct diagnosis. (P = probability of disease; Sn = test sensitivity; Sp = test specificity)  
 

2.4.3. Uncertainty and sensitivity analysis 

2.4.3.1. Uncertainty analysis 

As models are simplifications of real-world systems, model outputs will always contain uncertainty. 

Although collecting more quality data can reduce this uncertainty, it is impossible to forecast with 

complete accuracy. Uncertainty can stem from incorrect assumptions made in terms of the model 

structure (model uncertainty), incorrect data or estimates used to inform model parameters (parameter 

uncertainty) and from the methodologies used. It is important to quantify the uncertainty of a model, 

in order to evaluate our confidence in model outputs.  

 

Thus, uncertainty analysis aims to estimate the uncertainty surrounding model outputs and describe 

possible model outputs. This is often done by allocating probability distributions to model inputs (the 

probability that we will observe a particular range of values) to generate probability distributions of 

model outputs (323,324).  

 

One statistical approach is Bayesian inference which provides insight into the posterior distribution 

over some unknown parameter within the model (323). The posterior distribution of a set of 

parameters can be defined using Bayes’ theorem: 
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𝑃(𝜃|𝑥) = 	
𝑃(𝑥|𝜃)𝑃(𝜃)

𝑃(𝑥)
 

 

Where 𝑃(𝜃|𝑥) is the probability of the model parameters (𝜃) given the data (𝑥), also known as the 

posterior distribution; 𝑃(𝑥|𝜃) is the probability of the data given the model parameters, also known as 

the likelihood (information from the observed data about a set of parameters); 𝑃(𝜃) is the prior (prior 

belief about the model parameters before having seen the data); 𝑃(𝑥) is the probability that the data 

was generated by the model. The likelihood updates the prior, to form the posterior distribution. To 

calculate the denominator, 𝑃(𝑥), requires multidimensional integration over all possible parameter 

values, which quickly becomes intractable when a model has many parameters (325). To circumvent 

this issue, we can sample from: 

 

𝑃(𝜃|𝑥) ∝ 𝑃(𝑥|𝜃)𝑃(𝜃) 

 

where, the likelihood multiplied by the prior is proportional to the posterior distribution. If we sample 

enough times from the posterior distribution to form an approximate posterior distribution, it is 

possible to infer what this true posterior distribution looks like.  

 

One common method used to sample from the posterior distribution is Markov chain Monte Carlo 

(“MCMC”) sampling (325,326). Monte Carlo is a method used to estimate the properties of a 

distribution by examining random samples from the distribution; a Markov chain means that each 

random sample is used to generate the next sample, whilst trying to approximate independence 

between samples. Given a current sample 𝜃6, a new sample is proposed according to a proposal 

distribution; this new sample is then accepted or rejected depending on the acceptance-rejection 

algorithm. There are many types of MCMC algorithms including Metropolis Hasting, adaptive 

Metropolis and Gibbs sampling.  

 

2.4.3.2. Sensitivity analysis  
Sensitivity analysis examines how changes in model inputs (i.e., model parameters) impact model 

outputs. In other words, understanding how much each parameter is contributing to uncertainty and 

thus, which parameter is the model output most sensitive towards. The more sensitive a model output 

is towards model parameters, the higher the uncertainty of model outputs. In univariate sensitivity 

analysis, parameter values are changed one at a time to investigate the effect each parameter has on 

model outputs, whereas in multivariate sensitivity analysis, a combination of parameters are varied. 

Partial rank correlation coefficients (“PRCC”) can be used to measure the correlation between each 
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parameter and relevant model outputs, to identify parameters that are most influential. In brief, PRCC 

is an efficient approach to global sensitivity analysis that quantifies the strength of association 

between any given parameter and model output, while simultaneously taking account of variation in 

all other parameters.  

 

2.4.4. Tuberculosis models  

The first mathematical model of TB was developed in the 1965 (327). Since then, models have been 

used to inform public health in a variety of ways, ranging from improving our understanding of the 

natural history of TB (15) to predicting the impact of current and novel technologies on the TB 

epidemic in a variety of settings (328).  Below, I refer exclusively to deterministic compartmental 

models of TB transmission.  

 

2.4.4.1. Tuberculosis model structure  
It is important to understand the assumptions behind model structures and the data used to inform the 

models. Models are usually formulated according to the research question; for example, a model 

aimed at predicting a TB intervention in South Africa may want to incorporate HIV/TB co-infection. 

A typical TB model is shown in fig 2.7 and defined in table 2.8: susceptible individuals become 

infected with MTB, of which a proportion, known as fast progressors, progress quickly to active TB 

disease (the infectious state) and eventually recover, whereas the rest, known as slow progressors, 

progress to LTBI (latent state) and eventually go on to develop active TB disease and recover. 

 
Ideally, different model structures would investigate the same question to identify variations in model 

outputs that are due to structural uncertainty. This has not often been done in the field of TB; only 

recently have two modelling studies incorporated this methodology (329,330). The first study 

assessed the feasibility of achieving the 2025 WHO TB targets in three high TB burden countries by 

using 11 independently developed models (330); the second investigated the cost-effectiveness of 

different TB control strategies using 9 independently developed models (329).  
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Figure 2.7. A typical tuberculosis model based on the SEIR structure. Note, here latent TB infection is 
equivalent to the “exposed” state. Additional compartments to reflect care seeking behaviour, diagnosis and 
treatment initiation can be added. Additional rates such as rate of relapse or differentiating between the rate of 
self-cure or rate of cure after treatment, are not shown.  
 

 
 

 

 

 

 

 

Table 2.8. Commonly used parameters in tuberculosis mathematical models.  

 

Several reviews have summarised the TB modelling literature (331–333). A systematic review 

examined how models structured the progression from LTBI to active disease and the validity of these 

assumptions (332). Fig 2.8 shows the most common model structures used for modelling progression 

to active disease based on the 312 studies analysed in the review. The review concluded that a 

substantial number of the models were inconsistent with empirical evidence; for example, even 

though the model structure presented in fig 2.8 panel B is the second most common structure used 

amongst TB modellers, the authors found it to have a poor fit to empirical evidence, because it 

underestimates the short-term risk of progression to active disease whilst over-estimating the long-

term risk of progression. The model structure presented in fig 2.8 panel A, although not the worst 

performer, was not great at predicting the risk of progression the years following infection. Similarly, 

another review that investigated the optimal way to incorporate latency dynamics in models found 

that panel A and B (fig 2.8) produced results that have a poor fit to the data in the first few months 

Symbol Parameter definition 
𝝁𝟏 Background death rate 
𝝁𝟐 TB-induced death rate 
𝜷 Rate of transmission 
𝜽 Proportion of cases undergoing fast progression 
𝝋 Rate of recovery 

1/𝝆 Mean duration of latency 
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after infection, and that models with two latency compartments replicated the data more accurately 

(333). This suggests that if the research question is focussed on the years directly following infection, 

fig 2.8 panel A and B may not be the best choice in terms of model structure.  

 

Figure 2.8. The three most common model structures to model the progression of disease. Adapted from 
Menzies et al (2018); 49% of modelling studies adopt panel A, 19% adopt panel B, and 11% adopt panel C 
(332).  
 
Another review examined how models incorporated heterogenous infectiousness (331). The review 

concluded that many models did not incorporate this heterogeneity; amongst those that did 

incorporate heterogenous infectiousness, the majority were splitting the active disease compartment 

into two, to represent infectious smear positive individuals and less infectious smear negative 

individuals, or into pulmonary (more infectious) versus extrapulmonary TB (less infectious). 

However, the review did not investigate the impact of not incorporating heterogeneity into the model 

structure which is likely to be dependent on the research question.  

 

Finally, a conceptual modelling study by Dowdy et al highlighted the importance of model structure 

and its effect on model outputs (26). In Dowdy’s model, adding an extra health state to represent 

subclinical TB reduced the impact of various case-finding interventions, suggesting that models may 

overestimate or underestimate the impact of interventions based on their structure alone.  

 

When modelling the impact of interventions, such as diagnostic tests, it is important to not only model 

the accuracy of such interventions, but also the setting. The impact a diagnostic test has on TB 

transmission depends on many factors including care seeking behaviour, access to the test, how much 

transmission occurs before seeking a test, whether HCWs perform the test correctly and whether 

HCWs have confidence in the test. These factors likely differ by setting, and likely varies over time 

throughout the course of infection (334). Thus, it is possible to have a perfectly sensitive and specific 

diagnostic test that has little impact on the local TB epidemic (335). A study found that the majority 
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of TB models that examine the impact of diagnostics tests are extremely homogenous; rate of TB 

transmission, rate of care seeking and the probability of successful diagnosis are all similar (334). The 

authors estimate that these assumptions overestimate the impact these tests may have on the TB 

epidemic and argue that ideally models should incorporate heterogenous rates to reflect different 

levels of transmission and care seeking over time. Nevertheless, this requires additional data that is 

not readily available; most diagnostic tests are evaluated under perfect conditions which does not 

accurately reflect how they perform under real life conditions in resource limited settings, and how 

TB transmission changes over time has not been well characterised. Overall, it is important to ensure 

the model structure and parameters reflect the setting of interest, otherwise the impact of an 

intervention may be under- or over-exaggerated; however, this added complexity needs to be balanced 

with data availability.  

 

2.4.4.2. Tuberculosis model parameters 
Many sources used to inform TB model parameters have come from trials conducted in the 1960s and 

1970s, before chemoprophylaxis was widely available, and so the duration of TB infection without 

treatment could be monitored. Widely cited studies from the pre-chemoprophylaxis era include: 

Ferebee (1970), a review of chemoprophylaxis trials (40); Barnett et al (1971), a trial that followed 

TST positive cases in Saskatchewan, Canada (336); Comstock et al (1974), a BCG trial where the risk 

of developing TB amongst TST positive Puerto Rican children was investigated (53); Horwitz (1969), 

a trial that studied the risk of relapse in Denmark (337); and the Medical Research Council’s trial on 

BCG and vole bacillus vaccines that looked at the progression to TB disease amongst adolescents and 

early adults in England and Wales (338). As the efficacy of TB treatment became evident, it became 

unethical to conduct such trials.  

 

Values that were estimated in the pre-chemoprophylaxis era may no longer be applicable to the 21st 

century. For example, in 1985, using the data of studies from the pre-chemoprophylaxis era, Styblo 

formulated a “rule” that has, until the early 2000s, been used to inform TB studies. Styblo suggested 

that an incidence of 50 sputum smear positive TB cases per year per 100,000 generates an annual risk 

of infection (“ARTI”) of 1% (339). The rule was widely used, as it allowed modellers to indirectly 

derive TB incidence from ARTI, the latter being a much easier measurement to make (340). However, 

as this rule was estimated from data in the pre-chemoprophylaxis era, the rule no longer holds, as the 

average duration of infectiousness and the average number of transmissions per year has changed due 

to treatment and improved living conditions (340).  

 

Several commonly used parameters of TB models are hard to estimate, including the rate of 

endogenous reactivation and the proportion that undergo fast progression. It is impossible to measure 
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directly what proportion of incidence is as a result of these two phenomena (328). Instead, modelling 

studies such as Vynnycky & Fine (1997) and Sutherland et al (1982), and molecular epidemiological 

studies such as Horsburgh et al (2010) have estimated values for these rates and proportions 

(15,341,342). These papers are widely cited papers in TB modelling literature (343). However, both 

use datasets from low TB burden settings, the Netherlands, England and Wales, and the USA. To this 

date, no study has attempted the same analysis for high TB burden countries. Other parameters that 

are hard to measure include the rate of care seeking, as this rate is likely to vary hugely between and 

within countries and the rate of self-cure, which is based on studies conducted in the pre-

chemoprophylaxis era (328,344). There is a need for a greater understanding of the natural history of 

TB, especially in high burden settings, and of heterogeneity in terms of geography and time, for both 

the natural history of TB and care seeking behaviour (328).  

 

A review of TB mathematical models I conducted in 2016 found that modelling studies were 

significantly more likely to be cited as first-degree citations, followed by primary studies, reviews (fig 

2.9) (343). The most cited modelling studies were Vynnycky & Fine (1997) and Dye et al (1998). 

This is supported by a more recent review (332). It is important for modellers to understand where the 

data informing their model originates from, to ensure the assumptions behind the data is appropriate 

to the research question of interest.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9. Network of citations. Focussing on the rate of endogenous reactivation, 82 modelling studies were 
selected after a literature search. First-degree citations were classified as a modelling study (red), primary study 
(green), or review (blue). Arrows point towards the cited study. Nodes are weighted according to the number of 
studies that have cited it, so that a larger node represents a more frequently cited study. Figure from unpublished 
work (343).  
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2.5. Economic evaluation  
 
Health economics is the comparative analysis of alternative interventions in terms of their costs and 

health outcomes (345). As all healthcare sectors have finite resources, there is usually an opportunity 

cost to any intervention, where selecting one intervention prevents the roll out of another. Thus, there 

is a need to understand which interventions are most beneficial considering these constraints.  

 

There are many types of economic analyses, including cost-effectiveness analysis (“CEA”), cost-

benefit analysis and budget-impact analysis. CEA is commonly used, and below, I discuss its use in 

further detail.  

 

2.5.1. Cost-effectiveness analyses   
CEAs incorporate the benefits and costs of an intervention and compares it to alternative scenarios. 

Consequently, CEA provides a method for prioritizing the allocation of resources by informing policy 

makers on the interventions that minimises costs and maximises health outcomes.   

 

A key measure in economic evaluation is the incremental cost-effectiveness ratio (“ICER”). An ICER 

represent the economic value of an intervention compared to its comparator: 

 

𝐼𝐶𝐸𝑅 = 	
Δcost
Δhealth

= 	
𝐶𝑜𝑠𝑡H − 𝐶𝑜𝑠𝑡J

𝐻𝑒𝑎𝑙𝑡ℎH − 𝐻𝑒𝑎𝑙𝑡ℎJ
 

 

The denominator represents the difference in health outcomes between the two alternatives (described 

in further detail below), whereas the numerator represents the difference in cost. Ideally, an 

intervention is compared to the next-least expensive non-dominated alternative.  

 

The costs and health outcomes between different alternative interventions can be visually represented 

by plotting a cost-effectiveness plane, with health outcomes plotted on the x-axis, and the incremental 

cost plotted on the y-axis (fig 2.10).  
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Fig. 2.10. Example of a cost-effectiveness plane. Here, the cost-effectiveness of an intervention is assessed 

given an objective of maximising health. Panel A shows the health outcomes gained and the incremental cost of 

adopting three new technologies (blue points) compared to an existing technology; the bottom two blue points 

are considered cost-effective assuming a cost-effectiveness threshold of £20,000 per QALY gained. Adapted 

from Glied & Smith (345). Panel B highlights what the different sections of a cost-effectiveness plane indicate; 

green boxes represent sections of the plane that are considered cost-effective, whereas red boxes represent 

sections of the plan that are considered not cost-effective.  
 

A threshold is set to determine whether a specific cost per health outcome gained is considered cost-

effective. If the ICER is less than the CEA threshold, then the intervention is considered cost-effective 

(345). There has been much debate about what an appropriate CEA threshold should be, in any given 

country (346). Traditionally, many studies have set the threshold as 1 to 3 times a country’s GDP per 

capita. However, more recent evidence suggests that these thresholds may no longer be appropriate 

and are too high for many countries (346). Woods et al recalculated CEA thresholds for LMICs and 

estimated that the thresholds for such countries could be as low as 50% of their GDP per capita (347). 

In addition, classifying an intervention as cost-effective is not informative unless all other 

interventions are considered in that setting, to ensure that the money spent is maximising health 

outcomes (346). Finally, a cost-effective intervention does not necessarily mean it is affordable, 

especially if the disease has high prevalence (346).  

 

Calculating health outcomes 

Health outcomes gained from an intervention are typically measured by quality-adjusted life years 

(“QALYs”) or disability-adjusted life years (“DALYs”). A QALY is a measure of the state of health 

of a person in which the length of life is adjusted to reflect the quality of life; one QALY is equivalent 

to living one year in perfect health. A DALY is a measure of the number of years lost due to ill health 

(348). So, the more QALYs gained, or the more DALYs averted, the more effective an intervention 
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is. DALYs for a wide range of diseases are published regularly in the Global Burden of Disease study, 

the first of which was in 1994 (349), and the most recent in 2020 (350).  

 

A DALY is composed of the years of life lost due to premature mortality (“YLL”) and the years lost 

due to disability (“YLD”), 

 

𝐷𝐴𝐿𝑌 = 𝑌𝐿𝐿 + 𝑌𝐿𝐷 

 

YLL measures the reduction in life expectancy (one YLL represents the loss of one year of life), 

whereas YLD measures the number of years of good health lost due to the disease.  

 

YLL is calculated by multiplying the number of cause-specific deaths by a loss function that states the 

years lost to death as a function of the age at which death occurs (global standard life expectancy): 

 
𝑌𝐿𝐿 = 𝑛𝑜. 𝑜𝑓	𝑐𝑎𝑢𝑠𝑒	𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝑑𝑒𝑎𝑡ℎ𝑠	 × 𝑔𝑙𝑜𝑏𝑎𝑙	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑙𝑖𝑓𝑒	𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦	𝑎𝑡	𝑤ℎ𝑖𝑐ℎ	𝑑𝑒𝑎𝑡ℎ	𝑜𝑐𝑐𝑢𝑟𝑠 

 

The global standard life expectancy at which death occurs is based on an aspirational projected 

reference life expectancy table (351).  Thus, YLL puts greater weight on deaths that occur at a 

younger age. YLD is calculated by the following equation:  

  

𝑌𝐿𝐷 = 𝑑𝑖𝑠𝑒𝑎𝑠𝑒	𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒	 × 	𝑑𝑖𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑤𝑒𝑖𝑔ℎ𝑡	 × 	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑑𝑖𝑠𝑒𝑎𝑠𝑒 

 

YLD incorporates the number of new cases of a disease, a disability weight which factors in disease 

severity, and how long an average person lives with the disease before either cure or death.  

 

Nevertheless, issues arise when using DALYs or QALYs. Measures, such as disability weight, are 

subjective. With regards to TB, there has been increasing interest in understanding the morbidity and 

mortality that occurs post-TB (352,353). Usually, most analyses only account for DALYs averted 

linked to TB disease, which assumes therefore, that the individual returns to full health once cured of 

TB. However, increasing evidence suggests that even after successful TB treatment, the risk of 

morbidity and mortality remains elevated (352–354). Not including morbidity post-TB may be 

underestimating the cost-effectiveness of certain TB interventions, such as TPT (354).  

 

Calculating costs 

The cost of an intervention depends on whether the analysis is being conducted from a societal 

perspective or from the perspective of the healthcare sector. If the analysis is being conducted from a 

societal perspective, costs including the loss of work productivity and the cost of transportation to the 
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hospital should be included. On the other hand, costs such as the cost of staff and supplies, are 

included if the healthcare sector’s perspective is being considered.  

 

Costing is a challenge in economic analysis. With regards to TB, there is a need to understand further 

the cost of a false positive and a false negative result, costs that are often underestimated. A false 

positive result will result in a disease-free individual initiating treatment, which incurs a cost due to 

the risk of side effects. It is also hard to estimate the cost of a false negative result (an untreated TB 

case), and whether or not the cost of onward transmission should be included (355). In terms of 

diagnostic tests, it can be challenging to estimate the cost of implementation, the cost of training 

HCWs to use the test and the cost of maintaining the tests. Thus, the cost of diagnostic tests is often 

underestimated (356).  

 

Due to future uncertainty, it is common to discount both health outcomes and costs in future years; 

this is because, people generally value future costs and effects less than current costs and effects. A 

discount rate is defined as a rate that is used to convert future costs and health benefits into equivalent 

present values (345). In this way, interventions that incur costs now, but where we only see health 

gains in the future (i.e., human papillomavirus vaccination amongst young teenage girls to reduce 

incidence of cervical cancer later in life), will look less cost-effective under discounting compared to 

an intervention where health gains are seen immediately. However, choosing the appropriate discount 

rate, and whether to discount costs and effects by the same rate, can be challenging (357).  

 

2.6. Thesis aims  
 

The field of diagnostics for both TB and COVID-19 are seeing exciting new developments, thus there 

is a need to evaluate the impact these new diagnostics may have on their respective epidemics, and to 

understand why the context in which these new diagnostics are used in is important. Mathematical 

modelling and health economics are useful tools to do this. A lot of factors need to be considered 

whilst modelling the impact of diagnostic tests on TB: TB has a complex and long natural history, 

providing different opportunities to target diagnostic tests to; the different epidemiology of TB across 

countries; and varying healthcare systems which lead to different care cascades. Unlike the wealth of 

TB studies, COVID-19 is still in its infancy and is a rapidly changing field. The aims of this thesis are 

as follows: 

1) What is the population-level impact of detecting incipient TB with a hypothetical biomarker 

test on the TB epidemic in India? 

a. What are the cost-drivers of such an intervention?  

b. Under what circumstances may the intervention be considered cost-effective?  
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c. How do results differ across different TB-risk groups?  

 

2) What is the population-level impact of detecting active TB disease amongst PLHIV in South 

Africa with urine-based lateral flow assays?  

a. How much of an advantage does a novel lateral flow assay with improved sensitivity 

have over a pre-existing lateral flow assay?  

b. What is the impact of broadening testing eligibility on the TB epidemic?   

c. Do the results hold true for countries with a lower HIV burden?  

 

3) What is the population-level impact of increasing private sector engagement on the TB 

epidemic in India? 

a. Which engagement activity (TB notifications, TB diagnostics or TB treatment) has 

the greatest impact on the TB epidemic?  

b. What are the costs of such activities, and which has the lowest ICER? 

c. How do results differ across cities that have different service provisions?   

 

4)  What is the trade-off between more accurate but more expensive and slower diagnostic tests, 

and less accurate but cheaper and faster diagnostic tests for SARS-CoV-2?  

a. Under what scenario can a less accurate test be beneficial?  

b. Do results differ by use-case?  

c. Which variables are most influential in determining the value of these tests?  
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Chapter 3: Results (i) 
 

 

The potential value of biomarker-led preventive treatment in eliminating 

tuberculosis 

 
TB prevention is essential for TB elimination, and as a result, approaches to identify individuals who 

would benefit from TB preventive treatment (“TPT”), such as those with incipient TB, are under 

development. Such a test will enable timely TPT initiation amongst individuals who are at imminent 

risk of progression to active TB. In this chapter, I develop a mathematical model of TB transmission 

in a slum and non-slum population of a major city in India. I investigate the potential impact 

biomarker-led TPT amongst cases of incipient TB may have on the TB epidemic, under two testing 

strategies, slum-only testing and whole-city testing (slum and non-slums alike). I also examine 

whether such strategies offer a cost-effective approach for TB control in high burden settings. I 

demonstrate that biomarker-led TPT can have an impact on TB incidence in an urban setting; 

however, the cost of implementing such a strategy is likely to be prohibitive, given the testing effort 

needed to identify those with incipient TB, even in a high-risk population. Despite the potential 

impact of such measures, results suggest that their cost-effectiveness would need to be carefully 

considered. 
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3.1. Introduction 
 

High TB-burden countries traditionally focus on detecting and treating active TB disease (358). 

However, modelling studies suggest that unless the reservoir of latent TB infection (“LTBI”) is 

targeted, TB-elimination targets will not be met, even if routine TB services are strengthened and 

accelerated (74,359–361). Nevertheless, the majority of individuals with LTBI do not benefit from TB 

preventive treatment (“TPT”) due to the low risk of progression from LTBI to active disease (362). In 

addition, treating the approximate 2 billion people worldwide that are estimated to have LTBI would 

require costly efforts (363). Ideally, only those with the highest risk of disease progression would be 

treated.  

 

Current tests for LTBI, tuberculin skin tests (“TST”) and interferon gamma release assays (“IGRA”), 

have low positive predictive value (“PPV”) for the development of active disease (approximately 2-

3%). Assuming a 2-year cumulative TB incidence of 2% and TPT effectiveness of 50%, Petruccioli et 

al estimated that the number of patients needed to treat (“NTT”) to prevent one case of TB is as high 

as 85 and 250 for IGRA and TST, respectively. According to the World Health Organisation 

(“WHO”) target product profile (“TPP”), an optimal test would have a PPV of 16% and a NNT of 13, 

and should at least have a PPV of 6% and NNT of 40 (364). The WHO TPP further states that, 

ideally, the test should have a minimum sensitivity and specificity of 75% in detecting individuals at 

risk of developing active disease within two years (365).  

 

As mentioned in chapter 2, certain epidemiological risk factors increase an individual’s risk of 

progression to active disease by impairing the host’s immune response. These risk factors include 

HIV, diabetes, age, malnutrition, tobacco smoke and indoor air pollution. Saunders et al developed 

and validated a risk score based on various risk factors to predict the risk of developing TB in adult 

contacts of patients with confirmed pulmonary TB in an intermediate-burden TB setting (366); 

however, these risk factors are likely to be setting-specific, and thus, the predictive power of the risk 

score is likely to also differ across settings (367). In addition, the risk score focusses on household 

transmission, and so there is a need for community transmission risk scores. Overall, these risk factors 

alone are unlikely to have strong predictive power. Consequently, there is a need for blood-based 

biomarkers that can identify individuals with the highest risk of progression to active disease.  

 

Thus, in the last decade, studies have focussed on identifying biomarker signatures that offer 

prognostic value in identifying individuals at risk of developing active TB. This drive has led to the 

discovery of several gene signatures, ranging from signatures that can differentiate between active TB 
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and LTBI (368), those that can distinguish active TB from other diseases with similar clinical 

presentation (369,370) and those that indicate a successful treatment response (371).  

 

One target is incipient TB, a stage between LTBI and active disease. Potential signatures of incipient 

TB have been identified. Zak et al identified a 16-gene signature with the ability to predict TB 

progression with a sensitivity and specificity of 54% and 83%, respectively, in the 12 months prior to 

active disease diagnosis amongst adolescents and adults in South Africa and the Gambia (372). 

Assuming a 2-year cumulative TB incidence of 2% and TPT effectiveness of 50%, it is estimated that 

the NNT to prevent one case of TB using the 16-gene signature is around 37 (364). This 16-gene 

signature was later reduced to an 11-gene signature, RISK11, with similar diagnostic accuracy (373). 

Using the RISK11 signature, the CORTIS trial examined the efficacy of a RISK11-guided TPT. 

Unfortunately, although the signature was able to distinguish between individuals who progressed to 

active TB disease and those who remained healthy, 3HP-based TPT amongst RISK11-positive 

individuals did not reduce incidence of TB over 15 months (374). However, the apparent lack of 

impact of 3HP amongst RISK11-positives may be due to the low number of TB cases in both 

RISK11-positive and -negative groups, and the high background risk of TB in the study setting (375). 

The performance of the signature was reduced further amongst people living with HIV (“PLHIV”) 

(376). Mathematical modelling has examined the population-level impact of targeted TPT amongst 

HIV-negative RISK11-positive individuals versus IGRA-positive individuals in South Africa on TB 

incidence. Results suggest that although IGRA-targeted TPT would have a greater impact on TB 

incidence than RISK11-targeted TPT, it would result in a much higher NNT (around 1.7 times that of 

RISK11), suggesting that RISK11-targeting may allow for more efficient targeting of TPT (377).  

 

A meta-analysis (378) on blood transcriptional signatures of incipient TB, tested 17 signatures in 4 

different transcriptomic datasets to estimate their diagnostic performance. Sensitivities for the 

different signatures ranged between 24.7-39.9% in identifying individuals at risk of developing active 

TB disease within two years, increasing to 47.1-81.0% if the signatures were used to identify 

individuals at risk of developing active TB disease within three months. Specificity for the different 

signatures were consistently greater than 90%. Assuming a pre-test probability of 2%, the signatures 

had a PPV ranging between 7-9% if used to identify progression to active TB disease within 2 years 

and increased to 11-14% if used to identify progression within 3 months. Overall, the signatures only 

met the WHO TPP requirements if used to predict the short-term risk of active TB disease. 

 

Several questions remain regarding the potential use of these signatures. These include whether or not 

the prognostic ability of these signatures can be improved for longer term predictions; whether these 

signatures can be used to prevent active TB disease through targeted TPT, including determining the 

efficacy of 3HP across different settings with varying levels of TB burden; finally, whether these 
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signatures have the same prognostic ability in the general population, considering that the majority of 

the signatures were discovered in populations with a higher lifetime risk of developing active TB than 

the general population. More studies are currently underway to answer these questions, including the 

C-TRIUMPH study in India (379). 

 

With progress being made in detecting incipient TB and with the development of safer and shorter 

TPT regimens, such as 3HP, I modelled the epidemiological impact of biomarker-led TPT amongst 

cases of incipient TB in the example setting of Chennai, India. Globally, India has the largest burden 

of TB (358); Chennai is a populous city in India with around 20% of the population living in slums 

(380). In the latest National Strategic Plan 2017-2025, one of the priorities listed is the prevention of 

disease progression in high-risk groups, such as slums. Restricting interventions to high-risk 

individuals, should provide a more cost-effective solution. Thus, I developed a mathematical model of 

TB transmission differentiating between the slum and non-slum populations of Chennai. I considered 

two testing strategies: slum-only testing and whole-city testing (slum and non-slums alike). I further 

examined how the different testing strategies affect the cost-drivers and cost-effectiveness of the 

intervention. I deliberately undertook a simple costing approach, including not addressing the human 

resource requirements of such a strategy; instead, the aim of this approach was to gain relevant 

insights and is a basis for future, more complex, costing analyses. I aimed to answer the following 

questions:  

 

• What is the population-level impact of detecting incipient TB on the TB epidemic in Indian 

high-risk and low-risk populations? 

• Could such tools offer a cost-effective approach for TB control in high-burden settings? 

• How do different testing strategies affect the impact and cost-efficiency of the intervention? 

 

3.2. Methods 
 
Here, I describe the model structure, data sources and interventions, with further details provided in 

appendix 1.  

 

3.2.1. Model structure 
I developed a deterministic, compartmental model of TB transmission amongst adults (>15 years old) 

in Chennai, India. The model structure is shown in fig 3.1. The model captures the background level 

of routine TB services in India, including the scale up of directly observed treatment (“DOTS”) under 

the Revised National TB Control Programme (“RNTCP”) between 1997 and 2007, and its 
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maintenance until the present day (381). I assumed a population size of 8.7 million (380) and an 

annual population growth rate of 2% (382).  

 

Due to the importance of the private sector in the Indian healthcare system, where it is estimated that 

around half of patients initially seek care at a private provider (383–388), the model differentiates 

between seeking care in the public and private sector. Private providers are unregulated and often 

provide sub-standard level of care (228). Thus, I assumed that patients seeking care privately are less 

likely to be diagnosed correctly with TB and are more likely to default from treatment (table 3.1). I 

further assumed that mis-diagnosed TB cases continue seeking care once a month (table 3.1) and 

continue to pose a transmission risk.  

 

I also captured the risk of cross-infection between slums and non-slums. It is estimated that around 

20% of the population live in slums (380). Both settings are calibrated to different epidemiological 

data (see table 3.2) to reflect a concentrated TB setting in the slums, and a lower TB burden in the 

non-slums. To account for levels of mixing between the two populations, I modelled a cross group 

force of infection (table 3.1).  

 

For simplicity, the model does not account for drug-resistant TB (“DR-TB”), pulmonary status or 

HIV/TB co-infection. DR-TB and HIV/TB co-infection accounts for less than 5% and 4% of incident-

TB cases in India, respectively (358). Although DR-TB accounts for a disproportionate share of 

overall spending, I do not expect the omission of DR-TB from the model to substantially affect 

results, assuming that latent DR-TB will not be prevented from progressing by the treatment regimen 

used for incipient TB.  

 

3.2.2. Data sources 
Typically, incidence estimates are used to inform models; however, incidence data is often national 

estimates and do not necessarily reflect TB transmission in cities. Instead, the model was calibrated to 

the Annual Risk of TB Infection (“ARTI”), as the ARTI has been estimated in India at a sub-national 

level. The ARTI is the probability of acquiring a new TB infection or reinfection over a year. I used 

the ARTI from a study conducted in the slums and non-slum areas of Chennai city, where children 

were tested with TST, from which the prevalence and ARTI of TB was estimated. I also drew 

prevalence estimates from a prevalence survey in Chennai (389,390). To account for the fact that the 

ARTI and prevalence data are from specific settings, I incorporated uncertainty, to allow for 

differences across urban settings. TB mortality was taken from national WHO data (358). Table 3.2 

summarises the data from these sources. These targets (table 3,2) were used to inform model 

parameters on the force of infection (𝛽d), the rate of initial care seeking for TB symptoms (𝛿H_g) and 
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the rate of TB mortality (𝜇H). I used Adaptive Bayesian Markov chain Monte Carlo (“MCMC”) to 

calibrate the model (391). I modelled TB prevalence and ARTI from log-normal distributions, chosen 

to capture the uncertainty in these inputs. Next, I constructed the overall likelihood function of the 

data (𝑥) based on a parameter set (𝜃), 𝑃(𝑥|𝜃), as a product of the distributions over all the calibration 

targets (table 3.2) and multiplied this with uniform priors (𝑃(𝜃); ranges specified in table 3.1). Thus, 

the posterior density is calculated by:	𝑃(𝜃|𝑥) ∝ 𝑃(𝑥|𝜃)𝑃(𝜃). By sampling from the posterior 

distribution using MCMC, I created an unbiased sample that approximates the posterior distribution. I 

refer to the uncertainty in model projections as the Bayesian credible intervals, using the 2.5th and 

97.5th percentiles to reflect the lower and upper bound of an interval. Additional detail is provided in 

appendix 1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Schematic illustration of the model structure. Model compartments are as follows: uninfected 
with TB (U), latent infection (L(1)), incipient TB (L(2)), active TB disease (I), presented for care and awaiting 
diagnosis (Dx), on TB treatment (Tx), temporarily dropped out of the TB care cascade due to missed diagnosis 
or pre-treatment loss-to-follow-up (E), and recovered after self-cure with a high risk of relapse (R(H)) or after 
treatment cure with a low risk of relapse (R(L)). Dx and Tx are stratified by healthcare sector: private (pr) and 
public (pu) sector. All states are further sub-divided by location (s): slums and non-slums. I assume slums and 
non-slums population can infect each other, by assuming a cross group force of infection relative to the within 
group force of infection. See appendix 1 for further technical details, including model equations and calibration.  
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Parameter Symbol Value* Source/Notes 

 
TB natural history 

Mean rate of transmission 
per TB case 

𝛽d Non-slums 4.61 yr-1 [2.18-9.12] Model estimate 
Slums 10.73 yr-1 [6.36-18.40] 

Cross group force of 
infection relative to the 
within group force of 

infection 

𝜓 0.30 [0.20-0.70] Assumed 

Proportion of TB 
infections undergoing 

rapid progression 

𝜃 0.11 [0.09-0.15] (15,392) 

Per capita hazard rate of 
reactivation of latent TB 
infection to incipient TB 

𝜌H  
0.001 yr-1 [0.0003-0.0024] 

 

(342,392) 

Per capita hazard rate of 
developing active TB 

disease 

𝜌J 1.00 yr-1 [0.50-4.00] Assuming it takes 3 months 
to 2 years for the 

development of active 
disease from incipient TB 

(378). 
Per-capita hazard rate of 

relapse 
𝑟H Following 

self-
cure/treatment 

default 

0.14 yr-1 
[0.10-0.18] 

(393,394) 

𝑟J Following 
treatment 

cure, >2 years 

0.002 yr-1 
[0.001-0.003] 

Stabilisation of relapse risk 
following treatment 

𝜍 0.5 yr-1 [0.4-0.6] (393): most relapse occurs in 
the first two years after 

treatment 

Per-capita hazard rate of 
spontaneous cure 

𝜑 0.17 yr-1 
[0.13-0.21] 

(344) 

Per-capita hazard rate of 
TB mortality 

𝜇H 0.14 [0.10 – 0.21] Model estimate 
 

Proportion reduction in 
susceptibility to reinfection 
due to previous infection 

𝜋 0.21 [0.15-0.25] (395) 

 
TB services 

Proportion of TB cases 
seeking care in the public 

sector 

𝜂 0.50 [0.40-0.60] (228,384,396,397) 

Per-capita hazard rate of 
initial care seeking for TB 

symptoms 

𝛿H_g Non-slums 2.61 yr-1 [1.16-3.95] Model estimate 

Slums 1.47 yr-1 [0.76-3.61] 

Per-capita hazard rate of 
repeat care seeking for TB 

symptoms (following 
missed diagnosis) 

𝛿J 12 yr-1 [6-26] Assumption: corresponds to 
range of 2 weeks to 2 months 
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Proportion of TB cases 
diagnosed correctly, per 
care seeking attempt in 

routine TB services 

𝜀qr Public sector 0.84 [0.80-0.85] (241,398) 
𝜀qs Private sector 0.70 [0.50-0.75] 

TB treatment initiation 
delay 

𝜙 52 yr-1 Assumed: corresponds to a 
mean treatment delay of 1 
week in routine TB care 

Proportion of diagnosed 
TB cases successfully 

initiating treatment 

𝜔 0.87 [0.80-0.90] (241) 

Per-capita hazard rate of 
first-line treatment 

completion 

𝜏 2 yr-1 Corresponds to a duration of 
6 months 

Proportion of TB cases 
that default from treatment 

𝜒qr Public sector 0.15 [0.13-0.17] (6,241), assumed 
𝜒qs Private sector 0.40 [0.30-0.50] 

Per-capita hazard rate of 
testing for incipient TB 

𝜅g Non-slums 0-1.00 Varied from no testing, to 
testing 100% of the 
population per year 

Slums 0-1.00 

Preventive treatment 
efficacy 

𝜐  0.90 [0.80-0.95] (399) 

Test for incipient TB 
sensitivity 

𝑝gz  Current 0.30 (365,378)  
WHO 0.75 

Test for incipient TB 
specificity 

𝑝g{  Current 0.94 (365,378), assumed 
WHO 0.94 

 
Demographics 

Per-capita hazard rate of 
background mortality 

𝜇J 0.015 yr-1 World Bank estimates: 
corresponds to an average 

lifespan of 69 years 

Proportion of the 
population living in slums 

𝜚 0.20 [0.15-0.30] (380) 

Per-capita rate of 
population growth 

𝜎 0.02 [0.01-0.025] (382) 

Costs 
Cost of 3HP per person CTPT USD 15 (400) 

Cost per active TB disease 
diagnosis (routine TB 

services) 

CD USD 18.30 (401) 

Cost of first line treatment 
for active TB disease per 

person per month 

CT USD 23.70 per treatment-month (401) 

Cost of a future test for 
incipient TB per person 

CS USD 10.86 Assumed to be similar in 
price to the cost of a TST test 

and two healthcare visits 
(402,403) 

 

Table 3.1. List of model parameters and assumptions. For further technical details and model specification, 
see appendix 1. *Numbers in brackets represent sampling ranges; I assume all sampling ranges are uniformly 
distributed in the sampling process. 
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Indicator Value Source 
TB prevalence Non-slums 207 per 100,000 

[190-212] 
(389) The prevalence in slums and non-slums 

settings were estimated using the prevalence of 
culture-positive TB (259 per 100,000 (95% CI 

217-299)) and the univariate odds ratio of 
culture-positive TB in slums versus non-slum 

settings (2.26 (95% CI 1.68-3.06)), whilst 
assuming the slums make up 20% of the 

population. 

Slums 468 per 100,000 
[319-649] 

Annual risk of TB infection Non-slums 1.5% [1.2-1.8] (390) 
Slums 2.5% [2-3] 

TB mortality 33 per 100,000 
[30-34] 

(358) 

 

Table 3.2. Calibration targets used to estimate model parameters 

 
3.2.3. Intervention 
I assumed that a test capable of identifying incipient TB is available. I defined incipient TB as 

individuals with LTBI who will progress to active disease within two years, without any intervention.  

 

I modelled two different test performances: 

 

1)  “Current performance”: the test has similar diagnostic performance to the signatures 

reported in the meta-analysis by Gupta et al (378). I assumed a sensitivity of 30% and 

specificity of 94%.  

2) “WHO minimum performance”: the test meets the WHO TPP  performance requirements 

(365). I assumed a sensitivity of 75% and specificity of 94%. Note, the WHO TPP advises a 

minimum specificity of 75%; however, I assumed the test does not perform worse than the 

current performance reported in Gupta et al.   

 

I modelled two testing strategies: 

 

1) “Whole-city testing”: a certain proportion of the population of Chennai is tested for incipient 

TB (slums and non-slums) per year.  

2) “Slum-only testing”: a certain proportion of the slum population is exclusively tested for 

incipient TB per year. 
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Table 3.3 summarises the different scenarios investigated.  

 
Scenarios Test performance Testing strategy 

1a Current Whole-city 
1b WHO minimum Whole-city 
2a Current Slum-only 
2b WHO minimum Slum-only 

 
Table 3.3. Scenarios modelled. I investigated a combination of test performances (current performance vs. 
WHO minimum performance) and testing strategies (whole-city vs. slum-only).  
 

I defined false positives as individuals that have been incorrectly diagnosed as having incipient TB. I 

assumed that false positives can arise only from the early LTBI stage (L(1)). However, it may be 

possible for false positives to arise from all individuals, except those with active TB disease or on TB 

treatment (U, L(1), R(L), R(H)). Therefore, I conducted a sensitivity analysis on this assumption, with 

results presented in appendix 1.   

 

Individuals diagnosed as having incipient TB (true- and false-positives) are initiated onto TPT, more 

specifically 3HP. I modelled a best-case scenario: I assumed all test positive individuals initiate TPT 

in both the public and private sector, and that all individuals adhere to treatment. Finally, I assumed 

each intervention scenario is initiated in 2020, and that the proportion of the target population 

accessing the test and TPT increased linearly across three years, until the whole target population was 

covered by 2023. I modelled the impact of the different intervention scenarios on TB incidence and 

mortality until 2035.  

 

3.2.4. Economic evaluation  

The purpose of the economic evaluation was to evaluate the cost-drivers and to determine the cost 

threshold a future test for incipient TB may need to meet to be considered cost-effective. I considered 

routine TB service costs as the comparator. I developed a simple cost model; I did not explicitly 

include the cost of human resources needed to run the intervention, a cost that is likely to be 

substantial, nor include discounting of future outcomes. Instead, the aim of this simplified costing 

analysis was as an informal analysis that serves as a lower bound for cost. I considered the TB 

programme cost perspective, ignoring costs to patients.  

 

Cost drivers 

I calculated the incremental spend between 2020 and 2035, which consisted of the cost of testing for 

incipient TB, the cost of TPT, and routine TB service costs (cost of diagnosing and treating active TB 

disease in the public sector) that are averted as a result of the intervention. To calculate the 

incremental spend, I assume an incipient TB test costs the equivalent to TST (table 3.4).  
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Cost-effectiveness analysis 

I measured health impact using Disability Adjusted Life Years (“DALYs”). The incremental cost-

effectiveness ratio (“ICER”) can therefore be written as the ratio of incremental cost to incremental 

DALYs averted (equation 1, defined in table 3.4):  

            (1) 

 

𝐼𝐶𝐸𝑅 = 	
𝑃~q + 𝑃�q + 𝑇 − (𝐴� − 𝐴H)

(𝐷� − 𝐷H)
 

 

where PTP and PFP is the cost of TPT for true positives and false positives respectively, T is the total 

(population-level) cost of testing for incipient TB, A0 – A1 are the averted routine TB service costs 

and D0 – D1 are DALYs averted.  

 

Although WHO suggests a cost-effectiveness threshold of 1- to 3-times the gross domestic product 

(“GDP”) per capita, critics suggest these thresholds are too high and do not necessarily reflect the 

health opportunity cost. Wood et al estimated that for low- and middle- income countries, this 

threshold should in fact be between 1-51% of GDP per capita (404), whereas Ochalek et al developed 

a framework to generate country-specific thresholds that reflect health opportunity costs, and 

estimated India’s to be between USD 264-363 (405). For simplicity, I assumed a cost-effectiveness 

threshold of 1- times India’s GDP per capita (USD 2,104) (382), as per the WHO’s recommendation. 

Considering this choice of threshold is optimistic compared to Wood et al and Ochalek et al, if results 

are not cost-effective under this choice threshold, this suggest they are robust to the choice of 

threshold. An intervention is considered cost-effective, if the ICER is less than the cost-effectiveness 

threshold, 𝜗:  

 

(2) 

𝜗 ≥
𝑃~q + 𝑃�q + 𝑇 − (𝐴� − 𝐴H)

(𝐷� − 𝐷H)
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Equation 2 can be defined fully (equation 3) and rearranged to give the cost threshold a test for 

incipient TB will need to meet to be considered cost-effective (equation 4):  

 

 

(3) 

 

𝜗

≥
𝜅g𝑝gz𝐶q ∫ 𝐿g

(J)	J�J�
J��� + 𝜅g(1 − 𝑝g{)𝐶q ∫ 𝐿g

(H)J�J�
J��� + 𝜅g𝐶~ ∫ (𝑈g + 𝐿g

(H) + 𝐿g
(J) + 𝑅g

(�) + 𝑅g
(�))J�J�

J��� − (𝐴� − 𝐴H)
(𝐷� − 𝐷H)

 

 

(4) 

 

𝐶~ ≤
𝜗(𝐷� − 𝐷H) − 𝜅g𝑝gz𝐶q ∫ 𝐿g

(J)	J�J�
J��� − 𝜅g(1 − 𝑝g{)𝐶q ∫ 𝐿g

(H)J�J�
J��� + (𝐴� − 𝐴H)

𝜅g ∫ (𝑈g + 𝐿g
(H) + 𝐿g

(J) + 𝑅g
(�) + 𝑅g

(�))J�J�
J���

 

 

 

The equation representing the threshold cost for an incipient TB test under the expanded false positive 

scenario is presented in appendix 1.  
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Notation Definition 
𝑫𝟎 − 𝑫𝟏 

 
DALYs averted (0 = baseline, 1 = intervention) between 2020 and 
2035. DALYs are calculated assuming the following: years of life 
lost due to premature mortality = 10, years lived with disability = 

0.33 [0.22-0.45] (406,407) 
𝑨𝟎 − 𝑨𝟏 Averted routine TB service costs (diagnosis and treating active 

disease) in the public sector as a result of the intervention 
between 2020 and 2035 (0 = baseline, 1 = intervention). I assume 

that for every true positive TB diagnosis, 9 non-TB cases that 
present to routine care with TB symptoms are tested, to account 

for the fact that amongst all patients presenting for care, there is a 
10% prevalence of TB (240,408,409) 

𝜿𝒔𝒑𝒔𝒏𝑪𝑷 � 𝑳𝒔
(𝟐)	

𝟐𝟎𝟐𝟎

𝟐𝟎𝟑𝟓
 

Total cost of treating true incipient TB cases with TPT between 
2020 and 2035 

𝜿𝒔𝑪𝑷(𝟏 − 𝒑𝒔𝒑)� 𝑳𝒔
(𝟏)

𝟐𝟎𝟐𝟎

𝟐𝟎𝟑𝟓
 Total cost of treating false positives originating from 𝐿g

(H) only 
with TPT between 2020 and 2035 

𝜿𝒔 � (𝑼𝒔 + 𝑳𝒔
(𝟏) + 𝑳𝒔

(𝟐) + 𝑹𝒔
(𝑳) + 𝑹𝒔

(𝑯))
𝟐𝟎𝟐𝟎

𝟐𝟎𝟑𝟓
 

Number of individuals tested for incipient TB between 2020 and 
2035 

𝝑 Cost-effectiveness threshold. This was assumed to be USD 2,104 
(1-times the GDP per capita of India) (410) 

𝜿𝒔 Rate of testing for incipient TB per person per year 
𝒑𝒔𝒏 Sensitivity of the test for incipient TB 
𝒑𝒔𝒑 Specificity of the test for incipient TB 
𝑪𝑷 Cost of TPT per person 
𝑪𝑻 Cost per test for incipient TB. Note, to calculate total incremental 

spend, I assumed the cost per test to be equivalent to the cost of a 
TST (USD 2-10; includes the cost of two healthcare visits) 

(411,412) 

� 𝑳𝒔
(𝟐)

𝟐𝟎𝟐𝟎

𝟐𝟎𝟑𝟓
 Prevalence of 𝐿g

(J) (incipient TB) between 2020 and 2035 

� (𝑼𝒔 + 𝑳𝒔
(𝟏) + 𝑳𝒔

(𝟐) + 𝑹𝒔
(𝑳) + 𝑹𝒔

(𝑯))
𝟐𝟎𝟐𝟎

𝟐𝟎𝟑𝟓
 

Prevalence of the population without active TB that are being 
screened for incipient TB between 2020 and 2035 

 

Table 3.4. Economic evaluation notation.      
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3.3. Results  

 
3.3.1. Model calibration  
Fig 3.2 shows results of model calibration, displaying the model fit against each of the calibration 

targets listed in table 3.2. Fig 3.3 shows MCMC diagnostic checks, including the posterior density 

trace and autocorrelation plots for selected parameters.  

 

Figure 3.2. Model fits to data. Panel A – TB prevalence per 100,000 in non-slums, Chennai; B – TB 
prevalence per 100,000 in slums; C – ARTI in non-slums, Chennai; D – ARTI in slums, Chennai; E – TB deaths 
per 100,000, India. Grey - model runs; red - mean of model runs; black - data points are described in table 3.2. 
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Figure 3.3. MCMC diagnostics. Panel A shows the posterior density trace, excluding the ‘burn-in’ period. 
Panel B and C show autocorrelation plots for two selected parameters (rate of developing active disease, and the 
efficacy of preventive therapy).  
 
3.3.2. Epidemiological impact  
For results discussed below, I assume 25% of the population is tested per year, unless otherwise 

stated.   

 

Fig 3.4 and table 3.5 show model projections for the impact testing the population for incipient TB 

has on TB incidence and mortality. A test with current performance would avert 7% (95% Credible 

Intervals, CrI 3-15%; scenario 1a) and 4% (95% CrI 2-8%; scenario 2a) of cumulative TB incident 

cases under a whole-city and slum-only strategy, respectively. A similar impact is seen in terms of TB 

deaths, with 6% (95% CrI 3-13%; scenario 1a) and 4% (95% CrI 2-7%; scenario 2a) of cumulative 

TB deaths averted. If the sensitivity of the test increased to the WHO minimum performance 

requirements, the epidemiological impact would increase; for example, under a whole-city and slum-

only strategy, the cumulative TB incident cases averted increased to 15% (95% CrI 7-30%; scenario 

1b) and 10% (95% CrI 5-18%; scenario 2b), respectively.  
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Figure 3.4. Model projections for annual overall TB incidence (slums and non-slums). I assumed 25% of 
the population is tested per year. Shown is a slum-only (blue dash line) and whole-city testing strategy (blue 
solid line). Panel A assumes the test has similar diagnostic performance to current data (sensitivity – 30%), 
whereas panel B assumes the test met the WHO minimum performance requirements (sensitivity – 75%). 
Baseline (red line) assumes current standard of TB care continued indefinitely. Shaded areas show Bayesian 
95% credible intervals. 
 

Testing strategy Test performance Cumulative incidence 
averted, 2020-2035 

Cumulative TB deaths 
averted, 2020-2035 

Whole-city Current performance 18,000 (8,100-38,000) 2,900 (1,200-6,700) 
WHO minimum 40,000 (19,000-80,000) 6,500 (2,900-14,000) 

Slum-only Current performance 11,000 (5,300-22,000) 1,900 (730-3,900) 
WHO minimum 25,000 (13,000-48,000) 4,300 (1,800-8,500) 

 

Table 3.5. Projected cumulative impact on TB cases and deaths averted relative to the status quo. I 
assumed 25% of the population is tested per year. Under the status quo I assumed the current standard of TB 
care in Chennai continued indefinitely. I assumed the test had similar diagnostic performance to current data 
(sensitivity – 30%) or the WHO minimum performance requirements (sensitivity – 75%). Brackets show 
Bayesian 95% credible intervals. 
 

3.3.3. Cost drivers  
Targeting testing towards individuals at higher risk of TB infection (slum-only testing) would detect 

more cases for a given cost, compared to whole-city testing (fig 3.5). Assuming the cost of an 

incipient TB test is equivalent to the cost of TST (between USD 2-10), under scenario 1a, 220 (95% 

CrI 101-475) active TB cases per 100,000 population would be averted, for an incremental cost of 

USD 5.2 million (95% CrI 5.1-5.4 million) per 100,000 population; under scenario 2a, 37% (95% CrI 

24-62%) fewer cases were averted, but at 82% (95% CrI 75-88%) less cost (fig 3.5a). A test with 

improved performance (fig 3.5b) would avert more cases for a given cost. The cost of the intervention 

was driven by the cost of testing (fig 3.6). For example, under scenario 1a, the total cost of testing was 

4 (95% CrI 3-6) and 31 (95% CrI 28-35) times larger than routine TB service and TPT costs, 

respectively. Targeted testing would reduce the cost of testing for incipient TB; testing was a cost 

driver if more than 5% of the population was tested per year with a test that had current performance 



 76 

under a whole-city testing strategy and 36% per year under a slum-only strategy. The cost of TPT was 

consistently the smallest cost component.  

 

Figure 3.5. Incremental cost (USD) per case averted, per 100,000 between 2020 and 2035. Panel A assumes 
the test had similar diagnostic performance to current data (sensitivity – 30%), whereas panel B assumes the test 
met the WHO minimum performance requirements (sensitivity – 75%). I investigated two different testing 
strategies: a slum-only (dash line) and whole-city strategy (solid line). Shaded areas show Bayesian 95% 
credible intervals.  
 

 
Figure 3.6. Cost drivers across increasing rates of testing for incipient TB between 2020 and 2035. I 
divided costs into the following components: cost of routine TB services (blue line), testing costs (cost of testing 
for incipient TB; red line), cost of TPT (yellow line). Panel A assumes the test had similar diagnostic 
performance to current data (sensitivity – 30%), whereas panel B assumes the test met the WHO minimum 
performance requirements (sensitivity – 75%). I investigated two different testing strategies: a slum-only (dash 
line) and whole-city strategy (solid line). Shaded areas show Bayesian 95% credible intervals.  
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3.3.4. Cost requirements  
For fig 3.5 and 3.6, I assumed the cost of an incipient TB test to be equivalent to the cost of TST. 

Instead, fig 3.7 illustrates the cost an incipient TB test would need to meet to be considered cost-

effective under a WHO cost-effectiveness threshold. These results suggest that the cost threshold the 

test would need to meet to be considered cost-effective is infeasibly stringent and would need to be in 

the order of 10-4 USD regardless of test performance, testing rate and testing strategy (fig 3.7). The 

need to test such large numbers, whilst not averting sufficient cases or deaths (averted routine TB 

service costs and DALYs), makes this intervention highly cost ineffective.  

 

Figure 3.7. Cost requirements for future tests for incipient TB, across increasing testing. Threshold costs 
of a test was calculated according to a cost-effectiveness threshold of USD 2,104 (blue) (404). See table 3.4 and 
equation 1. Panel A assumes the test had similar diagnostic performance to current data (sensitivity – 30%), 
whereas panel B assumes the test met the WHO minimum performance requirements (sensitivity – 75%). I 
investigated two different testing strategies: a slum-only (dash line) and whole-city strategy (solid line). Shaded 
areas show Bayesian 95% credible intervals.  
 
Table 3.6 illustrates the number of individuals that would need to be tested to identify one case of 

incipient TB and avert one case of active TB, assuming 25% of the population is tested per year 

between 2020 and 2035. Under scenario 1a, 287 (95% CrI 101-650) and 2,157 (95% CrI 1,002-4,717) 

individuals would need to be tested to identify one case of incipient TB and to avert one case of active 

TB, respectively. Under scenario 2a, these values decreased due to the higher prevalence of TB 

amongst slum-dwellers; 191 (95% CrI 64-445) and 643 (95% CrI 264-1,563) individuals would need 

to be tested to identify one case of incipient TB and to avert one case of active TB, respectively. As 

the test performance increases to meet the WHO minimum requirements, the number of individuals 

tested to avert one case of active TB would decrease to 966 (95% CrI 489-1,953) and 285 (95% CrI 

125-656) under scenarios 1b and 2b, respectively, due to the higher test sensitivity.  
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 Testing strategy Test performance 
Current WHO minimum 

Number tested to detect 
one case of incipient 

TB 

Whole-city 287 (101- 650) 123 (322 – 706) 
Slum-only 191 (64 – 445) 217 (80 – 480) 

Number tested to avert 
one case of active TB 

Whole-city 2,157 (1,002 – 4,717) 966 (489 – 1,953) 
Slum-only 643 (264 – 1,563) 285 (125 – 656) 

 

Table 3.6. The number needed to be tested to detect one case of incipient TB and avert one case of active 
TB. I assume 25% of the population was screened per year between 2020 and 2035 under a whole-city or slum-
only testing strategy, with a test that has current performance or WHO minimum performance. Brackets show 
95% Bayesian credible intervals.  
  

3.3.5. Sensitivity analyses  
I examined the impact increasing the pool of individuals where false positives can arise from has on 

the cost-effectiveness of the intervention. Under the expanded false positive assumption, fewer cases 

would be averted for a given cost due to the extra cost of treating a larger number of false positives 

(fig A1.1); 220 (95% CrI 101-475) TB incident cases per 100,000 population were averted for an 

incremental cost of USD 5.5 million (95% CrI 5.3-5.6 million) per 100,000 population, USD 300,000 

more than if false positives arise only from the early LTBI stage (L(1)), under scenario 1a. The relative 

importance of TPT increased (fig A1.2); under a whole-city testing strategy and if more than 68% and 

57% of the population were tested per year using a test with current performance and a test that meets 

the WHO minimum requirements, respectively, the cost of TPT would exceed routine TB service 

costs. The intervention was even less cost-effective due to the greater cost of treating the false 

positives (fig A1.3). 

 

I also conducted a multivariate sensitivity to examine which model parameters (listed in table 3.2) 

model outputs were most sensitive towards (fig 3.8). Using cases averted as the model output, and 

focussing on scenario 1a, unsurprisingly, the model parameters that the model output was most 

sensitive towards were the efficacy of TPT, and the assumptions surrounding the rate of developing 

incipient TB and the duration of incipient TB.  
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Figure 3.8. Multivariate sensitivity analysis of impact. Using scenario 1a (biomarker test with current 
performance and whole-city testing), and assuming that 25% of the population is tested per year, I used partial 
rank correlation coefficient (“PRCC”) to examine the sensitivity between cases averted and the different 
parameters listed in table 3.1. Larger bars represent more sensitive parameters. Shown are the 20 most 
influential model parameters, in decreasing order of sensitivity from top to bottom. 
 
 
3.4. Discussion  
 

To reach TB elimination, countries will need to target the reservoir of LTBI. Novel biomarker 

signatures (378) offer an important opportunity to identify incipient TB, individuals with LTBI at 

imminent risk of developing active disease. In this work, I sought to examine the impact this new 

technology, coupled with TPT, may have on the TB epidemic in Chennai, a setting consistent with 

urban slums, and whether targeting testing towards individuals at high risk of TB infection may offer 

a more cost-effective approach. I observe that 10% (95% CrI 5-18%) of cumulative TB incident cases 

were averted under a slum-only strategy using a test meeting the WHO performance requirements, 

assuming a quarter of the population was tested per year, between 2020 and 2035. However, the 

intervention is likely to not be cost effective, considering that even under a targeted slum-only testing 

strategy using a test that meets the WHO minimum requirements, 285 (95% CrI 125-656) individuals 

would need to be tested to avert one case of active TB, pushing the threshold cost for such a test to be 

considered cost-effective, to well below USD 1.  

 

Slum-dwellers are a high-risk population for developing active TB disease. By targeting areas with a 

higher risk of infection, more cases of TB or deaths can be averted for a given cost, compared to the 

general population; theoretically, in an area that has a higher risk of infection, the probability of 

finding an incipient TB case increases. Indeed, these results suggest that targeting slums does avert 

more cases for a given cost; however, the number of individuals that need to be tested to identify one 
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case of incipient TB is still not low enough, and DALYs averted high enough, to make the threshold 

cost of a test achievable, even amongst high-risk individuals. Therefore, there is a pressing need to 

understand, refine and combine measures of risk to improve the efficiency of incipient TB case 

finding; for example, by combining biomarker approaches with epidemiological risk factors. In other 

words, investigating what combination of risk factors may help focus future testing efforts to decrease 

the number of tests needed to detect one case of incipient TB; however, combining biomarker 

approaches with epidemiological risk factors may still not be enough to reduce the testing effort 

required and increase the cost-effectiveness of this intervention. As mentioned previously, risk-scores 

based on epidemiological risk factors are currently being developed to predict the risk of TB in adult 

contacts (366,413); however, questions remain on how the predictive power of these risk scores differ 

across different settings with different epidemiological risk factors and different burden of TB, and 

the amount by which predictive power can improve by combining the scores with biomarker 

approaches. 

 

Expanding the pool of individuals where false positives can arise from, affects the cost-effectiveness 

and cost-drivers of the intervention. I compared two possibilities: false positives originating only from 

LTBI, or LTBI and all uninfected individuals. Potentially, uninfected individuals may produce similar 

host immune responses to the one the test detects due to a different infection (378). Expanding the 

pool of potential false positives, increased the total cost of TPT. Under this scenario, the cost of TPT 

exceeded routine TB service costs at high testing but only under the whole-city testing strategy; under 

the slum-only testing strategy, the cost of TPT remained the least dominant cost, regardless of test 

sensitivity or the proportion of the population tested. This suggests that if testing is targeted to the 

slums, the cost of TPT and the specificity of the test is less important, and only becomes increasingly 

significant at higher testing rates, under untargeted testing and if the pool of potential false positives 

increases. However, regardless of the false positive assumptions made in the model, the cost of testing 

remains dominant; thus, keeping the cost of the test low will have the largest impact in reducing the 

cost of the overall intervention. Although I assume that treating a falsely diagnosed LTBI with 3HP 

has no effect, treating LTBI with 3HP may in fact reduce the progression from LTBI to incipient TB, 

ultimately reducing TB incidence further. This suggests the model may be underestimating the impact 

of the intervention.  

 

A couple of other mathematical modelling studies have also assessed the potential epidemiological 

impact incipient TB tests may have on TB. Sumner et al, using mathematical modelling, assessed the 

impact on TB incidence a test with similar diagnostic performance to the RISK11 signature may have 

amongst HIV-negatives in South Africa. They similarly concluded that although the impact on TB 

incidence is significant, the cost of such an intervention is likely to be high (377). An additional study 

by Arinaminpathy et al (74) investigated different strategies for TB elimination in Southeast Asia, one 
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of which was a biomarker test for incipient TB to guide TPT, alongside strengthening and 

accelerating routine TB services. They found that strengthening and accelerating routine TB services 

alone, was not enough to reach TB elimination; instead, a combination of the three strategies was 

needed. Although the results presented here support those presented in Arinaminpathy et al and 

Sumner et al, that incipient TB guided TPT may have an important epidemiological impact on the TB 

epidemic in a high burden setting, these results additionally suggest that the cost may be too 

prohibitive for implementation to be feasible in practice.  

 

I have made several simplifications to the model. For the implementation of TPT, I have modelled a 

best-case scenario by assuming perfect adherence to TPT and that the intervention was rolled out in 

both the private and public sector simultaneously. If the use of 3HP for TPT is adopted in India, 

adherence to the regimen will likely be higher than 6-9H due to fewer side effects and shorter 

treatment duration (362); however, data suggests that around 5% of patients discontinue 3HP due to 

adverse events (414,415), and amongst homeless patients, as many as 20% stop treatment due to side 

effects, treatment refusal or lost to follow up (416). Furthermore, a meta-analysis found that across the 

LTBI care-cascade, the majority of losses occur during testing, before the start of treatment (75). I 

assumed that the intervention will be rolled out in both the public and private sector; in reality, the test 

is likely to be rolled out first in the public sector, followed by the private sector. Removing both these 

assumptions will make the intervention less effective and more costly per averted TB case. I also 

ignore the diagnosis of active TB from the intervention scenarios; testing for incipient TB may 

concomitantly detect cases of active TB disease, indicating the model may be underestimating the true 

impact of the intervention. In addition, I assume that test performance is independent to the risk of 

developing active disease; in other words, individuals with a false-negative test result for incipient TB 

are equally likely to develop active disease as true-positives. Finally, I use constant rates for the 

development of incipient TB and for the progression from incipient TB to active disease. This 

assumes that there is an exponential distribution of waiting times; for example, the majority of 

individuals will progress quickly to the next health state, whereas a minority will progress slowly. 

Thus, using a constant rate may underestimate the potential epidemiological impact of the 

intervention if certain individuals are progressing to active disease at a low rate. The exact duration of 

incipient TB is uncertain, however the majority of studies investigating potential biomarkers for 

incipient TB focussed on a maximum duration of 2 years before development of active disease (373). 

In reality, the duration of incipient TB is likely to be heterogenous. An alternative modelling strategy 

to a constant rate is using a fixed delay (for example, modelled using delay-differential equations), so 

that all individuals have incipient TB for the same duration.  
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Studies on South African gold miners, where there is a high risk of TB infection, have shown that the 

protective effect of TPT may be as little as 6-12 months (417,418). This suggests that if the risk of re-

infection is continuously high, like in the slums, testing and treating individuals for incipient TB will 

need to be maintained. Similarly, the CORTIS trial found that treating incipient TB cases with 3HP 

did not reduce progression to active TB, and that this lack of impact may be due to the high 

background risk of reinfection (374). In my model, I assume that 3HP does prevent the progression 

from incipient TB to active TB, and I have not explicitly modelled the waning of protection after TPT 

completion; however, I assumed that individuals with incipient TB, upon treatment completion, revert 

to the early stage of LTBI, and have a chance of being re-infected. More research is needed to 

determine whether biomarker-led targeted TPT using 3HP can prevent active TB disease.  

 

The results in this chapter suggest that even a “perfect” test would not be considered cost-effective. 

However, this work does not quantify the long-term benefits of TB elimination, suggesting that I 

might be under-estimating the cost-effectiveness of such an intervention and that cost-effectiveness 

analysis may not be the most appropriate tool to use under the circumstance of disease elimination.  

Furthermore, using current routine TB services as a comparator may also be inappropriate; instead, 

future work should assess the cost effectiveness of this intervention against other comparators, such as 

other forms of TPT using a different diagnostic test. As this economic evaluation does not consider 

alternative interventions to testing for incipient TB, this work does not identify the most cost-effective 

intervention for India to progress towards TB elimination.  Instead, the aim of the analysis was to 

identify potential cost thresholds that future tests for incipient TB may need to meet. In this work, I 

have used an optimistic WHO-recommended cost-effectiveness threshold of one-time India’s GDP 

per capita. This threshold is likely to be high and not reflect health opportunity cost, as discussed by 

Woods et al (404) and Ochalek et al (405). In addition, I have not discounted future outcomes, which 

will further reduce the cost-effectiveness of the intervention. However, considering that the 

intervention was not cost-effective even under an optimistic threshold and without discounting, 

suggests that the results are robust to the choice of threshold.  

 

Finally, model outputs were highly sensitive towards the efficacy of 3HP and the rate of progression 

from incipient TB to active TB disease. If the efficacy of 3HP treatment increased, more TB cases 

were averted, whereas if the duration of incipient TB increased, fewer TB cases were averted. Current 

studies suggest that 3HP has a high efficacy, although more studies are needed across different 

populations. Generally, more research is needed on incipient TB; for example, whether or not active 

TB treatment could be an effective treatment against incipient TB cases that are only a few months 

away from developing active TB disease.  
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Future analyses should focus on a more comprehensive costing approach, to provide more precise 

costs for routine TB services and the intervention in question. Furthermore, it is of interest to examine 

the impact on results that imperfect adherence to TPT and imperfect rollout of the intervention across 

the private and public sector may have. More broadly, a greater understanding of measures of risk is 

needed, so that these potential biomarker tests can be targeted in a more cost-efficient manner.  

 

3.5. Conclusion  
 

With TB elimination on the agenda of high TB-burden countries, such as India, preventing LTBI from 

progressing to active TB disease is becoming increasingly crucial. Overall, this work suggests that 

even in a high TB burden country with targeted slum-only testing under optimal conditions, incipient 

TB case finding is not cost-effective and that biomarker-led TPT is likely to be prohibitively costly, 

due to the costly effort needed to detect and treat one case. Alternative targeted strategies will be 

needed. This work contributes to the growing body of evidence the impact that targeting TPT to 

specific sub-groups may have on TB epidemics in high-burden settings, and highlights where further 

research is needed in the field.   
 

 

  



 84 

 

Chapter 4: Results (ii)  
 

 

The potential impact of urine-lipoarabinomannan diagnostics on 

tuberculosis incidence and mortality: A modelling analysis 
 
Published as: Ricks S, Denkinger C.M., Schumacher S.G., Hallett T.B., Arinaminpathy N. (2020) The 

potential impact of urine-LAM diagnostics on tuberculosis incidence and mortality: A modelling 

analysis. PLoS Med 17(12): e1003466. https://doi.org/10.1371/journal.pmed.1003466 

 
C.M. Denkinger and S.G. Schumacher from the Foundations for Innovative New Diagnostics, and my 

supervisor, N. Arinaminpathy were involved in the conceptualisation of this work. I led the model 

development, analysis, and preparation of the manuscript. All authors were involved in reviewing and 

editing the manuscript.   

 
Due to the limitations of sputum-based diagnostic tests, urine-based point-of-care tests offer new 

opportunities for TB diagnosis. As these tests continue to improve, it is important to anticipate their 

epidemiological impact. In this chapter, I develop a mathematical model that captures TB and HIV 

dynamics in South Africa. I investigate the impact of two urine lipoarabinomannan tests, 

distinguishing between current tests (accuracy consistent with Alere DetermineTM LAM Ag) and 

future tests (accuracy consistent with Fujifilm SILVAMP TB LAM), on TB incidence and mortality, 

across widening test eligibility. I demonstrate that although these tests could have an important effect 

in averting TB deaths amongst people living with HIV with advanced disease, these tests will need to 

be deployed more broadly than HIV care, and have sufficient diagnostic performance, to achieve 

population-level impact.  
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4.1. Introduction 

 

In TB diagnosis, microbiological confirmation is typically conducted on sputum samples, using either 

traditional tools such as smear microscopy (419) or, more recently, rapid molecular tests such as 

Xpert (420,421). However, sputum-based tests have several limitations: Patients can find it difficult to 

provide good-quality sputum specimens with the required volume, particularly those living with 

advanced HIV disease (422). Additionally, sputum-based tests cannot detect extrapulmonary TB in 

the absence of pulmonary involvement. For these reasons, there has been increasing interest in new 

non-sputum-based diagnostic tools (423). In particular, urine-based tests aim to detect the 

lipoarabinomannan (“LAM”) antigen, part of the outer cell wall of mycobacteria (159,165,422,424). 

It is less invasive to collect urine than sputum samples in clinical settings, with lower infection risk to 

healthcare workers (“HCW”). Moreover, urine-based tests can detect extrapulmonary TB (425). 

Below I discuss two urine LAM tests, Alere DetermineTM LAM Ag (“AlereLAM”) and Fujifilm 

SILVAMP TB LAM (“FujiLAM”). 

 

Alere DetermineTM LAM Ag 

AlereLAM is currently the only commercially available urine-based diagnostic for TB  (424). It 

works by placing unprocessed urine of a suspected TB patient onto a test strip and incubating it for 25 

minutes at room temperature. A visible band appears on the test strip at different intensities, which is 

compared by eye to the reference card supplied by the manufacturer (426). The advantages of 

AlereLAM are that it does not require a laboratory, technical equipment or electricity (427). It can be 

performed at the point-of-care: it is quick, cheap (around USD 3.50), simple to use and can be used by 

HCWs with minimum training (132,428). All these qualities could increase diagnostic yield due to 

high turnover (424).  

 

Unfortunately, the sensitivity of AlereLAM is poor, especially amongst HIV-negative patients (429). 

Among people living with HIV (“PLHIV”) with signs and symptoms of TB, pooled sensitivity was 

estimated to be 42% compared to a reference standard of either culture or nucleic acid amplification 

tests (“NAAT”) (429). A common finding across many of the studies is the correlation of AlereLAM 

positivity with CD4 count (fig.4.1) (429). AlereLAM has higher sensitivity amongst patient sub-

groups with lower CD4 counts (430–437). For example, Lawn et al. estimated AlereLAM sensitivity 

to be 67% at a CD4 count of <50 cells/𝜇L, 52% at <100 cells/𝜇L and 39% at <200 cells/𝜇L amongst 

culture-confirmed patients (431). A meta-analysis has estimated the pooled specificity of AlereLAM 

to be 91% amongst culture-confirmed or NAAT-confirmed patients (429). A handful of studies have 
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found specificity to be consistent across all strata of CD4 counts (430–432,436), whereas others have 

reported decreasing specificity at lower CD4 counts (434,435).   

 

There are several factors that may cause this wide variation in sensitivity and specificity across 

studies. Firstly, the sensitivity and specificity can change depending on the cut off used on the 

reference card; specificity increases with higher cut-offs, whereas sensitivity decreases (438,439). A 

second factor that can cause variation across studies is the reference standard used to compare 

AlereLAM performance. Studies are only reliable if the reference standard used has correctly 

identified the study participants as either being TB-positive or TB-negative. Unfortunately, correct 

identification can be challenging, especially amongst patients with extrapulmonary disease. For 

example, Lawn et al calculated the specificity of AlereLAM based on two different references, the 

first being a comprehensive reference standard (respiratory and non-respiratory samples), the second 

being only respiratory samples; specificity decreased from 99% to 90% depending if the 

comprehensive or the respiratory samples reference standards were used, respectively (440). Finally, 

how sick the study population is will lead to variation across different settings. As mentioned above, 

sensitivity improves amongst more severely ill patients. Thus, future studies should characterize their 

study population with markers such as CD4 cell count and body mass index, in order to improve 

comparability between studies (438).   

 
Nevertheless, despite the wide variation in reported test performance, clinical trials show that 

AlereLAM may have a valuable impact in decreasing time to treatment initiation and averting TB 

deaths amongst hospitalised HIV patient populations (159,429). Firstly, it has the ability to detect 

individuals with the highest risk of mortality, and therefore, individuals who will benefit most from 

treatment (159,424,429,430,432,433,441–448). Gupta-Wright et al. estimated that AlereLAM test-

positive individuals have a two-fold increased mortality risk (446), potentially due to the presence of 

LAM in the urine signifying a higher MTB load and thus, greater disease dissemination (427). 

Secondly, when AlereLAM is combined with existing diagnostic tools, the combined sensitivity is 

higher than when a one-stage diagnostic approach is used, although at a cost to specificity. For 

example, using AlereLAM in parallel to Xpert or sputum smear microscopy, the pooled sensitivity 

was 75% and 59% amongst PLHIV, a 13% and 19% increase over Xpert or sputum smear microscopy 

alone, respectively (132). 

 

Weighing all this evidence, World Health Organisation (“WHO”) guidelines have restricted the use of 

AlereLAM in certain population sub-groups (table 4.1) (449). Uptake of AlereLAM in high HIV/TB 

burden countries remains low; a study that aimed to assess current usage of AlereLAM found that out 

of 24 countries, only 5 were currently using AlereLAM. The main barriers are the lack of budget 
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allocation for procuring the test, the lack of in-country pilot studies, and the test being suitable for 

only a small patient population (450).   

 

 

Setting To assist in the diagnosis of active TB in HIV-positive 
adults, adolescents, and children: 

Strength of 
recommendation 

Inpatients with signs and symptoms of TB (pulmonary and/or 
extrapulmonary) 

Strong 

with advanced HIV disease, or who are seriously ill (e.g., with 
respiratory rate of more than 30/minute, temperature of more 

than 39°C, etc.) 

Strong 

irrespective of signs and symptoms of TB with a CD4 cell 
count of less than 200 cells/µl 

Strong 

Outpatients with signs and symptoms of TB (pulmonary and/or 
extrapulmonary) or seriously ill 

Conditional 

irrespective of signs and symptoms of TB with a CD4 cell 
count of less than 100 cells/µl 

Conditional 

 
Table 4.1. Summary of the WHO updated guidelines (2019) on the use of Alere DetermineTM LAM Ag. 
 

Fujifilm SILVAMP TB LAM 

FujiLAM was recently developed, with the aim of having higher sensitivity than AlereLAM. Like 

AlereLAM, it is a lateral-flow assay on an instrument-free platform, and is suitable for use at the 

point-of-care, with results available in less than an hour; however, it has an additional step that 

combines monoclonal antibodies that have a high affinity to LAM with an amplification step, 

improving the detection of LAM (165).  

 

Preliminary results suggest FujiLAM has improved sensitivity to AlereLAM on biobanked samples 

from PLHIV, with comparable specificity. Using a composite reference standard (which includes 

clinical diagnosis), FujiLAM sensitivity was estimated to be 65%, compared to a sensitivity of 38% 

for AlereLAM, whereas specificity was 96% and 98% for FujiLAM and AlereLAM, 

respectively(165). When a microbiological reference standard was used instead, sensitivity increased 

to 70% and 42% for FujiLAM and AlereLAM, respectively, whereas specificity decreased to 91% 

and 95%, respectively (165). A similar pattern to AlereLAM is seen, where sensitivity increases with 

decreasing CD4 cell counts; for example, amongst patients with a CD4 cell count < 100 cells/µL, 

sensitivity was 81% compared to 53% with AlereLAM, whereas amongst patients with a CD4 cell 

count > 200 cells/µL, sensitivity decreased to 36% and 11% amongst FujiLAM and AlereLAM, 

respectively (fig.4.1) (165).  Further analysis suggests that FujiLAM is better at reducing mortality in 

PLHIV, due to its improved sensitivity in PLHIV with higher CD4 cell counts, allowing for rapid 

testing in a greater proportion of patients (451).   
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Furthermore, a recent study in programmatic conditions demonstrated the potential for FujiLAM to 

identify TB amongst HIV-negative patients, showing a sensitivity of approximately 50% in this 

population (166), raising the possibility of deploying urine LAM tests outside HIV care. In the same 

study, a laboratory-based LAM assay demonstrated the potential sensitivity gains for future LAM 

tests; a research assay that uses the same antibodies as FujiLAM but that instead employs an 

electrochemiluminescence immunoassay platform, had a sensitivity of 67% amongst HIV-negative 

samples using a microbiological reference standard (166). Other developments, such as new 

techniques for concentrating the LAM antigen available in a sample (452), also highlight the potential 

for continued improvements in the performance of LAM tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Sensitivity of AlereLAM and FujiLAM across different CD4 cell counts. Values were extracted 
from Broger et al. (165).  
 

In this context, and as urine LAM tests continue to improve, it is important to anticipate their potential 

epidemiological impact, if deployed widely in future. Here, I examined this potential impact using a 

mathematical model of TB transmission, informed by the available evidence for the performance of 

AlereLAM and FujiLAM in different healthcare settings. I focused on South Africa, the country with 

the world’s highest population rates of TB incidence, as well as the highest levels of HIV/TB 

coinfection. I modelled the potential TB incidence and mortality declines that would arise from the 

use of currently licensed LAM tests (consistent with AlereLAM) amongst those receiving HIV care, 

as well as a hypothetical scenario involving the use of potential future LAM tests in routine TB care, 

amongst HIV-negative patients. I aimed to answer the following questions:  

• What is the population-level impact of detecting active TB disease amongst people living 

with HIV in South Africa with lateral flow assays?  
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• Will following existing urine LAM test eligibility criteria (table 4.1) lead to a substantial 

epidemiological impact?  

• What is the epidemiological impact of broadening the eligibility criteria for urine LAM 

tests?  

 

4.2. Methods 

Here, I give an outline of the model structure, inputs, and intervention scenarios, with further 

technical details given in Appendix 2. 

 

4.2.1. Model structure 

I developed a deterministic compartmental model of TB transmission amongst adults (>15 years old) 

in South Africa, incorporating the role of HIV in driving TB dynamics. The overall model structure is 

illustrated schematically in fig 4.2. I did not aim to model the dynamics of HIV separately as I was 

interested in the effect of LAM tests on the TB epidemic, and not the HIV epidemic; thus, for the 

purpose of this analysis, I took the incidence of HIV, the proportion of PLHIV with and without TB, 

their CD4 cell counts, and the coverage of antiretroviral therapy (“ART”) over time as given inputs 

for the model. Doing so captures the role of projected future ART coverage, and HIV trends, in the 

future trajectory of the TB epidemic in South Africa. I also developed a similar model parameterized 

to resemble the TB epidemic in Kenya, a country with a lower HIV burden. 

 

Patients with extrapulmonary TB are often misdiagnosed if tested with sputum-based diagnostics 

(table 4.3). To capture the advantages of LAM testing for diagnosing TB amongst these patients, in 

the model, I distinguished extrapulmonary and pulmonary TB, while assuming that only the latter 

contribute to transmission. The sensitivity of LAM tests depends on the extent of HIV infection, and 

in particular the CD4 cell count (429). Accordingly, amongst those with HIV, I modelled 3 different 

CD4 cell count strata: those with a CD4 count > 200 cells/μl, those with a CD4 count between 100 

and 200 cells/μl, and those with a CD4 count < 100 cells/μl. The model captures the rate at which 

those with HIV progress through declining CD4 counts, during the course of infection. I also 

incorporated HIV-associated hospitalisation, assuming CD4-dependent hazard rates of admission into 

hospital, and further assuming that upon admission, any ART-naïve patients are initiated on ART. I 

also captured the provision of HIV care in outpatient settings, assuming CD4-dependent rates of ART 

initiation in these settings. The model does not explicitly capture rifampicin-resistant or multi-drug-

resistant TB, as these forms account only for 3%–4% of overall TB burden in South Africa. 
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Figure 4.2. Schematic illustration of the model structure. (A) represents TB transmission dynamics in the 
general community (centre) and hospitalised PLHIV, represented by superscript ‘inp’ (right). Model 
compartments are as follows: uninfected with TB (U), latent infection (L), active TB disease (I), presented for 
care and awaiting diagnosis (Dx), on TB treatment (Tx), temporarily dropped out of the TB care cascade due to 
missed diagnosis or pre-treatment loss to follow-up (E), recovered from TB with a low or high risk of relapse 
(R(H) and R(L)) and inpatient admissions (A). Each compartment is stratified further by HIV status, h, defined in 
table A2.2. (B) illustrates the transitions between the different HIV states, including ART state and CD4 count 
level (cells/μl). The following states are also further stratified into pulmonary TB and extrapulmonary TB: I, Dx, 
Tx, E, R(H), R(L), Dx(out), I(inp), A(inp), Tx(inp), E(inp), R(L_inp), and R(H_inp). Arrows represent transitions between states, 
at the per capita rates listed in table 4.3. Coloured-dash arrows in (A) illustrate movement of individuals with 
active TB disease into outpatient status (orange), out of outpatient status (green), and into inpatient status (blue). 
See Appendix 2 for further technical details, including model equations and calibration. 

 

 

 

A 

B 
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4.2.2. Data sources 

I drew from WHO data for estimates of TB incidence and mortality in South Africa, along with 

reported notifications and treatment outcomes (113). For past HIV trends, I drew estimates from 

UNAIDS (453) for annual HIV incidence, the proportion of HIV cases being initiated on ART each 

year, and the proportion of those on ART being virally suppressed. For future projections, I drew 

from the Thembisa model (454), an HIV modelling framework that is the source of UNAIDs 

estimates (fig A2.2-2.3). Table 4.2 summarises the data for South Africa from these sources. 

 

 

Table 4.2. Calibration targets for South Africa used to estimate model parameters. CD4 counts are cells/μl.  

 

I performed a literature search to identify the proportions of PLHIV in the 3 different CD4 strata 

described above, stratifying by 3 different population types, in line with WHO recommendations: (i) 

those initiating ART upon admission to hospital, (ii) those initiating ART as outpatients, and (iii) 

those who are not on ART. Fig 4.4 summarises the proportions thus extracted, and the sources of data 

used. This data informs model estimates for the timeliness of HIV treatment as follows: Early 

treatment yields a patient population with higher CD4 counts at the point of treatment initiation, and, 

conversely, late treatment is associated with a patient population having lower CD4 counts (table 4.2; 

fig 4.4). Therefore, by fitting the model to simultaneously capture CD4 progression and the 

distribution of CD4 counts at treatment initiation, I estimated the rate of treatment initiation at 

different CD4 counts, both in outpatient and inpatient settings (table 4.2; fig 4.4). I additionally 

collected data from the literature for other parameters: for example, for the proportion of HIV cases 

Indicator Value (95% credible interval) Source 
TB epidemiology 

TB incidence, 2018 520 per 100,000 (373–691) (113) 
Mortality, 2018 HIV− 37 per 100,000 (35–39) 

HIV+ 73 per 100,000 (51–99) 
Notification rate, 2018 420 per 100,000 (358–438) 

HIV epidemiology and care 
HIV prevalence, 2017 7.5 million (6.9 million–8.0 

million) 
(453) 

Proportion of TB cases coinfected with HIV 0.59 (0.55–0.65) (113) 
Proportion of PLHIV who have suppressed viral load 0.64 (0.58–0.68) (453) 

Of ART-naïve patients in the 
community, proportion by CD4 

category 

CD4 > 200 0.76 (0.61–0.91) (455–457)  
CD4 100–200 0.12 (0.10–0.14) 

CD4 < 100 0.12 (0.10–0.14) 
Of people initiating ART in 

outpatient settings, proportion by 
CD4 category 

CD4 > 200 0.42 (0.33–0.49) (444,458–
462) CD4 100–200 0.26 (0.20–0.30) 

CD4 < 100 0.32 (0.24–0.36) 
Of people initiating ART as 

inpatients, proportion by CD4 
category 

CD4 > 200 0.34 (0.27–0.41) (165,445,463) 
CD4 100–200 0.25 (0.20–0.28) 

CD4 < 100 0.41 (0.33–0.45) 
Overall number initiating ART, 2017 660,982 (453) 

Percentage of HIV cases being hospitalised annually 5% (3.5%–6.5%) (464) 
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that are hospitalised per year (464) and for the current standard of TB care amongst HIV inpatients 

(e.g., the proportion of hospital admissions receiving a TB test in routine practice) (159). 

 

These targets (table 4.2) were used to inform model parameters including the force of infection (𝛽), 

the infectiousness of TB in PLHIV relative to HIV-negatives (𝑅H), the rate of initial care seeking for 

TB symptoms (𝛿H_g), the rate of TB mortality (𝜇H), the rate of HIV acquisition (γ) and the rate of CD4 

progression (𝜈). A full list of these parameters is shown in table 4.3. I used Adaptive Bayesian 

Markov chain Monte Carlo (“MCMC”) to calibrate the model (391). I fitted beta and log-normal 

distributions to the calibration targets for all data that were proportions and for TB incidence, 

respectively. Next, I constructed the overall likelihood function of the data (𝑥) based on parameter set 

(𝜃), 𝑃(𝑥|𝜃), as a product of the distributions over all the calibration targets (table 4.3) and multiplied 

this with uniform priors (𝑃(𝜃); ranges specified in table 3.1). Thus, the posterior density is calculated 

by:	𝑃(𝜃|𝑥) ∝ 𝑃(𝑥|𝜃)𝑃(𝜃). By sampling from the posterior distribution using MCMC, I created an 

unbiased sample that approximates the posterior distribution. I refer to the uncertainty in model 

projections as the Bayesian credible intervals, using the 2.5th and 97.5th percentiles to reflect the lower 

and upper bound of an interval. Additional detail is provided in appendix 2. I drew 5,000 samples 

from the posterior distribution. For any model projections based on these samples, I estimated 

uncertainty intervals using the 2.5th and 97.5th percentiles, referring to this estimate as the Bayesian 

credible interval (“CrI”). Further details on the model structure and calibration are given in Appendix 

2. 
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Parameter Symbol Value* Source/notes 

TB natural history 
Mean rate of transmission per TB 

case 
β 14.9 (11.4–18.6) Model estimate 

TB infectiousness in HIV+ (not 
virally suppressed) relative to 

HIV− 

𝑅H 0.66 (0.60–0.80) Model estimate 

Proportion of TB infections 
undergoing rapid progression 

θ¡ HIV− and virally suppressed 0.11 (0.09–0.15) (15,16,392) 
 HIV+, CD4 > 200 0.40 (0.33–0.51) 

HIV+, CD4 100–200 0.80 (0.67–0.82) 
HIV+, CD4 < 100 0.99 (0.90–1.00) 

Per capita hazard of reactivation 
of latent TB infection 

ρ¡ HIV− and virally suppressed 0.001 years−1 
(0.0003–0.0024) 

(342,392,465) 
 

HIV+, CD4 > 200 0.005 years−1 
(0.003–0.006) 

HIV+, CD4 100–200 0.10 years−1 
(0.085–0.150) 

HIV+, CD4 < 100 0.20 years−1 
(0.100–0.300) 

Per capita hazard rate of relapse 𝑟H Following self-cure/treatment 
default 

0.14 years−1 
(0.10–0.18) 

(34,35,394,466) 
 

𝑟J Following treatment cure, >2 
years 

0.002 years−1 
(0.001–0.003) 

Stabilisation of relapse risk 
following treatment 

ς 0.5 years−1 (0.4–0.6) (35): most 
relapse occurs 
in the first two 

years after 
treatment 

Per capita hazard rate of 
spontaneous cure 

φ¡ HIV− and virally suppressed 0.17 years−1 
(0.13–0.21) 

(344) 

HIV+ 0 years−1 
Per capita hazard rate of TB 

mortality (HIV-negative) 
µH 0.29 years−1 (0.21–0.38) Model estimate 
µ¦ Excess: inpatient 1 year−1 (0.5–

2.0) 
(159) 

Proportion reduction in 
susceptibility to reinfection due to 

previous infection 

π 0.21 [0.15-0.25] (28) 

Proportion of TB cases with 
pulmonary TB 

α¡ HIV− 0.89 (0.80–0.90) (113) 
HIV+ 0.60 (0.50–0.70) 

HIV natural history 
Per capita hazard rate of HIV 

acquisition 
γ 0.016 years−1 (0.013–0.021) Model estimate, 

to match HIV 
incidence 

Per capita hazard rate of CD4 
progression, amongst those not 

virally suppressed 

𝜈H >200 to 100–200 0.31 years−1 
(0.26–0.37) 

Model estimate 

𝜈J 100–200 to <100 0.89 years−1 
(0.88–0.90) 

Excess per capita hazard rate of 
TB+HIV+ mortality 

µ�© HIV+ and virally suppressed 0.01 years−1 
(0.005–0.012) 

(467–469) 
 

HIV+, CD4 > 200 0.03 years−1 
(0.02–0.06) 

HIV+, CD4 100–200 0.17 years−1 
(0.13–0.21) 

HIV+, CD4 < 100 0.60 years−1 
(0.42–0.83) 

Routine TB services 
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Per capita hazard rate of initial 
careseeking for TB symptoms 

δH HIV− and virally suppressed 2.5 years−1 (2.2–
2.9) 

Model estimate 

Per capita hazard rate of repeat 
careseeking for TB symptoms 
(following missed diagnosis) 

δJ HIV− and virally suppressed 12 years−1 (6–
26) 

Assumption: 
corresponds to 

range of 2 
weeks to 2 

months 
Rate of careseeking amongst 

HIV+, relative to HIV− 
𝑅J 1.5 (1.0–2.0) Model estimate 

Proportion of TB cases diagnosed 
correctly, per careseeking attempt 

in routine TB services 

ε¬ HIV− pulmonary TB 0.73 (0.63–0.92) Model estimate 

𝑅� HIV+, relative to HIV− 0.31 (0.20–0.72) 
𝑅¦ Extrapulmonary, relative to 

pulmonary 
0.21 (0.20–0.28) 

TB treatment initiation delay ϕ¬ 52 years−1 (24–100) Assumed: 
corresponds to a 
mean treatment 
delay of 1 week 
in routine TB 

care 

Proportion of diagnosed TB cases 
successfully initiating treatment 

ω¬ 0.88 (0.77–0.90) (257,470) 
 

Rate of first-line treatment 
completion 

τ 2 years−1 Corresponds to 
a duration of 6 

months 

Proportion cured after first-line 
treatment 

χ¡ HIV− 0.82 (0.77–0.87) (113,257) 
HIV+ 0.80 (0.75–0.85) 

Proportion that can provide a 
sputum sample 

ϑ¡
²³´µ´¶ HIV− 0.90 (0.80–0.95) (157–159,446) 

 HIV+ 0.50 (0.37–0.60) 
Proportion that can provide a 

urine sample 
ϑ¡´·¸¹º 0.99 (0.97–1.00) (165) 

Proportion of Xpert-negative 
results that are clinically 

diagnosed 

ι¡ HIV− 0.20 (0.16–0.24) (257) 
HIV+ 0.30 (0.24–0.36) 

HIV services 
Per capita rate of hospitalisation ℎ¡ HIV+, CD4 > 200 0.046 years−1 

(0.032–0.063) 
Model estimate 

HIV+, CD4 100–200 0.12 years−1 
(0.08–0.14) 

HIV+, CD4 < 100 0.23 years−1 
(0.20–0.26) 

Per capita rate of ART initiation 
in outpatient settings amongst 

PLHIV 

ϖ¡ HIV+, CD4 > 200 0.043 years−1 
(0.020–0.085) 

Model estimate 

HIV+, CD4 100–200 0.15 years−1 
(0.09–0.27) 

HIV+, CD4 < 100 0.28 years−1 
(0.18–0.43) 

Proportion on ART that are 
virally suppressed 

ϟ 0.88 (0.85–0.90)  (453) 

Inpatients: Amongst admissions 
with TB, proportion having TB 

symptoms 

s# 0.95 (0.76–1.00) (445) 

Inpatients: Amongst admissions 
with TB, proportion receiving an 

Xpert test at baseline 

ξ# 1.00 (0.80–1.00) Assuming 
proportion 
amongst 

inpatients is 
higher than 

amongst 
outpatients (see 
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outpatient data 
below) 

Inpatients: Proportion of 
diagnosed TB cases successfully 

initiating treatment 

ω# 1.00 (0.90–1.00) (257,470) 
 

Inpatients: Average duration of 
hospitalisation 

ψ¡ HIV+, CD4 > 200 8 days (5–10) (464) 
HIV+, CD4 100–200 9 days (6–11) 

HIV+, CD4 < 100 10 days (7–13) 
Outpatients: Amongst those 

initiating ART, proportion having 
TB symptoms 

𝑠À 0.82 (0.66–0.98) (471) 

Outpatients: Amongst those 
initiating ART, proportion of 

symptomatic patients currently 
receiving an Xpert test 

ξÀ 0.80 (0.60–0.90) (472) 

Outpatients: Proportion of 
diagnosed TB cases successfully 

initiating treatment 

ωÀ 0.86 (0.70–0.92) (257,470) 
 

TB treatment initiation delay ϕ 365 years−1 (52–365) Corresponds to 
a mean delay of 

1 day 
Demographics 

Per capita hazard rate of 
background mortality 

µJ 0.0156 years−1 World Bank 
estimates: 

corresponds to 
an average 

lifespan of 65 
years 

Table 4.3. List of model parameters and assumptions. CD4 counts are cells/μl. *Numbers in brackets 
represent sampling ranges; I assume all sampling ranges are uniformly distributed in the sampling process. 

 

 
4.2.3. Intervention scenarios 

I distinguished ‘current’ and potential ‘future’ LAM tests. For the performance of the former, I drew 

from a systematic review of AlereLAM (429). For the latter, I took FujiLAM as an illustrative 

example, drawing from a recent study that estimated the performance of this test in HIV-negative 

patients (166). This same study highlighted the potential of future LAM tests to have improved 

performance compared to FujiLAM: the parameters for future LAM tests could therefore be 

interpreted as a lower bound for their performance (165) (table 4.4). I assumed that differences in test 

performance between inpatients and outpatients are driven primarily by variations in CD4 

distributions between these populations, variations that are captured by the model. Accordingly, I 

concentrated on study findings stratified by CD4 status, rather than by inpatient or outpatient setting. 
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Table 4.4. Test sensitivities. CD4 counts are cells/μl. Values in parentheses are 95% credible intervals. I 
assumed Xpert sensitivity to be independent of CD4 count amongst those with HIV. I assumed future LAM 
tests to be consistent with FujiLAM. aSensitivities for patients with virally suppressed HIV infection were 
estimated by taking the ‘overall’ sensitivities of each test presented in the meta-analysis by Bjerrum et al. (429). 

 

A test’s epidemiological impact (i.e., on incidence and mortality) is driven by its sensitivity, or the 

proportion of true TB cases it can detect. A test’s specificity, or the proportion of those without TB 

that it correctly diagnoses as negative, has no direct bearing on its epidemiological impact, and 

instead is more relevant for the number of unnecessary TB treatments incurred as a result of false-

positive diagnosis (408). As the focus of the current work is on epidemiological impact, I 

concentrated on test sensitivity and not specificity. The model therefore does not address the adverse 

consequences of false-positive results, including additional costs and adverse treatment side effects. 

I modelled the deployment of current and future LAM tests in 2 intervention scenarios reflecting the 

updated WHO guidelines (449) (table 4.1): 

• In ‘PLHIV inpatients only’ (scenario i), LAM testing is conducted in PLHIV inpatients with 

signs and symptoms of TB and in all PLHIV with CD4 < 200 cells/μl, independent of 

symptoms. 

•  In ‘PLHIV inpatients and outpatients’ (scenario ii), LAM testing is conducted in PLHIV 

inpatients and outpatients prior to initiating ART treatment with signs and symptoms of TB, 

in all PLHIV inpatients with CD4 < 200 cells/μl, and in all PLHIV outpatients with CD4 

<100 cells/μl, independent of symptoms.  

 

Additionally, for future LAM tests alone, I modelled a hypothetical future scenario:  

• ‘Universal for all TB presumptive patients’ (scenario iii), in which a future LAM test is 

deployed as part of routine TB diagnosis in patients presenting with symptoms of TB to a 

healthcare provider, regardless of HIV status.  

 

The impact of scenario iii derives from the diagnosis of HIV-negative TB, and from the diagnosis of 

TB amongst those with undiagnosed HIV (and who may miss the opportunity for urine-based testing 

under current LAM testing guidelines). To assess which of these factors are most influential for 

Test Symbol HIV− HIV+ Source 
CD4 > 200 CD4 100–200 CD4 < 100 Virally 

suppressed 
Sputum Xpert Xsn 89% (85-92) 79% (70–86) 79% (70–86) 79% (70–86) 79% (70–86) (420) 

Currently licensed 
LAM test 

Asn — 12% (5–24) 26% (15–39) 57% (42–70) 42%a (32–52) (165,429) 
 

Future LAM test  Fsn 30% (20–50) 44% (30–59) 61% (44–73) 84% (71–91) 70%a (53–83) (165,166) 
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impact, I additionally simulated scenario iii under a hypothetical condition where FujiLAM has 0 

sensitivity for TB in HIV-negative individuals. This artificial scenario is thus deliberately constructed 

so that the only incremental cases being diagnosed, relative to scenario ii, are those with HIV and not 

on ART. 

 

I modelled each of these intervention scenarios, assuming them to be initiated in 2020; I assumed that 

the proportion of the target population accessing these tests increases linearly, until the whole 

population in South Africa is covered by 2023. I simulated the model forward to 2035, simulating 

incidence and mortality over this time. 

 

I considered the impact of LAM testing with respect to 2 comparators: 

• A ‘status quo’ comparator scenario, where the current standard of TB care continues 

indefinitely (where a proportion of patients presenting to care with signs and symptoms of TB 

are offered an Xpert test by a healthcare provider) 

• An ‘Xpert scale-up’ comparator scenario, involving the scale-up of sputum-based Xpert 

across the country, to diagnose TB both amongst those receiving ART and in routine TB 

services. I assumed that all patients presumed to have TB based on symptoms receive Xpert 

testing by 2023 (in inpatient, outpatient, and routine care settings). 

 

Consistent with diagnostic yields reported in the literature (table 4.3), I assumed that only 50% of 

patients with HIV (in both inpatient and outpatient settings) can provide a sputum sample for Xpert 

testing, while 99% of patients are able to provide a urine sample for LAM testing. I also considered 

clinical diagnosis that occurs after a negative Xpert test result. I assumed that 20% and 30% of 

patients with negative Xpert test results are clinically diagnosed and offered treatment amongst HIV-

negative and HIV-positive patients, respectively (257). Using comparator and intervention scenarios, I 

projected estimates for the numbers of TB cases and deaths that would be averted under the 

intervention scenarios described above. 

 

Finally, as a sensitivity analysis to examine the applicability of these results to other countries with a 

generalised HIV epidemic, I extended the model to capture epidemiological conditions consistent 

with Kenya, where an estimated 27% of TB is in HIV-coinfected patients, compared with 59% for 

South Africa (113). There is insufficient data from Kenya to calibrate all model parameters; I 

therefore sought only to capture gross epidemiological indicators consistent with Kenya (TB 

incidence, mortality, proportion of HIV coinfection, etc.), while assuming the same values as derived 

for South Africa for all parameters specific to CD4 counts (rates of ART initiation, hospitalisation, 
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etc.; see table A2.3 for further details). I then simulated the intervention scenarios described above, in 

this Kenya-like setting. 

 

4.3. Results 

 

4.3.1. Model calibration  

Fig 4.3-4.4 shows results of model calibration, displaying the model fit against each of the calibration 

targets listed in table 4.2. Fig 4.5 show MCMC diagnostic checks, including the posterior density 

trace and autocorrelation plots for selected parameters. Model calibrations for Kenya are shown in 

Appendix 2 (fig A2.1).  

 

Figure 4.3. Model fits to data for South Africa.. (A) TB incidence; (B) TB mortality per 100,000; (C) TB 
notifications per 100,000; (D) proportion of PLHIV with suppressed viral loads; (E) ART initiations per 
100,000; (F) proportion of TB cases coinfected with HIV; (G) percentage of HIV cases being hospitalised 
annually. Grey - model runs; red - mean of model runs; black - data points are described in table 4.2.  
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Figure 4.4. CD4 count distributions. Model fits to the data: mean model CD4 count distributions amongst 
ART-naïve PLHIV (blue), inpatients (red), and outpatients (yellow). Grey lines show the model runs, and black 
data points show the data, based on a literature search (table 4.2). 
 

Figure 4.5. MCMC diagnostics. (A) shows the posterior density trace. (B) and (C) show autocorrelation 
function plots for 2 selected parameters (rate of transmission and proportion of fast progressors). 
 

4.3.2. Epidemiological impact 

The model projects that, under the status quo comparator between 2020 and 2035, there would be 

2,700,000 (95% CrI 2,000,000–3,600,000) cumulative incident cases of TB in South Africa, and 

420,000 (95% CrI 350,000–520,000) cumulative TB deaths. 

Fig 4.6 and Fig 4.7 illustrate the potential impact of LAM tests relative to the status quo comparator, 

showing the TB cases and deaths averted each year, respectively. Table 4.5 summarises the 

cumulative impact in South Africa over the period 2020 to 2035, showing estimates for both cases 
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and deaths averted. Table 4.6 also summarises the cumulative impact, but under the Xpert scale-up 

comparator.  

 

Figure 4.6. Model projections for impact of LAM tests in South Africa on TB incidence, relative to the 
status quo comparator. Under the status quo comparator, the current standard of TB care in South Africa is 
assumed to continue indefinitely. Shaded areas show Bayesian 95% credible intervals. Solid lines depict a 
currently licensed test, while dashed lines depict a future LAM test. Colours represent different implementation 
scenarios: inpatients only (red, scenario i), plus outpatients (blue, scenario ii) and plus routine TB care (yellow, 
scenario iii). (A) depicts scenarios i and ii only, while (B) additionally shows scenario iii (shown separately 
owing to the change in scale). Cumulative impacts over the period 2020–2035 are summarised in table 4.5. 

 

Figure 4.7. Model projections for impact of LAM test in South Africa on TB deaths, relative to the status 
quo comparator. Under the status quo comparator, the current standard of TB care in South Africa is assumed 
to continue indefinitely. Shaded areas show Bayesian 95% credible intervals. Solid lines depict a currently 
licensed test, while dashed lines depict a future LAM test. Colours represent different implementation scenarios: 
inpatients only (red, scenario i), plus outpatients (blue, scenario ii) and plus routine TB care (yellow, scenario 
iii). (A) depicts scenarios i and ii only, while (B) additionally shows scenario iii. Cumulative impacts over the 
period 2020–2035 are summarised in table 4.5. 
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Deployment 
level 

LAM test Cumulative incidence 
averted, 2020–2035 

Cumulative TB deaths 
averted, 2020–2035 

Cumulative TB deaths 
averted amongst 

inpatients, 2020–2035 
Number Percent Number Percent Number Percent 

Inpatients 
(scenario i) 

Currently 
licensed LAM 

692 (402–
1,156) 

0.026 
(0.014–
0.043) 

324 (170–
596) 

0.077 
(0.045–
0.125) 

54 (33–86) 5.33 (4.18–
6.29) 

Future LAM 1,181 (698–
1,990) 

0.045 
(0.025–
0.074) 

543 (289–
982) 

0.129 
(0.076–
0.203) 

90 (55–
145) 

8.75 (7.05–
11.2) 

Inpatients and 
outpatients 
(scenario ii) 

Currently 
licensed LAM 

1,670 (937–
2,837) 

0.063 
(0.035–
0.109) 

724 (376–
1,415) 

0.173 
(0.097–
0.306) 

58 (36–93) 5.73 (4.36–
6.90) 

Future LAM 2,665 
(1,539–
4,631) 

0.100 
(0.056–
0.175) 

1,153 
(594–

2,188) 

0.276 
(0.156–
0.486) 

96 (58–
155) 

9.33 (7.43–
12.1) 

Inpatients, 
outpatients, 
and routine 

TB care 
(scenario iii) 

Future LAM 470,590 
(221,830–
871,500) 

17.7 (8.62–
29.0) 

123,520 
(69,120–
206,270) 

29.6 (17.8–
43.6) 

402 (229–
685) 

39.7 (29.4–
49.1) 

Table 4.5. Projected cumulative impact relative to a status quo comparator, South Africa. Under the status 
quo comparator, I assume the current standard of TB care in South Africa to continue indefinitely. Values in 
parentheses are 95% credible intervals. 
 

Deployment 
level 

LAM test Cumulative incidence 
averted, 2020–2035 

Cumulative TB deaths 
averted, 2020–2035 

Cumulative TB deaths 
averted amongst 

inpatients, 2020–2035 
Number Percent Number Percent Number Percent 

Inpatients 
(scenario i) 

Currently 
licensed 

LAM 

171 (81–
322) 

0.0079 
(0.0043–

0.014) 

153 (81–
324) 

0.050 
(0.028–
0.088) 

34 (20–56) 4.68 (3.68–
5.62) 

Future LAM 291 (136–
546) 

0.014 
(0.0074–

0.025) 

256 (134–
523) 

0.083 
(0.047–0.14) 

56 (33–93) 7.69 (6.12–
10.2) 

Inpatients and 
outpatients 
(scenario ii) 

Currently 
licensed 

LAM 

395 (192–
798) 

0.019 
(0.010–
0.037) 

330 (173–
747) 

0.108 
(0.058–
0.210) 

36 (22–60) 4.99 (3.81–
6.13) 

Future LAM 635 (293–
1,327) 

0.030 
(0.016–
0.060) 

530 (271–
1,143) 

0.173 
(0.094–
0.329) 

59 (35–98) 8.15 (6.41–
10.8) 

Inpatients, 
outpatients, 
and routine 

TB care 
(scenario iii) 

Future LAM 119,670 
(68,710–
169,030) 

5.68 (3.18–
7.52) 

50,174 
(33,617–
72,557) 

16.4 (10.4–
22.2) 

204 (122–
344) 

28.7 (21.6–
34.5) 

Table 4.6. Projected cumulative impact relative to an Xpert scale-up comparator, South Africa. Under the 
Xpert scale-up comparator, I assume comprehensive expansion of access to sputum Xpert across South Africa, 
such that all individuals with symptoms suggestive of TB are tested with Xpert on their first presentation for 
care. Numbers in the table show the model-projected impact of LAM tests when deployed as an adjunct to 
Xpert, assuming (in all settings shown in the table) a simple diagnostic algorithm where TB is diagnosed if 
either a LAM test or Xpert is positive for TB. Values in parentheses are 95% credible intervals. As described in 
the main text, in the model, I also allow for clinical diagnosis amongst bacteriologically negative symptomatic 
patients. 
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Restricting the use of LAM tests to HIV care 

These results (fig 4.6-4.7, table 4.5) illustrate that LAM tests could have a meaningful impact in 

saving lives amongst inpatients (scenario i); current and future LAM tests may avert, respectively, 54 

(95% CrI 33–86) and 90 (95% CrI 55–145) TB deaths amongst inpatients, a 5.33% (95% CrI 4.18%–

6.29%) and 8.75% (95% CrI 7.05%–11.2%) reduction of overall TB deaths in this population. At a 

population level, 324 (95% CrI 170–596) and 543 (95% CrI 289–982) TB deaths would be averted 

with current and future LAM tests, respectively, a limited impact (<1% of the country-level TB 

burden) that is clearly because of the small size of the population receiving the intervention. 

 

When expanding LAM test deployment to outpatient settings (scenario ii), current and future LAM 

tests would avert, respectively, 724 (95% CrI 376–1,400) and 1,200 (95% CrI 594–2,200) TB deaths, 

roughly doubling the total deaths averted under scenario i. Notably, however, even with this widened 

eligibility, LAM tests continue to exert only a modest impact on the population-level TB epidemic, 

with <1% reductions in TB incidence and mortality (fig 4.6A and 4.7A; table 4.5).  

Fig A2.4 illustrates the reason for the limited population-level impact under scenarios i and ii, even in 

a high-HIV-burden setting such as South Africa: it is due to the series of criteria that successively 

narrow the pool of eligible individuals to <5% of annual TB incidence. 

 

Expanding the use of LAM tests to routine TB services 

It is only when LAM tests are deployed in routine TB services (scenario iii) that true incidence-

reducing impact emerges (fig 4.6B and 4.7B), with 470,000 (95% CrI 220,000–870,000) cumulative 

TB incident cases and 120,000 (95% CrI 69,000–210,000) TB deaths averted, respective reductions of 

17.7% (95% CrI 8.62%–29.0%) and 29.6% (95% CrI 17.8%–43.6%).  

 

Under the Xpert scale-up comparator, the incremental cases averted by a future LAM test in routine 

TB care (scenario iii) fall to 120,000 (95% CrI 69,000–170,000), a 5.68% (95% CrI 3.18%–7.52%) 

reduction from the 17.7% (95% Cri 8.62%–29.0%) achieved with the status quo comparator, owing to 

the improvements in diagnosis already achieved by Xpert scale-up. Under the same scenario, a future 

LAM test would avert 50,000 (95% CrI 34,000–73,000) TB deaths, a 16.4% (95% CrI 10.4%–22.2%) 

reduction. Overall, the effect of Xpert scale-up on the incremental impact of LAM tests is lower for 

deaths averted than for cases averted: this reflects the value of LAM tests in diagnosing 

extrapulmonary TB and TB in those with advanced disease, patients who would otherwise contribute 

more strongly to mortality than to transmission. 
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As noted above, the impact of scenario iii (fig 4.6B and 4.7B) could derive either from diagnosis of 

TB in HIV-negative individuals or from diagnosis of TB amongst those with HIV who have not yet 

been linked to care. To examine the roles of these 2 populations, I simulated a hypothetical scenario 

of a future LAM test being deployed in routine TB services, but with 0 sensitivity for TB in HIV-

negative individuals. Under this hypothetical scenario the TB cases and deaths averted are, 

respectively, 12.1% (95% CrI 8.34%–17.6%) and 21.3% (95% CrI 15.2%–29.7%) in South Africa, 

hypothetical impacts that represent only marginal reductions of those reported in the bottom row of 

table 4.5. Overall, these findings illustrate that—when expanded from outpatients in HIV care to 

routine TB services—the key value of LAM tests would be in diagnosing TB amongst those with HIV 

who have not yet been initiated on ART. 

 

4.3.3. The use of LAM tests in lower HIV-burden settings 

Similar results are seen in a Kenya-like setting (table 4.7-4.8; fig 4.8). Relative to a status quo 

comparator, in scenarios i and ii, where LAM tests are deployed only amongst those receiving HIV 

care, the percentage decline in mortality amongst eligible groups is roughly half that in South Africa 

(table 4.7), owing to the smaller proportion of HIV cases having TB. As in South Africa, population-

level declines in incidence and mortality would be <1% in these scenarios. However, when 

deployment of a future LAM test is expanded to routine TB services, 290,000 (95% CrI 190,000–

470,000) cumulative TB incident cases and 58,000 (95% CrI 39,000–86,000) TB deaths are averted, a 

19.8% (95% CrI 18.1%–22.7%) and 27.9% (95% CrI 25.7%–31.4%) reduction, respectively, in a 

Kenya-like setting (table 4.7), impacts that are comparable to those estimated for South Africa (table 

4.5). 

Figure 4.8. Model projections for impact of LAM tests in Kenya on TB incidence, relative to the status 
quo comparator. Under this comparator, the current standard of TB care in Kenya is assumed to continue 
indefinitely. Shaded areas show Bayesian 95% credible intervals. Solid lines depict a currently licensed test, 
while dashed lines depict a future LAM test. Colours represent different implementation scenarios: inpatients 
only (red, scenario i), plus outpatients (blue, scenario ii), and plus routine TB care (yellow, scenario iii). (A) 
depicts scenarios i and ii only, while (B) additionally shows scenario iii (shown separately owing to the change 
in scale). Cumulative impacts over the period 2020–2035 are summarised in table 4.7. 
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Deployment 
level 

LAM test Incidence averted 
between 2020 - 2035 

TB deaths averted 
between 2020 – 2035 

TB deaths averted 
amongst inpatients 
between 2020-2035 

Number Percent Number  Percent Number  Percent 
Inpatients, 
scenario (i) 

Currently 
licensed 
LAM test 

121 (86-
150) 

0.008 
(0.006-
0.011) 

49 (36-61) 0.023 
(0.019-
0.029) 

14 (10-18) 3.00 (2.77-
3.47) 

Future 
LAM test 

231 (163-
288) 

0.015 
(0.012-
0.021) 

94 (68-
116) 

0.044 
(0.037-
0.055) 

26 (19-34) 5.71 (5.32-
6.61) 

Inpatients and 
Outpatients, 
scenario (ii) 

Currently 
licensed 
LAM test 

255 (180-
316) 

0.017 
(0.013-
0.024) 

96 (70-
119) 

0.046 
(0.038-
0.057) 

14 (10-18) 3.09 (2.85-
3.59) 

Future 
LAM test 

474 (333-
584) 

0.031 
(0.024-
0.044) 

180 (130-
223) 

0.085 
(0.072-
0.105) 

27 (20-35) 5.88 (5.47-
6.81) 

Inpatients, 
outpatients 
and routine 
TB care, 
scenario (iii) 

Future 
LAM test 

294,140 
(191,930-
466,480) 

19.8 (18.1-
22.7) 

57,935 
(38,818-
86,317) 

27.9 (25.7-
31.4) 

134 (98-
204) 

30.7 (28.8-
33.9) 

 
Table 4.7. Projected cumulative impact relative to a ‘status quo’ comparator, Kenya.  
Under this comparator, we assume the current standard of TB care in Kenya to continue indefinitely. 
 

Deployment 
level 

LAM test Incidence averted 
between 2020 - 2035 

TB deaths averted 
between 2020 – 2035 

TB deaths averted 
amongst inpatients 
between 2020-2035 

Number Percent Number Percent Number Percent 
Inpatients, 
scenario (i) 

Currently 
licensed 

LAM test 

28 (20-36) 0.003 
(0.002-
0.004) 

22 (16-27) 0.015 
(0.013-
0.019) 

8 (6-10) 2.62 (2.41-
3.05) 

Future 
LAM test 

53 (37-69) 0.005 
(0.004-
0.007) 

41 (31-51) 0.029 
(0.024-
0.036) 

16 (12-19) 5.02 (4.64-
5.83) 

Inpatients and 
Outpatients, 
scenario (ii) 

Currently 
licensed 

LAM test 

55 (39-73) 0.005 
(0.004-
0.007) 

40 (30-49) 0.028 
(0.024-
0.035) 

8 (6-10) 2.69 (2.47-
3.14) 

Future 
LAM test 

103 (73-
135) 

0.009 
(0.007-
0.014) 

74 (56-93) 0.053 
(0.045-
0.065) 

16 (12-20) 5.14 (4.76-
5.98) 

Inpatients, 
outpatients and 

routine TB 
care, scenario 

(iii) 

Future 
LAM test 

38,492 
(26,220-
51,489) 

3.51 (3.15-
4.00) 

13,495 
(9,659-
17,827) 

9.63 (8.55-
10.5) 

51 (39-67) 17.0 (16.2-
17.9) 

 
Table 4.8. Projected cumulative impact relative to an ‘Xpert scale-up’ comparator, Kenya. Under this 
comparator we assume comprehensive expansion of access to sputum Xpert across Kenya, such that all 
individuals with symptoms suggestive of TB are tested with Xpert on their first presentation for care. Numbers 
in the table show model-projected impact of LAM tests when deployed as an adjunct to Xpert, assuming (in all 
settings shown in the table) a simple diagnostic algorithm where TB is diagnosed if either LAM tests or Xpert is 
positive for TB. As described in the main text, in the model we also allow for clinical diagnosis amongst 
bacteriologically negative symptomatics.   
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4.3.4. Multivariate sensitivity analysis 

 I conducted a multivariate sensitivity analysis to examine which model parameters (listed in table 

4.3) model outputs were most sensitive towards. Using cases averted as the model output, and 

focusing on scenario iii, unsurprisingly, the model parameter that the model output was most sensitive 

towards was the rate of reactivation amongst HIV-negatives, a model parameter that directly effects 

the number of people who will develop active TB disease, suggesting that higher rates of reactivation 

decrease the number of cases averted.  

Figure 4.9. Multivariate sensitivity analysis of impact for South Africa. Using scenario iii (future LAM test 
deployment in routine TB care), I used partial rank correlation coefficient (“PRCC”) to examine which 
parameter, listed in table 4.3, the output cases averted is most sensitive towards. Larger bars represent more 
sensitive parameters. Shown are the 20 most influential model parameters, in decreasing order of sensitivity 
from top to bottom. 
 



 106 

4.4. Discussion 

 

New non-sputum-based diagnostic technologies could raise new opportunities to accelerate current 

declines in TB incidence (200,473,474). In the current work, I have addressed one example of such 

technologies: lateral flow LAM assays, which offer the potential to diagnose TB through urine. Given 

that LAM tests perform best in PLHIV (429), it was reasonable to hypothesise that they would have a 

substantial epidemiological impact in settings such as South Africa, where the majority of TB cases 

are HIV coinfected. However, these results suggest a more nuanced message: For future LAM tests to 

achieve population-level reductions in TB burden, they would need to be offered more widely than 

amongst those receiving HIV care, and in routine TB care. Under this scenario, the patients who 

would benefit are not just HIV-negative cases, but also those with HIV who have not yet been 

engaged in HIV care. The latter population could arise from a variety of factors, including the rate of 

HIV diagnosis or gaps in linkage to ART initiation after a diagnosis has been made. In practice, the 

feasibility of such wide deployment of LAM tests will depend critically on the performance 

characteristics of the tests concerned. 

 
Although I expect similar results to apply in other settings with a generalised HIV epidemic, this 

analysis does not address high-TB-burden countries where HIV is not a driving factor, such as India. 

The potential use of AlereLAM in such settings is an important area for further work. In these 

settings, I expect that the value of a future LAM test might be driven not by its ability to detect TB 

amongst those with HIV, but rather by its potential to be used more widely than current diagnostic 

tools needing laboratory capacity: for example, in primary care and in peripheral healthcare settings. 

 

This work also does not address cost or cost-effectiveness, another important topic for future work. 

Recent analysis indicated that AlereLAM and FujiLAM would be cost-effective when deployed in 

inpatient settings in both Malawi and South Africa (475); future work, especially in the context of 

improved-performance tests, could benefit from incorporating a transmission framework. Relatedly, I 

have also not addressed the staffing and health system capacity that would be needed to facilitate the 

expansion of LAM testing in South Africa (476), nor the costs associated with undertaking CD4 cell 

count measurements. It should be noted that CD4 cell count measurement is increasingly being 

replaced by viral load monitoring. In addition, I have not addressed potential implementation 

challenges in the use of future LAM tests. For example, FujiLAM involves an additional step 

compared to AlereLAM; findings from ongoing trials will be valuable in determining whether this 

procedure reduces the performance of this technology to any appreciable extent. 
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Amongst additional model simplifications, I have not covered paediatric TB, an important and under-

addressed part of TB burden. I have also taken a country-level perspective, despite wide subnational 

variation in TB/HIV burden within South Africa (477,478). For simplicity I have ignored drug 

resistance: despite the potential benefits of LAM tests, one notable limitation of these tests is that they 

cannot determine drug sensitivity. In the model calibration, I have captured temporal trends and 

projections in major features of the HIV epidemic in South Africa, such as HIV incidence and the 

proportion on ART; however, I have modelled other features as static, for example the percentage of 

HIV cases that are hospitalised. Further data on how this proportion has changed over time should 

allow the model to better capture these dynamics, potentially affecting my estimates for deaths 

averted amongst those being hospitalised. However, I have shown that this impact accounts for only a 

small proportion of overall TB burden in South Africa; I therefore do not expect these changes to 

affect the overall qualitative findings on the importance of widened eligibility for epidemiological 

impact. Finally, I assumed patients on ART do not default from treatment, which may underestimate 

the epidemiological impact of these interventions; individuals defaulting from ART tend to have a 

higher risk of mortality, and is where LAM tests may perform best.  

 

Given the focus on epidemiological impact, the analysis of test performance is limited to test 

sensitivity. However, for any future LAM test that is intended for use in routine TB services, test 

specificity will be a critical performance characteristic, in order to minimise the number of 

unnecessary TB treatments incurred (408). Evidence suggests that both AlereLAM and FujiLAM may 

have reduced specificity at lower CD4 counts (165,449). Estimating this risk is an important area for 

future work: however, an important first step in this direction is to address the real uncertainties in 

quantifying specificity where the accuracy of the reference standard is unclear. An example of when a 

reference standard may be unclear includes the use of a sputum-based microbiological reference 

standard amongst patients with solely extrapulmonary TB and potentially also among patients with 

HIV, who are more likely to produce paucibacillary sputum (422,479). Although a LAM test may 

correctly diagnose such patients, this diagnosis would be deemed incorrect by a sputum-based 

microbiological reference standard. For future quantitative analysis, therefore, there is a need for more 

systematic estimates of specificity that take account of such shortcomings of any given reference 

standard. Combined use of microbiological and composite reference standards (i.e., including clinical 

diagnosis) may help in this regard. 
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4.5. Conclusion 

 

While much of the existing literature on LAM tests addresses its diagnostic performance and 

implementation in defined clinical settings (159,165,166,429), this work complements this evidence 

basis by addressing the population level in countries with a high HIV and TB burden. To my 

knowledge, this is the first modelling study to examine the potential incidence and mortality impact 

that LAM tests may offer. In this study, I observe that even in a setting with high HIV burden, such as 

South Africa, future LAM tests will need to have sufficient performance to be offered more widely 

than HIV care, in order to have incidence-reducing impact. Future LAM tests will also need to have 

sufficient specificity to achieve this impact without incurring an undue burden of unnecessary TB 

treatment. Any emerging LAM technology meeting these criteria would be invaluable in accelerating 

current declines in TB burden. This work has helped inform recent WHO guidelines on the use of 

LAM tests (449).  
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Chapter 5: Results (iii) 
 

The value and cost efficiency of private sector engagement  

 
This chapter was conducted in collaboration with the Clinton Health Access Initiative (CHAI). CHAI 

implemented private sector engagement activities in various cities across India and have kindly 

provided me with costing data for these different activities. I led the development of the costing 

model in collaboration with CHAI. I also led the development of the TB transmission model and 

model analyses, under the supervision of N. Arinaminpathy.   

 
The Joint Effort for Elimination of Tuberculosis (“JEET”) is the largest private sector engagement 

initiative for TB in India. It is important to anticipate and understand how the different services 

offered by JEET should be expanded in the future. In this chapter, I develop a mathematical model of 

TB transmission in a typical urban Indian setting. I investigate the epidemiological impact of 

expanding four different PPSA services compared to a continuation of current levels of routine TB 

and JEET PPSA service coverage. I also develop a costing model for two cities with contrasting JEET 

coverage, Ahmedabad and Delhi, to examine which individual PPSA service and different 

combinations of PPSA services have the lowest incremental cost-effectiveness ratio (“ICER”). Under 

a limited budget, increasing the use of government supplied fixed-dose combination amongst private 

providers and increasing the proportion of active private providers should be prioritised, whereas 

services involving Xpert confirmatory testing, though impactful, have the highest ICER.  
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5.1. Introduction  

 
Patients seeking care at private providers typically face long diagnostic delays and poor treatment 

outcomes, as private providers often use inaccurate diagnostic tests and do not usually offer treatment 

adherence support (480–482). Considering the dominance of the private sector in India, the 

government has recognised the importance of engaging private providers (483). The first public-

private mix models focussed on improving the standard of TB care offered in the private sector and 

encouraging private providers to refer TB patients to the public sector (232). Unfortunately, these 

early public-private mix models had mixed impact on improving TB case notifications (232,234,484) 

and uptake was low amongst private providers (485). To improve the low uptake amongst private 

providers, interfacing agencies were developed to engage with private providers; these agencies 

subsidise and provide incentives to private providers if they follow the standard of care for the 

diagnosis and treatment of TB, as well as providing training and adherence support (237,486). Three 

pilot studies were launched in 2014 in two urban settings, Mumbai and Patna, and in a rural district, 

Mehsana (237,487). The pilot studies led to a substantial increase in TB notifications from providers 

(237). Retrospective analysis suggests that the cost per notified TB case from engaged private 

providers is comparable to public sector costs (237). A modelling study that examined the 

epidemiological impact of scaling up the pilot studies in Mumbai and Patna so that 75% of patient-

provider interactions were captured, estimated that 21% and 16% of TB incidence could be averted, 

respectively, between 2018 and 2025 (239). 

 

Building upon the success of the previous PPSA models, the Joint Effort for Elimination of 

Tuberculosis (“JEET”) was launched by 3 partner organisations (the William J Clinton Foundation; 

Centre for Health, Research and Innovation; and Foundation for Innovative New Diagnostics) in 

2018. It is the largest private sector engagement initiative for TB in India to date. Using patient-

provider support agencies (“PPSAs”), the aim is to improve the quality of TB care in the private 

sector in an effective and sustainable manner. The main activities include increasing case notifications 

by engaging with private providers, improving the quality of TB diagnosis by providing free quality 

tests, and improving treatment outcomes by providing free fixed dose combination (“FDCs”) and 

adherence support. JEET is currently running in more than 400 cities in over 17 states across India 

until 2021 (488). Although JEET has been operating across many major cities in India since 2018, 

uptake of their services, although good, could be improved. Thus, it is important to anticipate and 

understand which JEET PPSA services, in a given city, should be prioritised and expanded in the 

future.  
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5.2. Methods 
 
In this work, I focus on Ahmedabad and Delhi, two urban settings where JEET is currently operating 

in and is looking to understand how best to expand PPSA service provisions. Ahmedabad is 

considered to have a high uptake of JEET PPSA services, whereas, Delhi is considered to have low 

uptake. To understand how best to expand the uptake of JEET service provisions in these two cities, 

the epidemiological impact and cost of expanding these services need to be considered. Here, I 

describe the model structure data sources, TB diagnosis and treatment amongst different healthcare 

providers, the interventions, and economic evaluation, with further details provided in appendix 3. 

 

5.2.1. TB transmission model  
Model structure  

I developed a deterministic, compartmental model of TB transmission amongst adults (>15 years old) 

consistent with a typical urban setting in India. The model structure is shown in fig 5.1. The model 

captures the background level of routine TB services in India, including the scale up of the Revised 

National TB Control Programme (“RNTCP”) between 1997 and 2007 (489), and the scale up of 

private sector engagement between 2017 and 2020 (483), and their maintenance until the present day. 

I assumed the population of each city is increasing annually by 2% (410). I also incorporated drug-

resistant TB (“DR-TB”), including both rifampicin-resistant and multi-drug resistant TB, and 

calibrated the model so that 4% (3-5%) of incident TB case are DR-TB ((6), table 5.1 and table 5.2). 

For simplicity, I ignored HIV status, and distinction between pulmonary and extrapulmonary TB, 

although I conducted a sensitivity analysis on the latter. 

 

I stratified the natural history of TB into the following distinct states: uninfected individuals who are 

susceptible to TB (U), latent TB infection (L), active TB disease (I) and recovered with either a low 

risk of relapse (R(L); individuals who have completed treatment) or a high risk of relapse (R(H); 

individuals who did not complete treatment or are self-curing). Upon infection, individuals either 

progress directly to active disease, also known as fast progressors, or progress to latent TB infection 

and have a low risk of developing active TB disease, also known as slow progressors (see table 5.1 for 

model parameters). An individual with active TB disease presents for diagnosis either in the public 

(Dx(pu)) or private (Dx(pr)) sector; an individual has a different probability of being correctly diagnosed 

with TB depending on the choice of healthcare provider (discussed in further detail below). A certain 

proportion of correctly diagnosed individuals will initiate TB treatment either in the public (Tx(pu)) or 

private (Tx(pr)) sector. Individuals with a missed TB diagnosis (E) will continue seeking care or 

recover with a high risk of relapse (R(H)). I assumed that TB treatment in the public sector and private 
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sector have different rates of treatment completion, with individuals completing treatment recovering 

with a low risk of relapse (R(L)), whereas those defaulting from treatment having a high risk of relapse 

(R(H)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1. Schematic illustration of the TB transmission model structure. Model compartments are as 
follows: uninfected with TB (U), latent infection (L), active TB disease (I), presented for care and awaiting 
diagnosis (Dx), on TB treatment (Tx), temporarily dropped out of the TB care cascade due to missed diagnosis 
or pre-treatment loss-to-follow-up (E), and recovered with a low risk of relapse (R(L)) or with a high risk of 
relapse (R(H)). Dx and Tx are stratified by healthcare sector: private (pr) and public (pu) sector. The private 
sector is further subdivided into several types of providers as described in fig 5.4 and as described in section 
5.2.2. Not shown for simplicity, is the acquisition and transmission of DR-TB. See appendix 3 for further 
technical details, including model equations and calibration.  
 
For every true positive TB diagnosis, approximately nine uninfected individuals who present for 

diagnosis with symptoms of TB are also tested for TB (240,408,409,490–492). It is therefore 

important to count these extra TB diagnoses and the unnecessary false positive treatments. Thus, in 

addition to the TB symptomatic population described in fig 5.1, I separately simulated a non-TB 

symptomatic population (fig 5.2). From this population, the number of diagnoses and false positive 

treatments in both the public and private sector can be calculated. I calibrated the non-TB 

symptomatic model to give a 10% prevalence of TB amongst those presenting for care, in either the 

public or private sector (240,408,409).   
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Figure 5.2. Schematic illustration of the non-infected TB-symptomatic model structure. Model 
compartments are as follows: uninfected with TB but TB symptomatic (U(NTB)), presented for care and awaiting 
diagnosis in the public sector (Dx(NTB-Pu)) or private sector (Dx(NTB-Pr)), and TB treatment after a false-positive 
diagnosis in the public sector (Tx(NTB-Pu)) or private sector (Tx(NTB-Pr)). The private sector is further subdivided 
into several types of providers as described in fig 5.4 and as described in section 5.2.2. In order to maintain a 
constant population size amongst the non-infected TB-symptomatic population, I assume that upon treatment 
completion, individuals return to the uninfected TB-symptomatic state. The size of this population was 
determined so that amongst all patients presenting for care, there is a 10% prevalence of TB, in either the public 
or private sector (240,408,409).   
 

Data sources   

To reflect a typical urban setting in India (such as Ahmedabad and Delhi), I use the annual risk of TB 

infection (“ARTI”) and the prevalence of TB. These data points have been estimated at a subnational 

level, whereas metrics such as incidence reflects national estimates; national estimates do not 

necessarily reflect TB epidemiology in urban settings. I assume an ARTI of 2% (1-3%), consistent 

with infection surveys in Chennai (390), a major city in India. I further assume a prevalence of 259 

per 100,000, consistent with an urban prevalence survey of Chennai (389). I use 2019 national TB 

mortality data, estimated to be 32 (30-34) per 100,000 (6), to inform the rate of TB mortality. Table 

5.2 summarises the data from these sources. These targets (table 5.2) were used to inform model 

parameters including the force of infection (𝛽), the relative rate of transmission between DS-TB and 

DR-TB (𝑑), the rate of initial care seeking for TB symptoms (𝛿H) and the rate of TB mortality (𝜇H). I 

used Adaptive Bayesian Markov chain Monte Carlo (“MCMC”) to calibrate the model (391). I 

modelled TB prevalence and ARTI using log-normal distributions, and the proportion of TB that is 

DR using a beta distribution. Next, I constructed the overall likelihood function of the data (𝑥) based 

on parameter set (𝜃), 𝑃(𝑥|𝜃), as a product of the distributions over all the calibration targets (table 

5.2) and multiplied this with uniform priors (𝑃(𝜃); ranges specified in table 5.1). Thus, the posterior 

density is calculated by:	𝑃(𝜃|𝑥) ∝ 𝑃(𝑥|𝜃)𝑃(𝜃). By sampling from the posterior distribution using 

MCMC, I created an unbiased sample that approximates the posterior distribution. I refer to the 

uncertainty in model projections as the Bayesian credible intervals, using the 2.5th and 97.5th 

percentiles to reflect the lower and upper bound of an interval. I refer to the uncertainty in model 
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projections as the Bayesian credible intervals, using the 2.5th and 97.5th percentiles to reflect the lower 

and upper bound of an interval. Additional detail is provided in appendix 3.  

 

 
Parameter Symbol Value* Source/Notes 

 
TB natural history 

Mean rate of 
transmission per TB 

case 

𝛽 10.42 yr-1 [7.28-17.24] Model estimate 

Relative rate of 
transmission between 

DS- and DR-TB 

𝑑 0.61 yr-1 [0.49-0.79] Model estimate 

Rate of MDR 
acquisition 

ma Public sector/active providers 
that offer either adherence 

support of government 
supplied FDCs 

0.01 [0.008-
0.012] 

(394) 

mb All private providers that are 
unengaged, inactive, or active 
that do not offer government 
supplied FDCs or adherence 

support 

0.05 [0.04-0.06] 

Proportion of TB 
infections undergoing 

rapid progression 

𝜃 0.11 [0.09-0.15] (15,392) 

Per capita hazard rate 
of progression to active 

disease from latency 

𝜌  
0.001 yr-1 [0.0003-0.0024] 

 

(342,392) 
 

Per-capita hazard rate 
of relapse 

𝑟H Following self-
cure/treatment default 

0.14 yr-1 
[0.10-0.18] 

(393,394)  

𝑟J Following treatment cure, 
>2 years 

0.002 yr-1 
[0.001-0.003] 

Stabilisation of relapse 
risk following treatment 

𝜍 0.5 yr-1 [0.4-0.6] (393): most relapse 
occurs in the first 

two years after 
treatment 

Per-capita hazard rate 
of spontaneous cure 

𝜑 0.17 yr-1 
[0.13-0.21] 

(344) 

Per-capita hazard rate 
of TB mortality 

𝜇H 0.18 [0.13-0.25] Model estimate 
 

Proportion reduction in 
susceptibility to 

reinfection due to 
previous infection 

𝜋 0.21 [0.15-0.25] (395) 

 
TB services: diagnosis 

Proportion of TB cases 
seeking care in the 

public sector 

𝜂 0.50 [0.40-0.60] (223,384,397,493) 

Proportion of private 
providers that are 

engaged 

 
e 

Ahmedabad 0.50 Data provided by 
CHAI 

Delhi 0.73 

∝ Ahmedabad 0.39 [0.32-0.46] 
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Heterogeneity index of 
the behaviour of 
engaged private 

providers 

Delhi 0.32 [0.25-0.41] Data provided by 
CHAI 

Proportion of engaged 
private providers that 

are active 

a Ahmedabad 0.80 Data provided by 
CHAI 

Delhi 0.44 

Per-capita hazard rate 
of initial careseeking 

for TB symptoms 

𝛿H 1.38 yr-1 [0.88-2.38] Model estimate 

Per-capita hazard rate 
of repeat careseeking 

for TB symptoms 
(following missed 

diagnosis) 

𝛿J 12 yr-1 [6-26] Assumption: 
corresponds to range 

of 2 weeks to 2 
months 

Proportion of TB cases 
diagnosed correctly, per 
careseeking attempt in 
routine public sector 

TB services 

𝜀gz 0.84 [0.80-0.85] (240,398) 

Specificity of diagnosis 
in routine public sector 

TB services 

𝜀g{ 0.98 [0.97-0.99] (240) 

Xpert test sensitivity  
xsn 

0.89 [0.85-0.92] (147) 

Xpert test specificity  
xsp 

0.99 [0.98-1.00]  (147) 

Proportion of active 
private providers that 

send samples for 
confirmatory Xpert 
testing 100% of the 

time 

𝑝Á{ÂsÃH Ahmedabad 0.09 Data provided by 
CHAI 

Delhi 0.04 

Proportion of active 
private providers that 

never send samples for 
confirmatory Xpert 

testing 

𝑝Á{ÂsÃ� Ahmedabad 0.55 Data provided by 
CHAI 

Delhi 0.66 

Proportion of samples 
that are sent off for 
confirmatory Xpert 

testing amongst active 
private providers that 

occasionally send 
samples off for 

confirmatory Xpert 
testing 

 
 

xp 

Ahmedabad 0.23 Data provided by 
CHAI 

Delhi 0.15 

Clinical diagnosis 
sensitivity (including 

chest X-ray) 

csn 0.75 [0.65-0.80] (398) 
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Clinical diagnosis 
specificity (including 

chest x-ray) 

csp 0.85 [0.80-0.95] (398) 

Proportion of DR-TB 
cases receiving drug 

susceptibility testing at 
point of TB diagnosis 

Ϸ({r) Public sector 0.45 [0.40-0.50] (6) 

Ϸ({s�) Private sector (providers not 
using Xpert) 

0 

Ϸ({sH) Private sector (providers using 
Xpert) 

1.00 
 

TB services: treatment 

Proportion of diagnosed 
TB cases initiating TB 

treatment 

 
 
 
 
𝜔 

0.87 [0.85-0.90] (240) Assumed that 
patients from active 

providers are 
referred to the public 

sector to initiate 
second line 
treatment. 

Amongst DR-TB cases 
failing first-line 
treatment, the 

proportion successfully 
transferred to second-
line treatment, public 

sector 

𝑝d� 0.87 [0.85-0.92] Assumption 

TB treatment initiation 
delay 

𝜙 52 yr-1 Assumed: 
corresponds to a 
mean treatment 

delay of 1 week in 
routine TB care 

Proportion of patients 
that agree to adherence 

support 

𝑝ÅÆÇH 0.92 Data provided by 
CHAI 

Proportion of active 
providers that agree to 

adherence support 

𝑝ÅÆÇJ Ahmedabad 0.93 Data provided by 
CHAI 

Delhi 0.93 

Proportion of active 
providers that agree to 
government supplied 

FDCs 

𝑝ÈÆÉ Ahmedabad 0.39 Data provided by 
CHAI 

Delhi 0.07 

Per-capita hazard rate 
of treatment completion 

𝜏 First line 2 yr-1 Corresponds to a 
duration of 6 months 

𝜏ÊÆs Second line 0.5 yr-1 Corresponds to a 
duration of 2 years 

Proportion of TB cases 
that default from 

treatment 

𝜒qr First line, public sector 0.15 [0.13-0.17] (6,241), data 
provided by CHAI 𝜒Ë·	 _Ì First line, private sector: 

unengaged/inactive/active 
but no adherence support 
of government supplied 

FDCs offered 

0.48 [0.45-0.55] 
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𝜒Ë·_Í First line, private sector: 
active (government 

supplied FDCs offered, 
no adherence support 

offered) 

0.17 [0.16 -0.19] 

𝜒Ë·_Î First line, private sector: 
active (no government 
supplied FDCs offered, 

adherence support 
offered) 

0.21 [0.20-0.25] 

𝜒Ë·_ÎÍ First line, private sector: 
active (government 
supplied FDCs and 
adherence support 

offered) 

0.15 [0.13-0.17] 

𝜒ÊÆs Second line 0.50 [0.45-0.60] 
 

Demographics 
Per-capita hazard rate 

of background 
mortality 

𝜇J 0.015 yr-1 World Bank 
estimates: 

corresponds to an 
average lifespan of 

69 years 

Per-capita rate of 
population growth 

𝜎 0.02 [0.01-0.025] (382) 

Costs 
Cost per active TB 
disease diagnosis 

(passive case finding) 

CD USD 18.30 (401) 

Cost of first line 
treatment for active TB 

disease per person 

CT USD 23.70 per treatment-month (401) 

 

Table 5.1. List of model parameters. *Numbers in brackets represent sampling ranges; I assume all sampling 
ranges are uniformly distributed in the sampling process. 
 

 
Indicator Value Source 

Annual risk of TB infection 2% [1-3] (390) 

TB prevalence 259 per 100,000 [217-299] (389) 

TB mortality 32 per 100,000 [30-34] (6) 
Percent of TB cases that are MDR 4% [3-5] (6) 

 

Table 5.2. Calibration targets used to estimate model parameters. I assumed the same prevalence, annual 
risk of TB infection, TB mortality and percent of TB cases that are MDR across Ahmedabad and Delhi.   
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5.2.2. TB diagnosis and treatment in India  
Below, I describe the differences in TB diagnosis and treatment between the public and private sector. 

Specifically, I focus on the different types of private providers and how JEET improves TB diagnosis 

and treatment amongst these providers.  

 

Public sector  

Drawing from the literature, I estimated that half of patients seeking care for TB, seek care in the 

public sector (table 5.1) and that amongst those with drug-susceptible TB (“DS-TB”), 84% are 

correctly diagnosed as having TB (240,398) using a mix of sputum smear microscopy and Xpert 

testing (483). Amongst those correctly diagnosed as having TB, I assumed 87% initiate treatment 

(240), of which 85% complete treatment (240). Amongst individuals with DR-TB, 45% receive a 

drug-susceptibility test at the point of diagnosis (6), of which 87% initiate treatment and 50% 

complete treatment.  

 

Private sector  

The private sector in India is composed of different types of providers, ranging from qualified 

allopathic providers to non-allopathic providers (described in greater detail in Chapter 2). 

Consequently, the level of TB care received in the private sector differs widely. In each city, JEET 

maps and engages with private providers to improve TB notification, diagnosis and treatment 

outcomes.   

Fig 5.3 summarises the different service provisions offered by JEET. In brief, field officers engage 

with private providers to encourage them to start or to continue notifying TB cases, to send sputum 

samples for confirmatory Xpert testing, to use government supplied FDCs and to offer adherence 

support. When a presumptive TB patient visits a private provider engaged by JEET, the patient is 

referred to a hub and sample collection centre where they are tested for TB free of charge. Hub agents 

at these centres are involved with the administration of TB notifications, in the collection of the 

samples, linking a patient with a treatment coordinator and keeping an inventory of FDC stocks. 

Specimen collection and transportation (“SCT”) agents collect the samples from the centre and 

transports them to the laboratories where Xpert testing is performed. Test results are sent back to the 

hub centre and if positive, treatment coordinators will explain the importance of treatment adherence 

to the patient and monitor the patient until treatment completion. These activities can be summarised 

into 3 categories, discussed in further detail below: provider activation (engaging with a private 

provider), diagnostics (the use of Xpert) and treatment (the use of government supplied FDCs and 

adherence support).  
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Figure 5.3. Summary of PPSA service provisions. Figure kindly provided by CHAI. A presumptive TB case 
(far left of diagram) seeks care at a private provider. Field officers frequently engage with private providers to 
encourage them to send the presumptive TB patient to a hub and sample collection centre (top left of diagram), 
where they can provide a sputum sample. The samples are then transported to a laboratory by SCT agents where 
Xpert (also known as CBNAAT) testing is performed (centre of diagram). Test results are then sent back to the 
hub where hub agents will then link a positive TB patient with a treatment coordinator and initiate the patient on 
TB treatment (FDCs, right of diagram)). Treatment coordinators ensure the patient adheres to their treatment by 
providing adherence support, including SMS and calls.  
 
PPSA service provision 1: Provider activation 

Private providers can be divided into ‘engaged’ and ‘unengaged’ private providers. Engaged private 

providers are providers that JEET have engaged with but are not yet necessarily notifying their TB 

cases. Unengaged private providers are providers who are yet to be engaged with by JEET. Engaged 

private providers can be further subdivided into active and inactive providers (fig 5.4). Active 

providers are providers that are engaged and are notifying TB cases, whereas, inactive providers, are 

engaged but not yet notifying. Table 5.4 highlights the proportion of engaged and active providers in 

Ahmedabad and Delhi. I define ‘provider activation’ as the conversion of a provider from an inactive 

state to an active state. 
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Figure 5.4. Private sector structure. Private providers are classified as either engaged or unengaged; engaged 
providers are those that are in contact with JEET, whereas unengaged providers are providers who are 
uninterested. Engaged providers can be further subdivided into active and inactive providers; active providers 
notify TB cases, whereas inactive providers do not.  
 

 

Table 5.3. Number of identified, engaged, and active private providers in 2019 in Ahmedabad and Delhi. I 
assume that all private providers have been identified.  
 

As the transmission model follows the patient perspective of the careseeking journey, an important 

parameter relating to PPSA activities is the probability that a patient, when seeking care for their 

symptoms, visits a private provider amongst the categories listed above (active, inactive and 

unengaged). Furthermore, a small number of providers capture the majority of patients. Therefore, the 

probability that a patient visits an active provider is not necessarily the same as the proportion of 

providers that are active. If all the providers with the highest patient volume are already engaged, 

engaging the unengaged providers will have little incremental benefit. Thus, assuming homogenous 

behaviour will overestimate the impact of engaging more providers. I captured this heterogeneity in 

the model (fig 5.5, table 5.4) through a heterogeneity index (α), using data provided by CHAI from 

both Ahmedabad and Delhi: 

 

𝑛 = 𝑝Ï 

 

where p is the proportion of engaged providers responsible for n notifications. Thus, values of α < 1 

correspond with the situation where high-volume providers are preferentially engaged. For example, 

in Ahmedabad, 5%, 17%, and 41% of engaged providers (p = 0.05, 0.17 and 0.41) were responsible 

for 25%, 50% and 75% of notifications in 2019 (n = 0.25, 0.50, 0.75). This gives an average 

heterogeneity index of 0.39. Including this heterogenous behaviour in the model, assumes that 

provider recruitment works by engaging providers in decreasing order of patient volumes (i.e., the 

providers with the largest number of patients are engaged with first); this in fact closely reflects 

City Number of identified 
private providers 

Number of engaged 
private providers  

Number of active 
private providers  

Ahmedabad 1899 952  762  
Delhi 2780 2016  894  



 121 

reality, as JEET maps all the providers in a given city and engages first with providers who have the 

highest patient volumes. However, I assume that all providers, regardless of size, have similar 

behaviour with respect to other model parameters; in reality, larger providers may have different 

behaviour (i.e., be more responsive to engagement efforts) than smaller providers.   

 

 

 
 

 

Table 5.4. Heterogeneity index of private providers across Ahmedabad and Delhi. A heterogeneity index of 
1 suggests that each provider sees the same number of patients (represented by the red line in fig 5.5). A smaller 
heterogeneity index indicates that a smaller number of providers are responsible for a larger number of patients.  
 
 
Once providers are active, field officers continue to visit the providers to ensure they remain active; I 

refer to this activity as provider retention. Nevertheless, once active, there is an attrition rate from an 

active status to an inactive state. There are three main reasons behind this attrition: first of all, some 

providers may not have a sufficient load of TB patients every month and thus may notify infrequently 

depending on when they see a new TB patient; secondly, some providers, especially those that handle 

a smaller volume of TB patients, are seen less regularly by the field team and are therefore less likely 

to notify; and finally, some providers remain dissatisfied with the services offered by JEET, and 

therefore intentionally stop notifying patients until the field teams are able to improve their services. I 

capture this behaviour by weighting Xpert and FDC use by the number of months a provider was 

active for (discussed in further detail in the TB diagnosis and treatment sections).  
 
 

 

 

 

 

 

 

 

 

 
Figure 5.5. Heterogeneity in the behaviour of engaged private providers across Ahmedabad and Delhi. 
Homogenous behaviour (red line) assumes that private providers capture the same number of patients. Under 
this assumption, increasing the proportion of engaged providers, will linearly increase the proportion of patients 
captured. In reality, there are a few large private providers that capture most TB patients, and many smaller 
providers that capture few patients. The larger the area under the curve, the greater the heterogeneity. If the 

City Heterogeneity index (α) 

Ahmedabad 0.39 [0.32-0.46] 

Delhi 0.32 [0.25-0.41] 
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providers that capture the most patients are already engaged by JEET, increasing the proportion of engaged 
providers further will have little incremental benefit. Therefore, assuming homogenous behaviour can 
overestimate the impact on TB epidemiology. Table 5.4 shows the heterogeneity index for each city. 
PPSA service provision 2: TB diagnosis 

Fig 5.6 shows a multimodal distribution for the uptake of Xpert amongst active private providers, 

including those who never use it; those who use it occasionally; and those for whom all notifications 

are Xpert confirmed. Most active providers do not confirm a TB notification with Xpert; in 2019, 

55% and 66% of active providers in Ahmedabad and Delhi did not use Xpert confirmation. Providers 

who do not confirm a TB notification with Xpert instead test for TB themselves using a mix of chest 

x-ray and clinical judgement (240,480,483). Similarly, I assume that inactive and unengaged private 

providers do not use Xpert, and instead use a combination of chest x-ray and clinical judgement to 

diagnose TB. For the accuracy of diagnosis (test sensitivity and specificity), I drew from the literature 

for the performance of X-ray and clinical judgement in diagnosing TB ((147,398) (table 5.1).   

Due to the shape of the distribution in fig 5.6, I divide active providers into 3 categories depending on 

their use of Xpert: providers that always confirm TB notifications with Xpert, providers that 

occasionally use Xpert, and providers that never use Xpert. I assume that providers that are classified 

as occasionally using Xpert use Xpert for at least 1% of their notifications but less than 100% of 

notifications. I calculate Xpert use amongst occasional Xpert users by finding the mean proportion of 

notifications that are Xpert confirmed, weighted by the number of months the providers were active 

for; weighted mean Xpert use was 22% and 15% in Ahmedabad and Delhi in 2019, respectively. 

Unweighted Xpert use (assumes that active providers were consistently active in 2019), was 34% and 

25% in Ahmedabad and Delhi in 2019, respectively. Table 5.5 shows the number of active providers 

in each of these categories for Ahmedabad and Delhi in 2019. Once active providers become an Xpert 

user, field officers continue visits to encourage these providers to continue confirming TB 

notifications with Xpert.  

 

 

 

 



 123 

 
Figure 5.6. Xpert use amongst active private providers in Ahmedabad and Delhi in 2019. From this data, I 
classified active providers into thee categories: those that always use Xpert, those that use Xpert occasionally, 
and those that never use Xpert. To be classified as occasionally using Xpert, I assume that providers need to use 
Xpert for at least 1% of notifications and less than 100% of notifications.  
 

 City 
Ahmedabad Delhi 

Total no. of active providers 762 894 
No. of active providers that always use Xpert 65 35 

No. of active providers that occasionally use Xpert 278 265 
No. of active providers that never use Xpert 419 594 

Percent of notifications that are Xpert confirmed by occasional users, weighted 22% 15% 
Percent of notifications that are Xpert confirmed by occasional users, unweighted 34% 25% 

 

Table 5.5. Xpert use amongst active providers in Ahmedabad and Delhi in 2019. To be classified as 
occasionally using Xpert, I assume that providers use Xpert for at least 1% of notifications and less than 100% 
of notifications. The weighted percent of notifications that are Xpert confirmed takes into account the fact that 
active providers switch between an inactive and active state and is a product of the unweighted percent and the 
percent of months providers were active for.    
 

PPSA service provision 3: TB treatment 

JEET offer two different services for TB treatment via treatment coordinators: government supplied 

FDCs and adherence support. Government supplied FDCs are supplied for free to the patient by the 

government, whereas patients on adherence support receive regular text messages and calls to ensure 

treatment adherence (fig 5.3). Over 95% of active providers agree for JEET to offer adherence 

support to their TB patients, and similarly, 92% of patients agree to adherence support (table 5.6). The 

number of active providers that agree to government supplied FDCs in 2019 was much more variable 

across Ahmedabad and Delhi. Out of the 762 active providers in Ahmedabad, 529 agreed to use FDCs 

(69%), compared to only 242 out of the 894 active providers in Delhi (27%). However, although 69% 

and 27% of active providers in Ahmedabad and Delhi, respectively, agreed to government supplied 
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FDCs in 2019, only 39% and 7% of active providers were using them consistently, if FDC use was 

weighted by the number of months active providers were active for. The percent of active providers 

that consistently used government supplied FDCs increased to 45% and 10% in Ahmedabad and 

Delhi, respectively, if unweighted. Again, field officers visit these regularly to ensure providers are 

continuing to recommend government supplied FDCs and adherence support. 

 

Based on the evidence discussed above, I consider 4 categories of active providers in the model: 

active providers that use government supplied FDCs and offer adherence support, those that use 

government supplied FDCs but do not offer adherence support, those that offer adherence support but 

do not use government supplied FDCs, and those that offer neither service. I drew from data provided 

by CHAI to inform treatment completion rates associated with each of these categories; active 

providers offering both services having the highest rate of treatment completion and those offering 

neither having the lowest rate (table 5.1). Finally, I assume that inactive and unengaged providers do 

not offer adherence support and thus patients seeking treatment from these providers have the poorest 

treatment completion rates.  

 

All patients correctly diagnosed with DR-TB by a private provider are transferred to the public sector 

and initiated onto second line treatment.  

 

 City 
Ahmedabad Delhi 

Total no. of active providers 762 894 
No. of active providers that offer adherence support 712 835 
Percent of patients that agree to adherence support 92% 92% 

No. of active providers that agree to government supplied FDCs 529 242 
Percent of active providers that consistently use FDCs, unweighted 45% 10% 
Percent of active providers that consistently use FDCs, weighted 39% 7% 

 

Table 5.6. Number of active providers that offer government supplied FDCs and adherence support in 
Ahmedabad and Delhi in 2019. The weighted percent of active providers that consistently use FDCs considers 
the fact that active providers switch between an inactive and active state and is a product of the unweighted 
percent and the percent of months providers were active for.    
 
5.2.3. Interventions 

Fig 5.7 summarises the uptake of the various PPSA service provisions in 2019 across Ahmedabad and 

Delhi. I focus on the impact of increasing four of these provisions on the TB epidemic: 

• Intervention 1: Increase the number of active providers. I refer to this as ‘provider activation’.   

• Intervention 2: Increase Xpert use amongst occasional Xpert users  

• Intervention 3: Encourage active providers that never use Xpert into occasionally using Xpert  

• Intervention 4: Increase the use of government supplied FDCs amongst active providers.  
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Some providers will remain uninterested in taking up the interventions despite engagement efforts by 

field officers. After discussions with CHAI, we agreed on the following assumptions: 0% of inactive 

providers and 0% of occasional Xpert users are uninterested in notifying and increasing their Xpert 

use, respectively, whereas 42% of non-Xpert users are uninterested in using Xpert, and 35% of non-

government supplied FDC users are uninterested in using government supplied FDCs. Thus, I 

considered two coverage levels: feasible maximum and theoretical maximum. The former accounts 

for the fact that some providers remain uninterested despite repeated engagement efforts (i.e., 42% of 

non-Xpert and 35% of non-FDC users remain resistant towards Xpert and FDCs, respectively), 

whereas the latter assumes that all providers take up the interventions. For further detail, see fig A3.1. 

For both cities, I examined the epidemiological impact increasing the four activities to their feasible 

and theoretical maximum has on the TB epidemic (fig A3.1), compared to an indefinite continuation 

of current levels of routine TB and PPSA services. I modelled existing PPSA activities from 2017 to 

current levels in 2020. I assumed the interventions are scaled up linearly between 2020 and 2021, and 

I run the model until 2035.  

 

Figure 5.7. Summary of 2019 PPSA service provisions in Ahmedabad and Delhi in 2019 
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5.2.4. Economic evaluation 

I actively collaborated with PPSA-implementing teams from CHAI who reconstructed spending data 

from 2019 for Ahmedabad and Delhi.  Table 5.7 summarises the total cost in 2019 for the different 

activities involved in the service provisions offered by JEET. These activities include the salaries of 

field officer, treatment coordinators, hub agents, and SCT agents; the cost of continuing medical 

education (“CMEs”; seminars organised for providers to increase engagement); the cost of 

promotional materials which includes the cost of designing, printing and dissemination; sputum 

sample logistics which is the cost of transporting sputum samples to the laboratories, and includes the 

cost of procuring falcon tubes, carrier boxes, masks and hand sanitizer; the cost of Xpert tests, 

including the cost of test cartridges and manpower; and the cost of government supplied FDCs. I 

ignore any fixed costs (office expenditure and state programme management costs), as these costs 

remain unaffected by an increase in the coverage of the PPSA service provisions investigated in this 

work.   

 

Cost item Total cost in 2019 (USD) 
Ahmedabad Delhi 

Field officer salary 31,433 55,936 
Hub agent salary 113,808 281,373 
SCT agent salary 2055 5287 

Treatment coordinator salary 8569 13,445 
CMEs 460 6095 

Promotional material 10 10 
Sputum sample logistics 2020 5090 

Xpert tests 83,886 98,088 
FDCs** N/A 

 

Table 5.7. Total costs of PPSA activities in Ahmedabad and Delhi in 2019. I assume a conversion rate of 
USD 1 = 73 INR.  *I assume a fix cost per FDC of 45 USD.  
 
To estimate the cost of increasing the coverage of the different interventions, I categorised each cost 

item listed into table 5.7 into 6 different categories. These 6 different categories are provider 

activation, provider retention, diagnostic engagement, diagnostic logistics, treatment engagement and 

treatment logistics, and are described in greater detail in table 5.8. If a cost was associated with more 

than one category, the cost was subdivided across the relevant categories based on estimations from 

CHAI on the percentage of time spent on each category (table 5.9). For example, in Ahmedabad the 

total cost of field officers was split in the following way: 10% for provider activation, 42% for 

provider retention, 24% for Xpert engagement and 24% for FDC engagement. 
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Category Description 
Provider activation Costs associated with the engagement of inactive providers to encourage them to 

become active and start notifying their TB cases 
Provider retention Costs associated with the engagement of active providers to encourage them to remain 

active and keep notifying their TB cases 
Diagnostic engagement Costs associated with encouraging active providers to start using Xpert, to increase their 

use of Xpert and maintain their use of Xpert 
Diagnostic logistics All other costs associated with Xpert testing that are not to do with engagement. 

Includes cost of transporting sputum samples, cost of staff and cost of the Xpert tests. 
Treatment engagement Costs associated with encouraging active providers to start using, increase or maintain 

their use of government supplied FDCs and adherence support. 
Treatment logistics Cost of government supplied FDCs and adherence support 

 
Table 5.8. Costing categories. I categorise each cost item into one of the categories listed in this table to help 
identify the cost items that will increase as the coverage of the different interventions increase.  
 

Ahmedabad 
Cost item Cost category 

Provider 
activation 

Provider 
retention 

Diagnostic 
engagement 

Diagnostic 
logistics 

Treatment 
engagement 

Treatment 
logistics 

Field officer 10% 42% 24% - 24% - 
Hub agent - 51% - 24% - 25% 
SCT agent - - - 100% - - 
Treatment 
coordinator 

- - - - - 100% 

CMEs - 40% 30% - 30% - 
Promotional 

material 
- 52% 29% - 19% - 

Sputum sample 
logistics 

- - - 100% - - 

Xpert tests - - - 100% - - 
FDCs - - - - - 100% 

Delhi 
Cost item Cost category 

Provider 
activation 

Provider 
retention 

Diagnostic 
engagement 

Diagnostic 
logistics 

Treatment 
engagement 

Treatment 
logistics 

Field officer 13% 28% 32% - 27% - 
Hub agent - 74% - 18% - 8% 
SCT agent - - - 100% - - 
Treatment 
coordinator 

- - - - - 100% 

CMEs - 40% 30% - 30% - 
Promotional 

material 
- 52% 29% - 19% - 

Sputum sample 
logistics 

- - - 100% - - 

Xpert tests - - - 100% - - 
FDCs - - - - - 100% 
 
Table 5.9. Costing split across PPSA activities for Ahmedabad and Delhi in 2019. The field officer split was 
determined by the percentage of calls that were made by a field officer for provider activation, provider 
retention, diagnostic engagement and treatment engagement; similarly, the hub agent split was determined by 
the proportion of time hub agents estimated they had spent on provider retention, diagnostic logistics and 
treatment logistics; the CMEs and promotional materials splits were determined by the amount of engagement 
that was aimed at provider retention, diagnostic engagement and treatment engagement, which was assumed 
constant across all cities. Each row adds up to 100%.  
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Next, to calculate the costs of the interventions, I calculated the per unit cost of each cost item. The 

units used are described in table 5.10 and 5.11 for Delhi and Ahmedabad, respectively. For example, 

to calculate the cost of field officers to retain one provider, I multiplied the total cost of field officers 

in 2019 (i.e., USD 31,433 in Ahmedabad), by the percentage of time spent by field officers on 

provider retention in 2019 (42%), divided by the number of active providers in 2019 (762 active 

providers); this averages to a field officer cost of USD17.77 to retain one provider per year.  

 

PPSA activity: Provider activation 
Cost item Total cost Category 

split 
Unit description No. of 

units 
Cost per 

unit (USD) 
Field officer 55,936 13% No. of visits in 2019 made to 

onboard an inactive provider 
2984 2.50 

PPSA activity: Provider retention 
Field officer 55,936 28% No. of active providers in 2019 894 17.97 
Hub agent 281,373 74% No. of active providers in 2019 894 238.88 

CMEs 6095 40% No. of providers that attended 
CMEs in 2019 

1469 1.70 

Promotional 
material 

10 52% No. of active providers in 2019 894 0.006 

PPSA activity: Diagnostic engagement 
Field officer 55,936 32% No. of visits in 2019 made to active 

providers to increase Xpert usage 
7219 2.54 

No. of active providers in 2019 894 20.54 
CMEs 6095 30% No. of providers that attended 

CMEs in 2019 
1469 1.28 

Promotional 
material 

10 29% No. of active providers in 2019 894 0.003 

PPSA activity: Diagnostic logistics 
Hub agent 281,373 18% No. of Xpert tests performed in 

2019 
4227 12.29 

SCT agent 5287 100% No. of Xpert tests performed in 
2019 

4227 1.28 

Sputum 
sample 
logistics 

5090 100% No. of Xpert tests performed in 
2019 

4227 1.23 

Xpert tests 98,088 100% No. of Xpert tests performed in 
2019 

4227 23.80 

PPSA activity: Treatment engagement 
Field officer 55,936 27% No. of visits in 2019 made to active 

providers to use FDCs 
5863 2.64 

No. of active providers in 2019 894 17.33 
CMEs 6095 30% No. of providers that attended 

CMEs in 2019 
1469 1.28 

Promotional 
material 

10 19% No. of active providers in 2019 894 0.002 

PPSA activity: Treatment logistics 
Treatment 
coordinator 

13,445 100% No. of patient treatment months in 
2019 

108,915 0.13 

Hub agent 281,373 8% No. of FDC initiations in 2019 1480 13.65 
FDCs - - - - 45 

 
Table 5.10. Unit costs for Delhi.    
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Table 5.11. Unit costs for Ahmedabad   

 

To increase the coverage of the intervention activities, I assumed a certain level of effort is needed to 

engage and convert the providers. This engagement is achieved through field officer visits. After 

discussions with CHAI, we agreed on the level of effort needed, and assumptions are presented in 

table 5.12. I also included the cost of visits that are wasted due to visiting uninterested providers. 

 

 

 

PPSA activity: Provider activation 
Cost item Total cost Category 

split 
Unit description No. of 

units 
Cost per unit 

(USD) 
Field officer 31,433 10% No. of visits in 2019 made to 

onboard an inactive provider 
1548 2.08 

PPSA activity: Provider retention 
Field officer 31,433 42% No. of active providers in 2019 762 17.77 
Hub agent 113,808 51% No. of active providers in 2019 762 78.12 

CMEs 460 40% No. of providers that attended CMEs 
in 2019 

51 3.70 

Promotional 
material 

10 52% No. of active providers in 2019 762 0.007 

PPSA activity: Diagnostic engagement 
Field officer 31,433 24% No. of visits in 2019 made to active 

providers to increase Xpert usage 
3572 2.17 

No. of active providers in 2019 762 10.15 
CMEs 460 30% No. of providers that attended CMEs 

in 2019 
51 2.78 

Promotional 
material 

10 29% No. of active providers in 2019 762 0.004 

PPSA activity: Diagnostic logistics 
Hub agent 113,808 24% No. of Xpert tests performed in 2019 3615 7.75 
SCT agent 2055 100% No. of Xpert tests performed in 2019 3615 0.58 

Sputum 
sample 
logistics 

2020 100% No. of Xpert tests performed in 2019 3615 0.57 

Xpert tests 83,886 100% No. of Xpert tests performed in 2019 3615 23.80 
PPSA activity: Treatment engagement 

Field officer 31,433 24% No. of visits in 2019 made to active 
providers to use FDCs 

3619 2.14 

No. of active providers in 2019 762 10.15 
CMEs 460 30% No. of providers that attended CMEs 

in 2019 
51 2.78 

Promotional 
material 

10 19% No. of active providers in 2019 762 0.003 

PPSA activity: Treatment logistics 
Treatment 
coordinator 

8569 100% No. of patient treatment months in 
2019 

57,868 0.15 

Hub agent 113,808 25% No. of FDC initiations in 2019 3445 
 

8.47 

FDCs - - - - 45 
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PPSA activity Effort needed 

Provider activation 5 (4-7) visits needed to onboard an inactive provider 
 

Increasing Xpert usage 
amongst occasional users 

One visit increases a provider’s Xpert use by 0.2%. Assumed the same across all 
cities. 

Converting non-Xpert users 
to occasionally use Xpert 

7 (5-8) visits needed to convert a non-Xpert user. Assumed the same across all cities 

Converting non-FDC users 
to use FDC 

6 (4-7) visits needed to convert a non-FDC user. Assumed the same across all cities. 

 
Table 5.12. Engagement effort needed for each PPSA service provision in Ahmedabad and Delhi in 2019. 
As described in the text, values shown in these tables are essentially expert opinion, elicited through in-dept 
discussion with implementing teams from CHAI.  
 

Finally, I also considered costs of routine TB services in the public sector, including the cost of 

diagnosis and the cost of treating DS- and DR-TB (table 5.1). 

 

I calculated the incremental cost-effectiveness ratio (“ICER”) by dividing the incremental cost of 

increasing the coverage of PPSA services by the number of TB cases averted between 2020 and 2035, 

relative to a baseline of indefinite continuation of current levels of routine TB and JEET PPSA 

services (i.e., comparing the interventions to a ‘no intervention’ status quo, whilst ignoring other 

interventions). Although, for optimal decision-making, an ICER should compare a strategy to the 

next-least expensive non-dominated strategy, the aim of this analysis was not to conduct a full cost-

effectiveness analysis, but to estimate and compare the cost of scaling up the different PPSA services, 

and to calculate which service has the highest potential epidemiological impact for a given cost.  

 
5.2.5. Sensitivity analyses 

I conducted various sensitivity analyses to explore the impact of certain model assumptions on model 

results. Firstly, I considered an optimistic PPSA scale-up baseline that assumes active providers are 

consistently active, and so, Xpert and FDC use is not weighted by the number of months providers are 

active for. Thus, Xpert use under a current PPSA baseline increases from 22% to 34% and from 15% 

to 25% for Ahmedabad and Delhi, respectively; FDC use increases from 39% to 45% and from 7% to 

10% for Ahmedabad and Delhi, respectively.  

 

Under intervention 1, I assumed that newly active providers adopt the average behaviour of pre-

existing active providers. A newly active provider suggests that they were unresponsive to previous 

engagement efforts, and thus may have worse behaviour than pre-existing active providers. I varied 

this assumption, by assuming that newly active providers have behaviour that is 25% and 50% worse 

than pre-existing active providers. For instance, using Ahmedabad as an example, 9% of pre-existing 

active providers use Xpert 100% of the time, and 36% use Xpert for on average 22% of TB diagnoses. 
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Assuming newly active providers have behaviour that is 25% and 50% worse, decreases the 

percentage of newly active providers that use Xpert 100% of the time decreases to 7% and 5% 

respectively; the percentage of newly active providers that use Xpert occasionally decreases to 27% 

and 18%, respectively, and Xpert use amongst these occasional users decreases to 17% and 11% from 

22% and 15%, respectively.  

 

I do not differentiate between extrapulmonary and pulmonary TB in the model; however, Xpert 

sensitivity is reduced amongst TB patients with extrapulmonary TB, thus high levels of 

extrapulmonary TB reduces the incremental benefit of Xpert testing. In certain Indian urban settings, 

CHAI field teams estimate as many as 50% of diagnosed TB cases are extrapulmonary TB.  Thus, I 

reduced the proportion of TB patients presenting to care that are correctly diagnosed, assuming 50% 

of patients that present to care have extrapulmonary TB.   

 

I also examined the impact varying maintenance costs by +/- 20% has on the ICER of the different 

interventions. I defined maintenance costs as costs that are associated with maintaining good 

behaviour amongst active providers (maintaining notifications, FDC use and Xpert use).  

Finally, I conducted multivariate sensitivity analysis using partial rank correlation coefficient to 

assess which model parameters model outputs are most sensitive towards.   

 

 

5.3. Results  

 
5.3.1. Model calibration 
Fig 5.8 shows results of model calibration, displaying the model fit against each of the calibration 

targets listed in table 5.2. Fig 5.9 shows MCMC diagnostic checks, including the posterior density 

trace and autocorrelation plots for selected parameters.  
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Figure 5.8. Model fits to data. Panel A – TB prevalence per 100,000 in a typical urban Indian setting. To 
calculate TB prevalence, I calculated the prevalence of TB amongst those with active TB disease and those on 
TB treatment; B – Annual risk of TB infection in a typical urban Indian setting; C – TB deaths per 100,000 in 
2019, India; D – Percent of TB cases that are drug-resistant TB in 2019. Grey - model runs; red - mean of model 
runs; black - data points are described in table 5.2.  
 

 
Figure 5.9. MCMC diagnostics. Panel A shows the posterior density trace, excluding the ‘burn-in’ period. 
Panel B and C show autocorrelation plots for two selected parameters (rate of relapse following self-cure and 
the rate of progression to active disease from latency).  
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5.3.2. Epidemiological impact  
Fig 5.10-11 and table 5.13 show model projections for the impact on TB incidence between 2017 and 

2035 in Ahmedabad and Delhi across varying PPSA coverage. Compared to a baseline where current 

routine TB services and PPSA coverage is maintained until 2035, increasing the four PPSA activities 

simultaneously to their feasible maximum coverage would avert 5.08% (95% CrI 4.44-6.23%) of 

cumulative TB cases, whereas increasing them to their theoretical maximum would avert 7.44% (95% 

CrI 6.15-9.21%) of cumulative TB cases between 2020 and 2035 in Ahmedabad. In Delhi, 5.41% 

(95% CrI 4.42-6.94%) and 6.72% (95% CrI 5.30-8.91%) of cumulative TB cases would be averted 

assuming a feasible and theoretical maximum coverage, respectively. A similar impact was seen on 

cumulative TB deaths averted. Focusing on DR-TB, a larger impact was seen on DR-TB cases and 

deaths averted as three of the four PPSA activities involved increasing the use of Xpert and thus 

increasing the likelihood of detecting rifampicin-resistance. For example, assuming PPSA activities 

are increased to their theoretical maximum coverage 13.94% (95% CrI 11.10-16.39%) and 34.63% 

(95% CrI 29.62-39.38%) of cumulative DR-TB cases and deaths would be averted between 2020 and 

2035, respectively, compared to a baseline of current PPSA levels. This impact increased to 18.06% 

(95% CrI 14.97-21.91%) and 41.32% (95% CrI 35.18-46.78%) DR-TB cases and deaths averted in 

Delhi, respectively, due to the lower levels of Xpert at baseline in Delhi compared to Ahmedabad.   

 

Figure 5.10. Model projections for the impact of increasing all PPSA service provisions to their feasible or 
theoretical maximum has on TB incidence in Ahmedabad between 2020 and 2035. Panel A shows the 
projected trajectory of TB incidence, assuming current PPSA scale up between 2017 and 2020, and its 
maintenance indefinitely (blue-dashed line), assuming that PPSA service provisions are increased to their 
feasible or theoretical maximum from 2020 to 2021 and maintained indefinitely (green and purple line, 
respectively). Shaded areas show 95% credible intervals. Panel B shows the percentage of cumulative cases 
averted between 2020 and 2035 by increasing PPSA to its feasible and theoretical maximum, compared to a 
baseline of current PPSA scale-up. 
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Figure 5.11. Model projections for the impact of increasing all PPSA service provisions to their feasible or 
theoretical maximum has on TB incidence in Delhi between 2020 and 2035. Panel A shows the projected 
trajectory of TB incidence, assuming current PPSA scale up between 2017 and 2020, and its maintenance 
indefinitely (blue-dashed line) and assuming that PPSA service provisions are increased to their feasible or 
theoretical maximum from 2020 to 2021 and maintained indefinitely (green and purple line, respectively). 
Shaded areas show 95% credible intervals. Panel B shows the percentage of cumulative cases averted between 
2020 and 2035 by increasing PPSA to its feasible and theoretical maximum, compared to a baseline of current 
PPSA scale-up. 
 

 

Table 5.13. Projected epidemiological impact. Impact is measured as the cumulative impact on TB cases and 
deaths in Ahmedabad and Delhi between 2020 and 2035 relative to a baseline of current PPSA scale up.  
 

5.3.3. Economic evaluation  
I examined which combination of interventions had the lowest ICER assuming the interventions were 

scaled up to their feasible maximum. A full breakdown of the different cost components for each 

intervention is provided in fig A3.6. In Ahmedabad (fig 5.12, table A3.3), the individual intervention 

with the lowest ICER was increasing the proportion of active providers averting 3.00% (95% CrI 

2.59-3.37%) of cumulative TB cases between 2020 and 2035 relative to a current PPSA baseline, for 

an incremental cost of USD 2.3 million (95% CrI 1.5 -3.7 million). On the other hand, in Delhi (fig 

 Ahmedabad Delhi 
Feasible maximum 

% of cumulative TB cases averted, 2020-2035  5.08% (4.44-6.23)  5.41% (4.42-6.94) 
% of cumulative TB deaths averted, 2020-2035 4.09% (2.84-5.76)  6.35% (4.88-8.18) 

% of cumulative DR-TB cases averted, 2020-2035  8.03% (6.23-9.67)  13.96% (11.36-17.15) 
% of cumulative DR-TB deaths averted, 2020-2035  20.72% (17.69-24.11)  32.13% (27.16-36.81) 

Theoretical maximum 
% of cumulative TB cases averted, 2020-2035  7.44% (6.15-9.21)  6.72% (5.30-8.91) 
% of cumulative TB deaths averted, 2020-2035  7.89% (5.65-10.63)  8.74% (6.75-11.26) 

% of cumulative DR-TB cases averted, 2020-2035  13.94% (11.10-16.39)  18.06% (14.97-21.91) 
% of cumulative DR-TB deaths averted, 2020-2035  34.63% (29.62-39.38)  41.32% (35.18-46.78) 
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5.13, table A3.4), the individual intervention with the lowest ICER was increasing the proportion of 

FDC users, averting 1.13% (95% CrI 0.97-1.34%) of cumulative TB cases between 2020 and 2035 for 

an incremental cost of USD 4.5 million (95% CrI USD 3.3-5.9 million). 

 

Next, I examined which intervention, in combination with the most cost-efficient individual 

intervention had the lowest ICER. In Ahmedabad, the intervention with the lowest ICER in 

combination with increasing the proportion of active providers, was increasing the proportion of FDC 

users; together, these two interventions averted 3.46% (95% CrI 2.96-3.91%) of cumulative TB cases 

between 2020 and 2035 relative to a current PPSA baseline at an incremental cost of USD 5.2 million 

(95% CrI 3.8 -8.2 million). On the other hand, in Delhi, the intervention with the lowest ICER in 

combination with increasing the proportion of FDC users, was increasing the proportion of occasional 

Xpert users, averting 3.80% (95% CrI 2.92-5.06%) of cumulative TB cases between 2020 and 2035 

for an incremental cost of USD 31 million (95% CrI 22-47 million).  

 

Out of the two remaining interventions, increasing the proportion of occasional Xpert users had the 

lowest ICER when combined with increasing the proportion of active providers and FDC users in 

Ahmedabad. A combination of the three interventions averted 3.67% (95% CrI 3.18-4.16%) of TB 

cumulative cases between 2020 and 2035 at an incremental cost of USD 7.2 million (95% CrI 5.7 

million-10 million). In Delhi, this was increasing the proportion of active providers, with a 

combination of the three interventions averting 3.95% (95% CrI 3.05-5.22%) of TB cumulative cases 

between 2020 and 2035 at an incremental cost of USD 42 million (95% CrI USD 30-60 million). 

 

Finally, combining all four interventions and assuming they were scaled up to their feasible 

maximum, 5.08% (95% CrI 4.44-6.23) of cumulative TB cases were averted between 2020 and 2035 

compared to a current PPSA baseline for an incremental cost of USD 28 million (95% CrI 21 -41 

million) in Ahmedabad. On the other hand, in Delhi, a combination of the four interventions averted 

5.41% (95% CrI 4.42-6.94) of TB cumulative cases for an incremental cost of USD 157 million (95% 

CrI 101 -213 million). 
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Figure 5.12. Cost-efficiency of PPSA service provisions in Ahmedabad. The first point on the graph 
represents the PPSA service provision (increasing the proportion of active providers) that had the lowest ICER 
on its own when scaled-up to its feasible maximum coverage; the second point represents which additional 
PPSA service provision (increasing the proportion of FDC users), in combination with the first point, had the 
lowest ICER; the third point represents, which additional PPSA service provision (increasing the proportion of 
occasional Xpert users) in addition to the first two services had the lowest ICER; and finally, the fourth point 
represents the incremental cost and epidemiological impact of increasing all four PPSA service provisions 
simultaneously to their feasible maximum. Shaded area shows the 95% credible interval. See table A4 for 
further details.  
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Figure 5.13. Cost-efficiency of PPSA service provisions in Delhi. The first point on the graph represents the 
PPSA service provision (increasing the proportion of FDC users) that had the lowest ICER on its own when 
scaled-up to its feasible maximum coverage; the second point represents which additional PPSA service 
provision (increasing the proportion of occasional Xpert users), in combination with the first point, had the 
lowest ICER; the third point represents, which additional PPSA service provision (increasing the proportion of 
active providers) in addition to the first two services, had the lowest ICER; and finally, the fourth point 
represents the incremental cost and epidemiological impact of increasing all four PPSA service provisions 
simultaneously to their feasible maximum. Shaded area shows the 95% credible interval. See table A5 for 
further details.  
 

5.3.4. Sensitivity analysis  
I conducted sensitivity analyses to analyse model assumptions. The first assumption I examined was 

whether active providers remain consistently active; in the main analysis I weighted Xpert and FDC 

use by the number of months active providers were active for. Unweighting Xpert and FDC use, 

which effectively assumes that active providers were constantly active, and assuming PPSA coverage 

was consistent with current coverage until 2035, averted 2.07% (95% CrI 1.68-2.51%) and 0.80% 

(95% CrI 0.53-1.07%) of cumulative TB cases relative to the weighted current coverage baseline in 

Ahmedabad and Delhi, respectively (fig A3.2 and fig A3.3, respectively). However, in terms of cost-

efficiency, the combinations of the different PPSA activities that had the lowest ICER, presented in 

fig 5.12 and fig 5.13, remain unchanged.   
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The next model assumption I analysed was the proportion of TB patients with pulmonary TB versus 

extrapulmonary TB (fig A3.2 and fig A3.3). In the main analysis, I considered only pulmonary TB.  

Instead, assuming 50% of patients that present for TB care have pulmonary TB, 3.75% (95% CrI 

2.49-4.90) of cumulative TB cases are averted between 2020 and 2035 relative to a current PPSA 

baseline in Ahmedabad, if all four interventions are increased to their feasible maximum coverage; 

this is a 1.33% decrease compared to when I assumed all patients have pulmonary TB (fig A3.2). In 

Delhi, a similar difference in impact was seen, with the percentage of cumulative TB cases averted 

falling to 4.28% (95% CrI 2.96-5.77%) from 5.41% (fig A3.3). Again, in terms of cost-efficiency, the 

combinations of the different PPSA activities that had the lowest ICER, presented in fig 5.12 and fig 

5.13, remain unchanged.   

 

Next, I conducted sensitivity analyses on assumptions that may affect the ICERs for each 

intervention. The first assumption I examined was the behaviour of newly active providers (table 

A3.3, table A3.4). In the main analysis, I assumed the behaviour of newly active providers was 

consistent with pre-existing active behaviour in terms of Xpert and FDC uptake. If the behaviour of 

newly active providers was 25% worse (in terms of Xpert and FDC user) than the behaviour of pre-

existing active providers, the incremental cost of increasing the number of active providers to its 

feasible maximum decreases from USD 2.3 million (95% CrI USD 1.5 -3.8 million) to USD 2.2 

million (95% CrI USD 1.4-3.7 million), and the percentage of cumulative TB cases averted between 

2020 and 2035 decreased from 3.00% (95% CrI 2.59-3.37%) to 2.98% (95% CrI 2.58-3.35%) in 

Ahmedabad, due to the decrease in FDC and Xpert use, and adherence support offered. If behaviour 

of the newly active providers was 50% worse, then the incremental cost and percentage of cumulative 

TB cases averted between 2020 and 2035 decreased further to USD 2.1 million (95% CrI 1.3 -3.6 

million) and 2.89% (95% CrI 2.48-3.24%), respectively. Despite the decrease in cases averted, and 

due to a decrease in incremental cost, increasing the proportion of active providers, regardless of their 

behaviour, was still the individual intervention with the lowest ICER in Ahmedabad.  

 

Next, I examined how varying maintenance cost may affect the ICERs of the four interventions when 

scaled up individually (table A3.5 and table A3.6). For Ahmedabad, decreasing maintenance cost by 

20% reduced the ICER of increasing the use of government supplied FDCs, making it the individual 

intervention with the lowest ICER (table A3.5). On the other hand, increasing the proportion of active 

providers remained the individual intervention with the lowest ICER if maintenance cost increased by 

20%. For Delhi, increasing the proportion of FDC users remained the intervention with the lowest 

ICER regardless of a 20% increase or decrease in maintenance cost (table A3.6).  

Finally, I conducted multivariate sensitivity analysis to examine which model parameter model 

outputs are most sensitive towards (fig A3.4 and fig A3.5). The model output, TB cases averted in 
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Ahmedabad, was influenced most strongly by the following three parameters: the rate of relapse 

following self-cure, the rate of stabilisation of the risk of relapse following treatment, and the rate of 

repeat care-seeking. For Delhi, the three most influential parameters were also the rate of relapse 

following self-cure and the rate of stabilisation of the risk of relapse following treatment, as well as 

the rate of progression to active disease from latency.  

 

5.4. Discussion 
 

To help India reach TB elimination, TB diagnosis and treatment in India’s dominant private 

healthcare sector needs to improve. The largest private sector engagement initiative for TB in India to 

date, JEET, has focussed on encouraging private providers to notify their TB cases, to send TB 

sputum samples for confirmatory Xpert testing, to offer adherence support and to prescribe 

government supplied FDCs. In this work, I have addressed the question of how these different 

services provided by JEET should be expanded in the future and the potential epidemiological impact 

expanding these PPSA services further may have on the TB epidemic in Ahmedabad and Delhi, two 

cities with different coverage levels of PPSA services. I focussed on four interventions: increasing the 

proportion of active private providers, increasing the use of Xpert for confirmatory testing amongst 

active providers that are occasional users, converting non-Xpert users to start confirming TB test 

results with Xpert, and increasing the use of government supplied FDCs amongst active providers. 

 
This work suggests that increasing all four interventions simultaneously to their maximum coverage 

can have a moderate impact on TB incidence, compared to maintaining pre-existing coverage of JEET 

and routine TB services; this impact is reduced if a feasible maximum coverage is considered, which 

considers the fact that some providers refuse certain PPSA services despite continued engagement 

efforts. Overall, the epidemiological impact between Ahmedabad and Delhi are very similar. A small 

increase in impact is seen in Delhi due to the lower coverage of PPSA services at baseline. A 

substantial impact is seen on DR-TB in terms of death and cases, due to the increase in the use of 

rapid molecular testing, which increases the probability of a correct diagnosis and appropriate 

treatment initiation.   

 

These results are lower than those reported in another modelling study that examined the impact of 

increasing high-quality TB diagnosis and adherence support amongst private providers through 

private provider engagement in two Indian cities, Mumbai and Patna. The difference in results is 

likely because my interventions were compared to a baseline of current PPSA coverage, whereas the 

baseline of the other study assumed a baseline of no PPSA.   
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Levels of extra-pulmonary TB is influenced by factors such as HIV status, which is not covered in the 

model (130,494,495). Data provided by CHAI, suggest that certain cities in India, such as Delhi, have 

reported the percentage of TB cases that are extra-pulmonary, to be as high as 50%. Our results 

suggest that in settings with high levels of extra-pulmonary TB, the expected epidemiological impact 

of increasing PPSA services will be reduced, especially if the services focus heavily on increasing 

confirmatory testing with Xpert. In cities with high levels of extra-pulmonary TB, engaging with 

private providers and ensuring they follow the correct diagnostic protocol for diagnosing extra-

pulmonary TB, will be paramount, in order to maximise the impact of private sector engagement on 

the TB epidemic. Nevertheless, the conclusion on which services should be prioritised in Delhi and 

Ahmedabad remain unchanged, regardless of the level of extra-pulmonary tuberculosis. 

 

The epidemiological impact is likely to be reduced further if there is a high rate of attrition from an 

active to an inactive status amongst private providers. There are three main reasons behind this 

attrition: first of all, some providers may not have a sufficient load of TB patients every month and 

thus may notify infrequently depending on when they see a new TB patient; secondly, some 

providers, especially those that handle a smaller volume of TB patients, are seen less regularly by the 

field team and are therefore less likely to notify; and finally, some providers remain dissatisfied with 

the services offered by JEET, and therefore intentionally stop notifying patients until the field teams 

are able to improve their services. Understanding the reasons behind this behaviour will be important 

to ensure engagement efforts do not go to waste.  

 
Ideally, all four interventions would be scaled up to their maximum coverage simultaneously; 

however, cost is likely to be a constraint. Analyses on the cost of scaling up the four interventions 

individually in Ahmedabad revealed that the intervention that averts the most cases of TB for a given 

cost was increasing the proportion of active providers. This held true even if the behaviour of newly 

active providers was worse than pre-existing active behaviours, in terms of diagnosis and treatment. 

The intervention with the largest ICER was increasing Xpert use amongst occasional users of Xpert; 

although this intervention averts a similar number of TB cases to increasing the proportion of active 

providers, it is the most expensive of the four interventions, due to the number of visits required to 

encourage providers to increase their use of Xpert for confirmatory testing.   

 

On the other hand, in Delhi, the intervention with the smallest ICER was increasing the use of 

government supplied FDCs amongst active providers due to the low FDC coverage at baseline. 

Although increasing FDC use has the smallest epidemiological impact across the different 

interventions, it is highly cost efficient due to its low cost. Like Ahmedabad, the intervention with the 

highest ICER (least cost-efficient) was increasing Xpert use.  
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Overall, the interventions with the highest ICERs are those that involve Xpert. Although these 

interventions are epidemiologically impactful, they are extremely costly, due to the high cost of an 

Xpert test, the cost of testing symptomatic non-TB infected care-seekers and the cost of engaging with 

the active providers to increase their use of Xpert. Reducing the effort needed to convince private 

providers to increase Xpert use will be key in decreasing the cost. A recent study found that larger 

providers may be more willing to change their behaviour and adopt the use of Xpert compared to 

smaller providers; thus, targeting the larger providers may provide a more cost-efficient solution and 

help bring down the cost of increasing the use of Xpert amongst private providers (496).  

 

A previous modelling study highlighted that unless the private sector is engaged and is encouraged to 

increase their uptake of Xpert, a limited impact on the TB epidemic will be seen (238). Although our 

results also show that increasing Xpert use has the largest epidemiological impact when compared to 

the other interventions, our results additionally highlight the fact that it is not the most cost-efficient; 

thus, under a limited budget, increasing Xpert use may not be the most appropriate intervention.  

 
The limitations of this work can be divided into two categories: model limitations and economic 

limitations. A model simplification I have made is not explicitly differentiating between pulmonary 

and extrapulmonary TB in the model structure; however, to quantify the expected change in model 

outputs in areas with high levels of extrapulmonary TB, I conducted a sensitivity analysis around this 

model simplification. Another limitation is that the data sources used to inform the model are not 

specific to Ahmedabad and Delhi, and instead are based on Chennai, another large Indian city. 

Similarly, this analysis focusses purely on urban settings and not rural settings, that may have 

different careseeking pathways, different rates of TB infection and different provider behaviour 

(223,240). Thus, greater characterisation of these different settings is needed, to further refine the 

analysis.   

 

In terms of economic limitations, the major limitation is that the costing data is from 2019, and thus, I 

am using retrospective programmatic data to inform the cost-efficiency of future interventions; future 

work could incorporate uncertainty intervals around each cost to reflect variation. In addition, the 

percentage of time spent by field staff on the different activities is subjective and was determined by 

questionnaires sent out to each field staff asking them to remember much time they had spent 

performing each activity. The number of visits needed to change the behaviour of a provider is also 

highly variable and were estimated by the CHAI field team using high level of assumptions; for 

instance, the number of visits until a provider changes their behaviour appears to be dependent on 

when a provider started notifying. Nevertheless, for simplicity, we assumed that all providers were 

responsive after the same number of visits.  Another assumption I have made, is that the field team 

visits providers resistant to engagement efforts the same amount of time as non-resistant providers; in 
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reality, after a couple of visits, field officers know which providers are resistant, and thus, may choose 

instead to focus their efforts on non-resistant providers. Similarly, I do not consider the fact that once 

a provider has been visited by field staff a certain number of times, any subsequent visits are likely to 

be ineffective; for example, data from the field team suggests that approximately at the 50th visit by a 

field officer, a provider’s Xpert use stops increasing. I have also assumed that the cost of field staff 

increases proportionally to the activity they are involved in and that costs increase linearly with 

coverage; in reality, there is a step-wise gradient, where, for example, a field officer can take on a 

certain number of new providers, before an additional field officer is needed. Thus, the cost of the 

different interventions may be over-estimated. In addition, unit costs may change with increasing 

coverage; unit costs may decrease at large volumes (‘economies of scale’) if the PPSA can negotiate 

for lower costs with high volumes, whereas unit costs could also increase due to ‘hard to reach’ 

providers (for example, there may be providers who are reluctant to engage and are therefore more 

costly to keep them on board). Finally, although at baseline I weighted FDC and Xpert use by the 

number of months providers were active for, I assume that under the different interventions, providers 

remain active; however, I do include the costs involved in maintaining this active behaviour.  

 

Finally, a number of studies have shown Xpert to be cost-effective or at least cost-neutral in a variety 

of settings (497–499). I do not aim to assess whether these interventions would be cost-effective 

relative to a cost-effectiveness threshold. Similarly, for simplicity I ignore discounting of future 

outcomes as the aim of the analysis was to perform a simple economic analysis on the cost-efficiency 

of increasing the coverage of the different PPSA services compared to the status quo. Including 

discounting in the analysis is unlikely to affect the relative importance of the different interventions. 

Future work should include a full cost-effectiveness analysis (including discounting) to determine the 

cost-effectiveness of scaling up these interventions individually, and in combination, compared to 

alternative interventions for active TB disease.  

 

5.5. Conclusion 
 
In summary, increasing current PPSA services can have a modest impact on the TB epidemic in 

Indian urban settings and a significant impact on DR-TB. Under a limited budget, increasing the use 

of government supplied FDCs or increasing the proportion of active private providers should be 

prioritised. The services with the highest ICERs are those involving Xpert due to the high cost per test 

and engagement efforts needed.  
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Chapter 6: Results (iv) 
 

Quantifying the potential value of antigen-detection rapid diagnostic tests 

for coronavirus disease 2019: a modelling analysis 
 
Published as: Ricks S, Kendall E.A., Dowdy D.W., Sacks J.A., Schumacher S.G., Arinaminpathy N. 

(2021) Quantifying the potential value of antigen-detection rapid diagnostic tests for COVID-19: a 

modelling analysis. BMC Med 19(75). https://doi.org/10.1186/s12916-021-01948-z 

 
S.G. Schumacher and J.A. Sacks from the Foundations for Innovative New Diagnostics, D.W. Dowdy 

from the Johns Hopkins Bloomberg School of Public Health, and my supervisor, N. Arinaminpathy 

were involved in the conceptualisation of this work. I led the model development, analysis and 

preparation of the manuscript. All authors were involved in reviewing and editing the manuscript.   

 
In this chapter, I shift the focus from TB to COVID-19. With the emergence of the severe acute 

respiratory syndrome coronavirus 2 (“SARS-CoV-2”) at the end of 2019, the importance of diagnostic 

tests quickly became apparent due to the initial lack of effective treatment and vaccines. I had the 

opportunity to apply what I had learnt modelling novel TB diagnostic tests to COVID-19. Here, I aim 

to quantify the trade-offs between accessibility and performance of diagnostic tests for COVID-19. 

More specifically, comparing rapid antigen diagnostic tests (“Ag-RDTs”) to nucleic acid 

amplification tests (“NAAT”), the former being more accessible but less accurate than the latter. I 

conduct decision analysis to evaluate the health system cost and health impact (deaths averted and 

infectious days isolated) of an Ag-RDT-led strategy, compared to a strategy based on NAAT and 

clinical judgment.  I focus on two use cases for analysis: rapid identification of people with COVID-

19 amongst patients admitted with respiratory symptoms in a ‘hospital’ setting; and early 

identification and isolation of people with mildly symptomatic COVID-19 in a ‘community’ setting. I 

demonstrate that despite their imperfect sensitivity and specificity, Ag-RDTs have the potential to be 

simultaneously more impactful and have a lower cost per death and infectious person-days averted, 

than NAAT. This work has led to the development of a user-friendly online tool (https://covid-ag-

rdt.shinyapps.io/model/) that enables public health practitioners to examine model outputs for input 

parameter values relevant to their own settings. 
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6.1. Introduction 
 
Virological testing is a critical part of the global response to severe acute respiratory syndrome 

coronavirus 2 (“SARS-CoV-2”)(303,500,501). Early diagnosis allows infectious cases to be isolated 

in a timely manner, thus minimising opportunities for transmission. Amongst those at risk of severe 

outcomes of the disease, early diagnosis and initiation of appropriate therapy can substantially 

improve outcomes and avert mortality (277,304,502,503). Below I discuss the two main types of 

diagnostic tests, nucleic acid amplification tests (“NAAT”) and rapid antigen diagnostic tests (“Ag-

RDT”).  

 
Nucleic acid amplification tests 

NAATs are molecular tests that detect and amplify a specific nucleic acid sequence. At the time of 

writing, 197 NAATs have received emergency use authorisation (“EUA”) by the U.S. Food and Drug 

Administration (“FDA”) to diagnose COVID-19 (504).  

 

NAATs have been widely implemented in well-resourced settings since the outset of the pandemic 

(505). The most used NAAT for the diagnosis of SARS-CoV-2 infection is the real-time reverse-

transcription polymerase chain reaction assay (“RT-PCR”). Swabs from the respiratory tract, 

nasopharyngeal and oropharyngeal, are taken from a presumptive SARS-Cov-2 infected patient. RNA 

samples are extracted from the swabs, and it is reverse transcribed into DNA; the DNA is then 

amplified using PCR with primers specific to the virus in question.  

 

In terms of logistics, the advantage of PCR is that as soon as the virus has been sequenced, primers 

can be produced. However, these tests are challenging to implement at scale, particularly in resource-

poor settings: they are costly and require good specimen transport systems, laboratory infrastructure, 

and highly trained technicians (506). Furthermore, depending on sample collection and transportation, 

and laboratory and staff capacity, turnaround times can be long; although the test takes between 4 to 6 

hours, some countries, like South Africa, have seen turnaround times of as long as two weeks (506–

508). In such cases a NAAT result adds little value to decisions around isolation or clinical 

management.  In order to increase testing capacity and to make testing more readily available, many 

countries have developed testing “drive-throughs” and home testing, where patients take their own 

swabs and send them to the laboratories to get analysed (509).  

 

RT-PCR is often used as the reference standard for the diagnosis of symptomatic SARS-CoV-2 

infection. The diagnostic performance of new RT-PCR assays is usually determined in patients with 

symptoms consistent with COVID-19, repeated RT-PCR testing, and through the use of radiology 
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(510–512). A meta-analysis estimated a pooled sensitivity of 89% and a pooled specificity of 99% 

(513). However, the diagnostic performance of RT-PCR assays are often verified in ideal conditions 

with samples that have high viral loads (i.e. analytical sensitivity and specificity, and not clinical 

sensitivity and specificity) (510). Indeed, a systematic review estimated clinical sensitivity to be 

between 71-98% (514). False negative results are more likely the earlier patients are tested throughout 

the course of infection, as the viral load may be below the threshold of detection. One study estimated 

the probability of a false-negative result decreased from 100% four days before symptom onset to 

67% one day before symptom onset, with the probability decreasing further following symptom onset, 

but rising again around a week after symptom onset (515). Similarly, a systematic review estimated 

that 89% of RT-PCR test results were positive between 0-4 days post-symptom onset, decreasing to 

54% 10-14 days post-symptom onset (516). False negatives can also arise by incorrect sample 

collection, especially with home-testing kits (517). Finally, the method used to collect samples causes 

different sensitivity estimates (303). For example, one study estimated RT-PCR sensitivity to be 93% 

for bronchoalveolar lavage but as low as 32% for throat swabs (511). Swabs from the lower 

respiratory tract are more likely to test positive than swabs taken from the upper respiratory tract 

(513,516). False positive results may arise through incorrect testing procedures that lead to 

contamination (517). Unfortunately, the variation in diagnostic performance of RT-PCR tests 

depending on how, when and where a sample is collected, and in the preparation of the sample, 

impedes assessment of other novel diagnostic tests, when RT-PCR is used as a reference standard 

(303,512).   

 

Since RT-PCR detects viral particles, patients may test positive for SARS-CoV-2 even several weeks 

post symptom onset (303,518); however, this does not indicate the patient is still infectious (519). The 

EU Centre for Disease Prevention and Control (“CDC”) recommends that amongst hospitalised 

patients, at least two upper respiratory tract samples collected at more than 24 hours intervals should 

test negative for SARS-CoV-2 before viral clearance can be confirmed (520).  

 

Rapid antigen diagnostic tests  

Ag-RDTs detect SARS-CoV-2 proteins (antigens) to diagnose active infection. At the time of writing, 

a total of 8 Ag-RDTs have been given EUA by the FDA (504). The WHO have recently published 

target product profiles (“TPPs”) for Ag-RDTs (521).  

 

The majority of Ag-RDTs are lateral flow assays, which are easy, low-cost and rapid to use (< 30 

minutes), making them suitable for the point-of-care. It should be noted that the majority of current 

Ag-RDTs recommend a nasopharyngeal specimen. Nasopharyngeal samples should ideally be 

performed by trained professionals to reduce sampling error (522).  
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Ag-RDTs detect patients that are the most infectious; however, they tend to suffer from lower 

sensitivity and may miss patients with lower viral loads early on or late during the infection (523). 

Initial evaluations of these tests reveal a handful have sensitivities and specificities comparable to RT-

PCR. For example, the Abbott Panbio COVID-19 Ag Rapid Test Device had an overall sensitivity 

and specificity of 85.5% and 100%, respectively, relative to RT-PCR; sensitivity increased to 96.8% 

if the cycle threshold is greater than 25 (524). The test also performs better when patients are tested 

within a week of symptom onset; sensitivity decreased to around 75% if samples were taken over a 

week after symptom onset. Overall, a meta-analysis, that included studies using any type of reference 

standards (including RT-PCR and clinical diagnosis) found that Ag-RDTs had a pooled sensitivity of 

56.2% and a pooled specificity of 99.5%; however, sensitivity varied hugely across tests, ranging 

from 0 to 94% (525). The tests have not been validated for use for home testing, which may reduce 

test sensitivity due to incorrect sampling. 

 

To reduce errors with antigen tests, test results could be confirmed with RT-PCR. For example, in a 

high prevalence setting, a negative test may require confirmation with RT-PCR, whereas in a low 

prevalence setting, a positive test result may require confirmation (526).  

 

The emergence of Ag-RDTs may help to address some of the challenges faced by NAAT. As RDTs 

are being procured by international donors for use in LMICs there is a need for guidance on how these 

tests should be used in these settings. I therefore sought to quantify these trade-offs between Ag-RDT-

based testing and NAAT-based testing in the context of resource-limited settings. I aimed to answer 

the following questions:  

 

• What is the trade-off between NAAT and Ag-RDT for SARS-CoV-2?  

• Under what scenario can an Ag-RDT be beneficial?  

• Do results differ by use-case?  

 
 
6.2. Methods  
 

6.2.1. Overview 
The primary objective was to identify scenarios in which an Ag-RDT might offer greater individual 

and public health value at lower cost than reliance on NAAT, across a variety of resource-limited 

settings. To accomplish this, I first defined key use cases and plausible ranges for parameter values, in 

consultation with a group of experts deeply involved in their country’s response to COVID-19 (table 

A4.2). To identify principles that might generalize across countries, these experts were drawn from a 
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range of different country settings; the ranges in parameter values also served to incorporate variation 

across these settings. (As described below, a key aim of the analysis was to analyse the most 

important sources of variation.) I then constructed decision trees that included both costs to the health 

system (e.g., treatment and management of hospitalised cases) and relevant health outcomes (deaths 

and infectious person-days averted). Finally, I simulated overall costs and outcomes under a wide 

array of parameter values and compared testing strategies using Ag-RDTs, those using NAAT where 

available. I also constructed a user-friendly online tool (https://covid-ag-rdt.shinyapps.io/model/) that 

enables public health practitioners to examine model outputs for input parameter values relevant to 

their own settings. 

 

6.2.2. Model scenarios and structure 
I denote an ‘Ag-RDT-led strategy’ as any testing strategy in which an Ag-RDT is the first diagnostic 

test performed (with the potential for follow-up NAAT confirmation). As an illustrative example, I 

focused on an Ag-RDT with sensitivity and specificity of 80% and 98% respectively, relative to 

NAAT, and costing 5 USD per test, consistent with recent WHO interim guidance and US FDA EUA 

antigen-detection tests (504,522). I compared the impact of using an Ag-RDT-led strategy to that of a 

‘NAAT-based strategy’ in which NAAT was the only virological test performed, with reliance on 

clinical judgment where sufficiently rapid NAAT results were not available (see fig 6.1 for a 

summary of the diagnostic strategies modelled). To inform relevant use case scenarios, I consulted 

experts from India, South Africa, Nigeria, and Brazil to elicit expert opinion on the ways in which 

Ag-RDTs could offer value in their own country settings (see appendix 4 for further details). Based 

on this input, I selected two use case scenarios, as listed in table 6.1: (i) A ‘hospital setting’, where the 

test is used to support infection control and treatment decisions amongst patients being admitted to 

hospital with respiratory symptoms, and (ii) a ‘community’ setting, where the test is used in in 

decentralized community clinics to identify cases of COVID-19 who should self-isolate. Although 

Ag-RDTs could also be considered for use in identifying asymptomatic infections, both focal 

scenarios involved testing of only symptomatic individuals.  
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Use case 
scenario 

Description Assumed 
prevalence 

Purpose of testing 

Hospital 
setting 

Testing amongst all 
patients being 

hospitalised with 
respiratory symptoms 

25% To identify patients with COVID-19 who should be 
housed in isolation wards (reducing infection risk in 

hospital). Amongst admissions with severe 
symptoms, to identify those with COVID-19 who 

might benefit from anti-inflammatory treatment (to 
reduce deaths) 

Community 
setting 

Decentralised, 
community-level 

facility available to all 
individuals with 

symptoms who want to 
be tested for COVID-

19 

5% To identify COVID-19 amongst people with mild 
COVID-consistent symptoms. Positive test results 

would trigger isolation and contact tracing, to 
minimise opportunities for transmission. 

 
Table 6.1. The use cases included in the present analysis. I performed sensitivity analysis on the assumed 
prevalence, varying the hospital setting prevalence between 10 - 30% and community setting prevalence 
between 1 - 10%. Results are presented in the supporting information.  
 
For both use cases I constructed decision trees (fig 6.1) that represent the diagnostic use of the Ag-

RDT, actions taken in response to the test results (or lack of results) and resulting outcomes. For 

simplicity and transparency, this model does not incorporate transmission dynamics but approximates 

epidemiological benefits based on the incremental change in the number of days that infectious 

individuals spend out of isolation; the magnitude of downstream impact would depend on factors, 

such as the rate of epidemic growth and the contact patterns of symptomatic versus pre- or 

asymptomatic cases, that are not specified in the model. The focus is therefore on the direct benefits 

that would accrue to patients receiving the test and, by extension, their immediate contacts (see right-

hand column of table 6.1).  
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Figure 6.1.  Schematic illustration of the decision tree approach. As described in the main text, the analysis 
focuses on the direct benefit to patients being tested in different settings. *In the hospital setting, I assumed that 
all patients were provided with supportive care (e.g., oxygen support) regardless of test results, as such care 
would be provided based on symptoms and not aetiology. However, I modelled the use of the test in guiding 
decisions about whom to isolate, and to treat with dexamethasone. Treatment did not apply to the community 
setting. Costs and deaths/infectious days averted were accumulated along each branch of the diagram as 
appropriate (for example, counting the costs of interim treatment and isolation along any branch labelled ‘Yes’ 
following ‘Isolate whilst awaiting treatment?’).  
 
Model parameters, listed in table 6.2, represent the contextual factors to be examined (including 

plausible ranges for each), with the aim of identifying those factors that are most influential for the 

value of an Ag-RDT-led testing strategy relative to NAAT-based testing. The expert consultation 

highlighted that no standard guidance for whether or how Ag-RDTs should be used in conjunction 

with NAAT existed at the time (e.g., whether NAAT should be used to confirm an Ag-RDT negative 

result). Thus, I also defined and modelled three different options for the adjunctive use of NAAT in 

an Ag-RDT-led algorithm (an algorithm where the first test is an Ag-RDT): 
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(i) no confirmation of Ag-RDT results 

(ii) NAAT confirmation of Ag-RDT negative results 

(iii) NAAT confirmation of Ag-RDT positive results  

 

Due to the lower sensitivity of Ag-RDT compared to NAAT, confirmation of Ag-RDT negative 

results with NAAT reduces the probability of false negatives, whereas confirmation of Ag-RDT 

positive results reduces the probability of false positives. The latter is especially important in settings 

with a low prevalence of COVID-19, where even small shortfalls in specificity can lead to substantial 

numbers of false positive diagnoses (527).  

 

For the hospital setting, I assumed that all patients are isolated while awaiting NAAT results (whether 

in the NAAT-based strategy or while awaiting NAAT confirmation in an Ag-RDT-led strategy). I 

also present a sensitivity analysis of the alternative scenario where patients are not isolated while 

awaiting test results. By contrast, in the community setting I assumed that individuals are not isolated 

while awaiting any NAAT result, as this policy was considered infeasible due to the comparatively 

low prevalence of COVID-19 in this population, and the unnecessary expense and disruption this 

would entail to most tested individuals and their families.  

 

Although NAAT specificity is near 100% for current or recent infection (528), not all NAAT-positive 

cases are necessarily infectious, given the potential to detect unviable viral genetic material after the 

infection has resolved (271,519,528) and for severe symptoms to develop near the end of the 

infectious period (302). By contrast, Ag-RDTs may detect only acute, but not recently cleared, 

infection (529,530). These distinctions have significance for the intended purpose of the test: where 

the purpose is to guide clinical decisions for treatment, knowing the aetiology of severe symptoms is 

important, regardless of viral antigenic load. On the other hand, where the purpose is early 

identification of infectious cases, detecting recently cleared infection can detract from the utility of a 

test. I captured these elements of both NAATs and Ag-RDTs by distinguishing ‘acute’ from ‘recent’ 

infection, and assuming that: (i) only acute infection is infectious; (ii) NAAT is able to detect both 

acute and recent infection with equal sensitivity, and (iii) an Ag-RDT is able to detect only acute 

infection (529). I accommodated wide uncertainty in the proportion of patients with acute infection in 

both the hospital and community settings; considering that viral load is highest just before symptom 

onset, and that the average COVID-19 patient is hospitalised 3 to 10 days after symptom onset (531), 

it is possible that a certain proportion of patients are no longer infectious by the time they are 

hospitalised. As discussed below, although these are useful simplifications for the purpose of the 

current analysis, these categorisations conceal potentially important complexities relating to temporal 

and between-individual variation in viral load, infectivity and detectability by a given test. In the 

present analysis, I incorporated a parameter for the proportion of those with COVID-19, amongst the 
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population being tested, that are still in the acute phase at the point of testing, allowing this parameter 

to occupy a wide range of values between 50% and 100%, acknowledging the existing uncertainty 

(table 6.2). 

 
Parameter Value References 

 
Hospital 
setting 

Community 
setting 

 

Epidemiology  
Prevalence of current or recent SARS-

CoV-2 infection (%) * 
25 5 Assumption 

Proportion amongst those tested who are in 
acute phase 

0.5– 1.00 0.5– 1.00 Assumption 

Of those in acute phase, number of 
infectious days remaining (days) 

5 – 15 5 – 15 (299) 

Case fatality rate amongst hospitalised 
COVID-19 patients 

0.20 – 0.30 N/A (304) 

Case fatality reduction amongst COVID-19 
patients on dexamethasone (1 – risk ratio) 

0.07 – 0.25 N/A (304) 

NAAT performance  
NAAT sensitivity (for current or recent 

SARS-CoV-2) 
0.85 – 0.95 0.85 – 0.95 (271,513,514,516,517,519,528) 

NAAT specificity 0.99 – 1 0.99 – 1 (271,517,519,528) 
NAAT availability (proportion able to 

access NAAT test) 
0.1 – 1 0.1 – 1 Assumption 

Cost per NAAT test (USD) 20 – 70 20 – 70  
NAAT turnaround time (days) 1 – 10 5 – 15 (506), Expert consultation 

Confirm Ag-RDT negative results with 
NAAT 

Y/N Y/N  

Confirm Ag-RDT positive results with 
NAAT ** 

Y/N Y/N  

Isolate and initiate treatment (if indicated) 
whilst awaiting NAAT result 

Y *** N  

Ag-RDT performance (assumed fixed)  
Ag-RDT sensitivity for current infection, 

relative to NAAT (%, assumed only 
amongst acute cases)* 

0.80 0.80 (504,532) 

Ag-RDT specificity, relative to NAAT 
(%)* 

0.98 0.98 (504,532) 

Cost per Ag-RDT test (USD) 5 5 (532) 
Clinical judgement and management  

Sensitivity of clinical judgment in absence 
of NAAT 

0.45 – 0.99 0.45 – 0.99 (293,294,533,534) 

Specificity of clinical judgment in absence 
of NAAT 

0.20 – 0.70 0.20 – 0.50 (293,294,533,534) 
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Proportion of hospitalised patients with a 
negative COVID-19 test result (true and 

false negatives) that are initiated onto 
dexamethasone 

0.05 – 0.15 N/A Assumption 

Duration of isolation (days) 10 10 (299) 
Duration of dexamethasone treatment 

(days) 
10 N/A (304) 

Cost of isolation per day (USD) 50 – 350 N/A (535–537) 
Cost of dexamethasone per day (USD) 0.13 - 3.5 N/A (538) 

 
Table 6.2. Contextual parameters and their uncertainty ranges. Ranges define limits on uniform 
distributions, chosen to capture plausible parameter ranges that may apply across a variety of low- and middle-
income settings. As described in the main text, the main analysis is a systematic uncertainty analysis, structured 
to identify which of these uniform distributions is most influential for model outcomes. Footnotes: *I performed 
sensitivity analyses on these fixed parameters, with results presented in Appendix 4. I varied prevalence in the 
hospital setting between 10 - 30% and in the community setting between 1 - 10%. I varied Ag-RDT sensitivity 
and specificity between 75 – 95% and 98 – 100%, respectively, relative to NAAT. **I exclude any parameter 
draws involving NAAT confirmation of both Ag-RDT negative and Ag-RDT positive results. ***For patients 
with COVID-19 initiated on interim treatment while awaiting NAAT confirmation of an Ag-RDT result, but 
who subsequently receive an incorrect negative NAAT result, I assume that they do not receive any benefits of 
interim treatment.  
 
6.2.3. Quantifying relative value 

In the hospital setting, I assumed that the test would guide decisions about whom to isolate and whom 

to treat with dexamethasone (305), and moreover that all patients (regardless of test result) would 

receive supportive care such as oxygen support. I assumed a baseline of no COVID-19-specific 

intervention (i.e., supportive care, but with no NAAT or Ag-RDT testing strategy, nor treatment with 

dexamethasone). I assumed that hospitalised COVID-19 patients have a case fatality rate between 20-

30% (304) without treatment, and that dexamethasone reduces this by 7-25% (table 6.2), consistent 

with recent study results for corticosteroid treatment of COVID-19 (304). I assume a 10-day treatment 

course of dexamethasone (304). I thus denoted ‘deaths averted’ as the reduction in deaths that would 

be achieved by a given testing strategy, relative to no intervention.   

 

Similarly, as a simple proxy for the impact of a test on transmission in both hospital and community 

settings, I first assumed a uniform distribution for the number of infectious days remaining per patient 

amongst patients presenting with acute infection (table 6.2). I then recorded the number of patient-

days of acute infection that were not spent in isolation, whether because of missed diagnosis or (in the 

case of NAAT) delayed diagnosis without isolation, while awaiting a test result. I denoted ‘infectious 

person-days averted’ as the reduction that would be achieved by a given testing strategy, relative to 

no-intervention baseline. For the community setting, I estimated the impact of a test only in terms of 

infectious person-days averted, as it is likely that most individuals receiving a test in a community 

setting suffer from mild COVID-19.  
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I also estimated the cost to the health system of the different interventions. For the hospital setting, I 

estimated the cost of testing, treatment, and isolation. For the community setting, I estimated only the 

cost of testing. 

 

Using the model illustrated in fig 6.1, I estimated the impact (deaths or infectious person-days 

averted) and cost of each testing strategy. I stratified Ag-RDT-led strategies by the adjunctive role of 

NAAT in confirmation of a test result (i.e., whether to confirm Ag-RDT-negatives, Ag-RDT-

positives, or not at all). For NAAT-based strategies, I assumed that only a proportion of eligible 

individuals receive a NAAT result (assuming a broad range of 10-100%), with the remainder 

managed through clinical judgment alone. For each use case, I sampled all parameters from the 

uncertainty ranges in table 6.2 using Latin Hypercube Sampling. For each sampled set of parameters, 

I calculated both incremental costs and the incremental primary outcome (deaths averted or infectious 

person-days that were isolated) under an Ag-RDT-led strategy or a NAAT-based strategy, relative to 

no intervention (that is, a scenario of no testing, nor clinical management of COVID-19). To quantify 

uncertainty, I calculated uncertainty intervals (UIs) as 2.5th and 97.5th percentiles over 10,000 samples 

and reported median values as point estimates. 

 

To compare testing strategies, I first estimated the cost per death averted (in the hospital setting), and 

the cost per infectious person-day isolated (in both hospital and community settings) under NAAT-

based and Ag-RDT-led strategies. However, I did not aim to determine whether or not an Ag-RDT 

would be cost-effective, given the uncertainties surrounding appropriate willingness-to-pay thresholds 

for emergency outbreak response (539). Instead, I compared the two strategies (Ag-RDT vs NAAT) 

using a simple approach of plotting their relative impact against their relative cost for each sampled 

set of parameters (see fig 6.2 for a schematic illustration of the approach). It is important to note that 

this approach is distinct from a conventional cost-effectiveness plane, as the axes are shown on a 

relative, rather than a nominal, scale. In the example of deaths, I denoted 𝐴ÐÑ~ as the deaths averted 

by Ag-RDT-led testing, relative to no intervention, and likewise for 𝐴ÒÓ~. Similarly, I calculated the 

incremental cost 𝐶ÐÑ~ of an Ag-RDT-led strategy relative to no intervention, and likewise for 𝐶ÒÓ~. I 

then plotted the relative impact (𝐴ÐÑ~/𝐴ÒÓ~) against the relative incremental cost (𝐶ÐÑ~/𝐶ÒÓ~).  

 

I defined an Ag-RDT as being ‘favourable’ relative to NAAT, wherever its use resulted 

simultaneously in more deaths averted than NAAT (i.e. 𝐴ÐÑ~ > 𝐴ÒÓ~), and a lower incurred cost per 

death averted than NAAT (i.e. 𝐶ÐÑ~/𝐴ÐÑ~ < 𝐶ÒÓ~/𝐴ÒÓ~). I defined an Ag-RDT as being ‘non-

favourable’ otherwise. I performed corresponding calculations for the outcome of infectious person-

days successfully isolated. The focus in the following analysis is on identifying which circumstances 

would lead to an Ag-RDT being ‘favourable’ relative to NAAT.  
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Where simulation outputs were equivocal on the favourability of Ag-RDTs (i.e., straddling favourable 

and non-favourable regions), I evaluated the correlation between each parameter and relevant model 

outputs using partial rank correlation coefficient (“PRCC”) to identify those parameters that were 

most influential on the proportion of a simulation falling in a favourable region. In particular, where 

simulation outputs straddled the vertical dashed line shown in fig 6.2, I evaluated correlations against 

the relative impact of Ag-RDT-led vs NAAT-based testing strategies. Where simulations straddled 

the diagonal line in the upper-right quadrant, I evaluated correlations against the relative cost-per-unit 

impact (i.e., per death averted or per infectious person-day isolated). Overall, in this way I sought to 

identify the contextual conditions under which an Ag-RDT-led strategy would, and would not, be 

favoured over NAAT.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2 Schematic illustration for visualising the value of an Ag-RDT-led strategy, relative to a 
scenario involving NAAT and clinical judgement. Although the figure involves deaths averted, the same 
structure applies for averting infectious person-days. For a given set of parameters drawn from the parameter 
ranges shown in table 6.2, I simulated the cost and impact of a given Ag-RDT-led strategy, and of a NAAT-
based testing strategy, both relative to a no-intervention scenario. This outcome was then represented in the 
figure by plotting the relative deaths averted by Ag-RDT vs NAAT (horizontal axis) against the relative cost of 
the two strategies (vertical axis). Thus, for example, in the lower right quadrant, an Ag-RDT-led strategy would 
cost less, but have more impact, than NAAT. The diagonal dashed line shows an important threshold: for points 
below this line, an Ag-RDT-led strategy would cost less per death averted than NAAT, and vice versa. Overall, 
therefore, the shaded area shows the region in which an Ag-RDT would simultaneously cost less per death 
averted, and avert more deaths overall, than NAAT. I denote this area as the ‘favourable region’ for an Ag-RDT, 
and elsewhere as ‘non-favourable’: in the current analysis I aim to identify the circumstances under which an 
Ag-RDT, of a given performance and cost, would occupy this region.  
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6.2.4. Additional sensitivity analysis 
Finally, I analysed sensitivity to model assumptions not covered by the analyses above. As a focal 

model output for this sensitivity analysis, I chose the proportion of simulations that were favourable, 

under a given use case and a given scenario for the adjunctive use of Ag-RDT and NAAT. First, while 

the main analysis adopted fixed values for sensitivity and specificity of an Ag-RDT, sensitivity 

analyses examined how the proportion favourable would vary if Ag-RDT sensitivity ranged from 75 – 

95% and if Ag-RDT specificity ranged from 98 – 100%. Second, I examined how the proportion 

favourable would vary if prevalence of COVID-19 ranged from 10-30% in the hospital setting and 1-

10% in the community setting. Finally, for simplicity in the main analysis of the community setting, I 

assumed perfect adherence to isolation after a positive test result and no self-isolation amongst those 

testing negative. I relaxed these assumptions in the sensitivity analysis, and assumed that non-

compliance with self-isolation reduced the infectious days averted by a proportion p, while those not 

required to isolate (i.e., those with false-negative test results, and those awaiting NAAT confirmation 

of an initial Ag-RDT result in the community) nevertheless self-isolated to a degree that reduced 

transmission by a factor q. I examined how the proportion favourable varied as either p or q ranged 

from 0 – 50%.  

 
 
6.3. Results  
 
As context to the primary analysis that follows, table 6.3 illustrates that both NAAT-based and Ag-

RDT-based algorithms were more costly, but led to better health outcomes, than a scenario of no 

intervention. For example, a NAAT based algorithm in a hospital setting would cost USD 150,000 

(95% uncertainty intervals (UI) 38,000 – 490,000) per death averted within the patient population, 

while an Ag-RDT-led algorithm, involving NAAT confirmation of Ag-RDT-negatives, would cost 

USD 140,000 (95% UI 36,000 – 440,000). Likewise, in a community setting, a NAAT based 

algorithm was estimated to cost USD 84 (95% UI  11 – 670) per infectious person-day isolated, 

versus USD 12 (95% UI  8 – 23) for an Ag-RDT-only algorithm (without NAAT confirmation).  
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Testing strategy 
Hospital setting Community setting 

Cost per death 
averted (USD) 

Cost per infectious 
person-day isolated 

(USD) 

Cost per infectious 
person-day isolated 

(USD) 
NAAT-based 150,000 

(38,000-490,000) 
560 (150-1,600) 84 (11-670) 

Ag-RDT-led 
 

No Ag-RDT 
confirmation 

53,000 
(14,000-150,000) 

160 (42-440) 12 (8-23) 

Confirm Ag-RDT -ve 
with NAAT 

140,000 
(36,000-440,000) 

530 (140-1,500) 58 (17-190) 

Confirm Ag-RDT +ve 
with NAAT 

54,000 
(15,000-160,000) 

150 (42-420) 51 (18-790) 

 
Table 6.3. Summary of cost per death or infectious person-day averted of results presented in the main 
text. As explained in the Methods, impact and cost are estimated relative to a baseline of no testing, and no 
intervention. Numbers in brackets give 95% uncertainty intervals. 
 
6.3.1. Hospital Setting 
Fig 6.3 shows plots of relative incremental cost against relative impact in terms of deaths averted, 

comparing the Ag-RDT-led to the NAAT-based strategy in a hospital setting, with an assumed 25% 

prevalence of acute or recent COVID-19 amongst those being tested. For deaths averted, when an Ag-

RDT was used in conjunction with NAAT to confirm Ag-RDT-negative results (red points), such a 

strategy had greater impact, and at lower cost per death averted, than a NAAT-based strategy 

(“favourable region”) in 96% of all simulations. By contrast, Ag-RDT-led strategies that involved 

either no NAAT confirmation, or only confirmation of RDT-positive cases (respectively yellow and 

blue points), resulted in too many missed cases to exceed the impact of NAAT-based strategies in 

more than 92 and 96% of simulations, respectively. For settings in which NAAT was used to confirm 

Ag-RDT-negative results, fig 6.3B illustrates the relationship of each model parameter to the 

proportion of parameter samples that resulted in a “favourable” simulation. In particular, the 

availability of NAAT, sensitivity of clinical judgment amongst those unable to access NAAT, and 

proportion of cases tested during the acute phase were highly influential. Fig 6.3C shows the most 

influential parameters (NAAT availability and clinical judgment) in greater detail, with points in grey 

showing where an Ag-RDT was favourable. Broadly, the figure illustrates that an Ag-RDT would be 

favourable in settings of low NAAT availability and low sensitivity of clinical judgement: in 

indicative terms, as long as sensitivity of clinical judgement was <90%, and NAAT was available to 

<85% of patients, 99% of simulations were favourable.  
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Figure 6.3. Relative value of Ag-RDT vs NAAT testing, for averting deaths in a hospital setting. (A) scatter 
plots for the relative impact of Ag-RDT vs NAAT (horizontal axis), vs the relative cost of the two strategies 
(vertical axis). Each dot represents a single simulation with parameter values drawn from the ranges in table 6.2. 
For a given set of parameters, I simulated the cost and impact of a given Ag-RDT-led strategy and of a NAAT-
based testing strategy. This outcome was then represented by plotting the relative impact (deaths averted) of an 
Ag-RDT-led strategy vs. NAAT-based strategy against the relative cost. The grey-shaded area shows the region 
where an Ag-RDT-led strategy was ‘favourable’ over a NAAT-only strategy, meaning that it averted more 
deaths, and at a lower cost per death averted (see also fig 6.2). Colours of points indicate the adjunctive, 
confirmatory role of NAAT in an Ag-RDT-led strategy (see in-figure legend). Of the red points, 96% fell in the 
favourable region, whereas the majority of simulations for an Ag-RDT only (yellow) and NAAT confirmation 
of positive Ag-RDT results (blue) were unfavourable in 92% and 96% of simulations, respectively. (B) 
Sensitivity analysis on the red points in panel (A), to assess when these points fell above, or below, the diagonal 
dotted reference line. PRCC denotes ‘partial rank correlation coefficient’, against the cost per death averted. The 
longest bars indicate the most influential parameters; positive values indicate parameters that increased the 
favourability of the algorithm with increasingly positive values, and conversely for negative PRCCs. For 
example, when NAAT was used to confirm negative results, the favourability of an Ag-RDT-led strategy was 
improved in settings having lower clinical sensitivity and a higher proportion of acute infection. Clinical sn – 
sensitivity of clinical judgement; prop acute – proportion amongst those tested that are in the acute stage of 
infection; NAAT TAT – turnaround time of NAAT; NAAT sn – NAAT sensitivity; Clinical sp – specificity of 
clinical judgement; Prop neg given dexamethasone – proportion of hospitalised patients with a negative 
COVID-19 test result that are initiated onto dexamethasone; Mort reduction dexamethasone - Case fatality 
reduction amongst COVID-19 patients on dexamethasone. (C) The joint role of the two most influential 
parameters in panel (B). Grey and black points show parameter combinations where an Ag-RDT was 
favourable, and non-favourable, respectively, relative to NAAT. Red lines show 90% sensitivity of clinical 
judgment (vertical line), and 85% NAAT availability (horizontal line). In the lower left quadrant of these lines, 
an Ag-RDT was favourable over NAAT in 99% of simulations. In these results it is assumed that patients were 
placed in isolation and treated (where indicated) while awaiting a NAAT result: fig 6.5 shows results in the 
alternative scenario where they were not isolated, pending NAAT results. 
 
 
Fig 6.4 shows similar results for the outcome of infectious person-days isolated in a hospital setting. 

Importantly, fig 6.4A illustrates the potential for the sole use of Ag-RDT (without NAAT 

confirmation) to offer higher impact, at lower cost, than a NAAT-based scenario (yellow points, 27% 
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of which were in the favourable region). Fig 6.4C shows a bivariate sensitivity analysis of the two 

most influential model parameters, demonstrating that an Ag-RDT-only strategy was likely to be 

favourable in terms of averting infection as long as the sensitivity of clinical judgement in the absence 

of NAAT was <80% and the availability of NAAT was <65%. Under these conditions, the proportion 

of simulations that were favourable was 66%.  

 

 
Figure 6.4. Relative value of Ag-RDT vs NAAT testing, for averting infections in a hospital setting. (A) 
scatter plots for the relative impact of Ag-RDT vs NAAT (horizontal axis), vs the relative cost of the two 
strategies (vertical axis). Of the yellow points (no NAAT confirmation of Ag-RDT results), 27% fell in the 
favourable region shaded in grey, 21% for NAAT confirmation of positive Ag-RDT results and 91% for NAAT 
confirmation of negative Ag-RDT results . Details as in fig 6.2 and fig 6.3. (B) Sensitivity analysis for model 
parameters on the yellow points in panel (A). The interpretation of PRCC is explained in further detail in the 
caption of fig 6.3. Clinical sn – sensitivity of clinical judgement; NAAT TAT – turnaround time of NAAT; NAAT 
sn – NAAT sensitivity; prop acute – proportion amongst those tested that are in the acute stage of infection; Inf 
days remain - Of those in acute phase, number of infectious days remaining; Treat cost – cost of treatment. 
Panel (C) concentrates on the two most influential parameters in this case, NAAT availability and sensitivity of 
clinical judgement. As in fig 6.3C, grey and black points show parameter regimes where an Ag-RDT was, 
respectively, favourable and unfavourable, relative to NAAT. Red lines show 80% sensitivity of clinical 
judgment (vertical line), and 65% NAAT availability (horizontal line). In the lower left quadrant of these lines, 
an Ag-RDT was favourable over NAAT in 66% of simulations. In these results it was assumed that patients 
were placed in isolation while awaiting a NAAT result: fig 6.6 shows results in the alternative scenario where 
they were not isolated. 
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These results assume that all patients were placed in isolation while awaiting NAAT results. Fig 6.5 

and 6.6 show corresponding results when assuming no isolation pending NAAT results, illustrating 

that the results are essentially unchanged for deaths averted (fig 6.5). For infectious patient-days 

isolated, a practice of isolating patients pending NAAT results mitigated the drawbacks of multi-day 

NAAT turnaround times: a decision not to isolate pending results therefore reduced the impact of a 

NAAT-based strategy, thus making an Ag-RDT-only strategy more favourable in comparison. Fig 6.6 

illustrates that, in such a scenario, 93% of simulations placed the Ag-RDT strategy in the favourable 

region.   

 

 
Figure 6.5. Relative value of Ag-RDT-led vs NAAT-based testing, for averting deaths in a hospital setting. 
The figure shows the same results as those presented in fig 6.3, but here assuming that all patients awaiting a 
NAAT result (whether as part of a NAAT-based strategy or for confirmation of Ag-RDT results) were not 
isolated during this time. Results illustrate qualitatively similar findings to those shown in the main text. In 
panel (A), in the scenario where Ag-RDT-negative results were confirmed using NAAT (red points), 57% of 
simulations placed the Ag-RDT-led strategy in the favourable region, below the diagonal dashed line, whereas 
only 7% and 5% of points under a Ag-RDT only strategy and NAAT confirmation of Ag-RDT-positive cases 
were favourable. Panels (B, C) show additional sensitivity analyses for these points in particular, as described in 
fig 6.3. Clinical sn – sensitivity of clinical judgement; Clinical sp – specificity of clinical judgement; Prop acute 
– proportion amongst those tested that are in the acute stage of infection; Prop neg given dexamethasone – 
proportion of hospitalised patients with a negative COVID-19 test result that are initiated onto dexamethasone; 
NAAT sn – NAAT sensitivity; Isol cost – Cost of isolation; Mort reduction dexamethasone - Case fatality 
reduction amongst COVID-19 patients on dexamethasone; NAAT TAT – turnaround time of NAAT. In (C), red 
lines show 75% NAAT availability (vertical line), and 90% sensitivity of clinical judgment (horizontal line). In 
the lower left quadrant of these lines, an Ag-RDT was favourable over NAAT in 85% of simulations. 
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Figure 6.6. Relative value of Ag-RDT-led vs NAAT-based testing, for averting infections in a hospital 
setting. The figure shows the same results as those presented in fig 6.4, but here assuming all patients awaiting 
a NAAT result (whether as part of a NAAT-based strategy or for confirmation of Ag-RDT results) were not 
isolated during this time. In panel (A), in the scenario where there was no NAAT confirmation of Ag-RDT 
results (yellow points), 93% of simulations placed the Ag-RDT-led strategy in the favourable region, to the right 
of the vertical, dashed line. 99% and 4% of simulations were favourable under a NAAT confirmation of Ag-
RDT negative and positive results, respectively. Panels (B, C) show additional sensitivity analyses for these 
points in particular, as described in fig 6.4. NAAT TAT – turnaround time of NAAT; Prop acute – proportion 
amongst those tested that are in the acute stage of infection; Inf days remain - Of those in acute phase, number 
of infectious days remaining; Clinical sn – sensitivity of clinical judgement; Treat cost – cost of treatment; Prop 
neg given dexamethasone – proportion of hospitalised patients with a negative COVID-19 test result that are 
initiated onto dexamethasone. In (C), red lines show a NAAT turnaround time of 3 days (vertical line), and a 
30% NAAT availability (horizontal line). In the upper right quadrant of these lines, an Ag-RDT was favourable 
over NAAT in 69% of simulations. 
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6.3.2. Community Setting 
Finally, fig 6.7 shows results for the community setting scenario. Key assumptions, compared to the 

hospital scenario, include: the sole priority is to avert infection, because mortality risk in the 

individuals being evaluated is low; lower prevalence of SARS-CoV-2 amongst those being tested 

(5%); and I assumed individuals are not placed in isolation while awaiting NAAT results, because of 

the infeasibility of doing so. Similarly to fig 6.4, confirming Ag-RDT-negative cases with NAAT was 

highly likely to avert more potential transmission than NAAT alone, and at lower cost per infectious 

day averted (red points, favourable in 80% of simulations). It was also possible for the sole use of Ag-

RDT to be more impactful than NAAT while costing less (yellow points, favourable in 98% of 

simulations). Fig 6.7B illustrates the key drivers that increased the relative impact of Ag-RDT-only vs 

NAAT-based strategies. These were: a higher proportion of individuals that were still in their acute 

(infectious) phase while being tested; a higher availability of NAAT; a higher cost per NAAT test; 

and a longer NAAT turnaround time.  

 
 

 
Figure 6.7. Relative value of Ag-RDT vs NAAT testing in a community setting. I assumed that in a 
community setting, the focus is on averting infection, and that any severe cases of respiratory disease are more 
likely to present in hospital settings (fig 6.4). Hence in this setting, I focused on infectious person-days averted; 
I also assumed that individuals awaiting NAAT results were not isolated during this time, owing to the 
infeasibility of doing so in this setting. (A) Scatter plot of the relative impact of Ag-RDT vs NAAT (horizontal 
axis) vs the relative cost of Ag-RDT vs NAAT (vertical axis). Dashed reference lines are as explained in fig 6.3, 
and in fig 6.2. Of the yellow points (no NAAT confirmation of Ag-RDT results), 98% fell in the favourable 
region shaded in grey; of the red points (confirm Ag-RDT negatives with a NAAT), 80% fell in the favourable 
region; of the blue points (confirm Ag-RDT positives with a NAAT) less than 1% of simulations were 
favourable. (B) Subgroup sensitivity analysis of the yellow points in panel (A). Interpretation of PRCC is as 
explained in fig 6.3 caption. Prop acute – proportion amongst those tested that are in the acute stage of 
infection; NAAT TAT – turnaround time of NAAT; Inf days remain - Of those in acute phase, number of 
infectious days remaining; Clinical sn – sensitivity of clinical judgement; NAAT sp – NAAT specificity; NAAT 
sn – NAAT sensitivity; Clinical sp – specificity of clinical judgement. Because the vast majority (98%) of 
simulations show Ag-RDT was favourable to NAAT in this scenario, I did not conduct additional bivariate 
sensitivity analyses.  
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6.3.3. Additional sensitivity analysis 

Fig A4.1 – A4.3 show additional sensitivity analyses for both hospital and community settings, under 

alternative model assumptions. For example, the proportion of simulations being favourable for Ag-

RDT remained stable with respect to alternative assumptions for the prevalence of COVID in the 

population being tested and under different algorithms, in both hospital and community settings (fig 

A4.1). Increasing Ag-RDT sensitivity increased the favourability of all three Ag-RDT algorithms in 

the hospital setting (fig A4.2A and A4.2B), but had only modest effect on the community setting (fig 

A4.2C). Increasing Ag-RDT specificity had similarly modest impact on an algorithm’s favourability 

in all settings (fig A4.2D-F). Fig A4.3 shows analysis under alternative assumptions for self-isolating 

behaviour in the community setting. Diminishing compliance with requirements to self-isolate tended 

to reduce the favourability of an Ag-RDT-only strategy (i.e. with no NAAT confirmation), but had the 

opposite effect on the favourability of a strategy to confirm Ag-RDT-positives. In both cases, the 

proportion favourable varied by less than 10 percentage points over the parameter range examined 

here. Similar sensitivity was observed for model assumptions relating to voluntary self-isolation, 

when not required to do so (fig A4.3B). 

 
6.4. Discussion 
 
The emergence of Ag-RDTs for SARS-CoV-2 has raised important questions about trade-offs 

between accessibility and performance; to inform country-level decisions about the use of these tests, 

there is a need for more evidence on how to navigate such trade-offs. Recent models and 

commentaries have highlighted the potential utility of high-frequency, low-sensitivity testing of 

asymptomatic individuals (540), and the current analysis demonstrates that under certain 

circumstances, a less-sensitive but more-accessible test may be preferable for diagnosis of 

symptomatic COVID-19 as well. Rather than aiming to specify parameter values with precision, the 

approach instead embraces parameter uncertainty, by modelling a broad range of scenarios or 

contextual factors. This approach partly reflects the uncertainty in model parameters, but also their 

anticipated variability across different country settings and as local epidemics change over time. By 

structuring the approach in this fashion, I sought to identify the contextual factors that are most 

important in deciding the value of an Ag-RDT.  

 

These results suggest that the value of an Ag-RDT-led strategy is strongly supported for evaluating 

symptomatic individuals in community settings, being highly likely to be simultaneously less costly 

and more impactful than relying on NAAT and clinical judgement (fig 6.7). In hospital settings, the 

favourability of Ag-RDT may be subject to certain qualifications. For example, in averting deaths, an 

Ag-RDT, supported by NAAT to confirm Ag-RDT-negative results, is likely to be favourable 
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(averting more deaths, at less cost per death averted) to NAAT and clinical judgment alone, in settings 

where NAAT is available for less than 85% of patients and sensitivity of clinical judgement (in the 

absence of NAAT) is less than 90% (fig 6.3). However, although confirmation of a negative Ag-RDT 

result with NAAT averts more deaths for a given cost than NAAT only, this algorithm is still more 

costly than a NAAT-only algorithm and may therefore raise challenges of affordability in settings 

with limited resources.   

 

In the community setting, any reliance on NAAT-based testing would face substantial challenges in 

practice. For example, in most settings it is unlikely that individuals would be adequately isolated 

while awaiting NAAT results, given the large number of unnecessary isolations, and associated 

burden on patients and families, that such a strategy would incur. Moreover, it will also typically be 

infeasible to offer timely NAAT to all individuals with potential COVID-19 symptoms, given the 

attendant financial, human resource and supply constraints. In this setting, the analysis shows how an 

affordable, rapid test, even one with lower performance than NAAT, can achieve greater impact 

overall, and at lower cost, than a strategy that relies on NAAT instead.  

 

Notably in both hospital and community scenarios, the key determining factors for the value of an 

Ag-RDT (namely, the availability of NAAT, sensitivity of clinical judgment, and proportion of cases 

tested during the acute phase) all relate to the ability of the existing system to detect cases of SARS-

CoV-2. These findings highlight the potential value of implementation studies to gather data on these 

factors when making programmatic decisions for the introduction and implementation of new Ag-

RDTs in any given setting. Overall, this work serves broadly to illustrate an analytical framework that 

could be readily adjusted to local realities in different settings. A simple, user-friendly web-based tool 

is available, to perform the simulations shown here, but also to allow these simulations to be extended 

to alternative, user-specified parameter ranges (https://covid-ag-rdt.shinyapps.io/model/). 

 

Certain limitations of scope bear mention. The focus in this work is on identifying the circumstances 

in which an Ag-RDT might be most valuable, given a pre-specified performance profile. Recent 

guidance published by WHO addresses target product profiles for Ag-RDTs: that is, how a test should 

best be optimised in terms of accuracy, cost and ease-of-use, for specified use cases (521). For 

simplicity, the approach treats transmission-related impact of testing as being directly proportional to 

the number of days for which testing results in isolation of an infectious person, without considering 

variation between individuals or over time in the degree of infectivity or the strictness of isolation. 

Similarly, my assessment of mortality outcomes does not account for the potential of a test to 

indirectly reduce incidence and mortality by interrupting transmission. Further work using dynamic 

models of SARS-CoV-2 transmission would be valuable in addressing this gap. In addition, while the 

results are based on a broad sensitivity analysis, it should be noted that these same results may depend 



 164 

on the range of parameters that I have assumed, and indeed these ranges may vary across different 

settings. The user-friendly tool allows users to adapt some of these ranges to specific settings. 

Amongst other limitations, I have adopted several simplifications, perhaps most importantly assuming 

a dichotomy between ‘acute’ and ‘recent’ infection and the detectability of each by NAAT or Ag-

RDT. This assumption ignores potentially important complexities, including how infectivity varies 

over the clinical course; the stage in the clinical course at which individuals are likely to be tested; 

and the implications of changing viral/antigen/RNA load over the clinical course, for the ability of a 

given test to detect infection (269,271,272,541,542). Previous modelling studies have incorporated 

some combinations of these factors (501,540), but longitudinal data on all of these factors will be 

critical in refining these and other modelling approaches, to account fully for their potential 

interactions.  

 

 

6.5. Conclusion  
 

In summary, given the immediate importance of virological testing for the control of SARS-CoV-2, it 

is important for decisions about testing strategy to be guided by the available evidence. The results 

show how, in certain clinical conditions, the use of Ag-RDTs could achieve equal or greater impact, 

and at lower cost, than relying on NAAT alone. While the accuracy of diagnostic tools is important, 

other considerations are also critical: as control efforts increasingly shift from blanket lockdowns 

towards intensive testing and early identification, the speed, affordability, and ease-of-use of 

diagnostic tools are likely to play an increasingly key role in the response to SARS-CoV-2. The 

findings illustrate where such rapid and affordable tests are likely to improve outcomes in a more 

cost-efficient way than reliance on NAAT and clinical judgement alone. This work has also led to the 

development of a user-friendly online tool for use by public-health practitioners.   
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Chapter 7: Discussion 
 
Diagnostic tests play a crucial role in the control and surveillance of infectious diseases, and to ensure 

effective clinical management. The aim of the thesis was to examine the potential impact that novel 

diagnostic tests may have on the TB and COVID-19 epidemics in settings with a high burden of 

disease. Traditionally diagnostic tests are evaluated on their accuracy (sensitivity and specificity). 

Instead, I paid particular attention to understanding the context in which diagnostic tests are used, and 

how this may affect their impact. I demonstrate that when evaluating diagnostic tests, it is important 

to move away from focussing only on their accuracy. Predicting the impact of these tests was made 

possible by mathematical models, a platform that allows for the integration of existing evidence and 

uncertainty analysis. In this section, I summarise the findings from each chapter and their 

implications, followed by future directions.  
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7.1. Summary of findings  
 
Below, I summarise the main findings from each chapter. The aim of the thesis was to understand the 

impact that novel diagnostic tests may have on infectious disease epidemics (with a focus on TB), and 

to further understand how the context in which diagnostic tests are used may affect this impact. For 

each chapter, I developed a mathematical model unique to the diagnostic test in question.  

 

In Chapter 3, I focussed on a hypothetical biomarker test that detects individuals who are at imminent 

risk of progressing to active TB disease within the next two years without intervention (i.e., incipient 

TB). As high-burden countries, such as India, start to look towards TB elimination, targeting TB 

stages prior to the development of active TB will become increasingly important. As incipient TB is 

asymptomatic, one method of detection is testing the entire population; however, frequent mass 

testing is likely to be costly. Thus, I assessed how the epidemiological impact and cost effectiveness 

of such a test may differ across populations with different levels of TB risk. I developed a 

mathematical model of TB transmission in a typical Indian slum (higher risk of TB) and non-slum 

(lower risk of TB). I found that such a test had important epidemiological impact across both settings, 

even with limited sensitivity. However, the intervention was costly, due to the large number of tests 

needed to identify a case of incipient TB, even in high-risk populations such as slums, and thus, was 

not cost effective. Although biomarker-led TB preventive treatment (“TPT”) likely offers a more cost-

effective approach than mass TPT (377,543) this work suggests that more refined measures of risk 

(including potential correlates such as nutrition status and other risk factors (366,413) are still needed 

to further reduce the cost per TB death or case averted.  

 

In Chapter 4, I explored the potential epidemiological impact of urine-based diagnostic tests for active 

TB. People living with HIV (“PLHIV”) are frequently misdiagnosed due to their inability to produce 

good quality sputum. Urine-based diagnostic tests can circumvent this issue, and therefore could 

improve diagnosis amongst PLHIV. Current urine-based tests suffer from poor accuracy amongst 

individuals with high CD4 cell counts, and consequently their use has been limited to PLHIV-

inpatients and -outpatients with low CD4 cell counts. However, the performance of these tests is 

improving, and thus, it is important to anticipate the level of deployment needed to have population-

level epidemiological impact. Thus, I developed a mathematical model of TB transmission in South 

Africa, a country with a high burden of both HIV and TB. I incorporated different patient subgroups 

(HIV-inpatients, HIV-outpatients, and routine TB care) so that different test eligibility criteria could 

be examined. I found that although urine-based diagnostic tests reduced mortality amongst PLHIV 

inpatients and outpatients, population-level epidemiological impact was not seen unless the tests were 

deployed outside HIV care and into routine TB care (including amongst HIV negatives), even in a 
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high-HIV burden setting. The results highlight that even if the coverage of Xpert, a high-performance 

test, is expanded, a urine-based test with poorer performance may still substantially reduce TB cases 

and deaths, especially in settings with a high HIV, extrapulmonary or paediatric TB burden, if 

deployed widely enough.   

 

In Chapter 5, I investigated the potential epidemiological impact increasing various services offered 

by private sector engagement initiatives may have on the TB epidemic in a typical urban Indian 

setting. I further examined which service had the lowest incremental cost-effectiveness ratio 

(“ICER”). I developed a mathematical model of TB transmission, incorporating different types of 

private providers and drug-resistance. I also developed a costing model based on two cities with 

contrasting service coverage, Ahmedabad and Delhi. I demonstrated that increasing the various 

services can have a modest impact on TB cases and deaths, and a significant impact on drug-resistant 

TB. The interventions with the lowest ICERs were increasing the use of government supplied fixed 

dose combinations (“FDCs”) and increasing the number of private providers that notify their TB, 

whereas interventions involving increasing the use of Xpert amongst the private providers were the 

least cost-efficient. These results imply that even though increasing the use of Xpert does have the 

largest impact on TB epidemiology, especially on drug-resistant (“DR-TB”), its cost is likely 

prohibitive especially under a limited budget.  

 

Finally, in Chapter 6, I applied similar techniques used in the previous chapters to another respiratory 

pathogen, SARS-CoV-2. As SARS-CoV-2 spread globally in 2020, many countries were faced with 

insufficient laboratory capacity to perform nucleic acid amplification tests (“NAATs”), a reference 

standard for the diagnosis of COVID-19, resulting in high turnaround times. Meanwhile, rapid antigen 

diagnostic tests (“Ag-RDTs”) were being developed; these tests are quick, cheap, and suitable at the 

point of care, but are less accurate. I explored the context under when Ag-RDTs could offer greater 

public health value than NAATs. I developed a different type of mathematical model, a decision tree, 

to evaluate the cost and health impact of different testing algorithms under a community and hospital 

setting. Unlike the TB models I created for the previous chapters, decision analysis does not consider 

transmission dynamics. I chose this model to represent clearly the actions taken by clinicians 

following a positive or negative test result. I approximated epidemiological impact by counting the 

incremental number of days infectious individuals spend out of isolation and the incremental number 

of deaths. The results demonstrate that in a hospital setting, an Ag-RDT-led strategy offered greater 

public health value if the accuracy of clinical judgement and the availability of NAAT was low, 

whereas an Ag-RDT-led strategy was favoured in a community setting, under a wide range of 

assumptions. These results suggest that despite their imperfect sensitivity and specificity, Ag-RDTs 

have the potential to be more impactful at a lower cost than NAATs under different use-cases.  
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7.2. Implications of findings 
 

The implications of this work can be split into two categories: the direct implications on TB and 

COVID-19, and the broader implications on the use of diagnostic tests in general, and why context is 

important when examining their impact.  

 

Overall, the results presented in this thesis suggest that novel diagnostic tests can have a modest 

impact on TB and COVID-19; however, the cost-effectiveness of these interventions needs to be 

carefully considered. Chapter 3 highlights the fact that targeting the TB stages prior to active TB 

disease to reach TB elimination is unlikely to be straightforward. Due to the number of people needed 

to test to detect one of these stages and initiate TPT, the cost of such an intervention is likely to be 

prohibitive and not cost-effective, especially in high TB burden countries. As high burden TB 

countries begin to look towards TB elimination, either more refined measures of risk are needed to 

reduce the number of people tested, or alternative interventions, such as vaccination, are urgently 

needed. Having more refined measures of risk in order to reduce the numbers needed to test to avert 

one case of active disease, will increase the cost-effectiveness of the intervention; however, if the 

measures of risk are too stringent, cases of incipient TB will inevitably be missed, and the overall 

epidemiological impact reduced (377). Future work should model and anticipate the epidemiological 

impact and cost-effectiveness of an intervention that combines biomarker-led TPT and risk-scores. In 

terms of vaccines, two types of vaccines are needed: one that prevents progression to disease to 

prevent LTBI from progression to active disease, and one that prevents infection in the first place. 

Two candidate vaccines are currently in phase 2b and phase 3 of trials, the former aiming to prevent 

TB infection and disease, and the latter to prevent TB disease (544,545).  

 

Chapter 4 demonstrates the value of urine-based tests for TB diagnosis in high HIV-TB burden 

countries. Many countries have been hesitant to take up urine tests due to their low accuracy and lack 

of modelling studies examining their potential impact (450). Consequently, the use of these urine tests 

is restricted to HIV-inpatients and -outpatients with low CD4 cell counts (546). However, our results 

demonstrate that a population-level impact on TB incidence and mortality is only seen if the use of 

these tests are expanded into routine TB care; it is only at this broad deployment level that TB patients 

that are missed by Xpert, due to their inability at producing a good quality sputum sample, either due 

to being coinfected with HIV or having extrapulmonary TB, are being detected. Globally, around 

16% of incident TB cases have extrapulmonary TB and 8% are co-infected with HIV (6). Urine-based 

TB tests present an opportunity to reduce the diagnosis gap amongst these population sub-groups. 

Overall, this work implies that future tests need to have wider eligibility; however, in order for this to 

happen, there are issues that need to be addressed, including not only test sensitivity, but specificity 
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too (i.e., the potential of false positives) and ease of implementation, both of which have been outside 

the scope of this work. Future work should also assess the potential impact of urine-based tests in 

different epidemiological settings (i.e., settings with low levels of HIV), different testing algorithms, 

and the cost-effectiveness of these tests compared to current diagnostic tests.  

 

The results from chapter 5 imply that although increasing the use of Xpert amongst private providers 

has a moderate epidemiological impact, compared to other PPSA activities such as increasing FDC 

use and TB notification, it has the highest ICER (i.e., least cost-efficient). Although studies have 

shown Xpert to be cost-effective and epidemiologically impactful (140,498,499,547), our results 

suggest that under a limited budget, increasing Xpert use may not be the most appropriate course of 

action. This highlights the fact that increasing the use of an accurate test is not necessarily always the 

most cost-efficient option, and that interventions that are cheaper but have a lower epidemiological 

impact, such as increasing the use of FDCs, should not be ruled out. However, this work did not 

include a full cost-effectiveness analysis; for example, if down-stream benefits of averting DR-TB 

were included in the analysis, the ICER for the PPSA interventions involving Xpert may decrease. 

Additionally, depending on priorities, choosing the intervention with the largest impact (i.e., averts 

the most TB cases or deaths) regardless of the cost may be more appropriate than choosing an 

intervention that is the least costly but that has the smallest impact.  

 

Similarly, chapter 6 highlights the fact that the use of an accurate test is not always the most cost-

efficient option. Many countries have favoured the use of NAATs due to their higher accuracy, 

however our results demonstrate that Ag-RDTs can be more cost-efficient in certain use-cases. Like 

TB urine tests, these results highlight how tests with lower accuracy can play a critical role in certain 

use-cases. Indeed, countries have started using Ag-RDTs for mass testing, including regular testing of 

secondary school children in the UK (548). More real-world evidence is needed to assess the true 

impact of Ag-RDTs.  

 

Although each chapter describes the potential impact diagnostic tests may have specifically on TB 

and COVID-19 epidemics, these results can be viewed more broadly. Novel diagnostic tests are 

traditionally assessed on their accuracy (sensitivity and specificity); due to the trade-off between 

sensitivity and specificity, defining what is an acceptable risk of a false positive or false negative 

result is challenging. However, this is further complicated by additional factors other than accuracy; 

there is also often a trade-off between accuracy and accessibility (549). Another study focussing on 

TB that used a simplified framework, demonstrated that the value of novel diagnostic tests is 

dependent not only on accuracy, but also on factors including patient care-seeking behaviour, health 

systems (i.e., linkage to treatment) and the natural history of TB (334). This is also highlighted in this 

work, with examples specific to TB and COVID-19. I show that the accuracy of a test is not always 
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indicative of its potential impact. Other factors such as turnaround time, cost, and sample 

requirements may also be influential depending on the context in which the tests are being used. I 

discuss these factors in more detail below.  

 
Care-seeking pathway  

The time taken for patients to seek care, where patients choose to seek care and at what stage of 

infection they seek care at, will affect the effectiveness of a novel diagnostic test (334). For example, 

if most transmission occurs before patients receive a test diagnosis, the impact of the diagnostic test 

on the epidemiology of the infectious disease in question will be limited (334). A modelling study 

examining the impact of increasing PPSA services in India found that the impact may be limited due 

to the patient delay of seeking care, allowing for high amounts of transmission (239). Another 

important factor is where in the healthcare system the tests are placed; results from chapter 4 suggest 

that introducing future urine tests not only into HIV care, but into routine TB care, to diagnose TB 

amongst patients with undiagnosed HIV can be beneficial.  

 
Level of current testing 

The coverage level and diagnostic performance of tests currently used in a setting may reduce the 

impact of a newly introduced test. For example, one theory why the rollout of Xpert has not led to an 

increase in TB treatment initiation in certain countries despite being more accurate than sputum smear 

microscopy, is due to high background rates of empirical treatment, reducing the incremental benefit 

of Xpert (155,156). The impact of current testing is seen in chapter 6, where the sensitivity of clinical 

judgement amongst patients unable to access NAAT was highly influential on the value of Ag-RDTs; 

a higher sensitivity of clinical judgement reduced the relative impact of Ag-RDTs under a hospital 

setting. Similarly, NAAT availability was also influential in determining the value of Ag-RDTs. 

Under a hospital setting, greater NAAT availability reduced the value of Ag-RDTs due to their 

superior accuracy assuming patients are isolated whilst awaiting test results, whereas under a 

community setting, greater NAAT availability increased the value of Ag-RDTs due to the longer 

turnaround times with NAAT. Similarly, the epidemiological impact of urine tests in South Africa is 

reduced if current Xpert coverage is increased so that all patients with symptoms suggestive of TB are 

tested with Xpert on their first presentation for care; nevertheless, even if Xpert coverage is increased 

to such levels, urine tests still offer additional benefit due to their reliance on urine instead of sputum, 

and thus, increasing TB diagnosis amongst population subgroups that struggle to produce good 

quality sputum. These results suggest that future urine tests have the potential to offer population level 

impact even alongside high levels of Xpert coverage.  
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Cost 

The cost of a diagnostic test is often the focus of economic evaluations. A highly accurate but costly 

test is not always the most cost-effective nor cost-efficient option. For example, some studies suggest 

that the higher diagnostic yield of Xpert may compensate for its high cost (142), and that including 

Xpert in diagnostic algorithms is cost-effective or cost-neutral (155,498,499). However, the results in 

this thesis (chapters 5 and 6) clearly demonstrate that costly tests are not always the most cost-

efficient option; even with a highly sensitive and specific test, a less accurate test may be more 

favourable if cheaper. Chapter 5 shows that although increasing Xpert use is epidemiologically 

impactful, due to the cost of Xpert testing and the cost of engaging with providers to use Xpert, 

increasing Xpert use was one of the least cost-efficient interventions; instead, less epidemiologically 

impactful but less costly interventions, such as increasing the use of government-supplied FDCs, were 

more cost-efficient. Similarly, chapter 6 demonstrates this for COVID-19, and how less accurate but 

cheaper Ag-RDTs are more cost-efficient than NAATs under various use-cases.  

 

Another cost consideration is the cost of the program needed to implement a novel diagnostic test; 

these costs could include the cost of human resources, the cost of energy needed to power the test or 

the cost of transporting samples (550). This cost can often be much larger than the cost of the 

diagnostic itself. Costs further downstream, such as the cost of treating all patients that test positive as 

a result of the novel diagnostic, also need to be considered (551). Not including these additional costs 

may over-estimate the cost-effectiveness of an intervention. Finally, even if a test is considered cost-

effective, it does not necessarily mean the test is affordable. The cost of implementation and what 

benchmark is considered affordable will be country-specific, so ideally economic evaluations are 

needed for different settings (549).  

 

Turnaround time 

A short turnaround time from the time a patient is tested to the time they receive the test result is 

crucial to reduce onwards transmission and loss to follow up. For example, Xpert tests placed at 

centralised laboratories often have longer turnaround times than those placed at the primary care 

level, increasing delays in TB treatment initiation and increasing loss to follow up (141); however, to 

complicate things further, economic evaluation suggests that the cost of Xpert is greater at the point of 

care than at centralised laboratories (140,154). Similarly, countries have faced long turnaround times 

with NAATs at the start of the COVID-19 pandemic. Results from chapter 6 demonstrate that Ag-

RDTs are more cost efficient than NAATs under different testing algorithms and use-cases, with the 

length of the turnaround time being an influential parameter in determining this relative impact. Other 

studies have also reported the importance of turnaround time and test accessibility for COVID-19 

diagnosis (540). Thus, when examining the impact of diagnostic tests, it is crucial to accurately define 

the use-case; for example, are patients isolated whilst awaiting test results, is the test suitable at the 
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point-of-care, and if not, how long does it take to get the sample from the clinic to the laboratory and 

back.  

 

Nevertheless, even if a diagnostic test has a short turnaround time, it will have poor epidemiological 

impact if linkage to treatment is poor (549). Thus, modelling studies, when examining the potential 

impact of diagnostic tests, should incorporate this to reduce the risk of overestimating the 

epidemiological impact. Again, the rate of treatment initiation is likely to be setting specific.   

 

Risk of disease 

The population-level risk of disease will also impact the cost efficiency and effectiveness of a test. 

For example, if the risk of disease is low, a test with high specificity is crucial to reduce the risk of 

false positives and resulting treatment costs. This is demonstrated in chapter 3 – although a lot of 

emphasis has been placed on testing and treating patients with incipient TB as a more cost-efficient 

approach than mass latent TB infection testing, my results suggest that even under a slum-targeted 

testing strategy, testing for incipient TB is not cost-effective, due to the number of tests needed to 

detect a case of incipient TB. Thus, the risk of disease links into the cost of a test; testing a large 

number of people to detect or avert one case requires a cheap test. In the case of incipient TB, the cost 

per test needed for the intervention to be considered cost-effective in India, is not feasible.    

 
Sample type 

The type of sample a diagnostic test uses may also impact its overall performance. For example, to 

diagnose COVID-19, NAAT sensitivity decreases from 93% for bronchoalveolar lavage to 32% for a 

throat swab (511). Similarly, for TB, sputum collection from certain population sub-groups can be 

difficult, leading to these population subgroups being under- and mis-diagnosed. Furthermore, sputum 

collection for TB poses a risk of infection to the healthcare works, and thus, trained workers are 

required. Chapter 4 highlights how even if the coverage of Xpert, a highly accurate sputum-based test, 

is expanded, so that everyone presenting to care receives one, introducing urine-based tests can still 

avert a substantial number of cases due to the population sub-groups being missed by Xpert.  

 

Overall, these results imply that a test that is less accurate than currently available tests should not 

automatically be written off; likewise, a more accurate test does not necessarily translate into a large 

epidemiological impact and is not necessarily cost-effective. Other factors including cost, ease of use, 

infrastructure and training requirements, and turnaround time all play an important role in make a less 

accurate test more epidemiologically impactful, or a more accurate test less impactful. Thus, defining 

the use-case is key, as the importance of these characteristics will differ depending on the use-case.  

 



 173 

7.3. Limitations and future directions 

 
One of the biggest challenges when constructing mathematical models is the availability of data. 

When available, parameter estimates should be made from systematic reviews or meta-analyses; 

unfortunately, such studies are not always available. Having more up to date data on incidence, 

prevalence and ARTI at subnational levels will help further our understanding on the heterogeneity of 

TB burden across India and other high TB burden countries and reduce the uncertainty around model 

projections. In India, this is further complicated by the dominant private healthcare sector, where, 

although TB is a notifiable disease, notifications from private providers remain low (215). Effort has 

been made to estimate the burden of TB in the private sector (227,240), however much uncertainty 

remains. It should also be noted that the TB modelling presented in this thesis was conducted prior to 

the COVID-19 pandemic. The pandemic has led to a resurgence in TB cases due to patients not 

accessing TB diagnostic and treatment services, thus updated data on the true burden of TB is needed. 

A modelling study estimates that in high burden settings, TB deaths over 5 years may increase by up 

to 20% (203). Future work should investigate how the COVID-19 pandemic has impacted the results 

presented in this thesis. Considering how many variables apart from test accuracy may impact the 

effectiveness of a diagnostic test (including patient behaviour, linkage to care and rates of current 

testing), and that these factors are likely to vary across settings, a huge amount of data is needed to 

construct models specific to each setting; results from one setting may not necessarily be 

generalisable. Future work should therefore aim to understand further how these different factors 

differ across settings. Finally, to provide greater weight and confidence to future model projections, 

future work should aim to validate the model against historical data, in order to see how well the 

model can retrospectively predict past TB epidemiological trends.   

 

Another challenge with mathematical models is making assumptions about the natural history of 

pathogen in question and having sufficient data to support this. For example, the importance of 

additional stages within the natural history of TB, such as incipient and subclinical TB, are becoming 

increasingly apparent (26). How these stages are defined also vary; although incipient TB is defined 

as an infection that is at imminent risk of progressing to active disease (10), how this ‘imminent’ risk 

is defined, varies across studies. Similar issues arise with COVID-19, with questions remaining on the 

proportion of cases that present as either asymptomatic, presymptomatic or symptomatic.  

 

An additional limitation is the availability of costing data. For chapter 5, I was fortunate to collaborate 

with CHAI who provided retrospective costing data for a variety of TB activities in different cities 

across India.  Unfortunately, detailed costing is not always publicly available and is usually setting 

specific. For chapters 2 and 6, I had to rely on publicly available data that do not necessarily reflect 
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the true cost of the setting under examination; however, I took this uncertainty into consideration by 

widening the confidence intervals of each cost. In chapter 3, where I conducted a simple cost-

effectiveness analysis on incipient TB testing, although the results suggest that the intervention is not 

cost effective, future work should consider conducting a full cost-effectiveness analysis that 

incorporates all health system costs involved with facilitating the expansion of mass testing and 

consider potential comparators. Furthermore, costing interventions involving diagnostic tests is 

complicated, considering all the upstream (i.e., patient behaviour) and downstream factors (i.e., 

linkage to treatment) that influence the epidemiological impact of a test (552).   

 

Similarly, it is not always clear what cost-effectiveness threshold is appropriate. As mentioned in 

chapter 2, there has been much debate about what this threshold should be; traditionally, 1-3 times a 

country’s GDP per capita has been used however recent data suggests these may be too high 

(347,405). In chapter 3, where I conduct a cost-effectiveness analysis, I assumed a threshold of 1 time 

the GDP per capita to represent an optimistic threshold, and to highlight the point that the intervention 

of incipient TB testing was not cost-effective, even under an optimistic threshold. Furthermore, all the 

costs examined in this thesis has focussed on the perspective of the health system, ignoring the costs 

incurred by patients. The costs incurred by patients as a result of an intervention will affect the uptake 

of an intervention, thus future analysis should consider examining the costs incurred by patients as a 

result of the different interventions examined in this thesis.  

 

Cost-effectiveness analyses are further complicated when it comes to disease elimination. How we 

quantify the long-term downstream benefits of TB elimination remains uncertain. Unfortunately, 

ignoring these downstream long-term benefits may underestimate the cost-effectiveness of an 

intervention. This raises the question whether cost-effectiveness analysis is an appropriate tool to 

economically evaluate an intervention whose aim is to reach disease elimination.  

 

7.4. Conclusion 
 

In conclusion, novel diagnostic tests may have a significant impact on TB and COVID-19. More 

importantly, the context in which diagnostic tests are used is crucial in anticipating their impact. 

There is a clear need to move away from the vacuum of evaluating diagnostic tests purely on test 

accuracy. For example, diagnostic tests with poorer accuracy than pre-existing diagnostic tests may 

still be impactful under the right use-case if their characteristics, such as cost or turnaround time, 

differ from pre-existing tests. Thus, a novel diagnostic test with poor accuracy should not 

automatically be discarded; likewise, a test with high accuracy is not necessarily always the most 

appropriate or cost-effective solution. Future work should include data collection across different 
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settings, operational research, and implementation studies in order to help bridge the data gap so that 

full cost-effectiveness analyses of the tests examined in this thesis, specific to the use-case under 

investigation, can be performed. 
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Appendix 1 
 
 
The potential value of biomarker-led preventive treatment in eliminating 
tuberculosis: a modelling analysis 
 
  
1. Materials and methods 
 

Below, I describe the model, including its structure, governing equations and table of parameters. The 

model was designed in MATLAB.  

 
1.1. Model structure 

 
I modelled TB transmission amongst adults (>15 years old) in the slums and non-slums of Chennai, 

India. I modelled the fragmented healthcare system, by differentiating between the public and private 

sector (1–7). I calibrated the model to TB prevalence (slums and non-slums), annual risk of infection 

(slums and non-slums) and mortality (table 3.2). I ignore MDR-TB and pulmonary status.  

 

I initially simulated the model to equilibrium after introducing TB into a disease-free population, 

without differentiating between the public and private sector. From 1997 to 2007 and its maintenance 

until the present day, I incorporated the RNTCP scale up and its impact on the TB epidemic (8). From 

1997, I also incorporate population growth. I then simulate the model forward from the present day to 

2035.  

 

I considered two different scenarios where false positives that originate from testing for incipient TB 

may arise from: only from 𝐿g
(H), the second from 𝑈g, 𝐿g

(H), 𝑅g
(�)

 and 𝑅g
(�). The threshold cost of a 

biomarker test for the latter scenario, is given by the following equation (for the former, see main 

text): 
 

(1) 
 

𝐶~ ≤
(𝜗(𝐷� − 𝐷H)) − (𝜅d𝑝gz𝐶q ∫ 𝐿gJ) − (𝜅d(1 − 𝑝g{)𝐶q

J�J�
J��� ∫ ∑[𝑈𝑠 + 𝐿g

(H) + 𝑅g
(�) + 𝑅g

(�)] + (𝐴� − 𝐴H)
J�J�
J���

𝜅d ∫ ∑[𝑈g + 𝐿g
(H) + 𝐿g

(J) + 𝑅g
(�) + 𝑅g

(�)]J�J�
J���

 

  
 
1.2. Governing equations for the mathematical transmission model 
 
The equations correspond to the model described in fig 3.1. State variables (capital letters) are as 

listed in Table A1.1, while model parameters (lower-case and Greek letters) are as listed in Table 3.1. 
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Model stage Description 
𝑼𝒔 Uninfected 
𝑳𝒔
(𝟏) Latent infection 

𝑳𝒔
(𝟐)

 Incipient TB 
𝑰𝒔 Active TB 

𝑫𝒙𝒔
(𝒑𝒖) Sought care, awaiting TB diagnosis, public sector 

𝑫𝒙𝒔
(𝒑𝒓) Sought care, awaiting TB diagnosis, private sector 

𝑻𝒙𝒔
(𝒑𝒖) Undergoing TB treatment, public sector 

𝑻𝒙𝒔
(𝒑𝒓) Undergoing TB treatment, private sector 
𝑬𝒔 Between seeking care, after misdiagnosis or loss to follow up 
𝑹𝒔
(𝑳) Recovered, after treatment completion, low risk of relapse 

𝑹𝒔
(𝑯) Recovered, after self-cure, high risk of relapse 

Subscript Description 
s Location (0 = non-slums, 1 = slums) 

 
Table A1.1. Model stages and subscript description 
 

Uninfected                                                                                                                                                            
(2) 

 
𝑑𝑈g
𝑑𝑡

= 𝑇 − (𝜆g + 𝜇J)𝑈g 
 

Latency                                                                                                                                                                  
(3) 

 
𝑑𝐿g

(H)

𝑑𝑡
= 𝜋𝜆g(1 − 𝜃)à[𝐿g

(H) + 𝐿g
(J) + 𝑅g

(�) + 𝑅g
(�)] + 𝜆g𝜃𝑈g + 𝜅g𝜐𝑝𝑠𝑛𝐿g

(J) − (𝜌H + 𝜇J)𝐿g
(H) 

 
 

Incipient TB          
                                                                                                                                                                                

(4) 
𝑑𝐿g

(J)

𝑑𝑡
= 𝜋𝜆g𝜃à[𝐿g

(H) + 𝐿g
(J) + 𝑅g

(�) + 𝑅g
(�)] + 𝜆g𝜃𝑈g + 𝜌H𝐿g

(H) − (𝜅g𝜐𝑝𝑠𝑛 + 𝜌J + 𝜇J)𝐿g
(J) 

 
 

Active disease, pre-careseeking                                                                                                                        
(5) 

 
𝑑𝐼g
𝑑𝑡

= 𝜌J𝐿g
(J) + 𝑟H𝑅g

(�) + 𝑟J𝑅g
(�) − (𝜑 + 𝛿H_g + 𝜇H + 𝜇J)𝐼g 

 
 

Awaiting diagnosis, public sector                                                                                                                     
(6) 

 
𝑑𝐷𝑥g

({r)

𝑑𝑡
= 𝜂𝛿H_g𝐼g + 𝜂𝛿J𝐸g − (𝜑 + 𝜙 + 𝜇H + 𝜇J)𝐷𝑥g

({r) 
 
 

Awaiting diagnosis, private sector                                                                                                                   
(7) 
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𝑑𝐷𝑥g

({s)

𝑑𝑡
= (1 − 𝜂)𝛿Há𝐼g + (1 − 𝜂)𝛿J𝐸g − (𝜑 + 𝜙 + 𝜇H + 𝜇J)𝐷𝑥g

({s) 
 
 

Treatment, public sector                                                                                                                                    
(8) 

 
𝑑𝑇𝑥g

({r)

𝑑𝑡
= 𝜙𝜀{r𝜔{r𝐷𝑥g

({r) − (𝜏 +
𝜏𝜒{r
1 − 𝜒{r

+ 𝜇H)𝑇𝑥g
({r) 

 
 

Treatment, private sector                                                                                                                                  
(9) 

 
𝑑𝑇𝑥g

({s)

𝑑𝑡
= 𝜙𝜀{s𝜔{s𝐷𝑥g

({s) − (𝜏 +
𝜏𝜒{s
1 − 𝜒{s

+ 𝜇H)𝑇𝑥g
({s) 

 
 
 

Missed diagnosis/initial loss to follow up                                                                                                    
(10) 

 
𝑑𝐸g
𝑑𝑡

= 𝜙(1 − 𝜔{r𝜀{r)𝐷𝑥g
({r) + 𝜙(1 − 𝜔{s𝜀{s)𝐷𝑥g

({s) − (𝜑 + 𝛿J + 𝜇H + 𝜇J)𝐸g 
 
 

Post-treatment recovery                                                                                                                                  
(11) 

 
𝑑𝑅g

(�)

𝑑𝑡
= 𝜍𝑅g

(�) + 𝜏à[𝑇𝑥g
({r) + 𝑇𝑥g

({s)] − (𝑟J + 𝜇H)𝑅g
(�) 

 
 
 

Self-cure                                                                                                                                                              
(12) 

 
𝑑𝑅g

(�)

𝑑𝑡
= 𝜑à[𝐷𝑥g

({r) + 𝐷𝑥g
({s) + 𝐸g + 𝐼g] +

𝜏𝜒{r
1 − 𝜒{r

𝑇𝑥g
({r) +

𝜏𝜒{s
1 − 𝜒{s

𝑇𝑥g
({s) − (𝑟H + 𝜇H)𝑅g

(�) 

 
where term 𝑇 represents births into the uninfected TB compartment. I assume it is equivalent to the 

number of deaths occurring in the model.  
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Force of infection 
                                     

                                                                                                                                                           (13) 
 

𝜆g = 	
𝛽gâΣä𝐼g + 𝐷𝑥g

({r) + 𝐷𝑥g
({s) + 𝐸𝑠åæ + 𝜓𝛽gçHâΣä𝐼gçH + 𝐷𝑥gçH

({r) + 𝐷𝑥gçH
({r) + 𝐸𝑠åæ

𝑁  
 

𝑖𝑓	𝑠 = 0 
 

                                                                                                                                                           (14) 

𝜆g = 	
𝜓𝛽gç�âΣä𝐼gç� + 𝐷𝑥gç�

({r) + 𝐷𝑥gç�
({r) + 𝐸𝑠åæ + 𝛽gâΣä𝐼g + 𝐷𝑥g

({r) + 𝐷𝑥g
({r) + 𝐸𝑠åæ

𝑁  
𝑖𝑓	𝑠 = 1 

 
where N is the total population.  
 
 
1.3. Model calibration  
 

Through Adaptive Bayesian MCMC, I examined the uncertainty in data and model inputs (table 3.1 

and table 3.2)(9). I was able to propagate this uncertainty into the model projections. 

 

I define the posterior distribution as, 

 

𝑝(𝜃|𝐷) ∝ 𝐿(𝐷|𝜃)	. 𝜋(𝜃)                                                                                                        (15) 

                                     

where, q is a vector of the data and model inputs subject to uncertainty, L is the likelihood of the data 

given q, and p is the prior distribution. I assumed uniform distributions for the prior distributions. I 

defined the likelihood by fitting log-normal distributions to the calibration targets.  

 

By sampling from the posterior distribution using MCMC, I created an unbiased sample that 

approximates the posterior distribution. A sample is randomly selected from 𝑝(𝜃|𝐷), and depending 

on the proposal distribution, it is accepted or rejected. By using Adaptive Bayesian MCMC, the 

proposal distribution is updated continuously. Once the MCMC converged, I removed the burn-in 

period (10,000 iterations) and selected every 50th sample to reduce any autocorrelation. This provided 

10,000 samples from the posterior distribution.  
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2. Supporting figures 
 

 
Figure A1.1. Incremental cost (USD) per case averted, under the expanded false positive scenario per 
100,000 population between 2020 and 2035. Panel A assumes the test had similar diagnostic performance to 
current data (sensitivity – 30%), whereas panel B assumes the test met the WHO minimum performance 
requirements (sensitivity – 75%). I investigated two different testing strategies: a slum-only (dash line) and 
whole-city strategy (solid line). Shaded areas show Bayesian 95% credible intervals. 
 

 
 
Figure A1.2. Cost drivers across increasing rates of testing for incipient TB between 2020 and 2035, 
under the expanded false positive scenario. I divided costs into the following components: cost of routine TB 
services (costs associated with active TB disease management; blue line), testing costs (cost of testing for 
incipient TB; red line), cost of preventive therapy (yellow line). Panel A assumes the test had similar diagnostic 
performance to current data (sensitivity – 30%), whereas panel B assumes the test met the WHO minimum 
performance requirements (sensitivity – 75%). I investigated two different testing strategies: a slum-only (dash 
line) and whole-city strategy (solid line).  Shaded areas show Bayesian 95% credible intervals. 
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Figure A1.3 Cost requirements for future tests for incipient TB, under the expanded false positive 
scenario, across increasing testing rates. Threshold costs of a test per person was calculated according to a 
willingness-to-pay threshold of USD2,104. See table 3 and equation 1. Panel A assumes the test had similar 
diagnostic performance to current data (sensitivity – 30%), whereas panel B assumes the test met the WHO 
minimum performance requirements (sensitivity – 75%). I investigated two different testing strategies: a slum-
only (dash line) and whole-city strategy (solid line). Shaded areas show Bayesian 95% credible intervals. 
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Appendix 2 
 
 
The potential impact of urine-lipoarabinomannan diagnostics on 
tuberculosis incidence and mortality: A modelling analysis 
 
 
1.  Materials and methods 
 
Below, I describe the model, including its structure, governing equations, and parameters. The model 
was constructed in MATLAB.  
 
1.1. Model structure 

 
1.1.1. Overview 
I modelled TB transmission amongst adults (>15 years old) in South Africa, incorporating the role of 

HIV in driving TB dynamics. I calibrated the model to TB incidence, mortality, and notification rates. 

I also used HIV incidence, the proportion of PLHIV with and without TB, their CD4 cell counts, ART 

coverage and percentage of HIV cases being hospitalised annually as inputs (table 4.2).  

 

The model is stratified by pulmonary and extrapulmonary TB. Amongst those with HIV, the model is 

further stratified by CD4 count, using three categories: <100, 100 – 200, and >200, to align with the 

most recent WHO 2019 guidelines (table 4.2) for the use of LF-LAM (552). The model ignores drug 

resistance, as well as age structure in the population. However, it distinguishes different settings for 

TB and HIV care: routine TB services, those receiving HIV care in outpatient clinics, and those 

receiving HIV care as hospital inpatients.   
 

1.1.2. Routine TB services  

I assumed that those with active TB seek care at a certain per-capita rate, calibrated to 

epidemiological data (table 4.3), and allowing for different careseeking rates by HIV-negative and -

positive status. I assumed that each visit to a healthcare provider results in TB diagnosis with a 

probability governed by a combination of test sensitivity and clinical diagnosis. Amongst those failing 

to be diagnosed, I assumed temporary dropout from the care cascade, to seek care again after a given 

per-capita rate (again, calibrated to epidemiological data).   

 

South Africa has recently undergone an expansion in the use of molecular diagnostics such as Xpert, 

for sputum-based diagnosis in routine TB services (553). Under the introduction of LAM testing in 

routine TB services (scenario iii in the main text), I assumed that baseline levels of Xpert remain the 

same, but that LAM testing is used adjunctively, with a positive result on either test leading to a TB 
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diagnosis. To incorporate clinical diagnosis, I assumed that 20% and 30% of negative test results are 

clinically diagnosed and offered treatment, amongst HIV-negative and HIV-positive patients, 

respectively (554). The number of individuals initiating TB treatment, is defined by the following: 

 
Baseline, status quo comparator:           (1) 
 
𝜊Ðë = 𝜀Ð𝑅�𝑅¦𝜙Ð𝜔Ð                                                                                                                    
 
Where the proportion of TB cases diagnosed correctly per careseeking attempt, 𝜊Ðë, is calibrated to 

TB notification rates.   

 
Baseline, Xpert scale-up comparator:          (2) 

	
𝜊Ðë = (1 − (1 − 𝜀Ð𝑅�𝑅¦)(1 − 𝜗Ç

g{rÃrÊ𝑋gz))𝜙Ð𝜔Ð                                                                       
 
Intervention, status quo comparator:          (3) 
 
𝜊Ðë = (1 − (1 − 𝜀Ð𝑅�𝑅¦)(1 − í1 − î𝜀Ð𝑅�𝑅¦ + 𝜗Çrs6zÂ𝐹gzðñ 𝜄Ç)(1 − 𝜗Çrs6zÂ𝐹gz))𝜙Ð𝜔Ð                    
 
Intervention, Xpert scale-up comparator:           (4) 
 
𝜊Ðë = (1 − (1 − 𝜀Ð𝑅�𝑅¦)(1 − í1 − î𝜀Ð𝑅�𝑅¦ + 𝜗Çrs6zÂ𝐹gzðñ 𝜄Ç)(1 − 𝜗Çrs6zÂ𝐹gz)(1 −
𝜗Ç
g{rÃrÊ𝑋gz))𝜙Ð𝜔Ð                                                                                                                

  
 
 
1.1.3. HIV inpatients 
The model captures the hospitalisation of PLHIV, at a CD4-dependent rate, reflecting data from South 

Africa on HIV-associated inpatient admissions (table 4.2, and fig A2.3). Upon admission, I assumed 

that of those with signs and symptoms of TB, a given proportion are offered an Xpert test at baseline. 

Under the introduction of LAM testing (scenarios i and ii in the main text), I assumed – consistent 

with current WHO guidelines (552) - that those with signs and symptoms of TB, and all those with 

CD4 cell count <200 cells/µl independent of symptoms, are offered a LAM test as an adjunctive test 

to Xpert, again allowing for clinical diagnosis amongst those with a negative test result.  

 
 
Baseline, status quo comparator:           (5) 
 
𝜊óÇ = 𝜗Ç

g{rÃrÊ𝜉ó𝑋gz𝑠ó𝜔ó𝜙                                                                                                             
 
 
Baseline, Xpert scale-up comparator:           (6) 
 
𝜊óÇ = (1 − î1 − 𝜗Ç

g{rÃrÊ𝜉ó𝑋gzðî1 − 𝜗Ç
g{rÃrÊ𝑋gzð)𝑠ó𝜔ó𝜙                                                                  
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Intervention, status quo comparator, currently licensed LAM test:      (7) 
 
𝜊óÇ = (1 − î1 − 𝜗Ç

g{rÃrÊ𝜉ó𝑋gzðî1 − ((1 − 𝜗Ç
g{rÃrÊ𝜉ó𝑋gz + 𝜗Çrs6zÂ𝐴gz))𝜄Ç)ðî1 −

𝜗Çrs6zÂ𝐴gzð)𝑠ó𝜔ó𝜙                    
 
Intervention, status quo comparator, future LAM test:         (8) 
 
𝜊óÇ = (1 − î1 − 𝜗Ç

g{rÃrÊ𝜉ó𝑋gzðî1 − ((1 − 𝜗Ç
g{rÃrÊ𝜉ó𝑋gz + 𝜗Çrs6zÂ𝐹gz))𝜄Ç)ðî1 − 𝜗Çrs6zÂ𝐹gzð)𝑠ó𝜔ó𝜙    

 
Intervention, Xpert scale-up comparator, currently licensed LAM test:       (9) 
 

𝜊óÇ = (1 − î1 − 𝜗Ç
g{rÃrÊ𝜉ó𝑋gzð õ1 − öí1 − î𝜗Ç

g{rÃrÊ𝜉ó𝑋gz + 𝜗Çrs6zÂ𝐴gzðñ 𝜄Ç÷ø î1 −

𝜗Çrs6zÂ𝐴gzðî1 − 𝜗Ç
g{rÃrÊ𝑋gzð)𝑠ó𝜔ó𝜙                                                                                                                    

 
Intervention, Xpert scale-up comparator, future LAM test:      (10) 
 

𝜊óÇ = (1 − î1 − 𝜗Ç
g{rÃrÊ𝜉ó𝑋gzð õ1 − öí1 − î𝜗Ç

g{rÃrÊ𝜉ó𝑋gz + 𝜗Çrs6zÂ𝐹gzðñ 𝜄Ç÷ø î1 −

𝜗Çrs6zÂ𝐹gzðî1 − 𝜗Ç
g{rÃrÊ𝑋gzð)𝑠ó𝜔ó𝜙                                                                                                                  

 
 
 
 
1.1.4. HIV outpatients 
The model also captures the provision of HIV care in outpatient settings, assuming CD4-dependent 

rates of ART initiation in these settings. These rates were calibrated to match data from South Africa 

for the distribution of CD4 counts amongst those initiating ART in outpatient facilities (table 4.2, and 

fig A2.3). Upon initiating HIV care, I assumed that of those with signs and symptoms of TB, a certain 

proportion are offered an Xpert test. As above, under the introduction of LAM testing (scenario ii in 

the main text), I assumed – consistent with current WHO guidelines (552) - that those with signs and 

symptoms of TB and those with a CD4 cell count <100 cells/µl independent of symptoms, are offered 

a LAM test as an adjunctive test to Xpert, again allowing for clinical diagnosis amongst those with a 

negative test result. 

 
Baseline, status quo comparator:         (11) 
 
𝜊ùÇ = 𝜗Ç

g{rÃrÊ𝜉ù𝑋gz𝑠ù𝜔ù𝜙                                                                                                        
 
Baseline, Xpert scale-up comparator:         (12) 
 
𝜊ùÇ = (1 − î1 − 𝜗Ç

g{rÃrÊ𝜉ù𝑋gzðî1 − 𝜗Ç
g{rÃrÊ𝑋gzð)𝑠ù𝜔ù𝜙                                                            

 
Intervention, status quo comparator, currently licensed LAM test:     (13) 
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𝜊ùÇ = (1 − î1 − 𝜗Ç
g{rÃrÊ𝜉ù𝑋gzð õ1 − öí1 − î𝜗Ç

g{rÃrÊ𝜉ù𝑋gz + 𝜗Çrs6zÂ𝐴gzðñ 𝜄Ç÷ø î1 −

𝜗Çrs6zÂ𝐴gzð)𝑠ù𝜔ù𝜙                           
                         
Intervention, status quo comparator, future LAM test:       (14) 
 

𝜊ùÇ = (1 − î1 − 𝜗Ç
g{rÃrÊ𝜉ù𝑋gzð õ1 − öí1 − î𝜗Ç

g{rÃrÊ𝜉ù𝑋gz + 𝜗Çrs6zÂ𝐹gzðñ 𝜄Ç÷ø î1 −

𝜗Çrs6zÂ𝐹gzð)𝑠ù𝜔ù𝜙   
                       
 
Intervention, Xpert scale-up comparator, currently licensed LAM test:     (15) 
 

𝜊ùÇ = (1 − î1 − 𝜗Ç
g{rÃrÊ𝜉ù𝑋gzð õ1 − öí1 − î𝜗Ç

g{rÃrÊ𝜉ù𝑋gz + 𝜗Çrs6zÂ𝐴gzðñ 𝜄Ç÷ø î1 −

𝜗Çrs6zÂ𝐴gzðî1 − 𝜗Ç
g{rÃrÊ𝑋gzð)𝑠ù𝜔ù𝜙                                                                                                                 

 
Intervention, Xpert scale-up comparator, future LAM test:      (16) 
 

𝜊ùÇ = (1 − î1 − 𝜗Ç
g{rÃrÊ𝜉ù𝑋gzð õ1 − öí1 − î𝜗Ç

g{rÃrÊ𝜉ù𝑋gz + 𝜗Çrs6zÂ𝐹gzðñ 𝜄Ç÷ø î1 −

𝜗Çrs6zÂ𝐹gzðî1 − 𝜗Ç
g{rÃrÊ𝑋gzð)𝑠ù𝜔ù𝜙                                                                                                                

 
 
1.2. Governing equations for the mathematical transmission model 
 
The equations correspond to the model described in fig 4.1. State variables (capital letters) are as 

listed in table A2.1, while model parameters (lower-case and Greek letters) are as listed in table 4.3. 

 

 
Model stage Description 

Uh Uninfected 
Lh Latent infection 
Ih Active TB 

Dxh Sought care, awaiting TB diagnosis 
Txh Undergoing TB treatment 
Eh Between seeking care, after misdiagnosis or loss to follow up 

R(L)h Recovered, after treatment completion, low risk of relapse 
R(H)h Recovered, after self-cure, high risk of relapse 
Ah Inpatient admission, awaiting TB diagnosis 

Subscript Description 
h HIV status (0 = HIV-, 1 = HIV+ >200, 2 = HIV+ 100-200, 3 = HIV+ <100 and 4 = ART+ 

virally suppressed), 5 = ART+ (not virally suppressed) >200, 6 = ART+ 100-200, 7 = HIV+ 
<100 

Superscript Description 
inp Inpatient (hospitalised HIV-positive patients) 
out Outpatient 

 
Table A2.1. Model stages and subscript description 
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Uninfected                                                                                                                               (17)                     
 
𝑑𝑈Ç
𝑑𝑡

= ú
𝑇 +𝑊Ç

(H) − (𝜆 + 𝜇J)𝑈Ç																																																																																																																												ℎ = 0			
																																																																													

𝑊Ç
(H) + 𝜓Ç𝑈Ç

(6z{) − (𝜆 + 𝜐Ç + 𝜇J + 𝜇�ë)𝑈Ç																																																																																				ℎ > 0
 

 
 
Latency                                                                                                                                           (18)                                        
 
Æ�ë
ÆÃ

=

⎩
⎪
⎨

⎪
⎧𝑊Ç

(J) + 𝜋𝜆(1 − 𝜃Ç)∑ !𝐿Ç + 𝑅Ç
(�) + 𝑅Ç

(�)" + 𝜆(1 − 𝜃Ç)𝑈Ç − (𝜌Ç + 𝜇J)𝐿Ç																																					ℎ = 0
		

𝑊Ç
(J) + 𝜓Ç𝐿Ç

(6z{) + 	𝜋𝜆(1 − 𝜃Ç)∑ !𝐿Ç + 𝑅Ç
(�) + 𝑅Ç

(�)"+ 𝜆(1 − 𝜃Ç)𝑈Ç − (𝜌Ç+𝜐Ç + 𝜇J + 𝜇�ë)𝐿Ç		
																																																																																																																																																																											ℎ > 0

																																																						

	                          

 
 
Active disease, pre-careseeking                                                                                          (19)                     
 
Æóë
ÆÃ
=

⎩
⎪
⎨

⎪
⎧𝑊Ç

(�) + 𝜃Ç𝜆𝑈Ç + 𝜋𝜃Ç𝜆∑ !𝐿Ç + 𝑅Ç
(�) + 𝑅Ç

(�)" 		+ 𝜌Ç𝐿Ç+𝑟J𝑅Ç
(�) + 𝑟H𝑅Ç

(�)																																								ℎ = 0
−(𝛿H + 𝜑Ç + 𝜇H + 𝜇J)𝐼Ç							
																																																							

𝑊Ç
(�) + 𝜓Ç𝐼Ç

(6z{) + 𝜃Ç𝜆𝑈Ç + 𝜋𝜃Ç𝜆∑ !𝐿Ç + 𝑅Ç
(�) + 𝑅Ç

(�)" + 𝜌Ç𝐿Ç + 𝑟J𝑅Ç
(�) + 𝑟H𝑅Ç

(�) 																		ℎ > 0
−(𝛿H𝑅J+𝜑Ç +𝜛Ç + 𝜐Ç + 𝜇H + 𝜇J + 𝜇�ë)𝐼Ç										

                      

 
 
Awaiting diagnosis                                                                                                                        (20)                                   
 
ÆÑ$ë
ÆÃ

=

⎩
⎨

⎧ 	𝑊Ç
(¦) + 𝛿H𝐼Ç + 𝛿J𝐸Ç − (𝜑Ç + 𝜊Ðë + 𝜇H + 𝜇J)𝐷𝑥Ç																																																																ℎ = 0

	
𝑊Ç

(¦) + 𝛿H𝑅J𝐼Ç + 𝛿J𝑅J𝐸Ç − (𝜑Ç + 𝜊Ðë + 𝜇H + 𝜇J + 	𝜇�_Ç +𝜛Ç + 𝜐Ç)𝐷𝑥Ç																					ℎ > 0
			

                                                             

 
 
Treatment                                                                                                                                      (21)                                      
 
Æ~$ë
ÆÃ

=

ú
𝑊Ç

(�) + 𝜊Ðë𝐷𝑥Ç − (𝜏 + 𝜇J)𝑇𝑥Ç																																																																																																																		ℎ = 0	
																																																		

𝑊Ç
(�) + 𝜓Ç𝑇𝑥Ç

(6z{) + 𝜊Ðë𝐷𝑥Ç + 𝜊ùë𝐷𝑥Ç
(%rÃ) − (𝜏+𝜐Ç + 𝜇J + 𝜇�ë)𝑇𝑥Ç																																										ℎ > 0
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Missed diagnosis/initial loss to follow up                                                                                     (22)                                         
 
Æ&ë
ÆÃ

=

⎩
⎪
⎨

⎪
⎧	𝑊Ç

(') + (1 − 𝜊Ðë)𝐷𝑥Ç + 𝜏(1 − 𝜒Ç)𝑇𝑥Ç − (𝛿J + 𝜑Ç+	𝜇H + 𝜇J)𝐸Ç																																																		ℎ = 0
		

	𝑊Ç
(') + 𝜓Ç𝐸Ç

(6z{) + (1 − 𝜊Ðë)𝐷𝑥Ç + (1 − 𝜊ùë)𝐷𝑥Ç
(%rÃ) + 	𝜏(1 − 𝜒Ç)𝑇𝑥Ç																																				ℎ > 0

−(𝛿J + 𝜑Ç +𝜛Ç + 𝜐Ç + 𝜇H + 𝜇J + 𝜇�_Ç)𝐸Ç

                             

 
 
Post-treatment recovery                                                                                                     (23)                                     
 
ÆÐë

(()

ÆÃ
=

ú
𝑊Ç

()) + 𝜏𝜒Ç𝑇𝑥Ç + 𝜍𝑅Ç
(�) − (𝑟J + 𝜇J)𝑅Ç

(�)																																																																																																ℎ = 0
																																									

𝑊Ç
()) + 𝜓Ç𝑅Ç

(�*+,) + 𝜏𝜒Ç𝑇𝑥Ç + 𝜍𝑅Ç
(�*+,) − î𝑟J +	𝜐Ç + 𝜇J + 𝜇�ëð𝑅Ç

(�)(𝑡)																																							ℎ > 0
                  

 
 
 
Self-cure                                                                                                                                        (24)                                    
 
ÆÐë

(-)

ÆÃ
=

.
	𝑊Ç

(/) + 𝜑Ç ∑[𝐸Ç + 𝐷𝑥Ç + 𝐼Ç] − (𝜍 + 𝑟H + 𝜇J)𝑅Ç
(�)																																																																													ℎ = 0
			

	𝑊Ç
(/) + 𝜓Ç𝑅Ç

î�*+,ð + 𝜑Ç ∑[𝐸Ç + 𝐷𝑥Ç + 𝐼Ç] − î𝜍 + 𝑟H + 𝜐Ç + 𝜇J + 𝜇�ëð𝑅Ç
î�*+,ð	 																								ℎ > 0

                                            

 
 
Uninfected, inpatients                                                                                                                    (25)                                         
 
Æ0ë

(*+,)

ÆÃ
= 	𝑊Ç

(1) + 𝜐Ç𝑈Ç−	(𝜆 + 𝜓Ç + 𝜇J + 𝜇�_Ç)𝑈Ç
(6z{)																																																																											ℎ > 4                                                            

 
 
Latency, inpatients                                                                                                                         (26)                                   
	
𝑑𝐿Ç

(6z{)

𝑑𝑡
= 	𝑊Ç

(H�) + 𝜐Ç𝐿Ç + 𝜆(1 − 𝜃Ç)𝑈Ç
(6z{) + 𝜋𝜆(1 − 𝜃Ç)à 3𝐿Ç

(6z{) 	+ 𝑅Ç
î�*+,ð + 𝑅Ç

(�*+,)4 

−	(𝜓Ç + 𝜌Ç + 𝜇J + 𝜇�ë)𝐿Ç
(6z{)																																																																																																																						ℎ > 4                                                                                               

 
 
Active disease, inpatients                                                                                                         (27)                          
	
𝑑𝐼Ç

(6z{)

𝑑𝑡
= 	𝑊Ç

(HH) + 𝜌Ç𝐿Ç
(6z{) + 𝜃Ç𝜆𝑈Ç

(6z{) + 𝑟H𝑅Ç
(�*+,) + 𝑟J𝑅Ç

(�*+,)								 

+𝜋𝜃Ç𝜆∑ !𝐿Ç
(6z{) + 𝑅Ç

(�*+,) + 𝑅Ç
(�*+,)"− (𝜑Ç + 𝜓Ç + 𝜇H + 𝜇J + 𝜇�ë + 𝜇¦)𝐼Ç

(6z{)																												ℎ > 4                          
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Hospital admissions awaiting diagnosis, inpatients                                                                     (28) 
                                            
ÆÓë

(*+,)

ÆÃ
= 	𝑊Ç

(HJ) + 𝜐Ç ∑[𝐼Ç + 𝐷𝑥Ç + 𝐸Ç] − (𝜊óë + 𝜑Ç + 𝜇H + 𝜇J+𝜇�ë + 𝜇¦)𝐴Ç
(6z{)																								ℎ > 4            

 
 
TB treatment, inpatients                                                                                                                 (29)                                     

	
Æ~$ë

(*+,)

ÆÃ
= 𝑊Ç

(H�) + 𝜐Ç𝑇𝑥Ç + 𝜊óë𝐴Ç
(6z{) − (𝜏 + 𝜓Ç + 𝜇J + 𝜇�ë)𝑇𝑥Ç

(6z{)																																														ℎ > 4                              
 
 
Missed diagnosis/initial loss to follow up, inpatients                                                                     (30)                                  
 	
𝑑𝐸Ç

(6z{)

𝑑𝑡
= 	𝑊Ç

(H¦) + (1 − 𝜊óë)𝐴Ç
(6z{) + 𝜏(1 − 𝜒Ç)𝑇𝑥Ç

(6z{)																																																						 

−(𝜑Ç + 𝜓Ç + 𝜇H + 𝜇J + 𝜇�ë + 𝜇¦)𝐸Ç
(6z{)																																																																																																																																							ℎ > 4        

  
 
 
Post-TB treatment recovery, inpatients                                                                                         (31)                                  
 	
𝑑𝑅Ç

(�*+,)

𝑑𝑡
= 	𝑊Ç

(H�) + 𝜏𝜒Ç𝑇𝑥Ç
(6z{) + 𝜐Ç𝑅Ç

(�) + 𝜍𝑅Ç
(�*+,)																																																	 

−[𝜓Ç + 𝑟J + 𝜇J + 𝜇�ë]𝑅Ç
(�*+,)																																																																																																																							ℎ > 4  

              
                                                                                                                                                                  
Self-cure, inpatients                                                                                                                       (32)                                   
 
𝑑𝑅Ç

(�*+,)

𝑑𝑡
= 	𝑊Ç

(H')+	𝜐Ç𝑅Ç
(�) + 𝜑Çà !𝐴Ç

(6z{) + 𝐸Ç
(6z{) + 𝐼Ç

(6z{)" 

−î𝜍 + 𝑟H + 𝜓Ç + 𝜇J + 𝜇�ëð𝑅Ç
(�*+,)																																																																																																														ℎ > 4 

																																																																																																																                                                                                                                                                  
 

 
Awaiting diagnosis at ART initiation, outpatients                                                                          (33)                                   
 
ÆÑ$ë

(567)

ÆÃ
= 𝑊Ç

(H)) +𝜛Ç ∑[𝐼Ç + 𝐷𝑥Ç + 𝐸Ç] − (	𝜊ùë + 𝜇H + 𝜇J + 𝜇�ë)𝐷𝑥Ç
(%rÃ)																																			ℎ > 4                           

 
 
where term 𝑇 represents births into the uninfected TB compartment. I assume it is equivalent to the 

number of deaths occurring in our model to ensure a constant population size.  
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Force of infection 
	𝜆 = Ϝ

Ò
                                                                                                                                        (34) 

 
where,                          (35) 

 

Ϝ = 𝛽{∑ [𝐼 + 𝐷𝑥 + 𝐸]}+ 𝛽𝑅H{∑ [𝐼 + 𝐼(6z{) + 𝐷𝑥 + 𝐷𝑥(%rÃ) + 𝐸]}¦
ÇçHÇç� ,     

 

 and N is the total population.  

 

HIV-transitions 

where terms in 𝑊Ç
$ represent transitions between HIV stages: 

 
HIV state Symbol 

HIV- h=0 

HIV+ >200 h=1 

HIV+ 100-200 h=2 

HIV+ <100 h=3 

ART+ virally suppressed h=4 

ART+ >200 (not virally suppressed) h=5 
ART+ 100-200 (not virally suppressed) h=6 

ART+ <100 (not virally suppressed) h=7 
 
Table A2.2. HIV transitions 
 
I write 𝑋Ç< to denote HIV compartments. Super index z represents TB model stages described in the 

equations above (e.g. z=1 for the uninfected stage) 

                                                                                                                                               (36) 

𝑊Ç
< =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
−𝛾𝑋Ç<																																																																																																																																			if	h = 0
𝛾𝑋�< 	− 𝜂H𝑋Ç< − 𝜐Ç𝑋Ç< −𝜛Ç𝑋Ç<																																																																																								if	h = 1	
𝜂H𝑋H< 	− 𝜂J𝑋Ç< 	− 𝜐Ç𝑋Ç< −𝜛Ç𝑋Ç<																																																																																				if	h = 2
𝜂J𝑋J< 		− 𝜐Ç𝑋Ç< 	−𝜛Ç𝑋Ç<																																																																																																		if	h = 3
𝜛Ç𝜚𝑋H< + 𝜐Ç𝜚𝑋H< +𝜛Ç𝜚𝑋J< + 𝜐Ç𝜚𝑋J< +𝜛Ç𝜚𝑋�< + 𝜐Ç𝜚𝑋�<																																					if	h = 4
𝜛Ç(1 − 𝜚)𝑋H< + 𝜐Ç(1 − 𝜚)𝑋H< − 𝜂H𝑋Ç<																																																																								if	h = 5
𝜛Ç(1 − 𝜚)𝑋J< + 𝜐Ç(1 − 𝜚)𝑋J< + 𝜂H𝑋�< − 𝜂J𝑋Ç<																																																									if	h = 6
𝜛Ç(1 − 𝜚)𝑋�< + 𝜐Ç(1 − 𝜚)𝑋�< + 𝜂J𝑋'<																																																																								if	h = 7

	 

 
 
1.3. Model calibration  
 
I incorporated uncertainty in data and model inputs (table 4.2-4.3 and A2.3) using an Adaptive 

Bayesian MCMC from Haario et al (4).  
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Indicator Value Source 

 
TB epidemiology 

TB incidence, 2018 292 per 100,000 [179-432]  (5) 
Mortality, 2018 HIV- 38 per 100,000 [22-59] 

HIV+ 26 per 100,000 [16-38] 
Notification rate, 2018 189 per 100,000 [151-226] 

 
HIV epidemiology and care 

HIV prevalence, 2017 1.5 million 
[1.3-1.7] 

 (6) 

Proportion of TB infections coinfected with 
HIV 

0.27 [0.16-0.40] (5) 

Proportion of PLHIV who have suppressed 
viral load 

0.68 [0.60-0.79] (6) 

 
Table A2.3. Calibration targets for Kenya used to estimate model parameters. Additional data (including 
CD4 categories by HIV status, and percentage of HIV cases being hospitalised annually) are the same as for 
South Africa (table 4.2).  
 
I define the posterior distribution as, 

 

𝑝(𝜃|𝐷) ∝ 𝐿(𝐷|𝜃)	. 𝜋(𝜃)                                                                                       (37)                                               

 

Where, q is a vector of the data and model inputs subject to uncertainty, L is the likelihood of the data 

given q (see below for its construction), and p is the prior distribution. I assumed uniform 

distributions (ranges shown in table 4.3) for the prior distributions. I defined the likelihood by fitting 

beta and log-normal distributions to the calibration targets (table 4.2) for all data that were proportions 

and for TB incidence, respectively. For example, the likelihood function for total TB incidence 

(𝐿ózÉ757EF) can be written as: 

 

𝐿ózÉ757EFî𝐼𝑛𝑐Ã%ÃÅG(𝜃)ð                                                                                                                     (38) 

 

 

Then, for a given set of parameters, 𝜃, the overall likelihood, 𝑝(𝜃), was calculated as follows: 

 

logî𝑝(𝜃)ð = logî𝐿ózÉ757EFî𝐼𝑛𝑐Ã%ÃÅG(𝜃)ð + 𝐿$Iî𝑥J(𝜃)ð +⋯ 𝐿$K(𝑥<(𝜃))ð                                    (39) 

 

where ′𝑥J, 𝑥�, …Nrepresent successive data elements in table 2.  
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I sampled from the posterior distribution using MCMC, which should provide an unbiased sample 

that approximates the posterior distribution. A sample is randomly selected from 𝑝(𝜃|𝐷), which is 

then accepted or rejected, depending on the proposal distribution. I did this using Adaptive MCMC, 

using the approach first proposed by Haario et al. In brief, I modelled the proposal distribution using a 

multivariate normal distribution, with mean zero and a given covariance matrix Σ. Standard MCMC 

approaches require that Σ be ‘tuned’ in order to sample efficiently from the posterior density, but in 

the present work, manual tuning is infeasible with the 122-dimensional parameter space being 

sampled from (table 4.3). Instead, the Haario algorithm approximates the covariance matrix 

empirically by computing the covariance of already-sampled parameters, during the execution of 

MCMC. I assumed uniform priors for all model parameters: if the width of the uniform distribution 

for parameter 𝑖 is 𝑤6, I initiated Σ simply as a diagonal matrix, with diagonal terms íO*
��
ñ
J
. I found that 

no further ‘tuning’ was required. I removed the burn-in period (10,000 iterations) once the MCMC 

had converged and selected every 50th sample to reduce any autocorrelation. I ended up with 5000 

samples from the posterior distribution. By incorporating uncertainty in data and model inputs, I was 

able to propagate this uncertainty into our model projections.  
 

Figure A2.1. Model fits to data for Kenya. Data points are described in table A2.3 (A) TB incidence; (B) TB 
mortality per 100,000; (C) TB notifications per 100,000; (D) proportion of PLHIV with suppressed viral loads; 
(E) ART initiations per 100,000; (F) proportion of TB cases coinfected with HIV; (G) percentage of HIV cases 
being hospitalised annually. 
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2. Additional figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2.2. Total new HIV infections in South Africa. Past estimates (in blue shading) and future 
projections (in green shading).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2.3. Proportion of PLHIV on ART in South Africa. Past estimates (in blue shading) and future 
projections (in green shading). 
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Figure A2.4. Cumulative effect of eligibility criteria. Flow diagram illustrating the effect of the most recent 
eligibility criteria in WHO recommendations for the use of LF-LAM on the size of the subset of TB incident 
cases who receive LAM testing. In South Africa, of patients with TB disease, around 59% are coinfected with 
HIV; of these, 90% are aware of their HIV status, of which, approximately 18% will initiate ART per year. 
Depending on the eligibility criteria, around 10%–30% of individuals who initiate ART will be eligible for 
LAM testing. For the purpose of this illustration, of the 7,700,000 who are HIV-positive, 2,900,000 were 
estimated not to be on ART in 2018. Approximately 90% of these (2,610,000) are aware of their HIV status. 
Model estimates suggest that approximately 480,000 initiated ART in 2018. Thus, we approximate that in 2018, 
18% of individuals who were aware of their HIV infection, initiated ART (480,000/2,610,000). 
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Appendix 3  

The value and cost efficiency of private sector engagement  

1. Materials and methods 
 
Below, I describe the model, including its structure, governing equations and table of parameters. The 

model was designed in MATLAB.  

 

1.1. Model structure 
 

I modelled TB transmission amongst adults (>15 years old) in a typical urban setting in India. I 

modelled the fragmented healthcare system, by differentiating between the public and private sector 

(1–7). I further divide the private sector by engagement status, Xpert use and FDC use (see main text 

for more details). I calibrated the model to TB prevalence, annual risk of infection, and mortality 

(table 3.1.). I also modelled DR-TB, but ignore HIV status and the differentiation between pulmonary 

and extrapulmonary TB. The overall model structure is illustrated in Fig.5.1.  

I initially simulated the model to equilibrium after introducing TB into a disease-free population, 

without differentiating between the public and private sector. From 1997 to 2007 and its maintenance 

until the present day, I incorporated the RNTCP scale up and its impact on the TB epidemic (8). From 

1997, I also incorporate population growth. From 2017 to 2020, I simulate the scale up of PPSA 

services to current 2019 levels. I then simulate the model forward from 2020 to 2035.  

 

1.2. Governing equations for the mathematical transmission model 
 

The equations correspond to the model described in fig 5.1. State variables (capital letters) are as 

listed in table A3.1, while model parameters (lower-case and Greek letters) are as listed in table 5.1. 
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Model stage Description 

U Uninfected 
L Latent infection 
Iq Active TB 

𝑫𝒙𝒒
(𝒑𝒖) Sought care, awaiting TB diagnosis, public sector 

𝑫𝒙𝒒
(𝒑𝒓) Sought care, awaiting TB diagnosis, private sector. This is split 

further depending on engagement status and Xpert use (table A3.2) 
𝑻𝒙𝒒

(𝑭𝑳:	𝒑𝒖) Undergoing first line TB treatment, public sector 

𝑻𝒙𝒒
(𝑭𝑳:	𝒑𝒓) Undergoing first line TB treatment, private sector. This is split 

further depending on FDC use and adherence support offered (table 
A3.2). 

𝑻𝒙(𝑺𝑳) Undergoing second line TB treatment. 
𝑬𝒒 Between seeking care, after misdiagnosis or loss to follow up 
R(L) Recovered, after treatment completion, low risk of relapse 
R(H) Recovered, after self-cure, high risk of relapse 

Subscript Description 
q Location (0 = DS-TB, 1 = DR-TB) 

 
Table A3.1. Model stages and subscript description 
 
 

Split Description 
Private sector diagnosis classification 

pr1 Unengaged private providers 
pr2 Engaged, inactive private providers 
pr3 Engaged, active private providers that send samples for confirmatory Xpert testing 100% of the 

time 
pr4 Engaged, active private providers that send samples for confirmatory Xpert testing occasionally, 

Xpert 
pr5 Engaged, active private providers that send samples for confirmatory Xpert testing occasionally, no 

Xpert 
pr6 Engaged, active private providers that never send samples for confirmatory Xpert testing 

Private sector first-line treatment classification 
PrZ1 Treatment offered by inactive and unengaged private providers 
prAF Engaged, active private providers that offer adherence support and government supplied FDCs ( 
prA Engaged, active private providers that only offer adherence support 
prF Engaged, active private providers that only offer government supplied FDCs 

prZ2 Engaged, active private providers that offer neither adherence support or government supplied 
FDCs 

 
Table A3.2. Private sector classification  
 
First, we have the states prior to a patient’s visit to a provider: 

 

Susceptible stage           
Æ0
ÆÃ
= 	𝑇 − (𝜆S + 𝜇J)𝑈              (1) 

where term 𝑇 represents births into the uninfected TB compartment. I assume it is equivalent to the 

number of deaths occurring in the model.  
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Latency stage, slow progression  
Æ�T
ÆÃ

= (1 − 𝜃)𝜆S𝑈 + 𝜋𝜆S(1 − 𝜃)∑ä𝐿S + 𝑅(�) + 𝑅(�)å − (𝜌 + 𝜇J)𝐿S      (2) 

 

Active disease, pre-careseeking   
ÆóT
ÆÃ
= 𝜃𝜆S𝑈 + 	𝜋𝜆S𝜃∑ä𝐿S + 𝑅(�) + 𝑅(�)å + 𝜌𝐿S + 𝑟H𝑅(�) + 𝑟J𝑅(�) − (𝜑 + 𝛿H + 𝜇H + 𝜇J)𝐼S   (3) 

 

where the subscript q denotes the TB strain.  

𝑞 =	 â0				𝐷𝑆	𝑇𝐵	1				𝐷𝑅	𝑇𝐵	 

 

Upon presenting for care, I assume a proportion of patients visit the public sector (𝜂) or the private 

sector (1 − 𝜂). I divide the private sector further depending on whether private providers are engaged 

by JEET or not, and whether engaged providers are active or inactive. Finally, active providers are 

divided by their use of Xpert (table A3.2). The proportion of patients that visit each different type of 

provider can be written as:  

 

Proportion of patients that visit public providers 

𝑣({r) = 𝜂              (4) 

 

Proportion of patients that visit unengaged private providers  

𝑣({sH) = (1 − 𝜂)(1 − 𝑒∝)           (5) 

 

Proportion of patients that visit engaged and inactive private providers  

𝑣({sJ) = (1 − 𝜂)𝑒∝(1 − 𝑎)            (6) 

 

Proportion of patients that visit engaged and active providers that always use Xpert   

𝑣({s�) = (1 − 𝜂)𝑒∝𝑎𝑝Á{ÂsÃH            (7) 

 

Proportion of patients that visit engaged and active providers that occasionally use Xpert, and receive 

an Xpert test 

𝑣({s¦) = (1 − 𝜂)𝑒∝𝑎(1 − 𝑝Á{ÂsÃH − 𝑝Á{ÂsÃ�)𝑥{         (8) 

 

Proportion of patients that visit engaged and active providers that occasionally use Xpert, and do not 

receive an Xpert test 

𝑣({s�) = (1 − 𝜂)𝑒∝𝑎(1 − 𝑝Á{ÂsÃH − 𝑝Á{ÂsÃ�)(1 − 𝑥{)         (9) 
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Proportion of patients that visit engaged and active providers that never use Xpert     

𝑣({s') = (1 − 𝜂)𝑒∝𝑎𝑝Á{ÂsÃ�                      (10) 

 

Private providers under the classification pr1, pr2, pr5 and pr6 rely on clinical diagnosis, whereas 

private providers under the classification pr3 and pr4 rely on Xpert testing. Thus, the following 

equations describe the different pathways for patients that seek care at the different providers 

described above:  

 
Seeking care, awaiting TB diagnosis  

ÆÑ$T
(,6)

ÆÃ
= 𝑣({r)𝛿H𝐼S + 𝑣({r)𝛿J𝐸S − (𝜀gz𝜔𝜙(1 − ϷS

({r)) + í𝜀gz𝜔𝜙ϷS
({r)ñ

S
+ (1 − 𝜔𝜀gz)𝜙ϷS

({r) +

𝜑 + 𝜇H + 𝜇J)𝐷𝑥S
({r)          (11) 

                       

ÆÑ$T
(á)

ÆÃ
= 𝑣(g)𝛿H𝐼S + 𝑣(g)𝛿J𝐸S −

(𝑐gz𝜔𝜙 í1 − ϷS
({s�)ñ + (𝑐gz𝜔𝜙ϷS

({s�))S + (1 − 𝜔𝑐gz)𝜙ϷS
({s�) + 𝜑 + 𝜇H + 𝜇J)𝐷𝑥S

(g)  (12) 

 

 

ÆÑ$T
(ë)

ÆÃ
= 𝑣(Ç)𝛿H𝐼S + 𝑣(Ç)𝛿J𝐸S −

(𝑥gz𝜔𝜙(1 − ϷS
({sH)) + (𝑥gz𝜔𝜙ϷS

({sH))S + (1 − 𝜔𝑥gz)𝜙ϷS
({sH) + 𝜑 + 𝜇H + 𝜇J)𝐷𝑥S

(Ç)  (13) 

 

Where superscript (s) represents either pr1, pr2, pr5 or pr6 and superscript (h) represents either pr3 or 

pr4 (table A3.2) 

 

Patients that are misdiagnosed will repeat the care-seeking process until they are diagnosed with TB, 

or they undergo self-cure and recover with a high risk of relapse:  

 

Missed diagnosis 
𝑑𝐸S
𝑑𝑡

= (1 − 𝜔𝜀gz)𝜙𝐷𝑥S
({r) + (1 − 𝜔𝑐gz)𝜙à !𝐷𝑥S

({sH) + 𝐷𝑥S
({sJ) + 𝐷𝑥S

({s�) + 𝐷𝑥S
({s')" 

+(1 − 𝜔𝑥gz)𝜙 ∑ !𝐷𝑥S
({s�) + 𝐷𝑥S

({s¦)" − (𝜑 + 𝛿J + 𝜇H + 𝜇J)𝐸S       where q=0      (14)
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𝑑𝐸S
𝑑𝑡

= (1 − 𝜔𝜀gz)𝜙Ϸ{r𝐷𝑥S
({r) + (1 − 𝜔𝑐gz)𝜙Ϸ{s�à !𝐷𝑥S

({sH) + 𝐷𝑥S
({sJ) + 𝐷𝑥S

({s�) + 𝐷𝑥S
({s')" 

+(1 − 𝜔𝑥gz)𝜙Ϸ{sHà !𝐷𝑥S
({s�) + 𝐷𝑥S

({s¦)" + (𝜏(1 − 𝑝d�) +
𝜏𝜒{r
1 − 𝜒{r

)𝑇𝑥S
(��:{r) 

+(𝜏(1 − 𝑝d�) +
𝜏𝜒Ë·Ì
1 − 𝜒Ë·Ì

)à[𝑇𝑥S
(��:{sYH) + 𝑇𝑥S

(��:{sYJ)] + (𝜏(1 − 𝑝d�) +
𝜏𝜒Ë·ÎÍ
1 − 𝜒Ë·ÎÍ

)𝑇𝑥S
(��:{sÓ�) 

+(𝜏(1 − 𝑝d�) +
𝜏𝜒Ë·Î
1 − 𝜒Ë·Î

)𝑇𝑥S
(��:{sÓ)] + (𝜏(1 − 𝑝d�) +

𝜏𝜒Ë·Í
1 − 𝜒Ë·Í

)𝑇𝑥S
(��:{s�) − (𝜑 + 𝛿J + 𝜇H

+ 𝜇J)𝐸S 

             where q=1      (15) 

Treatment  

I assume a patient initiates TB treatment at the same type of provider they were diagnosed by. For 

example, a patient diagnosed with TB by a public provider will also initiate TB treatment in the public 

sector (pu) and likewise, those diagnosed by unengaged or inactive private providers will also initiate 

TB treatment amongst unengaged or inactive private providers (prZ1). I split active private providers 

by the treatment services offered: government supplied FDCs and adherence support (prAF) 

adherence support only (prA), government supplied FDCs only (prF), or neither (prZ2) (table A3.2). 

The proportion of patients at active providers that receive the different treatment services offered is 

written as: 

 

Proportion of patients at active providers that receive both adherence support and government 

supplied FDCs 

𝑣({sÓ�) = 𝑝ÅÆÇH𝑝ÅÆÇJ𝑝ÈÆÉ          (16) 

 

Proportion of patients at active providers that receive only adherence support  

𝑣({sÓ) = 𝑝ÅÆÇH𝑝ÅÆÇJî1 − 𝑝ÈÆÉð         (17) 

 

Proportion of patients at active providers that receive only government supplied FDCs  

𝑣({s�) = (1 − 𝑝ÅÆÇH𝑝ÅÆÇJ)𝑝ÈÆÉ         (18) 

 

Proportion of patients at active providers that receive neither   

𝑣({sY) = (1 − 𝑝ÅÆÇH𝑝ÅÆÇJ)î1 − 𝑝ÈÆÉð         (19) 

 

The rate of movement in and out of the different Tx compartments can be written as:  

Æ~$T
(Z(:	[)

ÆÃ
= 𝑦gz𝜙𝜔𝑣({s_\)𝐷𝑥S

(\) − (𝑚\ + 𝜏 +
^_[
H`_[

+ 𝜇J)𝑇𝑥S
(��:\)                           where q = 0     (20) 
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Æ~$T
(Z(:	[)

ÆÃ
= 𝑦gz𝜙𝜔𝑣({s_\)î1 − Ϸ\ð𝐷𝑥S

(\) +𝑚\𝑇𝑥Sç�
(��:\) − (𝜏𝑝d� + (𝜏(1 − 𝑝d�) +

^_[
H`_[

) +

𝜇J)𝑇𝑥S
(��:\)               where q = 1     (21) 

 

𝑑𝑇𝑥S
(��:	\) represents the different Tx compartments (pu, prZ1, prAF, prA, prF and prz2), defined in 

table A3.2). 𝑦gz is the proportion of patients tested that are correctly diagnosed (in other words, the 

sensitivity of the test) and is dependent on where the patient is diagnosed:  𝜀gz when 𝐷𝑥{r , 𝑐gz when 

𝐷𝑥{sH, 𝐷𝑥{sJ, 𝐷𝑥{s�, 𝐷𝑥{s' and 𝑥gz when 𝐷𝑥{s�, 𝐷𝑥{s¦. 𝜙 is the treatment initiation delay 

(assumed to be 1 week across all providers) and 𝜔 is the proportion of diagnosed TB cases initiating 

TB treatment (assumed to be 0.87 across all providers) (9). 𝑣({s_\), described above, applies only to 

TB patients that are diagnosed by active private providers. Ϸ\	is the proportion of MDR-TB cases 

receiving drug susceptibility testing at the point of TB diagnosis and is dependent on the amount of 

Xpert testing. I assume the proportion is 0.45, 1.00 and 0 in the public sector (Ϸ({r)),  amongst private 

providers that always use Xpert, and amongst private providers that do not use Xpert, respectively 

(10). Thus, 1 − Ϸ\ represents TB patients with DR-TB that are not tested for drug resistance and are 

therefore mistakenly initiated onto first-line treatment. 𝑚\ is the rate of MDR acquisition and is 

assumed to be higher amongst all private providers (𝑚a) except active providers that offer 

government supplied FDCs and adherence support, than public sector providers (𝑚Å) (11). 𝜏 is the 

rate of treatment completion for first line treatment and corresponds to a duration of 6 months. 	

𝑝d� applies exclusively to TB patients with DR-TB and is defined as the proportion of DR-TB cases 

that fail first-line treatment and that are successfully transferred to second-line treatment.  𝜒\ is the 

proportion of TB cases that default from first line treatment and is dependent on the treatment services 

offered by providers. I assume that the proportion of TB cases that default from treatment is 0.15 

amongst both public sector providers (𝜒qr) and active private providers that offer both government 

supplied FDCs and adherence support (𝜒Ë·ÎÍ); amongst active private providers that offer only 

government supplied FDCs (𝜒Ë·Í), the proportion is 0.17; this increases to 0.21 amongst active 

providers that offer only adherence support (𝜒Ë·Î); finally, this proportion is 0.48 amongst active 

providers that offer neither government supplied FDCs or adherence support, inactive and unengaged 

providers (𝜒Ë·Ì) (9,10).  
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The following equation represents the number of DR-TB patients receiving second-line treatment:  

 

𝑑𝑇𝑥S
(d�)

𝑑𝑡
= 𝜀gz𝜔𝜙Ϸ{r𝐷𝑥S

({r) + 𝑐gz𝜔𝜙Ϸ{s�à !𝐷𝑥S
({sH) + 𝐷𝑥S

({sJ) + 𝐷𝑥S
({s�) + 𝐷𝑥S

({s')" 

+𝑥gz𝜔𝜙Ϸ{sHà !𝐷𝑥S
({s�) + 𝐷𝑥S

({s¦)" 

+𝜏𝑝d�à !𝑇𝑥S
(��:{r) + 𝑇𝑥S

(��:{sYH) + 𝑇𝑥S
(��:{sYJ) + 𝑇𝑥S

(��:{sÓ�) + 𝑇𝑥S
(��:{s�) + 𝑇𝑥S

(��:{sÓ)" 

−(𝜏ÊÆs +
^bcd_efg
H`_efg

+ 𝜇J)𝑇𝑥S
(d�)         (22) 

 

TB patients that successfully complete TB treatment, recover with a low risk of relapse, and is written 

as:  

 

Post-treatment recovery  
ÆÐ(()

ÆÃ
= 	𝜏 ∑ !𝑇𝑥S

(��:{r) + 𝑇𝑥S
(��:{sYH) + 𝑇𝑥S

(��:{sYJ) + 𝑇𝑥S
(��:{sÓ�) + 𝑇𝑥S

(��:{s�) + 𝑇𝑥S
(��:{sÓ)"+

𝜍𝑅(�) − (𝑟J + 𝜇J)𝑅(�)          (23) 

 

On the other hand, TB patients that either default from TB treatment or those that recover whilst still 

seeking care for TB, recover with a high risk of relapse, and is written as: 

 

Post-self-cure recovery 
ÆÐ(-)

ÆÃ
= 	 ^_,6

H`_,6
𝑇𝑥S

(��:{r) + ^_hdi
H`_hdi

∑ !𝑇𝑥S
(��:{sYH) + 𝑇𝑥S

(��:{sYJ)" + ^_hdjZ
H`_hdjZ

𝑇𝑥S
(��:{sÓ�) +

^_hdj
H`_hdj

𝑇𝑥S
(��:{sÓ) + ^_hdZ

H`_hdZ
𝑇𝑥S

(��:{s�) + 𝜑∑[𝐷𝑥S
({r) + 𝐷𝑥S

({sH) + 𝐷𝑥S
({s�) + 𝐷𝑥S

({s¦) + 𝐷𝑥S
({s�) +

𝐷𝑥S
({s') + 𝐸S + 𝐼S] − (𝜍 + 𝑟H + 𝜇J)𝑅(�)        (24) 

 

The force of infection can be written as: 

𝜆S =	
kâl!óTmÑ$T

,6mÑ$T
,dn:om&T"æmÆTkâl!óTmÑ$T

,6mÑ$T
,dn:om&T"æ

Ò
      (25) 

 

 

Non-TB symptomatic population 

To count the number of false positive diagnoses that arise, I model a non-TB symptomatic population. 

I define non-TB symptomatic as patients that present to care with symptoms of TB, but that do not 

have TB. I assume this population to be independent of the TB population described above.  
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Non-TB symptomatics seeking care  
Æ0(pqr)

ÆÃ
= 𝑦g{𝜙𝜔𝐷𝑥(Ò~s) + 𝜏𝑇𝑥(Ò~s) − 	𝛿H𝑣($)𝑈(Ò~s)       (26) 

 

where 𝑣($) represents equation 4 to 10, depending on the type of provider a patient seeks care from, 

and where 𝑦g{ represents either the specificity of TB diagnosis in the public sector (𝜀g{), specificity of 

Xpert (𝑥g{) or the specificity of clinical diagnosis (𝑐g{).   

 

Awaiting diagnosis  
ÆÑ$(pqr)

ÆÃ
= 	𝛿H𝑣($)𝑈(Ò~s) − 𝜙𝜔𝐷𝑥(Ò~s)       (27) 

 

Undergoing first-line TB treatment  
Æ~$(pqr)

ÆÃ
= î1 − 𝑦g{ð𝜙𝜔𝐷𝑥(Ò~s) − 𝜏𝑇𝑥(Ò~s)       (28) 

 

I assume the total population size of the non-TB symptomatic population remains constant. The size 

of this population was determined so that for every true positive TB diagnosis, approximately nine 

uninfected individuals who present for diagnosis with symptoms of TB are also tested for TB (9,12–

16). 

 

 

1.3. Model calibration  
Through Adaptive Bayesian MCMC, I examined the uncertainty in data and model inputs (table 5.1 

and table 5.2.)(17). I was able to propagate this uncertainty into the model projections. 

I define the posterior distribution as, 

 

𝑝(𝜃|𝐷) ∝ 𝐿(𝐷|𝜃)	. 𝜋(𝜃)                                                                                                          (29) 

                                     

where, q is a vector of the data and model inputs subject to uncertainty, L is the likelihood of the data 

given q, and p is the prior distribution. I assumed uniform distributions for the prior distributions. I 

defined the likelihood by fitting log-normal distributions to the calibration targets.  

By sampling from the posterior distribution using MCMC, I created an unbiased sample that 

approximates the posterior distribution. A sample is randomly selected from 𝑝(𝜃|𝐷), and depending 

on the proposal distribution, it is accepted or rejected. By using Adaptive Bayesian MCMC, the 

proposal distribution is updated continuously. Once the MCMC converged, I removed the burn-in 

period (10,000 iterations) and selected every 50th sample to reduce any autocorrelation. This provided 

10,000 samples from the posterior distribution.  
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2. Supporting figures  

 
Fig A3.1. Feasible and theoretical maximums for each service provision, Ahmedabad. Scenario 1: I assume 
all inactive providers (190) are converted into active providers. I assume no inactive providers are resistant, thus 
the feasible and theoretical maximum scenarios are the same. Newly active providers are assumed to have the 
same behaviour as pre-existing active providers; in the case of Ahmedabad, 9% use Xpert 100% of the time, 
36% use Xpert occasionally (with an average Xpert usage of 22%), 55% never use Xpert, 98% offer adherence 
support and 39% consistently use governmental FDCs. For example, of the 190 newly active providers, 17 
providers use Xpert 100% of the time, 68 use Xpert occasionally, and 105 never use Xpert. Scenario 2: At 
baseline, occasional Xpert users use Xpert 22% of the time; this is increased to 100% under the feasible and 
theoretical maximum scenario. I assume no occasional users are resistant to increasing their Xpert usage. It is 
estimated that one visit by a field officer increases a provider’s usage of Xpert by 0.2%. At baseline, 
Ahmedabad has 278 occasional Xpert users. Scenario 3: At baseline, there are 419 non-Xpert users and 278 
occasional users. Of the 419 non-Xpert users, it is estimated that 42% are resistant to using Xpert; thus, only 
243 non-Xpert users can be converted to become an occasional user. At the theoretical maximum, the 
percentage of active providers that use Xpert occasionally is 91%; the remaining 9% are providers that always 
use Xpert. Scenario 4: At baseline, there are 465 non-FDC users and 297 consistent FDC users. Of the 465, 
35% are resistant to FDCs.  
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Fig A3.2. Sensitivity analysis on model projections for the impact of increasing all service provisions to 
their feasible maximum has on TB incidence in Ahmedabad between 2020 and 2035. Panel A shows the 
projected trajectory of TB incidence, assuming current PPSA scale up between 2017 and 2020 (blue dashed 
line) and its maintenance indefinitely; assuming current PPSA scale up between 2017 and 2020 whilst 
optimistically assuming that active providers are continuously active (Xpert use and FDC use is not weighted by 
the number of months active providers are active for) (green line); service provisions are increased to their 
feasible maximum from 2020 to 2021 and maintained indefinitely, but assuming that 50% of TB cases that 
present to care are extra-pulmonary TB  (purple line); that service provisions are increased to their feasible 
maximum from 2020 to 2021 and maintained indefinitely, as presented in the main text (yellow line). Panel B 
shows the percentage of cumulative cases averted between 2020 and 2035 compared to a baseline of current 
PPSA scale up for each of the scenarios in panel A. 
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Fig A3.3. Sensitivity analysis on model projections for the impact increasing all service provisions to their 
feasible maximum has on TB incidence in Delhi between 2020 and 2035. Panel A shows the projected 
trajectory of TB incidence, assuming current PPSA scale up between 2017 and 2020 (blue dashed line) and its 
maintenance indefinitely; assuming current PPSA scale up between 2017 and 2020 whilst optimistically 
assuming that active providers are continuously active (Xpert use and FDC use is not weighted by the number 
of months active providers are active for) (green line); that service provisions are increased to their feasible 
maximum from 2020 to 2021 and maintained indefinitely, but assuming that 50% of TB cases that present to 
care are extra-pulmonary TB  (purple line); that service provisions are increased to their feasible maximum from 
2020 to 2021 and maintained indefinitely, as presented in the main text (yellow line). Panel B shows the 
percentage of cumulative cases averted between 2020 and 2035 compared to a baseline of current PPSA scale 
up for each of the scenarios in panel A.  
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Fig A3.4. Multivariate sensitivity analysis of impact for Ahmedabad. I used partial rank correlation 
coefficient (PRCC) to examine which parameter listed in table 5.1 the output cases averted is most sensitive 
towards. Larger bars represent more sensitive parameters. Shown are the 20 most influential model parameters, 
in decreasing order of sensitivity from top to bottom.  

Fig A3.5. Multivariate sensitivity analysis of impact for Delhi. I used partial rank correlation coefficient 
(PRCC) to examine which parameter listed in table 5.1 the output cases averted is most sensitive towards. 
Larger bars represent more sensitive parameters. Shown are the 20 most influential model parameters, in 
decreasing order of sensitivity from top to bottom. 
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Fig A3.6. Breakdown of costs across each intervention between 2020 and 2035 for Ahmedabad. ‘M’ 
represents maintenance costs, and ‘I’ represents costs unique to each intervention. Provider ret – provider 
retention; Xpert eng – Xpert engagement; FDC eng – FDC engagement; Xpert log – Xpert logistics; Adh 
support – adherence support; Pu sector diag – public sector diagnosis; Pu sector treat – public sector treatment; 
onboarding eng – onboarding engagement.  
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Fig A3.7. Breakdown of costs across each intervention between 2020 and 2035 for Delhi. ‘M’ represents 
maintenance costs, and ‘I’ represents costs unique to each intervention. Provider ret – provider retention; Xpert 
eng – Xpert engagement; FDC eng – FDC engagement; Xpert log – Xpert logistics; Adh support – adherence 
support; Pu sector diag – public sector diagnosis; Pu sector treat – public sector treatment; onboarding eng – 
onboarding engagement.  
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3. Supporting tables  
 

Intervention Incremental cost (2020-
2035, USD) 

Percentage of 
cumulative TB 
cases averted 
(2020-2035) 

Cost-efficiency 

Individual interventions 
Increasing the number of active providers 
(assuming newly active providers adopt 

average behaviour) 

2,269,300 (1,477,000 – 
3,723,000) 

3.00% (2.59-3.37) 0.0032 (0.0019- 0.0050) 

Increasing the number of active providers 
(assuming newly active providers’ 

behaviour is 25% worse than average) 

2,224,400 (1,435,200 – 
3,672,300) 

2.98% (2.58-3.35) 0.0032 (0.0019- 0.0051) 

Increasing the number of active providers 
(assuming newly active providers’ 

behaviour is 50% worse than average) 

2,120,000 (1,339,000 – 
3,555,300) 

2.89% (2.48-3.24) 0.0033 (0.0019- 0.0053) 

Increasing Xpert use amongst occasional 
users 

9,005,000 (6,801,000 – 
13,190,000) 

2.83% (2.42-3.33) 0.0008 (0.0006- 0.0010) 

Increasing the number of occasional Xpert 
users 

2,211,700 (1,683,500 – 
3,275,100) 

2.32% (1.97-2.67) 0.0025 (0.0018- 0.0033) 

Increasing the number of FDC users 1,787,700 (1,438,900 – 
2,503,800) 

2.53% (2.13-2.91) 0.0031 (0.0024- 0.0041) 

Combination of the two most cost-efficient interventions: Increasing the number of active providers* + … 
+Increasing the number of occasional 

Xpert users 
5,020,300 (3,590,000 – 

7,512,900) 
3.21% (2.84-3.61) 0.0015 (0.0010- 0.0022) 

+ Increasing Xpert use amongst occasional 
users 

13,427,000 (10,019,000 – 
19,839,000) 

3.81% (3.40-4.45) 0.0007 (0.0005- 0.0009) 

+ Increasing the number of FDC users 5,217,100 (3,791,600 – 
8,182,300) 

3.46% (2.96-3.91) 0.0016 (0.0010- 0.0022) 

Combination of the three most cost-efficient interventions: Increasing the number of active providers* + the number of 
FDC-users + … 

+Increasing the number of occasional 
Xpert users 

7,163,000 (5,671,000 – 
10,478,000) 

3.67% (3.18-4.16) 0.0012 (0.0008- 0.0017) 

+ Increasing Xpert use amongst occasional 
users 

15,467,000 (11,921,000 – 
22,411,000) 

4.27% (3.81-4.87) 0.0007 (0.0005- 0.0009) 

Combination of all interventions* 
+ Increasing Xpert use amongst occasional 

users 
27,976,000 (21,331,000 – 

40,913,000) 
5.17% (4.49-6.17) N/A 

 
Table A3.3. Cost efficiency of service provisions in Ahmedabad. I also conduct a sensitivity analysis on the 
behaviour of newly active providers, and whether increasing the number of active providers remains the most 
cost-efficient individual intervention if the behaviour of newly active providers is assumed to be 25% and 50% 
worse than pre-existing active providers. Indeed, even if the behaviour of newly active providers is 50% worse, 
this intervention is still the most cost-efficient individual intervention when scaled up to its feasible maximum. 
*I assume that these newly active providers adopt average behaviour.   
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Intervention Incremental cost (2020-
2035, USD) 

Percentage of 
cumulative TB 
cases averted 
(2020-2035) 

Cost-efficiency 

Individual interventions 
Increasing the number of active providers 
(assuming newly active providers adopt 

average behaviour) 

20,760,000 (12,478,000 – 
36,094,000) 

3.06% (2.43-3.98) 0.0003 (0.0002- 0.0006) 

Increasing Xpert use amongst occasional 
users 

22,249,000 (13,546,000 – 
30,724,000) 

1.11% (0.97-1.27) 0.0001 (0.0001- 0.0002) 

Increasing the number of occasional Xpert 
users 

4,920,900 (2,985,500 – 
6,819,600) 

0.86% (0.73-1.03) 0.0004 (0.0003- 0.0006) 

Increasing the number of FDC users 4,496,400 (3,283,400 – 
5,866,200) 

1.13% (0.97-1.34) 0.0006 (0.0004- 0.0007) 

Combination of the two most cost-efficient interventions: Increasing the number of FDC-users + … 
+Increasing the number of active providers 30,981,000 (21,744,000- 

46,622,000) 
3.80% (2.92-5.06) 0.00026 (0.00017- 0.0046) 

+Increasing the number of occasional 
Xpert users 

9,250,000 (6,796,000 – 
12,272,000) 

1.21% (1.05-1.41) 0.00028 (0.00021- 
0.00038) 

+ Increasing Xpert use amongst occasional 
users 

26,794,000 (17,716,000 – 
36,310,000) 

1.47% (1.29-1.72) 0.00012 (0.00008- 
0.00017) 

Combination of the three most cost-efficient interventions: Increasing the number of FDC users + increasing the 
number of occasional Xpert users + … 

+ Increasing the number of active providers 41,648,000 (30,441,000 - 
60,488,000) 

3.95% (3.05-5.22) 0.00020 (0.00013 – 
0.00033) 

+ Increasing Xpert use amongst occasional 
users 

60,238,000 (37,969,000 – 
82,081,000) 

1.96% (1.64-2.35) 0.00007 (0.00005 – 
0.00010) 

Combination of all interventions 
+ Increasing Xpert use amongst occasional 

users 
157,450,000 (100,600,000 – 

213,200,000) 
5.35% (4.30-7.00) N/A 

 
Table A3.4. Cost efficiency of service provisions in Delhi. I also conduct a sensitivity analysis on the 
behaviour of newly active providers, and whether increasing the number of active providers remains the most 
cost-efficient individual intervention if the behaviour of newly active providers is assumed to be 25% and 50% 
worse than pre-existing active providers. Indeed, even if the behaviour of newly active providers is 50% worse, 
this intervention is still the most cost-efficient individual intervention when scaled up to its feasible maximum. 
*I assume that these newly active providers adopt average behaviour.   
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Intervention Maintenance costs 
sensitivity analysis 

Incremental cost 
(2020-2035, USD) 

Percentage of cumulative TB 
cases averted (2020-2035) 

Cost-efficiency 

Increasing the number 
of active providers 

-20%: 1,963,400 (1,170,200- 
3,416,300) 

3.00% (2.59-3.37) 0.0037 (0.0021- 
0.0063) 

+20% 2,575,300 (1,782,200- 
4,028,200) 

0.0028 (0.0017- 
0.0041) 

Increasing the number 
of occasional Xpert 

users 

-20%: 1,965,900 (1,440,400- 
3,030,200) 

2.32% (1.97-2.67) 0.0028 (0.0020- 
0.0038) 

+20% 2,455,700 (1,930,200- 
3,520,000) 

0.0023 (0.0017- 
0.0029) 

Increasing Xpert use 
amongst occasional 

users 

-20%: 8,743,000 (6,671,000- 
13,031,000) 

2.83% (2.42-3.33) 0.0008 (0.0006- 
0.0010) 

+20% 9,232,000 (7,160,000- 
13,521,000) 

0.0007 (0.0006- 
0.0009) 

Increasing the number 
of FDC users 

-20%: 1,541,800 (1,194,000- 
2,260,900) 

2.53% (2.13-2.91) 0.0039 (0.0026- 
0.0050) 

+20% 2,031,600 (1,683,800- 
2,750,700) 

0.0027 (0.0022- 
0.0036) 

 
Table A3.5. Sensitivity analysis on the cost of maintenance in Ahmedabad. I explore whether increasing or 
decreasing maintenance cost by 20% effected the cost-efficiency order of individual service provisions. 
Maintenance costs include the cost of provider retention, the cost of Xpert engagement to maintain Xpert use, 
and the cost of FDC engagement to maintain FDC use. Generally, increasing the number of active providers 
remains the most cost-efficient individual intervention when increased to its feasible maximum; however, if the 
maintenance cost is decreased by 20%, then increasing the number of FDC users is the most cost-efficient. 
 
 

Intervention Maintenance costs 
sensitivity analysis 

Incremental cost 
(2020-2035, USD) 

Percentage of cumulative TB 
cases averted (2020-2035) 

Cost-efficiency 

Increasing the number 
of active providers 

-20%: 19,145,000 
(10,865,000 – 
34,481,000) 

3.06% (2.43-3.98) 0.0003 (0.0002- 
0.0007) 

+20% 22,375,000 
(14,095,000 – 
37,712,000) 

0.0003 (0.0002 
– 0.0006) 

Increasing the number 
of occasional Xpert 

users 

-20%: 4,205,900 (2,272,200 – 
6,104,300) 

0.86% (0.73-1.03) 0.0004 (0.0003- 
0.0008) 

+20% 5,638,400 (3,704,700 – 
7,536,800) 

0.0003 (0.0002- 
0.0005) 

Increasing Xpert use 
amongst occasional 

users 

-20%: 21,455,000 
(12,823,000 – 
29,889,000) 

1.11% (0.97-1.27) 0.0001 (0.0001- 
0.0002) 

+20% 22,887,000 
(14,255,000– 
31,321,000) 

0.0001 (0.0001- 
0.0002) 

Increasing the number 
of FDC users 

-20%: 3,782,600 (2,569,100 – 
5,154,300) 

1.13% (0.97-1.34) 0.0007 (0.0005- 
0.0009) 

+20% 5,215,100 (4,001,600 – 
6,586,800) 

0.0005 (0.0004- 
0.0006) 

 
Table A3.6. Sensitivity analysis on the cost of maintenance in Delhi. I explore whether increasing or 
decreasing maintenance cost by 20% effected the cost-efficiency order of individual service provisions. 
Maintenance costs include the cost of provider retention, the cost of Xpert engagement to maintain Xpert use, 
and the cost of FDC engagement to maintain FDC use. Increasing the number of FDC users remains the most 
cost-efficient individual intervention when scaled up to its feasible maximum. 
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Appendix 4  
 
Quantifying the potential value of antigen-detection rapid diagnostic tests 
for coronavirus disease 2019: a modelling analysis 
 
1. Model equations 
 

Parameter  Notation  
Epidemiology 
Prevalence of current or recent SARS-CoV-2 infection 𝑃 
Proportion amongst those tested who are in acute phase 𝑝6zÈ 
Of those in acute phase, number of infectious days remaining  𝐷6zÈ 
Case fatality rate amongst hospitalised COVID-19 patients 𝑀 
Case fatality reduction amongst COVID-19 patients on dexamethasone (1 – risk ratio) 𝑀sÂÆ 
NAAT performance  
NAAT sensitivity (for current or recent SARS-CoV-2) 𝑁gz 
NAAT specificity  𝑁g{ 
NAAT availability (proportion able to access NAAT test) 𝑝ÒÓÓ~ 
Cost per NAAT test 𝐶ÒÓÓ~ 
NAAT turnaround time  𝐷ÒÓÓ~ 
Isolate and initiate treatment (if indicated) whilst awaiting NAAT result* 𝐼6g%G 
Ag-RDT performance 
Ag-RDT sensitivity for current infection, relative to NAAT 𝑅¸¹u	 _gz 
Ag-RDT sensitivity for recent infection, relative to NAAT 𝑅¹v¹_¸¹u	 _gz 
Ag-RDT specificity, relative to NAAT 𝑅g{ 
Cost per Ag-RDT test 𝐶ÐÑ~ 
Confirmation of an Ag-RDT negative result with NAAT* 𝐼zÂw 
Confirmation of an Ag-RDT positive result with NAAT* 𝐼{%g 
Clinical judgement and management 
Sensitivity of clinical judgement in absence of NAAT 𝐽gz 
Specificity of clinical judgement in absence of NAAT 𝐽g{ 
Proportion of hospitalised patients with a negative COVID-19 test result (true and false negatives) that are 
initiated onto dexamethasone 

𝑝ÃsÂÅÃ 

Duration of isolation 𝐷6g%G 
Duration of treatment  𝐷ÃsÂÅÃ 
Cost of isolation per day  𝐶6g%G 
Cost of treatment per day 𝐶ÃsÂÅÃ 

 
Table A4.1. Parameter notation. See table 6.2 in the main text for parameter values. *These variables are 
indicator variables (Yes = 1; No = 0); in other words, these variables switch components of the equations 
discussed below on and off depending on the algorithm selected.  
  
 
 



 249 

For each algorithm, I calculated the costs, deaths averted, and infectious person-days averted. First, I 

calculated the probability of a positive diagnosis (true and false positives) and probability of a 

negative diagnosis (true and false negatives) for each algorithm. These probabilities were then 

multiplied by various parameters in order to calculate the various outputs. 

 
1.1. Probability of a positive diagnosis  

 

Below, are the probabilities of a positive diagnosis (𝐷{_ÒÓÓ~ and 𝐷{_ÐÑ~) for each algorithm: 

  

NAAT-based strategy 

𝑫𝒑_𝑵𝑨𝑨𝑻 = 

 

[𝑃 × 𝑝ÒÓÓ~ × 𝑁gz] +                                                     1, True positive (NAAT) 

[𝑃 × (1 − 𝑝ÒÓÓ~) × 𝐽gz] +                                                                             2, True positive (clinical judgement) 

[(1 − 𝑃) × 𝑝ÒÓÓ~ × (1 − 𝑁g{)] +                                                                                 3, False positive (NAAT) 

	[(1 − 𝑃) × (1 − 𝑝ÒÓÓ~) × (1 − 𝐽g{)]                                                           4, False positive (clinical judgement)  

 

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝ÒÓ~ is the proportion able to 

access a NAAT test; 𝑁gz and 𝑁g{is NAAT sensitivity and specificity, respectively; 𝐽gzand 𝐽g{ is the 

sensitivity and specificity of clinical judgement in the absence of NAAT, respectively.  

 

Ag-RDT-led strategy 

There are three different Ag-RDT led strategies: (1) Ag-RDT only strategy, (2) Confirmation of an 

Ag-RDT negative result with a NAAT test, (3) Confirmation of an Ag-RDT positive result with a 

NAAT test. The overall probability of receiving a positive test result as a result of an Ag-RDT-led 

algorithm can be calculated by the following framework, with different components of the framework 

being zeroed by indicator variables (Ineg and Ipos) depending on which algorithm is selected:  

 

Framework:  

𝑫𝒑_𝑹𝑫𝑻 = [𝐷{_ÐÑ~_%zG\ × (1 − 𝐼zÂw − 𝐼{%g)] + [𝐷{_ÐÑ~_zÂw × 𝐼zÂw] + [𝐷{_ÐÑ~_{%g × 𝐼{%g] 
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The individual probabilities (𝐷{_ÐÑ~_%zG\,  𝐷{_ÐÑ~_zÂw and 𝐷{_ÐÑ~_{%g) can be calculated by the 

following equations:  

 

Ag-RDT only: (𝐷{_ÐÑ~_%zG\) 

𝑫𝒑_𝑹𝑫𝑻_𝒐𝒏𝒍𝒚 = 

 

ä𝑃 × 𝑝6zÈ × 𝑅¸¹u	 _gzå +                                                                                     1, True positive, infectious 

[𝑃 × (1 − 𝑝6zÈ) × 𝑅¹v¹_¸¹u	 _gz] +                                                              2, True positive, non- infectious 

[(1 − 𝑃) × (1 − 𝑅g{)]                                                                                                 3, False positive 

 

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝6zÈ is the proportion amongst 

those tested who are in acute phase; 𝑅¸¹u	 _gz, 𝑅¹v¹_¸¹u	 _gz and 𝑅g{is the Ag-RDT sensitivity for current 

infection, Ag-RDT sensitivity for recent infection, and Ag-RDT specificity, respectively, all relative 

to NAAT.   

 

Confirmation of an Ag-RDT negative with a NAAT:  (𝐷{_ÐÑ~_zÂw) 

𝑫𝒑_𝑹𝑫𝑻_𝒏𝒆𝒈 = 

 

[𝑃 × 𝑝6zÈ × 𝑅¸¹u	 _gz] +                                                                              1, True positive (Ag-RDT), infectious 

[𝑃 × (1 − 𝑝¸¹u	) × 𝑅¹v¹_¸¹u	 _gz] +                                                        2, True positive (Ag-RDT), non-infectious 

[𝑃 × 𝑝6zÈ × (1 − 𝑅¸¹u	 _gz) ×	𝑝ÒÓÓ~ × 𝑁gz] +                                               3, True positive (NAAT), infectious 

[𝑃 × (1 − 𝑝6zÈ) × (1 − 𝑅¹v¹_¸¹u	 _gz) ×	𝑝ÒÓÓ~ × 𝑁gz] +                          4, True positive (NAAT), non-infectious 

[𝑃 × 𝑝6zÈ × (1 − 𝑅¸¹u	 _gz) ×	(1 − 𝑝ÒÓÓ~) × 𝐽gz] +                       5, True positive (clinical judgement), infectious 

[𝑃 × (1 − 𝑝6zÈ) × (1 − 𝑅¹v¹_¸¹u	 _gz) ×	(1 − 𝑝ÒÓÓ~) × 𝐽gz] +                  6, True positive (C.J.), non-infectious 

[(1 − 𝑃) × (1 − 𝑅²³)] +                                                                                        7, False positive (Ag-RDT) 

[(1 − 𝑃) × 𝑅²³ ×	𝑝ÒÓÓ~ × (1 − 𝑁g{)] +                                                                    8, False positive (NAAT) 

[(1 − 𝑃) × 𝑅²³ ×	(1 − 𝑝ÒÓÓ~) × (1 − 𝐽g{)]                                                               9, False positive (C.J.) 

 

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝6zÈ is the proportion amongst 

those tested who are in acute phase; 𝑅¸¹u	 _gz, 𝑅¹v¹_¸¹u	 _gz and 𝑅g{is the Ag-RDT sensitivity for current 

infection, Ag-RDT sensitivity for recent infection, and Ag-RDT specificity, respectively, all relative 

to NAAT; 𝑝ÒÓÓ~ is the proportion able to access a NAAT test; 𝑁gz and 𝑁g{is NAAT sensitivity and 

specificity, respectively; 𝐽gzand 𝐽g{ is the sensitivity and specificity of clinical judgement in the 

absence of NAAT, respectively.     
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Confirmation of an Ag-RDT positive with a NAAT:  (𝐷{_ÐÑ~_{%g) 

𝑫𝒑_𝑹𝑫𝑻_𝒑𝒐𝒔 = 

 

[𝑃 × 𝑝6zÈ × 𝑅¸¹u	 _gz × 𝑁gz] +                                                                               1, True positive, infectious 

[𝑃 × (1 − 𝑝6zÈ) × 𝑅¹v¹_¸¹u	 _gz × 𝑁gz] +                                                         2, True positive, non-infectious 

[(1 − 𝑃) × (1 − 𝑅²³) × (1 − 𝑁g{)]                                                                                 3, False positive 

 

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝6zÈ is the proportion amongst 

those tested who are in acute phase; 𝑅¸¹u	 _gz, 𝑅¹v¹_¸¹u	 _gz and 𝑅g{is the Ag-RDT sensitivity for current 

infection, Ag-RDT sensitivity for recent infection, and Ag-RDT specificity, respectively, all relative 

to NAAT; 𝑁gz and 𝑁g{is NAAT sensitivity and specificity, respectively.  

 

1.2. Probability of a negative diagnosis 
 

Below, are the probabilities of receiving a negative diagnosis (𝐷z_ÒÓÓ~ and 𝐷z_ÐÑ~) for the different 

algorithms: 

 

NAAT-based strategy 

𝑫𝒏_𝑵𝑨𝑨𝑻 = 

 

[𝑃 × 𝑝ÒÓÓ~ × (1 − 𝑁gz)] +                                                                                   1, False negative (NAAT) 

[𝑃 × (1 − 𝑝ÒÓÓ~) × (1 − 𝐽gz)] +                                                         2, False negative (clinical judgement) 

ä(1 − 𝑃) × (1 − 𝑝ÒÓÓ~) × 𝑁g{å +                                                                         3, True negative (NAAT) 

[(1 − 𝑃) × (1 − 𝑝ÒÓÓ~) × 𝐽g{]                                                              4, True negative (clinical judgement)             

 

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝ÒÓÓ~ is the proportion able to 

access a NAAT test; 𝑁gz and 𝑁g{is NAAT sensitivity and specificity, respectively; 𝐽gzand 𝐽g{ is the 

sensitivity and specificity of clinical judgement in the absence of NAAT, respectively.  

 

Ag-RDT-led strategy 

As above, the probability of a negative test result due to an Ag-RDT-led algorithm can be calculated 

by the following framework, with different components of the framework being zeroed by indicator 

variables (Ineg and Ipos) depending on which algorithm is selected: 
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Framework:  

𝑫𝒏_𝑹𝑫𝑻 = [𝐷z_ÐÑ~_%zG\ × (1 − 𝐼zÂw − 𝐼{%g)] + [𝐷z_ÐÑ~_zÂw × 𝐼zÂw] + [𝐷z_ÐÑ~_{%g × 𝐼{%g] 

 

The individual probabilities (𝐷z_ÐÑ~_%zG\, 𝐷z_ÐÑ~_zÂw and  𝐷z_ÐÑ~_{%g) can be calculated by the 

following equations:  

 

Ag-RDT only: (𝐷z_ÐÑ~_%zG\) 

𝑫𝒏_𝑹𝑫𝑻_𝒐𝒏𝒍𝒚 = 

 

[𝑃 × 𝑝6zÈ × (1 − 𝑅¸¹u	 _gz)] +                                                                          1, False negative, infectious 

[𝑃 × (1 − 𝑝6zÈ) × (1 − 𝑅¹v¹_¸¹u	 _gz)] +                                                    2, False negative, non-infectious 

[(1 − 𝑃) × 𝑅g{]                                                                                                             3, True negative  

 

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝6zÈ is the proportion amongst 

those tested who are in acute phase; 𝑅¸¹u	 _gz, 𝑅¹v¹_¸¹u	 _gz and 𝑅g{is the Ag-RDT sensitivity for current 

infection, Ag-RDT sensitivity for recent infection, and Ag-RDT specificity, respectively, all relative 

to NAAT.   

 

Confirmation of an Ag-RDT negative with a NAAT:  (𝐷z_ÐÑ~_zÂw) 

𝑫𝒏_𝑹𝑫𝑻_𝒏𝒆𝒈 = 

 

[𝑃 × 𝑝6zÈ × (1 − 𝑅¸¹u	 _gz) ×	𝑝ÒÓÓ~ × (1 − 𝑁gz)] +                       1, False negative (Ag-RDT & NAAT), infectious 

[𝑃 × (1 − 𝑝6zÈ) × (1 − 𝑅¹v¹_¸¹u	 _gz) ×	𝑝ÒÓÓ~ × (1 − 𝑁gz)] +        2, False negative (Ag-RDT & NAAT), non- inf 

[𝑃 × 𝑝6zÈ × (1 − 𝑅¸¹u	 _gz) ×	(1 − 𝑝ÒÓÓ~) × (1 − 𝐽gz)] +              3, False negative (Ag-RDT & C.J.), infectious 

[𝑃 × (1 − 𝑝6zÈ) × (1 − 𝑅¹v¹_¸¹u	 _gz) ×	(1 − 𝑝ÒÓÓ~) × (1 − 𝐽gz)] +		 4, False negative (Ag-RDT & C.J), non-inf 

ä(1 − 𝑃) × 𝑅g{ × 𝑝ÒÓÓ~ × 𝑁g{å +                                                                  5, True negative (Ag-RDT & NAAT) 

[(1 − 𝑃) × 𝑅g{ × (1 − 𝑝ÒÓÓ~) × 𝐽g{]                                                               6, True negative (Ag-RDT & C.J) 

  

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝6zÈ is the proportion amongst 

those tested who are in acute phase; 𝑅¸¹u	 _gz, 𝑅¹v¹_¸¹u	 _gz and 𝑅g{is the Ag-RDT sensitivity for current 

infection, Ag-RDT sensitivity for recent infection, and Ag-RDT specificity, respectively, all relative 

to NAAT; 𝑝ÒÓÓ~ is the proportion able to access a NAAT test; 𝑁gz and 𝑁g{is NAAT sensitivity and 

specificity, respectively; 𝐽gzand 𝐽g{ is the sensitivity and specificity of clinical judgement in the 

absence of NAAT, respectively.     
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Confirmation of an Ag-RDT positive with a NAAT:  (𝐷z_ÐÑ~_{%g) 

𝑫𝒏_𝑹𝑫𝑻_𝒑𝒐𝒔 = 

 

[𝑃 × 𝑝6zÈ × (1 − 𝑅¸¹u	 _gz)] +                                                       1, False negative (missed by Ag-RDT), infectious 

[𝑃 × (1 − 𝑝6zÈ) × (1 − 𝑅¹v¹_¸¹u	 _gz)] +                                            2, False negative (Ag-RDT), non- infectious 

ä𝑃 × 𝑝6zÈ × 𝑅¸¹u	 _gz × (1 − 𝑁gz)å +                                                            3, False negative (NAAT), infectious 

[𝑃 × (1 − 𝑝6zÈ) × 𝑅¹v¹_¸¹u	 _gz × (1 − 𝑁gz)] +                                      4, False negative (NAAT), non-infectious 

ä(1 − 𝑃) × î1 − 𝑅g{ð × 𝑁g{å +         5, True negative (Ag-RDT & NAAT) 

[(1 − 𝑃) × 𝑅g{]                                                  6, True negative (Ag-RDT) 

 

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝6zÈ is the proportion amongst 

those tested who are in acute phase; 𝑅¸¹u	 _gz, 𝑅¹v¹_¸¹u	 _gz and 𝑅g{is the Ag-RDT sensitivity for current 

infection, Ag-RDT sensitivity for recent infection, and Ag-RDT specificity, respectively, all relative 

to NAAT; 𝑁gz and 𝑁g{is NAAT sensitivity and specificity, respectively.  

 

1.3. Probability of receiving a NAAT test 

 
Here, I calculate the probability of receiving a NAAT test for each algorithm.  

 

NAAT-based strategy 

𝑵𝑵𝑨𝑨𝑻 = 𝑝ÒÓÓ~ 

 

Ag-RDT-led strategy 

As above, the probability of receiving a NAAT test with an Ag-RDT-led algorithm can be calculated 

by the following framework, with different components of the framework being zeroed by indicator 

variables (Ineg and Ipos) depending on which algorithm is selected: 

Framework:  

𝑵𝑹𝑫𝑻 = [𝑁ÐÑ~_%zG\ × (1 − 𝐼zÂw − 𝐼{%g)] + [𝑁ÐÑ~_zÂw × 𝐼zÂw] + [𝑁ÐÑ~_{%g × 𝐼{%g] 

 

The individual probabilities ((𝑁ÐÑ~_%zG\,  𝑁ÐÑ~_zÂw and 𝑁ÐÑ~_{%g) can be calculated by the following 

equations:  

 

Ag-RDT only: (𝑁ÐÑ~_%zG\) 

𝑵𝑹𝑫𝑻_𝒐𝒏𝒍𝒚 = 0 
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Confirmation of an Ag-RDT negative with a NAAT:  î𝑁ÐÑ~_zÂwð 

𝑵𝑹𝑫𝑻_𝒏𝒆𝒈 = 

 

[𝑃 × 𝑝6zÈ × (1 − 𝑅¸¹u	 _gz) ×	𝑝ÒÓÓ~] +                                     1, False negative (missed by Ag-RDT), infectious 

[𝑃 × (1 − 𝑝6zÈ) × (1 − 𝑅¹v¹_¸¹u	 _gz) ×	𝑝ÒÓÓ~] +                          2, False negative (Ag-RDT), non- infectious 

[(1 − 𝑃) × 𝑅²³ ×	𝑝ÒÓÓ~]                                                                                             3, True negative (Ag-RDT) 

 

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝6zÈ is the proportion amongst 

those tested who are in acute phase; 𝑅¸¹u	 _gz, 𝑅¹v¹_¸¹u	 _gz and 𝑅g{is the Ag-RDT sensitivity for current 

infection, Ag-RDT sensitivity for recent infection, and Ag-RDT specificity, respectively, all relative 

to NAAT; 𝑝ÒÓÓ~ is the proportion able to access a NAAT test.  

 

Confirmation of an Ag-RDT positive with a NAAT:  (𝑁ÐÑ~_{%g) 

𝑵𝑹𝑫𝑻_𝒑𝒐𝒔 = 

 

[𝑃 × 𝑝6zÈ × 𝑅¸¹u	 _gz] +                                                            1, True positive (detected by Ag-RDT), infectious 

[𝑃 × (1 − 𝑝6zÈ) × 𝑅¹v¹_¸¹u	 _gz] +                                                   2, True positive (Ag-RDT), non-infectious 

[(1 − 𝑃) × (1 − 𝑅²³)]                                                                                      3, False positive (Ag-RDT) 

 

Where 𝑃 is the prevalence of current or recent SARS-CoV-2 infection; 𝑝6zÈ is the proportion amongst 

those tested who are in acute phase; 𝑅¸¹u	 _gz, 𝑅¹v¹_¸¹u	 _gz and 𝑅g{is the Ag-RDT sensitivity for current 

infection, Ag-RDT sensitivity for recent infection, and Ag-RDT specificity, respectively, all relative 

to NAAT. 

 

1.4. Probability of receiving an Ag-RDT test 

 
Here, I calculate the probability of receiving an Ag-RDT test for each algorithm.  

 

NAAT-based strategy 

𝑹𝑵𝑨𝑨𝑻 = 0 

 

Ag-RDT-led strategy 

As above, the probability of receiving an Ag-RDT test with an Ag-RDT-led algorithm can be 

calculated by the following framework, with different components of the framework being zeroed by 

indicator variables (Ineg and Ipos) depending on which algorithm is selected: 
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Framework:  

𝑹𝑹𝑫𝑻 = [𝑅ÐÑ~_%zG\ × (1 − 𝐼zÂw − 𝐼{%g)] + [𝑅ÐÑ~_zÂw × 𝐼zÂw] + [𝑅ÐÑ~_{%g × 𝐼{%g] 

 

The individual probabilities (𝑅ÐÑ~_%zG\,𝑅ÐÑ~_zÂw and 𝑅ÐÑ~_{%g) can be calculated by the following 

equations:  

 

Ag-RDT only: (𝑅ÐÑ~_%zG\) 

𝑹𝑹𝑫𝑻_𝒐𝒏𝒍𝒚 = 1 

 

Confirmation of an Ag-RDT negative with a NAAT:  î𝑅ÐÑ~_zÂwð 

𝑹𝑹𝑫𝑻_𝒏𝒆𝒈 = 1 

 

Confirmation of an Ag-RDT positive with a NAAT:  (𝑅ÐÑ~_{%g) 

𝑹𝑹𝑫𝑻_𝒑𝒐𝒔 = 1 

 

1.5. Probability of death due to COVID-19 

 

Using the probability of a true-positive test result and the probability of a false-negative test result, I 

calculated the probability of death due to COVID-19 for each algorithm. All the algorithms follow the 

same framework, listed below: 

 

Framework for all algorithms:  

 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑑𝑒𝑎𝑡ℎ = 

[𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑒𝑠𝑢𝑙𝑡	 ×𝑀 ×𝑀sÂÆ] + 

[𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑟𝑒𝑠𝑢𝑙𝑡		 × 𝑝ÃsÂÅÃ ×𝑀 ×𝑀sÂÆ] + 

[𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑟𝑒𝑠𝑢𝑙𝑡	 × (1 − 𝑝ÃsÂÅÃ) ×𝑀] 

 

Where 𝑀 is the case fatality rate amongst hospitalised COVID-19 patients; 	

𝑀sÂÆ is the case fatality reduction amongst COVID-19 patients on dexamethasone; 𝑝ÃsÂÅÃ is the 

proportion of hospitalised patients with a negative COVID-19 test result that are initiated onto 

dexamethasone.    
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1.6. Number of infectious days per person 

 
Using the probability of a true-positive test result and the probability of a false-negative test result, I 

calculated the number of infectious days per person for each algorithm, as shown below. Note, 

whether individuals isolate whilst awaiting a NAAT result or not can be switched on and off by the 

indicator variable, Iisol.  

 

NAAT-based strategy  

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠	𝑑𝑎𝑦𝑠	𝑝𝑒𝑟	𝑝𝑒𝑟𝑠𝑜𝑛 = 

 

ä𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑁𝐴𝐴𝑇)	× 𝑝6zÈ ×minî	𝐷6zÈ ,𝐷ÒÓÓ~ð × (1 − 𝐼6g%G)å + 

!𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝑁𝐴𝐴𝑇)	× 𝑝6zÈ

× öíminî	𝐷6zÈ ,𝐷ÒÓÓ~ð × (1 − 𝐼6g%G)ñ +maxî𝐷6zÈ − 𝐷ÒÓÓ~ ,0ð÷" + 

[𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙	𝑗𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡) × 𝑝6zÈ × 𝐷6zÈ] 

 

Where 𝑝6zÈ is the proportion amongst those tested who are in acute phase; 𝐷6zÈ is the number of 

infectious days remaining amongst those in acute phase; 𝐷ÒÓÓ~ is the NAAT turnaround time.  

 
Ag-RDT only strategy 

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠	𝑑𝑎𝑦𝑠	𝑝𝑒𝑟	𝑝𝑒𝑟𝑠𝑜𝑛 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	 × 𝐷6zÈ 

 

Confirmation of an Ag-RDT negative with a NAAT 

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠	𝑑𝑎𝑦𝑠	𝑝𝑒𝑟	𝑝𝑒𝑟𝑠𝑜𝑛 = 

ä𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑁𝐴𝐴𝑇)	×minî	𝐷6zÈ ,𝐷ÒÓÓ~ð × (1 − 𝐼6g%G)å + 

!𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝑁𝐴𝐴𝑇)

× öíminî	𝐷6zÈ ,𝐷ÒÓÓ~ð × (1 − 𝐼6g%G)ñ +maxî𝐷6zÈ − 𝐷ÒÓÓ~ ,0ð÷" + 

[𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙	𝑗𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡) × 𝐷6zÈ] 

 

Where 𝐷6zÈ is the number of infectious days remaining amongst those in acute phase; 𝐷ÒÓÓ~ is the 

NAAT turnaround time.  
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Confirmation of an Ag-RDT positive with a NAAT 

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠	𝑑𝑎𝑦𝑠	𝑝𝑒𝑟	𝑝𝑒𝑟𝑠𝑜𝑛 = 

ä𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑁𝐴𝐴𝑇)	×minî	𝐷6zÈ ,𝐷ÒÓÓ~ð × (1 − 𝐼6g%G)å + 

!𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝑁𝐴𝐴𝑇)

× öíminî	𝐷6zÈ ,𝐷ÒÓÓ~ð × (1 − 𝐼6g%G)ñ +maxî𝐷6zÈ − 𝐷ÒÓÓ~ ,0ð÷" + 

[𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝐴𝑔	𝑅𝐷𝑇) × 𝐷6zÈ] 

 

Where 𝐷6zÈ is the number of infectious days remaining amongst those in acute phase; 𝐷ÒÓÓ~ is the 

NAAT turnaround time.  

 

1.7. Cost per person 

 
Here, I calculate the cost per person. The total cost of an algorithm is as follows: 

 

Framework for all algorithms: 

𝐶𝑜𝑠𝑡Ã%ÃÅG = 𝐶𝑜𝑠𝑡ÃÂgÃ6zw + 𝐶𝑜𝑠𝑡6g%GÅÃ6%z + 𝐶𝑜𝑠𝑡ÃsÂÅÃÊÂzÃ 

 

Below, I breakdown the costs of the different components (testing, isolation and treatment) for each 

algorithm. Note, whether individuals isolate whilst awaiting a NAAT result or not can be switched on 

and off by the indicator variable, Iisol. 

 

NAAT-based strategy 

Cost of testing  

𝐶𝑜𝑠𝑡ÒÓÓ~_ÃÂgÃ6zw = 𝑁ÒÓÓ~ × 𝐶ÒÓÓ~ 

 

Where 𝑁ÒÓÓ~ is the probability of receiving a NAAT test; 𝐶ÒÓÓ~ is the cost per NAAT test.  

 

Cost of isolation 

𝐶𝑜𝑠𝑡ÒÓÓ~_6g%GÅÃ6%z = 

 

[𝑝ÒÓÓ~ × 𝐼6g%G × 𝐷ÒÓÓ~ × 𝐶6g%G] + 

äî𝐷{_ÒÓÓ~(1) + 𝐷{_ÒÓÓ~(3)ð × 𝐼6g%G ×max(𝐷6g%G − 𝐷ÒÓÓ~ ,0) × 𝐶6g%Gå + 

[(𝐷{_ÒÓÓ~(1) + 𝐷{_ÒÓÓ~(3)) × (1 − 𝐼6g%G) × 𝐷6g%G × 𝐶6g%G] + 

[(𝐷{_ÒÓÓ~(2) + 𝐷{_ÒÓÓ~(4)) × 𝐷6g%G × 𝐶6g%G] 
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Where 𝑝ÒÓÓ~ is the proportion able to access a NAAT test; 𝐷ÒÓÓ~ is the NAAT turnaround time; 

𝐶6g%G is the cost of isolation per person per day; 𝐷{_ÒÓÓ~(1) and 𝐷{_ÒÓÓ~(3) is the probability of a 

true-positive and a false-positive diagnosis when using a NAAT, respectively; 𝐷{_ÒÓÓ~(2) and 

𝐷{_ÒÓÓ~(4) is the probability of a true-positive and a false-positive diagnosis under clinical 

judgement in the absence of NAAT, respectively; 𝐷6g%G is the duration of isolation.     

 

Cost of treatment 

𝐶𝑜𝑠𝑡ÒÓÓ~_ÃsÂÅÃÊÂzÃ = 

 

ä𝐷{pjjq × 𝐷ÃsÂÅÃ × 𝐶ÃsÂÅÃå + 

[𝐷zpjjq × 𝑝ÃsÂÅÃ × 𝐷ÃsÂÅÃ × 𝐶ÃsÂÅÃ] 

 

Where 𝐷{_ÒÓÓ~ and 𝐷z_ÒÓÓ~ is the probability of a positive and a negative diagnosis under a NAAT 

strategy, respectively; 𝐷ÃsÂÅÃ is the duration of treatment; 𝑝ÃsÂÅÃ is the proportion of hospitalised 

patients with a negative COVID-19 test result that are initiated onto dexamethasone; 𝐶ÃsÂÅÃ is the cost 

of treatment per person per day.  

 

Ag-RDT only 

Cost of testing  

𝐶𝑜𝑠𝑡ÐÑ~_ÃÂgÃ6zw = 𝐶ÐÑ~ 

 

Where 𝐶ÐÑ~ is the cost per Ag-RDT test.  

 

Cost of isolation 

𝐶𝑜𝑠𝑡ÐÑ~_6g%GÅÃ6%z = 𝐷{_ÐÑ~_%zG\ × 𝐷6g%G × 𝐶6g%G 

 

Where 𝐶6g%G is the cost of isolation per person per day; 𝐷{_ÐÑ~_%zG\ is the probability of a positive 

diagnosis under an Ag-RDT only strategy; 𝐷6g%G is the duration of isolation.     

 

Cost of treatment 

𝐶𝑜𝑠𝑡ÐÑ~_ÃsÂÅÃÊÂzÃ = 

 

!𝐷{��q5+F[ × 𝐷ÃsÂÅÃ × 𝐶ÃsÂÅÃ" + 

[𝐷z��q5+F[ × 𝑝ÃsÂÅÃ × 𝐷ÃsÂÅÃ × 𝐶ÃsÂÅÃ] 
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Where 𝐷{��q5+F[ and 𝐷z��q5+F[ is the probability of a positive and a negative diagnosis under an Ag-

RDT only strategy, respectively; 𝐷ÃsÂÅÃ is the duration of treatment; 𝑝ÃsÂÅÃ is the proportion of 

hospitalised patients with a negative COVID-19 test result that are initiated onto dexamethasone; 

𝐶ÃsÂÅÃ is the cost of treatment per person per day.  

 

Confirmation of an Ag-RDT negative with a NAAT 

Cost of testing  

𝐶𝑜𝑠𝑡ÐÑ~_zÂw_ÃÂgÃ6zw = 𝐶ÐÑ~ + [𝑁ÐÑ~_zÂw × 𝐶ÒÓÓ~] 

 

Where 𝐶ÐÑ~ is the cost per Ag-RDT test; 𝐶ÒÓÓ~ is the cost per NAAT test; 𝑁ÐÑ~_zÂw is the 

probability of receiving a NAAT test under a confirm Ag-RDT negative strategy.  

 

Cost of isolation 

𝐶𝑜𝑠𝑡ÐÑ~_zÂw_6g%GÅÃ6%z = 

äî𝐷{_ÐÑ~_zÂw(1) + 𝐷{_ÐÑ~_zÂw(2) + 𝐷{_ÐÑ~_zÂw(7) + 𝐷{_ÐÑ~_zÂw(5) + 𝐷{_ÐÑ~_zÂw(6)

+ 𝐷{_ÐÑ~_zÂw(9)ð × 𝐷6g%G × 𝐶6g%Gå + 

ä𝑁ÐÑ~_zÂw × 𝐼6g%G × 𝐷ÒÓÓ~ × 𝐶6g%Gå + 

äî𝐷{_ÐÑ~_zÂw(3) + 𝐷{_ÐÑ~_zÂw(4) + 𝐷{_ÐÑ~_zÂw(8)ð × 𝐼6g%G ×max(𝐷6g%G − 𝐷ÒÓÓ~ ,0) × 𝐶6g%Gå + 

[î𝐷{_ÐÑ~_zÂw(3) + 𝐷{_ÐÑ~_zÂw(4) + 𝐷{_ÐÑ~_zÂw(8)ð × (1 − 𝐼6g%G) × 𝐷6g%G × 𝐶6g%G] 

 

Where 𝐷{_ÐÑ~_zÂw(1) and 𝐷{_ÐÑ~_zÂw(2) is the probability of a true positive diagnosis when using an 

Ag-RDT amongst infectious and non-infectious cases, respectively; 𝐷{_ÐÑ~_zÂw(5) and 

𝐷{_ÐÑ~_zÂw(6) is the probability of a true positive diagnosis when using clinical judgment in the 

absence of NAAT amongst infectious and non-infectious cases, respectively; 𝐷{_ÐÑ~_zÂw(7) and 

𝐷{_ÐÑ~_zÂw(9) is the probability of a false positive diagnosis when using an Ag-RDT or under clinical 

judgement in the absence of NAAT, respectively; 𝐷{_ÐÑ~_zÂw(3) and 𝐷{_ÐÑ~_zÂw(4) is the probability 

of a true positive diagnosis when using NAAT amongst infectious and non-infectious cases, 

respectively; 𝐷{��q+��(8) is the probability of a false positive diagnosis when using NAAT; 𝑁ÐÑ~_zÂw 

is the probability of receiving a NAAT test; 𝐶6g%G is the cost of isolation per person per day; 𝐷6g%G is 

the duration of isolation; 𝐷ÒÓÓ~ is the NAAT turnaround time.    
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Cost of treatment 

𝐶𝑜𝑠𝑡ÐÑ~_zÂw_ÃsÂÅÃÊÂzÃ = 

 

!𝐷{��q+�� × 𝐷ÃsÂÅÃ × 𝐶ÃsÂÅÃ"+ 

[𝐷z_ÐÑ~zÂw × 𝑝ÃsÂÅÃ × 𝐷ÃsÂÅÃ × 𝐶ÃsÂÅÃ] 

 

Where 𝐷{��q+�� and 𝐷z_ÐÑ~zÂw is the probability of a positive and a negative diagnosis under a 

confirm Ag-RDT negative strategy, respectively; 𝐷ÃsÂÅÃ is the duration of treatment; 𝑝ÃsÂÅÃ is the 

proportion of hospitalised patients with a negative COVID-19 test result that are initiated onto 

dexamethasone; 𝐶ÃsÂÅÃ is the cost of treatment per person per day.  

 

Confirmation of an Ag-RDT positive with a NAAT 

Cost of testing  

𝐶𝑜𝑠𝑡ÐÑ~_{%g_ÃÂgÃ6zw = 𝐶ÐÑ~ + [𝑁ÐÑ~_{%g × 𝐶ÒÓÓ~] 

 

Where 𝐶ÐÑ~ is the cost per Ag-RDT test; 𝐶ÒÓÓ~ is the cost per NAAT test; 𝑁ÐÑ~_{%g is the probability 

of receiving a NAAT test under a confirm Ag-RDT positive strategy.  

 

Cost of isolation 

𝐶𝑜𝑠𝑡ÐÑ~_{%g_6g%GÅÃ6%z = 

ä𝑁ÐÑ~_{%g × 𝐼6g%G × 𝐷ÒÓÓ~ × 𝐶6g%Gå + 

ä𝐷{_ÐÑ~_{%g × 𝐼6g%G ×max(𝐷6g%G − 𝐷ÒÓÓ~ ,0) × 𝐶6g%Gå + 

[𝐷{_ÐÑ~_{%g × (1 − 𝐼6g%G) × 𝐷6g%G × 𝐶6g%G] 

 

Where 𝐷{_ÐÑ~_{%g is the probability of a positive diagnosis; 𝑁ÐÑ~_{%g is the probability of receiving a 

NAAT test; 𝐶6g%G is the cost of isolation per person per day; 𝐷6g%G is the duration of isolation; 𝐷ÒÓÓ~ is 

the NAAT turnaround time.    

 

Cost of treatment 

𝐶𝑜𝑠𝑡ÐÑ~_{%g_ÃsÂÅÃÊÂzÃ = 

!𝐷{��q,5á × 𝐷ÃsÂÅÃ × 𝐶ÃsÂÅÃ"+ 

[𝐷z_ÐÑ~{%g × 𝑝ÃsÂÅÃ × 𝐷ÃsÂÅÃ × 𝐶ÃsÂÅÃ] 
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Where 𝐷{��q,5á and 𝐷z_ÐÑ~{%g is the probability of a positive and a negative diagnosis under a 

confirm Ag-RDT positive strategy, respectively; 𝐷ÃsÂÅÃ is the duration of treatment; 𝑝ÃsÂÅÃ is the 

proportion of hospitalised patients with a negative COVID-19 test result that are initiated onto 

dexamethasone; 𝐶ÃsÂÅÃ is the cost of treatment per person per day.  

 

2. Expert consultation 
 

To identify appropriate use cases for implementation of antigen-detection RDTs for SARS-CoV-2, I 

conducted a series of four expert consultations. For each consultation, I identified an in-

country expert with knowledge of the landscape of diagnostic testing for infectious diseases and the 

country’s response to the COVID-19 pandemic. I consulted experts in Brazil, India, Nigeria, and 

South Africa (experts listed in table A4.2 below) – countries with large populations, a breadth of 

income levels, broad geographic representation, and COVID-19 epidemics of substantial magnitude. 

Consultations were performed between July 2 and 7, 2020. Each consultation was structured as 

follows: 

 

First, I provided background on the potential characteristics of an Ag-RDT: results within 30 minutes, 

more feasible to perform at point of care, performed on oropharyngeal/nasal/salivary specimens, and 

less sensitive than nucleic acid amplification tests. Second, I described the primary research objective: 

to estimate the benefits and harms of implementing Ag-RDTs in specific use cases. Third, I provided 

examples of paradigmatic use cases, in terms of eligible population and intended use of the Ag-RDT. 

Fourth, I asked in-country experts to identify at least two important use cases for their country’s 

setting, asking that they define: (a) the eligible population; (b) the intended use/incremental benefit of 

Ag-RDT; (c) the status quo – how members of the population would be managed in the absence of an 

Ag-RDT; (d) how the status quo would change in the presence of an Ag-RDT (for both people testing 

positive and negative on Ag-RDT); (e) the most important outcomes/measures of value; and (f) the 

most important trade-offs to consider. 

  

Each consultation lasted between 60 and 90 minutes, resulting in the following use cases being 

identified: 

 

- Community-based testing of symptomatics, in decentralised clinics or in dedicated testing 

facilities in containment zones (India and South Africa) 

- Testing of symptomatic individuals in health facilities and amongst those being admitted to 

hospital (India and South Africa) 
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- Testing of asymptomatic employees contacting high-risk populations such as long-term care 

facilities (South Africa) 

- Testing of symptomatic outpatients (Brazil and Nigeria) 

- Testing of asymptomatic employees in high-risk occupations such as healthcare workers 

(Brazil and Nigeria) 

 

For the purpose of this analysis, I focused on the first two use cases listed above. However, the 

approach described in the study can also straightforwardly be extended to the other use cases listed 

here. 

 
Name of expert Country Affiliation 
Kiran Rade India Indian Council of Medical 

Research 
Dhamari Naidoo Nigeria WHO Country Office 
Francois Venter South Africa WITS Reproductive Health and 

HIV Institute 
Amilcar Tanuri Brazil Federal University of Rio de 

Janeiro 
 
Table A4.2. List of country experts consulted to identify appropriate use cases, for an Ag-RDT 
 
 
3. Additional Figures 
 

 
Figure A4.1. Sensitivity analysis to varying prevalence of COVID-19 amongst those being tested. As a 
focal model output, all figures show the proportion of simulations in which an Ag-RDT was favourable, with 
different algorithms labelled by the different line colours. Panels A and B show the impact of varying 
prevalence on deaths and infectious days averted, respectively, in a hospital setting. Panel C shows the impact 
on infectious days averted in a community setting. Similar to the analysis presented in the main text, I assumed 
that all individuals were isolated whilst waiting for a NAAT result in the hospital setting and that no one 
isolated whilst awaiting a test result in the community setting. Results illustrate that the proportion favourable 
remained stable to these alternative assumptions for prevalence. 
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Figure A4.2. Sensitivity analysis to varying Ag-RDT sensitivity and specificity. As a focal model output, all 
figures show the proportion of simulations in which an Ag-RDT was favourable, with different algorithms 
labelled by the different line colours. Panels A-C show the sensitivity of Ag-RDT being varied between 75-95% 
across the hospital and community settings, assuming specificity remained fixed at 98%. Panels D-F show the 
specificity of Ag-RDT being varied between 98-100%, assuming sensitivity remained fixed at 80%. Similar to 
the analysis presented in the main text, I assumed that all individuals were isolated whilst waiting for a NAAT 
result in the hospital setting and that no one isolated whilst awaiting a test result in the community setting. 
Results illustrate that increasing Ag-RDT sensitivity increased the favourability of the “Ag-RDT only” and 
“confirm Ag-RDT negative” strategies (panel C). For example, the favourability of an algorithm that confirms 
an Ag-RDT negative result increased from 79% to 83% when sensitivity increased from 75% to 95%. 
Increasing sensitivity had little impact on the “confirm Ag-RDT positive” strategy; since the only costs incurred 
under this setting was the cost of a test, a NAAT-only strategy was often cheaper and averted more infectious 
days than the “confirm Ag-RDT positive” strategy (the cost of testing with an Ag-RDT and confirming a 
positive result with a NAAT test makes it costly, and by re-testing a positive result with a NAAT, the sensitivity 
of the algorithm was lower due to the imperfect sensitivity of NAAT). Similar to the hospital setting, specificity 
had little impact on an algorithm’s favourability (panel F). 
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Figure A4.3. Sensitivity analysis to patient behaviour in relation to self-isolation, in the community 
setting. As a focal model output, all figures show the proportion of simulations in which an Ag-RDT was 
favourable, with different algorithms labelled by the different line colours. Panel A shows the impact of 
compliance amongst those required to self-isolate after a positive final test result. Panel B shows the impact of 
test-negative individuals voluntarily self-isolating. This sensitivity analysis was restricted to the community 
setting as it is likely that hospitals will enforce compliance to isolation guidelines. Results illustrate that 
increasing the proportion of compliance to isolation recommendations increased the favourability of both “Ag-
RDT-only” and “confirm Ag-RDT negative” strategies, from 86% and 68% of simulations being favourable 
with 50% compliance to 98% and 80% with 100% compliance, respectively. The benefit of an Ag-RDT test in 
rapidly detecting COVID cases, and hence averting onward transmission, is reduced if these individuals did not 
isolate. However, the opposite was seen with the “confirm Ag-RDT positive” strategy, with the favourability of 
the algorithm decreasing from 8% to 0% if compliance doubled from 50% to 100%. Generally, this strategy 
detected fewer COVID cases than a NAAT-based strategy, due to the reduction in overall sensitivity caused by 
inclusion of NAAT confirmation; thus, increasing the proportion of individuals that did not comply had a 
greater effect on a NAAT-based strategy than the Ag-RDT strategy, hence increasing the latter’s favourability. 
Similar results were seen for voluntary self-isolation (where false negatives voluntarily self-isolate).  
 
 
 


