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Abstract
Mathematical network analysis has been proven to be a useful and powerful tool
for biological networks including networks of protein interactions, gene similarity
and metabolic interactions. Here I use network analysis to model human cancer
and predict which genes or reactions are essential for cancer to allow it to grow or
recovery from stress. A general assumption for biological networks is that the cen-
trality of a node is in some way reflective of its biological importance. So I evalu-
ated a wide range of weighted and unweighted node centralities and measures de-
rived from centralities to predict reaction essentiality in metabolic networks. The
metabolic networks are Mass Flow Graphs (MFGs), based on the Recon2 recon-
struction of human metabolism and constrains on reaction fluxes from the PRIME
algorithm. The edge weights in the networks are computed from Flux Balance
Analysis (FBA) results in a selection of human cancer cell lines from NCI-60. I
could not detect a direct connection between node essentiality and any centrality,
but there is a correlation between the overall change of the centrality distribution
in the inhibited condition compared to wild type and the inhibited reaction essen-
tiality. With this I have found a promising network measure that can be used to
predict possible drug targets. With MFGs a wide range of cellular conditions can
be modelled, but only when we know what the cellular objective for FBA is. When
cancer cells are put under stress through treatment, they adapt their metabolism
to react to the stress. This dynamic process with fluctuating gene expression is
difficult to capture in a metabolic network. A better way to analyse the recov-
ery process is to extract which genes are active during which phase. I evaluated
seven time points of gene expression data for multiple myeloma cells that were
treated with a proteasome inhibitor (PI), which disrupts the protein recycling pro-
cess. From the pairwise gene expression similarity I constructed network to cluster
the genes into groups that are active at the same time. The networks were clus-
tered with a random walk algorithm called Markov Stability and evaluated with
gene enrichment analysis. From the resulting clusters, collaborators were able to
extract tRNAs that activate a protein called GCN2 that is essential for recovery.
Followup experiments showed that a combination of PI and GCN2 is lethal for
multiple myeloma as well as a few other cancer cells.
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Introduction

Cancer is one of the most widespread, deadly diseases worldwide in spite of com-
bined effort across different fields of research. Various treatment options have been
developed in cancer ranging from radiation therapy to chemotherapy to surgically
removing tumors by cutting it out or using heat to destroy the cells. However,
treatment methods are often not sufficiently cancer-specific and accompanied by
serious side-effects [1].

More specific treatments can be developed by evaluating the gene activity of can-
cer versus healthy cells. In the last decade, considerable advances in cancer ge-
nomics have led to the identification of an extensive number of cancer-related
genes [2],[3]. Unfortunately, the mechanisms in which they exert their carcino-
genicity are often not well understood. How does the expression of certain genes
change the state of a cell? To answer this question, we have to look at the inter-
actions and function of genes and their involvement in the different pathways of
metabolism that are active in a cell. Modelling metabolism additionally lets us
incorporate other misregulated mechanisms in the cell that cause cancer as well
as external influences. See Figure 1.1 for a simplified view of the central carbon
metabolism and other subparts of metabolism. What makes this analysis difficult
is that metabolism is robust against small disturbances and cells can adopt alter-
native pathways to balance out perturbations. Thus it is not enough to look at
single agents, but we have to model cancer systems as a whole, taking into ac-
count long range interactions and how subgroups have to act together to achieve
a common goal. Only with a complete model can we assess which parts are im-
portant under which conditions and predict weak points that can be exploited for
cancer treatment. In this thesis I explore different approaches to model cancer via
mathematical networks and extract important genes or reactions that represent
druggable targets.

1.1 Essentiality and synthetic lethality

Two common questions in cancer research are which genes are responsible for car-
cinogenesis and which can be targeted to selectively remove the cancer. Genes that
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FIGURE 1.1: Diagram of metabolism of a cancer cell This simplified
diagram depicts the core metabolism of a cancer cell using glucose to

produce energy. The figure was taken from [4].

enable cells to grow are called essential genes. A typical method to detect essential
genes is to inhibit single genes with RNAi or CRISPR [5]. With CRISPR the genetic
code can be altered at a specific site to insert, delete or replace nucleotides perma-
nently in a high-throughput fashion. Depending on where in the gene the change
is made, the effect can be silent (no effect), the gene might be read less often or the
encoded protein could degrade more quickly (knock-down), or the gene might be
stopped from being translated into RNA altogether or the resulting protein is mis-
folded to a degree where it cannot perform its function (knock-out). Metabolites
on the other hand have vastly different chemical properties and thus do not allow
for high-throughput inhibition methods. The only option is to do mass spectrom-
etry or nuclear magnetic resonance [6] which can resolve only a limited number of
molecules. Therefore, metabolites and their interactions have to be studied indi-
vidually, leading to whole publications to be written about single inhibitors [7].

We can distinguish two types of essentiality. One is universal across cell types and
therefore not useful for treatment because healthy cells will be killed along with
diseased cells. On the other hand, there are genes that are only essential under
certain conditions, depending on the presence of other genes. This leads to the
concept of synthetic lethality in which the combined inhibition of genes reduces cell
fitness, while each gene knock-out separately has no effect. See Figure 1.2 for a
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schematic overview. For example, human cells the combined inhibition of pyru-
vate carboxylase (PC) and succinate dehydrogenase (SDH) impedes the use of the
TCA cycle [8], while each inhibition separately does not have a detrimental effect.
SDH is often deregulated in cancers [8] but not in healthy cells, so inhibiting PC is
a potential treatment. However, beyond a handful of cases little is known about
where synthetic lethality can occur and how to use it in treatment. Information
about synthetically lethal genes is especially valuable since the combined effect
can be specific to malignant cells, keeping the side effects to a minimum [9].

FIGURE 1.2: Synthetic lethality Often there are alternative pathways
that help cells survive when single genes are disrupted. When there
is already a mutation present, for example in a cancer cell, the syn-
thetically lethal gene has to make up for it. Otherwise the cell dies
even when each gene individually is not essential. Diagram taken

from [10].

1.2 Network modelling

Computational modelling of metabolism promises to identify synthetically lethal
candidates in any cell line, along with an interpretation of how the lethality arose.
Also it enables us to evaluate combinations of more than two genes from an expo-
nentially growing solution space, while it is not feasible to test every combination
of gene knock-out and drug treatment experimentally. A modelling approach that
is highly versatile and copes well with big model sizes, are networks. Mathe-
matical network modelling is utilized in many research areas, ranging from social
networks, transportation networks, power grids and many more [11].

There are fundamentally two uses of network modelling. On the one hand they are
a mathematical representation of a system of agents that interact with each other.
These agents can be humans, animals, molecules, etc. For such systems the net-
work is often the simplest but most complete representation of agent interactions.
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It lets us analyse how the system functions as a whole and how its agents exert
their function. Also it can be a tool for visualizing data. On the other hand net-
works are a powerful tool for data modelling, where the nodes represent agents,
but there is no real-world interaction assignable to the nodes. For example, we can
introduce interactions solely based on data similarity. With this we can make pre-
dictions about functional similarity of the agents and extract groups that behave
similarly but are not immediately visible from the data.

1.3 Networks to describe biochemical interactions

In biology, networks have been successfully used to analyse gene regulatory net-
works [12], to represent protein interactions [13], or to model metabolic pathways
and chromatin interactions [14]. All these networks may vary in their type, size
and connectivity but are usually used to extract high-level order information that
would be lost with other modelling approaches that only include individual inter-
actions.

FIGURE 1.3: Three examples of widely used network approaches
in biology. A: Gene regulatory networks are directed networks
where interactions can be activating (blue) or repressive (red) [15]; B:
Protein-protein interaction networks are undirected networks of pro-
teins that can chemically interact with each other [16]; C: Metabolic
networks are directed networks of metabolites and reactions that

transform them into each other [17].

Genes can regulate each others’ expression by their RNA or protein binding to
another gene’s enhancer or promoter region and thereby influencing the activity
DNA-polymerases. Often the same protein can bind to many different sites, even
of other transcription factor genes, thereby triggering cascades of activation and
repression. Through transcription factors, cells can quickly switch their state and
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react to external changes. Analysing which genes are regulated together helps us
understand their function, and gene regulatory networks are a standard model
for analysing the interactions in many different species and diseases [12], [18].
Similarly, protein-protein networks or protein-protein interaction networks (PPIs)
help identify which proteins work together or have similar functions [16], [13].

1.3.1 Metabolic networks

Metabolism comprises all biochemical reactions reactions taking place in a liv-
ing cell and the metabolites transformed in them. This includes all reactions for
taking up nutrients, converting them to energy and building blocks, and excret-
ing accumulating waste products. We can discern two possible components for
metabolic networks: metabolites and reactions. Therefore they can be modelled as
metabolite-based, reaction-based or contain both. Each has a different focus and
can be used to answer different questions.

A shared problem that comes with all three approaches is the question of how
to treat pool-metabolites. These metabolites are ubiquitous in cells, participate in
hundreds of reactions and are therefore highly connected. But for the same rea-
son they don’t hold any information about the cell type and end up obscuring the
relevance of more specific metabolites. Therefore pool-metabolites are usually ar-
bitrarily excluded from metabolite-based networks altogether, without a universal
consensus of which metabolites constitute as pool-metabolites [19].

One of the newest additions to metabolic network modelling are Metabolic Flow
Graphs (MFG) [20]. MFGs are reaction-based metabolic network that are weighted
by the flow of metabolites between reactions. With these weights, pool-metabolites
do not pose a problem because they only introduce very weak edges. High-throughput
genomic data can be used to predict the flow of metabolites, allowing for highly
specific models for different cell lines and conditions.

1.4 Networks to represent biological data

Even if there are no interactions between agents, network modelling can be used
to model and analyse data by introducing connections, for example based on the
similarity of agents.
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Gene similarity can be defined on many levels that are linked to the steps in the
central dogma [21]. First of all, the similarity of the DNA sequence can be evaluated.
The place in the DNA could be an indicator, comparing which other genes are close
by or accessible at the same time. Another important characteristic for function is
what transcription factors can activate the expression of the gene, leading to the
second level in the central dogma, RNA. Here we can compare, which genes have
a similar transcript count over time and how similar these transcripts are. The
2D and 3D structure of the transcript can be compared. On the last level of the
central dogma, we are interested in the similarity of the encoded protein, should
the gene be a coding gene. An abundance of chemical properties can be measured
for proteins that together describe it. Of special interest here are functional sites
in the protein, that can interact with other molecules. And finally, the localization
and function of that protein as listed in gene ontologies [22] can identify if two
genes have similar functions.

From similarity networks we can predict which genes or proteins have to work
together to perform certain functions by comparing their similarity in being ex-
pressed at the same time. This can be used to infer function for genes/proteins
that have not been well studied yet or might be difficult to assign a function to.
Incorporating data from different species into the same network, we can show if
completely novel genes are actually well-conserved and infer their function from
the known genes from other species.

1.5 Objectives and outline

In this thesis I use network analysis to extract essential genes and reactions which
can be used as drug targets for cancer treatment following two different approaches.
In the first, I build Mass Flow graphs to represent metabolism in a number of can-
cer cell lines, seeking to identify conditionally essential metabolic genes/reactions.
In the second, I build a network based on co-expression of genes to predict genes
essential during recovery from drug-induced proteotoxic stress.

In Chapter 2, I give a general introduction to networks and formulate the mathe-
matical methods of network analysis including node centralities and module de-
tection, which are the main methods in Chapters 3 and 4.

Chapter 3 describes my main project, evaluating Mass Flow Graphs of cancer
metabolism to predict essential reactions in different cancer cell lines and condi-
tions. I compute several centralities and eventually define a new node measure
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that is able to predict reaction essentiality without having to run computationally
expensive simulations for each reaction. Related to this, I was involved in writing
a review about different approaches that can be used when modelling metabolism
via networks:

Varshit Dusad, Denise Thiel, Mauricio Barahona, Hector C. Keun, Diego A.
Oyarzún. "Challenges and opportunities at the interface of network science and

metabolic modelling". In: Front. Bioeng. Biotechnol. 25 January 2021

Chapter 4 contains a gene expression similarity network built for cancer cells that
have been treated with a proteasome inhibitor. I develop a pipeline to clean the
data and filter for genes that are involved in the recovery process. From these
genes, we build a network where genes are connected if their expression profiles
are similar, and then cluster the gene profiles to predict which genes are involved
in the recovery process and thus present possible vulnerabilities when inhibited.
The results of the proteasome-inhibition project were published in PNAS [23]:

Paula Saavedra-Garcia, Monica Roman-Trufero, Hibah A Al-Sadah, Kevin Blighe,
Elena Lopez-Jimenez, Marilena Christoforou, Lucy Penfold, Daria Capece,

Xiaobei Xiong, Yirun Miao, Katarzyna Parzych, Valentina Caputo, Alexandros P
Siskos, Vesela Encheva, Zijing Liu, Denise Thiel, Martin F Kaiser, Paolo Piazza,

Aristeidis Chaidos, Anastasios Karadimitris, Guido Franzoso, Ambrosius P
Snijders, Hector C Keun, Diego Oyarzun, Mauricio Barahona and Holger W
Auner. "Global profiling of cancer cell recovery from therapy-induced stress
reveals druggable vulnerabilities". In: Proceedings of the National Academy of

Sciences 118.17 (2021) PNAS

Finally, I summarize my findings in Chapter 5, pointing out the limitations and
follow-up analyses that can be done. In particular, I suggest different ways of pre-
dicting synthetic lethality, which is one of the main areas of interest for predicting
drug targets, but has eluded researchers for decades. MFGs might provide an ac-
cess point here.

In a side project (not presented in this thesis) I visualized networks of prenatal
and postnatal metabolites associated with external exposures, which became part
of another publication:

Maitre L, Bustamante M, Hernández-Ferrer C, Thiel D, Lau C-H, et al.
"Multi-omics signatures of the human early life exposome". In: medRxiv (2021),

doi: https://doi.org/10.1101/2021.05.04.21256605
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Mathematical description of networks

A network or (network) graph G = (V, E) is defined by two sets: the set of nodes,
V, and the set of edges, E. Hereby edges represent tuples of nodes in the form
em := (vi, vj). Two common graph notations are the edge list, which is a list of all
node tuples, and the adjacency matrix, A. This |V|x|V| matrix has non-zero entries
at Aij if the edge (vi, vj) exists, and zero otherwise.

2.1 Types of network

We can distinguish different architectures of networks that require specific nota-
tions and tailored analyses. A selection of network types used in this thesis can be
seen in Figure 2.1. When A is symmetric, that means that for every edge (vi, vj)

the reverse edge (vj, vi) exists, the graph is called undirected, otherwise the graph
is directed (Fig. 2.1:A). If a network is weighted (Fig. 2.1:B), the value of an entry
in A can be interpreted as the corresponding edge weight, which are all set to one
in an unweighted network. For weighed networks, the edge list notation has to
change to triplets in the form: em = (vi, vj, wm). Networks can be classified as sim-
ple graphs, where self-loops and multiple edges between the same two nodes are
not allowed, or multigraphs, where an unlimited number of edges between nodes
is allowed, including self-loops. The absence of self-loops can easily be assessed
by checking, that the diagonal of the adjacency matrix is zero. Having different
types of nodes leads to the idea of multipartite networks, which can be partitioned
into several groups of nodes, and edges are only allowed between groups. When a
network can be split into exactly two groups of nodes A and B with no interactions
between nodes of the same group, this is called a bipartite network (Fig. 2.1:C). Bi-
partite networks have many uses for example in matching problems. But they can
also be projected down to a unipartite network with only one type of node, for
example from group A. In the projected network nodes are now connected if they
both had an edge to the same node from group B in the bipartite version. There
will always be a loss of information with the projection, but it allows for more
analyses since unipartite graphs are more well-studied.
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FIGURE 2.1: Types of networks This is a small selection of possible
network types. In A the edges have a set direction from source node
to target node, the weights in B can be interpreted as distances be-
tween nodes, the network C is partitioned into two groups of nodes

that do not have any connections inside the groups.

Many network measures depend on the concept of paths between nodes. A path
between two nodes i and j is a succession of edges that starts at node i (the source)
and ends in node j (the target) whereby the following edge always starts at the
node where the previous edge ended. The length of a path between two nodes i
and j is the number of edges connecting those nodes and the length of the shortest
path between them can be interpreted as their distance d(i, j). If there exists a path
between node i and j, node j is reachable from i. If all nodes in a network are reach-
able from each other, the network is called connected. Any subgraph of the network
where all nodes are reachable from each other, is called a connected component (CC)
and the biggest CC is commonly called the giant connected component (GCC).

2.2 Network construction

Constructing a network, we can choose from the aforementioned network types.
Though directionality and weights are not always available when building from
real interactions.

When the network is built from data, it is often constructed from similarity matri-
ces, for continuous variables in biology often via covariance matrices [24]. Usually
this similarity matrix is first converted into a distance matrix by computing an in-
verse of the similarity matrix. This way similar genes end up close to each other,
which makes it more intuitive to look at and easier to analyse for a lot of net-
work algorithms. Still, in both the similarity and the distance matrix there exists
an edge value for each pair of nodes, which represents a fully connected network.
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Any structural information we might want to extract is obscured by a multitude
of weak edges.

Two common ways of pruning the networks, i.e. removing weak edges which in
this case are edges between very distant nodes, are k-nearest neighbors (kNN) and
ε-environment. For k-nearest neighbors we start with an empty network and only
add edges from each node it its k-nearest neighbors. With and ε-environment, only
edges with a distance value smaller than a chosen cutoff ε are included. Tuning
these parameters we can optimize the constructed network such that it is sparse
enough but complete enough to capture the most important properties hidden in
the data.

2.3 Network analysis

Networks contain ample information that can be analyzed ranging from global
features like size (number of nodes) and overall connectivity to local features for
single nodes. I look at node centralities to describe the biological agents in my
networks. Another area of interest in network analysis is module detection or clus-
tering. Modules (or clusters) are subgroups of nodes that are highly connected
within the subgroup, while having few connections to the rest of the network. The
names ’cluster’ and ’module’ are often used interchangeably, but for clustering
we usually extract a predefined number of clusters, while community detection
algorithms can optimize module membership for a variable number of modules.

2.3.1 Node properties

Node centrality is a measure for how well-connected a node is, which can be inter-
preted as a measure for importance of the agent it represents. Some centralities are
designed for undirected graphs and others need a directed graph. In the follow-
ing, I define four commonly used centralities on the adjacency matrix A, where Aij

is an edge from node i to node j.

The degree centrality of a node is defined as the number of outgoing and incoming
edges. In directed networks the degree can be split into incoming and outgoing
degree, whereas in undirected networks it is the sum of all incident edges. These
measures are also used in several other centralities. The degree distribution is
often used to describe the network structure. Weights can be added by summing
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all incident edge weights.

indegree(i) =
n

∑
j=1

Aji, (2.1)

outdegree(i) =
n

∑
j=1

Aij, (2.2)

degree(i) = indegree(i) + outdegree(i). (2.3)

A centrality that indirectly uses the degree is the PageRank, which iteratively tra-
verses a network to determine how important each node is, usually in directed
networks. For the PageRank we can consider an edge-weighted version and node-
weighted version.

PageRank(i) =
1− α

N
+ α∑

j
Aji

PageRank(j)
∑i Aji

, (2.4)

where α is a scalar damping factor.

Evaluating shortest paths through the network allows for more global measures
like betweenness and closeness. The betweenness centrality measures how often a
node is needed to connect other nodes with each other and can be interpreted as a
measure for how well a node connects different subgraphs of the network.

betweenness(k) = ∑
i 6=j 6=k∈V

σij(k)
σij

, (2.5)

where σij is the number of shortest paths from i to j and σij(k) is the number of
shortest paths between vertices i and j that pass through node k.

Another global measure and maybe most intuitive measure for the question of
how central a node position in the network is, is the closeness of a node. It directly
takes into account the distance of a node to all other nodes in the network and is
usually normalized by the total number of nodes. The closeness can be normalized
by the ratio of all nodes reachable nodes ri by node i out of all other nodes. For
’incloseness’ we turn it around and look at all nodes that can reach node i.

incloseness(i) =
ri

N − 1
1

∑j d(j, i)
, outcloseness(i) =

ri

N − 1
1

∑j d(i, j)
. (2.6)

If no nodes can reach node i or are reachable from i, then the closeness is zero.

Apart from the standardized known centralities, new centralities can be designed
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by combining existing ones, assembling more path information or other network
properties. For example, the flow profile of a node can be constructed from the
number of all incoming and outgoing paths of a certain length [25]. Another way
of constructing a global node feature that does not use paths, is to iteratively col-
lect neighboring nodes’ features. This is done in the feature extractor ReFeX [26],
which sums and averages features from a node’s egonet. The egonet is defined as
the subgraph containing the node itself, all its neighbors and all their incoming or
outgoing edges.

Apart from using purely graph features, external information from the agents
can be added to construct a more generally informed node measure. In protein-
interaction networks for example, chemical properties of the proteins could be
included, or even information from the genes encoding the proteins.

2.3.2 Community detection

A popular application of networks is to identify subgroups of nodes that are densely
connected to each other and therefore strongly influence one another, possibly
sharing a common function. Clusters or modules of nodes that are highly connected
to each other but have few connections outside the cluster can be extracted with a
variety of community detection or clustering algorithms. These two terms are often
used interchangeably, but for clustering the number of modules is usually preset.

Commonly used clustering methods are modularity clustering, spectral clustering
and algorithms based on random walks. For modularity clustering, node assign-
ment is randomly swapped while maximizing the modularity measure introduced
by Newman [27]. In spectral clustering the network connectivity and membership
of nodes to clusters is deduced via the eigenvalues of the Laplacian matrix of the
graph [28]. A random walk on a graph is a stochastic diffusion process [29], where
edge weights are used to generate transition probabilities from one node to the
next. We can conceptualize the process as a random walker traversing the net-
work from a random starting point using the transition probabilities for each step.
Modules are extracted as subgraphs where the random walker is trapped in for a
long time. In my work I use a random walk algorithm called Markov stability [30].
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Analysis of cancer metabolic
networks

In this chapter I present an approach to model and evaluate metabolic networks,
with the goal of finding a network metric that correlates with essentiality of reac-
tions in cancer cells. The network metric can be employed to quickly simulate any
combinations of reaction inhibitions and their effect on the network, thus provid-
ing hypotheses for essential reactions that can be tested in the lab.

3.1 Network modelling of metabolism

Metabolism can be modelled through a list of all metabolic reactions and their
kinetic properties. Given a vector X of n metabolites we can formulate the m
metabolic reactions R

Rj :
n

∑
i=1

αijXij ⇀↽
n

∑
i=1

βijXij; j = 1, 2, ..., m. (3.1)

Where the coefficients α for consumption and β for production for each reaction
are obtained from chemical experiments.

From this we define the n×m stoichiometric matrix S with entries Sij:

Sij = βij − αij. (3.2)

Thus, S has negative entries for all metabolites consumed in a reaction and positive
entries for all metabolites produced in a reaction.

The turnover of metabolites through reactions, or flux, v determines metabolite
concentrations x, whose changes can be described through the differential equa-
tion:

ẋ = Sv, where v ∈ Rm. (3.3)
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Thus the flux can be used to describe the activity of single pathways up to the
overall state of a cell’s metabolism. In any given cell the flux is constrained by the
availability of enzymes and co-factors facilitating the metabolic reactions.

Lists containing metabolites, reactions, associated genes and flux constraints in a
cell are collected into a so-called metabolic reconstruction [31]. Setting up a new
metabolic reconstruction requires substantial work, where each reaction has to be
experimentally confirmed individually. This is why models for different cell types
from the same species are often derived from the same stoichiometric matrix by
constraining fluxes with transcriptomic or proteomic data of the facilitating en-
zymes [9].

3.1.1 Flux Balance Analysis

When studying metabolism ideally as many kinetic factors as possible should be
included. For small models, elaborate ODE systems have been built [32] to cal-
culate fluxes, and determine for which flux distributions the system is in steady-
state. Unfortunately, genome-scale human metabolism has too many possible re-
actions to be modelled completely via differential equations with current data [33].
Therefore constraint-based modelling (CBM) emerged as a powerful tool for mod-
elling metabolism. A widespread method for CBM is Flux Balance Analysis (FBA)
[34], where the flux through reactions is determined via linear programming. In
FBA, metabolism is formulated as an optimization problem where an objective
function is maximized along the edges of a polytope of feasible flux distributions.
Assuming that the modelled cell metabolism is in steady state [35], we can set
Sv = 0 in equation 3.3 and use this equation to constrain the solution space. With
metabolism heavily relying on feedback loops and alternative pathways, this is
not enough to constrain the model enough to get realistic results. Additional con-
straints on single reaction fluxes vi (minimal flux ai and maximal flux bi) can be
inferred through experimental measurement of corresponding enzyme levels. As
a proxy, the gene expression of enzyme coding genes is often used to constrain
fluxes [36]. For example, in the PRIME algorithm the expression of enzymes is
used to first set a global upper and lower bound and then refine single reaction



3.1. Network modelling of metabolism 15

constraints. See Figure 3.1 for a graphical description of FBA. Typically, FBA opti-
mization is formulated as:

f = max
v

cTv

subject to Sv = 0

and ai ≤ vi ≤ bi, with i = 1, ..., m.

(3.4)

The coefficient vector c selects reactions whose flux contribute to the objective.
Typical objectives are maximization of biomass production or ATP synthesis which
enable growth and proliferation [35]. Maximization of these objectives is believed
to be a valid assumption in cancer cells and microbes, although a cell can have
many more objectives at the same time [37] which require different fluxes.

FIGURE 3.1: Diagram of Flux Balance Analysis In FBA the cone
of possible flux solutions is defined through the subject 1) and addi-
tional constraints 2) of the optimization problem. The objective func-
tion Z is optimized by moving along the edges of the flux cone until

the solution cannot be improved anymore. Figure taken from [34].

The optimal flux vector v∗ of the optimization 3.4 is often not unique and we can
adjust the FBA by optimizing a secondary objective based on the solution of the
first. The first objective does not take into account that creating the enzymes and
running the reactions takes energy that the cells minimize while achieving their
primary goal. We can simulate this by minimizing the norm of the flux vector v
while setting cTv to the solution of the first FBA optimization. For example:

min |v∗|
subject to Sv∗ = 0,

cTv∗ = f

and ai ≤ v∗i ≤ bi; i = 1, ..., m.

(3.5)
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This two-step FBA is called parsimonious FBA and not only makes solution more
realistic but also computationally more reproducible.

Integrating FBA predictions in a metabolic network enables us to describe the
metabolism of the same cell type in different conditions, e.g. nutrient availability,
drug treatment or gene knock-out, via mathematical tools from network analysis.
The predicted metabolic state can be used to classify medical samples of tumours
and predict survival rates [38], while genes essential for the modelled objective
can act as biomarkers and targets for new treatment approaches in diverse cancer
cells [38].

3.1.2 Mass Flow Graphs

Mass Flow Graphs (MFG) [20] are weighted, directed reaction-based networks.
Nodes in MFGs represent active reactions that are connected by a directed edge
if one reactions produces a metabolite that us used by another. The predicted
FBA fluxes from a certain condition are used to calculate edge weights describing
the mass flow of shared metabolites. The edge weight from reaction R1 to R2 is
defined through the total mass flow of all metabolites Xk shared between these two
reactions, assuming that that metabolites are uniformly taken up by all consuming
reactions:

weightR1→R2
=

n

∑
k=1

(amount of Xk produced by R1)
(amount of Xk consumed in R2)

(total consumption of Xk)
.

(3.6)
See Figure 3.2 for a diagram of how MFGs are constructed. This modelling ap-
proach has the advantage that widely shared co-factors such as water and NAD
contribute little to the weights and do not have to be arbitrarily excluded.

To obtain the variables in equation 3.6, we split reversible reactions and therefore
their fluxes into forward and backward. First we split the flux:

v = v+ − v− = v+ − diag(r)v−, (3.7)

where v+ are the fluxes through forward reactions and v− are fluxes through re-
versible reactions that have a backwards net flux. The m-dimensional reversibility
vector r is provided with the reconstruction. In this reversibility vector, the jth

entry rj = 1 if reaction Rj is reversible and rj = 0 if not.
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FIGURE 3.2: Overview for building and MFG The Mass Flow Graph
is a reaction-based graph that is constructed from the stoichiometric
matrix of a system. Optimizing for example biomass production we
obtain a flux vector that is used to weight the edges that represent

metabolite flow between reactions.

The change in metabolite concentrations can be rewritten as

ẋ = Sv = [S −S]

[
Im 0
0 diag(r)

]
︸ ︷︷ ︸

S2m

[
v+

v−

]
= S2mv2m, (3.8)

where v2m =
[
v+ v−

]T
is the unfolded 2m-dimensional vector of reaction rates,

(I)m is the m × m identity matrix, and S2m is the unfolded stoichiometric matrix
containing m forward and m backward reactions.

Similar to the flux decomposition, we can split S into production and consumption
matrices:

Production: S2m+ =
1
2
(abs(S2m) + S2m), (3.9)

Consumption: S2m− =
1
2
(abs(S2m)− S2m). (3.10)
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Finally, for a given flux distribution v∗ the adjacency matrix M of an MFG can cal-
culated, where the entries Mij of the adjacency matrix describe the flow of metabo-
lites from reaction i to reaction j:

Mij(v) =
n

∑
k=1

S2m+
ki v2m

i

( S2m−
kj v2m

j

∑2m
j=1 S2m−

kj v2m
k

)
. (3.11)

3.1.3 Construction of human cancer MFGs

The models I use for human cancer are based on the genome-scale reconstructions
from RECON2 [31], constrained with gene expression data via the PRIME algo-
rithm [36]. They provide models for all cell lines from NCI-60 [39], a collection of
60 well-studied cancer cell lines. In particular I created MFGs for the following
five cell lines: BT-549 and MCF7 (breast), HCT-116 (colon), OVCAR-5 (ovarian)
and K-562 (leukemia). The initial analyses were focused on BT-549. As additional
reaction constraints, I manually set the D-Lactate release to 0.005 and the O2 up-
take to -10 to get more realistic solutions.

I performed FBA optimization with the COBRA toolbox in Matlab [40], speed-
ing up the simulations with the optimizer gurobi [41]. As the primary goal the
biomass production is maximized, and as a secondary goal the 1-norm of the flux
vector is minimized (see equation 3.5) by setting the variable minNorm to ’one’ in
cobra’s optimizeCbModel function. For the cancer models that I used this cuts the
number of active reactions in half. This shows that there are many ways to reach
the biomass production reactions, but most of them are inefficient.

3.2 Essentiality prediction of metabolic reactions

The main aim of this project is to use MFGs to find weak points in cancer metabolic
networks that can be used as potential drug targets. We explore the possibility that
nodes that have important positions in the network are essential for cancer growth,
like nodes with high centrality in gene networks. The question is, whether there
already is a centrality in MFGs that corresponds to measured essentiality or, if this
is not the case, whether I can construct another network measure that can predict
essentiality.
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3.2.1 Essentiality from FBA KO-simulations

There is no high-throughput method to measure reaction essentiality directly. We
can only inhibit the involved metabolites or proteins that catalyse the reactions
and experiments for essentiality have not been done for all reactions in all condi-
tions. Therefore, there is little biological data to compare our networks with. Gene
essentiality can be mapped from essential genes to their enzymes and then to the
reactions they catalyse, but this mapping is not one to one (33% of the active reac-
tions have more than on associated gene and 28% have no associated gene), so we
have to use a different essentiality measure for comparison.

Here I define the change in growth rate upon reaction inhibition as that reac-
tion’s essentiality. To compute it I simulate single reaction knock-outs (KOs) for
all reactions that are active in wild type and compute the ratio between wild type
and knock-out biomass production. Non-active reactions can be classified as non-
essential without running the FBA.

Single KO of reaction j is simulated with an FBA by constraining the flux through
that reaction to zero:

objective: fKO-j = max cTvKO-j, (3.12)

subject to SvKO-j = 0, (3.13)

additional constraints: vmin
i ≤ vKO-j

i ≤ vmax
i ; i = 1, ..., m and (3.14)

vmin
j = 0 = vmax

j . (3.15)

The essentiality λ of reaction j is then computed from the growth rate ratio upon
KO of reaction j:

0 ≤ λj = 1−
fKO-j

fWT
≤ 1, (3.16)

where f of a given condition is the optimal value of the objective function, in this
case the biomass production. For each simulated single knock-out I store the re-
sulting flux distribution for network construction.

A sorted overview of growth rate changes upon knock-out of active reactions in
wild type can be seen in Figure 3.3. Apart from about 150 reactions (about half of
the active reactions in wild type) there is no change in growth rate between wild
type and simulated knock-out. Circa 100 reactions have a lethal effect, where the
biomass production reaction is zero since it cannot be reached upon KO.
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I binned the reactions into four levels of lethality: no effect, mild, severe and
lethal. Reactions whose removal still allowed 90% of the biomass production
were included in the ’no effect’ group to account for fluctuations. When half of
the biomass can still be produced, the knocked-out reaction is classified as mildly
lethal, below that as severely lethal:

• no effect: 0.9 < λ

• mild effect: 0.5 < λ ≤ 0.9

• severe effect: 0 < λ ≤ 0.5

• lethal effect: λ = 0

Both mild severe groups are very small, with only 10-20 reactions each. The re-
maining hundred reactions completely disrupt the network upon removal and are
classified as lethal.

FIGURE 3.3: BT-549 FBA results for all single reaction knock-outs

For each reaction I perform the KO-FBA and record the growth rate ratio.
Reactions were binned into four groups with different overall effect on the

growth rate and therefor survival. Colors range from green for no effect to red for
lethal. The three reactions marked in the plot were evaluated in more detail in

Figure 3.7.
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Additionally, I calculated two alternative essentiality measures for comparison.
As the first alternative essentiality measure I compute the pervasiveness of reac-
tions. This is based on the notion that if the same reaction is always needed for
the optimal biomass production, regardless of what other reactions are present, it
is likely that that reaction is essential for cell growth. The pervasiveness p of a
reaction is the percentage of KO conditions where the FBA-predicted flux through
that reaction is not zero.

pj =
∑N

i=1

[
vKO-i

j 6= 0
]

N
, (3.17)

where N is the number of KO runs, which is equal to the number of active reac-
tions. The second alternative essentiality measure is the flux through that reaction
under wild type conditions vWT

j .

3.2.2 Correlation between centrality measures and essentiality

Node centralities have been shown to represent important biological functions in
other kinds of biological networks [evol_PPI_centr]. In E. coli metabolic networks
it has been shown that centrality directly corresponds to essentiality [42], but this
has not worked with the current network models in human cells.

My main focus is to calculate node centralities of MFGs and compare them to es-
sentiality of reactions. Centralities were computed with Matlab’s centrality func-
tion [43]. For each centrality I evaluated a weighted and an unweighted version.

In Figure 3.4 I evaluated 13 weighted or unweighted centralities of active reaction
nodes in the wild type network for their correlation with the node reaction’s es-
sentiality. I compare with: 1) λj, the growth rate ratio upon knock-out; 2) pj, the
pervasiveness across single reaction knock-outs; and 3) vWT

j , the flux through that
reaction in the wild type.
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FIGURE 3.4: Comparison of node centralities with reaction essen-
tiality In the table I list the Pearson correlations for all combinations
of centralities and essentiality measures. The plots below are selected
examples showing the full distribution of reaction’s centralities ver-

sus essentiality from the cells marked in red in the table.

From Figure 3.4 we learn that the only importance measure that centralities cor-
relate with is the reaction flux and the only centralities that are highly correlated
to it are those that are computed via edge weights, which in turn depend on the
fluxes. Therefor the only high correlations are an artifact. The fact that the same
centralities that correlate with the flux do not correlate with the growth rate ratio
or pervasiveness indicates that reaction flux is not a useful essentiality measure.
And even though λ and pervasiveness have comparable correlation values for cen-
tralities, the plots in the lower half of Figure 3.4 shows that they do not capture the
same properties. In the following sections I only evaluate λ, since this measure has
been successfully applied in the literature.

In conclusion, I did not find any node centrality that is predictive of reaction es-
sentiality. This is not surprising, since it did not work for any previous human
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cancer networks. Still, there might be other information contained in MFGs based
on centralities that can predict essentiality.

3.2.3 Changes in centrality upon KO

To investigate the usefulness of MFGs and what information is encoded in them,
I simulated gene or reaction inhibitions and compared the inhibited networks to
the wild type. As an initial analysis I tested if gene inhibition has any effect on the
networks that cannot be detected purely by FBA analysis. I compared the node
pageRank centrality of wild type networks and Succinate Dehydrogenase knock-
out networks, see Figure 3.5. Succinate Dehydrogenase (SDH) is a reaction in the
TCA-cycle that is often mutated in cancer and has been shown to be synthetically
lethal with pyruvate carboxylase (PC), another commonly mutated reaction in can-
cer [8]. Upon knock-out the modelled cell line is still able to produce almost wild
type levels of biomass, but has to restructure the use of reactions, as can be seen
by the large number of reactions that have a flux ratio of zero in Figure 3.5 and a
few outliers with very high KO-flux. Interestingly the majority of reactions hardly
changes its flux (flux ratio of 1), but sees a wide range of pageRank ratios from
0.6 to 1.5. This tells us that the network structure and in particular the pageRank
contains additional information that might be useful for essentiality analysis.
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FIGURE 3.5: Changes in flux and node centrality between
SUCD1m-KO and wild type in BT-549. The ratio of KO-flux over

wild type-flux
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Next, I compared the node centralities of wild type networks and SDH knock-
out networks, see Figure 3.6, to investigate if simulated gene inhibition has any
noticeable effect on the networks.
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FIGURE 3.6: Changes in node centralities between treated and wild
type BT-549 In order to determine the changes between conditions
and the measures representing the difference I plot node centralities
from wild type and SDH knock-out against each other. The red line

represents a theoretical perfect fit.

Comparison of MFGs is challenging as networks from different conditions do not
have the same node sets. With their fluxes reduced to zero, these reactions cannot
exchange metabolites and are therefore not connected to the rest of the network.
These reactions have to be reintroduced with centrality values of zero for compar-
isons. Apart from those reactions, the out-degree shows a strong linear relation be-
tween untreated and treated (left plot in Figure 3.6). The betweenness on the other
hand changes drastically (right plot in Figure 3.6). The majority of nodes with
high betweenness are not preserved between conditions. This shows how node
importance can change drastically even when only one flux bound was changed.
But it also shows that not all centralities can capture that change and that global
centralities have properties that could help assess the metabolic state.

Selecting a reaction from each of the no effect, mild effect and severe effect severity
groups, I calculated the pageRank centrality in the corresponding knock-out net-
works. Plotting the pageRank centrality distribution in wild type versus knock-
out condition, we see that the difference between the nodes centrality grows with
severity of the effect (see Figure 3.7).
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FIGURE 3.7: Three essentiality levels Plotting the pageRank distri-
bution in wild type versus knock-out for three reactions taken from
the three severity groups identified in Figure 3.3 shows a growing
difference in centrality with increasing change in growth rate. Rho is

the correlation coefficient between pageRank distributions.

3.2.4 New network measure from centrality changes

Developing the findings from the previous section, we constructed another net-
work measure that is based on changes in node centralities. We observed that
the more essential the removed reaction is the more drastically the KO-network
changes. To confirm this observation globally, I constructed MFGs for all knock-
out models and recorded different centralities along with their correlation to their
wild type distribution. With this information we can define the new node measure
σc from any centrality c of our choice evaluated for all nodes that represent active
reactions in the wild type network (Vactive).

σcentr
j = corr(centrWT(Vactive), centrKO-j(Vactive)) (3.18)
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FIGURE 3.8: PageRank correlation versus essentiality in BT-549 can-
cer The new node measure σ of pageRank correlates with the essen-
tiality measure λ with a correlation coefficient of 0.74. The colors
correspond to the letahlity groups defined before. Green are non-

essential, yellow mildly essential and red are lethal.

Comparing σpageRank with essentiality λ, we get a strong correlation of ρ = 0.7419,
see Figure 3.8. With σ we have identified a new network measure that is able to
capture reaction essentiality.

When I repeat the procedure in other human cancer cell lines, I get similar results,
see Figure 3.9. HCT-116 is a colon cancer, k-562 lung cancer, MCF7 breast cancer
and OVCAR-5 an ovarian cancer cell line.
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FIGURE 3.9: PageRank correlation versus essentiality in four cancer
cell lines The new node measure σ of pageRank correlates with the

essentiality measure λ in four other human cancer cell lines.

3.3 Validation via E. coli models

As mentioned before, E. coli models are well-described enough to allow for highly
accurate prediction of essential reactions [38] via FBA. Here I build MFGs for E.
coli and calculate the new sigma measure as described in the previous section.
Thus I can evaluate not only the newly proposed essentiality measure, but MFGs
in general.

3.3.1 MFGs for E. coli

For MFG construction I utilized the latest genome-scale E. coli model from 2019,
iML1515 [44], and an older model from 2011, iJO1366 [45], as a replicate. Again, I



28 Chapter 3. Analysis of cancer metabolic networks

iJO1366 iJO1366 active iML1515 iML1515 active
reactions 2251 513 2719 459
genes 1366 1515
metabolites 1136 1192

TABLE 3.1: E. coli model sizes

maximize biomass production and minimize the 1-norm of the flux vector in the
FBA simulations. This results in the following models 3.1.

3.3.2 E. coli predicted essentiality

Again I perform single knock-out simulations for all active reactions with FBA and
record the change in growth rate. The growth change curve for both E. coli models
has the same shape as for human cancer, see Figure 3.10, but more reactions are
lethal. Also, the lethality of single reactions is different from their human coun-
terparts. iJO1366 has more reactions overall than iML1515, but from inspection by
eye, the shared reactions’ lethality is about the same.

FIGURE 3.10: FBA results for all single reaction knock-outs in E.
coli For each reaction I perform the inhibited FBA and record the
growth rate ratio. The reactions were binned into four groups, com-

pare to human cancer binning.

Like before, I compute the new sigma measure by correlating the wild type and
knock-out PageRank of all active reactions. When I correlate σ and the growth rate
ratio λ, I get similar correlations as with the human cancer cells, see Figure 3.11.
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FIGURE 3.11: PageRank correlation versus essentiality in E. coli
The new node measure σ of pageRank correlates with the essentiality

measure λ.

3.4 Conclusions

In this chapter I examined the utility of MFGs for modelling cancer metabolism,
especially if they could be used to predict weak spots in cancer metabolic networks
that are essential for the integrity of the network and thus good targets for inhibi-
tion and treatment. Starting from a metabolic reconstruction I set the constraints
for FBA such that I gained realistic fluxes and representative networks for different
cancer conditions.

Doing single reaction inhibitions I managed to identify that the change in central-
ity between wild type and knock-out is correlated with the overall cell survival
and thereby reaction essentiality. With this we showed that the relationship be-
tween essentiality and centrality does exist, albeit not as directly as hypothesized.
Essential reactions do not have high centrality in MFGs, but their removal causes
system-wide changes that can be measured via centrality changes.
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Network clustering of gene
expression time-series data

In this Chapter I evaluate time series data of gene expression. We can utilize net-
works to model gene expression data in a specific cancer condition. I cluster these
using gene similarity networks, taking into account additional biological data, to
predict genes that are essential while the cancer cells are recovering from treat-
ment.

4.1 Proteotoxic stress recovery in cancer cells

There are many chemical treatment options in cancer, but often the cancer grows
back after an initial phase success. Cancer can be viewed as a colony of disregu-
lated cells that diversifies under evolutionary pressure. While treatment can work
on the majority of cells in the colony, if any survive, they will multiply into a new
colony that is more resistant to the stress. We need to observe these cells that es-
cape the treatment and the mechanisms that enable them to do so.

One established treatment in multiple myeloma (a type of blood cancer) cells is
proteasome inhibition [46]. The proteasome is a chemical complex that recycles
proteins, i.e. breaking down unneeded or harmful proteins and extracting amino
acids that can be used to build new proteins. Inhibiting the proteasome has pro-
teotoxic effects, especially in cells with high proliferation rates and a large num-
ber of misfolded proteins. Therefore it has a more detrimental effect in cancer
cells compared to slowly replicating cells, especially in cancers where the cell cy-
cle checkpoints are compromised. Yet only a fraction of cancer cells die with this
treatment, leaving it an insufficient method to treat patients [47].

I analysed RNAseq data of proteasome inhibitor-treated bone marrow multiple
myeloma cells measured in the Auner lab. Treating with carfilzomib reduced the
number of viable cells by 50% by day 2, but after day 6 the number of cells reaches
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a pre-treatment amount, see the Figure 4.1. Bulk cell expression data for five repli-
cates at seven time points (day 0, 1, 2, 4, 6, 8, 10) was measured such that short-term
effects as well as long-term changes could be captured.

FIGURE 4.1: Proteasome-Inhibition experimental design The mul-
tiple myeloma cells were treated with a proteasome inhibitor on day
0. By day 2 half of the cells had died, but the remaining cells adapted
to the stress and were proliferating again by day 6. RNA-seq experi-
ments were performed on days 0, 1, 2, 4, 6, 8 and 10. The figure was

taken from slides from Holger Auner.

Our main goal is to identify genes that drive the recovery process from the ini-
tial stress through adaptation to normal proliferation. These genes must have a
quick reaction to the treatment and will be selectively active at different times. The
quickest and most drastic changes can set in motion by genes causing other genes
to change their expression, thereby also synchronizing genes that have to work
together to exert their function. We can identify genes that are important during
the different phases of recovery by clustering the expression profiles of genes and
extracting co-expressed genes.

4.2 Processing expression time series data

4.2.1 Approaches for time series data

In genomics we would like to apply the methods developed in finance and neu-
rology for time series data, but generating data is much more labor-intensive per
time point. So usually there are not enough reliable data points for conventional
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causality inference methods, even when additional data points are predicted with
regression models or similar.

Instead, genes are usually clustered and their influence has to be inferred by hand,
adding prior knowledge. Commonly used methods are k-means clustering and
principle component analysis (PCA), but again in our case the sparsity of the data
is a problem.

4.2.2 Data pre-processing

Before the raw data can be used, it has to be normalized and filtered to exclude
random noise and to select only the genes that participate in the recovery pro-
cess. Starting with normalized gene counts, I chose the expression cutoff as the
minimum in the log expression distribution (Figure 4.2). Each gene expression is
represented by the sum of normalized counts over all time points. This reduced
the number of genes from about 18,000 to a little less than 12,000. For further anal-
yses of the expressed genes I switched to DEseq2-regularized and log-transformed
counts as this allows for better comparison of genes expression at different orders
of magnitude. To better capture the dynamics after inhibition, I removed the ex-
pression data on day 0 (timepoint t1) and re-normalised the remaining timepoints
by subtracting the mean (logspace equivalent of dividing by mean):

xt =
6xt

∑7
t=2 xt

, for t = 2, .., 7. (4.1)

Next I introduced a variance cutoff in order to preselect genes that show a reaction
to the inhibition, thereby excluding genes that could dampen the signal, and mak-
ing the downstream analysis faster. The cutoff was chosen as 0.1, which reduces
the number of genes to 2542, a number comparable to what other studies report
[48].
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FIGURE 4.2: Log-histogram of the expression sum over all days
for all genes. Summing over all days’ normalized expression data,
we get a bimodal distribution. I employed the logarithmic plot to
choose the expression cutoff as the minimum between the two modes,
thereby separating randomly detected genes and reliably expressed

genes.

The resulting matrix with 30 measurements (6 days x 5 replicates) of expression
data for 2542 genes was passed on for network construction and clustering.

4.2.3 Gene similarity via Gaussian Processes

I used Gaussian Processes (GPs) [49] to increase the number of data points and de-
fine a similarity measure from which to build a gene similarity network. Gaussian
Processes have the advantage that they can utilize replicates and prior knowledge,
which makes them a good modelling choice for our data. A Gaussian Process is a
stochastic process, where every finite linear combination of the random variables
has a Gaussian distribution. They are completely defined by their mean and co-
variance function, which determines how much the process can oscillate between
given values.

The regression functions are sampled from:

y ∼ N (m(X), K(X, X) + σ2
n I), (4.2)
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where m is the mean and K the covariance function.

For computations in matlab I used the GPML Toolbox version 4.2 [50] with the
following functions and parameters for exact inference. The mean is µ = 0 and for
the covariance function is the isotropic squared exponential covariance function
(SEiso):

KSEiso(x, x′) = σ2
f exp(− 1

2l2 (x− x′)T(x− x′)). (4.3)

Gaussian Processes can be used as a prior probability distribution over functions
when performing non-parametric regression. That way we can predict values be-
tween measurement and beyond the measured range for each gene. But beyond
that GP-regression can be used to define a similarity measure for genes by com-
paring pairwise regression. The hyperparameters θ = (σ2

f , l, σ2
n) in the covariance

function (σ2
f and l) and likelihood function (noise level σ2

n) were optimized over
the entire dataset by maximizing the following likelihood function:

L(y|( f , σ2
n)) =

1√
(2πσ2

n)
exp(

−(yi − fi)
2

2σ2
n

). (4.4)

Adopting the strategy from [51], I define the gene similarity score s as the differ-
ence in negative log likelihood between regression of two genes separately and
regression of both gene’s data points combined 4.5.

si,j = log p([yi, yj]|[X; X], θ)− log p(yi|X, θ) log p(yj|X, θ) (4.5)

The idea behind this is that prediction strength will increase when more data
points of the same function are added to one model, instead of trying to model
the same function twice with fewer data points. But it will decrease, when the two
very different time series are forced into the same regression.
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FIGURE 4.3: Examples of Gaussian Process regression on single
gene expression. The colored lines are the time courses for differ-
ent replicates, the black line in the middle is the posterior mean and

the grey area around it the 95% confidence interval.

4.3 Clustering a gene similarity network

4.3.1 Gene network construction

The similarity matrix contains positive and negative entries, which poses a prob-
lem for graph clustering algorithms, which usually expect edge weights to repre-
sent distances between nodes. We can easily transform the similarity matrix into
a dissimilarity or distance matrix by subtracting each matrix entry from the maxi-
mum entry in the matrix:

Mdistance(i, j) = 10 + max(Msimilarity)−Msimilarity(i, j). (4.6)

Afterwards the diagonal is set to zero again.

Msimilarity(i, i) = 0, for i = 1, .., 2542. (4.7)

From this distance matrix I construct a network by introducing edges for the k-
nearest neighbors of each gene with k = 7. With this neighborhood the graph
is connected enough to link similar genes while being sparse enough to establish
subgroups of genes. To make sure that the resulting network has only connected
component for clustering, I add the minimum spanning tree of the fully connected
graph, resulting in Figure 4.4.
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FIGURE 4.4: Gene-similarity graph Shown are 2542 expressed genes
with high variance upon PI-treatment are connected by edges, when
their expression profiles are similar. This network is colored by the
genes’ expression on day 1 relative to day 0. Red: expression went
up, blue: expression went down relative to day 0. The figure was

created by Dr. Zijing Liu.

4.3.2 Markov stability clustering

For clustering of the similarity graph into genes with similar expression profiles I
chose the Markov Stability (MS) algorithm [30]. It performs several random walks
on the network at different Markov times and is thereby able to generate modules
of variable sizes, from which I can select the biologically most relevant.

In an unweighted network the transition probability of the random walker from
one node to the next can be defined as:

pij =


1

degree(i) , if Aij 6= 0

0, otherwise
(4.8)

Since these transition probabilities are independent of the time of visiting, we can
define the random walk as a Markov chain with state space V and transition ma-
trix:

P = (pij)i,j∈V . (4.9)

From P we can compute the stationary distribution π

π = πP with (4.10)

π(i) > 0∀i ∈ V and (4.11)

∑
i∈V

π(i) = 1, (4.12)
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which lets us determine the long-term behavior of the walker. Clusters are defined
as regions in the graph where the random walker is trapped in for a long time.
This is evaluated through its position after certain number of steps from random
starting point. For longer times the random walker can end up in more remote
areas of the graph, thus the clusters become bigger.

Given the adjacency matrix A I extract the number of edges m = ∑i,j
Aij
2 and its de-

gree vector d (di = ∑n
j Aij). From the degree matrix D, where Dii = di, I construct

the one step transition matrix M = D−1A and the stationary distribution matrix
π = D

2m , which is based on the unique stationary distribution π = dT

2m .

The optimal clustering for each Markov time is chosen by maximizing the so-called
stability function over several runs [30]. The stability function is evaluated at a
certain Markov time t for a proposed clustering C, which constitutes a complete
graph partitioning into c clusters:

r(t, C) =
c

∑
s=1

∑
i,j∈Cs

B(t)ij, (4.13)

where
B(t) = Π[(1− t)I + tM]− πTπ. (4.14)

The choice of the best clustering from all evaluated Markov times depends on sev-
eral factors selected by the user. I take into account three mathematical properties
of the clusterings and one biological. Mathematically a clustering is good, if it is
preserved across multiple Markov times and different initializations. This prop-
erty is satisfied by plateaus where the number of predicted clusters (blue line in
Figure 4.5 A and B) is constant and the Variation of Information (VI) [52] between
clusterings Ct at time points t1 and t2 VI(Ct1 , Ct2) is low. This VI between clus-
terings is computed across all pairwise Markov times best clusterings (yellow to
brown areas in the background of Figure 4.5 A). Additionally the VI among runs
at the same Markov time VI(t) (green line) is evaluated as follows:

VI(t) =
1

n(n− 1)

n

∑
s=1

n

∑
s′=1

VI(Cs(t), Cs′(t)), (4.15)

where n is the number of clustering runs per Markov time and Cs the clustering
obtained from run s.

From a plateau of constant number of clusters and low pairwise VI across many
Markov times I select the point where the VI(t) is low. To further narrow down
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possible good clustering choices and include biological information in the clus-
tering, I compute the biological homogeneity index (BHI) of gene clusters for all
Markov times (red points in Figure 4.5 B). The BHI is a clustering score for how
functionally similar the genes in each cluster are [53], obtained from GO-term en-
richment analysis on each of the clusterings. Given a clustering C and biological
functional groups G (obtained through GO-enrichment), where G(x) is the group
that a gene x belongs, the BHI is computed as follows:

BHI =
1
k

k

∑
j=1

1
nj(nj − 1) ∑

x 6=y∈Cj

I(G(x) = G(y)), (4.16)

where k is the number of clusters in the current clustering C, nj is the number of
annotated genes in cluster Cj and the indicator function I is one if x and y are in the
same functional group [53]. BHIs were calculated using the R package clusterpro-
filer [54]. Combining all this information I chose a BHI-selected optimal clustering
with six clusters, see Figure 4.6.
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FIGURE 4.5: Stability clustering of gene similarity network - choos-
ing the best clustering. A: The gene expression distance graph was
clustered by performing random walks at Markov times from 1 to
100, plotting the resulting number of clusters and the pairwise Varia-
tion of information between clusterings. B: For the same clusterings
the biological homogeneity index (BHI) was computed. From both
these plots the best clustering was chosen from the time, where the
number of clusters is stable, the Variation of information low and the

BHI high. This figure was created by Dr. Zijing Liu.
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FIGURE 4.6: Clustered gene expression network This distance
graph was obtained from gene expression similarity based on GP-
regression. The Markov-stability clusters (marked by color and num-
ber) were ordered by their position in the graph and enriched gene

GO-term functions. This figure was taken from [23]

4.4 Biological interpretation of gene clusters

To get the average cluster expression I again run a GP-regression on the few hun-
dred genes per cluster. The representative expression profiles can be seen in Figure
4.7. Using the shape of the cluster profiles, the position of the cluster in the simi-
larity network (see figure 4.6) and information from enrichment analysis, we order
the clusters into two groups with three corresponding subgroups each, see Figure
4.7. The expression initially either goes sharply up or down; and in the long run
it either returns to its pre-treatment expression, keeps the trend of its initial stress
reaction or overshoots beyond its original expression. The time point of the initial
peak is slightly shifted between the three trends, from around half a day for clus-
ters 1 and 4, to shortly before day one for clusters 2 and 5 to between day one and
two for clusters 3 and 6. This hints at different functions for the genes in clusters
with different trends, which we can extract with gene enrichment analysis. It is
interesting to note that most changes happen around day one, and that after day
six there is no change in expression for these representative profiles. This fits with
the observation during the experiments that cells started proliferating by day six.
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FIGURE 4.7: Expression profiles of six cluster representatives.
These representative expression profiles were obtained through GP-
regression on all genes for each cluster. The six clusters were grouped
depending on their initial reaction and long-term behavior. This fig-

ure was created by Dr. Zijing Liu and Prof. Mauricio Barahona.

4.4.1 Enrichment analysis

On the six clusters I performed GO-term and KEGG-pathway enrichment analy-
sis, which compares the prevalence of association with terms or pathways for all
genes inside a cluster to their prevalence in a background gene set containing all
human genes. Again enrichment scores were computed with clusterprofiler with
the default 0.05 for GO-term enrichment and a p-value cut-off of 0.5 for KEGG
pathway enrichment to allow for hits in every cluster, resulting in Figures 4.8 and
4.9.
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FIGURE 4.8: GO-term enrichment analysis These are the GO-terms
that are enriched in the six gene expression clusters using clusterpro-

filer. This figure was adapted from Dr. Zijing Liu.
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FIGURE 4.9: KEGG-pathway enrichment analysis These are the
KEGG pathways that are enriched in the six gene expression clusters

using clusterprofiler. This figure was adapted from Dr. Zijing Liu.

In accordance with the cells having to deal with proteotoxic stress I found (nc)RNA
polymerase activity, autophagy and ribosome biogenesis as enriched GO-terms for
clusters 1 and 2. These functions are also found enriched as pathways in cluster
1, but not in cluster 2, which has more pathway activity in ER protein processing,
proteasome activity and enrichment in several amino acid metabolic processes.
Other enriched terms in cluster 2 are responses to unfolded or misfolded proteins
and immune response. Cluster 3 has strongly enriched pathways and terms for
cell cycle processes, including nuclear division and chromosome segregation. This
indicates that surviving cells are re-initiating proliferation. In cluster 4 (counter-
part to cluster 1) there are only few and weak associations, mostly to immune
responses. Parallel to cluster 2, there are several enriched ribosome terms in clus-
ter 5, including ribosome biogenesis, protein targeting and localization to the ER
as well as translational initiation. But the enriched terms in cluster 6, amino acid
processes, response to misfolded or unfolded proteins, ER stress, autophagy and
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apoptosis pathway enrichment show the ongoing difficulties when switching back
to proliferation.

4.4.2 Discovered Vulnerability

Several of the genes in cluster 6 were found to encode for tRNAs that guide the
activity of GCN2, a known kinase that is involved in stress recovery. These results
were returned to the experimenters who did several follow-up analyses of the gene
expression as well as the other ’omics’ datasets. Ultimately, through follow-up
experiments inhibiting GCN2, our collaborators were able to identify GCN2 as a
promising drug target in various cancers that have to undergo proteotoxic stress
recovery or that have similar characteristics to recovering cells [23].

4.5 Conclusions

In this chapter I analysed how networks can be used to cluster gene expression
from stress recovery data in order to find essential genes that lead the process. We
developed a pre-processing pipeline for gene expression time series data and con-
structed a gene-similarity network based on Gaussian Process regression. Clus-
tering with Markov Stability revealed six representative groups of genes that are
involved with different stages of proteotoxic stress recovery. Enrichment analysis
of the genes in those six clusters showed the activity and difficulty of cells deal-
ing with proteotoxic stress and returning to proliferation. This pipeline proved to
be useful for the generation of hypotheses of genes that can be targeted during
recovery to prevent cancer growth.
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Discussion and Outlook

5.1 Summary

In this thesis I presented different methods of network modelling for various bi-
ological systems and their application in cancer research. In particular I focused
on data modelling of gene expression and metabolic modelling to extract essential
genes and reactions that can be used as drug targets.

In microbes like E.coli, FBA on metabolic reconstructions is able to predict essen-
tial reactions through flux. But in mammalian cells additional information, usually
in the form of genomic data and chemical properties has to be utilized to make
predictions. MFG provide a condition-specific way of modelling metabolism as
reaction-based networks, that contains mathematical information about cell biol-
ogy. Main results from Chapter 3:

• None of the node centrality that I tested correlates with reaction essentiality
predicted with FBA,

• Centralities and therefore network structure contain additional information
that is not captured with the flux,

• Node centralities can change drastically even when only few flux bound are
changed,

• A new node measure, called sigma_centrality, that can predict essentiality
from inhibited networks and

• These results show that MFGs and therefore reaction-based metabolic net-
works contain relevant biological information and present a valuable alter-
native to metabolite-based networks.

With a newly developed data processing pipeline I successfully clustered gene
expression time-series data, leading to the identification of GCN2-inhibition as a
treatment method across a multitude of cancers. Main results from Chapter 4:

• I developed a pipeline to filter gene expression data from sparse time-series
data.
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• Using Gaussian processes to build a similarity network and clustering that
network with Markov Stability provided a clustering of essential genes dur-
ing recovery.

5.2 Limitations and strengths

The networks can only be as good as the data provided to build the network. For E.
coli the metabolic reconstructions and FBA results are reliable, but human cancer
networks like in Chapter 3 are still too big and disregulated to make good predic-
tions. It is not obvious that the FBA objectives of maximizing biomass production
and minimizing overall flux is realistic in cancer. Validation of the FBA and net-
work analysis results is still difficult for reactions without known inhibitors or
directly mappable genes. Still, as long as this method creates even a few success-
ful predictions, it will have proven its worth. And its specificity and speed make
it a valuable prediction method.

While the metabolic networks show the interactions and mechanisms that can
make a reaction essential, the gene similarity networks in Chapter 4 do not provide
such information. They still require evaluation by hand and biological knowledge
to extract causal genes. On top of that, more measurements are needed throughout
day 1 and 2 to resolve the regulation patterns in detail. The predicted clusters have
been evaluated biologically through enrichment analysis. However, comparison
with other clustering methods is necessary to ensure that we obtained the optimal
results.

5.3 Future Work

5.3.1 Similarity networks

There are many small decisions that were made when constructing the networks.
We should test how similar the constructed networks are when slightly altering
the filters and normalizing methods. How robust are the clusters when the net-
work is constructed in a different way? I am most interested in changing the kNN
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construction method to using an ε-environment. Maybe we could include the clus-
tering into the network construction by gradually increasing ε and treating the dis-
connected subgroups that appear for small ε as clusters. This corresponds to hier-
archical clustering that can be evaluated at different cutoffs by computing the BHI
again. This could even be run as fuzzy clustering, such that we are less reliant on
the variance filter and do not force genes that are different from all other genes into
clusters where they do not fit. In a complete clustering we are bound to include
outliers that interfere with the cluster profile. An interesting method to compare to
is WGCNA [14], which was developed for biological analyses. WGCNA uses an-
other similarity measure, network construction and clustering algorithms, which
should be compared step by step, including combinations of WGCNA methods
and our methods.

5.3.2 Reaction essentiality

The next step in the evaluation of the new σ measure is to investigate reactions
where σ and λ do not correspond well. This requires an in-depth literature search
for each alternatively classified reaction.

Biological validation

Biomass production prediction from FBA is just a preliminary score to evaluate
essentiality, as it is also derived from mathematical simulation. Ultimately we
have to compare to biological data to get more realistic values to compare with.
CRISPR gene effect data is available from the Achilles project [3] and the Sanger
Institute [5] to get essentiality for single genes. These then have to be mapped to
the reactions they catalyse, taking into account the possibility that multiple genes
can dependently or independently catalyse the same reaction and that the same
gene can be involved with several different reactions.

Ultimately, predictions have to be tested in lab with CRISPR or small molecule
inhibition combined with mass spectrometry.

Node roles

Ultimately we want to be able to quickly do knock-out simulations on the MFGs
without having to run an FBA for each condition. Ideally, we want a network
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property that immediately predicts essentiality directly from MFG node measures.
One way of extracting such a measure is via machine learning (ML) algorithms.
With ML we can train a model that predicts essentiality from centralities or other
features and reduce the input data to the most predictive features.

A bachelor’s student I supervised was able to predict essential reactions from a
wild type MFG with about 90% accuracy [55]. She used two different approaches
to predict node roles and then use these roles as input vectors for ML. The first
approach uses a node feature matrix containing averaged or maximized central-
ities of the node and its neighboring nodes that are extracted with the algorithm
REFEX [26]. The second approach utilizes a vector of incoming and outgoing path
lengths, as proposed in the paper [25]. Node essentiality was again defined from
FBA knock-outs, so like for the new σ-measure we have to compare with biolog-
ical data to evaluate the method. Depending on these results I’d abandon the σ-
measure and continue predicting essential reactions purely via machine learning.

Synthetic lethality

The ultimate goal is to predict synthetic lethality from MFGs. For this we want
to utilize a combination of a the single-node essentiality measures plus a network
relationship between two nodes. This add additional ’pair’-data could for example
be their distance and a relationship like ancestor/parallel/unrelated which can be
extracted from paths through the network. CRISPR data for combinations of genes
is rare, but does exist for several cancer and E.coli cell lines. We could again train
a ML model to predict essentiality for combinations of genes.
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[15] Deniz Seçilmiş et al. “Uncovering cancer gene regulation by accurate regula-
tory network inference from uninformative data”. In: npj Syst Biol Appl 6.37
(2020).

[16] Zhao B et al. “dentification of Potential Key Genes and Pathways in Early-
Onset Colorectal Cancer Through Bioinformatics Analysis”. In: Cancer Con-
trol 26.1 (2019).

[17] da Veiga Moreira J et al. “Metabolic therapies inhibit tumor growth in vivo
and in silico”. In: Sci Rep 9.1 (2019).

[18] M. W. Covertand J N. Xiaoand J T. J. Chen and J. R. Karr. “Integrating metabolic,
transcriptional regulatory and signal transduction models in Escherichia coli”.
In: Bioinformatics 24.2044 (2008).

[19] Gholamreza Bidkhori et al. “Metabolic Network-Based Identification and
Prioritization of Anticancer Targets Based on Expression Data in Hepato-
cellular Carcinoma”. In: Frontiers in Physiology 9.916 (2018).

[20] M Beguerisse-Díaz et al. “Flux-dependent graphs for metabolic networks”.
In: npj Systems Biology and Applications 4.32 (2018).

[21] Francis Crick. “Central Dogma of Molecular Biology”. In: Nature 227 (1970),
pp. 561–563.

[22] The Gene Ontology Consortium: Michael Ashburner et al. “Gene ontology:
tool for the unification of biology”. In: Nature Genetics 25.1 (2000), pp. 25–29.

[23] Paula Saavedra-Garcia et al. “Global profiling of cancer cell recovery from
therapy-induced stress reveals druggable vulnerabilities”. In: Proceedings of
the National Academy of Sciences 118.17 (2021).

[24] Shuo Chen et al. “Estimating large covariance matrix with network topology
for high-dimensional biomedical data”. In: Computational Statistics and Data
Analysis 127 (2018), pp. 82–95.

[25] Kathryn Cooper and Mauricio Barahona. “Role-based similarity in directed
networks”. In: (2010). arXiv: 1012.2726 [physics.soc-ph].

[26] K. Henderson et al. “It’s who you know: Graph mining using recursive struc-
tural features”. In: Proceedings of the 17th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. KDD ’11. San Diego, Califor-
nia, USA: Association for Computing Machinery, 2011, pp. 663–671. ISBN:
9781450308137.

[27] M. E. J. Newman. “Modularity and community structure in networks”. In:
Proceedings of the National Academy of Sciences 103.23 (2006), pp. 8577–8582.

[28] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. “Partitioning Sparse Ma-
trices with Eigenvectors of Graphs”. In: SIAM Journal on Matrix Analysis and
Applications 11.3 (1990), pp. 430–452.

http://arxiv.org/abs/1012.2726


BIBLIOGRAPHY 51

[29] Pons P. and Latapy M. “Computing Communities in Large Networks Using
Random Walks”. In: 3733 (2005).

[30] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona. “Stability of graph commu-
nities across time scales”. In: Proceedings of the National Academy of Sciences
107.29 (2010), pp. 12755–12760.

[31] N Swainston et al. “Recon 2.2: from reconstruction to model of human metabolism”.
In: Metabolomics 12.109 (2016).

[32] TE Turner, S Schnell, and K Burrage. “Stochastic approaches for modelling
in vivo reactions.” In: Comput Biol Chem 28.3 (2004), pp. 165–78.

[33] Srinivasan S and Mahadevan R. Cluett WR. “Constructing kinetic models of
metabolism at genome-scales: A review”. In: Biotechnol J 10.9 (2015).

[34] J Orth, I Thiele, and B Palsson. “What is flux balance analysis?” In: Nat
Biotechnol 28.3 (2010), pp. 245–248.

[35] K Yizhak et al. “Modeling cancer metabolism on a genome scale”. In: Molec-
ular Systems Biology 11.817 (2015).

[36] K Yizhak et al. “Phenotype-based cell-specific metabolic modeling reveals
metabolic liabilities of cancer”. In: eLife Nov 21.3 (2014).

[37] Q Zhao et al. “Mapping the landscape of metabolic goals of a cell”. In: Genome
biology 17.109 (2016).

[38] In: ().
[39] G Su et al. “Integrated metabolome and transriptome analysis of the NCI60

dataset”. In: BMC Bioinformatics 12 (2011).
[40] Laurent Heirendt et al. “Creation and analysis of biochemical constraint-

based models: the COBRA Toolbox v3.0”. In: Nature Protocols 14 (2019), pp. 639–
702.

[41] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2019. URL: http:
//www.gurobi.com.

[42] Mahadevan R and Palsson BO. “Properties of metabolic networks: structure
versus function”. In: Biophys J 88.1 (2005), pp. L07–9.

[43] MATLAB. version 9.5.0 (R2018b). Natick, Massachusetts: The MathWorks Inc.,
2018.

[44] J. M. Monk et al. “iML1515, a knowledgebase that computes Escherichia coli
traits”. In: Nature biotechnology 35.10 (2017), pp. 904–908.

[45] J. D. Orth et al. “A comprehensive genome-scale reconstruction of Escherichia
coli metabolism–2011”. In: Molecular systems biology 7.535 (2011).

[46] Esther A Obeng et al. “Proteasome inhibitors induce a terminal unfolded
protein response in multiple myeloma cells”. In: Blood 107 (2006), pp. 4907–
4916.

http://www.gurobi.com
http://www.gurobi.com


52 BIBLIOGRAPHY

[47] Philippe Moreau et al. “Proteasome inhibitors in multiple myeloma: 10 years
later”. In: Blood 120 (2012), pp. 947–959.

[48] In: ().
[49] Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press,

2006. ISBN: 0-262-18253-X.
[50] Carl Edward Rasmussen and Hannes Nickisch. “Gaussian Processes for Ma-

chine Learning (GPML) Toolbox”. In: Journal of Machine Learning Research 11
(2010), pp. 3011–3015.

[51] Zijing Liu and Mauricio Barahona. “Similarity Measure for Sparse Time Course
Data Based on Gaussian Processes”. In: bioRxiv (2021). DOI: 10.1101/2021.
03.03.433709.
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