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Abstract

Convenient, non-obtrusive, low-cost, and accurate sensing of fruit moisture content is crucial

for the scientific studies of Pomology and Viticulture and their associated agriculture. It can

provide early indicators of yield estimation and crop health as well as providing data for food

production and precision farming systems. With a focus on grapes, we introduce SING, a

scheme that senses grape moisture content by utilizing RF signals but without physical contact

with the fruit. In this thesis, we extend the investigation of the theoretical relationship between

the dielectric properties and the moisture content of agricultural products to establish a sensing

model in the 5 GHz band. To make the work practical, we are first to measure the dielectric

properties of grape bunches (not individually as that would be destructive), presenting a unique

measurement challenge as internal grapes are hidden. In doing so, we demonstrate that our

technique precisely estimates moisture content to a high degree of accuracy (90%). Current RF

sensing models to estimate moisture are destructive; they require samples to be constrained in

containers. Our work is first to dispense with such impracticalities, and, without contact with

the object, accurately measures non-uniform grape clusters in open space. We demonstrate that

SING is superior to existing work in its ability to accurately measure the dielectric properties of

non-uniform fruit objects and test this through both lab-based experimentation and preliminary

outdoor vineyard tests. We also examine the transferability of SING’s approach to real-world

scenarios.
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Chapter 1

Introduction

1.1 Motivation

The sensing of objects in a convenient, low-cost, non-invasive manner facilitates understanding

different phenomena and exploiting new features in many applications. In health, non-invasive

sensing has been exploited to monitor respiratory rate, heartbeats, and blood glucose levels

without direct contact with the patients [28, 65, 82, 133, 134, 135, 141]. In industry, non-

invasive sensing has been used for machine identification, localisation, and health monitoring

[127, 72, 92, 136, 126]. Not only that but this notion of sensing had been extended to Precision

Agriculture as well [48, 111, 130, 131].

Precision Agriculture can be defined as the study of agriculture on a much finer resolution

through the application of information technology [100]. Agricultural practices such as harvest-

ing and yield production can benefit immensely from precision agriculture. Generally speaking,

agricultural fields such as farms and vineyards do not exhibit uniformity with respect to growth

and crop production. Different parts in a field have different characteristics in terms of soil and

plants [100]. Even expert farmers with years of experience and knowledge about their farms

can still benefit from precision agriculture as ambient factors such as temperature and wind

affect yield production significantly, yet they can be unpredictable to some extent.

1



2 Chapter 1. Introduction

Precision agriculture can be realised through different technologies. This thesis aims to ap-

proach precision agriculture through the interaction between electromagnetic waves, specifically

Radio Frequencies (RF), and different agricultural products. We label this interaction as RF

Sensing. RF Sensing is a terminology describing how RF signals interact with and monitor

surrounding phenomena in a non-invasive manner. RF Sensing is a general concept, and in this

thesis, we realise precision agriculture through RF Sensing. Specifically, we investigate the ap-

plicability of RF Sensing to estimate moisture content in agricultural products such as grapes.

SING is the terminology we use to describe the sensing of grape moisture content through RF

Sensing. Thus, SING is a perfect example of realising precision agriculture through RF Sensing.

SING importance stems from the fact that understanding the moisture level in grapes is vi-

tal for the scientific investigation in Pomology (the study of cultivation of fruits) and Oenol-

ogy/Viticulture (the studies of grape agriculture). It provides valuable data about the health

status of the crop as well as reliable yield estimation [93, 94]. Information about crop health can

highlight deviations in growth behaviours that may indicate a problem in the vineyard, which

can be dealt with promptly. Reliable yield estimation, on the other hand, enable viticulturists,

for example, to make informed decisions about the labour and other materials (e.g., bottles)

needed ahead of harvest season as well as feeding into precision agriculture systems [122].

1.2 Objectives and Contributions

Previously, we have emphasized the importance of estimating the moisture content in agricul-

tural products such as grapes. Thus, this thesis presents SING. SING is a a scheme that senses

grape moisture content through RF Sensing without physical contact with the fruit. In SING,

we extend the investigation of the theoretical relationship between the dielectric properties and

the moisture content of grapes to establish a sensing model in the 5 GHz band. To make the

work practical, we are first to measure the dielectric properties of grape bunches (not indi-

vidually as that would be destructive), presenting a unique measurement challenge as internal
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grapes are hidden. In doing so, we demonstrate in Chapters 3 and 4 that our technique precisely

estimates moisture content to a high degree of accuracy (90%). Current RF Sensing models to

estimate moisture are destructive and require samples to be constrained in containers. SING

is first to dispense with such impracticalities, and, without contact with the fruit, accurately

measures the geometrically non-uniform grape clusters in open space. Also, we demonstrate

SING’s superiority to existing work in its ability to accurately measure the dielectric prop-

erties of non-uniform fruit objects and test this through both lab-based experimentation and

preliminary outdoor vineyard tests.

1.3 Publications

• Y. N. Altherwy and J. A. McCann, ”SING: Free Space SensING of Grape Moisture

using RF Shadowing,” in IEEE Transactions on Instrumentation and Measurement, doi:

10.1109/TIM.2020.3027928.

1.4 Thesis Organization

Based on the described objectives and contributions, this thesis is organized as follows: Chapter

2 presents the background and related work in the realm of RF Sensing as well as a primer on the

dielectric properties and their measuring techniques. Chapters 3 and 4 are dedicated to SING.

The former lays out the foundation and methodology behind SING, and the latter presents the

results. While working on SING, COVID-19 emerged as a global pandemic. The restrictions

applied by governments due to the spread of COVID-19 prevented us from employing SING

in a real-world environment such as vineyards. Thus, we dedicate Chapter 5 to discuss the

requirements needed to develop SING into an exploitable technology appropriate for real-world

scenarios. We present the final remarks and conclude the thesis in Chapter 6.



Chapter 2

Background

This chapter presents an overview of the work related to our research. Specifically, we start by

presenting related work in agricultural sensing. Afterwards, we discuss previous work that adopt

the notion of RF Sensing. Then, we discuss previous work that combine both RF Sensing and

agricultural sensing, to introduce the general theme of our work; RF Sensing for agricultural

applications. Finally, we review work related to grape moisture sensing to emphasize the

research opportunity we investigate in this thesis. But first, we present a primer on dielectric

properties, and how to measure them. Measuring the dielectric properties is a cornerstone in

moisture estimation through RF Sensing, as we shall emphasize throughout the thesis. Thus, it

is essential to explain what the dielectric properties represent and how to measure them before

explaining their role in our work.

2.1 Overview of Dielectric Properties

The dielectric properties (in other words, the Complex Relative Permittivity (ε∗)) describe

a dielectric material’s (e.g. a grape cluster) behaviour when subjected to an electric field. In

general, the dielectric properties are described in terms of two factors, the Relative Permittivity

(ε
′
) and the Loss Factor (ε

′′
). The former represents a material’s ability to store electrical energy

and polarize with the electric field. The latter represents the electrical energy loss (usually as

4
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heat) of the electric field inside the material [115]. Mathematically, ε∗ is a complex number

and is defined as

ε∗ = ε
′ − jε′′ (2.1)

For a dielectric material such as a grape cluster, ε
′

and ε
′′

values, and by extension ε∗ , depend

on many factors, especially, the frequency of the electric field, the ambient temperature, and the

different components of the material such as moisture [115]. When the other factors are known,

the grape cluster moisture content can be realised through its dielectric properties (ε∗ ). Thus,

we dedicate this part of the thesis to review different techniques used to measure ε∗ , especially

in the microwave range of frequencies (i.e. f ∈ [1 Ghz - 300 GHz]). We are mainly interested in

microwave frequencies because water is the primary absorbent of the electromagnetic waves at

those frequencies [115]; this is also why we choose a microwave frequency in our research. Table

2.1 presents the dielectric properties of common materials at 5 GHz such as pure Water. In the

table, we present the dielectric properties of different agricultural products since the main focus

of this thesis is precision agriculture. Also, the table includes the dielectric properties of common

chemical compounds, which are usually used to calibrate dielectric properties measuring devices

[104]. The values are presented at the 5 GHz for reasons mentioned later in §3.1.4.

According to [120, 70], there are four main techniques to measure ε∗ of materials at microwave

frequencies: the resonant cavity, the transmission-line, the coaxial probe, and the free-space

technique (figure 2.1). The resonant cavity (figure 2.1a) is a technique that employs a metal-

enclosed structure (i.e. cavity) that resonates highly at specific frequencies; the cavity’s resonant

frequencies [87]. A dielectric material inserted inside the cavity causes changes to the resonant

frequencies, from which the dielectric properties of the material are measured [114]. Note that

the cavities’ dimensions are comparable to the resonant frequencies’ wavelengths; for practical

reasons, the resonant cavity technique is mainly used at microwave frequencies due to the small

wavelength of such frequencies [87].

The transmission-line (figure 2.1b) technique works by physically inserting a dielectric mate-

rial inside a transmission line, typically, coaxial cables or waveguides [114, 104]. The free-space
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Material Relative Permittivity Loss Factor
Pure Water 73.1000 18.7000
Apple, Malus domestica (Golden Delicious) 52.9125 16.4250
Apple, Malus domestica (Granny Smith) 49.6250 15.3375
Apple, Malus domestica (Red Delicious) 49.0875 15.3500
Avocado, Persea americana 41.6000 14.6250
Banana, Musa x paradisiaca 52.3250 21.5875
Cantaloupe, Cucumis melo 61.3250 18.4625
Carrot, Daucus carota subsp. sativus 51.0000 19.3625
Cucumber, Cucumis sativus 65.2875 17.9125
Grape, Vitis amurensis 58.2875 21.8625
Grapefruit, Citrus x paradisi 66.9000 20.6750
Honeydew, Cucumis melo 63.1250 21.2625
Kiwi fruit, Actinidia chinensis 60.3125 21.4000
Lemon, Citrus limon 65.6125 19.6750
Lime, Citrus aurantiifolia 64.4000 20.1250
Mango, Mangifera indica 56.2125 18.4875
Onion, Allium cepa (Red) 60.0125 19.7375
Onion, Allium cepa (White) 58.5250 18.7000
Onion, Allium cepa (Yellow) 62.1125 18.8750
Orange, Citrus auranitum 61.8875 21.7125
Papaya, Carica papaya 60.8375 20.0250
Pear, Pyrus communis 58.4500 19.5250
Potato, Solanum tuberosum 51.8125 19.3875
Radish, Raphanus sativus 62.9250 18.5125
Squash, Cucurbita mixta 58.1750 16.4125
Strawberry, Fragaria chiloensis 65.3000 19.6125
Sweet potato, Ipomoea batatas 47.1375 16.7750
Turnip, Brassica rapa 56.6000 17.4250
Ethanol 5.2200 3.9800
Methanol 13.2300 12.2100
Ethanediol 8.9000 9.3600

Table 2.1: The dielectric properties of pure Water, different fruits, and different chemical
compounds at 5 GHz and room temperature ≈ 25 C◦. The values are obtained from [75, 91, 60].
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transmission (2.1c) technique uses air as a transmission line and employs holder/fixture to

contain the material [114, 104]. The coaxial probe (figure 2.1d) technique immerses a probe

connected to a coaxial cable inside the material [114, 104]. The three methods mentioned

above employ a signal generator/analyzer to analyze signals interacting with the material to

measure the dielectric properties. An example of a signal generator/analyzer commonly used

in those techniques is a Vector Network Analyzer (VNA); a device used to record changes that

occur to signals reflected off and/or transmitted through a material [114, 104]. Those reflected

and transmitted signals are commonly referred to as scattering parameters (i.e. S-parameters),

where the former represents the Reflection Coefficient (Γ), and the latter represents the Trans-

mission Coefficient (τ).

In the transmission-line and the free-space transmission techniques, both coefficients (Γ and τ)

are used to calculate the dielectric properties, whereas, in the coaxial probe technique, only the

reflection coefficient (Γ) is used. Several methods are discussed in the literature to calculate the

dielectric properties from Γ and τ . We refer to [115, 116, 47, 104] for a more in-depth analysis

of those methods, and postpone the discussion about our method to calculate the dielectric

properties to chapter 3.

Now that we have finished presenting the primer for the dielectric properties and their measuring

techniques, we move into discussing related work.

2.2 Related Work

In this section, we review work related to our research. We start with general work geared

towards sensing different phenomena for agricultural applications (§2.2.1). Then, we introduce

RF Sensing in more details by presenting work that employ RF Sensing in different sensing

applications such as human and machine sensing (§2.2.2). Following that, we focus on work that

utilize RF Sensing for agricultural applications (§2.2.3). Then, we discuss work on a particular

agricultural application, grape yield estimation (§2.2.4), which represents the objective of our
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(a) (b)

(c) (d)

Figure 2.1: Summary of ε∗ measuring techniques. Specifically, (a) the resonant cavity, (b)
the transmission line, (c) the free space transmission, and (d) the coaxial probe measuring
techniques.

thesis. Finally, we conclude this section by presenting a table 2.2 that summarizes the key

papers presented in each of the sections below and our work (i.e., SING). For each paper in the

table, we show the objective and the key features that the authors utilize to fulfil the objective.

We also show the employed methodology and whether or not the solution is invasive. By an

invasive solution, we mean a solution that requires any form of disturbance or direct contact

with the target/subject. For example, a solution that requires fruits to be removed from their

natural habitat is an invasive solution. Note that most of the work reviewed here have been

published in recent years, thus, constituting the state-of-the-art in their respective domains.
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2.2.1 Agricultural Sensing

Here we discuss recent work in agricultural sensing [74, 36, 90, 129, 121, 53, 43, 81, 137, 80, 31,

106, 117, 115, 116, 57, 79, 54, 139, 140, 88, 69]. We start with general work in agricultural sens-

ing [74, 36, 90, 129, 43], then we discuss work that deals specifically with moisture estimation in

agricultural applications [81, 137, 80, 31, 106, 117, 115, 116, 57, 79, 54, 139, 140, 88, 69, 121, 53].

In [74], the authors attempt to detect the presence of unwanted materials mixed with peanuts.

Specifically, they try to sense unwanted materials (e.g., sticks and stones) that may exist along

with the peanuts by measuring their dielectric properties. The authors employ the free-space

transmission technique to measure the dielectric properties; the peanuts are mixed with one of

five unwanted materials and poured into a polycarbonate fixture placed between four antenna

arrays, divided equally between the transmitter and receiver sides. Each antenna array consists

of four yagi antennas operating at 10 GHz and connected to a VNA. The authors conducted two

main experiments; the first is to determine the antenna arrays’ sensitivity to minute changes

in the attenuation and phase; the second is to measure the dielectric properties. According to

the results, the system can distinguish between unwanted materials and the peanuts given that

the peanuts’ characteristics (i.e., attenuation and phase shift) are known beforehand. Thus,

this system can alert to the presence of unwanted materials; however, it cannot report the

dielectric properties of the unwanted materials and the peanuts individually. The authors did

not report the system’s performance when multiple unwanted materials are mixed with the

peanuts simultaneously.

In [36], the authors discuss the possibility of detecting the ripeness state of oranges without

physically cutting them. The authors observed a correlation between sugar concentration and

the ripeness state of oranges. Thus, they designed experiments to measure the capacitance

value of oranges in a capacitance system. In a capacitance system, the capacitance value (in

farads) changes according to changes in the dielectric material between two conductive plates

if and only if the area of the plates and the distance between them are fixed [76]. The authors
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observed an inversely proportional relationship between the sugar concentration inside oranges

and the capacitance value from the experiments. However, this work is a mere indication of

the relationship between the sugar concentration and the capacitance value; it does not provide

a model to relate the ripeness state to the sugar concentration through the capacitance value.

Similarly, the authors in [90] relate the ripeness state of mangoes to the sugar concentration.

However, they measure the dielectric properties instead of the capacitance value to define such

a relationship. They employ the resonant cavity technique to measure the dielectric properties.

Similar to the previous work, this work does not introduce a specific model to estimate the

ripeness level of mangoes through the sugar concentration.

In [43], the authors also investigate the ripeness state of fruits (i.e., bananas in this work); but

they employ the Electrical Impedance Spectroscopy method to do so. Electrical Impedance

Spectroscopy works by measuring the impedance between two electrodes attached to the ob-

ject under test. This work is motivated to prove that the physiological and biochemical changes

resulting from fruit’s ripening introduce electrical impedance changes. Thus, the authors at-

tached electrodes to bananas in various ripening states and measured the impedance. They

concluded that the real and imaginary parts of impedance do increase as bananas continue to

ripe. This work serves as a proof-of-concept but lacks the methodology to estimate bananas’

ripeness from electrical impedance.

In a similar vein, the authors in [129] assess the ripeness state of yellow peaches, but through

the peaches’ colour. They employ hyperspectral imaging to infer the colour, from which the

firmness and the sugar concentration can be derived and the ripeness estimated. Hyperspectral

imaging works by breaking a single pixel in an image into a broad spectrum of frequencies

instead of the primary Red, Green, and Blue. Each spectrum is called a spectral band, and

it is a continuous set of frequencies [41]. The authors construct a 11 X 11 brightness map

for 45 spectral bands for each yellow peach, and feed this into a 3D-CNN and Multi-task

learning models to estimate the firmness and sugar concentrations. Although firmness and

sugar concentration are assessed in this work, the moisture content is not; moisture content
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is an important factor in determining the ripeness state of fruits, including yellow peaches [129].

We now move to discuss recent work targeted towards moisture estimation in agricultural ap-

plications [81, 137, 80, 31, 106, 117, 115, 116, 57, 79, 54, 139, 140, 88, 69, 121, 53]. We start

with the work in [81] where the authors measure the moisture content in peanuts through the

Near-InfraRed (NIR) spectroscopy. NIR spectroscopy is a type of vibrational spectroscopy that

utilizes photon energy in the wavelength range of 750 to 2500 nm (the near infra-red spectrum)

to promote molecules in a material to vibrational excitation state [96]. In doing so, different

organic components of the material such as moisture can be estimated as a result of the inter-

action between the photons and the molecules inside the material. Typically, an NIR machine

consists of a radiant energy source, a wavelength discrimination device, a sample holder, and a

detector [81]. Quartz tungsten halogen lamp is usually considered as a radiant energy source.

The wavelength discrimination device is used to split the incoming wave into the different fre-

quency components constituting the wave. The sample holder is where the object under test

is placed, and the detector is used to convert the radiant energy into an electrical signal for

further processing. In this work (i.e., [81]) the authors employ the NIR machine to estimate the

moisture content of peanuts. Specifically, they measure the absorbed and reflected signals from

peanuts with different moisture contents to establish a regression model. The regression model

takes as inputs the absorbed/reflected signals and outputs the moisture content. One of the

NIR machine’s main drawbacks is that it cannot penetrate thick samples; thus, it can only be

used for physically small samples such as peanuts. Also, the near infra-red spectrum is highly

absorbent when exposed to fats, oil, and proteins, along with water. Therefore, agricultural

products rich in those components may hinder the NIR machine ability to estimate moisture

content.

In [137], the authors estimate the moisture content in sweet corn by measuring their dielectric

properties. The free-space transmission technique is employed to measure the dielectric prop-

erties. The authors pour the kernels into a sample holder, which resides inside an RF chamber.

The RF chamber is a structure where the walls are covered with radiation-absorbing materials
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to minimize (if not eliminate) the multi-path effect. The authors feed the dielectric properties

measurements to a deep neural network to map the dielectric properties to moisture content.

In [80], the authors investigate moisture estimations for grain and nuts through the capacitive

sensing approach. The capacitive sensing works by placing dielectric materials (grain and nuts

in this work) between two conductive plates and measuring the capacitance value. From the

capacitance value, the authors adopt a well-defined method of mapping the capacitance value

to dielectric properties (specifically, the relative permittivity) at two frequencies [77, 78]. From

there, the authors developed a regression model to obtain the moisture content. One primary

requirement of the capacitive sensing approach is that air between the samples should be min-

imized (if not eliminated). The reason being is that air is a dielectric material; thus, air can

alter the capacitance value.

We now move from fruits and vegetables moisture sensing, to moisture sensing in soil [121, 53,

31]. In [121], the authors investigate moisture estimation in the soil through Radio Frequency

Identification (RFID). RFID consists of a reader (interrogator) and tags, each with a unique ID

number to enable communication with the reader [58]. A tag is essentially an IC and an antenna

and is activated by the reader. The tag communicates with the reader through backscattering

communication [58]. The work (i.e., [121]) is motivated by the authors’ observation, which

states that a coupling effect occurs between soil and RFID tag’s antenna attached to the soil

due to the soil’s moisture content. Also, they claim that the amount of coupling is directly

related to the moisture level in the soil. As a result, three of the signal’s features are affected by

the coupling; the signal’s phase, the Received Signal Strength (RSS), and the minimum power

required to activate the tag (MRT). The authors discard the first two features and focus on

the last. Regarding the phase, the authors discard it because several moisture levels could have

the same wrapped phase (i.e., the phase between −π and π). For the RSS, the authors choose

MRT over RSS because the latter is more susceptible to environment’s noise than the former

as RSS represents the round-trip channel from the reader to the tag and back to the tag. In

contrast, MRT represents the channel between the reader and the tag only.
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To estimate the moisture content, the authors attach two tags to a pot filled with soil with

different moisture contents and measure MRT. Then, a regression model is established to map

between the moisture content and MRT values. Two tags are chosen to be robust against

changes to pot’s location. The idea is that two spatially close tags should experience similar

environment effect despite pot’s location, and that can be utilized to cancel out environment

effect on the signal. Low pass filter is used to remove environment noise as environment noise

(e.g., people moving, for example) is more frequent than changes in soil’s moisture. In this

work, parameters like tag’s type, tag’s location on the pot, and tag’s orientation with respect

to the reader are derived from experimentation rather than theoretical analysis; this may hinder

the system’s scalability.

Escriba et al. [53] rely on capacitive sensing to estimate moisture and salinity of the soil. The

moisture content is related to the capacitive value (as discussed earlier), and the salinity is

related to the electrical conductivity. This work is focused more on designing the capacitive

sensor than on establishing an enhanced theoretical model to map the above-mentioned param-

eters to capacitive and electrical conductivity values. Balaghi et al. [31] discuss the moisture

estimation in the soil through the neutron probe device. The neutron probe is a device placed

into the soil (similar to a capacitive sensor) that emits fast neutrons, which slow down as they

interact with the hydrogen bond in water and reflect back to the probe. Depending on the

amount of returned neutrons, the moisture in soil is estimated. Significant drawbacks with this

device are cost, complexity, and the need for a licensed operator to operate the device [34].

A common theme for all the reviewed work in this section is the invasiveness of the solu-

tions proposed, whether by removing the agricultural products from their natural habitat (e.g.,

[137, 36]) or inserting/attaching sensors directly on them (e.g., [53, 31]). An optimal solution

is a solution that remotely senses phenomena without disturbing the growth of agricultural

products. From this, we introduce the concept of RF Sensing : the utilization of the interaction

between signals and the environment to perform sensing in a non-destructive and a non-invasive

fashion. Thus, the next two sections discuss recent works that adopt RF Sensing for general
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applications (§2.2.2) and agricultural applications (§2.2.3), respectively.

2.2.2 RF Sensing for General Applications

In this section, we discuss recent work that utilizes RF Sensing for different sensing applications.

Specifically, we focus on human, machine, and material sensing through RF Sensing. By doing

so, we want to emphasize the applicability of RF Sensing to different domains. We start with

human sensing. In [29], the authors proposed SafeDrive-Fi, a system that utilizes the Channel

State Information (CSI) to differentiate between safe and dangerous driving behaviours. The

authors establish an activity database to map CSI measurements to different driver’s move-

ments that reflect a specific behaviour such as angry or sleepy. From that, SafeDrive-Fi record

CSI measurements and employs k-Nearest Neighbor (kNN) and Support Vector Machine (SVM)

classifiers to match the readings to the behaviour stored in the database. The authors in this

work do not report how factors like the distance between the driver and the transceiver affect

the results or how CSI measurements will differ depending on the driver’s physical appearance.

Also, establishing an activity database is a non-trivial task, especially with many variables

(including the two variables mentioned above) that may affect the CSI measurements inside a

moving car.

BodyCompass is a work published by Yue et al. [133] to estimate a person’s posture while sleep-

ing through RF Sensing. BodyCompass employs the Frequency Modulated Continuous Wave

(FMCW) radar. FMCW works by emitting continuous waves that are frequency modulated

and can detect the speed and the distance between the radar and objects in the environment

[133]. BodyCompass works by capturing continuous RF snapshots of the environment and

dividing them into specific periods; each period represents a single posture. An RF snapshot

is a grid that represents RF reflections off the environment at a given time. In a series of RF

snapshots, BodyCompass differentiate between reflections off a person and the environment

by monitoring a recurring pattern in the signal’s phase resulted from a person’s chest move-

ment; a characteristic of breathing. To recover the posture from a series of RF snapshots,



2.2. Related Work 15

BodyCompass employs a fully connected neural network. In this work, BodyCompass requires

training when exposed to a new environment. Also, the authors do not discuss BodyCompass

performance when multiple persons are inside the room, or when the system faces a person’s

back; this may hinder BodyCompass’s ability to monitor chest movements. The authors in

[82] proposed RFWash, a system that monitors the nine hand movements recommended by

the World Health Organization for hand hygiene. RFWash uses a millimetre wave radar to

recognize hand gestures. Millimetre-wave radars can detect micro hand gestures thanks to the

radar’s small wavelength. RFWash works by predicting a sequence of hand hygiene gestures

rather than individual gestures; the reason being that a person washing his/her hand usually

performs a sequence of gestures rather than a single one. Thus, RFWash is trained on a labelled

sequence of gestures to estimate the most likely gesture sequence during run-time. RFWash

employs deep neural network for the learning process. A main requirement of RFWash is that

users have to remain stationary throughout the whole process.

WiFace [42] is another example of human sensing through RF Sensing. WiFace adopts RF

Sensing to build non-invasive facial expressions detection system. WiFace utilizes CSI streams

(i.e., readings) to accomplish the task. Specifically, WiFace records CSI streams and separate

the weak facial expressions footprint on the signal from the dominating noise by applying Ham-

pel identifier and Butterworth low-pass filter. The former is applied to to remove bursty noise

in the signal and the latter to remove high frequency components corresponding to noise. The

two filters are applied because, according to the authors, noise in the signal has sudden spikes

(i.e., bursty) and higher frequencies. Since WiFace is applied in an indoor environment, the

system has to be robust to the multi-path effect. To do so, the authors transform the CSI mea-

surements back to the time-domain, and discard signals delayed more than a specific threshold

before transforming CSI back to the frequency-domain; the threshold is derived from a previous

paper [73]. Due to the high number of CSI streams, the authors employ Principle Component

Analysis (PCA) to reduce the dimensions of the data. After applying PCA, the authors ob-

served that the first principle components contain flat and steep slope regions correspond to

non-facial and facial expressions, respectively. Thus, WiFace focuses on the steep slope regions,
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and applies a classifier to detect six facial expressions (i.e., happy, fearful, surprised, happily

surprised, angrily surprised, and fearfully surprised). In this work, the user have to be in a close

proximity to both the transmitter and receiver; all non multi-path communications between

the transmitter and the receiver have to pass through the user. Finally, we believe that sys-

tems with higher frequencies, such as Google Soli at 57 - 64 GHz [19], may be better equipped

to detect micro facial expressions than WiFi based systems due to the former short wavelengths.

Other examples of human sensing include FarSense [135], which utilizes CSI measurements to

estimate a person’s respiration rate, and MultiSense [134] an extension of FarSense to include

multiple persons. In [28], the authors introduced Vital Radio, a system that estimates the

respiration and heart-rate of multiple targets in an indoor environment. Vital Radio leverages

FMCW ability to capture and store the reflection off different spatially-separated targets into

different frequency buckets. This allows Vital Radio to estimate the vital signs of each tar-

get individually. In [141], the authors extended Vital Radio to recognize a person’s emotions.

The extended model - called EQ-Radio - extracts the electrocardiogram (ECG) signal of the

heart, from which a classification model is used to recognize different emotions. RF-SCG [65], a

system that employs FMCW to capture the minute vibrations generated by the heart’s mechan-

ical activities before using deep learning to reconstruct the seismocardigram (SCG) waveform.

HARNN [49], a system that employs the deep recurrent neural network to establish a connection

between the WiFi CSI and human activities. WiDrive [30] aims at recognizing drivers activity

through CSI measurements by building a real-time recognition system based on Hidden Markov

Model (HMM). MultiTrack [110], a WiFi-based system to localize, track, and identify multiple

targets’ activities by reconstructing a signal profile for each target and compare the profile to

a pre-existing activity profile database. Widar3.0 [142], a system that identifies gestures by

building a velocity profile for each gesture that represents the power distribution over different

speeds. Widar3.0 leverages WiFi CST to build such a profile.

For machine sensing through RF Sensing, we discuss the following work [127, 72, 92, 136, 126].

In [127], the authors introduce TagSMM, a non-invasive vibration detection system through
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RFID. In this work, the RFID tags are not attached directly on the machines, thus, promoting

the non-invasive sensing. The main challenge in designing TagSMM is to amplify the target

machine’s frequency amplitude (i.e., the frequency of the vibration). In other words, the target

machine’s frequency amplitude will be buried in environment noises and need to be amplified.

To overcome this, the authors present the following observations: signals backscattered from the

tags to the reader represent either static path or dynamic path signals. The former represent

signals that do not interact with the target machine (i.e., line of sight and reflections off static

objects, such as walls, signals). The latter represents signals that interact with the target ma-

chine before reaching the reader. Three vectors are created from the two path signals; a static

vector, a dynamic vector, and a composite vector representing the first two vectors combined.

Each vector represents the amplitude and phase of their corresponding paths. According to the

authors, if the phase shift of the composite vector (i.e., between the static and dynamic vectors)

is 180◦, then the target machine’s frequency amplitude is amplified. Furthermore, if the com-

posite vector’s amplitude (i.e., the ratio between the static and dynamic vectors) is minimized,

then the target machine’s frequency amplitude is also amplified. From these observations, the

authors note that three parameters affect the target machine’s frequency amplitude: the phase

difference between the two vibration ends (i.e., the highest and lowest points of vibration), the

amplitude of the vibration (assuming it is constant during vibration), and finally the compos-

ite vector’s amplitude. The first two parameters are machine-related and cannot be modified,

whereas the last one can be changed; hence, TagSMM utilizes the last parameter.

To obtain a 180◦ phase shift, the path length between the static and dynamic vectors must be

nπ
2

where n is an odd number; this formula is obtained courtesy of the Fresnel Zone theory.

To reduce the amplitude ratio, TagSMM employs two tags that are < λ
2

apart; this intro-

duces capacitive coupling between the two tags’ antennas. The capacitive coupling interferes

destructively with the static path signals, thus reducing the static vector’s amplitude and, con-

sequently, the amplitude ratio. To prevent the capacitive coupling from interfering with the

dynamic paths signal, TagSMM reduces the RFID’s reader transmission power to the point

where the dynamic path coupling signals are faded before reaching the reader and interfering
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with the original dynamic path signals. In this work, the vibration must be apparent clearly

on the surface of the target machine, and any vibrations inside a machine cannot be detected.

Also, only a single target machine can exist withing the vicinity of the RFID’s reader and tags;

multiple vibration inducing machines may negatively affect the detection accuracy. Finally,

finding the optimal transmission power to prevent dynamic path signals coupling must adhere

to the following requirements: the static and dynamic path signals are received, the static path

coupling signals are received, the dynamic path signals are not received, and finally the distance

between tags must be small to introduce coupling effect. All these requirements, coupled with

the fact that the transmission power is a function of different factors such as antennas’ gain,

renders the task of finding the optimal transmission power complicated.

Similar to [127], the authors in [72] measure machines’ vibrations. Specifically, the authors

address two challenges: first, how to isolate a machine’s vibrations from the multi-path signals.

Second, how to amplify the phase changes due to vibrations when they are much weaker than

the dominating noise. To this extent, the authors introduce mmVib, a system that employs

a Millimetre-wave radar to detect non-invasively micrometer-level vibrations. mmVib consists

of three components: vibration detection, robust vibration extraction, and vibration refine-

ment. In vibration detection, mmVib focuses on frequency bins that may contain a vibration

activity by analyzing the range-doppler spectrum. The spectrum shows the distance and the

speed of a moving object (e.g., machine induced vibrations). The robust vibration extraction

is accomplished by combining vibration signals from multiple chirps. A chirp is a signal that

increases/decreases in frequency with time. Finally, the vibration refinement is accomplished

by utilizing the radar’s antenna array to calculate the Angle-of-Arrival (AoA) and refine the

vibration measurements. In this work, a Millimetre-wave radar operating at the 77 GHz is em-

ployed. Because of the radar short wavelength, mmVib cannot detect vibrations inside highly

conductive materials (e.g., metals). Actually, mmVib works effectively when it is close and has

a line-of-sight communication with the target machine. Thus, mmVib cannot be easily adopted

in factories full of metallic machines.
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DroneScale [92] is a system designed to estimate external load carried by commercial (unmod-

ified) drones. The main intuition behind DroneScale is that the load’s weight will affect the

force needed to fly the drone, and such a force will alter the drone’s body vibration. To this

extent, DroneScale presents two main contributions: estimating the drone’s model and the

load’s weight by inferring the drone’s vibration. Unlike the work reviewed earlier (i.e., [127]),

DroneScale utilizes the Doppler shift to infer the drone’s vibration. According to the authors,

current RF systems cannot capture a 1Hz frequency shift. Thus, DroneScale is equipped with a

specialized down-converter and a low noise Analog to Digital Converter (ADC); both chips are

different from what exists in current RF systems. The authors note that vibration’s frequency

is affected by three factors: drone’s vibration speed and peak to peak drone’s displacement

resulted from vibrations. The latter is fixed to 5mm (derived from experimentation), and the

former is obtained from the Doppler shift. After obtaining the drone’s vibration frequency,

DroneScale employs Support Vector Machine (SVM) classifier to infer the drone’s model and

the load’s weight. The classifier is trained using five drone models. DroneScale works at the

2.4 GHz and is a passive system; it only listens to signals. Since DroneScale does not transmit

signals and the 2.4 GHz spectrum is busy, the authors do not discuss how DroneScale avoids

interference from other RF systems. Also, DroneScale is able to detect drones, and estimate

their load, from 200 meters away; this is accomplished thanks to the DroneScale’s antenna high

gain (19 dBi). However, such a narrow beamwidth may complicate the Doppler shift measure-

ments because drones leave the antenna’s field of view almost instantly.

IntuWition [136] tries to answer a specific question: can commodity RF radios sense an object’s

location and type? IntuWition is a system mounted on a drone that sense objects’ locations

and types by analyzing the reflected waves’ polarization. IntuWition is based on the fact that

different objects affect waves’ polarization in different ways [136]. For example, a perfectly

smooth metallic surface will reflect waves while removing their polarization; whereas a per-

fectly smooth non-metallic surface will reflect waves and retain their polarization. IntuWition

measures polarization by receiving the signals at three vertically-polarized antennas; these an-

tennas are perpendicular to each other. A key challenge in designing IntuWition is to “retrieve”



20 Chapter 2. Background

the correct polarization when the reflected waves bounce off multiple objects before reaching the

antennas. To address this challenge, IntuWition separates objects based on their distance from

the system. Then, it marks each object as legitimate if and only if its phase shift is not the sum

of other legitimate objects’ phase shifts. In other words, the waves did not interact with other

objects before reaching the current object. Clock synchronization between the transmitter and

receivers is enabled by connecting a wire between the transmitter and receivers to ensure cor-

rect phase shift measurements. After retrieving the correct polarization, IntuWition employs a

Multi-Layer Perception model to infer the correct material. The model classifies five different

materials: copper, aluminium, plywood, birch, and human. Intuition performance suffers when

objects are small, moving fast, or well-shielded. It also cannot differentiate between objects

with similar polarization characteristics.

We conclude this section by discussing RIM [126], an RF-based inertial measurement system

that measures a device’s speed, direction, and rotating angle. RIM is an RF version of Iner-

tial Measurement Unit (IMU), which usually consists of an accelerometer, a gyroscope, and

a magnetometer [124]. RIM works by creating “virtual” antennas; each represents CSI mea-

surements of a physical antenna at a specific time and location. For example, when a physical

antenna records CSI measurement at location li and time ti, RIM creates a virtual antenna

vi, which represents the CSI measurements at the mentioned location and time. Thus, two

physical antennas are “aligned”, if one of them resides at a virtual antenna created by the

other physical antenna. RIM decides if a physical antenna resides at a virtual antenna’s loca-

tion by comparing their CSI measurements. To compare two CSI measurements, RIM employs

the Time-reversal resonating strength, which is a metric based on the Time-reversal focusing

effects. Time reversal is a physics phenomenon dictating that the transmitted signal’s energy

will be focused temporospatially when combined with its time-reversed and conjugated coun-

terpart [40]. Because CSI changes according to changes in the environment, virtual antennas

last for a short time where CSI measurements are most likely unchanged. The device’s speed -

a task accomplished conventionally by accelerometers - is obtained by searching for two aligned

antennas and measures the time it takes for the trailing antenna to reside at a virtual antenna
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created by the proceeding antenna; since the distance between the physical antennas is fixed,

the speed can be obtained. The device’s heading direction - a task accomplished conventionally

by magnetometers - is obtained by finding two aligned antennas such that one of them is leading

and the other is trailing; the heading direction is the direction of the leading antenna. Finally,

the device’s rotation - a task accomplished conventionally by gyroscopes - is obtained when all

physical antennas are aligned; this occurs only when a device is rotating. Note that RIM can

detect only yaw movements, and cannot detect roll or pitch movements.

2.2.3 RF Sensing for Agricultural Applications

This section aims to connect the two previous sections together to present agricultural sensing

through RF Sensing. As mentioned earlier, agricultural sensing through RF Sensing is the

scope of this thesis. Thus, we dedicate this section to discuss related work in that domain.

We start with the work presented in [132], where the authors investigate soluble sugar content

estimation in fruits. Specifically, they aim at utilizing RF signals to estimate Brix values. Brix

(◦Bx) is a metric to measure soluble solid content in an aqueous solution. 1 ◦Bx refers to 1 gram

of sucrose in 100 grams of aqueous solution [132]. The proposed system is a millimetre-wave

radio operating at the 60 GHz frequency. The system transmits and receives signals through

directional horn antennas, which contact the fruit directly. In detail, the authors investigate

the impact of fruit’s diameter, fruit’s surface roughness, fruit’s flesh density, and antennas’

location on the Received Signal Strength (RSS). After examining the factors mentioned above,

the measured RSS values are used to extract three features: the maximum amplitude value,

the peak-to-peak amplitude value, and the channel power spectrum. The first two features are

obtained from the time-domain signals, whereas the last one is obtained from the frequency-

domain. The system utilizes the RSS values along with the three features to calculate, for each

feature, first, second and higher-order statistics such as mean, median, variance, and standard

deviation. The resulted statistical values, and RSS values, construct feature vectors. For each

feature vector, the system employs the correlation-based feature selection (CFS) to determine
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the vector’s usefulness. CFS works by selecting features based on the correlation’s score against

an objective. In here, CFS obtains correlation scores, and consequently features, by employing

three feature-searching algorithms: Greedy Forward search, Genetic search, and Firefly search.

Each search algorithm outputs a subset of features. Each subset is fed into three regression

models: Linear regression, Random Forest regression, and Support Vector regression. The re-

gression models output Brix values; the objective of this work.

In this work [132], the authors assume a direct contact between antennas and fruits; this is

to ensure that all waves travel directly from the antennas to the fruit without encountering a

medium between them. Any medium in-between will alter the waves properties before reaching

the fruits, which reduces the proposed system’s accuracy substantially. Thus, the proposed sys-

tem cannot work efficiently on fruits that are smaller than the antennas’ aperture as some waves

will travel directly from the transmitter to the receiver without interacting with the fruits. Also,

a consequence of the direct contact between antennas and fruits, the signal propagation occurs

in the near-field region rather than the well-defined far-field region [33]. The authors mention

briefly that the signal propagation occurs in the near-field region, but they do not elaborate

on how operating in this region may affect the results. With respect to the proposed models,

they are based on the RSS values. However, many research works in agricultural sensing -

as discussed in section 2.2.1 - rely on measuring the dielectric properties to estimate organic

components such as sugar and moisture content. Contrary to RSS, the dielectric properties

are a characteristic of the organic components themselves; a change in the component’s value

is translated into a change in the dielectric properties value. Thus, we believe that measuring

the dielectric properties directly is more efficient to estimate organic components than merely

measuring the RSS.

FruitSense [111] detects the ripeness state of fruits through the WiFi signals at the 5 GHz

band. FruitSense focuses on climacteric fruits, which continue to ripen even after leaving the

plant. Thus, FruitSense is targeted towards end-users to determine if a fruit is edible based

on its ripeness. FruitSense utilizes CSI measurements to sense fruits’ physiological changes.
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A key challenge in designing FruitSense is to separate signals travelling through a fruit from

multi-path signals. To resolve this, the authors leverage the power delay profile, which records

received signals’ power intensity as a function of propagation delay (i.e., time). Intuitively,

signals travelling through a fruit will appear earlier than multi-path signals because the former

experience the shortest path between the antennas. FruitSense “stitches” all channels in the 5

GHz band to construct 600 MHz bandwidth, which translates to 1.5 ns resolution. The authors

claim that such resolution is enough to separate the direct signal from the multi-path. However,

channels in the 5 GHz band are non-uniformly spaced due to regulations; thus, applying the

Inverse Fast Fourier Transform (IFFT) to obtain the power delay profile is inaccurate as IFFT

works with uniformly spaced frequency spectrum. To overcome this issue, FruitSense applies

the Inverse non-uniform Discrete Fourier Transform (NDFT) instead of IFFT. After recovering

the signals that travelled through the fruit, NDFT is applied to transform the signal back to

the frequency-domain. Then, FruitSense extracts features from the CSI measurements through

Maximal Overlap Discrete Wavelet Transform (MODWT). Contrary to Discrete Fourier Trans-

form, Discrete Wavelet Transform decomposes the signals based on wavelets rather than sine

waves. After features’ extraction, FruitSense cross-correlates the features against features in

a profile library. The library contains four ripeness states: Unripen, Half Ripen, Ripen, and

Over Ripen, for two fruits, Kiwi and Avocado. The ripeness ground truth is measured through

a spectrometer, which emits light signals and measures absorbed/scattered signals to infer the

ripeness level.

As mentioned earlier, FruitSense is geared towards end-users; however, FruitSense’s current de-

sign is inefficient. To explain, WiFi Access Points (APs) are installed usually in high locations

to provide the best coverage [97]; thus, they tend to be relatively far from receivers such as

laptops. However, for FruitSense to work efficiently, the user should place the fruit under test

between the WiFi APs and a receiver, which should only be 20 cm apart. This is an unreal-

istic requirement and undermines a main contribution of the work; the removal of multi-path

signals. Intuitively, the multi-path effect is more prominent when the distance between com-

munication devices increases because the signals will bounce off more objects. Therefore, the
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short distance between the transmitter and receiver is enough reason to ignore the multi-path

effect. A better approach is to examine how changing the distance between transmitters and

receivers may affect the multi-path profile, and consequently, the system’s accuracy. Also, be-

cause of the short distance, the signal propagation most likely occurs in the near-field region;

the authors do not discuss how FruitSense copes with that. Finally, similar to the previous

work (i.e., [132]) FruitSense does not rely on the dielectric properties to estimate physiological

changes. As explained earlier, the dielectric properties are highly-sensitive to those changes,

which makes them more useful to consider than CSI measurements alone.

The authors in [130] present Wi-Wheat, a system to estimate moisture content in wheat through

RF Sensing. Wi-Wheat utilizes the CSI measurements at the WiFi 5 GHz band to estimate

moisture content. Wi-Wheat consists of three components: Data Preprocessing, Feature Ex-

traction, and Classification. In Data Preprocessing, Wi-Wheat “cleans” the raw CSI measure-

ments by performing outlier detection, data normalization, and noise removal. The outlier

detection removes spikes and abnormal values in CSI measurements through the Pauta crite-

rion method [86], which swaps the outliers with the data mean value. The data normalization

is performed to enhance the classifier’s detection accuracy by limiting the input’s data range to

(0,1). The noise removal applies the Chebyshev Type II filter to remove environment noise from

the data. After the Data Preprocessing step is finished, Wi-Wheat performs Feature Extrac-

tion step by applying Principle Component Analysis (PCA) [27] to highlight the data’s main

characteristics. Afterwards, Wi-Wheat employs the support vector machine (SVM) classifier

to estimate the moisture content based on features extracted from the last step.

Wi-Wheat is based on CSI measurements. However, the authors do not consider the fact that

CSI measurements on commercial WiFi APs are well-known to contain phase offset, carrier

frequency offset, sampling frequency offset, and symbol timing offset because of unsynchro-

nized transmitters and receivers [134]. Without compensating for the offsets mentioned above,

the CSI measurements are highly error-prone. Also, the authors do not discuss experiments

parameters such as the distance between transmitters, receivers, and wheat as well as the
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weight/volume of wheat; we suspect that those parameters should affect Wi-Wheat perfor-

mance significantly. Finally, in the Data Preprocessing step, Wi-Wheat applies the Chebyshev

type II filter to remove “environment noise”; however, the authors do not define environment

noise properly nor explain the motivation behind choosing Chebyshev filter.

We conclude this section by discussing Strobe [48]. Strobe senses soil moisture through RF

signals. Strobe utilizes the fact that RF waves travel slower in soil due to the soil’s higher

permittivity compared to air. Strobe estimates soil moisture content and soil salinity through

permittivity and conductivity, respectively. The permittivity and conductivity are calculated

by measuring the apparent permittivity and the apparent conductivity, respectively. Accord-

ing to the authors, the apparent permittivity - different from the real permittivity - is the soil

permittivity in situ and it is a function of the waves’ velocity and frequency. The apparent

conductivity - different from the real electrical conductivity - is the soil electrical conductivity

in situ and it is a function of the apparent permittivity and attenuation coefficient. The latter

measures signals attenuation as they pass through a material [48]. To obtain waves’ velocity,

Strobe employs multiple antennas to measure the relative ToF, from which, waves’ velocity is

obtained [83, 128]. To obtain the apparent conductivity, Strobe utilizes the amplitude ratio be-

tween the three antennas to compute the attenuation coefficient; the attenuation coefficient and

the apparent permittivity are used to compute the apparent conductivity. To correctly compute

the apparent permittivity and conductivity, Strobe assumes that the moisture content and salin-

ity are the same around the three antennas. Also, the transmission path is the same between

the transmitter and the three receivers; the only difference is the extra distance travelled by the

signals between the three receivers. The authors cannot control the first assumption; thus, the

authors focus on satisfying the second assumption. To do so, the authors install the antennas

inside the soil in vertical positions; one antenna nearly above the other. After calculating the

apparent permittivity and conductivity, Strobe obtains the real permittivity and conductivity

by approximating the apparent permittivity to the former, and using linear regression on the

apparent conductivity to compute the latter. Strobe converts the permittivity and conductivity

to the moisture content and salinity through exploiting well-defined models used by soil sensors.
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Strobe is based on WiFi signals, specifically, the 2.4 GHz band because - according to the

authors - the 5 GHz band is highly attenuated in soil. Since WiFi signals suffer from the

multi-path effect due to signals propagating in “every” direction, Strobe employs the Multiple

Signal Classification (MUSIC) algorithm to recover the direct path from the transmitter to the

receivers. As mentioned earlier, Strobe installs multiple antennas as receivers inside the soil.

The distance between the antennas is derived from experimentation on the soil where Strobe

is installed. Since soil is different in different locations [105], Strobe may require re-calibration

when installed in a new environment. Although this work uses RF signals to estimate soil’s

moisture and salinity in a non-invasive fashion without installing special sensors in soil, the

authors do install antennas inside the soil. Thus, Strobe is not entirely non-invasive, and it can

only sense moisture/salinity as deep as 30 cm inside the soil. Existing conductive soil sensors,

for example, can accomplish the same job as Strobe by installing a single sensor in soil rather

than three antennas [35].

2.2.4 Grape Moisture Sensing

In the previous sections, we reviewed recent work in human/machine/material sensing through

RF Sensing (§2.2.2), and agricultural sensing through RF Sensing (2.2.3). By doing so, we

want to illustrate what RF Sensing means by providing examples of recent work that adopt

RF Sensing in different applications, especially agricultural applications. Following that, we

conclude this chapter by presenting recent work in grapes yield estimation through non-invasive

sensing. Grapes yield estimation is an agricultural application, and non-invasive sensing is a

by-product of RF Sensing. Thus, combining both represents the main objective of this thesis.

Before reviewing recent work, we discuss the current practise for yield estimation. Currently,

yield estimation is based on measuring cluster’s weight manually to estimate the moisture

content, and eventually the yield [107, 125]. This is a laborious and invasive process as sparse

samples are cut from the vineyard to extrapolate the overall yield at harvest time. The samples
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are taken to predict the yield for the current growing season and/or subsequent seasons [44].

For the current season, samples are taken in the lag phase period, which is the time when the

seeds begin to harden and the cluster’s weight reaches around 50% of their final weight. Then,

the final weight is computed through multiplying the estimation from the lag phase period by a

constant value; the constant value is typically determined from past growing seasons [44]. This

approach is problematic as such predictions do not incorporate the new year’s environmental

factors that impact the grape growth such as diseases and climate change [45]. Following the

current practise, the inaccuracy in yield estimation could reach as high as 40% [122]. Thus, the

ideal is a mechanism that can estimate grapes moisture content non-invasively in a more gran-

ular and continuous way to observe the diversities of the field; this makes the grape products

more sustainable and cost-effective.

Non-invasive alternatives to the current practise can be categorized into measuring grapes

weight [84, 67, 113, 39, 112] or counting grapes [45, 93, 94, 56, 51, 102, 62]. We start with

the former and discuss the work in [84]. The authors in [84] investigate RGB cameras’ ability

to estimate clusters size through a single frame. The authors mount an RGB camera on top

of a robot that moves between vineyard rows. The authors conduct two main experiments, a

controlled experiment and a vineyard experiment. In the controlled experiment, vine plants

are placed into pots with a black background behind the pots to enhance images clarity. The

vineyard experiment is an uncontrolled experiment where the robot moves between vineyard

rows. In both experiments, the camera records videos of the target scenes. Frames are ex-

tracted from the videos and parsed into RGB images and point clouds. A Point cloud is a

set of sampled points from space representing a shape. In the vineyard experiment, images

are treated with different filters to enhance the clarity of those images. Afterwards, clusters

in the images are labelled manually or by a detection algorithm based on grapes colour. Fi-

nally, different estimation methods are applied to the clusters to obtain the clusters’ width

and height. The estimation methods work by fitting a shape on a cluster and computing the

shape’s dimension. For example, the Ellipsoid fitting algorithm works by fitting an ellipsoid

on a cluster and computing the ellipsoid’s dimension. A key concern for this work is the au-
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tomated labelling of clusters with similar colours to the foliage (i.e., leaves). In this case, the

labelling algorithm may identify a cluster as leaves and vice verse. To overcome this, manual

labelling is applied. However, manually labelling thousands of images is impractical. Thus, the

authors choose vines where the colour of grapes is different from the colour of foliage; red in the

controlled experiment and blue in the vineyard experiment, whereas the colour of the foliage is

green.

The authors in [67] proposed a system to estimate yield by measuring clusters’ mass through

FMCW radars. This is different from yield estimation from optical imaging (e.g., [84]) because

EM waves can interact with hidden grapes, work at night, and are not affected by the lumi-

nosity of the scene and the colour of grapes. The proposed system works by constructing 3D

radiation images, which can be further exploited to estimate the mass of grape clusters. In

detail, the system starts by scanning vine plants and recording the echos (i.e., reflections) from

the plant. The echos are recorded for different waves’ polarization configurations such as a ver-

tically polarized transmitter and horizontally polarized receivers. The echos are transformed to

isosurfaces, representing the power spectrum of the echos in space (i.e., vine plant’s location).

The isosurfaces are transformed to contours, where each contour is wrapped around a high

power echo (i.e., an echo peak). Each contour represents a volume of strong reflections, which

may indicate a cluster. After defining the contours, the system employs linear regression to

calculate clusters’ mass from the contours. The regression model is trained by measuring the

mass of harvested clusters. The authors employ three FMCW radars operating at 24, 77, and

122 GHz, respectively. Each radar is placed opposite to vine plants and is moved parallel to

the vineyard’s row to scan consequent plants. The antennas mounted on the radars are rotated

in elevation and azimuth angles, to measure the plants from different angles.

In this work, other materials that co-exist with clusters such as leaves and trunks affect the sys-

tem’s accuracy as evident by empty vines experiment. In the experiment, the authors examine

the system’s performance on empty vines with everything intact except clusters. Ideally, the

system’s should report zero mass as no clusters exist, however, the system reported non-zero
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mass measurements. This indicates the system inability to distinguish between clusters and

other vegetation materials. As mentioned earlier, the antennas are rotated to scan vines from

different angles. The rotation’s angles - both elevation and azimuth - are dependant on vines’

structure. In this work, the angles are defined manually. However, in a vineyard with thousands

of vines, manual angle determination is infeasible. Since the system employs radars with high

frequencies (i.e., 24, 77, and 122 GHz), the penetration depth - according to Beer-Lambert law

[61] - is in the order of millimetres. Thus, we believe the system cannot scan all grapes, espe-

cially those at the back of the clusters. One possible solution is to scan the clusters from the

front and the back. However, this introduce another problem where measurements overlap and

some grapes are scanned more than once such as the middle grapes. In any case, the authors

do not discuss the penetration depth nor how to solve this issue.

Another method for yield estimation through weight measurements is the trellis tension wires

[113, 39]. The trellis wires are installed along vineyard rows, and the tension is measured con-

tinuously. As clusters grow, the tension on wires increases, which is used to estimate clusters’

mass. In [113], the authors install 12 tension wires; each wire covers three rows. The data

is collected over three years. To estimate the yield, the authors use the tension to yield ratio

obtained from the previous two years to estimate the current year’s yield. Similarly, the authors

in [39] installed trellis tension wires in ten vineyards at different locations. The methodology

followed in here is similar to that of the previous work, where tension to yield ratio from last

years are used to estimate current year yield. A primary drawback of trellis tension systems is

the need to install wires permanently in vineyards and that wires can be affected by environ-

mental factors such as wind and ambient temperature.

For yield estimation by counting grapes, we start with GBCNet [45]. GBCNet is a yield es-

timation model based on counting the number of grapes in clusters. GBCNet is an imaging

system, where a smartphone is used to capture vine plants and deep learning algorithms are

applied on the images to obtain the number of grapes. The system follows two approaches

to estimate the yield. The first approach is to compute the average number of grapes in a
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cluster then multiply this by the average grape’s weight, the average number of clusters in a

vine plant, and the average number of vine plants in the vineyard. The second approach is to

estimate the number of grapes in all photographed scenes in the vineyard and multiply this by

the average grape’s weight. According to the authors, the second approach is encouraged due

to published reports stating that a grape’s weight is more stable throughout the years than

a cluster’s weight. GBCNet applies convolution neural networks on the images to generate

density maps. The sum of the pixel values in the density map is the number of grapes. The

system is trained and validated on two sets, each containing images collected for different vine

plants. In the first set, each image represents a single cluster where the grapes are small and

separated from each other. The second set contains images of scenes where each scene contains

multiple clusters with different grape sizes. Since GBCNet is an imaging based system, the

scenes lighting conditions affect the system’s accuracy significantly. In some cases, the system

reports foliage as clusters, and cannot detect hidden grapes. The system may require multiple

training steps/phases as grapes grow and change colours.

The authors in [93] proposed a system to estimate yield by counting grapes. The system mounts

a camera and a light on a vehicle that travels between the vineyard rows. The camera captures

images of vine plants, and the light enhances the lighting condition of the captured scene. The

system aims at detecting grapes, then counting them. It consists of three components: 1)

Detecting possible grape locations, 2) Classifying detected locations as grapes or not, and 3)

Grouping adjacent grapes into clusters. For the first component, the system applies the radial

symmetry transform to search for candidate grape centers. The radial symmetry transform

works by finding points in an image with high symmetry around the points’ radial axis. Those

points represent possible grape locations. Afterwards, the system applies the K-Nearest Neigh-

bor (K-NN) algorithm to determine if a candidate location is a grape or not. K-NN algorithm

calculates the distance from every point in the training set’s feature space for each candidate

location. Based on the calculated distance, a location is labelled either as grape or not grape.

Note that K-NN may generate false-positive results. Thus, the system’s last component re-

moves the false-positive results by removing any point that is not close physically to at least
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five other points. In other words, the last component keeps clustered points as they represent

grapes in a cluster and discard the rest. The system estimates the yield by counting the grapes

and multiply the results by a grape’s average mass. Since this work uses a camera to count the

grapes, hidden grapes cannot be counted because they are invisible to the camera.

The work presented in [94] extends the previous work ([93]) and introduces the following addi-

tions: First, to detect grapes in an image, the authors apply the radial transform symmetry and

the invariant maximal detector algorithms. The invariant maximal detector algorithm works

by detecting light peaks surrounded by gradually fading light. This occurs as a consequence of

illuminating circular objects such as grapes. The peaks represent the grape centers. Second,

the authors map the detected grapes to their location on vines to avoid double counting. To

accomplish this, they stamp the vehicle’s location opposite to a vine on the taken images of

that vine. The vehicle’s location is obtained by mounting a second camera at the back of the

vehicle and applying the visual odometry algorithm. If multiple images are captured in the

same location, the image with the most detection is retained while the rest is discarded. We

believe this solution may leave some grapes undetected because they belong to the discarded

images. The last addition to this work is to estimate the hidden grapes number. The authors

solve this by deducing a cluster’s dimension from the number of detected grapes. The dimen-

sion is obtained either by retrieving the convex hull formed by detected grapes or by fitting

a 3D ellipsoid model to each grouped grapes. After obtaining the cluster’s dimension, visible

spaces inside the cluster may indicate partially hidden grapes. A grape obscured partially by

two visible grapes will translate into a space between the two detected grapes in an image.

Thus, we believe the approach to estimate hidden grapes may not work on entirely obscured

grapes since they are not represented by spaces in images.

As discussed at the beginning of this section, the current practise for grape yield estimation

is invasive, laborious, and highly inaccurate. However, the alternatives reviewed above suffer

from different drawbacks that render them error-prone and unscalable. On the one hand, the

weight based methods cannot distinguish between weight changes caused by grapes or other
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vegetation components such as trunks (e.g., [67]), are affected by environmental factors such as

ambient temperature (e.g., [39]), or are unscalable (e.g., [39]). On the other hand, the counting

based methods cannot detect hidden grapes (e.g., [94]), cannot distinguish between grapes

and foliage with similar colour (e.g., [45]), or are affected significantly by poor illumination in

captured images (e.g., [45]). We believe, however, that the key concerns for all the alternatives

are how dependant they are on information from past growing seasons and how they estimate

yield through mass and not volume. Regarding the former, the proposed systems above still

resort to information from past growing seasons such as grapes weight or the number of vines

in a row to estimate yields. This leads to inaccurate estimations as vineyards may change from

one year to another due to environmental factors [45]. Regarding the latter, both the weight

and counting based methods try to estimate the weight of grapes or clusters to estimate yields.

Yields are a function of volume and not mass, thus, those methods estimate yields indirectly.

Thus, the optimal is a solution that estimates grapes moisture content directly, independent

of past seasons information, non-invasive, and scalable. Inspired by RF Sensing solutions for

agricultural sensing, the next chapter introduces our solution for accurate, non-invasive, and

scalable yield estimation through RF Sensing: SING.

Paper Objective Key fea-

tures

Method-

ology

Model Output Invasive-

ness

[129] Assess ripeness

state of yellow

peaches

Images Hyperspe-

ctral

imaging

3D-CNN

Classi-

fier and

Multi-

task

learning

models

degree of

ripeness

yes

[81] Estimate moisture

content in peanuts

Reflected

signals

NIR

Spec-

troscopy

Regression

model

moisture

content

value

yes
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Paper Objective Key fea-

tures

Method-

ology

Model Output Invasive-

ness

[138] Estimate moisture

content in sweet

corn

Dielectric

Proper-

ties

Free

Space

Trans-

mission

tech-

nique

DNN

Classifier

moisture

content

value

yes

[80] Estimate moisture

content in grain

and nuts

Capacit-

ance

value

Capacitive

Sensing

Regression

model

moisture

content

value

yes

[121] Estimate moisture

content in soil

Minimum

power to

acti-

vate tag

(MRT)

RFID Regression

model

moisture

content

value

yes

[29] Differentiate be-

tween Safe and

Dangerous driving

CSI RF Sens-

ing (Wi-

Fi)

kNN and

SVM

classifiers

Safe vs.

Dan-

gerous

driving

no

[133] Estimate a per-

son’s posture while

sleeping

RF snap-

shots

(i.e.,

reflec-

tions off

environ-

ment at

a given

time)

RF

Sensing

(FMCW

Radar)

CNN

classifier

Posture

as a

function

of angels

no
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Paper Objective Key fea-

tures

Method-

ology

Model Output Invasive-

ness

[82] Detect hand move-

ments while wash-

ing

RF snap-

shots

RF

Sensing

(mm-

wave

Radar)

DNN

classifier

nine

hand

move-

ments

no

[42] Detect facial ex-

pressions

CSI RF Sens-

ing (Wi-

Fi)

Tree-

based

machine

learning

method,

SVM,

and kNN

six facial

expres-

sions

no

[28] Detect Breathing

rate and Heart-

beats

RF snap-

shots

RF

Sensing

(FMCW

Radar)

Mathem-

atical

model

Breathing

rate and

Heart-

beats

no

[127] Detect machine vi-

bration

Amplitude

and

Phase

shifts of

reflected

signals

RFID Mathem-

atical

model

vibration

fre-

quency

no

[72] Detect machine vi-

bration

range-

doppler

spectrum

RF

Sensing

(mm-

wave

Radar)

Mathem-

atical

model

vibration

fre-

quency

no
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Paper Objective Key fea-

tures

Method-

ology

Model Output Invasive-

ness

[92] Detect drone’s

model and carried

load weight

Doppler

shift

RF Sens-

ing

SVM

classifier

Drone’s

model

and load

weight

up to a

distance

of 200 m

no

[136] Detect object’s lo-

cation and type

Reflected

waves

polariza-

tion

RF Sens-

ing (Wi-

Fi)

Multi-

Layer

Per-

ception

classifier

five ma-

terials

no

[126] Build an RF-based

Inertial measure-

ment system

Time-

reversal

res-

onating

strength

RF Sens-

ing (Wi-

Fi)

Mathem-

atical

model

device’s

speed,

direction,

and ro-

tating

angles

(yaw

only)

no

[132] Estimate Brix

value in fruits

RSS RF Sens-

ing (mm-

wave)

Regression

models

Brix

value

yes
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Paper Objective Key fea-

tures

Method-

ology

Model Output Invasive-

ness

[111] Assess ripeness

state of fruits

CSI RF Sens-

ing (Wi-

Fi)

Cross-

correlation

against

a profile

library

Four

ripeness

states of

Kiwi and

Avocado

no

[130] Estimate moisture

content in wheat

CSI RF Sens-

ing (Wi-

Fi)

SVM

classifier

moisture

content

value

no

[48] Estimate moisture

content in soil

Permitti-

vity and

Conduc-

tivity

RF Sens-

ing (Wi-

Fi)

Mathem-

atical

model

moisture

content

value

yes

[84] Estimate grape

clusters dimension

images Optical

imaging

Mathem-

atical

model

grape

cluster’s

dimen-

sion

no

[67] Estimate grape

clusters mass

3D radi-

ation im-

ages

RF imag-

ing

Regression

model

grape

cluster’s

mass

no

[113] Estimate a vine-

yard’s yield

weight

measure-

ments

Trellis

tension

wires

Mathem-

atical

model

a vine-

yard’s

yield

no

[45] Count the number

of grapes

images Optical

imaging

Deep

learning

and CNN

classifier

the num-

ber of

grapes in

an image

no



2.2. Related Work 37

Paper Objective Key fea-

tures

Method-

ology

Model Output Invasive-

ness

[93, 94] Count the number

of grapes

images Optical

imaging

Radial

trans-

form

symme-

try, kNN

classifier

the num-

ber of

grapes in

an image

no

SING Estimate moisture

content in grapes

Dielectric

Proper-

ties

RF Sens-

ing

Regression

model

moisture

content

value

no

Table 2.2: Summary of key papers and SING



Chapter 3

SING: Free Space SensING of Grape

Moisture using RF Sensing

In this chapter, we present SING, a scheme that senses grape moisture through RF Sensing by

utilizing the interaction between the RF signals and the dielectric properties of grapes. It is well-

known that RF signals interact directly with the water inside materials [115]; this interaction

can be utilized to infer the dielectric properties of agricultural products. Previous research has

proven the possibility of estimating the moisture content by relying on their dielectric properties

[115, 116]. For grapes, this possibility is supported by the notably high amount of water content

[118]. We believe the interaction between RF signals and moisture inside grapes can provide a

precise estimation of the moisture content in grapes. To this end, this work makes the following

contributions:

• a non-intrusive technique that measures fruit moisture content using grapes as a proof-

of-concept.

• a technique to account for the non-uniform shape of the grape cluster when estimating

the moisture content.

• a technique that is first to demonstrate RF Sensing moisture sensing that does not require

contact with the fruit, nor does it require that the fruit is enveloped in any form of

38
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container. Our technique does not assume any prior knowledge of the fruit’s thickness as

well, thus making the technique practical.

• through extensive experimentation in a lab environment, we verify our theoretical hy-

potheses and demonstrate that SING measures moisture content that is 90% accurate.

SING’s accuracy is emphasized when compared to the current practise, which is only 60%

accurate in some scenarios [122].

• through vineyard experiments, we provide early indications of SING’s viability for prac-

tical agricultural management.

The rest of the chapter is organized as follows: in section 3.1, we discuss why exploiting the

relationship between RF signals and the dielectric properties is a viable approach to precisely

estimate grape moisture content. Compared with, say apples, grape clusters provide a partic-

ularly challenging scenario due to their non-uniform geometries. Thus, we investigate how to

account for cluster non-uniformity and how to compute their dielectric properties in section 3.2.

We postpone the discussion about SING’s performance to the next chapter, Chapter 4. It is

worth noting that throughout this chapter and the next chapter, the word water and moisture

are used interchangeably, as well as sugar and sucrose.

3.1 Feasibility of Moisture Estimation through RF Sens-

ing

In this section we investigate the possibility of estimating the moisture content of agricultural

products through RF Sensing. To do so, first we need to define a real number to facilitate the

analysis of the relationship between the moisture content and ε∗ because ε∗ is a complex number.

We start by referring to the transmission coefficient (τ) in equation 3.1. The transmission

coefficient (τ) is the ratio of the Electrical Field of the Transmitted wave (Et) to the Electrical
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Field of the Incident wave (Ei) as in equation 3.1[61].

τ =
Et
Ei

= e−γd (3.1)

Where d is the distance between the source of Et and any arbitrary point in space, and γ is the

Complex Propagation Constant. According to [116], equation 3.1 can be rewritten to become

equation 3.2, where λ is the Transmission Frequency Wavelength.

τ = e−j
2π
λ

√
ε∗d (3.2)

From equation 3.2, we define the real number discussed earlier as in equations 3.3.

ε∗ = ε
′ − jε′′

√
ε∗ = a− jb
√
ε∗ = |

√
ε∗|cos(tan−1(

ε
′′

ε′
)) + j

(
|
√
ε∗|sin(tan−1(

ε
′′

ε′
))
)

using Euler’s formula [95]

−jb = j
[
|
√
ε∗|sin

(tan−1( ε
′′

ε′
)

2

)]
using De Moivre’s theroem [95]

b = −|
√
ε∗|sin(

tan−1( ε
′′

ε′
)

2
)

(3.3)

b is the real number we are looking for, and it is refereed to as the Extinction Coefficient (κ)

[38]. κ quantifies the attenuation of electromagnetic waves when passing through materials

[61], and it is related to ε∗ as in equation 3.4. In the equation, η∗ is the Complex Refractive
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Index, and η is the Real Refractive Index [64].

ε∗ = ε
′ − ε′′

η∗ = η − jκ

ε∗ = η∗2

√
ε∗ = η∗

√
ε∗ = η − jκ
√
ε∗ = a− jb from equation 3.3

κ = b

(3.4)

After discussing the relationship between ε∗ and the extinction coefficient (κ), we discuss

the possibility of estimating the moisture content through RF Sensing by investigating the

following,

Hypothesis 3.1. κ is sensitive to changes in the moisture content, and the relationship between

the two is monotonic.

κ sensitivity to changes in the moisture content is important because otherwise, we cannot

employ the former to estimate the latter. The pursuit of a monotonic relationship between

κ and the moisture content is also important because it facilitates the formalization of the

moisture content predictive model (Eq. 3.10) discussed in §3.2.2. From the moisture content

predictive model, the parameters are the moisture content, sugar, and frequency. In the next

sections, we discuss in details hypothesis 3.1 and how the other two parameters - namely, sugar

and frequency - are related to that analysis.

3.1.1 The Relationship between the Moisture Content and κ

To address the first part of hypothesis 3.1, we refer to past research including [115, 116, 118]

that state that the dielectric properties of a material are dependant on the internal components

of that material such as moisture. Moisture is a key factor in affecting the dielectric properties
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in the microwave range of electromagnetic waves due to the water dipole effect [118]. Because of

the dipole effect, increasing or decreasing moisture content will increase or decrease the number

of water molecules that interact with an incident electric field, hence, changing κ value. Figure

3.1 shows how κ reacts to changes in the moisture content in sucrose solutions. The sucrose

solution is a mixture of water and sugar. We choose sucrose solutions because the dielectric

properties of sucrose solutions and grape clusters are similar under two conditions: i) They have

the same moisture-sugar concentration and, ii) they have been exposed to an electric field with

the same frequency [89]. The similarity stems from the fact that grapes are composed mainly of

water and sugar [118], and that other components in grapes are not affected by RF signals [89].

Another reason for choosing sucrose solutions is related to measurement efficiency. Contrary to

grapes, sucrose solutions allow us to control precisely the concentration of moisture and sugar;

this enables us to present a meaningful investigation of the relationship between moisture and

sugar against κ.

Figure 3.1 is obtained by employing the coaxial probe technique (explained in §2.1) through

the Agilent 85070E Dielectric Probe Kit [2]. The dielectric probe kit measures the dielectric

properties of liquids by immersing a coaxial probe into the liquids. The probe is connected

to a Vector Network Analyzer (VNA) to process the measurements [2]. To obtain the results

in figure 3.1, we prepared six sucrose solutions by varying the moisture concentration from

40% to 90% at room temperature (i.e., 25◦C). The minimum moisture concentration is 40%

because this is the minimum value where sugar dissolves completely into water. The maximum

moisture concentration is 90% because increasing the water will diminish the effect of sugar

and the solution starts to resemble pure water. We configure the VNA, which is connected

to the probe, to measure the dielectric properties at 50 uniformly spaced frequencies between

5.0 and 6.0 GHz, which henceforth we refer to as the 5 GHz band. We explain the choice of

the 5 GHz band in §3.1.4. The error bars in the figure represent the 5% inaccuracy of the

dielectric probe kit [2]. For the sake of the figure’s clarity, we plot the results in figure 3.1

for 11 frequencies {5.0, 5.1, 5.2, ..., and 6.0 GHz}. The remaining frequencies report similar

results to the 11 frequencies, and we plot the results for all 50 frequencies in appendix A, §A.1.
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Figure 3.1: κ against different moisture concentration (%) in sugar solutions at 11 frequencies
{5.0,5.1,5.2,...,6.0 GHz}.

To address the monotonic relationship between moisture content and κ (i.e., the second part

of hypothesis 3.1), first, we show that moisture content has a monotonic relationship with

attenuation (A); then we show that the same relationship exists between A and κ. To address

the former, we discuss the outcome of the interaction between the electric field of incident

waves (Ei) and a dielectric material such as water. When Ei interacts with water, Ei undergoes

different physical phenomena including reflection and transmission [61]. The transmitted field

represents the transmission coefficient (τ) [61]. As more water molecules interact with Ei, τ ’s

attenuation (A) increases because water is a strong absorbent of electric fields, especially at

the microwave frequencies [118]. Thus, a monotonic relationship exists between A and water’s

volume (i.e., moisture content). To show that A has a monotonic relationship with κ, we refer
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to equation 3.5.

√
ε∗ = a− jb from Eq.3.3

τ = e−j
2π
λ

√
ε∗d from Eq.3.2

τ = e−j
2π
λ

(a−jb)d substituting
√
ε∗ by (a− jb)

τ = e−j
2π
λ
ad . e−j

2π
λ

(−jb)d

τ = e−j
2π
λ
ad . e−

2π
λ
bd since j =

√
−1

A = e−
2π
λ
bd A is τ ’s attenuation

A = e−
2π
λ
κd since κ = b from Eq.3.4

(3.5)

From equations 3.5, there exist a monotonic relationship between A and κ. This leads to con-

clude that a monotonic relationship between moisture content and κ also exist.

To verify the above mentioned analysis empirically, we perform experiments on six sucrose

solutions at the 5 GHz band. The solutions have a fixed sugar weight and variable water

concentrations from 40% to 90%. Those concentrations are chosen for reasons mentioned earlier.

The solutions are tested with the Agilent 85070E Dielectric Probe Kit [2], and experiments on

each solution are repeated multiple times at room temperature (i.e., 25◦C). The purpose of the

experiments is to emphasize the monotonic relationship between the moisture content and κ.

Figure 3.2 reports the results for the solutions. In the figure, a monotonic - inverse - relationship

between moisture content and κ exists. This is in line with the theoretical analysis mentioned

above. The inverse part of the relationship is explained through figure 3.3 and equation 3.3. In

figure 3.3, ε
′
and moisture content have a monotonic relationship, which is similar to the findings

in [118]. Similarly, in equation 3.3, specifically Arg(ε∗) = tan−1( ε
′′

ε′
), ε

′
is the denominator and

is >> ε
′′

[118]. Thus, as moisture content increases, ε
′

increases and κ is decreased. Hence, a

monotonic inverse relationship between moisture content and κ.
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Figure 3.2: κ of variable moisture content concentration {40% to 90 %} at 50 frequencies in
the 5 GHz band.

Figure 3.3: ε
′

of variable moisture content concentration {40% to 90 %} at 50 frequencies in
the 5 GHz band.
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3.1.2 The Relationship between the Sugar and κ

We consider sugar in the analysis because the dielectric properties of sucrose solutions (and

equivalently grapes) are defined in terms of three factors: the water molecules, the bound hy-

dration around sugar molecules, and the sugar molecules themselves [98]. Not only that, but

analyzing the sugar’s effect on RF signals is important for a correct moisture content estima-

tion. To illustrate, in SING we rely on ε∗ to estimate moisture content; ε∗ is the same for a

solution regardless of the solution’s volume, as we explain in the next paragraph. Therefore,

for a sucrose solution with fixed water-sugar concentration, ε∗ is indifferent to changes in the

solution’s volume. As a result and in order to obtain a correct moisture content estimation, we

include the effect of sugar on the RF signals in SING.

To verify that ε∗ remains the same for a solution despite the solution’s volume, we have per-

formed experiments on water only and same-concentration sucrose solutions through the Agilent

85070E Dielectric Probe Kit mentioned earlier [2]. In the water only experiments, we tested six

water solutions with the following volumes: {100, 150, 200, 250, 300, and 350 ml}. The results

are plotted for both the relative permittivity (ε
′

) and the loss factor (ε
′′

) at the 50 frequencies

in the 5 GHz band in figures 3.4 and 3.5, respectively. Similarly, we performed experiments on

seven sucrose solutions (i.e., I, II, III, ..., VII) where the water(%)-sugar(%) concentration is

80%-20%. The results for ε
′

and ε
′′

are plotted in figures 3.6 and 3.7, respectively. The four

figures emphasize the similarity in both ε
′

and ε
′′

between the different water volumes (figures

3.4 and 3.5) and the same-concentration sucrose solutions (figures 3.6 and 3.7). In fact, the

small difference in ε
′

and ε
′′

measurements is due to the 5% inaccuracy of the measuring kit

[2]. Thus, ε∗ is indifferent to changes in volumes for the same solution. As a result, a correct

moisture content estimation cannot be obtained without considering the effect of the RF signals

on all of the internal components of a product; for grapes, those components are water and

sugar as other components are unaffected by RF signals [89].

Now to emphasize the monotonic relationship between sugar and κ, we prepare six solutions
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Figure 3.4: ε
′

of different moisture volumes at 50 frequencies in the 5 GHz band.

Figure 3.5: ε
′′

of different moisture contents at 50 frequencies in the 5 GHz band.
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Figure 3.6: ε
′

of the same water-sugar concentration at 50 frequencies in the 5 GHz band.

Figure 3.7: ε
′′

of the same water-sugar concentration at 50 frequencies in the 5 GHz band.
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Figure 3.8: κ of variable sugar concentrations {10% to 60%} at 50 frequencies in the 5 GHz
band.

that have a fixed water volume and variable sugar weight, where the sugar concentration is

from 10% to 60%. We choose those concentrations because a sucrose solution with sugar

concentration less than 10% resembles pure water, and more than 60% prevents sugar from

dissolving completely into water. Similar to previous experiments in §3.1.1, the frequency is

set to 50 frequencies at the 5 GHz band and the experiments are conducted multiple times at

room temperature (i.e., 25 C◦). Figure 3.8 presents the results for the solutions. The figure

emphasizes the monotonic relationship between sugar and κ. Contrary to figure 3.3 in §3.1.1,

an increase in sugar is accompanied by a decrease in ε
′

as presented in figure 3.9. This decrease

in ε
′

is the result of more water molecules being bound with sugar molecules, thus, reducing

the number of free water molecules that interact with the incident E-field [98].
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Figure 3.9: ε
′

of variable sugar concentrations {10% to 60%} at 50 frequencies in the 5 GHz
band.

3.1.3 The Relationship between the Frequency and κ

After discussing the relationship between the first two parameters (i.e., moisture and sugar)

of the moisture predictive model (i.e., Eq.3.10, §3.2.2) against κ, we investigate now the rela-

tionship between κ and the frequency (f). The relationship between f and κ is best explained

through figures 3.2 and 3.8. In the figures, we notice how κ increases with f . Thus, a monotonic

relationship also exist between f and κ.

This concludes the discussion of the relationship between the moisture predictive model pa-

rameters and κ. From the discussion we emphasized the monotonic relationship between the

three parameters and κ. In the next section, we investigate the reasons behind choosing the 5

GHz band as the operation frequency of SING.
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3.1.4 SING Frequencies

As mentioned before, we configure the VNA to record measurements at the 5 GHz band (i.e.,

from 5 to 6 GHz). In fact, SING operates at the 5 GHz band as well. To explain why we choose

this band, we refer to the Beer-Lambert law [109]. The Beer-Lambert law computes EM wave

intensity (I) based on the travelled distance (d) and the medium that the EM waves travel

through [71]. Thus, we can relate the absorption characteristics of a non-reflective medium

based on the intensity of the EM waves travelling through that medium. For example, suppose

for a distance d, the EM waves’ intensity travelling through a non-reflective material x is lower

than the intensity through another non-reflective material y. In that case, we can say that

material x has more absorption characteristics than material y. This is useful for us as we can

decide at which frequencies the EM waves are more absorbed by the moisture inside grapes.

In other words, we rely on the EM waves intensity computed by the Beer-Lambert law to find

the range of frequencies (i.e. SING frequencies) at which the EM waves are partially, but not

fully, absorbed by grapes moisture. We emphasize that the EM waves should be partially but

not fully absorbed by grapes to ensure that part of the EM waves should travel through the

grapes and reach the receiving end of SING setup - discussed in more details in §3.2.1 -.

Equation 3.6 illustrates the Beer-Lambert law [61] [71].

I(d) = Ioe
−2αd (3.6)

In equation 3.6, Io is the EM waves Intensity at the surface of the medium, and α is the

attenuation constant. Io is computed through equation 3.7 [99], where P is the EM waves

power and A is the medium’s area.

Io =
P

A
(3.7)

α is computed through equation 3.8, where ε
′

and ε
′′

are the medium’s relative permittivity
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and loss factor, respectively, and λ is the EM waves frequency.

α =
π( ε

′′

ε′
)2
√
ε′

λ
(3.8)

To find SING frequencies, we employ as a medium sucrose solutions. We choose sucrose so-

lutions instead of grapes for reasons mentioned earlier in this chapter. We prepare 28 sucrose

solutions where the moisture concentration is between 67% and 77%. To compute α (equation

3.8) we need to measure ε
′

and ε
′′

of the sucrose solutions. To do so, we employ the dielectric

probe kit and configure the VNA to operate at 80 frequencies from 1 GHz to 8 GHz [2]. 1 GHz

is the start of the microwave range of frequencies and - for practicality - we limit the frequency

testing range to 8 GHz because it is infeasible to test all frequencies in the microwave range.

However, we note that this range (i.e., from 1 to 8 GHz) is sufficient to find SING frequencies

as we explain afterwards.

To find I. we compute Io by setting the power (P ) according to Ofcom regulations [12], and the

area (A) according to [84]. Figure 3.10 shows the intensity of the EM waves (I) at frequencies

{1 GHz, 2 GHz, ..., 8 GHz} for distances up to 14 cm. I values in the figure are plotted as

dBm using equation 3.9.

I(dBm) = 10 ∗ log10(I) + 30 (3.9)

From the figure, we notice that frequencies lower than 5 GHz are not highly absorbed by the

sucrose solutions. To illustrate, we show the results from figure 3.10 as percentage in figure

3.11. The latter figure shows the intensity of EM waves (I) are more than 50% for frequencies

{1 GHz, 2 GHz, 3 GHz, 4 GHz} at a distance of 14 cm. On the contrary, I at {5 GHz, 6 GHz,

7 GHz, 8 GHz} drops below 30%. The EM waves high degree of absorption at the latter range

of frequencies is a vital requirement for SING accuracy. Thus, {5 GHz, 6 GHz, 7 GHz, 8 GHz}

are eligible candidates to serve as SING frequencies. Another observation from figure 3.10 are

related to the horizontal line at -123 dBm. This line represents the noise floor, which defines
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Figure 3.10: The EM waves intensity as dBm at frequencies between 1 GHz and 8 GHz. The
horizontal line in the figure corresponds to the noise floor of the N5244B VNA [14]. The values
are computed through equation 3.9.



54 Chapter 3. SING: Free Space SensING of Grape Moisture using RF Sensing

Figure 3.11: The EM waves intensity as % at frequencies between 1 GHz and 8 GHz.

the minimum dBm value at which a receiver can distinguish between a real signal and noise

[52]. The -123 dBm value corresponds to the noise floor of one of the most advanced VNA in

the market today [14]. For frequencies larger than 6 GHz, for examples 7 GHz and 8 GHz,

I drops below the noise floor after 10 and 6 cm, respectively. This result renders frequencies

larger than 6 GHz unsuitable for SING as EM waves will not reach the receiving end of SING

setup. Therefore, we choose the 5 GHz band (i.e. 5 to 6 GHz) as SING frequencies. Another

reason to support the choice of the 5 GHz band is that this band is a Wi-Fi band. This is

important for SING future deployment as it facilitates the integration of SING into existing

Wi-Fi infrastructure.

3.2 SING Methodology

In this section, we introduce the moisture predictive model (§3.2.2). Then, we present our ap-

proach to estimate moisture in grapes through RF Sensing (§3.2.3, §3.2.4, and §3.2.5). Finally,
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we investigate factors that may affect SING’s performance (§3.2.6 and §3.2.7). But first, we

discuss SING experiments and simulations setup (§3.2.1).

3.2.1 SING Experiment and Simulation Setup

To analyze and evaluate SING performance, we conduct both experiments and simulations.

The former is useful to investigate real-life scenarios, whereas the latter is useful to control

factors that cannot be controlled in real-life experiments. The experiment setup (i.e., SING

setup) is similar to that of the free-space transmission method with the major difference of

computing ε∗ from multiple angles and being able to do so without a container to envelope

the grape’s cluster. SING consists of two directional antennas (Huber+Suhner Sencity®Spot-

S WiFi Antenna [25]) operating at the 5 GHz band (specifically from 5.1 to 5.9 GHz). The

antennas have a 14 dBi gain, and the horizontal and vertical Half Power Beam Width are 40◦

and 35◦, respectively [25]. The antennas are connected to a Vector Network Analyzer (E8361A

PNA Network Analyzer [8]) that operates between 10 MHz and 67 GHz. As mentioned in §2.1,

the Vector Network Analyser (VNA) measures the S-parameters at two ports (S11 and S21).

The reflection (Γ) and transmission (τ) coefficients are computed from S11 and S21, which we

discuss in detail in §3.2.4. The two antennas, namely Tx and Rx, are vertically polarized, facing

each other, and are separated by ≈ 40cm. The distance between the antennas is chosen with

respect to the start of the far-field according to [33], which states that the far-field starts at

2D2

λ
where D is the largest antenna dimension, and λ is the transmission’s wavelength. The

grape’s cluster is placed between Tx and Rx, and suspended from a wooden rod, which is ro-

tated mechanically using a DC motor controlled by an Arduino board (Arduino Uno [3]). From

the rotation, we were able to measure 30 - equally separated - angles for each cluster. The 30

angles are measured in 37 seconds. Therefore, measuring an angle takes ≈ 1.23 seconds. Figure

3.12 shows an actual deployment of SING in the lab.

For the simulations, we employ CST Microwave Studio [108]; a 3D electromagnetic solver to

simulate electromagnetic applications [108]. We recreate the experiment setup in the simula-
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Figure 3.12: SING
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Figure 3.13: A grape cluster with leaves and different sizes of grapes designed through CST
Microwave Studio

[108]

tions for consistency purposes. Specifically, we design and place a grape cluster between two

directional antennas with a similar gain to the antennas in the experiments. Also, the distance

between the antennas and between the antennas and the clusters are the same as the experi-

ments. The grapes are designed as spherical shapes connected to sticks (i.e. stems). We design

multiple grape clusters by varying the number and size of grapes. We also design foliage (i.e.

leaves) where the thicknesses < 1 mm [101]. Figure 3.13 shows a grape cluster composed of

multiple grapes with various sizes and covered by leaves from one side. Finally, the antennas are

wide-band Pyramidal Horn antennas operating at the 5 GHz band. We design the antennas by

following the mathematical model presented in [33], Chapter 13. The horn antenna - depicted

in figure 3.14 - has ≈14 dBi gain at 5.1 to 5.9 GHz, similar to the antennas in the experiments.

Figures 3.15 and 3.16 show the radiation directivity and the radiation pattern at 5.5 GHz,

respectively. In appendix A, §A.2, we show both the radiation directivity and pattern at 5 and

6 GHz. All the simulations are run through the Time Domain Solver, which is supported by

the CST Microwave Studio (more information about the solver can be found here [108]).

We discuss later in §4.1.1, the grape clusters we employ for both the experiments and simulations
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Figure 3.14: The Pyramidal Horn Antenna

Figure 3.15: Radiation directivity at 5.5 GHz. The red curve represents the main lobe direction,
whereas the other lines/curves represent the main lobe width and the side lobe amplitude with
auxiliary lines.
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Figure 3.16: The 3D radiation pattern at 5.5 GHz.

and their characteristics (e.g., moisture content and sugar concentration) .

3.2.2 The Predictive Model

The moisture predictive model is shown in equation 3.10, where the independent variables are

moisture content (M), sugar (S), and frequency (f), and the dependent variable is κ. In the

equation, {α,β and ζ} are the regression coefficients for {M , S, and f}, respectively, and µ

is the y-intercept. The monotonic relationship - discussed in §3.1 - between the dependent

variable (κ) against the independent variables (M , S, and f) of the moisture predictive model

encourages us to consider linear regression as a fitting model for our data.

κ = αM + βS + ζf + µ (3.10)

From equation 3.10, the moisture content (M) at frequency (f) is calculated as in equation

3.11, and the final moisture content value (M) is taken to be the mean moisture content value

of all tested frequencies (fall) as in equation 3.12.

M =
−1

α
(βS + ζf + µ− κ) (3.11)
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M =
1

fall

fall∑
i=1

Mi (3.12)

3.2.3 SING’s Free Space Transmission Technique

As mentioned in §2.1, the free-space transmission technique works by placing the object of

interest in a container between two antennas; the Attenuation Factor (A) and Phase Shift (φ)

are used to compute ε∗. Since A and κ have a monotonic relationship - as explained in §3.1 -,

any change to A is reflected on the value of ε∗, and consequently, on κ. Therefore, to measure

ε∗ accurately, the attenuation (A) and the phase shift (φ) should be consistent regardless of

the object’s orientation (i.e., regardless of which part of the object is facing the antennas).

A container is used to enforce consistency of A and φ, among other reasons. Unfortunately,

this consistency does not apply for grape clusters since clusters are non-uniform geometrically.

To illustrate, we perform experiments on four grape clusters with different moisture contents

through the experiment setup mentioned in §3.2.1. The purpose of the experiments is to

emphasize the inconsistency in both A and φ at different angles of the clusters. Figures 3.17

and 3.18 report the results for A and φ for a cluster with moisture content = 380 ml at multiple

frequencies between 5.1 and 5.9 GHz and equidistant angles between 0 and 2π. The figures

for the remaining three clusters and other frequencies are plotted in appendix A, §A.3. The

figures - plotted here and in §A.3 - show that A and φ are inconsistent and are dependent on

which part of the cluster is facing the transmission antenna. As a precaution, we performed

the experiments in an electromagnetic chamber to ensure that the inconsistency in A and φ is

the sole responsibility of the clusters. This inconsistency leads us to conclude,

Hypothesis 3.2. The attenuation (A) and the phase shift (φ) of a grape cluster is dependent

on the orientation of the cluster with respect to the incident plane wave.

To explain 3.2 mathematically, we refer to equations 3.13 and 3.14. For a specific transmission

frequency, equation 3.13 shows that A is dependent on κ and d (i.e., the travelled distance by

waves). κ - similar to ε∗ - is a characteristic of dielectric materials such as grape clusters. A

cluster as a whole has a specific ε∗, and by extension, a specific κ. Since a cluster is geometrically
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Figure 3.17: The attenuation {A} in dB at {5.1, 5.2, 5.3, ..., and 5.9 GHz} for a cluster with
moisture content = 380 ml at 30 equidistant angles between 0 and 2π.

Figure 3.18: The phase shift {φ} in degree at {5.1, 5.2, 5.3, ..., and 5.9 GHz} for a cluster with
moisture content = 380 ml at 30 equidistant angles between 0 and 2π.
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non-uniform, different sides of a cluster will have different thicknesses. Therefore, the travelled

distance by waves inside the cluster depends on which side is facing the waves. Now, for

a specific transmission frequency and a specific κ, A depends on d, which depends on the

cluster’s orientation. Thus, A is dependent on a cluster’s orientation. The same argument

applies for φ, where equation 3.14 ([32]) shows that φ is dependent on a cluster’s permittivity

and thickness (ρ) for a specific transmission frequency. From before, the cluster as a whole has

a specific permittivity, and ρ depends on the cluster’s orientation. Thus, φ is also dependent

on a cluster’s orientation.

A = e−2π
λ
κd from Eq.3.5 (3.13)

φ =
2π

λ
ρ
√
ε′ (3.14)

As a consequence of hypothesis 3.2, it is insufficient to compute ε∗ for non-uniform objects such

as grape clusters by relying on measurements from a single angle. Thus, we introduce in the

next section our technique to accurately calculate ε∗.

3.2.4 Calculating ε∗ and κ

As a consequence of hypothesis 3.2, SING computes ε∗, and subsequently κ, by measuring A

and φ at multiple angles of the cluster. Measuring multiple angles is accomplished by either

rotating the antennas, rotating the cluster, or placing multiple (Tx,Rx)-pairs around the cluster.

In this paper, we choose to rotate the cluster for convenience of measurements. However, we

note that we can substitute the rotation of the cluster conveniently by the other two options

in real-world deployments, as we discuss this in Chapter 5.

As a result of measuring the cluster from multiple angles through the VNA (§3.2.1), we obtain
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the following two S-parameters arrays,

SΘ
11 = {Sθ111, S

θ2
11, ..., S

θm
11 } (3.15)

SΘ
21 = {Sθ121, S

θ2
21, ..., S

θm
21 } (3.16)

where
{
θi ∈ {θ1, θ2, ..., θm}

}
is the angle i of the cluster facing Tx, and θm is the last angle before

the cluster completes a 2π rotation. In the current setup of SING (§3.2.1), m = 30. From the

two arrays (3.15 and 3.16), we obtain the transmission coefficient array
{
τΘ = {τθ1 , τθ2 , ..., τθm}

}
as in equations {3.17, ..., 3.19}.

Xθi =
(Sθi11)2 − (Sθi21)2 + 1

2Sθi11

(3.17)

Γθi = Xθi ±
√
X2
θi
− 1, where|Γθi | < 1 is required (3.18)

τθi =
Sθi11 + Sθi21 − Γθi

1− (Sθi11 + Sθi21)Γθi
(3.19)

From τΘ, SING computes ε∗ , and subsequently κ, through equations {3.20, ..., 3.30}, where

d = d{Tx−Rx} is the euclidean distance between the transmitter (Tx) and the receiver (Rx).

τΘ =
1

m

m∑
i=1

τθi (3.20)

τΘ = e(−γΘd) = e−(αΘ+jβΘ)d = e(−αΘd).e(−jβΘd) (3.21)

τΘ = e(−αΘd)[cos(βΘd)− jsin(βΘd)] (3.22)

τ realΘ = e(−αΘd).cos(βΘd) (3.23)

τ imagΘ
= −e(−αΘd).sin(βΘd) (3.24)

Note that the values for τ realΘ and τ imagΘ
represent the transmission coefficient for everything

between Tx and Rx (i.e. Air-Grapes-Air). In order to isolate the transmission coefficient of
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grapes (τ
{G}
Θ ), we refer to equations {3.25,3.26}, where G stands for the cluster of grapes.

τΘ = e(−γ{Air} . (d−ρ{G}Θ )).e(−γ{G}Θ .ρ
{G}
Θ ) (3.25)

τ
{G}
Θ = e(−γ{G}Θ .ρ

{G}
Θ ) =

τΘ

e(−γ{Air} . (d−ρ{G}Θ ))
(3.26)

The value for −γ{Air} is obtained by performing an experiment with a clear Line-of-Sight be-

tween Tx and Rx at distance d to obtain τ
{Air}
Θ . Then, solve for −γ{Air} as in equations 3.27.

τ
{Air}
Θ = e(−γ{Air} .d) from Eq.3.1

ln(τ
{Air}
Θ ) = −γ{Air} .d

−γ{Air} =
ln(τ

{Air}
Θ )

d

(3.27)

The value ρ
{G}
Θ in equations 3.25 and 3.26 represents the mean ‘relative’ thickness of the cluster,

and it will be discussed in more details in §3.2.5. Now that we have the values for τ
{G}
realΘ

and

τ
{G}
imagΘ

, we calculate the values for α
{G}
Θ and β

{G}
Θ as in equations 3.28 and 3.29.

α
{G}
Θ =

1

ρ
{G}
Θ

ln(
±1

|τ {G}Θ |
) whereα

{G}
Θ > 0 is required (3.28)

β
{G}
Θ =

2

ρ
{G}
Θ

atan(
τ
{G}
realΘ
± |τ {G}Θ |

τ
{G}
imagΘ

) where {3.23,3.24} must be met (3.29)

Now that we have α
{G}
Θ and β

{G}
Θ , we calculate ε∗ as in equation 3.30.

ε∗ =
(λ(α

{G}
Θ + jβ

{G}
Θ )

j2π

)2

(3.30)

From equation 3.30, the value of κ is calculated as in equation 3.4, §3.1. Finally, it is worth

mentioning that individual grapes in a cluster may have different moisture levels. For exam-

ple, outer grapes may contain less water than inner grapes due to direct exposure to sunlight.

Thus, we compute ε∗ by computing the average value of the transmission coefficients (τ) of all

scanned angles as presented in equations {3.20, ..., 3.30}.



3.2. SING Methodology 65

In figure 3.19, we summarize the procedure mentioned above, which we refer to hereinafter as

SING procedure.

3.2.5 Calculating ρ

As mentioned in equations {3.25 , 3.26, 3.28, 3.29}, §3.2.4, ρ
{G}
Θ is the mean ‘relative’ thickness

of grape clusters. This value is different from the physical thickness of grape clusters. The

physical thickness yields a correct ε∗ only if all the transmitted waves pass through the sample

before reaching the receiving antenna. Hence, pouring the sample into a large container - usu-

ally three times bigger than the transverse dimension of the 3 dB of the transmitted antenna

[59] - in the free-space transmission technique. However, including the physical thickness in cal-

culating ε∗ introduces two problems. First, containers employed in the free-space transmission

technique are geometrically uniform, thus, the thickness is easily defined. Grape clusters, on

the other hand, are geometrically non-uniform, thus, their thickness is not easily defined. For

the sake of argument, let us assume that we were able to define an approach, from which, the

thickness is obtained, there is still another problem to solve. This problem is related to the size

of grape clusters. Grape clusters are relatively small. Therefore, to obtain a correct ε∗ value,

we must employ antennas with a laser-sharp beamwidth to ensure all the transmitted waves

pass through the clusters before reaching the receiving antenna. Dish antennas can achieve an

extremely narrow beamwidth [33]. However, they are heavy, bulky, and unsuitable for mobile

applications such as in vineyards, where antennas should move around to scan thousands of

grape clusters.

From above, we conclude that we cannot compute ε∗ correctly by using the physical thickness

of the grape cluster. Thus, we regard the value of ρ
{G}
Θ from equation {3.25, 3.26, 3.28, 3.29},

§3.2.4 as the mean ‘relative’ thickness of a grape cluster. Without containers or dish antennas,

the interaction between waves and grape clusters will depend highly on antennas’ beamwidth.

By changing the beamwidth, waves intercepted by the receiving antenna having interacted with

the cluster will be different. Thus, the word ‘relative’ refers to ρ (i.e., cluster’s thickness) as
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being relative to antennas’ beamwidth.

To obtain the relative thickness (ρ
{G}
Θ ), we analyze the relationship between grape clusters

thickness and the transmitted waves. In other words, we analyze the relationship between ρ
{G}
Θ

and τ
{G}
Θ . To do so, we refer to equations 3.31.

τ = e−j
2π
λ

√
ε∗d from Eq.3.2

τ
{G}
Θ = e−j

2π
λ

√
ε∗ρ
{G}
Θ for a grape cluster

τ
{G}
Θ = e−j

2π
λ

√
ε∗ρ
{G}
Θ incorporating the mean value for τ

{G}
Θ and ρ

{G}
Θ

ln(τ
{G}
Θ ) = −j 2π

λ

√
ε∗ρ
{G}
Θ

ln(τ
{G}
Θ ) = −j 2πf

c

√
ε∗ρ
{G}
Θ substituting λ by

c

f
where c is the speed of light

(3.31)

Since a grape cluster has a specific ε∗, equations 3.31 emphasizes the relationship between

τ
{G}
Θ and ρ

{G}
Θ for a specific transmission frequency (f). Thus, we build a regression model to

calculate ρ
{G}
Θ for a given τ

{G}
Θ and f . Equation 3.32 represents the regression model, which we

refer to as the thickness regression model. τ
{G}
Θ and the frequency are the independent variables;

ρ
{G}
Θ is the dependent variable. υ, ψ are the regression coefficients, and ω is the y-intercept.

ρ
{G}
Θ = υ|τ {G}Θ |+ ψf + ω (3.32)

In the regression model, we substitute τ
{G}
Θ by its absolute value (i.e., |τ {G}Θ |) because ρ

{G}
Θ is

a real number, whereas τ
{G}
Θ is a complex number. Thus, equation 3.32 has |τ {G}Θ | instead of

τ
{G}
Θ . We calculate τ

{G}
Θ as in equations {3.17, ..., 3.26} and calculate ρ

{G}
Θ through equations

3.33.

γ{G} = α{G} + jβ{G} =
−j2π
λ

√
ε∗ from [116]

α{G} = Real
{−j2π

λ

√
ε∗
}

α{G} is the real part of the complex number

ρ
{G}
Θ =

1

α{G}
ln(
±1

|τ {G}Θ |
)

(3.33)
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The value of
√
ε∗ is obtained by measuring sucrose solutions - through the dielectric properties

kit [2] - with the same water-sugar concentration as the grape clusters considered for the training

set of the thickness regression model. It is worth noting that the thickness regression model

(3.32) is calibrated to the current settings of SING, where the antennas’ beamwidth is 32.1◦

( a gain of 14 dBi). Thus, when the setting changes, the model needs to be trained again to

reflect the new changes.

3.2.6 The impact of diffraction on SING accuracy

As mentioned in §3.2.5, the free-space transmission technique requires a container three times

bigger than the transverse dimension of the 3 dB of the transmitted antenna [59]. A key reason

for this is to avoid the effect of diffraction. Diffraction occurs when a signal is bent around edges,

and in some cases, this results in multiple instances of the signal reaching the receiving antenna.

In other words, received signals did not necessarily travel through the object of interest, rather

they could have been diffracted around its edges. Figure 3.20 depicts how diffraction - if it exists

- may occur at the edges of a grape cluster. From the figure we emphasize that diffraction affects

mainly the transmitted waves, and consequently, the transmission coefficient (τ). Since in SING

we compute ε∗ through the transmission coefficient (τ), we dedicate the section to investigate

the diffraction effect on the accuracy of computing ε∗.

To investigate the diffraction effect, we run four simulations following the simulation setup in

§3.2.1. The simulations are:

• CLoS: a Clear Line-of-Sight (CLoS) between the transmitter (Tx) and the receiver (Rx)

as in figure 3.21.

• Small container: a container smaller than three times the Tx 3 dB transverse dimension.

The container is filled with water and placed between Tx and Rx as in figure 3.22.

• Large container: a container larger than three times the Tx 3 dB transverse dimension.

The container is filled with water and placed between Tx and Rx as in figure 3.23.
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• Grape cluster: a grape cluster between Tx and Rx as in figure 3.24.

In the second and third simulations, the container has the same depth, but different width and

height. Otherwise, all other parameters such as the distance between the antennas and the

antennas type are the same in all four simulations. The transmitted signal in the simulations

is an impulse signal and is shown in figure 3.25. We choose the impulse signal because it em-

phasises - graphically - the features in time-domain figures more clearly than the default signal

in high frequencies CST simulations (i.e. the Gaussian signal).

Figure 3.26 shows the results for the first three simulations: CLoS, Small container, and Large

container subplots. The CLoS is the first subplot and it represents the received time-domain

signal for the Clear Line of Sight (CLoS) simulation. The second is the Small container,

which represents the received time-domain signal for the Small container simulation. The

third subplot is the Large container, which represents the received time-domain signal for the

Large container simulation. The CLoS subplot shows a single version of the impulse signal

because no objects exist between the transmitter (Tx) and the receiver (Rx) to alter the signals

path. However, the Small container and Large container subplots show the original and multiple

delayed versions of the impulse signal because a container exists in both simulations between

Tx and Rx.

The container will impact the incident signals in three aspects. First, the signals will slow down

because they will travel from a medium with a lower refractive index (i.e., air) to a medium

with a higher refractive index (i.e., water) [61]. Second, some signals will bounce back and

forth between the container’s edges. This generates reflected signals (i.e., reflected back to Tx),

transmitted signals without bouncing off the edges (i.e., from Tx to the container to Rx), and

signals that bounce off one or more times before reaching Rx. Third, the signals’ amplitude

will decrease for a reason similar to that of the first aspect. The Small container and Large

container subplots emphasize the three aspects. We notice the original signal in the dashed

box in both subplots is slightly delayed compared to the signal in the CLoS subplot. This

corresponds to the first aspect. For the second aspect, we observe the multiple subsequent -
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delayed - versions of the original signal. Contrary to the CLoS subplot, where only the original

signal appears. The third aspect is illustrated by the lower amplitude of the signals in the

second and third subplots compared to the first subplot.

After examining the signals in the subplots, the only signal left is the signal in the solid box in

the Small container simulation subplot (i.e., the second subplot). This signal is the diffracted

signal, and we know that because of the following reasons. First, the signal arrives simultane-

ously compared to the signal in the first subplot because both signals do not travel through the

container. The slight difference in time between the two signals - as emphasized by the vertical

line between the two subplots - is because the diffracted signal travel through a longer path

(i.e. from Tx to Rx through the container’s edges). Second, the absence of the diffracted signal

in the Large container subplot. As mentioned at the beginning of this section, a container

three times larger than Tx 3 dB transverse dimension should eliminate the diffraction effect

[59]. Finally, the amplitude of the diffracted signal is significantly lower than the signal in the

CLoS subplot. This is because the former arrives at Rx from the antenna’s side, whereas the

latter arrives from the center. The horn antenna we design for the simulation performs the best

when receiving the signals from the center [33]. However, the performance degrades when the

signals angle of arrival deviates from the center [33].

After illustrating the diffraction effect on containers, we investigate the diffraction effect on

grapes. To do so, we refer to [103], where the authors state that the diffraction effect is

more prominent around sharp edges. Thus, spherically shaped objects such as grapes may not

exhibit diffraction. To further investigate this, we refer to the fourth simulation; the Grape

cluster simulation (figure 3.24). The results of the simulation is presented in figure 3.27. In

the figure we introduce two subplots: the first is the received time-domain signal for the Clear

Line of Sight (CLoS) simulation (i.e., the first simulation), and the second is the received time-

domain signal of the grape cluster simulation (the fourth simulation). The second subplots

shows the original signal similar to the first subplot, albeit slightly delayed, as demonstrated

by the vertical line in the figure. The delay occurs as a results of the signal travelling from a
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low refractive index medium (i.e., air) to a higher refractive index medium (i.e., grapes). More

interestingly, the second subplot does not exhibit any traces of diffracted signals. Thus, the

diffraction effect, an artefact of using containers smaller than three times the Tx 3 dB transverse

dimension, is not an issue with grape clusters, and consequently, does not affect SING accuracy.

3.2.7 The impact of foliage on SING accuracy

As mentioned earlier, the accuracy of SING is dependent on the accuracy of computing ε∗,

which is dependent on measuring the S-parameters (S11 and S21) as in equations {3.17, ...,

3.30}, §3.2. Since foliage (i.e., leaves) typically cover grape clusters in a vineyard, we dedicate

the section to investigate the effect of foliage on S11 and S21.

We run simulations where we place a grape cluster (figure 3.28) with leaves between the trans-

mitter Tx and the receiver Rx. In the simulations, we measure the S-parameters (i.e., S11 and

S21) from multiple angles by rotating the cluster by π
4
. The simulation setup is the same as

in §3.2.1. At each angle, we measure the S-parameters with and without leaves and compare

between their results. The objective is to investigate if there is a difference in the S-parameters

measurements , and if yes, how significant? Figures 3.29, 3.30, 3.31, and 3.32 report the results

for {0, π
2
, π, 3π

2
}, respectively. The results for the rest of the angles are reported in appendix A,

§A.4.

From the figures, we notice how similar the S-parameters measurements are with and without

the leaves. In fact, the maximum difference between the S11 of both cases is 0.067, and the

S21 is 0.34. Thus, foliage does not affect S-parameters measurements significantly, and by

extension, does not affect SING accuracy.

This concludes the discussion about SING methodology and the chapter. In the chapter, we

presented SING and emphasized the feasibility of SING to estimate the moisture content inside
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grapes. We accomplished that by investigating the relationship between the grapes’ dielectric

properties and the moisture content inside the grapes. Particularly, we presented how the ex-

tinction coefficient (κ) is related to the dielectric properties (ε∗). From there, we highlighted

through detailed analytical analysis and thorough experimentation the relationship between κ

and the three independent variables in the moisture content predictive model (§3.2.2, Eq. 3.10).

The moisture content predictive model maps ε∗, through κ, along with sugar and frequency to

the moisture content. Afterwards, we emphasized the reasons why the traditional free-space

technique is unable to compute reliably the dielectric properties of geometrically non-uniformed

objects such as grape clusters. Then, we presented our novel technique to compute the dielectric

properties of grape clusters in §3.2.4. In our technique, we eliminate the need for a container to

compute the thickness of grape clusters (ρ
{G}
Θ ). Instead, we introduced the concept of “relative

thickness” in §3.2.5, from which we resolve the value of ρ
{G}
Θ required by our technique.

At the end of the chapter, we discussed different factors that may affect the accuracy of our

technique, namely, the foliage and signals diffraction. We learned that our technique is resilient

to both factors due to SING frequencies (i.e., the 5 GHz band). In the next chapter, we analyze

SING performance and present the results.
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Figure 3.19: Summary of SING Procedure
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Figure 3.20: An illustration of the potential diffracted waves around the edges of a grape cluster.

Figure 3.21: Clear Line of Sight (CLoS) simulation setup

Figure 3.22: Small container simulation setup.
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Figure 3.23: Large container simulation setup.

Figure 3.24: The grapes simulation through CST Microwave studio.
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Figure 3.25: Impulse - normalized - simulation signal

Figure 3.26: The received time-domain signal at Rx for CLoS, Small container, and Large
container simulations. The x-axis is time in ns and the y-axis is the amplitude normalized to
the input impulse signal.
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Figure 3.27: The received time-domain signal at Rx for the clear line of sight (CLoS) and a
grape cluster simulations. The x-axis is time in ns and the y-axis is the amplitude normalized
to the input impulse signal.

Figure 3.28: CST simulation of a cluster with leaves
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Figure 3.29: The S11 and S21 measurements with leaves (i.e., w Leaves) and without leaves at
angle 0.

Figure 3.30: The S11 and S21 measurements with leaves (i.e., w Leaves) and without leaves at
angle π

2
.
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Figure 3.31: The S11 and S21 measurements with leaves (i.e., w Leaves) and without leaves at
angle π.

Figure 3.32: The S11 and S21 measurements with leaves (i.e., w Leaves) and without leaves at
angle 3π

2
.
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SING Results

In this chapter, we discuss SING performance and present the results in section 4.1, and con-

clude the discussion about SING in section 4.2.

4.1 Results and Discussion

In this section, we discuss SING performance and present the results. Specifically, we start

with section 4.1.1, where we discuss the training and validation sets for the moisture (Eq. 3.10,

§3.2.2) and thickness (Eq. 3.32, §3.2.5) regression models introduced in the previous chapter.

Since SING employs multiple angles to present accurate estimations of moisture content in

grape clusters, we dedicate section 4.1.2 to investigate the concept of multiple angles in more

details. Afterwards, we discuss SING performance and present the results in section 4.1.3.

4.1.1 Moisture and Thickness Regression Models

Both the training and validation sets for the moisture (Eq. 3.10) and thickness (Eq. 3.32)

regression models are obtained by performing experiments on nine grape clusters and simula-

tions on six others; a total of 15 clusters. For the real clusters, we obtain the ground truth of

the moisture content and sugar weight through the Air-drying technique and a refractometer,

79
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respectively. Regarding the moisture content, Air-drying a well-known method to estimate the

moisture content inside fruits [138]. It works by measuring a fruit weight before and after

air-drying them to evaporate the moisture inside. The difference in weight is the amount of

moisture inside the fruit. Regarding the sugar weight, We obtain the sugar weight by using

a refractometer and an analytical balance. A refractometer (e.g., Kern 32BA Analog Refrac-

tometer [13]) is a device used to measure sugar concentration (Brix◦) in a fluid by measuring

its refractive index [13]. To obtain the sugar weight, first, we measure a grape weight (Gw)

using the analytical balance. Then, we squeeze a few drops of juice from the grape into the

refractometer’s prism to measure the sugar concentration (Gsc) as a percentage. Finally, the

sugar weight (S) is calculated as in equation 4.1.

S = Gw.
Gsc

100
(4.1)

Due to the small number of clusters, we consider Cross-Validation (CV) as a method to verify

the effectiveness of both regression models [46]. Specifically, we perform k-fold CV by separating

the data-set into k equally sized groups. One group is for validation, and the remaining k-1

groups are for training. Since we have 15 clusters, we can separate the clusters into 3 or 5

equally sized groups. Thus, we perform both 3-Fold and 5-Fold CVs. For the 3-Fold CV,

we can generate a maximum of 3003 possible training sets from the 15 clusters. Similarly,

a maximum of 455 possible training sets can be generated for the 5-Fold CV. We train the

moisture and thickness regression models using the training sets generated for both the 3-Fold

and 5-Fold CVs to obtain the R2 value for each regression model; a total of 3458 regression

models.

Cross Validation on the Moisture Regression Model

Figures 4.1 and 4.2 show the R2 values resulting from the 3-Fold and 5-Fold CVs for the

moisture regression model (Eq. 3.10, §3.2.2). Specifically, both figures show the R2 value

distribution resulting from the 3-Fold and 5-Fold CVs, respectively. For each R2 value, we

round the value to the nearest integer to present a meaningful analysis of the values. In fact,
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Figure 4.1: The R2 value for each moisture regression model employed in the 3-Fold CV. The
x-axis shows the R2 values, and the y-axis shows the number of regression models at each R2

value.

when analyzing both figures, we were searching for a common trait between regression models

with high R2 value. An interesting trait we found is that regression models with R2 ≥ 90%

have a higher ratio of real clusters to simulation clusters in their training sets than regression

models with R2 < 90%. 90% is the mean values in both figures as illustrated later in table

4.1. Put differently, the ratio of real clusters to simulation clusters in the former regression

models is 1.6 and 1.7 for the 3-Fold and 5-Fold CVs, respectively. On the other hand, the ratio

drops to 1.4 for both CVs in the latter regression models. This 1.4 ratio is also lower than the

original ratio of real clusters (nine clusters) to simulation clusters (six clusters), which is 1.5.

This observation emphasizes the importance of employing real clusters when training SING.

Fortunately, one possible deployment ground for SING is vineyards, where harvested clusters

can be used to train the model.

Since we have a high number of regression models (3458 regression models), it is infeasible to

verify the performance of SING through all of them. Thus, we need to choose a single regression
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Figure 4.2: The R2 value for each moisture regression model employed in the 5-Fold CV. The
x-axis shows the R2 values, and the y-axis shows the number of regression models at each R2

value.



4.1. Results and Discussion 83

Mean Median Standard Deviation Minimum Maximum
3-Fold CV 89.9 91 4.7 82 97
5-Fold CV 90.4 91 4.6 82 97

Table 4.1: Different Statistical measures of the R2 value for the 3-Fold and 5-Fold CVs. The
values are obtained from figures 4.1 and 4.2.

Table 4.2: The moisture regression model information (equations 3.10, §3.2.2).

Variable/Feature Regression coefficient Variance Inflation Factor
Moisture (M) −5.144× 10−4 1.005
Sugar (S) 7.338× 10−4 1.005
Frequency (f) 2.159× 10−10 1

model to verify the performance of SING. The candidate regression model should be robust

- according to the R2 value - to swapping clusters between the training and validation sets.

Naturally, such a regression mode should have a R2 value close to the mean value. According

to table 4.1, the mean value from figures 4.1 and 4.2 is 90%. Thus, the candidate regression

model should be a regression model where R2 ≈ 90%.

A total of 185 regression models with R2 ≈ 90%. From those, 142 regression models are for the

3-Fold CV, and the rest 43 are for the 5-Fold. We discard the latter regression models because

the former have more clusters in the validation set than the latter; 5 clusters in the validation

set for the 3-Fold CV comparing to 3 clusters for the 5-Fold CV. This criteria is to verify the

performance of SING on more clusters. As a result, we have a total of 142 regression models

left. From those, we focus on regression models with real clusters only in the validation set.

Since we intend to deploy SING in a vineyard, we believe it is more informative to validate

the performance of SING on real clusters only. From the 142 regression models, only 3 of

them contain real clusters only in their validation set. Any regression model out of the 3

is a candidate regression model. We choose one of them and report its information in table

4.2. The y-intercept value (µ) of the model is 4.684 × 10−1. The training set clusters of the

regression model are presented in table 4.3, and the set contains 216,144 data points. Similarly,

the validation set clusters are presented in table 4.4, and the set contains 240,150 data points.

From table 4.2, the Variance Inflation Factor (VIF) quantifies the severity of the multicollinear-

ity between independent variables in linear regression models [50]. A score of 1, which is the
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Table 4.3: The training set clusters information

Cluster Moisture (ml) Sugar (g)
Cluster I 369 88.1
Cluster II 157 38.08
Cluster III 95 22.28
Cluster IV 150 37.63
Cluster V 92 14.3
Cluster VI 89 27.7
Cluster VII 125 19.5
Cluster VIII 122 32.5
Cluster IX 153 23.9
Cluster X 150 40

Table 4.4: The validation set clusters information

Cluster Moisture (ml) Sugar (g)
Cluster I 233 53.17
Cluster II 380 82.84
Cluster III 282 69.82
Cluster IV 215 53.14
Cluster V 103 26.5

lowest score in VIF, means that an independent variable is uncorrelated with the other in-

dependent variables [50]. In other words, the regression model is more reliable [50]. In the

moisture regression model, the low scores of VIF support our choice of linear regression as a

fitting model for our data.

Cross Validation on the Thickness Regression Model

Figures 4.3 and 4.4 show the R2 values resulting from the 3-Fold and 5-Fold CVs for the

thickness regression models (Eq. 3.32, §3.2.5). Similar to figures 4.1 and 4.2, figures 4.3 and

4.4 present the R2 value distribution resulting from the 3-Fold and 5-Fold CVs, respectively.

Contrary to figures 4.1 and 4.2, we do not round the R2 values to the nearest integer in figures

4.3 and 4.4 because all R2 values = 99%. We also present in table 4.5 different statistical

measures of the regression models in figures 4.3 and 4.4.

For the sake of consistency, We employ the same training and validations sets (table 4.3 and

4.4, respectively) for the thickness regression model. Table 4.6 shows the regression model
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Figure 4.3: The R2 value for each thickness regression model employed in the 3-Fold CV. The
x-axis shows the R2 values, and the y-axis shows the number of regression models at each R2

value.

Mean Median Standard Deviation Minimum Maximum
3-Fold CV 99.23 99.2 0.05 99.1 99.4
5-Fold CV 99.25 99.2 0.06 99.1 99.4

Table 4.5: Different Statistical measures of the R2 value for the 3-Fold and 5-Fold CVs. The
values are obtained from figures 4.3 and 4.4.
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Figure 4.4: The R2 value for each thickness regression model employed in the 5-Fold CV. The
x-axis shows the R2 values, and the y-axis shows the number of regression models at each R2

value.
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Table 4.6: The thickness regression model information (Eq.3.32, §3.2.5).

Variable/Feature Regression coefficient Variance Inflation Factor

Transmission coefficient (|τ {G}Θ |) −0.0657 1.009
Frequency (f) −0.1431 1.009

information. The y-intercept value (µ) of the model is 0.768 and the coefficient of determination

(R2) is 0.993. Similar to the moisture regression model, the low VIF scores support our choice

of linear regression as a fitting model for our data.

After discussing the moisture and thickness regression models, we discuss SING performance

and aspects related to SING performance in the following sections.

4.1.2 SING’s Angle Combinations

SING measures moisture content in grape clusters through scanning the clusters from multiple

angles. In this section, we discuss the notion of multiple angles in more details, and formulate

the following question: how many angles are required by SING to yield the best performance?

To answer the question, we introduce the term angle set. An angle set is a group of angles

from which SING scans a grape cluster. For example, if we have an angle set that contains the

following angles S = {0, π
2
, π, 3π

2
}, then SING scans a grape cluster from those angles. To asses

the angle sets effect on SING performance, we examine SING performance through different

angle sets using the validation set (table 4.4, §4.1.1). For each angle set, we run SING through

that set and solve equation 4.2. In the equation, we calculate offseti, which represents the total

difference in moisture content between SING and the ground truth when using an angle set Si.

offseti is a useful metric for yield estimation applications, where SING performance is assessed

by considering the whole yield rather than individual grape clusters. In equation 4.2, the whole

yield is represented by the value Truthtotal, which in our case represents the total moisture

content for the grape clusters in the validation set (table 4.4, §4.1.1). N is the number of angle

sets, and M is the number of grape clusters. SINGi,j is SING moisture measurement for an

angle set i and a grape cluster j, whereas Truthj is the ground truth moisture content for a
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grape cluster j. We multiply offseti by 100 to obtain the results as percentage.

∀i ∈ N, offseti =
{ 1

Truthtotal

M∑
j=1

∣∣SINGi,j − Truthj
∣∣}× 100 (4.2)

From equation 4.2, the angle set with the minimum offseti value yields the best performance for

SING. In the next section we discuss and present the results for running SING with different

angle sets.

4.1.3 SING’s Performance

In this section, we present and analyze SING performance by employing SING on the validation

set from table 4.4, §4.1.1. Recall from §3.2.1 that we measure real clusters from 30 angles. From

the 30 angles, we can obtain 230−1 distinct angle sets. Specifically, we can obtain 107,374,182,3

angle sets. It is infeasible to examine SING performance through all the angle sets. However, it

is possible to examine different aspects of SING using only a subset of those angle sets. Thus,

we choose a total of 11353 angle sets from all angle set categories. An Angle Set Category (Si)

is a collection of angle sets with the same number of angles (i) in each set. For example, S2

represents all angle sets that have exactly two angles. Since we can measure SING at 30 angles,

we can compose the following angle set categories: {S1, S2, S3, ..., S30}. The 11535 angle sets

contain angle sets from each angle set category.

We discuss SING performance through the following categories:

• A: The relationship between SING accuracy and the number of scanned angles. In this

category, we investigates how efficient SING approach is in achieving reliable estimations

by scanning grape clusters from multiple angles.

• B: The relationship between SING accuracy and scanning from randomly or specifically
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chosen angles. In this category, we investigate how tolerant SING is - in terms of accuracy

- to scanning from random angles rather than specifically chosen angles.

• C: The relationship between SING accuracy and scanning from a single segment of a

grape cluster or multiple segments. This category investigates the importance of scanning

a grape cluster from multiple segments rather than a single segment. We explain further

the meaning of “segment” in this category.

• D: The relationship between SING accuracy and scanning from few or many angles at the

same segment. This category discusses SING performance when scanning from a single

or few angles rather than many angles for a specific segment.

The data in the figures in this section is the result of running SING with different angle sets

to obtain - for each angle set - the offset values discussed in §4.1.2. To best represent the

results, we plot the figures using three statistical metrics: the mean, median, and standard

deviation. The first two metrics are chosen to represent the central tendency of the data, with

the median being less affected by outliers and skewed data [123]. The standard deviation is

chosen to examine SING performance consistency at each angle set category.

A: The number of scanned angles

In this criteria, we investigate how varying the number of angles may affect SING accuracy.

To do so, we refer to figure 4.5. The figure reports the results at each angle set category (Si).

In the figure, the value of each bar is the mean offset value for the corresponding angle set

category. The error bars represent the standard deviation values. The figure shows clearly that

increasing the number of angles enhances SING accuracy. These results promote the essence

of SING; scanning grape clusters from multiple angles to improve accuracy. In fact, this direct

relationship between increasing the number of angles and improving SING accuracy is also illus-

trated in figure 4.6. The figure emphasizes the positive effect of increasing the number of angles

on SING accuracy. For example, S1 has an ≈18% increase in offset value comparing to the
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Figure 4.5: The mean offset value (%) for each category set.

offset value of S30. Evidently, this offset gap is constantly decreasing until we reach ≈ 0% at S29.

Another observation from figure 4.5 is related to the consistency of SING measurements. This

is best illustrated by the standard deviation values (i.e., the error bars in the figure) and figure

4.7. Figure 4.7 reports the standard deviation values at each angle set category, except for S30,

which has a single angle set. Both, the error bars in figure 4.5 and figure 4.7 emphasize the

consistency of SING measurements as the number of angles increases. In fact, the standard

deviation value of S2 is one order of magnitude larger than the standard deviation value of S29.

B: Random against Specific angles

Here we discuss the performance of SING using angle sets with random angles against specific

angles. An angle set with specific angles is an angle set where the angles are equally separated.

We refer to those angle sets as equidistant. Any other angle set that are not equidistant is
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Figure 4.6: The median offset value (%) for each category set.

Figure 4.7: The standard deviation value for each category set.
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referred to as random. For example, S4
i = {0, π

2
, π, 3π

2
} is an equidistant angle set because all

the angles are separated by π
2
. In contrast, S4

j = {0, π
4
, π, 3π

2
, 2π} is a random angle set because

the angles are not equally separated. Thus, in here we investigate how the performance of an

equidistant angle set such as S4
i compares to the performance of a random angle set such as S4

j .

For each angle set category, we run SING with all possible equidistant angle sets from S3 to

S29 - a total of 946 angle sets - against random angle sets. We exclude S1 and S2 because the

minimum number of angles required to categorize an angle set as equidistant is three. We also

exclude S30 because it has a single angle set. We also run SING on all random angle sets in the

sample we have mentioned at the beginning of the section (i.e., the sample of 11353 angle sets).

Figures 4.8 and 4.9 show the mean and median values for the equidistant and random angle

sets at each angle set category. The error bars in the former figure is the standard deviation

values. The results show that scanning from equidistant angles is not a requirement for SING to

generate accurate estimations. In fact, the performance of random angle sets is slightly better

than equidistant angle sets at almost every angle set category. This highlight SING ability to

provide accurate estimations in spite of angles locations. This outcome, we believe, is related

to the shape of grape clusters. Since grape clusters are geometrically non-uniform, choosing to

scan from random or specific angles is not as important as scanning from multiple angles as

illustrated before in figures 4.5, 4.6, and in the figures here especially in the random scanned

angles.

C: Single against Multiple segments

From before, we have shown that scanning from multiple angles is crucial for SING accuracy.

In here, we discuss the location of those angles. Specifically, we investigate how SING accuracy

is affected by scanning multiple angles of a grape cluster from either a single side or multiple

sides. To do so, we divide - virtually - a grape cluster into different segments. Since we scan a

grape cluster from 30 angles, we can equally divide the cluster into two, three, five, six, ten, or

fifteen segments. In the two-segment category, we have fifteen angles in each segment; {0◦, 12◦,
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Figure 4.8: The mean offset values (%) for equidistant against random scanned angles for each
angle set category.

Figure 4.9: The median offset values (%) for equidistant against random scanned angles for
each angle set category at the all frequency set.
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..., 168◦} in the first segment, and {180◦, 192◦, ..., 348◦} in the second segment. In the three-

segment category, we have 10 angles in each segment; {0◦, 12◦, ..., 108◦} in the first segment,

{120◦, 132◦, ..., 228◦} in the second segment, and {240◦, 252◦, ..., 348◦} in the third segment.

The same applies to the other segment categories (i.e., the five, six, ten, and fifteen-segment).

For each segment category, we assign an angle set to the corresponding segment based on the

angles in that angle set. For example, S4
i = {0◦, 12◦, 24◦, 36◦} belongs to the first segment (i.e.,

{1}) in the two, three, five, and six-segment categories because all four angles (i.e. 0◦, 12◦, 24◦,

36◦) are in the first segment of the mentioned segment categories. However, in the ten-segment

category, S4
i belongs to the {1,2} segment because the first three angles (i.e., 0◦, 12◦, 24◦) are

in the first segment, and the last angle (i.e., 36◦) is in the second segment. Similarly, in the

fifteen-segment category, S4
i also belongs to the {1,2} segment because the first two angles are

in the first segment, and the last two angles are in the second segment. We apply the same

classification to all angle sets.

After classifying the angle sets, we compare the performance of SING when scanning a grape

cluster from a single segment against multiple segments for each segment category. Since we

have more than one single-segment and multiple-segment in each segment category, we group

all angle sets that belong to single-segment into one group and all angle sets that belong to

multiple-segment into another group. For example, in the three-segment category, we have

three single-segment ({1}, {2}, and {3}) and four multiple-segment ({1,2}, {1,3}, {2,3}, and

{1,2,3}). In this case, we group all angle sets in {1}, {2}, {3} into the single-segment group,

and all angle sets in {1,2}, {1,3}, {2,3}, {1,2,3} into the multiple-segment group. After dividing

the angle sets into those two groups, we compute the mean and median offsets for both groups.

The same applies to the other segment categories. Note that an angle set in a segment category

belongs only to one segment.

Figure 4.10 reports the mean offset values of the single-segment against multiple-segment. The
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Figure 4.10: The mean offset values of the single-segment and multiple-segment.

error bars in the figures represent the standard deviation values. Figure 4.11 report the median

offset values.

In all the figures, the multiple-segment outperforms the single-segment, thus, emphasizing the

importance of scanning a grape cluster from multiple segments rather than a single segment.

Scanning a grape cluster from multiple segments provides more information for SING about

the cluster dielectric properties (ε∗ ). This increases the chances of SING to estimate correctly

ε∗ , and by extension, the moisture content. Whereas scanning from a single segment only

provides information about that segment in particular and not the cluster as a whole. The

figures also show how similar the performance of the multiple-segment across all category sets,

which emphasizes once again how crucial the scanning from multiple segments is to SING

accuracy. The performance of the single-segment and multiple-segment can also be explained

through the number of scanned angles, which we discussed earlier in the section. Recall that

SING performs better when the number of angle increases. Thus, we examine the number of

angles for each segment category in both the single-segment and multiple-segment in figures
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Figure 4.11: The median offset values of the single-segment and multiple-segment.

4.12 and 4.13, respectively.

Single-Segment

In figure 4.12, the fifteen-segment in the single-segment group is composed only of two angle

set categories, S1 and S2. Specifically, 30 angle sets from S1 and 12 angle sets from S2. The

ten-segment is composed of 30 S1, 21 S2, and 1 S3. The ten-segment category outperforms the

fifteen-segment category in figures 4.10 and 4.11 because the former has more angles in higher

angle set categories than the latter. In a similar vein, the two-segment category outperforms

the rest in the single-segment group because it has more angles in higher angle set categories

than the rest. Evident by the S8, which only exists in the two-segment category.
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Figure 4.12: The total number of angle sets at each angle set category for each segment category
in the single-segment group.

4.1.4 Multiple-Segment

In the multiple-segment group represented by figure 4.13, all segment categories are composed

of angle set categories from S2 to S30. The number of angle sets in high angle set categories

(especially from S6 onward) are almost identical across all segment categories. This explains

the similar performance of the segment categories in the figures 4.10 and 4.11.

The results in figures 4.12 and 4.13 prove once again the efficiency of SING approach to scan

grape clusters from multiple angles to provide reliable estimations. Since we have established

that, the following criteria examines in more details the minimum number of angles required

by SING to provide such reliable estimations.
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Figure 4.13: The total number of angle sets at each angle set category for each segment category
in the multiple-segment group.

D: Minimum against Maximum number of angles

Here we discuss SING performance when scanning from the minimum (i.e., Min) or maximum

(i.e., Max ) number of angles at the same segment and segment category. Min and Max refer to

angle sets with the minimum and maximum number of angles in a given segment, respectively.

For example, assume that we have the following angle sets S1
i = {0◦}, S1

j = {12◦}, S2
k = {0◦,

12◦}, and S3
l = {0◦, 12◦, 24◦}, which all belong to the same segment and segment category. In

this case, S1
i and S1

j are considered Min because both angle sets have the minimum number of

angles (i.e., one angle) comparing to S2
k and S3

l , which have more angles (i.e., two and three

angles, respectively). Consequently, S3
l is considered Max because it has the maximum number

of angles. Naturally, there may exist a segment where the difference between Min and Max is

as small as one angle. For example, a segment may have two angle sets, S15 and S16. In this

case, S15 is Min and S16 is Max although the difference is just one angle.
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Segment Category All segments Eligible segments Eligible segments (%)
Two-segment 3 3 100
Three-segment 7 7 100
Five-segment 31 31 100
Six-segment 63 63 100
Ten-segment 944 662 70
Fifteen-segment 4660 671 14

Table 4.7: All and eligible segments in each segment category

The purpose of this category is to determine, for a given segment, if SING is required to scan

from the maximum number of angles to yield reliable estimations, or to scan from the minimum

number of angles and still yield reliable estimations. Put differently, can SING yield similar

performance using angle sets such as S1
i and S1

j instead of S3
l given that all those angle sets

belong to the same segment and segment category? Similar to before, we compute the mean

and median offsets for both groups (i.e. Min and Max ), for each segment and segment cate-

gory. Note that we exclude any segment that only have identical angle sets because we cannot

divide the angle sets into the two groups mentioned above. Table 4.7 shows the total number

of segments and the number of eligible segments in each segment category. An eligible segment

is a segment that has both Min and Max.

Figures 4.14, 4.15, 4.16, 4.17, 4.18, and 4.19 show the results for the two-segment, three-segment,

five-segment, six-segment, ten-segment, and fifteen-segment category, respectively. Due to the

high number of segments in the last three segment categories, we plot only the first 50 segments.

We also plot the results only for the mean offset values.The median offset values are plotted in

appendix B, §B.1. From the figures, we notice how similar the performance of SING through

both the Min and Max groups. Specifically, scanning from Min generated lower offset values

than scanning from Max in ≈48% of the segments (i.e., 2088 segments). The rest 52% (i.e.,

2223) is won by Max.

Figure 4.20 shows the distribution of the wins for each segment category. In the two-segment,

scanning from Max completely outperforms scanning from Min. The three-segment and five-
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Figure 4.14: The mean offset of the two-segment Min against Max for the All frequency set.

Figure 4.15: The mean offset of the three-segment Min against Max for the All frequency set.
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Figure 4.16: The mean offset of the five-segment Min against Max for the All frequency set.

Figure 4.17: The mean offset of the six-segment Min against Max for the All frequency set.
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Figure 4.18: The mean offset of the ten-segment Min against Max for the All frequency set.

Figure 4.19: The mean offset of the fifteen-segment Min against Max for the All frequency set.
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Figure 4.20: The wins (%) for each segment category.

segment follow in the footsteps of the two-segment but to a lesser extent. At six-segment,

ten-segment, and fifteen-segment, scanning from Min or Max yield similar results.

Those results - once again - comply with the main strength of SING; scanning from multiple

angles to provide reliable estimations. To explain, in the segment category where Max are sig-

nificantly better than Min (i.e., the two-segment, three-segment, and five-segment categories),

the segments are sufficiently large with respect to the number of angles in a segment. Therefore,

segments encompass both high and low angle sets. A High angle set is an angle set with many

angles such as S28, whereas a low angle set is an angle set with few angles such as S2. As we

have emphasized throughout this section, running SING with a high number of angles (i.e.,

high angle sets) provides more accurate estimations than with a low number of angles (i.e.,

low angle sets). Thus, in most segments in the two-segment, three-segment, and five-segment

categories, high angle sets and low angle sets coexist. Since high and low angle sets coexist,

the high angle sets are considered as Max. SING performs better with high angle sets, thus,
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Figure 4.21: The difference in the number of angles between Min and Max and the occurrence
(%) of such difference across all segments in each segment category.

Max outperforms Min in the mentioned segment category.

In the six-segment, ten-segment, and fifteen-segment categories where SING accuracy is indif-

ferent - to some extent - to scanning from Min or Max, the segments are relatively small, which

reduces the chances of high and low angle sets to coexist. Thus, in many segments in those

segment categories, both Min and Max are represented by either high angle sets or low angle

sets but not both. Figure 4.21 summarizes the discussion above. The figure shows for every

segment in each segment category the difference - in number of angles - between Max and Min,

and the occurrence (%) of such difference across all segments. For example, the two-segment

category consists of three segments. The difference between Min and Max for the three seg-

ments is 6, 7, and 28 angles, and the occurrence is ≈33% for each difference.

From the figure, the two-segment category has a minimum difference of 6 angles, sufficient
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enough for Max to outperform Min. Consequently, the difference of 7 and 28 angles are also

sufficient for Max to outperform Min. Each difference occurred one time, thus, the occurrence

does not affect the two-segment category. In the three-segment category, however, a difference

of 14 and 27 angles occurring in ≈43% and ≈14% of the segments, respectively, explains the

performance advantage of Max over Min. In a similar vein, ≈60% of the segments have a

difference of five angles or more in the five-segment category. Again, this explains the perfor-

mance difference between Min and Max towards the latter. On the other hand, the six-segment

category shows a performance similarity between Min and Max evident by the fact that ≈50%

of the segments have a difference less than five angles. The ten-segment category is the only

segment category where Min outperforms Max since ≈75% of the segments have a difference

of four angles or less. Of the 75%, the one angle difference is responsible for 32% of them.

Comparing to the ten-segment category, the wins percentage of Min in the fifteen-segment

category is lower because fewer segments have a difference of four angles and less.

A we have mentioned before, a main feature of SING is to examine different segments of a

grape cluster to provide reliable estimations. The above discussion emphasizes SING’s ability

to tolerate not scanning from the maximum number of angles in a segment and still provide

reliable estimations.

By this we conclude the analysis of the results. From the analysis, we have learned that

scanning from multiple angles at multiple segments is more critical to SING accuracy than

merely increasing the number of angles or scanning from strategically chosen angles. This

observation paves the way to the discussion in Chapter 5.

4.1.5 Initial Vineyard testing

To get an understanding of the performance of SING in a real-world environment, we have tested

SING in a vineyard (Ridgeview vineyard [24]). A vineyard is an uncontrolled environment

because entities other than grapes will affect RF signals such as leaves, trunks, soil, and people,
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Figure 4.22: Attenuation of the signal between the transmitter and receiver in the presence of
cluster of grapes against the clear line-of-sight (CLoS) in a Vineyard.

to name a few. Thus, we conducted different experiments in the vineyard to identify the extra

challenges that we might encounter when deploying SING therein. In the vineyard, the sole

purpose of the experiments is to examine and compare the attenuation of the signal in the

presence of clusters against a clear line of sight between the transmitter and receiver. Figure

4.22 shows the results, where we measure two clusters individually - the first two bars in the

figure - and CLoS at two different locations. From the results, we notice the two clusters have a

minimum of 7 dB difference when compared to the CLoS readings. The difference between the

clusters themselves is due to the first cluster being heavier than the second one. The outcome

of the experiments mentioned above is an indication of the feasibility of deploying SING in

vineyards. However, at this stage, there remains a gap between lab experiments and practical

deployment, which we discuss in Chapter 5.
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4.2 Conclusion

In many cases, the current industry practice for yield estimation is error-prone, expensive, and

unresponsive to environmental changes [93, 94]. In chapter 3, we have introduced SING, a

scheme that estimates the moisture content in agricultural products with focus on grapes in a

non-destructive, timely manner using RF signals by measuring its dielectric properties (ε∗ );

this approach, to the best of our knowledge, has not been introduced before in the literature.

SING calculates ε∗ , and consequently κ, in grape clusters by measuring the attenuation and the

phase shift of clusters from different angles. SING is superior to that of traditional free-space

transmission in its tolerance to the non-uniformity of grape clusters, its disregard of fixtures,

and its applicability to real-world environments where grape clusters can be measured without

removing them from the canopy; thus, continuing to grow without any disturbance.

In chapter 4, we have shown that SING senses the moisture content in various grape clusters

with high accuracy (≈90%). This high accuracy provides more reliable yield estimations than

traditional techniques where the yield estimations inaccuracy is as high as 40% [122]. We have

also provided a detailed discussion about different factors that affect SING accuracy such as

angles location and number.

In the next chapter we discuss the constraints and specifications required to transform SING

from a lab based system to a system working in the fields.



Chapter 5

Outdoor SING

In this chapter, we discuss potential specifications and design’s constraints to transform SING

into a system suitable for real-world environments such as in vineyards. We start by discussing

the design’s constraints that we have to adhere to. Then we propose candidate designs of SING

in outdoor environments. Specifically, we investigate different deployment options, different

measurement devices to replace VNAs, and the responsibilities and requirements of the host

computer in the design. We conclude the chapter by analyzing the power consumption and

presenting an estimated overall cost of the system. Note that we refer to SING as outdoor

SING throughout this chapter.

5.1 Outdoor SING Constraints

5.1.1 The distance between the transmitter and receiver.

The distance between the transmitter and receiver must adhere to the far-field (Dfar-field) re-

quirements we discussed earlier in §3.2.1. According to equation 5.1 two parameters affect that

distance, the frequency (f) and the largest antenna dimension (D) [33].

Dfar-field =
2D2

λ
(5.1)

108
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Figure 5.1: Two scenarios to illustrate the relationship between Dfar-field and the inter-distance
between a vineyard’s rows.

In SING, f is fixed to the 5 GHz band, thus, D is the only variable in equation 5.1. The main

criteria to choose an antenna - and by extension, D - in SING is the antenna’s directivity. The

directivity shapes the antenna’s beamwidth, and it is decided according to the dimension (i.e.,

the width) of the clusters to be scanned. To explain, we scan clusters individually to obtain

reliable moisture estimations. Therefore, the antenna’s beamwidth should not be significantly

larger than the width of the clusters. Otherwise, we may scan multiple clusters at once.

Although scanning multiple clusters at once may reduce the scanning time, it is not favourable

to the accuracy of SING. For those reasons, the value of D for outdoor SING should result in

a far-field distance (Dfar-field) smaller than twice the inter-distance between vineyard rows as

illustrated in figure 5.1. In the figure, the green part of the figure is the correct scenario where

Dfar-field < 2 x inter-distance. Thus, outdoor SING scans a single cluster. The red part of the

figure is the wrong scenario where outdoor SING covers multiple clusters from different rows.

According to the vineyard we have visited, the inter-distance between rows are between 1 and 2

m [24]. Accordingly, a far-field distance < 2 m is required. Thus, from equation 5.1, D should

not exceed 24.4 cm as in equation 5.2.
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Figure 5.2: A cluster between two antennas. The preferable setup for SING.

Dfar-field =
2D2

λ

2 =
2D2

0.0599

D2 = 0.0599

D = 0.244m

(5.2)

5.1.2 The placement of the antenna.

Since in SING we rely on computing the transmission coefficient (τ), we need to place the

antennas at the opposite sides of a cluster as in figure 5.2. This will limit the deployment

options as we cannot place the antennas on a single side. Thus, any viable deployment option

should allow the antennas to cover a cluster from opposite sides without altering or disturbing

the canopy in any way. Figure 5.3 shows two viable deployment options.
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(a) (b)

Figure 5.3: (a) Illustration of outdoor SING as a handheld device, and (b) illustration of
outdoor SING as an aerial device

5.1.3 Multiple vs. Rotating antennas.

In SING, we scan the clusters from multiple angles by rotating the clusters. Obviously, this

is infeasible in a vineyard without disturbing the canopy. Thus, we discuss two alternatives

to replace the rotation of clusters. The first option is to place multiple pairs of Tx-Rx around

the clusters. The second option is to rotate the antennas. The former facilitates the design

of outdoor SING as no rotation is required, however, the number of scanned angles is limited

by the number of antenna pairs. For example, two pairs of antennas will scan a total of four

angles, and three pairs will scan six angles. The second option enables outdoor SING to scan

from far more angles than the first option with only a single pair of antennas. In fact, we would

be able to scan from a high number of angles (e.g., 30 angles similar to §3.2.1) if we to rotate

the antennas with high precision. A Servo motor can achieve such a high rotation precision

[11]. The downside of the second option is the added complexity of designing a mechanism for

rotating the antennas.

Another matter to discuss is how accurate the scanning of angles should be? In other words,

is outdoor SING required to scan the clusters precisely at specific angles, and will failing to

do so might affect its performance significantly? In fact, we have discussed this in §4.1.3,

and emphasized SING’s ability to yield reliable estimations even when scanning at random
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angles. Indeed, the primary prerequisite for SING to deliver reliable estimations is to scan a

single cluster from different sides according to the results in §4.1.3. Thus, scanning a cluster at

precise angles is not crucial.

5.2 Outdoor SING Design

5.2.1 Deployment options

The main objective of SING is to increase the reliability of yield prediction by measuring clus-

ters non-intrusively throughout the vineyard. Therefore, having outdoor SING as a mobile

measuring device is a necessity. Thus, we propose three deployment options for outdoor SING:

as a handheld device (figure 5.3(a)), on a drone (figure 5.3(b)), or on a robot. In the first

option, outdoor SING can be held by an operator that moves from one cluster to another

to perform measurements. This option reduces the complexity of outdoor SING design as no

drones or robots are required. However, it may lack consistency in measurements as humans are

involved in the measuring process, which may require personnel training to handle the device.

The second option also involves an operator that handles outdoor SING. However, it offers the

convenience of operating outdoor SING from afar, moving between vineyard’s rows at a higher

speed, and helps in extreme weather conditions. The third option is fully automated, which

should enforce consistency better than the first two options. However, it requires an algorithm

to determine the location of clusters as opposed to the first two options where an operator is

responsible for this job. This should increase the design complexity of SING.

In the second deployment option, outdoor SING is mounted on a drone, which may hinder

the drone’s ability to fly. We defer the discussion about this to §5.3. In the third deployment

option, an algorithm is required to detect the location of clusters. Similar algorithms exist in

previous work, specifically in [67, 93, 94]. In those works, the authors employ optical imaging

to detect grapes/clusters. Thus, we can employ similar techniques to design the algorithm for
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Deployment Option Design Complexity Cost Antenna Rotation Laborious/Human involvement Suitable for extreme weather condition Speed of navigating the field
Handheld Low Low Manual High Low Medium
on a Drone Medium Medium Semi-Automated Medium Medium High
on a Robot High High Automated Low Medium Low

Table 5.1: Deployment Options

the third deployment option.

Table 5.1 summarizes the advantage/disadvantage of the three deployment options. In the ta-

ble, we assign three relative values, namely, low, medium, and high in all comparison categories

except for the antenna rotation. By relative, we mean one deployment option’s score is relative

to the other deployment options. For example, in the speed of navigating the field category, the

Drone option scores the highest, which translates to the Drone option being the fastest com-

pared to the other two options. The Robot option has the highest cost and design complexity;

however, it has the lowest human involvement. The Handheld option has the highest human

involvement and it is the least suitable for extreme weather conditions. Finally, in the antenna

rotation category, the Handheld option is completely manual as opposed to the Robot option

where the robot is responsible for rotating the antennas. The Drone option is semi-automated

as a drone rotates the antenna, however, an operator is still required to operate the drone itself.

5.2.2 Measurement devices

In SING, we employed a VNA to perform the S-parameters measurement. VNAs are expensive

and power-hungry [52], which renders them unsuitable for outdoor deployment. An alternative

to VNAs are Software Defined Radios (SDRs). SDRs are radio communication devices where

components that are usually implemented in hardware, in VNAs, are instead implemented in

software [119]. Components such as filters and amplifiers can be realised through mathematical

models eliminating the need to implement them in hardware. With efficient power management,

SDRs can survive for an extended period of time on batteries and power banks [68]. There

are different commercial SDRs in the market today, from which we focus on two types: single

port and multiple ports SDRs. Single port SDRs such as the HackRF One ([9]) have - as the

name suggests - a single port to plug an antenna into, which reduce the design complexity and
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cost. However, it cannot achieve full-duplex communication, which renders them unsuitable for

a multitude of applications that require full-duplex communications. Multiple ports SDRs on

the other hand can connect multiple antennas and achieve full-duplex communication at the

cost of increased design complexity and power consumption. Examples of the multiple ports

SDRs are BladeRF 2.0 ([6]) and LimeSDR ([15]). Table 5.2 shows a comparison between those

SDRs and the HackRF One.

The SDRs in table 5.2 can be transformed to measure the S-parameters. However, doing so

requires several modifications, which we discuss below:

HackRF One. The HackRF One is a single port SDR developed by Great Scott Gadgets to

transmit and receive RF signals from 1 MHz to 6 GHz. To realise outdoor SING by employing

the HackRF One, we need to measure the S-parameters using the HackRF One. Figure 5.4

illustrates a proposed design to transform the HackRF One into an SDR capable of measuring

the S-parameters. In the figure, the green lines refer to the S11 measurements, and the red lines

refer to the S21. Below is a description of each component in the figure:

• HackRF One: Since the HackRF One is a single port SDR, we need two of them to have

a Tx/Rx pair. We also need to synchronize their clocks to avoid phase synchronization

problems. Fortunately, the HackRF One has a clock port that can be connected to the

other HackRF One clock port to share the same clock as illustrated in the figure.

• Frequency Synthesizer: the role of the frequency synthesizer is to generate signals at the

required frequencies (i.e., the 5 GHz band for SING). Although HackRF One can perform

this task, we employ frequency synthesizers to lower the whole design’s cost and power

consumption.

• Multiplexer: A main requirement for a VNA is to measure the phase shift. This is

accomplished by comparing the phase shift of the measured signals against a reference

signal. Since the HackRF One has a single port, a Multiplexer enables the HackRF One
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to receive both signals (i.e. measured and reference). Note that multiplexing can be

achieved either by time or frequency [66].

• Directional Coupler: to enable the measurement of the S11 parameter as described in [63].

• RF Switch: to switch between signals received through the Directional Couple/Multiplexer

path and signals received from the antenna directly to the HackRF One path. The former

path is for the S11 measurements, whereas the latter is for the S21 measurements.

• Servo Motor: to rotate the antennas.

• Host Computer: to deliver power to the components and perform SING procedure (figure

3.19, §3.2.4) on the measurements.

• Battery/Power Bank: to power up the host computer and other components if needed.

The power consumption and cost of the proposed design in figure 5.4 is discussed later in §5.3.

Next, we discuss the proposed design to enable S-parameters measurement through the multiple

ports SDRs, namely, the BladeRF 2.0 and the LimeSDR.

LimeSDR/BladeRF 2.0 The BladeRF 2.0 is a multiple ports SDR designed by Nuand to

operate between the 47 MHz and 6 GHz [6]. BladeRF 2.0 can connect up to four antennas

(two Tx and two Rx). Equivalently, the LimeSDR - developed by Lime Microsystems [15] - can

also connect up to four antennas. The LimeSDR however can only operate up to 3.8 GHz and

it requires an up-converter to extend the range to 10 GHz. The up-converter in question is the

LMS8001A chip developed also by Lime Microsystems. Similar to the proposed design for the

HackRF One, figure 5.5 shows the required components to enable S-parameters measurement

through both the BladeRF 2.0 and the LimeSDR. The green and red lines illustrate the same

function as in the HackRF One design. Below is a description of the components depicted in

the figure:

• LimeSDR/BladeRF 2.0: Both the LimeSDR and the BladeRF 2.0 are full-duplex multi-

ports SDRs. In fact, both SDRs have two Tx chains (ports) and, similarly, two Rx chains.
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Figure 5.4: A proposed design of outdoor SING using HackRF One.
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HackRF One BladeRF 2.0 xA5 LimeSDR
Frequency Range 1 MHz - 6 GHz 47 MHz - 6 GHz 100 KHz - 3.8 GHz (up to 10 GHz with LMS8001A [16])
RF Bandwidth 20 MHz 56 MHz 61.44 MHz
Sample Depth 8 bits 12 bits 12 bits
Sample Rate 20 MSPS 61.44 MSPS 61.44 MSPS
Transmitter Channels 1 2 2
Receivers 1 2 2
Duplex Half Full Full
Interface USB 2.0 USB 3.0 USB 3.0
Transmit Power 0 to - 10 dBm @ 4 to 6 GHz 6 dBm 0 to 10 dBm based on frequency
Price £216 £432 £235 (without the LMS8001A up-converter)

Table 5.2: Comparison between three different types of SDRs. The values are obtained from
[9, 6, 15].

Thus, we can form two Tx-Rx pairs using only a single LimeSDR or BladeRF 2.0. Also,

both SDRs have an on-board FPGA chip that can be utilized to perform measurements

faster than the host computer. A description of both SDRs specifications is in table 5.2.

• LMS8001A: an up-converter for LimeSDR to extend the frequency range to 10 GHz [16].

• 10 dB Attenuator: to improve the impedance matching between the SDR and the direc-

tional coupler as explained in [63].

• Directional Coupler: to enable the measurement of the S11 parameter as described in [63].

• RF Switch: to switch between signals received through the Directional Couple/Attenuator

path and signals received from the antenna directly to the SDR path. The former path

is for the S11 measurements, whereas the latter is for the S21 measurements.

• Servo Motor: to rotate the antennas.

• Host Computer: to deliver power to the components and store/display the results gener-

ated by the FPGA chip.

• Battery/Power Bank: to power up the host computer and other components if needed.

We discuss later in §5.3, the design cost and power consumption of the design in figure 5.5.



118 Chapter 5. Outdoor SING

Figure 5.5: A proposed design of outdoor SING using BladeRF 2.0/LimeSDR.
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5.2.3 Host Computer

Figures 5.4 and 5.5 illustrate proposed designs for outdoor SING. The figures show host com-

puters that control the SDRs and, consequently, the measurement process. After discussing

the SDRs in the previous section, we dedicate this section to discuss the host computers’ re-

sponsibilities and requirements. The host computer responsibilities are:

• Powering up the active components in figures 5.4 and 5.5.

• Performing SING procedure (figure 3.19, §3.2.4) in the absence of an FPGA chip.

• Saving, transferring, and displaying the results (i.e., SING estimations).

Based on those responsibilities, an eligible host computer should meet the following require-

ments:

• Can be powered from a battery/power bank.

• Has USB 2.0 ports, although a minimum of 3.0 is recommended for a higher data rate.

• A memory card to save the S-parameters measurements and the results.

• Connectivity to transmit the measurements and results to a base station or the cloud (if

needed).

• A monitor to display the results (if needed)

Among the different commercial products in the market, the Raspberry Pi family and the

BeagleBone Black meet the requirements. The Raspberry Pis and the BeagleBone Black are

low-cost and low-power boards and can be employed as host computers in the outdoor SING

setup. The Raspberry Pis and the BeagleBone Black are not the only low-cost and low-power

devices in the market today that meet the requirements mentioned above. However, they are

well-documented in terms of their power consumption and cost. Thus, we choose them to an-

alyze the role of the host computer in the outdoor SING designs in figures 5.4 and 5.5.
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Raspberry Pi 3 Model A+ (RPi3 A+) Raspberry Pi 3 Model B+ (RPi3 B+) Raspberry Pi 4 Model B (RPi4 B) BeagleBone Black (BB)
CPU 1.4 GHz Quad Core ARM Cortex-A53 1.4 GHz Quad Core ARM Cortex-A53 1.5 GHz Quad Core ARM Cortex-A72 1 GHz Cortex-A8 Dual PRU
RAM 512 MB 1 GB 2/4/8 GB 512 MB
USB Ports 1x USB (2.0) 4x USB (2.0) 2x USB (2.0), 2x USB (3.0) 1x USB (2.0)
Ethernet No Yes Yes Yes
WiFi Yes (2.4 and 5 GHz) Yes (2.4 and 5 GHz) Yes (2.4 and 5 GHz) No
Bluetooth Yes Yes Yes No
Power Cons. (Idle) 240 mA 400 mA 575 mA 250 mA
Cost £23.40 £33.90 £43.50 (2 GB), £54 (4 GB), £73.50 (8 GB) £40.32

Table 5.3: Comparison between different host machines. The values are obtained from [20, 21,
22, 4].

In table 5.3 we show a comparison between three different Raspberry Pi boards and the Bea-

gleBone Black board.

Now that we have explained all the components of outdoor SING in figures 5.4 and 5.5, we

present a flowchart to illustrate the operation steps of outdoor SING in figure 5.6. After

powering up, outdoor SING starts by locating clusters either manually or through a special

algorithm as mentioned in §5.2.1. After locating a cluster, outdoor SING measures the S-

parameters and saves the measurements at a specific angle. The last step is repeated for all

remaining angles. After measuring the S-parameters of all angles, outdoor SING estimates the

moisture of the cluster as explained in figure 3.19, §3.2.4. Outdoor SING performs the same

process again for other clusters. Finally, the yield estimation is presented according to the

estimations of all scanned clusters.

5.3 Power Consumption and Overall Cost

In this section we discuss the power consumption and overall cost of outdoor SING. Regarding

the power consumption, we aim to answer the following question: how many clusters can

outdoor SING scans between battery recharges? Since we have discussed three SDRs and four

host computers, we perform the power consumption analysis and present the overall cost of the

{SDR, Host Computer} configurations in table 5.4.

When analyzing the power consumption for each configuration, we consider the power con-

sumption of the active components as mentioned in table 5.5. For example, in configuration C

(LimeSDR, RPi3 A+), we consider the power consumption of the LimeSDR, the up-converter

chip (LMS8001A), the Servo motor, and the Raspberry Pi 3 model A+.
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Figure 5.6: Operation flowchart of outdoor SING.
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Configuration SDR Host Computer
A

HackRF One

Raspberry Pi 3 model A+
B Raspberry Pi 3 model B+
C Raspberry Pi 4 model B
D BeagleBone Black
E

BladeRF 2.0

Raspberry Pi 3 model A+
F Raspberry Pi 3 model B+
G Raspberry Pi 4 model B
H BeagleBone Black
I

LimeSDR

Raspberry Pi 3 model A+
J Raspberry Pi 3 model B+
K Raspberry Pi 4 model B
L BeagleBone Black

Table 5.4: The {SDR, Host Computer} configurations

Current (A) Power (W) Weight (G)
HackRF One (idle) 0.2 1

≈200HackRF One (Tx mode) 0.44 2.2
HackRF One (Rx mode) 0.37 1.85
BladeRF 2.0 (idle) 0.42 2.136 ≈360
BladeRF 2.0 (Tx/Rx mode) 0.67 3.362
LimeSDR (idle) N/A N/A ≈350
LimeSDR (Tx/Rx mode) 0.62 3.1
LMS8001A 0.25 1.25 N/A
Multiplexer (74HC4051) .00008 0.0004 6
Frequency Synthesizer (STW81200) .015 .075 0.1
Raspberry Pi 3 Model A+ .335 1.675 45
Raspberry Pi 3 Model B+ .530 2.65 45
Raspberry Pi 4 Model B .675 3.375 46
Beaglebone Black .390 1.95 40
Servo Motor (idle) (HS-425BB) .150 0.75

45
Servo Motor (stall) (HS-425BB) .8 4

Table 5.5: Typical power consumption and weight of the active components in figures 5.4
and 5.5, and the servo motor required to rotate the antennas. The values are obtained from
[10, 7, 17, 23, 5, 26, 11, 1]
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Single Scan Power Consumption
Configuration Current (A) Power (W)
A 1.26 6.30
B 1.45 7.25
C 1.60 8.00
D 1.31 6.55
E 1.16 5.80
F 1.35 6.75
G 1.50 7.50
H 1.21 6.05
I 1.35 6.75
J 1.55 7.75
K 1.69 8.45
L 1.41 7.05

Table 5.6: The typical current and power consumption for each configuration.

From the values in table 5.5, the power consumption of a single scan for each configuration is

presented in table 5.6. currentsingle-scan is the current consumption of scanning a single angle

or two angles for configurations with HackRF One or LimeSDR/BladeRF 2.0, respectively.

Since the LimeSDR and BladeRF 2.0 are full-duplex SDRs, we can scan two angles simul-

taneously. Table 5.6 enables us to compute the maximum (theoretical) number of scanned

clusters (clustermax) between battery recharges for each configuration. To do so, we refer to

equation 5.3 that computes clustermax for a given number of angles per cluster (anglenum), a

power bank capacity (batterycap), and the time to perform a single scan (single-scansec). Note

that operation-timesec is the battery operation time in seconds before requiring a recharge.

operation-timesec =
batterycap

currentsingle-scan

∗ 602

single-clustersec = anglenum ∗ single-scansec

clustermax =
operation-timesec

single-clustersec

(5.3)

To present an example based on equation 5.3, we assume the following inputs:

• batterycap = 20,000 mAh
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Figure 5.7: Maximum scanned clusters for each {SDR, Host Computer} configuration.

• anglenum = 4 angles.

• single-scansec = 1 sec

Based on those values, we present figure 5.7 that shows the theoretical clustermax value of the 12

configurations mentioned in table 5.4. From the figure, we notice that BladeRF 2.0 outperforms

the other two SDRs because of the currentsingle-scan lower value of the former compared to

the latter as shown in table 5.6. Although HackRF One and LimeSDR alone consume less

power than the BladeRF 2.0 (table 5.5), they consume more power when considering the power

consumption of other components in figures 5.4 and 5.5. HackRF One performs the worst

because we require two of them to measure the S-parameters as opposed to the other two SDRs.

Compared to the other host computers, the Raspberry Pi 3 model A+ and the BeagleBone

Black deliver more scanned clusters due to their low power consumption. Thus, configuration

E (BladeRF 2.0, RPi3A+) delivers the highest clustermax in the figure. Finally, the figure shows

that SDRs have more impact on clustermax than the host computers. This is due to the low

power consumption of the host computers compared to the SDRs as evident by table 5.5.
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Configuration Cost (£) Extra Cost (£)
A ≈ 921

+ Power Bank/Battery cost

B ≈ 932
C (RPi4B RAM = 2 GB) ≈ 941
C (RPi4B RAM = 4 GB) ≈ 952
C (RPi4B RAM = 8 GB) ≈ 971
D ≈ 938
E ≈ 898
F ≈ 909
G (RPi4B RAM = 2 GB) ≈ 918
G (RPi4B RAM = 4 GB) ≈ 929
G (RPi4B RAM = 8 GB) ≈ 948
H ≈ 915
I ≈ 701

+ Power Bank/Battery cost
+ up-converter (LMS8001A) cost

J ≈ 712
K (RPi4B RAM = 2 GB) ≈ 721
K (RPi4B RAM = 4 GB) ≈ 732
K (RPi4B RAM = 8 GB) ≈ 751
L ≈ 718

Table 5.7: The cost of the 12 configurations.

After discussing the power consumption, we present the overall cost of the 12 configurations

in table 5.7. For the antennas, we consider the same antennas we employed in SING §3.2.1.

For the LimeSDR, the cost of the up-converter (LMS8001A) is unfortunately not published

yet. As can be seen from the table, the cost of each configuration is below £1000. This cost is

significantly low considering the fact that VNAs can cost more than £100K [14].

Before concluding this chapter, we refer back to the discussion about the drone’s ability to

fly while carrying outdoor SING from §5.2.1. To further discuss this, we refer to table 5.8,

which shows the potential weight of the 12 configurations. From the table, we notice that

configuration G (BladeRF 2.0, RPi4B) is the heaviest. Adding the weights of the antennas and

the power bank, the maximum weight for outdoor SING does not exceed 2Kg. Some of the

mid-range professional commercial drones in the market can carry up to 6Kg of load [18]. This

is sufficient enough to carry outdoor SING without affecting the drone’s ability to fly.

This concludes the discussion about outdoor SING. In this chapter, we discussed the specifica-

tions and requirements to transform SING into a technology applicable for real-world scenarios.

We proposed several designs and explained the role of each component in the design. In the
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Configuration Weight (G) Extra Weight
A 296.0

+ Antenna’s weight
+ Power Bank/Battery’s weight

B 296.0
C 297.0
D 291.0
E 456.0
F 456.0
G 457.0
H 451.0
I 446.0
J 446.0
K 447.0
L 441.0

Table 5.8: The approximate weight of the 12 configurations

end, we analyzed the power consumption and presented the overall cost of the proposed designs.

In the next chapter, we present final remarks about SING and discuss future work.



Chapter 6

Conclusion and Beyond

6.1 Thesis Summary

In this thesis, we investigated the usefulness of RF Sensing as a technology to achieve preci-

sion agriculture. Specifically, We have successfully methodized and tested SING; a model to

estimate moisture content in grape clusters through RF Sensing. Before introducing SING,

we started with Chapter 2, where we presented a primer on the dielectric properties and their

measuring techniques. Then, we discussed related work in the field of precision agriculture,

RF Sensing, realizing precision agriculture through RF Sensing. Afterwards, we showed the

current practice to estimate moisture in grape clusters and estimate discussed previous work

related to that. We concluded the chapter by showing a comparison between the key papers

reviewed in the chapter and SING in table 2.2.

After Chapter 2, we introduced SING in Chapter 3. In that chapter, we illustrated how SING

leverages the the dielectric properties of grapes to estimate their moisture content. We started

the chapter by highlighting the connection between the dielectric properties (ε∗ ) and the ex-

tinction coefficient (κ), and how to estimate the moisture content from ε∗ through κ. Also, we

have successfully emphasized the monotonic relationship between κ and the three independent

variables in the moisture predictive model (Eq. 3.2.2, §3.2) through theory and experiments.

127
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The monotonic relationship is an important factor to promote our choice of linear regression as

a model for our data. In addition, we explained through careful analysis why the 5 GHz band

is suitable for SING.

After justifying the choice of the linear regression and the frequency band, the chapter continues

by explaining the operation of SING. SING works by “scanning” grape clusters from different

angles and employs - through careful analysis and investigation - a mathematical model that

uses the output of the scanning to estimate the moisture content in clusters to a high degree

of accuracy. What makes SING efficient is its tolerance to the non-uniformity of grape clusters

and the simplicity of its design. Grape clusters are non-uniform - geometrically -, thus, existing

moisture estimation techniques - as illustrated throughout Chapters 2 and 3 - cannot cope

with the challenges imposed by such geometry. Instead, they resort to employing fixtures and

destructively remove samples, such as grapes, from their natural place and pour them into the

fixtures to estimate the moisture content.

The destructive nature and impracticality of using fixtures emphasize the other trait of SING;

the simplicity and feasibility of its design. SING does not require fixtures as a consequence

of introducing the notion of relative thickness. This notion allow us to forgo measuring the

physical thickness of clusters - hence the use of fixtures in previous related work - and instead

relate the thickness to the beamwidth of employed antennas. Thus, SING does not require

the grape clusters to be removed from the canopy to estimate the moisture content correctly.

In fact, SING’s is only composed of a pair of antennas, a radio frequency transceiver, and a

mechanism to scan clusters from multiple angles. This design makes SING attractive for out-

door deployment (Chapter 5), where the moisture content of grape clusters can be estimated

accurately and continuously in the non-invasive fashion of RF Sensing. We concluded Chapter

3 by investigating different factors that may affect SING’s accuracy. Specifically, we presented

a detailed analysis of both the diffraction effect and the impact of foliage on SING’s accu-

racy. Regarding the former, we concluded that the accuracy is intact due to the shape of the

grapes. Similarly, the latter does not affect SING’s accuracy due to SING’s operation frequency.
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After introducing SING in Chapter 3, we evaluated SING’s performance in Chapter 4. In

the chapter, we started by choosing training and validation sets for the moisture and thick-

ness regression models through 3-Fold and 5-Fold Cross-Validations. Then, we introduced the

term Angle Combination, through which we defined different criteria to evaluate SING’s per-

formance. The criteria cover different aspects from merely increasing the number of scanned

angles to choosing the location of those angles. We reached to the conclusion that scanning a

cluster at different locations affects SING’s accuracy more significantly than merely increasing

the number of scanned angles. We concluded the chapter by reporting preliminary results from

an experiment in a vineyard.

After presenting SING in Chapter 3 and evaluating its performance in Chapter 4, a natural

next step in this thesis is to deploy SING in a vineyard to assess its shortcomings and advan-

tages. Unfortunately, the emergence of COVID-19 as a global pandemic prevented us from

deploying SING in vineyards. Thus, we decided to dedicate Chapter 5 to address the require-

ments needed to transform SING from a lab-based system to a system working reliably out

in the fields, which we refer to as outdoor SING. In the chapter, we highlighted some of the

challenges that outdoor SING might suffer from such as the high power consumption of VNAs

and the distance between the antennas. We proposed solutions for those problems and offer

different design options for outdoor SING. We explained the advantages and disadvantages of

each design option and describe the role of each component in those designs. We concluded the

chapter by tabulating the power consumption and the cost of the different design options. We

believe the work accomplished in Chapter 5 represents a roadmap to help guide the process of

deploying SING into real-world scenarios.

The three chapters (i.e., Chapter 3, 4, and 5) represent the core chapters of this thesis. In the

next section, we introduce different improvements and directions for SING.
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6.2 Future of SING

Although SING is an RF Sensing technology, we believe that we can improve SING by incor-

porating different technologies along with RF Sensing. For example, in Chapter 2, we reviewed

different work that utilize computer vision to estimate the moisture content in grapes. Al-

though we have mentioned the drawbacks of this approach, we also recognize the potentials of

utilizing images along with RF readings to improve SING. In fact, in Chapter 5, we discussed

different deployment options including drones and robots (§5.2.1). Both of those devices have

cameras in-board. Thus, we can re-purpose SING to benefit from computer vision along with

RF Sensing. One example is related to sugar weight. To explain, in the moisture regression

model (Eq.3.10, §3.2.2), one of the independent variables is the sugar weight. As we have ex-

plained in §3.2.2, the sugar’s concentration (and eventually, sugar’s weight) is obtained through

a refractometer. On the surface, this may seem intrusive; however, viticulturists regularly take

sugar measurements for quality control purposes, and those measurements can parameterize

our solution [37, 85]. Nevertheless, we can relate the absorption of RF signals, shape detection

algorithms through computer vision, and the heuristic data of clusters’ weight [107, 125], to

obtain reliable estimation of cluster’s weight. From which, sugar’s weight can be realized.

Moving away from grapes, we believe SING’s approach is not specific to grapes. Although,

some aspects of SING are indeed tailored to grapes, like how SING deals with the shape of

grape clusters. However, a main feature of SING is to utilize the interaction between water

and RF signals. Water is the main component in many agricultural products. We believe we

can alter SING to work on those products without substantial changes to SING’s methodology.

Of course, different products have different characteristics that need to be considered when

employing SING on them. For example, the orange rind (i.e., the outer layer of an orange)

is significantly different from the grape skin. Grapes skin are thin, whereas oranges rind are

thick. When dealing with the cm waves of the 5 GHz band, the thickness of the outer layers

could affect the signals significantly in terms of attenuation and phase shift. However, once

those characteristics are considered, we believe SING can deliver accurate moisture content
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estimations similar to that of grapes.

Outside precision agriculture, we have shown that a SING-like scheme has the potentials to

work in other domains such as the health domain. We believe one reason behind SING’s ap-

proach versatility is the ability to “scan” an object from different angles and “stitch” those

measurements together to provide a meaningful “image” of that object; similar to CT scans

where a 360-degree image of an internal organ is captured to provide more information about

those organs [55]. However, unlike CT scans which are created by combining a series of x-ray

views [55], SING’s approach relies on combining a series of RF images to analyze objects. By

an RF image, we refer to objects response to RF signals travelling through them from a cer-

tain angle. Those images provide information about the characteristics of the objects, such as

the dielectric properties that SING utilizes to infer other characteristics such as the moisture

content. Thus, a future direction is to investigate how we can utilize those images captured by

SING to work on other traits such as blood glucose levels in a patient.

In industry, we can exploit the RF images to monitor machines’ health, for example. A deficit

in a machine can be identified by recognizing abnormality in the operation of its mechanical

components. For instance, a sign of malfunction in a motor can be a sudden change in its

rotation speed or vibration. We can exploit the RF images to recognize patterns, especially in

the phase shift, to monitor the rotation speed or vibration. Sudden and unexplained changes

to those patterns may indicate a malfunction in the motor. Thus, a SING-like scheme using

multiple RF images generated from multiple angles can work on industrial applications as well.

The above is some of the possible applications for SING. We realise that employing SING in

some applications, such as detecting blood glucose levels, requires more effort than estimating

the moisture content in a different agriculture product. However, we believe that this thesis

provides enough evidence to prove the ability of SING to work on those applications as well.
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Appendix A

SING: Supplementary Figures

A.1 The relationship between ε∗ and the Moisture Con-

tent

• Figure A.1 shows how κ reacts to changing in the moisture content at six water concen-

trations (i.e., 40%, 50%, ..., 90%) and 50 frequencies uniformly distributed between 5 and

6 GHz.

146
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Figure A.1: κ against different moisture concentration (%) at 50 frequencies in {5.0,5.1,5.2,...,6.0
GHz}.

A.2 Radiation Directivity and Pattern

• Figures A.2 and A.3 show the radiation directivity and the radiation pattern at 5 GHz,

respectively.
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Figure A.2: Radiation directivity at 5 GHz. The red curve represents the main lobe direction,
whereas the other lines/curves represent the main lobe width and the side lobe amplitude with
auxiliary lines.

Figure A.3: The 3D radiation pattern at 5 GHz.

• Figures A.4 and A.5 show the radiation directivity and the radiation pattern at 6 GHz,

respectively.
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Figure A.4: Radiation directivity at 6 GHz. The red curve represents the main lobe direction,
whereas the other lines/curves represent the main lobe width and the side lobe amplitude with
auxiliary lines.

Figure A.5: The 3D radiation pattern at 6 GHz.
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A.3 Attenuation and Phase shift at multiple angles

• Figures A.6 and A.7 show the attenuation and phase shift for a cluster with moisture

content = 233 ml at multiple frequencies between 5.1 and 5.9 GHz and equidistant angles

between 0 and 2π.

Figure A.6: The attenuation {A} in dB at {5.1, 5.2, 5.3, ..., and 5.9 GHz} for a cluster with
moisture content = 233 ml at 30 equidistant angles between 0 and 2π.
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Figure A.7: The phase shift {φ} in degree at {5.1, 5.2, 5.3, ..., and 5.9 GHz} for a cluster with
moisture content = 233 ml at 30 equidistant angles between 0 and 2π.

• Figures A.8 and A.9 show the attenuation and phase shift for a cluster with moisture

content = 157 ml at multiple frequencies between 5.1 and 5.9 GHz and equidistant angles

between 0 and 2π.
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Figure A.8: The attenuation {A} in dB at {5.1, 5.2, 5.3, ..., and 5.9 GHz} for a cluster with
moisture content = 157 ml at 30 equidistant angles between 0 and 2π.

Figure A.9: The phase shift {φ} in degree at {5.1, 5.2, 5.3, ..., and 5.9 GHz} for a cluster with
moisture content = 157 ml at 30 equidistant angles between 0 and 2π.
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• Figures A.10 and A.11 show the attenuation and phase shift for a cluster with moisture

content = 95 ml at multiple frequencies between 5.1 and 5.9 GHz and equidistant angles

between 0 and 2π.

Figure A.10: The attenuation {A} in dB at {5.1, 5.2, 5.3, ..., and 5.9 GHz} for a cluster with
moisture content = 95 ml at 30 equidistant angles between 0 and 2π.
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Figure A.11: The phase shift {φ} in degree at {5.1, 5.2, 5.3, ..., and 5.9 GHz} for a cluster with
moisture content = 95 ml at 30 equidistant angles between 0 and 2π.

A.4 The impact of foliage on SING accuracy

• The S-parameters measurements with and without leaves at angle π
4
.
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Figure A.12: The S11 and S21 measurements with leaves (i.e., w Leaves) and without leaves at
angle π

4
.

• The S-parameters measurements with and without leaves at angle 3π
4

.
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Figure A.13: The S11 and S21 measurements with leaves (i.e., w Leaves) and without leaves at
angle 3π

4
.

• The S-parameters measurements with and without leaves at angle 5π
4

.
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Figure A.14: The S11 and S21 measurements with leaves (i.e., w Leaves) and without leaves at
angle 5π

4
.

• The S-parameters measurements with and without leaves at angle 7π
4

.
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Figure A.15: The S11 and S21 measurements with leaves (i.e., w Leaves) and without leaves at
angle 7π

4
.
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SING Results: Supplementary Figures

B.1 Minimum against Maximum number of angles

• The median offset values for the two-segment.

Figure B.1: The median offset of the two-segment Min against Max.
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• The median offset values for the three-segment.

Figure B.2: The median offset of the three-segment Min against Max.

• The median offset values for the five-segment.
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Figure B.3: The median offset of the five-segment Min against Max.

• The median offset values for the six-segment.
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Figure B.4: The median offset of the six-segment Min against Max.

• The median offset values for the ten-segment.
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Figure B.5: The median offset of the ten-segment Min against Max.

• The median offset values for the fifteen-segment.
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Figure B.6: The median offset of the fifteen-segment Min against Max.



Acronyms

A Attenuation Factor. 60

Ei Electrical Field of the Incident wave. 39, 40

Et Electrical Field of the Transmitted wave. 39

Io EM waves Intensity. 51

Si Angle Set Category. 88

Γ Reflection Coefficient. 7

η Real Refractive Index. 41

η∗ Complex Refractive Index. 40

γ Complex Propagation Constant. 40

κ Extinction Coefficient. 40, 71, 146

λ Transmission Frequency Wavelength. 40

M Final Moisture Content Value. 59

α
{G}
Θ Cluster’s Attenuation Constant. 64

β
{G}
Θ Cluster’s Phase Constant. 64

γ{Air} Clear Line-of-Sight Propagation Constant. 64

ρ
{G}
Θ Cluster’s Mean Relative Thickness. 64, 71
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τ
{G}
Θ Cluster’s Transmission Coefficient. 64

τ
{Air}
Θ Clear Line-of-Sight Transmission Coefficient. 64

φ Phase Shift. 60

τ Transmission Coefficient. 7

ε∗ Complex Relative Permittivity. 4, 71

ε
′′

Loss Factor. 4

ε
′

Relative Permittivity. 4

CLoS Clear Line-of-Sight. 67

CSI Channel State Information. 14

CV Cross-Validation. 80

FMCW Frequency Modulated Continuous Wave. 14

RF Radio Frequencies. 2

RFID Radio Frequency Identification. 12

RSS Received Signal Strength. 12

SDR Software Defined Radio. 113

VIF Variance Inflation Factor. 83

VNA Vector Network Analyzer. 7


