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SUMMARY

We establish a general theory of optimality for block bootstrap distribution estimation for 15

sample quantiles under mild strong mixing conditions. In contrast to existing results, we study
the block bootstrap for varying numbers of blocks. This corresponds to a hybrid between the
subsampling bootstrap and the moving block bootstrap (MBB), in which the number of blocks
is between 1 and the ratio of sample size to block length. The hybrid block bootstrap is shown
to give theoretical benefits, and startling improvements in accuracy in distribution estimation in 20

important practical settings. The conclusion that bootstrap samples should be of smaller size than
the original sample has significant implications for computational efficiency and scalability of
bootstrap methodologies with dependent data. Our main theorem determines the optimal number
of blocks and block length to achieve the best possible convergence rate for the block bootstrap
distribution estimator for sample quantiles. We propose an intuitive method for empirical se- 25

lection of the optimal number and length of blocks, and demonstrate its value in a nontrivial
example.

Some key words: Hybrid Block Bootstrap; Subsampling; Optimality; Sample Quantile; Weak Dependence.

1. INTRODUCTION

Sample quantile estimation and inference with dependent data is an important problem, with 30

many common applications in statistics, such as time series analysis, Bayesian inference based
on Markov chain Monte Carlo samples, and quantile regression, to name a few. Block bootstrap
procedures have proven to be effective and popular tools in such problems. However, the optimal
choice of block length to achieve the fastest possible convergence rate of the block bootstrap
estimator of the distribution of the sample quantile is an open problem. Optimality in this sense 35

is crucial to achieving accurate point estimates, good coverage properties of confidence inter-
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2 T. A. KUFFNER ET AL.

vals, as well as scalability and computational efficiency in high dimensions. While bootstrap
theory for the sample quantile problem is fairly well-understood for independent data, there is
no existing optimality theory for dependent data. A change from an independent to a dependent
context entails a complete revamp of the bootstrap theory, and optimality results known for the40

independent case do not have a trivial generalisation in the dependent case.
In this paper, we rigorously establish the optimal convergence rate for the block bootstrap

estimator for sample quantiles under standard weak dependence conditions of strong mixing,
which cover large classes of time series models. We call our approach a hybrid block bootstrap
because the fastest convergence rate is achieved by choosing not only the block length, but also45

the number of blocks, and the optimal choice is in-between using a single block (the subsampling
bootstrap) and using the number of blocks prescribed by the moving block bootstrap (MBB).
The hybrid block bootstrap is seen to achieve remarkable improvements in accuracy for sample
quantile distribution estimation compared to the subsampling bootstrap and MBB.

To put our results in a broader context, we mention that optimal block selection is generally an50

open question for many blockwise statistical procedures with dependent data. The block boot-
strap and blockwise empirical likelihood are two common examples. Many recent papers on
these topics contain statements to the effect that the sort of optimality theory and methodology
we develop in this paper are challenging open questions, in a wide variety of contexts. See, for
example, Gregory et al. (2015); Shao & Politis (2013) and Zhang & Shao (2013).55

2. BLOCK BOOTSTRAP METHODS

In Supplementary Material, we provide a review of relevant bootstrap literature. There is lit-
tle literature on use of block bootstrap methods for the context considered here, which consid-
ers a nonsmooth function of dependent data. Sun & Lahiri (2006), Sun (2007) and Sharipov
& Wendler (2013) are notable exceptions. Those authors considered block bootstrap approxi-60

mation for sample quantiles under weak dependence. Sun & Lahiri (2006) established strong
consistency of the MBB, assuming only a polynomial (strong) mixing rate, for both distribution
and variance estimation of the sample quantiles. Sharipov & Wendler (2013) established similar
results for the circular block bootstrap utilizing a different set of conditions to take advantage
of empirical process theory for the Bahadur-Ghosh representation of the sample quantile. Sun65

(2007) is particularly relevant to our work, as discussed further below. All of these earlier results
assume that the number of blocks tends to infinity with the sample size.

Most recently, Kuffner et al. (2018) established a more general consistency result for a hy-
brid block bootstrap, for both distribution and variance estimation of sample quantiles. While
an exponential mixing rate is assumed, Kuffner et al. (2018) proved weak consistency for any70

number of blocks, 1 ≤ b = O(n/`) (as n→∞), whereas the existing proofs for the MBB and
circular block bootstrap required that b→∞, where b = bn/`c. Here, n is the available sample
size, and ` is the block length. The value of b is the number of resampled blocks to be pasted to
form the bootstrap data series. The case b = 1 corresponds to the subsampling bootstrap (Politis
& Romano, 1994), and the case b = bn/`c is the standard MBB (Künsch, 1989). Therefore, the75

consistency results in Kuffner et al. (2018) are for a hybrid between the MBB and the subsam-
pling bootstrap, and those two extremes are covered by the same theory.

As noted in Kuffner et al. (2018), their theoretical and empirical results suggest that there can
be substantial performance improvement, in terms of mean squared errors (MSE) for both the
variance and distribution estimators, when choosing some value of b > 1, but less than bn/`c.80

This suggests the following question: does there exist some optimal choice of the pair (b, `)
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which provides the best convergence rate for the bootstrap distribution estimator for sample
quantiles under weak dependence? We answer that question in the present paper.

Related to the motivation of the present paper is the paper by Sun (2007). She studied the
convergence rate of the moving block bootstrap distribution estimator for sample quantiles with 85

dependent data. A strong mixing condition with exponentially decaying mixing coefficients was
assumed. An almost sure convergence result was established, and the best rate of convergence
was found to be O(n−1/4 log log n), which is only slightly different from the convergence rate
for bootstrap approximation with i.i.d. data (Singh, 1981). We consider a weaker polynomial rate
condition, which is also slightly weaker than that assumed in Sun & Lahiri (2006). Moreover, we 90

allow the number of blocks to vary, instead of fixing b = bn/`c. Our main theorem establishes
the convergence rate of the ‘hybrid’ bootstrap distribution estimator for sample quantiles. It is
a hybrid between the MBB (b = bn/`c) and subsampling (b = 1) bootstrap. We also apply our
theory to the setting of Sun (2007) below.

Aside from our general optimality results being of foundational and practical value, they also 95

indicate that adaptive selection of the number of blocks could yield considerable improvements
in convergence rates for block bootstrap distribution estimators. Moreover, Lemma 4 below is
of independent interest, as it gives the convergence rate of the block bootstrap distribution esti-
mator, and has bearing on the regular smooth function model. We have included several relevant
empirical examples to illustrate the potential gains of optimal choice of the number of blocks, 100

as opposed to using the prescribed value of b for either the subsampling bootstrap (b = 1) or the
MBB (b = bn/`c). In § 6, we give practical guidance as to how to choose (b, `) in a given applied
problem, by proposing a procedure for this purpose.

3. PROBLEM SETTING

Let Z ≡ {0,±1,±2, . . .} be the set of all integers. Define {Xi}i∈Z to be a doubly-infinite 105

sequence of random variables on the probability space (Ω,F , P ). The elements of the sequence
possess a common distribution function F , and its corresponding quantile function F−1, defined
by

F−1(p) = inf{u : F (u) ≥ p}, p ∈ (0, 1).

We will study the block bootstrap distribution estimator of a suitably centered and scaled sample
quantile. It is assumed throughout that {Xi}i∈Z is a strictly stationary process. The sequence 110

(X1, . . . , Xn) denotes a sample of size n from {Xi}i∈Z.

3.1. The Block Bootstrap
The moving blocks bootstrap (MBB) (Künsch, 1989) splits the original sample (X1, . . . , Xn)

into overlapping blocks of size `, Bi = (Xi, . . . , Xi+`−1), together constituting a set
{B1, . . . , Bn−`+1}. Let B∗1 , . . . , B

∗
b be a random sample drawn with replacement from the orig- 115

inal blocks, where b = bn/`c is the number of blocks that will be pasted together to form a
pseudo-time series. For a real number h, the notation bhc is defined as the largest integer≤ h, and
dhe is the smallest integer ≥ h. That B∗1 , . . . , B

∗
b is a random sample from {B1, . . . , Bn−`+1}

means that the sampled blocks are independently and identically distributed according to a dis-
crete uniform distribution on {B1, . . . , Bn−`+1}. The observations in the ith resampled block, 120

B∗i , are X∗(i−1)`+1, . . . , X
∗
i`, for 1 ≤ i ≤ b. Then the MBB sample is the concatenation of the
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resampled blocks, written as

X∗1 , . . . , X
∗
`︸ ︷︷ ︸

B∗1

, X∗`+1, . . . , X
∗
2`︸ ︷︷ ︸

B∗2

, X∗2`+1, . . . , X
∗
(b−1)`︸ ︷︷ ︸

B∗3 ···B
∗
b−1

, X∗(b−1)`+1, . . . , X
∗
b`︸ ︷︷ ︸

B∗
b

.

Note that this way of constructing the pseudo-time series will reproduce the original dependence
structure asymptotically.

The subsampling bootstrap (Politis & Romano, 1994), and specifically the overlapping blocks125

version relevant to the present setting, first splits the original sample into precisely the same
overlapping blocks as the MBB, each of length `. However, the subsampling bootstrap draws
only a single block. A nice property of this procedure is that the original dependence structure
in the sample is exactly retained in the single subsample. By contrast, the pseudo-time series
constructed by the MBB only reproduces the original dependence structure asymptotically.130

We define dependence for the sequence of random variables {Xi}i∈Z in terms of the mixing
properties of σ-algebras generated by subsets of the sequence which are separated by a distance,
in units of time, tending to infinity. For any two sub-σ-algebras of F , say F1 and F2, the α-
mixing coefficient between F1 and F2 is defined to be (Athreya & Lahiri, 2006, Section 16.2.1)

α(F1,F2) ≡ sup
A∈F1,B∈F2

|P (A ∩B)− P (A)P (B)|. (1)

WriteFk+tk for the smallest σ-algebra of subsets of Ω with respect to whichXi, i = k, . . . , k + t,135

are measurable. Let Fk−∞ be the smallest σ-algebra which contains the unions of all of the σ-
algebrasFka as a→ −∞. That is,Fk−∞ is a sub-σ-algebra ofF , and it is the σ-algebra generated
by the random variables Xa, Xa+1, . . . , Xk as a→ −∞. Similarly, for −∞ ≤ k ≤ ∞, let F∞k
be the σ-algebra generated by the random variables Xk+1, Xk+2, . . . , Xk+a, as a→∞. The
α-mixing coefficient of the sequence {Xi}i∈Z is defined as140

α(t) ≡ sup
k∈Z

α(Fk−∞,F∞k+t),

where α(·, ·) is defined in (1). If the α-mixing coefficient decays to zero,

lim
t→∞

α(t) = 0, (2)

then the process {Xi}i∈Z is said to be strongly mixing. The sequence of random variables
{Xi}i∈Z is said to be weakly dependent if the process {Xi}i∈Z is strongly mixing, i.e. if (2)
holds.

4. THEORETICAL RESULTS145

Assume that (X1, . . . , Xn) is a sample of a stationary strong mixing process with mixing
coefficient α(t). We assume either a polynomial mixing rate such that α(t) = O(t−β) for some
β ∈ (5,∞) or an exponential mixing rate such that α(t) = O(e−Ct) for some C > 0. Denote by
F the distribution function of X1 and Fn the empirical distribution function of (X1, . . . , Xn).

Define, for x ∈ R, σ(x)2 = limn→∞Var
(
n1/2Fn(x)

)
=
∑∞

t=−∞ Cov
(
111{X0 ≤ x},111{Xt ≤150

x}
)
. Define, for ` ∈ {1, 2, . . . , n}, b ∈ {1, 2, . . .} and x ∈ R, J1, . . . , Jb to be independent ran-
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dom indices uniformly drawn from the set {1, . . . , n− `+ 1},

Ui(x) = `−1
i+`−1∑
t=i

111{Xt ≤ x}, i = 1, . . . , n− `+ 1,

U∗i (x) = `−1
Ji+`−1∑
t=Ji

111{Xt ≤ x}, i = 1, . . . , b,

155

F̃n(x) = (n− `+ 1)−1
n−`+1∑
i=1

Ui(x), F ∗n(x) = b−1
b∑
i=1

U∗i (x).

Define, for p ∈ (0, 1),

ξp = F−1(p), ξ̂n = F−1n (p), ξ̃n = F̃−1n (p), ξ∗n = F ∗−1n (p).

Assume that f = F ′ is defined on a neighbourhood Np of ξp, with

0 < inf
x∈Np

f(x) ≤ sup
x∈Np

f(x) <∞.

THEOREM 1. Suppose that n = O(n− `), n−
4β+7

6(3β+5) `→∞ and b ≥ 1. Let x ∈ R be fixed
and δ > 0 be any arbitrarily small constant.

(i) If polynomial mixing holds with β ∈ (5,∞) and ` = O(b), then 160

P
(

(b`)1/2
(
ξ∗n − ξ̃n

)
≤ x

∣∣∣X1, . . . , Xn

)
= P

(
n1/2

(
ξ̂n − ξp

)
≤ x

)
+Op

(
`−1 + `1/2n−1/2 + (b`)−1/2`δ

+n
− β−1

2(β+1)
+δ

(b`)(1−δ)/4 + n−1b
2β+1
4(β+1)

−δ
`

4β+7
4(β+1)

+5δ
)

+ op

(
n
−β−3
β−1

+δ
(b`)1/2 + n

− 3β−1
4(β+1)

+δ
(b`)1/2

+n
− β(2β−3)

(β−1)(2β+1)
+δ
b
1
2 `

1
2
+

2(β+3)
(β−1)(2β+1) + n

− 4β+5
4(β+1)

+δ
b
1
2 `

β+2
β+1

+n
− 2(β+1)

2β+1
+δ
b
1
2 `

4β+7
2(2β+1) + n

− 4β2+3β+1
2(2β+1)(β+1)

+δ
b
1
2 `

3β+4
2(2β+1)

)
.

(ii) If exponential mixing holds with α(t) = O(e−Ct) for some C > 0, then

P
(

(b`)1/2
(
ξ∗n − ξ̃n

)
≤ x

∣∣∣X1, . . . , Xn

)
= P

(
n1/2

(
ξ̂n − ξp

)
≤ x

)
+Op

(
`−1 + `1/2n−1/2 + (b`)−1/2

+n−1b
1
2
−δ`1+5δ + n−

1
2
+δ(b`)(1−δ)/4

)
+ op

(
n−

3
4
+δ(b`)1/2 + n−1+δb

1
2 `
)
.

We may deduce from Theorem 1 the following:

Case (i). Polynomial mixing with β ∈ (5,∞) and ` = O(b).
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The convergence rate of the bootstrap distribution estimator is minimised by setting

` ∝ b ∝

n
4β+7

6(3β+5) log n, β ∈
(
5, (7 + 1851/2)/4

]
,

n
β−1

3(β+1) , β ∈
(
7 + 1851/2)/4,∞

)
,

which yields, for any δ > 0,165

P
(

(b`)1/2
(
ξ∗n − ξ̃n

)
≤ x

∣∣∣X1, . . . , Xn

)
− P

(
n1/2

(
ξ̂n − ξp

)
≤ x

)

=


Op

(
n
− 14β2+β−37

12(3β+5)(β+1)
+δ
)
, β ∈

(
5, (7 + 1851/2)/4

]
,

Op

(
n
− β−1

3(β+1)
+δ
)
, β ∈

(
7 + 1851/2)/4,∞

)
.

(3)

Note that as β →∞, the optimal orders of ` and b approach n1/3, which does not depend
on unknown parameters and may be taken as a practical reference for empirical choices
of ` and b. With such choices, that is ` ∝ b ∝ n1/3, the bootstrap distribution estimator

has the convergence rate Op

(
n
− β−2

3(β+1)
+δ
)

, for β ∈ (5,∞) and any δ > 0. The latter

convergence rate is slightly slower than that specified in (3), a price to pay for the absence170

of knowledge of β.
On the other hand, the MBB sets b = bn/`c, based on which the optimal ` is of order n1/3,
so that b ∝ n2/3. The convergence rate of the resulting bootstrap distribution estimator is
given, for any δ > 0, by

Op

(
n
− β−5

2(β−1)
+δ
)
, β ∈

(
5, 2 + 171/2

]
,

Op

(
n
− β−3

4(β+1)
+δ
)
, β ∈

(
2 + 171/2,∞

)
,

which is markedly slower than that obtained by setting ` ∝ b ∝ n1/3. Figure 1 compares175

the optimal convergence rate with those based on b ∝ ` ∝ n1/3 and b = bn/`c ∝ n2/3,
respectively.

Case (ii). Exponential mixing.
The error rate has an order minimised by setting ` ∝ b ∝ n1/3, which yields

P
(

(b`)1/2
(
ξ∗n − ξ̃n

)
≤ x

∣∣∣X1, . . . , Xn

)
= P

(
n1/2

(
ξ̂n − ξp

)
≤ x

)
+Op

(
n−1/3+δ

)
,

for any arbitrarily small δ > 0. For MBB, the error rate is minimised if ` is chosen to have180

order between n1/4 and n1/2, yielding an optimal convergence rate of order Op
(
n−1/4+δ

)
for any δ > 0. If we set b = 1, which amounts to the subsampling method, then the fastest
error rate has order Op

(
n−1/4

)
, attained by setting ` ∝ n1/2.

Remark 1. The mixing rate could be slower than what we require if the purpose is only to
prove that the bootstrap is consistent. For example, Sharipov & Wendler (2013) prove circu-185

lar bootstrap consistency under a very weak condition on the mixing rate. Naturally, stronger
conditions are required to investigate higher-order asymptotic properties.

Remark 2. Of independent interest is the result of Lemma 4, which gives the convergence rate
of the block bootstrap distribution estimator for n1/2

(
Fn(x)− F (x)

)
and has a bearing on the

regular smooth function model. Consider the simpler case of exponential mixing. It is easily seen190
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Fig. 1. From Theorem 1, Case (i). Log error rates for the
block bootstrap distribution estimator are plotted against
β for the optimal pairs of (b, `). The choice b = ` = n1/3

is optimal under exponential mixing, and it is our recom-
mendation when no information about the exact value of
β is available. Thus the discrepancy between the solid and
dashed curves shows how ignorance about β affects the er-
ror rate. The MBB choice (b = n2/3, ` = n1/3) is optimal

for Künsch’s MBB.

5 10 15 20 25 30 35 40 45 50 55

-0.3

-0.2

-0.1

0.

that the convergence rate is minimised at Op(n−1/3), attained by setting ` ∝ n1/3 and b having
order not smaller than n1/3, of which MBB is a special case. The subsampling method (b = 1),
however, has at best a convergence rate of only order Op(n−1/4), attained by setting ` ∝ n1/2.

Remark 3. Results on distribution estimation for n1/2
(
ξ̂n − ξp

)
, embodied in Theorem 1, dif-

fer substantially from the regular case in that local estimation of F over a shrinking neighbour- 195

hood of size Op
(
(b`)−1/2

)
around ξp incurs an error of order n−1/2(b`)1/4, which favours a

small b and precludes MBB from yielding an optimal convergence rate.

Remark 4. The reader may wonder how far the non-bootstrap statistic is from its Gaussian
limit. The asymptotic order is given by (8) in § 8. However, to use the Gaussian limit as a po-
tential competing estimator, one must worry about how the variance, which involves the density 200

function, should be estimated optimally. The question of optimality for block bootstrap estima-
tion of the density involves another nonsmooth functional: a kernel density estimator. The den-
sity estimation problem is sufficiently different from the sample quantile problem that a separate
theory is needed. Our optimality theory for density estimation will be reported elsewhere.

Remark 5. Results analogous to Theorem 1 in the case of independent data have been proved 205

by Sakov & Bickel (2000) and Arcones (2003) for the m out of n bootstrap, which amounts to
setting b = m→∞ and ` = 1 in our block bootstrap procedure. Their proofs build essentially
on an Edgeworth expansion for the binomial distribution of bF ∗n(x) to establish asymptotic nor-
mality of the bootstrap. With the data strongly mixing and b not necessarily diverging to infinity,
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bF ∗n(x) is no longer an expanding sum of independent data. This calls for the critical condition210

`→∞ and a technically more involved treatment of the cumulant generating function of F ∗n in
our proof: see Section 8 for more details.

5. RELEVANCE TO COVERAGE ERROR

Define

Ĝn(x) = P
(

(b`)1/2(ξ∗n − ξ̃n) ≤ x|X1, . . . , Xn

)
and let ∆(n, b, `) be defined by215

Ĝn(x) = Φ (xf(ξp)/σ(ξp)) + ∆(n, b, `), (4)

where Φ denotes the standard normal distribution function. Our main results in § 4 establish the
asymptotic order of ∆(n, b, `) and derive the optimal orders of (b, `) which minimise that order.

A level α lower percentile confidence interval for ξp is given by

[ξ̂n − n−1/2Ĝ−1n (α),∞).

Noting from (4) that

Ĝ−1n (α) = Φ−1(α)σ(ξp)/f(ξp) +Op (∆(n, b, `)) ,

and using (8) (Lahiri & Sun, 2009) from § 8, we obtain that220

P
{
ξp ≥ ξ̂n − n−1/2Ĝ−1n (α)

}
= P

{
n1/2(ξ̂n − ξp) ≤ Φ−1(α)σ(ξp)/f(ξp)

}
+O (∆(n, b, `))

= α+O
(
∆(n, b, `) + n−1/2

)
.

Since ∆(n, b, `) generally decays at a rate slower than n−1/2, which is optimal for independent
data, minimising the order of ∆(n, b, `) amounts to minimising the order of the coverage error
of the percentile confidence interval.225

6. PRACTICAL PROCEDURE FOR SELECTING OPTIMAL (b, `)

Setting b = bc1n1/3c and ` = bc2n1/3c, the objective is to find the optimal pair of positive
constants (c1, c2) which minimise the estimation error of Ĝn(x), or coverage error under some
obvious modification of the procedure. Note from (4) and (8) that

Ĝn(x)−Gn(x) = ∆(n, bc1n1/3c, bc2n1/3c) +O(n−1/2). (5)

Define, for c1, c2 > 0 and a fixed ρ ≥ 1,230

δn(c1, c2) =
{
E
∣∣∆(n, bc1n1/3c, bc2n1/3c)∣∣ρ}1/ρ.

Then the Lρ estimation error of Ĝn(x) has the expansion{
E|Ĝn(x)−Gn(x)|ρ

}1/ρ
= δn(c1, c2) +O(n−1/2). (6)

We wish to minimise δn(c1, c2) with respect to c1, c2.
Let M be a subsample size satisfying M = o(n) and M →∞. Let Ĝ(j)

M (x) be constructed
analogously to Ĝn(x), with the complete sample (X1, . . . , Xn) replaced by the jth block of M
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consecutive observations drawn from (X1, . . . , Xn), for j = 1, . . . , n−M + 1. Then we have, 235

analogous to (5), that

Ĝ
(j)
M (x)−GM (x) = ∆(j)

(
M, bc1M1/3c, bc2M1/3c

)
+O(M−1/2), (7)

where ∆(j)(·) denotes the version of ∆(·) obtained from the jth subsample. Define

Err(c1, c2) = (n−M + 1)−1/ρ
{∑

j

∣∣Ĝ(j)
M (x)− Ĝn(x)

∣∣ρ}1/ρ
.

Using (8), (5) and (7), we have

Ĝ
(j)
M (x)− Ĝn(x) = GM (x) + ∆(j)(M, bc1M1/3c, bc2M1/3c) +O(M−1/2)

−Gn(x)−∆(n, bc1n1/3c, bc2n1/3c)−O(n−1/2) 240

= ∆(j)(M, bc1M1/3c, bc2M1/3c) +O(M−1/2).

It follows that

Err(c1, c2) = (n−M + 1)−1/ρ
{∑

j

∣∣∆(j)(M, bc1M1/3c, bc2M1/3c)
∣∣ρ}1/ρ

+Op(M
−1/2)

= δM (c1, c2){1 + op(1)}+Op(M
−1/2).

If we assume, as is typical, that δn(c1, c2) has a leading term of the form β(c1, c2)n
−γ (0 <

γ < 1/2) for some function β(·) independent of n, then Err(c1, c2), δM (c1, c2) and δn(c1, c2)
are all minimised at asymptotically the same (c1, c2). Thus, an empirical procedure for choosing 245

(c1, c2), and hence choosing (b, `), may be based on the minimisation of Err(c1, c2).
This procedure constructs the error estimate Err(c1, c2) by considering all n−M + 1 sub-

samples ofM consecutive points drawn from the original data sample, and is therefore computa-
tionally expensive. However, the argument supporting minimization of this quantity actually only
requires that the number of subsamples used in the construction should grow with sample size n. 250

In practice, therefore, it is reasonable to evaluate the error measure Err(c1, c2) using a smaller
set of subsamples: in the numerical illustration given below, 20 subsamples, equally spaced along
the data series (X1, . . . , Xn), are used, allowing rapid evaluation of the error estimate.

7. EXAMPLES

To illustrate the benefits of optimally choosing (b, `), we consider three very general exam- 255

ples. For concreteness, we consider p = 1/2, and simulate the mean squared errors (MSEs) of
hybrid block bootstrap estimators of Gn(u) for particular choices of u. The true reference values
of Gn(·) are approximated via massive simulation (5× 106 replications). For each of the sample
sizes n = 200, n = 500, and n = 1000, all entries in the included tables and heatmaps are based
on 20, 000 replications, with 20, 000 bootstrap samples used within each replication, unless oth- 260

erwise stated. For n = 2, 000, the number of replications and bootstrap samples are each 10, 000.
For convenience, Table 1 provides some reference values of (b, `) for MBB for the sample sizes
we consider. This facilitates comparison with the MBB choice of b = bn/`c for a range of values
of `. In particular, we give values for ` approximately equal to n1/2 (not optimal), n1/3 (thought
to be optimal), n1/4, and n1/5. 265
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Table 1. Standard choices of (b, `) for different n, with the MBB choice b = bn/`c.
(b, ` ≈ n1/2) (b, ` ≈ n1/3) (b, ` ≈ n1/4) (b, ` ≈ n1/5)

n = 200 (14, 14) (33, 6) (50, 4) (66, 3)
n = 500 (22, 22) (62, 8) (100, 5) (125, 4)
n = 1, 000 (31, 32) (100, 10) (166, 6) (250, 4)
n = 2, 000 (44, 45) (153, 13) (285, 7) (400, 5)

Example 1 (ARMA(1,1)). Suppose that the observations are generated according to an
ARMA (1,1) model

Xt − 0.4X(t−1) = εt + 0.3ε(t−1),

with εt independent, identically distributed N(0, 1). The strong mixing condition is satisfied
with an exponential rate (Lahiri, 2003, Example 6.1). An initial X0 is sampled according to the
marginal distribution, i.e. X0 ∼ N(0, 1.5833), and ε0 ∼ N(0, 1).270

With p = 1/2, we have ξp = 0. We simulate the MSE in estimation of Gn(1) over a range of
(b, `). The true value being estimated was computed (by massive simulation, as described) as
Gn(1) ≈ 0.67978. The heat map in Figure 2 plots MSE for n = 200, over a grid of values of
(b, `). The heat map clearly illustrates the sub-optimality of b = 1, the subsampling bootstrap.
The minimum MSE is 0.00468, with (b, `) = (7, 8). By contrast, the minimum MSE for the275

MBB is 0.00637, with (b, `) = (33, 6), and the subsampling bootstrap, which fixes b = 1, has
minimum MSE of 0.00754, with ` = 14.

Fig. 2. Heatmap for the ARMA(1,1) model with n = 200.
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We also compute the values of the pair (b, `) which minimize MSE for other sample sizes,
n = 500, 1000, and 2000. These results are shown in Table 2. Comparing with Table 1, we note
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Table 2. ARMA(1,1) model. Choices of (b, `) which minimise the MSE for estimating Gn(1) for
different sample sizes n.

(b, `) MSE
n = 200 (7,8) 0.00468
n = 500 (10,10) 0.00250
n = 1, 000 (10,14) 0.00154
n = 2, 000 (12,18) 0.00097

that the MSE-minimizing pair (b, `) for each n uses an ` strictly greater than n1/3 and a b much 280

less than bn/`c. Additionally, the MSE-minimizing value of b is much larger than 1.
The theory says that the hybrid MBB has an error rate in estimation of Gn(1) of n−1/3, so we

should expect the MSE to decrease at rate n−2/3. In fact, a regression of log(MSE) on log(n)
for the values reported in Table 2 has slope −0.6885, which is not far off −2/3. The heatmap
illustrates that the subsampling and MBB choices of (b, `) are suboptimal. 285

For the current problem, of estimation of the sampling distribution of the sample quantile,
there is therefore clear theoretical and practical advantage in using the hybrid block bootstrap,
b` < n, b 6= 1, over the moving block bootstrap. Remark 2 indicates, by contrast, that we might
expect to see little difference, in estimation error terms, between the hybrid block bootstrap pro-
cedure and MBB if, instead, we are interested in estimation of P{n1/2

(
Fn(x)− F (x)

)
≤ y}. 290

This was verified by considering, for all combinations of (b, `), the MSE of the estimator
P{(b`)1/2

(
F ∗n(x)− F̃n(x)

)
≤ y
∣∣∣X1, . . . , Xn}, for x = 0, so that F (x) = 0.5, and y = 0.9, for

which the quantity being estimated ≈ 0.89501, for sample size n = 100. Based on 20,000 repli-
cations, with 20,000 bootstrap samples being used in construction of the estimator for each,
the minimum MSE achieved by MBB is 0.00084, with (b, `) = (25, 4). This is very similar 295

to the overall minimum MSE of 0.00082, seen for (b, `) = (18, 5). The minimum MSE of the
subsampling bootstrap, b = 1, is 0.00334, substantially larger, when ` = 7. This same picture
was seen for n = 200, when, for the same values x = 0, y = 0.9, the true probability being es-
timated ≈ 0.87781. Simulation shows that the minimum MSE of MBB is then 0.00108, with
(b, `) = (28, 7), with the same minimum MSE for the hybrid block bootstrap, achieved for 300

(b, `) = (30, 6). Here the subsampling bootstrap yields an optimal MSE of 0.00227 when ` = 8.
These illustrative figures confirm that the hybrid block bootstrap has little advantage over MBB
in error terms for this problem.

Example 2 (Nonlinear ARMA(2,3)). Let {Xt}t∈Z be a sequence from the ARMA(2,3) process

Xt − 0.1X(t−1) + 0.3X(t−2) = εt + 0.1ε(t−1) + 0.2ε(t−2) − 0.1ε(t−3).

As noted by Lahiri (2003, Example 6.1), such a sequence is strong mixing with exponentially 305

decaying mixing coefficients. To simulate from this model, we initiate by generating X0, X−1
from the marginal N(0, v2) distribution, which has v2 = 1.0776, with ε0, ε−1, ε−2 independent
N(0, 1). The nonlinear model we consider is the square transformation of the above ARMA
process,

Yt = X2
t .

The square transformation above preserves the strong mixing property and also preserves the 310

mixing rate. Therefore, Yt is strong mixing with the same exponential rate as Xt. The interested
reader is referred to Fan & Yao (2003, p. 69) or Davis & Mikosch (2009, p. 258). As with the
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previous example, we consider p = 1/2, and thus ξp satisfies

P(Yt = X2
t ≤ ξp) = 1/2,

implying ξp = (0.675v)2. The simulation approximation to the true value is Gn(−1.5) ≈
0.09276.315

Fig. 3. Heatmap for the nonlinear (squared) ARMA(2,3)
model; n = 200.
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The heatmap of Figure 3 shows again that the subsampling and MBB choices of (b, `) are
suboptimal from the perspective of minimizing MSE.

In Figure 4 we display the coverage error of lower percentile confidence intervals, as described
in Section 5, of nominal 90% coverage. We observe that there is undercoverage for most choices
of (b, `), sometimes very substantial, though there is overcoverage in a few cases. Appropriate320

choice of (b, `) can yield limits with exactly the required coverage.
As proof of concept of the adaptive procedure for choice of (b, `) described in Section 6, we

consider estimation of Gn(1) ≈ 0.80952, for sample size n = 512. We restrict to candidate val-
ues c1, c2 ∈ {0.5, 0.75, 1.0, 1.5, 2.0}, corresponding to adaptive choice of b, ` ∈ {4, 6, 8, 12, 16}.
Table 3 shows the MSE in estimation of Gn(1) over 2500 replications for each combination of325

(c1, c2). By contrast, the MSE obtained by minimization of Err(c1, c2) for each replication,
using 20 subsamples of size M = 64 in construction of this error quantity, was 0.00189. The
adaptive method clearly yields an MSE that is far from optimal in this setting, but outperforms
the procedure which fixes b, ` to larger values among those being considered.

The adaptive procedure is seen to perform better with increasing sample size. Table 4 provides330

analagous results for sample size n = 1728, for whichGn(1) ≈ 0.81125. UsingM = 512 in the
minimization ofErr(c1, c2) over the same range of c1, c2, now corresponding to adaptive choice
of b, ` ∈ {6, 9, 12, 18, 24}, and again using just 20 subsamples of length M in evaluation of
Err(c1, c2), the MSE of the adaptively chosen estimator over the 2500 replications was observed
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Fig. 4. Heatmap for the coverages of 90% lower confidence
limits in the nonlinear (squared) ARMA(2,3) model; n =

200.

Coverage error 90% limits, Nonlinear n=200
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Table 3. Nonlinear (squared) ARMA(2,3) model: MSE in estimation of Gn(1) over 2500 repli-
cations, for b = bc1n1/3c and ` = bc2n1/3c, n = 512. MSE of adaptive procedure was 0.00189.

c2
0.5 0.75 1.0 1.5 2.0

0.5 0.00164 0.00150 0.00158 0.00189 0.00230
0.75 0.00143 0.00154 0.00172 0.00220 0.00272

c1 1.0 0.00144 0.00166 0.00191 0.00250 0.00300
1.5 0.00161 0.00195 0.00232 0.00297 0.00350
2.0 0.00179 0.00225 0.00265 0.00335 0.00399

as 0.00066, much closer to optimal. Further tuning of the adaptive procedure certainly seems 335

worthwhile as a means of providing an effective automatic choice of (b, `) for the hybrid block
bootstrap and will be pursued elsewhere.

In Supplementary Material we provide a further example involving a process whose mixing
coefficients decay at a polynomial rate. This again supports the finding of suboptimality of the
choices of (b, `) indicated by the subsampling bootstrap and MBB. 340

8. PROOFS

In what follows we denote by C a generic positive constant independent of n. Lahiri & Sun
(2009) show under polynomial mixing rates that, for any x ∈ R,

P
(
n1/2

(
ξ̂n − ξp

)
≤ x

)
= Φ

(
xf(ξp)/σ(ξp)

)
+O(n−1/2). (8)
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Table 4. Nonlinear (squared) ARMA(2,3) model: MSE in estimation ofGn(1) over 2500 replica-
tions, for b = bc1n1/3c and ` = bc2n1/3c, n = 1728. MSE of adaptive procedure was 0.00066.

c2
0.5 0.75 1.0 1.5 2.0

0.5 0.00062 0.00063 0.00072 0.00089 0.00108
0.75 0.00061 0.00131 0.00082 0.00105 0.00126

c1 1.0 0.00065 0.00080 0.00094 0.00119 0.00139
1.5 0.00076 0.00094 0.00112 0.00138 0.00166
2.0 0.00087 0.00106 0.00125 0.00159 0.00182

We first state a lemma which is a special case of Sun and Lahiri’s (2006) Lemma 5.3.

LEMMA 1. Let
{
Vn,t : t = 0,±1,±2, . . .

}
be a double array of row-wise stationary strong345

mixing Bernoulli (pn) random variables with 0 < pn ≤ q < 1 and mixing coefficients αn(t) =
α(t) = O(t−β), for some fixed q ∈ (0, 1) and β > 0. Then, for any positive εn = o(1), n−1 ≤
δn = o(1) and any δ ∈ (0, 1), we have

P

(∣∣∣ n∑
t=1

(
Vn,t − pn

)∣∣∣ > nεn

)

≤ C
(
δ−1n +

ε2n
pn + εn

)
exp

{
− Cnδnε

2
n

pn + εn

}
+ Cn

(
1 + pδnε

−1
n

)
δβ(1−δ)n .

Define, for any r > 0, Br(ξp) = [ξp − r, ξp + r].

LEMMA 2. Suppose that α(t) = O(t−β) for some β > 5 and n−
4β+7

6(3β+5) `→∞. Then for any350

arbitrarily small δ > 0, the following results hold uniformly over ε ∈
[
n−c0 , 1

)
.

(i) sup
x∈Bε(ξp)∩Np

∣∣Fn(x)− F (x)
∣∣ = Op

(
n
− β−1

2(β+1)
+3δ

ε
1

2(β+1)
+δ
)

for any c0 ∈ (0, 3).

(ii) sup
x∈Bε(ξp)∩Np

∣∣F̃n(x)− Fn(x)
∣∣ = Op

(
n−1ε

1
2(β+1)

+δ
`

β+3
2(β+1)

+3δ
)

for some c0 > 1/2.

(iii) sup
x∈Bε(ξp)∩Np

∣∣Fn(x)− Fn(ξp)− F (x) + p
∣∣ = Op

(
n
− β−1

2(β+1)
+δ
ε(1+δ)/2

)
for any c0 ∈ (0, 2).

LEMMA 3. Suppose that α(t) = O(t−β) for some β > 5 and n−
4β+7

6(3β+5) `→∞. Then for any355

arbitrarily small δ > 0,

(i) ξ̃n = ξp +Op

(
n−1/2 + n

− 2(β+1)
2β+1

+δ
`
β+3
2β+1

)
.

(ii) F̃n
(
ξ̃n
)

= p+ op

(
n
−β−3
β−1

+δ
+ n

− β(2β−3)
(β−1)(2β+1)

+δ
`

2(β+3)
(β−1)(2β+1) + n

− 4β+5
4(β+1)

+δ
`

β+3
2(β+1)

+n
− 2(β+1)

2β+1
+δ
`
β+3
2β+1

)
.
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LEMMA 4. For any arbitrarily small δ > 0 and any compact K ⊂ R, 360

P
(

(b`)1/2
(
F ∗n(x)− F̃n(x)

)
≤ y
∣∣∣X1, . . . , Xn

)
− Φ

(
y/σ(x)

)
=

{
Op
(
`−1 + `1/2n−1/2 + (b`)−1/2`δ

)
if ` = O(b) and α(t) = O(t−β) for some β > 5,

Op
(
`−1 + `1/2n−1/2 + (b`)−1/2

)
if α(t) = O(e−Ct),

uniformly over (x, y) ∈ Np ×K .

Proof of Lemma 4:
Denote by κ̂j(x) the jth conditional cumulant of (b`)1/2

{
F ∗n(x)− F̃n(x)

}
givenX1, . . . , Xn.

It is clear that κ̂1(x) = 0.
Define, for j = 1, 2, . . . , Vj = (n− `+ 1)−1

∑n−`+1
i=1

{
Ui(x)− F (x)

}j and 365

Aj = E
[{

111{X0 ≤ x} − F (x)
}( ∑
|t|≤`−1

{
111{Xt ≤ x} − F (x)

})j−1]
.

Then we have, by stationarity and strong mixing properties, E
[
Vj
]

= E
[
{U1(x)− F (x)}j

]
=

O
(
`1−jAj

)
and nVar

(
Vj
)

= O
(
`1−β + `2−2jA2j

)
.

Consider first the case β <∞. Expressing the jth conditional cumulant of U∗1 (x) as a function
gj of (V1, . . . ,Vj), we obtain

κ̂j(x) = (b`)j/2b1−jgj(V1, . . . ,Vj) 370

= (b`)j/2b1−j
{
gj(EV1, . . . ,EVj) +Op

(
n−1/2`(1−β)/2 + n−1/2`1−j |A2j |1/2

)}
, (9)

where gj(EV1, . . . ,EVj) identifies the jth cumulant of U1(x)− F (x). A comparison with the
case of independent data suggests that, for any arbitrarily small δ > 0,

gj(EV1, . . . ,EVj) = O
(
`−β + `1−j+δ

)
. (10)

Noting that A2 = O(1) and

Aj = O
(
`j−1gj(EV1, . . . ,EVj) + `

∑
2≤i≤j−2

∣∣AiAj−i∣∣), j ≥ 3,

it can be shown by induction and (10) that 375

Aj = O
(
`j−1−β + `δ + `(j−2)/2−(1/2−δ)111{j odd}), j ≥ 3. (11)

It follows from (9), (10) and (11) that

κ̂2(x) = `g2(V1,V2) = `(V2 − V21 )

=
∑

1≤|t|≤`−1

(1− |t|/`) Cov
(
111{X0 ≤ x},111{Xt ≤ x}

)
+Op

(
n−1/2{`1+(1−β)/2 + |A4|1/2}

)
= σ(x)2 +O(`−1) +Op

(
n−1/2`(3−β)/2 + n−1/2`1/2

)
= σ(x)2 +Op

(
`−1 + n−1/2`1/2

)
(12) 380

and, for j ≥ 3 and ` = O(b),

κ̂j(x) = (b`)j/2b1−j
{
gj(EV1, . . . ,EVj) +Op

(
n−1/2`(1−β)/2 + n−1/2`1−j |A2j |1/2

)}
= b−(j−2)/2 ×Op

(
`j/2−β + `1−j/2+δ + n−1/2`(j+1−β)/2 + n−1/2`1/2

)
= Op

(
b−1/2`−1/2+δ + n−1/2`(3−β)/2 + n−1/2b−1/2`1/2

)
. (13)
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Without imposing the condition ` = O(b), the above arguments can similarly be applied to the385

case of exponential mixing rates to establish (12) and a stronger version of (13), with δ = 0 and
β =∞.

Following Arcones (2003), application of Esseen’s lemma (Feller, 1971, Lemma XVI.4.2) to
polygonal approximations of the conditional distribution function of (b`)1/2

{
F ∗n(x)− F̃n(x)

}
and Φ

(
· /σ(x)

)
yields, for any arbitrarily large C ′ > 0,390

sup
(x,y)∈Np×K

∣∣∣P((b`)1/2
{
F ∗n(x)− F̃n(x)

}
≤ y
∣∣∣X1, . . . , Xn

)
− Φ

(
y/σ(x)

)∣∣∣
≤ CC ′−1(b`)−1/2 + C

∫ C′
√
b`

−C′
√
b`
|t|−1e−t2/2

∣∣eκ̂∗x(t)+t2/2 − 1
∣∣∣∣∣∣sin

{
2−1σ(x)−1(b`)−1/2t

}
2−1σ(x)−1(b`)−1/2t

∣∣∣∣ dt,
where κ̂∗x(t) denotes the conditional characteristic function of (b`)1/2

{
F ∗n(x)− F̃n(x)

}
/σ(x).

Lemma 4 then follows by bounding κ̂∗x(t) + t2/2 using (12) and (13) under polynomial mixing,395

or using (12) and the stronger version of (13) under exponential mixing.
Proof of Theorem 1:

Consider first the case β <∞. We have, by Lemmas 2, 3 and Taylor expansion of F about ξ̃n,

p− F̃n
(
ξ̃n + (b`)−1/2x

)
=
{
p− F̃n(ξ̃n)

}
+
{
F̃n(ξ̃n)− F̃n

(
ξ̃n + (b`)−1/2x

)}
= Fn(ξ̃n)− Fn

(
ξ̃n + (b`)−1/2x

)
+ op

(
n
−β−3
β−1

+δ
+ n

− β(2β−3)
(β−1)(2β+1)

+δ
`

2(β+3)
(β−1)(2β+1)

+n
− 4β+5

4(β+1)
+δ
`

β+3
2(β+1) + n

− 2(β+1)
2β+1

+δ
`
β+3
2β+1

)
+Op

(
n−1b

− 1
4(β+1)

−δ
`

2β+5
4(β+1)

+5δ
)

= −(b`)−1/2xf(ξ̃n) + op

(
n
−β−3
β−1

+δ
+ n

− 3β−1
4(β+1)

+δ
+ n

− β(2β−3)
(β−1)(2β+1)

+δ
`

2(β+3)
(β−1)(2β+1)

+n
− 4β+5

4(β+1)
+δ
`

β+3
2(β+1) + n

− 2(β+1)
2β+1

+δ
`
β+3
2β+1 + n

− 4β2+3β+1
2(2β+1)(β+1)

+δ
`

β+3
2(2β+1)

)
+Op

(
(b`)−1 + n−1b

− 1
4(β+1)

−δ
`

2β+5
4(β+1)

+5δ
+ n

− β−1
2(β+1)

+δ
(b`)−(1+δ)/4

)
. (14)

Note that (14) holds under exponential mixing for any arbitrarily large β. Applying Lemma 4,
we have, for arbitrarily small δ > 0, that400

P
(
F ∗n
(
ξ̃n + (b`)−1/2x

)
≤ p
∣∣∣X1, . . . , Xn

)
= P

(
(b`)1/2

{
F ∗n
(
ξ̃n + (b`)−1/2x

)
− F̃n

(
ξ̃n + (b`)−1/2x

)}
≤ (b`)1/2

{
p− F̃n

(
ξ̃n + (b`)−1/2x

)}∣∣∣X1, . . . , Xn

)
= Φ

(
(b`)1/2

{
p− F̃n

(
ξ̃n + (b`)−1/2x

)}
/σ
(
ξ̃n + (b`)−1/2x

))
+

{
Op
(
`−1 + `1/2n−1/2 + (b`)−1/2`δ

)
if ` = O(b) and α(t) = O(t−β),

Op
(
`−1 + `1/2n−1/2 + (b`)−1/2

)
if α(t) = O(e−Ct).

(15)
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It follows from (14), (15) and Lemma 3(i) that for arbitrarily small δ > 0,

P
(
F ∗n
(
ξ̃n + (b`)−1/2x

)
≤ p
∣∣∣X1, . . . , Xn

)
= Φ

(
− xf(ξp)/σ(ξp)

)
+Op

(
`−1 + `1/2n−1/2 + (b`)−1/2`δ + n

− β−1
2(β+1)

+δ
(b`)(1−δ)/4

+n−1b
2β+1
4(β+1)

−δ
`

4β+7
4(β+1)

+5δ
)

+ op

(
n
−β−3
β−1

+δ
(b`)1/2 + n

− 3β−1
4(β+1)

+δ
(b`)1/2

+n
− β(2β−3)

(β−1)(2β+1)
+δ
b
1
2 `

1
2
+

2(β+3)
(β−1)(2β+1) + n

− 4β+5
4(β+1)

+δ
b
1
2 `

β+2
β+1 + n

− 2(β+1)
2β+1

+δ
b
1
2 `

4β+7
2(2β+1)

+n
− 4β2+3β+1

2(2β+1)(β+1)
+δ
b
1
2 `

3β+4
2(2β+1)

)
(16)

if β ∈ (5,∞) and ` = O(b), and

P
(
F ∗n
(
ξ̃n + (b`)−1/2x

)
≤ p
∣∣∣X1, . . . , Xn

)
= Φ

(
− xf(ξp)/σ(ξp)

)
+Op

(
`−1 + `1/2n−1/2 + (b`)−1/2 + n−1b

1
2
−δ`1+5δ

+n−
1
2
+δ(b`)(1−δ)/4

)
+ op

(
n−

3
4
+δ(b`)1/2 + n−1+δb

1
2 `
)

(17)

under exponential mixing. Theorem 1 then follows by (8), (16), (17) and noting that

P
(
F ∗n
(
ξ̃n + (b`)−1/2x

)
> p
∣∣∣X1, . . . , Xn

)
≤ P

(
(b`)1/2

(
ξ∗n − ξ̃n

)
≤ x

∣∣∣X1, . . . , Xn

)
≤ P

(
F ∗n
(
ξ̃n + (b`)−1/2x

)
≥ p
∣∣∣X1, . . . , Xn

)
.

9. DISCUSSION

In the absence of exact, finite-sample results, accurate estimation of quantiles is essential for 405

implementation of statistical inference procedures. As sample quantiles are nonsmooth function-
als, conventional bootstrap theory for the smooth function model does not apply to estimation of
their distribution. In dependent data settings, with some notable exceptions, little is known about
the block bootstrap for distribution estimation of sample quantiles. In this paper we have estab-
lished a general optimality theory for block bootstrap procedures in such settings under strong 410

mixing conditions, and we have shown that a hybrid block bootstrap is optimal, in the sense of
having the fastest convergence rate for distribution estimation. In addition, of course, since the
hybrid block bootstrap is based on bootstrap samples of smaller size than the data sample, it
provides computational advantage over MBB. How one should choose (b, `) in a given appli-
cation to capture the good theoretical properties of the hybrid block bootstrap requires further 415

consideration. We have provided discussion of an empirical scheme that seems fruitful for this
purpose and which will be further developed and refined elsewhere. Future work will also study
the SETBB methods of Gregory et al. (2015, 2018), for which only basic consistency results are
currently established. Our approach to studying optimal rates is expected to be informative about
optimal tuning of the SETBB method, though this latter procedure is complicated by additional 420

tuning parameters.
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