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Abstract

Modern medical data contains rich information that allows us to make new types of

inferences to predict health outcomes. However, the complexity of modern medical

data has rendered many classical analysis approaches insufficient. Machine learn-

ing with deep neural networks enables computational models to process raw data

and learn useful representations with multiple levels of abstraction. In this thesis,

I present novel deep learning methods for health outcome prediction from brain

MRI and genomic data. I show that a deep neural network can learn a biomarker

from structural brain MRI and that this biomarker provides a useful measure for in-

vestigating brain and systemic health, can augment neuroradiological research and

potentially serve as a decision-support tool in clinical environments. I also develop

two tensor methods for deep neural networks: the first, tensor dropout, for improv-

ing the robustness of deep neural networks, and the second, Kronecker machines,

for combining multiple sources of data to improve prediction accuracy. Finally,

I present a novel deep learning method for predicting polygenic risk scores from

genome sequences by leveraging both local and global interactions between genetic

variants. These contributions demonstrate the benefits of using deep learning for

health outcome prediction in both research and clinical settings.
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Chapter 1

Introduction

As more fundamental and unprocessed biomedical data is collected, the task of fea-

ture selection and representation generation shifts away from the human analyst to-

wards machine learning systems. These modern unprocessed data are characterised

by rich intrinsic structure, whose properties derive from high-order nonlinear un-

derlying biological mechanisms from which the data are captured. For example,

information in medical images is defined not only by the intensities of individual

pixels, but also by their spatial arrangement which gives rise to patterns of interest.

Learning to recognise minute differences in patterns between thousands of images

and genome sequences, each made up of millions of features, is not feasible without

computational methods.

Unfortunately, this structural complexity of raw biomedical data has rendered many

classical analysis approaches obsolete. Univariate methods often struggle to find

relationships in large, structure-rich, multi-source data sets (Angermueller et al.

2016). Moreover, many methods used in practice today were designed when data

were scarce, practitioners collected few features and observations in small case-

control studies. Today, the average individual in a developed country will generate

approximately 1.2 TB of health data in their lifetime (Nature Editorial 2016). These

data are high dimensional, rich in structure, multi-modal, multi-label and inevitably

noisy. There is a clear need for methods that are able to make intelligent inferences

from large medical data sets. Using knowledge on structural priors, we can build

models that learn better representations using richer signals from the data.

Other fields with abundant amounts of data, such as e-commerce, online adver-

tising and robotics, have been revolutionised in the last decade by extensive use

12



CHAPTER 1. INTRODUCTION 13

of machine learning, in particular deep learning. However, as we shall see, simply

porting methods over to healthcare is inadequate. For a machine learning system

to be used in medical applications, all its aspects, including experimental setup,

models and training regime, need to be adapted to the data and task which is being

learnt. Systems used in healthcare serve critical applications and therefore need

to be accurate, robust to samples that are outside of the training distribution and

interpretable if used in certain clinical settings. The applications of deep learning

in medicine are only beginning to be realised, but their value is clear.

3D ResNet

Tensor 
Dropout

Kronecker 
Machines

Brain age 
difference

Receptive field 
networks

Nonlinear polygenic 
risk scores

Brain structure and 
systemic health

Publication

Publication

High dimensional 
epidemiological data

METHOD DEVELOPMENTDATA CLINICAL OUTCOMES

Brain MRI

Genetic

Figure 1.1: An overview of the work presented in this thesis. The left column
represents the primary data used as input for learning: brain MRI and genome
sequences. The centre column describes the methodological contributions. Finally,
the right column contains the health outcomes that can be derived by applying
these methods to the respective data.

In this thesis I present my work on deep learning for health outcome prediction,

specifically on Magnetic Resonance (MR) imaging and genomic data. Figure 1.1

gives an overview of the work, linking together the data sources, methodological

contributions and clinically-relevant health outcomes. The ultimate aim of these

predictions is to stratify individuals who would benefit from treatment or risk re-

mediation. This requires relevant data about the individual, a way of interpreting

the information and transforming it into relevant actions.

I build on recent discoveries and studies to:

• Develop a 3D-Residual neural network that achieves state-of-the-art results

on predicting clinically relevant traits from MR imaging (Chapter 3).

• Demonstrate that 3D-Residual networks can learn a biomarker from brain
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structural MRI, and show that this biomarker is associated with with car-

diometabolic and cognitive diseases. I explore the causality of the associations

and assess the relative contributions of features from different brain regions

to identify those that were most informative for the model (Chapter 4).

• Develop a tensor learning method: tensor dropout, which gives improved

robustness and generalisability to deep neural networks. Tensor dropout

stochastically drops ranks of decomposed tensor weights. I demonstrate the

application of this approach on medical imaging tasks and perform extensive

hyperparameter analysis (Chapter 5, section 2).

• Introduce a method for combining multi-modal data for health outcome pre-

diction. The method learns interactions between separate inputs using a

factorised Kronecker product to reduce the number of parameters. This con-

strains the learning space and leads to improved learning properties. I demon-

strate this by learning tasks from T1 and T2-weighted brain MRI jointly

(Chapter 5, section 3).

• Present Receptive field networks, a novel deep learning architecture for poly-

genic risk score prediction 6. The approach leverages local structure in the

genome and models nonlinear interactions between variants. In a study using

UK Biobank data to predict coronary artery disease from genotype data, re-

ceptive field networks performed comparably to state-of-the-art linear meth-

ods. Neural layer activation analysis demonstrates proof-of-concept inter-

pretability of model predictions.



Chapter 2

Deep learning for health

In this chapter I review relevant literature and methodology to provide background

for following chapters. In his seminal paper (Rosenblatt 1958) on information stor-

age and organisation of the brain, Rosenblatt stated three fundamental questions

to be answered in order to understand learning and thinking of complex organ-

isms. Although the purpose of this is work is not to accurately model biological

cognition, the questions set out a general framework of artificial intelligence and

learning:

1. How is information learned1?

2. How is this information stored, remembered or modelled?

3. How does information in memory dictate actions?

The three are intricately connected; it is obvious that the manner in which informa-

tion can be learned is dictated by how it is stored. In this thesis, I focus explicitly on

the second of these questions and implicitly on the first and third. In mathematical

notation, this can be elegantly described as:

y = φ(θ,x)

where φ is the model that defines the operations and processes that operate on the

input x. θ are the parameters of the model and are learned by an optimisation

algorithm. The output y can take many forms depending on the task. Taking this

1Rosenblatt’s first question was “How is information about the physical world sensed, or de-
tected, by the biological system?” which he claimed was largely solved by sensory physiology.
Here, I adapt this idea to the context of artificial intelligence.

15
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all together, a popular definition of machine learning was set forth by Mitchell et al.

(1997) and states that “a computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E.”

I will begin by describing one way to model intelligence: deep neural networks

(section 2.1). Then, I overview algorithms used for training neural networks, or

in essence: how to learn (section 2.2). Finally, as this thesis is concerned with

the application of machine learning in a healthcare and biomedicine, I review the

domain-specific literature (section 2.3).

2.1 Deep neural networks

The concept of (artificial) neural networks traces its roots to the 1950s, but their

application did not reach mainstream usage until the advent of a) a suitable train-

ing algorithm (backpropagation) b) efficient computation (e.g. GPUs) and c) large

datasets (on the scale of e.g. UK Biobank). In this section I will describe the build-

ing blocks of deep neural networks and overview the most common architectures in

use today.

2.1.1 The perceptron

The fundamental processing unit of all neural networks is the perceptron. Originally

proposed by Rosenblatt (1958), building on earlier learning ideas by Hebb (1949),

these units were inspired by way in which higher organisms store and use observed

information. Combined with a nonlinear activation function F , the processing unit

becomes highly versatile and greater than the sum of its parts (Cybenko 1989). The

perceptron operation is as follows:

y = F
(∑

i

wixi + b
)

here, xi is the perceptron’s input and wi are the perceptron’s weights for input i,

and b an optional bias parameter. The choice of nonlinear activation function F is

dependent on the model structure and training objective. Popular choices include

tanh, the sigmoid function and, in particular, the Rectified Linear Unit (ReLU) as

its derivative is easily computed.
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2.1.2 Modelling: Deep neural networks

Individual perceptrons are insufficient for modelling complex systems. Connecting

many such units together in a directed (feed-forward) network creates a Multi-Layer

Perceptron (MLP), a type of neural network, as illustrated in figure 2.1. The first

layer of these networks is shown here to represent the inputs (data). Hidden layers

encode abstract representations of the input that are optimised to learn a desired

output. The output, and subsequently the output layer structure, is dependent on

the task: single unit for regression tasks, C units for classification tasks with C

classes, or a custom shape that is appropriate for the given task.

Input layer Hidden layer Output layer

Figure 2.1: Multi-layer perceptron. Each unit represents a perceptron, with arrows
as the inputs that are multiplied by learned individual weight parameters. The bias
terms have been omitted for simplicity.

The number of hidden layers, or the depth, of a neural network is variable. In

computer vision deep neural networks with over 1 000 layers are not unheard of (He

et al. 2016), while networks for sequential data can have as few as three layers, yet

achieve state-of-the-art results2.

Neural networks are powerful function approximators but require relatively large

datasets for accurate representations to be learnt. To combat this, domain knowl-

edge is used to design structural inductive biases that constrain the architecture and

limit the expressiveness of the network. Examples include the Convolutional Neural

Networks (CNN) for images, the Recurrent Neural Networks (RNN) for sequential

data and graph neural networks for network data.

2A single-layer recurrent neural network operating on a sequence of length T practically become
networks of depth T
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2.1.3 Convolutional neural networks

Images usually3 encode only relative relationships between objects, e.g. traffic lights

can be characterised by the relative red-yellow-green colour arrangement, but the

location, orientation and scale of the lights within the image can be arbitrary. Fur-

thermore, objects or other motifs, patterns or regions of interest are often repeated

within the same image, motivating representations that can be learned jointly and

shared across different parts of the image. Space-invariant neural networks, such

as the neocognitron (Fukushima and Miyake 1982) are the result of this incentive.

Further model developments and improvements to training (back-propagation) led

to the modern day CNN implementation (LeCun, Boser, et al. 1989).

A CNN is a network with convolutional layers. The convolutional operator involves

sliding a kernel matrix across the input image and multiplying elementwise at each

indexed location. The size of the kernel matrix and the locations are controlled by

the kernel size and stride size parameters, respectively.

The operation is defined as:

Si,j,k =
∑
l,m,n

Ii+m−1,j+n−1,l ·Kk,m,n,l

where S is the output of I, an image with two spatial dimensions, indexed by

(i, j), and channels l, convolved with a filter K, indexed by (k,m, n, l). k is the

index of the output channels. To complete the layer, a bias is added to the output

and passed through a nonlinear activation function. Stacking multiple such layers

together creates a CNN.

Technically, this is the cross-correlation operation, as implemented by most deep

learning libraries. However, since the indexing of weight kernels is reversible, i.e. it

does not matter whether they are indexed over the image left/top to right/bottom or

in reverse the two operations become practically equivalent as long as it is consistent

throughout training and testing (I. Goodfellow et al. 2016).

With this convolutional operation, the size of the image remains constant through

the network. Although distant regions in the input image will eventually be con-

volved together as deeper layers connect adjacent representations from previous

layers. Connecting regions in this manner is both slow and inefficient. Pooling

3In highly controlled setups, such as medical imaging, the absolute location of objects can be
managed so that their location and orientation is approximately standardised. However, this does
not usually translate to pixel-level precision of object placement.
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layers have been a popular mitigation option. Pooling layers downsample the im-

age, at any depth of the CNN, to create a smaller and deterministic representation.

Max-pooling and average-pooling is defined as the maximum or average, respec-

tively, pixel values are selected from a rolling filter, typically of size 2 × 2. This

summarises the image but loses the information from the unselected outputs. State-

of-the-art architectures make very limited uses of pooling layers and instead perform

downsampling by increasing the stride of the kernel.

2.1.4 Other neural network architectures

While all neural networks are built using the same principles and building blocks,

its structural properties can be configured to promote certain structural priors (in-

ductive biases), like we have seen in CNNs for image and grid-like data. Here, I

will briefly describe a selection of popular neural networks architectures and the

data they are designed to work with. For a comprehensive review of deep neural

networks please refer to the work of LeCun, Bengio, and G. Hinton (2015).

Recurrent neural networks. Data ordered in a sequence, in particular a one-

directional sequence such as temporal data, is easily processed using recurrent neural

networks. At timestep t these networks use the output of the previous timestep,

t − 1, as an additional input. ht = F(ht−1,xt) This makes them applicable to

sequences of arbitrary length. The concept of Long Short-Term Memory (Hochreiter

and Schmidhuber 1997) greatly improves recurrent neural networks by avoiding

vanishing gradients which causes information in the early part of a sequence to be

“forgotten”. These networks are highly suitable for learning mappings from one

sequence to another (Sutskever, Vinyals, and Le 2014), for example in language

translation.

Graph neural networks. Not all data has Euclidean structure. Many data

lie on manifolds or are represented as a set of nodes connected in a graph. For

such data, rather than mapping the manifold onto a Euclidean space and applying

CNNs, the aptly-named class of graph neural networks can learn directly from the

data and leverage the inherent structural properties (Bronstein et al. 2017). These

networks have been used for visual question answering (Norcliffe-Brown, Vafeias,

and Parisot 2018), where answers to written questions have to be inferred from

structural relationships in an image.
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2.2 Learning: Backpropagation, loss and optimi-

sation

In the previous section, we have seen what to learn; but only modelling the struc-

ture of intelligence and defining the operations is not sufficient. In this section we

will explore how to learn. Our definition of machine learning from Chapter 1 is,

“A model is said to learn from data if its performance on a given task improves

after the data is taken into account” (Mitchell et al. 1997). The task needs to be

defined to determine whether performance is improving. In supervised learning, the

performance on the task is defined a priori as a loss function L (also known as an

objective function). The loss can then be backpropagated through the network to

calculate the parameter updates required to minimise the loss. These parameter

updates are given as gradient estimations from an optimisation algorithm. In this

section, I will overview these three properties: loss functions, backpropagation and

optimisation, and describe how they work together to train neural networks.

2.2.1 Loss functions

A loss function quantifies the fit of the model to the data. By convention, the

objective is to minimise the loss function so that L = 0. The choice of the loss

function depends on the problem and should reflect the task.

For regression tasks, this is often the mean squared error (MSE). In the supervised

setting with training pairs (X, Y ), it is defined as

LMSE =
1

N

N∑
i=1

(Yi − Ŷi)2

where Yi is the true label of the ith sample, Ŷi = φ(θ,Xi) the label value as predicted

by the model and N is the number of samples.

For classification tasks, loss is often measured as the cross entropy between the true

and predicted distributions:

LCE = − 1

N

N∑
i=1

Yi log(Ŷi)
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2.2.2 Backpropagation and optimisation

Given a model with a set of parameters θ and a loss function L to describe the fit to

the model, we now require a way to update the model parameters to better fit the

data. This is accomplished with Stochastic Gradient Descent: repeatedly fitting

mini-batches, B (a small set of samples from the training data, also known as sim-

ply ‘batch’), and computing the gradients of every parameter by backpropagation

(Linnainmaa 1970; Rumelhart, Geoffrey E Hinton, and Williams 1986). Parameter

updates are then given by θ = θ − ν∇θLB.

Extensions to SGD include Adam (Kingma and Ba 2015), a popular optimiser

for deep models, that uses adaptive estimates of moments (mean and uncentred

variance of the gradients) by taking previous gradients into account (with a moving

average). Adagrad (McMahan and Streeter 2010; Duchi, Hazan, and Singer 2011)

and RMSprop (Tieleman and G. Hinton 2012) are common alternatives.

2.2.3 Training hyperparameters

Learning rate defines the size of individual parameter updates in the gradient

direction that minimises the loss. Larger learning rates reduce the number of up-

dates needed to reach areas of lower loss, but will perpetually “overshoot” shallow

minima. It is common practice to reduce the learning rate as training progresses

through scheduled learning rate reductions at pre-defined epochs. Optimisers with

adaptive momentum (e.g. Adam) also help with this.

Regularisation is a class of tools and practices used for improving the generalis-

ability of models. Neural networks are often over-parameterised and have capacity

to overfit to the training data. To alleviate this, weight decay (also known as shrink-

age) can be applied to the parameters of neural networks (or any parameterised

model). This penalises over reliance on small numbers of parameters and encour-

ages the model to learn more robust representations. Since the weight penalisation

is a component in the overall loss being minimised, its level can be controlled by

modifying the proportion of the loss corresponding to weight decay. This is done by

multiplying the weight decay term with a scalar value. Dropout (Srivastava et al.

2014), used primarily for neural networks, operates in a similar way, but instead

of modifying the loss term, the model architecture is changed so that units have a

probability p of being zero during training. This forces the network to utilise its

capacity and not become over reliant on a small number of units. p is a tunable

hyperparameter. Early stopping is a heuristic trick that works by ending the train-
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ing process before the network has the opportunity to learn details that are specific

to the training set samples. Finally, batch normalisation, or Batchnorm, (Ioffe and

Szegedy 2015) can be applied between layers to normalise the signal, per mini-batch.

Note batch-norm is applied after any layer-specific activation functions.

2.3 Medical applications of deep learning

The qualities of deep learning lend themselves to many medical applications. Deep

learning methods excel in pattern recognition and are notably robust to different

types of noise or artefacts that are irrelevant to the defined objective. Deep neural

networks have achieved state-of-the-art performance on diagnosis tasks, particularly

in medical imaging.

Early disease identification and intervention can lead to better treatment and im-

proved prognosis. Recent studies have demonstrated the application of CNNs to

recognition of Alzheimer’s disease from MRI scans (Sarraf and Tofighi 2016; Islam

and Yanqing Zhang 2017). Deep learning has been applied to histopathologic can-

cer diagnosis (Litjens et al. 2016; Bayramoglu, Kannala, and Heikkilä 2016) and

classification of skin cancer based on images Esteva, Kuprel, et al. 2017. The latter

having implications for large-scale deployment on mobile devices, if the model is

robust to different lighting environments. Medical image segmentation is an impor-

tant processing step in diagnosis, radiotherapy and research. The task consists of

assigning pixels (or voxels in 3D imaging) to connected regions that have a clinical

association. UNet (Ronneberger, Fischer, and Brox 2015) revolutionised the field

with clever use of skip connections between learned upsampled representations and

downsampled versions of the image using a matching downsampling layer. The

UNet (and its derivatives) have been used extensively with excellent performance

on tumour segmentation (X. Li et al. 2018).

Impact in medicine outside of imaging has been less predictable. Some fields suffer

from a lack of either labelled data or a suitable architecture to match the data

structure, i.e. what CNNs do for images and RNNs for sequence data. Recent

implementations have demonstrated the use of RNNs for classification of myocardial

infarction from (sequential) ECG (Acharya et al. 2017; Baloglu et al. 2019). Other

deep learning models have predicted in-hospital mortality, unplanned readmission,

prolonged length of stay and final discharge diagnoses with greater accuracy than

clinically-used methods (Rajkomar et al. 2018). In genetics, applications include

regulatory genomics (Zhuang, Shen, and Pan 2019) and identification of variants
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from short-read sequence data (Poplin, Chang, et al. 2018).

In addition to serving as a direct replacement for existing approaches, deep learn-

ing promises to enabling completely new types of analyses, the impacts of which

are only beginning to be hypothesised. Protein folding is considered by many as

one of the fundamental challenges in science and far from being solved. This year,

AlphaFold (Senior et al. 2020) achieved unprecedented prediction scores for pro-

tein folding, leading to hopes that the challenge might be, at least partly, solved.

The practical implications remain uncertain, but deep neural networks have clearly

established themselves as a versatile modelling technique that demonstrate state-

of-the-art results on a wide range of tasks.

Certain limitations of deep learning approaches inhibit their deployment in health-

care, or limit it completely to more abstract medical research. The outputs of deep

learning models are notoriously hard to interpret and explain, giving them the nick-

name of “black-box” models. The theory of interpreting deep learning, specifically

deep neural networks, is still in its infancy but tools have been introduced to ex-

plain the predictions or decision that a model makes. These tools are not limited

to the domain of medical applications but can be restricted to a certain class of

models, e.g. Quantitative Testing with Concept Activation Vectors (TCAV) (Kim

et al. 2018) is applicable to neural networks while Shapley values (Lundberg and

S.-I. Lee 2017) work with any parameterised prediction model.

The entire field of deep learning in medicine is too vast to be covered in this thesis.

Instead, relevant developments and models are discussed in subsequent chapters. I

refer the reader to comprehensive reviews by Angermueller et al. (2016), Min, B.

Lee, and Yoon (2017) and Esteva, Robicquet, et al. (2019).



Chapter 3

3D-Residual networks for medical

imaging

In this chapter I present my work towards building better systems that can learn

rich representations from medical data, specifically brain structural MRI. The mo-

tivation is to improve decision-making in healthcare. For this to happen, relevant

information must be analysed, interpreted and acted on. The 3D-Resnet model

introduced here aims to perform the first two of those tasks.

3.1 Introduction

Medical imaging allows for detailed and non-invasive visual capture of internal body

structure and mechanisms. MRI, Computed Tomography (CT) (radiography) and

ultrasound are used at most major hospitals and medical research centres around

the world. The data generated by these techniques is high-dimensional (on the or-

der of millions). Relationships between dimensions, such as local and global spatial

structure, and time sequence in fMRI, also carry important information. These

structural relationships are intricate and difficult to characterise due to low signal-

to-noise ratios. Indeed, regressing feature-engineered Image Derived Phenotype

(IDP), or other classical methods, often fail at capturing nonlinear relationships

(Akkus et al. 2017). Recently, CNNs have demonstrated state-of-the-art perfor-

mance on many medical imaging tasks, including brain segmentation, estimating

bone fractures (C.-T. Cheng et al. 2019), identifying lung nodules (Massion et al.

2020) and diabetic retinopathy (Gulshan et al. 2016).

However, porting computer-vision models over from natural images to medical imag-

24
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ing is not trivial. MRI data has particular attributes that can be considered to

maximise information gain and predictive performance. Most methods do not lever-

age 3D structure in the data and use only 2D slices, thereby breaking important

structural relationships. Furthermore, finding the appropriate CNNs optimisation

strategies for MRI-based learning is a major challenge, leading to suboptimal pre-

diction accuracy of many models. This is partly due to computational complexity

and lack of computational resources.

In this chapter I will present 3D-Residual networks: an architecture that extends

general computer-vision methods to achieve state-of-the-art performance for learn-

ing from MRI data. This complements similar 3D CNNs (Korolev et al. 2017),

which were developed concurrently. Specifically, the contributions of this chapter

are:

• The development of a CNN with 3D spatial convolutions that leverages the full

structure of the input volumes. The network makes use of residual connections

to allow deeper and richer representations to be learned more effectively.

• To demonstrate the performance of the model in the context of baseline meth-

ods on four different brain MRI tasks.

• An ablation study to explore the properties of the model and its sensitivity

to hyperparameters.

3.2 Data: UK Biobank

UK Biobank is a population-based cohort study of ∼ 500 000 participants, who

were recruited from the UK general population between 2006 and 2010. At base-

line, participants, who were between 40-69 years old, provided blood samples for

biochemical tests and genotyping and a wide range of self-reported information

and physical measurements, and consented for their data to be linked to Hospi-

tal Episode Statistics (HES). An overview of selected information available in UK

Biobank is shown in table 6.2. Detailed protocols for obtaining the measurements

from participants have been described in the literature (Sudlow et al. 2015a). An

imaging extension to the existing UK Biobank study was initiated in 2016 with

plans to scan 100 000 individuals from the cohort by 2022-23 (K. L. Miller et al.

2016).

The initial release available to researchers at the start of this project contained

images for 5 000 individuals and was increased in stages to the currently available set
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of 21 382 individuals. MRI modalities in this release include: T1-weighted structural

images, T2-weighted (FLAIR) structural images, diffusion imaging, resting-state

and task functional imaging, and diffusion imaging. In this thesis, T1 and T2-

weighted images were used. T1-weighted images emphasise contrast between grey

and white matter. T2-weighted (FLAIR) images emphasise water-rich tissue, this

is of particular interest when investigating pathology, such as lesions (S. Smith,

Almagro, and K. Miller 2017). All images were captured at UK Biobank imaging

centres on identical 3 T Siemens Skyra scanners (software platform VD13). Each

image (both T1 and T2-weighted) was single channel with dimensions 182×218×182

at 1 mm3 resolution. Available reconstructed images were aligned to the MNI152

template (Jenkinson et al. 2002).

Although all data were collected at baseline, many measurements, including weight,

blood pressure and cognitive function scores, are being repeated for longitudinal

analysis. Importantly, follow-up images are currently being captured for partic-

ipants in the imaging sub-cohort approximately 5 years after initial image cap-

ture. This enables investigations into temporal changes as captured by imaging

and prospective studies by looking at downstream outcomes.

In this thesis, I am primarily interested in understanding the UK Biobank structural

brain imaging and genomic data, and how it can be used to infer and predict health

on an individual level.

3.3 Three-dimensional Residual Networks

Here I describe the three-dimensional (3D) CNN that predicts phenotypes from

brain structural MRI data. I build on Resnets (He et al. 2016) and leverage its

residual connections to construct deeper three-dimensional networks.

The network architecture is divided into three processing stages, which are illus-

trated in figure 3.1. The first stage consists of a 3D-convolutional layer, batch-

normalisation (Ioffe and Szegedy 2015), ReLU activation and max-pooling. In this

implementation, the 3D-convolutions have kernel size 7 × 7 × 7 and a stride of 1.

The input to the first convolutional layer is a single-channel image and its out-

put a 64-channel activation tensor with three spatial dimensions. The max-pooling

operation downsamples the tensor with a window size of 3 and a stride of 2.

The second stage contains four 3D-residual blocks that learn abstract representa-

tions of the image. Each residual block has two sets of 3D convolutions (with kernel
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Table 3.1: Overview of UK Biobank data availability in 2020. Note that this is not
a complete list and that not all of the data listed here is used in this thesis.

Feature Sample size Dimensions Description
T1-weighted brain
MRI

19 379 182× 218× 182 3D image with 1mm3 resolution.

T2-weighted brain
MRI

19 379 182× 218× 182 3D image with 1mm3 resolution.

Resting-state brain
fMRI

19 379 88× 88× 64× 490 fMRI captured for 6 minutes with 490
time points. Individual in resting cog-
nitive state.

Active-task brain
fMRI

19 379 88× 88× 64× 332 fMRI captured over 332 time points
with individual performing a cognitive
task.

Genome sequences 500 000 Up to 3× 93 095 623 Multiple versions are available includ-
ing genotyped and imputed data, with
or without coding variants etc.

ICD-10 diagnoses 500 000 x ∈ B1×19 154 Diagnosis from electronic health
records.

Biological information
(continuous)

500 000 x ∈ R1×950 Data including age, weight, blood pres-
sure, cognitive test scores. Available at
three time points.

Biological information
(binary classes)

500 000 x ∈ B1×138 Data including sex, attempted cogni-
tive test. Available at three time
points.

Biological information
(categorical)

500 000 x ∈ N1×31 Data including education level, smok-
ing status, exercise per week. Available
at three time points.

7x7x7 
convolution

3D ResNet 
bock

3x3x3
max pool

Output

3D ResNet 
bock

3D ResNet 
bock

3D ResNet 
bock

Global 
average 
pool and 
flatten

Stage 1 Stage 2 Stage 3

Fully 
connected 
layer

Figure 3.1: Schematic overview of 3D-ResNet for MRI analysis. The architecture
can be divided into three processing stages for illustrative purposes. It is trained
end-to-end. The network extends the residual block architecture to three spatial
dimensions and maintains full spatial structure throughout the convolutional layers.
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size 3×3×3), batch normalisation and ReLU activation. Residual connections are a

type of skip connection that help the parameter gradient updates to back-propagate

through the network. Gradient information can bypass non-linear layers to reduce

the effect of vanishing gradients. Downsampling through the residual blocks is con-

trolled entirely by striding the convolutions by two voxels, instead of a pooling

operation. Each of the four blocks generates a more abstract representation of the

structural image that is more compact in spatial dimensions with more capacity in

the represented channels. Each block contains convolutions that output 64, 128,

256 and 512 channels, respectively.

The final stage comprises of average pooling and a fully-connected layer to reduce

dimensionality to the desired output (scalar for regression tasks, logits for classifica-

tion tasks). The final block returns an activation tensor of shape 512×6×7×6. This

tensor is flattened by fully average-pooling (C.-Y. Lee, Gallagher, and Tu 2016) the

three spatial dimensions. A final fully-connected layer connects the 512 activations

to the output, the dimensions of which are determined by the task.

3D convolutions are used throughout the network to leverage the full structure of

the MRI. Convolutional operators in three-dimensions are trivially derived from one

or two dimensions. Recall the 2D convolution operation from Chapter 2:

Si,j,k =
∑
l,m,n

Ii+m−1,j+n−1,l ·Kk,m,n,l

where K is the kernel of size m×n with output channels k operating on image I of

size i×j with channels l. In the case of three spatial dimensions, this becomes:

Sh,i,j,k =
∑
l,m,n,o

Ih+o−1,i+m−1,j+n−1,l ·K(k,m, n, o, l)

where h, i, j are the spatial dimensions of the image and m,n, o is the size of the

kernel.

Three-dimensional convolutions carry a significant computational cost compared 2D

convolutions. However, the advantage is that spatial information in all dimensions

is kept. This is opposed to operating on independent 2D slices as that disassociates

information in the dimension that is sliced across.

Kernel sizes for deep learning have become increasingly standardised with most

models using an equilateral size of 3. Here, 3× 3× 3 kernels with stride 2 are used

throughout the network except for the very first layer, where a 7× 7× 7 is used to
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capture a larger region. A stride of 2 downsamples the image by a factor of 2 at

each layer.

Deeper networks have more ability to learn representations and have shown em-

pirically to perform better in most tasks (Tan and Le 2019; He et al. 2016). This

is particularly true for networks with skip connections (e.g. residual connections)

that are able to avoid vanishing gradients in very deep networks. However, the

improved performance of deeper networks comes at increased computational and

memory usage. Given the working resource constraint of a single GPU with 8 GB

of memory, a network with 18-layers (shown in Figure 3.1) provided an appropriate

balance between performance and resource cost. Deeper and shallower versions of

the 3D-ResNet can also be constructed by adding or removing layers in the second

stage.

I implemented the model using the python libraries PyTorch (Paszke, Gross, Chin-

tala, et al. 2017) and TensorLy (Kossaifi, Panagakis, et al. 2019). Model develop-

ment and prototyping was run on an NVIDIA GTX 1080 GPU. Models used for

experiments were trained on NVIDIA P100 and RTX6000.

3.4 Experiments

To test the model, I set up four supervised learning tasks. Model input was T1-

weighted brain structural MRI and the objective to predict a biological pheno-

type.

Biological sex. This binary classification serves as a demonstration task for

model prototyping. The label distribution is approximately even with few miss-

ing labels. Anatomic differences between brain structures of males and females

have been previously described (Kaczkurkin, Raznahan, and Satterthwaite 2019).

No differences in function or ability are hypothesised or implicated otherwise.

Age. Unlike the previous task, this has potential medical applications. Brain

structure changes significantly with age (Sowell, Thompson, et al. 1999; Jernigan

et al. 1991) and is affected by a range of different traits and exposures (Raz et

al. 2005). In Chapter 4 we will explore these in greater detail. Previous studies

(Lemaitre et al. 2012) have used scalar measures of grey matter volumes (as a proxy

for brain neuronal volume) to predict age from MRI. More recent studies have used

CNNs to achieve significantly lower error rates.



CHAPTER 3. 3D-RESIDUAL NETWORKS FOR MEDICAL IMAGING 30

Body mass index. The third task was to estimate Body Mass Index (BMI).

Higher BMI is associated with increased brain atrophy (Ward et al. 2005) and

lower cognitive function (Walther et al. 2010). This is a task that tests a model’s

ability to detect changes to brain that are influenced by both genetic predisposition

and various exposures (Barness, Opitz, and Gilbert-Barness 2007).

Systolic blood pressure. The effects of Systolic Blood Pressure (SBP) on retinal

images have been previously described (Poplin, Varadarajan, et al. 2018) in the

context of predictive deep learning models. The ability of models to predict SBP

from structural brain images remains poorly understood, but can have implications

for risk stratification.

Cognition. Here, cognition is represented by an individual’s score on the fluid

intelligence test in the UK Biobank cognitive measurement battery. Brain structure

is known to associate with cognitive decline (Tomasi and Volkow 2012).

3.4.1 Data visualisation set-up

We assume that the data lies on a high-dimension manifold. Estimating and visu-

alising this manifold enables us to qualitatively evaluate the structure of the data

and the inherent difficulty of classifying or regressing samples. For learning this

manifold, I use 736 IDPs that are provided as part of UK Biobank’s official imaging

release. These phenotypes include various attributes describing global structure,

such as volume of brain regions, intracellular volume fraction, orientation disper-

sion and isotropic volume fraction. After excluding individuals who did not have

IDP records, the data contained 19 379 samples.

I reduce the dimensions with a manifold learning method: Uniform Manifold Ap-

proximation and Projection (UMAP) (McInnes and Healy 2018). UMAP is a graph

representation learning algorithm that optimises a low-dimensional manifold to ap-

proximate a higher dimensional graph representation of the input data. For opti-

misation, I set the nearest neighbors to 200, minimum distance to 0.1 and minimise

the Manhattan distance (L1 norm). Visualisation results are presented in section

3.5.1.
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3.4.2 Model training set-up

All regression tasks were trained end-to-end by minimising the MSE loss:

LMSE =
1

N

N∑
i=1

(Yi − Ŷi)2

where Yi is the true label of the ith sample, Ŷi the predicted label value and N is

the number of samples. The objective of the classification task was to minimise the

cross entropy:

LCE = − 1

N

N∑
i=1

Yi log(Ŷi)

Unless otherwise stated, this was optimised using Adam optimisation (Kingma and

Ba 2015) for 50 epochs and mini-batch size of 8 with an initial learning rate of

10−4, decaying by a factor of 10 at epochs 25, 50 and 75. To reduce overfitting

and improve generalisation to unseen data I applied an L2 weight decay of 5× 10−4

on all parameters during training. I selected these hyperparameters by finding the

combination that provided the minimum mean squared error on the validation set

via a grid search. For all experiments I split the samples at random into train,

validation and test sets. The three sets contained 11 520, 3 847 and 3 847 samples,

respectively.

Constant baseline. To measure whether the models are learning complex re-

lationships, I defined a simple baseline that uses only the training labels to make

predictions. For binary classification tasks, this simple baseline predicts the ma-

jority (maximum occurrence) class of the training set, ŷ = arg maxy |{y ∈ ytrain}|.
For regression tasks it predicts the mean of the training set, ŷ = ȳtrain. If a model

outperforms this baseline then it can be presumed to make use of information from

the features to make improved predictions. In essence, this baseline serves as a

lower bound for performance.

Plain 3D CNN baseline. An advanced baseline was also used for comparison,

with plain signifying lack of residual connections. This 3D CNN model follows

architecture proposed by Cole, Poudel, et al. (2017). The neural network has 11

trainable layers in repeated blocks of convolution→ReLU→ convolution→ batch

norm→ReLU→max pooling. The final block is followed by a fully-connected

layer that output a single value used for age prediction. The original network was

optimised using SGD with momentum (Sutskever, Martens, et al. 2013). However,
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I found that Adam optimisation performed better and gives a more direct com-

parison between the models, as opposed to comparing both model and optimiser

simultaneously.

3.4.3 MRI data pre-processing

Used here are UK Biobank MRI scans1 that have been minimally processed (Datafields

20252 and 20253 for T1 and T2-weighted scans, respectively), as described in sec-

tion 3.2. Normalisation was performed on the input data to facilitate learning.

For most of the MRI scans, voxel intensities (the ’brightness’ of individual voxels)

are not standardised between images. This can cause model training to become

unstable due to discrepancies between back-propagation errors and previous model

parameters. For example, a gradient update that is significantly smaller than the

average will not change the model parameter values and updates that are too large

can cause numerical overflow. To avoid this, I normalised and scaled the data to

remove inter-image biases; each image was scaled to zero mean and unit standard

deviation. In addition, I found that linearly scaling the target variables so that the

regression training targets were ∈ [0, 1] resulted in more stable training behaviour.

Without this the model would output predictions only in a limited range that was

smaller than the range of the target distribution.

A very small number of sample files were corrupt and unusable. These unusable

files were marked accordingly by UK Biobank and excluded from any analysis or

aggregate scores.

A small number of images had incorrect size. To alleviate this I cropped/padded

irregular images to fit the most common set of dimensions. Padding was done using

edge padding to expand the background canvas. Using resize image with crop or pad(),

a function included in the DLTK package (Pawlowski, Ktena, et al. 2017).

3.5 Results

The results of the data and task visualisations are presented first to give context for

the difficulty of each task. Following this are the results of the 3D-ResNets trained

on those tasks, before reporting the networks’ sensitivity to hyperparameters.

1UK Biobank released scans with different levels of processing.
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3.5.1 Task visualisation

The unsupervised manifold learning of the IDPs resulted in the structure presented

in figure 3.2. Qualitative analysis reveals three large and connected clusters. The

level of “connectedness” is highly dependent on the minimum distance UMAP

parameter, which is set to 0.1 in these visualisations.

Figure 3.2: Unsupervised visualisation (with UMAP) of brain IDPs. Each point
represents a single individual. The space of 736 IDPs was fitted onto a manifold in
an unsupervised manner leading to clustering.

The relationships encoded by the structure are revealed by labelling the individual

samples by trait in figure 3.3. Age is clearly embedded in the learned manifold with

a trajectory from the top left cluster down through the lower central one, with older

individuals embedded on the lower right. A more localised structure is observed

when labelled by biological sex. Males and females are embedded within each of

the three main clusters. This is expected as the global structured appears driven

by age and the distribution of biological sex has been controlled for with respect to

age in the cohort.

Labelling by fluid intelligence score unveils a weak global structure, with lower scores
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Female Male

Figure 3.3: UMAP of brain IDPs, labelled with individual traits. Age shows strong
global structure with older individuals embedded to the lower right of the manifold.
Biological sex shows strong local structure with males and females embedded into
sub-clusters within age groups. BMI, SBP and fluid intelligence did not exhibit
obvious clustering.
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in the bottom right of the manifold. This is consistent with the age structure and a

relationship between age and cognitive decline has been well documented (Deary et

al. 2009; Jurado and Rosselli 2007). No obvious structure is observed when labelled

by either SBP or BMI. This suggests that the relationship between these two traits

and brain structure represented by MRI could be weaker than between the MRI

and age or biological sex.

3.5.2 Learning tasks with 3D-ResNets

The results of the 3D-Resnet are presented in table 3.2 along with comparisons to

two baselines: a constant baseline that has access to only the training label distri-

bution and a plain 3D CNN used in previous work for age prediction on MRI.

Learning models (i.e. plain 3D CNN and 3D-ResNet configurations) were able to

outperform the constant baseline for classification of individuals by biological sex

and prediction of BMI and age. This demonstrates the ability to learn useful re-

lationships between input features and output label. The purpose of the constant

baseline is to define a lower-bound for performance that learning models must out-

perform if learning useful representations.

The 3D-ResNets significantly outperform the plain 3D CNN on biological sex pre-

diction, with a classification error of only 0.79 % compared with 6.70 % for plain

3D CNNs. These are both notably lower than the constant baseline, at an error of

45.82 %. Out of the three 3D-ResNet configurations tested (10-layer, 18-layer and

50-layer), the 50-layer 3D-ResNet performed best. Deeper networks could not be

tested due to memory constraints.

For age prediction, arguably the most medically-relevant task, the 3D-ResNets again

performed best; achieving an MAE on the test set of 2.47 years, with the deepest

3D-ResNet reporting the lowest error. Trained networks showed a small bias with

true age. Similar bias has been reported and investigated in previous studies (S. M.

Smith, Vidaurre, et al. 2019). I corrected for this by fitting a linear adjustment to

the predictions on the training set. This increased the mean squared error but was

done to keep the bias constant across age ranges2.

BMI prediction is a more challenging task, as demonstrated by the plain CNN’s

failure to learn and 3D-ResNet-10’s minor improvements over the baseline. The

18 and 50-layer 3D-ResNets were able to learn a much better representation, as

2Further investigation of this phenomena is presented in Chapter 4
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demonstrated by their lower error rates. This is likely due to sufficient capacity to

capture the relationship, which we know, from the unsupervised manifold learning,

to be more complex than age prediction.

SBP prediction was difficult task. The 18 and 50-layer 3D-ResNets performed

slightly better than the baselines. Further tests will are needed to check for statis-

tical significance. Fluid intelligence prediction was not significantly better that the

constant model for any of the CNNs tested.

Table 3.2: Performance of the models at learning four different tasks from brain
MRI (UK Biobank test set). Deeper networks with more capacity perform better
on most of the tasks. The constant baseline predicts the majority training class for
binary classification tasks and as the mean training label for regression tasks. Fluid
Intelligence Score (FIS) is the score from 0-13 representing the number of correct
answers given in a fluid intelligence test.

Model Biological sex Age BMI Systolic BP FIS
Classification error MAE MAE MAE MAE

Constant baseline 45.82 % 7.06 years 3.37 kg/m2 14.02 mmHg 1.67
Plain 3D CNN 6.70 % 4.85 years 4.37 kg/m2 14.55 mmHg 3.32
3D ResNet-10 0.86 % 2.54 years 3.29 kg/m2 13.25 mmHg 1.68
3D ResNet-18 0.79 % 2.68 years 2.14 kg/m2 12.67 mmHg 1.67
3D ResNet-50 0.73 % 2.47 years 2.51 kg/m2 12.82 mmHg 1.68

3.5.3 Hyperparameter analysis
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Figure 3.4: Effect of two hyperparameters on MAE of age prediction on the test
set. Both initial learning rate (left) and weight decay (right) during training have
substantial impact on the MAE.

In addition to comparing three different depth configurations of the 3D-ResNets

across all the tasks, I performed detailed analysis of two hyperparameters: initial



CHAPTER 3. 3D-RESIDUAL NETWORKS FOR MEDICAL IMAGING 37

learning rate and weight decay (L2 penalty on all trainable weights). This was done

to investigate the importance and sensitivity of different set-ups on the model’s

learning process for the task of age prediction. When varying the weight decay, the

learning rate was set to 10−4 and when varying the learning rate, the weight decay

was set to 5 × 10−4. These are the same values as used for the results on medical

tasks.

Results are shown in figure 3.4. The model is sensitive to the initial learning rate,

with the MAE at the end of training being a logarithmically convex function of

initial learning rate. The optimum initial learning is approximately 10−4 with sig-

nificantly worse performance if starting above 10−2 or below 10−6.

Model sensitivity to weight decay regularisation was also notable. Set-ups with

weight decay below 10−2 gave good results, possibly due to higher values being too

restrictive and dominating the total loss. Performance below 10−7 starts to tail off,

probably a sign of overfitting.

3.6 Discussion

Unsupervised manifold learning of the data generated visible structure in the brain

MRI IDPs for age, biological sex and fluid intelligence. These positive controls

demonstrated the feasibility of the tasks to be learned with a supervised set-up.

Visualisations also highlight the global and local structure of the data. Age embed-

ding was visible on the global landscape with large separation between young and

old individuals. Cognition, measured as the score on a fluid intelligence test, follows

a similar manifold distribution to age, with regions dominated by younger individ-

uals occupied by those with high fluid intelligence scores. The direct relationship

between increased age and cognitive decline has been well documented (Deary et al.

2009; Jurado and Rosselli 2007). Surprisingly, age, but not fluid intelligence, could

be learned by the models. The 3D-ResNet outperformed the baselines classification

of by biological sex and prediction of BMI and age, with deeper networks performing

better in general. Other tasks could not be learned by any of the models.

The structure of the data creates a set of opportunities and challenges. UK Biobank

is a cohort study where features were not collected to investigate particular hypoth-

esis. Instead, they provide a wide scope of various health-related attributes. This

allows for both hypothesis-free analysis and, given prior knowledge, formed hypothe-

ses to be tested. Two of the tasks I selected here: biological sex classification and

age prediction, have been shown to be learnable (by e.g. Pawlowski and Glocker
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(2019) and Cole, Poudel, et al. (2017), respectively) from brain structural MRI.

Having this prior provided evidence that these tasks could be learned by a model

with sufficient capacity and appropriate optimisation. Unsupervised manifold learn-

ing provided further justification that a relationship between the features and target

exist. With no observed structure and limited prior work on some tasks (such as

SBP), there was no assurance that they could be learnt from the data.

Having established that some of these tasks can be learnt, it is equally important to

review why we want to learn them. Firstly, biological sex classification is done only

to test the model and serves no applicable purpose. UK Biobank’s selection resulted

in an approximately even female:male ratio with the attribute recorded for almost

every individual in the imaging cohort. This provided an evenly balanced and well-

labelled set that served as a model demonstration. Predicting age from brain MRI

is a very expensive and over-engineered solution to record someone’s age. However,

the age predictions themselves, more precisely the residuals of predictions, of a

well-trained model carry important information. Deviations between predicted age

and true are possibly compounded effects related to the genotype, environmental

exposures and diseases that have affected an individual throughout their lifetime.

These effects, their phenotypic associates and brain regions importance for age

prediction are explored in detail in Chapter 4.

Similar analysis could potentially be used to analyse interactions between brain

structure and either BMI or Systolic Blood Pressure (SBP). Chronic hypertension

is associated with increased brain pathology (Muller et al. 2014) and obesity has

been shown to correlate with changes in brain structure (Raji et al. 2010).

Another important aspect of this study is understanding why 3D-ResNets outper-

form the “plain” 2D neural network architectures. The two distinguishing aspects

of 3D-ResNets are the residual (skip) connections and 3D convolutions. As dis-

cussed in the architectural overview, residual connections (He et al. 2016) enable

much deeper networks to train much more effectively as they are more robust to

vanishing gradients during error backpropagation. Intuitively, these connections

allow a layer’s input to ”skip” over the layer’s operations and be directed to the

layer’s output. Therefore, the layer’s operation create deviation from the identity

function. In the absence of skip-connections, a layer is learning deviations from a

zero function (i.e. if the weights are set to zero, the layer’s output will be zero).

Furthermore, residual connections have favourable backward-pass properties as the

scale of the error gradient is preserved throughout the backward-pass. This elim-

inates the vanishing gradient problem of non-residual networks. The properties
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of these skip connections have been studied in detail by G. Yang and Schoenholz

(2017). Note that they find that only α-ReLUs (whose activation is defined as

ψα(x) = xα if x > 0 and 0 otherwise.) with α < 1 have sub-exponential behaviour

in the forward pass, therefore preventing exploding gradients. Contemporary work

by Korolev et al. (2017) found that residual networks with 3D convolutions could

be used for classifying individuals who have Alzheimer’s disease.

Even though these models are capable of learning complex relationships, they are

very sensitive to the set-up, namely hyperparameters, input pre-processing and op-

timisation. This is particularly true for end-to-end learning systems where feature

selection and feature engineering has been replaced by architecture and hyperpa-

rameter tuning. Here, I investigated the effects of a few hyperparameters on the age

prediction task. As expected, there were global minima for both the learning rate

and weight decay that were then used for the final training setups. The learning

rate can also be tuned by changing the learning rate schedule, which was fixed for

all these experiments to reduce by a factor of 10 every 15 epochs. This was found to

be optimal through heuristic testing as I did not have the computational resources

to train with every combination of learning rate scheduling. For the same reasons,

I do not account for interactions between hyperparameters which inevitably have

significant correlations with each other. Finding the optimum (or near-optimum)

in this high-dimensional hyperparameter is difficult. A random search would be a

simple next step, and has been shown to work better than grid search in certain

cases (Bergstra and Bengio 2012). A more systematic approach is to frame the

hyperparameter selection as another task that can be learned directly. This is often

called neural architecture search in the context of neural networks has in some cases

found better models than those designed by humans (Zoph and Le 2017).

However, these setups are extremely computationally intensive and often only work

with a limited set of operations and architectural sub-modules. Major advances are

more likely to come from completely different models, rather than simply permuting

a set of convolutional, activation function and normalisation operations. As an

example of this, preliminary reports (Anonymous 2021) show that Transformers

(Vaswani et al. 2017), which are traditionally used for natural language processing,

perform exceptionally well on image classification.

In addition to model changes, the problem can be re-formulated. Approaching

the task from a different perspective can make it easier for the models to learn.

Given the problem setup: a large number of samples, a large number of multi-

modal features and more than one target, a multi-task approach could provide many
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benefits. Multi-task learning allows us to jointly model the data to learn a common

representation, which can then be used to predict the various targets. A common

representation with shared parameters would result in greater generalisability and

robustness to noise. Tasks with fewer labelled samples available would also benefit

because the model could leverage representations from other, better labelled tasks.

This requires that the tasks are sufficiently related for the representations to the

useful in other contexts. Attributes that are highly associated can in theory provide

synergy. For example, age and cognitive tests scores are associated and therefore

one would expect a model that predicts age well to be able to predict cognitive

score not significantly worse than a linear model trained to predict cognitive score

from age alone.

3.7 Conclusion

In this chapter I presented a neural network architecture that uses 3D spatial convo-

lutions to predict biomedically-relevant phenotypes from raw brain structural MRI.

The results demonstrate the importance of using the full 3D structure while remain-

ing computationally efficient and practical to be run on large databases. Predicting

phenotypes with accuracy is an important factor in risk stratification that can lead

to improved health outcomes through better diagnosis and prognosis. These pre-

dictions can be either direct diagnoses (e.g. predicting cardiovascular disease from

images) or risk stratification, where individuals can be rated for risk remediation.

In the next chapter I will demonstrate how this system can be applied in the real-

world to generate predictions that enhance the information available from medical

imaging data.



Chapter 4

Structural brain changes as

markers for disease

In this chapter we will look at an application of trait prediction from structural brain

data. Specifically, how models that learn age from structural brain MRI can provide

a useful measure for investigating systemic health, augment neuroradiological re-

search and potentially serve as decision-support tools in clinical environments.

Some of the work presented in this section has been published as “Accelerated MRI-

predicted brain ageing and its associations with cardiometabolic and brain disorders”

(Kolbeinsson, S. Filippi, et al. 2020). I designed the study, developed methods,

analysed the data, drafted and led in revision of the manuscript for intellectual

content. Sarah Filippi designed study, and developed methods. Yannis Panagakis

developed methods. Paul M Matthew supported design of the study and interpreted

the data. Abbas Dehghan guided design of the study and interpreted the data.

Joanna Tzoulaki jointly led in design of the study and interpreted the data. I use

the plural “we” to acknowledge their contributions in this chapter.

4.1 Motivation

Chronological age is a major risk factor for poorer physical and mental health and

chronic later life neurodegenerative diseases (Sowell, Peterson, et al. 2003; Stern

2012; Matthews et al. 2013). Brain structures and functions show considerable

heterogeneity, suggesting that they change at different rates between individuals as

a consequence of differences in genotype, environment or lifestyle and disease (Raz

41
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et al. 2005). We therefore hypothesised that age-related differences between brains

relative to changes in a “healthy” normative population may provide an index of

disease or disease risk.

A variety of approaches have been used for multi-dimensional modelling of “brain

age” from brain MRI images and for assessing associations and differences between

modelled brain ages and specific health outcomes, exposures or traits (Cole, Mari-

oni, et al. 2019). However, most prior studies have had relatively small sample sizes

and have been applied in populations selected for a specific clinical pathology or

outcome, as large-scale MRI phenotyping of large general populations has not been

performed until recently (Sudlow et al. 2015b). Previous work also has relied on lin-

ear methods that cannot capture non-linear relationships within the data or “black

box” machine learning methods unable to provide information concerning which

brain image features were predictive, limiting the interpretability of findings.

Here we will see an application of the models and tools developed in the previous

chapter to address these limitations, by using a CNN with T1-weighted brain MRI

data from 21 382 volunteers in the UK Biobank. The CNN model for predicting

brain age was trained on brain images from sub-groups selected for their relative

health. It is possible to assess the relative contributions of features from different

brain regions to identify those that were most informative for the model using

permutation importance. The clinical relevance of differences between modelled and

chronological brain age differences is then explored by associating these differences

with over 1 400 clinical, lifestyle and environmental characteristics for individuals

in a different group of 1 296 of UK Biobank volunteers that had not been stratified

for relative health.

Definition (Brain age difference). Brain age difference is defined as the difference

(measured in years) between an individual’s chronological age and the age predicted

by a model from brain features (here, T1-weighted brain MRI). For example, a 55-

year-old individual whose age is predicted to be 47 years by the model has a brain

age difference of -8 years.

4.2 Methods

Here we have analysed the interim release of T1-weighted structural brain MRI

on 21 382 participants from the UK Biobank imaging sub-study (K. L. Miller et al.

2016). The images were captured on a 3T Siemens Skyra scanner (software platform

VD13). Each image was single channel with dimensions 182× 218× 182 at 1 mm3



CHAPTER 4. STRUCTURAL BRAIN CHANGES 43

resolution. Available reconstructed images were aligned to the MNI152 template

(Jenkinson et al. 2002).

4.2.1 Study design

To set up a supervised machine learning framework, we split the data from 21 382 in-

dividuals into four sets: a training (N=3 067), validation (N = 3 962), healthy test

(N=2 057) and unselected (general) population test set (N=12 296). Individuals

were divided randomly between the four sets, subject to restrictions on the number

of apparently healthy and unhealthy individuals in each set. Healthy participants

were defined as those who had no diagnoses in their hospital episode records avail-

able through UK Biobank, at the time of, or preceding, baseline assessment. The

training set was used to optimise parameters of the neural network and learn rela-

tionships between healthy brain structure and age. This allowed the model to learn

a representation of the physiological age-related modifications in brains of healthy

individuals as a proxy for changes occurring with normal aging processes. Including

brains from unhealthy individuals would have forced the model to learn structural

changes related to disease and correct its predictions accordingly. The validation set

was used to tune and assess the model without exposing it to individuals reserved

for the final analysis.

I used two separate hold-out test sets to evaluate model performance. The former

containing only healthy individuals to test the model on unseen healthy individuals.

The latter test set was used for conducting the phenome-wide association study and

included individuals who had not been stratified for health status. See Table 4.1

for descriptive characteristics of each data set.

Table 4.1: Distribution of healthy and unhealthy individuals defined by their diag-
nosis status at baseline (healthy: having no recorded diagnosis in hospital episode
statistics data in UK Biobank) in the four data sets.

Dataset Healthy Unhealthy Total

Train 3 067 0 3 067
Validation 1 071 2 891 3 962
Test - healthy 2 057 0 2 057
Test - unstratified 1 041 11 255 12 296
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4.2.2 Deep neural network for brain age difference mod-

elling

The objective was to determine the brain age difference for an individual, given an

MRI of their brain and their chronological age. We defined brain age difference as

the difference between an individual’s chronological age and the age predicted by

the deep learning model from T1-weighted MRI.

The age prediction model was a 3D-ResNet as described in Chapter 3 and took as

input a T1-weighted structural image with dimensions 182× 218× 182 and output

the predicted age of the individual. The network was trained by minimising the

mean squared error between the true and predicted values and optimized using

Adam (Kingma and Ba 2015). We used 3D convolutions throughout the network

to leverage the full structure of the MRI. Models were implemented in PyTorch

(Paszke, Gross, Chintala, et al. 2017) and TensorLy (Kossaifi, Panagakis, et al.

2019), and trained on an NVIDIA P100 GPU.

4.2.3 Interpretability estimation with permutation impor-

tance

Understanding how deep neural networks use the features available to it is not

straightforward. The networks’ sequences of non-linear mappings are extremely

unintuitive for humans. In this analysis, we used a permutation importance ap-

proach to analyse the importance of different brain regions by quantifying their

contribution to model predictions. The method was proposed as a way of inter-

preting random forest models (Breiman 2001). It works by repeatedly permuting

a specific feature, in this case a region of the brain, between individuals. Serial

repetition across the population develops a distribution of predictions without the

feature, which can be compared with that before data removal.

The brain regions were defined in the UK Biobank MNI152 atlas (available as part of

UK Biobank data). For each brain region, the approach consisted of permuting the

images corresponding to that region between individuals (e.g. the right insular cor-

tex of individual A gets moved to individual B, while the same region of individual

B gets moved to individual C and so on), predicting the ages of all individuals based

on these modified brain MRI and measuring the accuracy of our original model to

predict age for all individuals with the switched region. We quantified the loss of

accuracy in terms of increased mean absolute error, the same metric we used to

train the unperturbed model. For a region that was important for age prediction,
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a degradation in performance and increased prediction error would result. Con-

versely, permuting regions that contributed insignificantly to the prediction would

result in a smaller drop in accuracy.

4.2.4 Statistical analysis

I performed a phenome-wide association study to test for associations between

brain age difference and 1 410 phenotypic characteristics measured on UK Biobank

participants through clinical assessments, record linkage and health and lifestyle

questionnaires. This agnostic scan was performed using the PHEASANT analysis

method as previously described in the literature (Millard et al. 2017). The software

uses a series of regression analyses (linear for continuous traits and logistic for

binary traits) to associate traits with the exposure of interest (in this case, brain

age difference). For each trait, samples with missing values were excluded from

that analysis. All analyses were adjusted for age, sex and assessment centre. To

account for multiple testing, we used Bonferroni correction (P = 2.35 × 10−5).

In further sensitivity analyses, to account for the correlation between measured

phenotypes in UK Biobank, we used a false discovery rate (FDR) of 5% using

the Benjamini–Hochberg procedure to account for multiple testing (Benjamini and

Hochberg 1995).

4.2.5 Mendelian randomisation

Causality of associations between brain age differences and traits is difficult to in-

fer as the data were collected cross-sectionally as part of an observational study.

Mendelian randomisation provides a method for assessing the causal nature of some

associations by using genetic variants as instrumental variables for risk factors

(Davey Smith and Ebrahim 2003). We performed two-sample Mendelian randomi-

sation analysis of selected traits that had summary GWAS data available (diastolic

and systolic blood pressure, pulse pressure, Alzheimer’s disease and diabetes) to

explore the causality of the reported associations. Genetic variants used as instru-

ments were obtained from DIAGRAM 1000G study for type II diabetes (Morris

et al. 2012), from the International Genomics of Alzheimer’s Project (Lambert et

al. 2013) for Alzheimer’s diseases, and from a recent study (Evangelou et al. 2018)

for blood pressure. For the latter, we used the allele effects from the International

Consortium for Blood Pressure (Ehret et al. 2011) to avoid bias due to overlapping

samples. For the association of the genetic variants with brain age difference, we

used the data from UK Biobank as available on October 17th, 2019. We matched
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and harmonised the effective allele for each set of instruments with brain age differ-

ence and removed the correlated variants using linkage disequilibrium (LD) clump-

ing (r2 < 0.1). We estimated the causal effects using the inverse variance weighted

method. Potential pleiotropic effect was detected using heterogeneity tests and sen-

sitivity analysis was done using weighted median and MR Egger regression methods

to rule out pleiotropic effects. All analyses were done using the Two Sample MR

package (Hemani et al. 2018).

4.3 Results

4.3.1 Brain age prediction using the optimised neural net-

work

The model-defined and chronological ages were strongly correlated in the train-

ing set of healthy individuals (N = 3 067,Pearson correlation = 0.97,MAE =

1.71 years). However, the neural network showed a linear bias for age; individu-

als older/younger than the cohort average were predicted to be younger/older than

they are. Similar bias has been reported and investigated in previous studies (S. M.

Smith, Vidaurre, et al. 2019). After linearly adjusting the model output for chrono-

logical age using data from the training set, the model showed no significant bias

on the validation set (N = 3 926).
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Figure 4.1: Distribution of brain age differences across the test cohort. Standard
deviation is 3.72 years.
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I then applied the model to the larger test set of individuals who had not been

stratified for health (N = 12 196). The model achieved a mean absolute er-

ror of 3.42 years in a unimodal distribution of differences between predicted and

chronological ages (Figure 4.1). There was a strong direct relationship (Figure 4.2,

Pearson correlation = 0.82, P = 2.67 × 10−242). We separately explored accuracy

on the test set containing only healthy individuals (N = 2 057) which had a lower

mean absolute error of 2.87 years.
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Figure 4.2: Age predicted by the deep neural network developed here, and linearly
adjusted for age using coefficients calculated from the training set, plotted against
calendar age for all participants in the test set. The diagonal line is y = x, or a
perfect predictor. Colour indicates the density of the scatter with brighter being
denser. The Pearson correlation is 0.82.

4.3.2 Contributions of different brain regions to brain age

predictions

I attempted to partially explain those image features contributing most to the age

prediction model. We assessed differential contributions of brain regions at the level

of major white and grey matter regions by serial inference of the model with image

regions permuted between individuals. Six brain regions (left cerebellar lobules I-IV

and the left crus and vermis, the right hippocampus, left amygdala, and left insular

cortex) were found to contribute most to the accuracy of age prediction (Figures 4.3

and 4.4). Removing the information contributions of any of those regions caused

the mean absolute error to increase by more than 0.10 years.
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Figure 4.3: Regions of the brain highlighted by importance on age predictions from
T1-weighted brain MRI. Brighter colour overlay indicates more important regions
as defined by permutation importance.
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Figure 4.4: Impact on each of the 140 brain regions (ordered along x-axis) on MAE
of age prediction accuracy (y-axis). This was calculated using permutation impor-
tance, see section 4.2.3. It illustrates the effect of removing information contained
within the region of interest by replacing it with voxels from the same region in
another, random sample, run over the entire test set (N = 12 296). The whiskers
are the range of samples obtained for 12 repeated trials.
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4.3.3 Phenome-wide association study

I then explored the potential meaningfulness of differences between model predicted

and chronological ages in the unstratified test population. We evaluated associations

of these differences with more than 1 410 of the International Statistical Classifi-

cation of Diseases and Related Health Problems (ICD) codes, self-reported clinical

conditions and physical, lifestyle and environmental phenotypes. Of these, 24 were

found to be significantly associated with brain age differences after correcting for

multiple testing (P < 2.35 × 10−5) (20 were direct associations, 4 inverse associa-

tions). These results are visualised in Figure 4.5 and listed in Table 4.2.
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Figure 4.5: Manhattan type plot showing the significance of association (p-value)
between 1 410 UK Biobank traits and brain age difference, coloured by trait cat-
egory. The Bonferroni-corrected significance threshold is marked by a horizontal
red line (p-value = 2.35× 10−5) and the 5 % FDR correction threshold with a blue
line (p-value = 1.45 × 10−3). Trait label 1: Time taken to start entering values
in symbol-digit matching test, 2: Number of symbol digit matches made correctly,
3: Number of symbol digit matches attempted, 4: Multiple sclerosis, 5: Essential
(primary) hypertension, 6: Diagnoses - secondary ICD10: Type 1 diabetes, 7: Type
2 diabetes, 8: Systolic brachial blood pressure during pulse wave analysis (PWA),
9: Central systolic blood pressure during PWA, 10: Cardiac index during PWA, 11:
End systolic pressure during PWA, 12: Stroke volume during PWA, 13: Central
augmentation pressure during PWA, 14: Cardiac output during PWA, 15: Central
pulse pressure during PWA, 16: Peripheral pulse pressure during PWA, 17: Ven-
tricular rate, 18: Diastolic blood pressure, 19: Body mass index (BMI), 20: Hand
grip strength (left), 21: Hand grip strength (right), 22: Systolic blood pressure, 23:
Taking insulin, 24: Number of treatments/medications taken.

The diagnoses and traits associated with brain age differences included cardiovascu-

lar and metabolic diseases and risk factors, cognitive function and physical strength.
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Table 4.2: Traits that associate with brain age difference, with p-value ¡ 2.35×10−5

(Bonferroni threshold) . Odds ratios and betas are given per unit standard deviation
of brain age difference (3.72 years). PWA = pulse wave analysis.

Categorical and or-
dered traits

Category Odds ratio (95% CI) p-value Rate of
incidence
(cases/controls)

Multiple sclerosis Diagnoses 4.04 (2.37, 6.93) 2.85× 10−7 18/12278
Type 1 diabetes Diagnoses 2.39 (1.73, 3.29) 1.17× 10−7 49/12247
Taking insulin Touchscreen 2.22 (1.55, 3.14) 2.22× 10−5 36/1633
Type 2 diabetes Diagnoses 1.42 (1.25, 1.61) 7.77× 10−8 334/11962
Essential (primary) hy-
pertension

Diagnoses 1.22 (1.15, 1.29) 1.22× 10−10 1820/10476

Number of treat-
ments/medications
taken

Verbal interview 1.13 (1.09, 1.18) 6.02× 10−10 12294

Continuous traits Category Beta (95% CI) p-value N samples

Systolic brachial blood
pressure during PWA

Heart MRI 0.08 (0.06, 0.10) 2.20× 10−13 10338

Diastolic blood pressure Physical mea-
sures

0.08 (0.06, 0.10) 2.20× 10−14 11830

Central systolic blood
pressure during PWA

Heart MRI 0.08 (0.06, 0.10) 7.59× 10−13 10337

Systolic blood pressure Physical mea-
sures

0.07 (0.06, 0.09) 1.91× 10−14 11830

End systolic pressure
during PWA

Heart MRI 0.07 (0.05, 0.09) 3.04× 10−10 10306

Peripheral pulse pressure
during PWA

Heart MRI 0.07 (0.05, 0.09) 3.25× 10−10 10335

Time taken to enter
values in symbol-digit
matching test

Cognitive func-
tion

0.07 (0.04, 0.09) 2.67× 10−7 6592

Central pulse pressure
during PWA

Heart MRI 0.07 (0.04, 0.09) 7.47× 10−10 10335

Cardiac output during
PWA

Heart MRI 0.07 (0.04, 0.09) 1.47× 10−9 10188

Cardiac index during
PWA

Heart MRI 0.07 (0.05, 0.09) 1.94× 10−10 10046

Stroke volume during
PWA

Heart MRI 0.05 (0.03, 0.07) 4.36× 10−6 10190

Ventricular rate Physical mea-
sures

0.05 (0.03, 0.07) 2.23× 10−5 10656

Central augmentation
pressure during PWA

Heart MRI 0.05 (0.03, 0.07) 1.39× 10−5 10333

Body mass index Physical mea-
sures

0.04 (0.02, 0.06) 3.33× 10−5 12260

Hand grip strength
(right)

Physical mea-
sures

-0.03 (-0.05, -0.02) 3.51× 10−6 12267

Hand grip strength (left) Physical mea-
sures

-0.04 (-0.05, -0.03) 1.72× 10−8 6581

Number of symbol digit
matches attempted

Cognitive func-
tion

-0.07 (-0.09, -0.04) 4.08× 10−7 6581

Number of symbol digit
matches made correctly

Cognitive func-
tion

-0.07 (-0.10, -0.05) 1.82× 10−8 10338
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For example, there was a four-fold higher risk of having been diagnosed with multi-

ple sclerosis (OR 4.04, 95 % CI 2.38–6.93) for each positive SD difference between

predicted and chronological age (3.7 years). Measures of blood pressure also showed

positive associations with brain age difference including the self-reported diagnosis

of hypertension (OR 1.22, 95 % CI 1.15–1.29 per SD increase in brain age difference)

and measured systolic (beta 0.07, 95 % CI 0.06–0.09) and diastolic (beta 0.08, 95

% CI 0.06–0.10) blood pressures. Direct associations were found between brain age

difference and metabolic traits such as type I (OR 2.39, 95 % CI 1.73–3.29) and

type II (OR 1.42, 95 % CI 1.25–1.61) diabetes and participants taking insulin (OR

2.22, 95 % CI 1.55–3.14) (Table 1).

Conversely, individuals with a predicted age younger than their chronological age

were found to have greater physical strength, as reflected in hand grip strength

(beta -0.03, 95 % CI -0.05 to -0.02). Brain age differences were inversely associated

with improved performance in tests included in the UK Biobank cognitive battery,

including time taken to enter values in a digit-symbol matching test (beta 0.07, 95

% CI 0.04-0.09) and the numbers of symbols matched correctly (beta -0.07, 95 %

CI -0.10 to -0.05).

With a less stringent threshold of 5 % FDR (P = 1.45 × 10−3), 20 additional

associations with brain age difference were observed (16 direct associations, four

inverse associations, Table 4.3). Additional positive associations with brain age

difference included having had a depressive episode (OR 3.33, 95 % CI 1.85 to

6.01), history of a prior psychiatric episode (OR 1.97, 95 % CI 1.35 to 2.87) and

higher neuroticism score (OR 1.07, 95 % CI 1.03 to 1.12).

Mendelian randomization analysis of selected traits

I used Mendelian randomisation to investigate the effects of genetic determinants for

a range of traits on brain age differences in order to explore the potential for causal-

ity (Supplementary Table 3). The association of a higher genetically determined

diastolic blood pressure with higher brain age difference in main and sensitivity

regression analyses (inverse variance weighted: beta 0.06, p-value 0.01, weighted

median: beta 0.07, p-value 0.02, MR Egger: beta 0.14, p-value 0.05) (4.4) provided

evidence in support of a causal relationship of blood pressure. The MR-Egger in-

tercept, a measure of pleiotropy that may bias the main inverse variance weighted

estimate, did not reach statistical significance, further supporting this conclusion.

There was also no evidence for heterogeneity (Cochrane’s Q for inverse variant

weighted median: 0.14, Cochrane’s Q for MR Egger: 0.15). By contrast, there was



CHAPTER 4. STRUCTURAL BRAIN CHANGES 52

Table 4.3: Traits that associate with brain age difference, with 2.35 × 10−5 (Bon-
ferroni threshold) <p-value <1.45× 10−3 (FDR threshold). Odds ratios and betas
are given per unit standard deviation of brain age difference (3.72 years).

Categorical and or-
dered traits

Category Odds ratio (95% CI) p-value Rate of
incidence
(case/control)

Depressive episode Diagnoses 3.33 (1.85, 6.01) 6.04× 10−5 15/12281
Occupational therapy
and vocational rehabili-
tation

Diagnoses 3.27 (1.75, 6.16) 2.09× 10−4 13/12283

Diabetic retinopathy Diagnoses 2.57 (1.44, 4.59) 1.34× 10−3 15/12281
Diagnoses - secondary
ICD10: Z50.1 Other
physical therapy

Diagnoses 2.02 (1.37, 3) 4.39× 10−4 33/12263

One or more previous
psychiatric episodes
with this Health Care
Provider

Psychiatric 1.97 (1.35, 2.87) 3.83× 10−4 35/10988

Gastro-intestinal haem-
orrhage

Diagnoses 1.89 (1.29, 2.76) 1.11× 10−3 35/12261

Calculus of kidney Diagnoses 1.64 (1.25, 2.17) 4.52× 10−4 67/12229
Epilepsy Diagnoses 1.63 (1.23, 2.17) 7.12× 10−4 64/12232
Personal history of long-
term (current) use of an-
ticoagulants

Diagnoses 1.43 (1.2, 1.72) 9.72× 10−5 162/12134

Total errors traversing
alphanumeric path (trail
#2)

Trail making 1.17 (1.08, 1.28) 3.22× 10−4 2331

Neuroticism score Psychosocial
factors

1.07 (1.03, 1.12) 3.61× 10−4 10355

On hormone replacement
therapy

Health and med-
ical history

0.81 (0.72, 0.91) 2.37× 10−4 583/1087

Single live birth Diagnoses 0.76 (0.67, 0.87) 8.58× 10−5 546/11750
Second degree perineal
laceration during deliv-
ery

Diagnoses 0.64 (0.49, 0.83) 8.91× 10−4 106/12190

Continuous traits Category Beta (95% CI) p-value N sample

Visceral adipose tissue
volume

Abdominal MRI 0.06 (0.03, 0.09) 3.94× 10−4 3627

Duration to complete al-
phanumeric path (trail
#2)

Touchscreen 0.06 (0.03, 0.08) 7.12× 10−5 5802

Duration to complete nu-
meric path (trail #1)

Touchscreen 0.06 (0.03, 0.08) 1.49× 10−4 5802

Heart rate during PWA Heart MRI 0.04 (0.02, 0.06) 5.55× 10−4 10416
Waist circumference Physical mea-

sures
0.03 (0.01, 0.05) 9.58× 10−4 12287

LV stroke volume Heart MRI -0.06 (-0.10, -0.02) 1.36× 10−3 2857
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no evidence for a causal influence of diabetes on brain age differences.

Table 4.4: Mendelian randomisation results.

Exposure Method Beta p-value Intercept
p-value

Heterogeneity
p-value

Alzheimer’s disease
Inverse variant
weighted

-0.02 0.36 N/A 0.83

Weighted mean -0.01 0.67 N/A N/A
MR Egger -0.02 0.60 0.95 0.80

Diabetes
Inverse variant
weighted

0.03 0.57 N/A 0.64

Weighted mean 0.10 0.21 N/A N/A
MR Egger 0.18 0.18 0.23 0.66

Diastolic blood pressure
Inverse variant
weighted

0.06 0.01 N/A 0.14

Weighted mean 0.07 0.02 N/A N/A
MR Egger 0.14 0.05 0.23 0.15

Systolic blood pressure
Inverse variant
weighted

0.01 0.22 N/A 0.08

Weighted mean 0.03 0.08 N/A N/A
MR Egger 0.05 0.34 0.54 0.07

Pulse pressure
Inverse variant
weighted

-0.03 0.04 N/A 0.003

Weighted mean -0.04 0.28 N/A N/A
MR Egger -0.17 0.317 0.37 0.003

4.4 Discussion

In this large study of 21 382 middle and older aged participants with rich brain

MRI data, we developed a deep learning approach to calculate brain age difference

with respect to a healthy reference population. Brain age difference should re-

flect cumulative effects on brain structure associated with effects of environmental,

lifestyle and disease exposures, as well as individual differences in genotype. We

have approached the “explainability” of this measure by characterising the brain re-

gions whose features made the greatest contributions to brain age difference, which

were discovered to be the cerebellum, hippocampus, amygdala and insular cor-

tex. Finally, we conducted an exploration of over 1 400 phenotypes and traits and

demonstrated associations between brain age difference and clinically meaningful

traits related to cardiovascular, metabolic and brain diseases.

Previous studies have used measures of difference or changes in brain or grey mat-

ter volumes over time to provide indirect measures of the relative rates of brain

neuronal volume loss during life (Lemaitre et al. 2012). However, relationships be-

tween brain structures and relative signal intensities (e.g., those reflected in MRI
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“texture” measures) also change (Kovalev, Kruggel, and Cramon 2003). Unlike

simple scalar volume measures, these structural and tissue image texture changes

are highly multi-dimensional. This has led to the use of multivariate non-linear

machine learning methods such as neural networks, which use high-dimensional

MRI features to predict age-related changes in the brain (Cole, Poudel, et al. 2017).

Prior studies using these have shown associations between deviations of predicted

ages from chronological ages (similar to the brain age difference metric described

here) and mortality (Cole, Ritchie, et al. 2018), obesity (Kolenic et al. 2018), mal-

nutrition (Franke, Gaser, Roseboom, et al. 2018), brain trauma (Cole, Leech, et al.

2015) and psychiatric disorders (Kaufmann et al. 2019). Analogues to this approach

have been described in other contexts, e.g., relating to the increased shortening of

telomeres with respect to age in a population with multiple sclerosis (Krysko et al.

2019).

This study used a large population and applied an advanced deep learning approach

that results in more accurate predictions of age from MRI than has been reported in

previous efforts (Cole, Poudel, et al. 2017; Cole, Ritchie, et al. 2018; Kolenic et al.

2018; Gaser et al. 2013). To distinguish the influences of clinical diagnoses and

traits, the neural network is implicitly constrained to learn a representation of the

concept from a cohort selected for being healthy. The differences between predicted

and chronological ages therefore captures changes in brain structure related to dis-

ease or disease risk relatively independently from those related to normal healthy

biological ageing.

The brain regions identified in the interpretation analysis play central roles in cog-

nition and memory (hippocampus), emotional regulation and salience (amygdala)

and physiological homeostasis (insula). All of these regions have been recognised

previously as having a functional role or showing population differences relevant to

brain health (Gunning-Dixon et al. 2003; Hartley et al. 2014; Menon and Uddin

2010). The importance of the cerebellum for brain age is of particular interest,

as relationships between cerebellar pathology and cognitive dysfunction or late life

neurodegenerative diseases remain poorly described (Jacobs et al. 2017; Hoche et al.

2018). This emphasises the importance of applying agnostic learning models which

can be coupled with analysis for describing specific features with greater granular-

ity. Their discovery could contribute to better understanding of the mechanisms

underlying relationships between brain structure and health.

Brain structural changes, as captured by the index, correlated with clinical diag-

noses and phenotypic characteristics, as well as cognitive function, extending prior
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studies based on different models and using different training sets that also de-

scribed deviations of predicted ages from chronological ages (similar to the brain

age difference metric described here) amongst pathological or “at risk” subgroups

of the larger cohort (Bashyam et al. 2020; Ning et al. 2020; S. M. Smith, L. T.

Elliott, et al. 2020). Here, individuals with higher brain age difference performed

worse in cognitive tests for fluid intelligence, giving support to the index as an

informative metric. In terms of diseases, participants with multiple sclerosis had

higher brain age differences, revealing changes to brain in addition to those that

are age-related. Indeed, multiple sclerosis is associated with macro- and micro-

scopic inflammatory and demyelinating pathology in both white and grey matter

(Filippi et al. 2000) and has previously been associated with increased brain age

differences (Cole, Raffel, et al. 2020; Høgestøl et al. 2019). In contrast, we did

not observe a statistically significant association between brain age difference and

cerebral infarction. This is possibly due to cerebral infarction causing heterogenic

brain changes between individuals that are not consistent enough to be associated

with a measure across a population. Alternatively, our stringent multiple testing

corrections to guard against false positives can potentially cause some true positives

to be missed; a limitation of the approach. Analysis showed associations between

higher brain age difference and type I and type II diabetes, a finding previously

observed in other imaging studies (Franke, Gaser, Manor, et al. 2013) including

analysis on UK Biobank 10 and supported by previously recognised effects of dia-

betes on brain structure (Kodl and Seaquist 2008; Suzuki et al. 2019). This study

also revealed a direct association between brain age differences and vascular disease

risk factors, particularly blood pressure. Associations between brain age deviations

using distinct approaches to ours but similar data from UK Biobank also revealed

associations between this phenotype and blood pressure, adding internal validity

to these results (Cole 2020). Although a relationship between hypertension and

both cognitive decline and brain atrophy has already been established (Suzuki et

al. 2019), and prolonged hypertension is recognised to be associated with increased

white matter pathology (De Leeuw et al. 2002), the mechanisms of these associa-

tions are not well defined (Qiu and Fratiglioni 2015). Physical fitness was associated

with lower brain age difference highlighting the association of physical fitness not

only to functional (Angevaren et al. 2008), but also to structural changes of the

brain.

We examined the potential for causality in the associations between traits and brain

age differences. MR analysis demonstrated a likely causal relationship between in-

creased diastolic blood pressure and increased brain age. This implies that reducing
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diastolic blood pressure would have an impact on the relative brain age, broadly

consistent with clinical evidence that reducing or preventing hypertension reduces

the risk of strokes (Howard et al. 2015). By contrast, our MR analysis did not

provide evidence for a causal effect of diabetes on brain age differences, suggesting

common, pleotropic factors (pleiotropy) may contribute causally to both, consis-

tent with the possibility that treatments for diabetes mellitus also may have an

independent impact on late-life neurodegenerative processes (Meng et al. 2020).

Future prospective studies relating brain age differences and the incidence of cogni-

tive impairments would add to confidence that the measure could be used as a risk

stratification tool for late life cognitive impairments or other brain disorders.

Although adopted here, the term ”brain age” should be used cautiously. Aging is

referenced to time since birth, but incorporates concepts of time-dependent intrinsic

biological processes and individually specific influences acting on a tissue or person

(Rowe and Kahn 1987); changes to the brain during the life course are more than

solely a consequence of time (chronological age) alone. The use of a healthy popula-

tion for training is intended to maximise the interpretability of brain age difference

as an index of risk of dysfunction or disease.

As noted above, the sensitivity of the approach to factors affecting individuals

is limited, as the interpretability analysis is based on population characteristics.

Further work could focus on developing descriptions and explanatory hypotheses

at an individual level, e.g. using methods such as Shapely Additive Explanations

(Lundberg and S.-I. Lee 2017).

Another important limitation is the accuracy of region definitions. Although the

images were carefully aligned as part of UK Biobank pre-processing, imperfect align-

ment would cause boundary effects. These were partially mitigated by running the

permutation multiple times and averaging the results. However, the relative accu-

racy of detection of disease or disease risk associations depends on the population

sample size and structure; our detections of associations are, for example, impacted

by the relatively low prevalence of stroke, multiple sclerosis and diabetes in the

population studied. We are making our model openly available for others but need

to highlight that it was developed and validated with UK Biobank data; generali-

sation would require extending training to include new target populations or data

acquired using different MRI platforms or sequences.

We adopted a hypothesis free approach to investigate a range of phenotypes in re-

lation to brain age differences with adjustment for multiple comparisons. However,
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different associations had different sample sizes and therefore power to detect associ-

ations which should be taken into account when interpreting the associations.

4.5 Conclusion

In this large study of 21 382 middle and older aged participants with rich brain

MRI data, we developed a deep learning approach to calculate brain age difference.

Brain age difference should reflect cumulative effects on brain structure associated

with effects of environmental, lifestyle and disease exposures, as well as individual

differences in genotype. We have approached the “explainability” of this measure

by characterising the brain regions whose features made the greatest contributions

to brain age difference, which were discovered to be the cerebellum, hippocampus,

amygdala and insular cortex. Finally, we conducted an exploration of over 1 400

phenotypes and traits and demonstrated associations between brain age difference

and clinically meaningful traits related to cardiovascular, metabolic and brain dis-

eases.

These results add to a growing literature demonstrating the use of brain structural

differences as a general marker of systemic health. They suggest that brain age

difference may be an index of health or risk of later life metabolic, cardiovascular and

brain diseases and functional traits relevant to health. Consistent with conclusions

from large cohort treatment studies (Howard et al. 2015), our results suggest a

direct causal link between higher diastolic blood pressure and brain age difference.

With larger populations and further advances to learning methods and analysis, the

approach may help to better define risk factors of brain disease. Stratifying people

on this form of index may help identify individuals who could benefit most from

interventions for brain health risk factor reduction. Finally, this work highlights

the great potential for using machine learning as a decision-support tool to enhance

the information available from neuroradiological reporting.



Chapter 5

Tensor learning

The central challenge of many machine learning tasks, both supervised and unsuper-

vised, is to disentangle relevant information from noise and other signals irrelevant

to the task. Tensor decompositions provide a way of separating the data, repre-

sented as tensors, into smaller factor tensors. Constraints can be applied to these

factor tensors to reduce the computational complexity, build in inductive biases and

facilitate learning (Kolda and Bader 2009). A system of tensor decompositions can

be thought of as a tensor network (Cichocki et al. 2016), a term I will use to describe

the addition of tensor decomposition layers into deep neural networks.

In this chapter I introduce two methods that incorporate tensor decompositions

within deep learning. First, tensor dropout: a technique to improves generalisabil-

ity and robustness to perturbations, both random noise and adversarial (section

5.2). In essence, tensor dropout works by dropping, at random, some ranks of

the factor tensors during composition. I demonstrate the improvements of tensor

dropout on both natural image and brain MRI tasks. The other method I intro-

duce is a high-order Kronecker machine for multi-modal learning (section 5.3). By

combining representations of multiple sources in a low-rank Kronecker space, it be-

comes tractable to model the sources’ higher-order interactions. I demonstrate the

feasibility of this method on integrating T1-weighted and T2-weighted brain MRI

scans.

5.1 Tensor essentials

Here I will overview some of the basic and common notation that will be used in

sections 5.2 and 5.3.

58
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A scalar a is a zero dimensional object, a vector v is a set of elements ordered

along a single dimension. A matrix m is an object with elements arranged in two

dimensions. We can extend this idea into N dimensions, resulting in an object X
of order N, which we term tensor. A tensor is a general concept that can represent

structured data. However, they are naturally apt at representing Euclidean data.

Note that these are sometimes specified as data tensors in the literature to separate

them from the multilinear transformations that map between sets of vector spaces

and from stress tensors in engineering.

5.1.1 Tensor operations

The Hadamard product of two matrices A ∈ RM×N and B ∈ RM×N is defined as

the matrix:

A ∗B =


a11b11 . . . a1Nb1N

...
. . .

...

aM1bM1 . . . aMNbMN


which is also of size M × N . Demonstrated here in the matrix case, this can be

generalised to higher orders. For tensors of dimension RI1×I2×···×IN , the resulting

tensor, C, will be of the same shape with element ci1,i2,...,iN = ai1,i2,...,iN bi1,i2,...,iN

The Kronecker product of two matrices A ∈ RM×N and B ∈ RP×Q is defined as the

matrix:

A⊗B =


a11B . . . a1NB

...
. . .

...

aM1B . . . aMNB


which is of size MP ×NQ.

The Khatri Rao product of A ∈ RM×N and B ∈ RP×N is a matrix

A�B =
[
a1 ⊗ b1 . . . aN ⊗ bN

]
which is of size MP × N . Here, ai and bi represent the ith column of matrix A

and B, respectively. The Khatri Rao product can be described as the columnwise

Kronecker product. It is particularly useful when operating on tensors where the

first dimension is independent, e.g. representing samples or mini-batches. In those
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cases we do not want to multiply elements between samples.

5.1.2 Tensor decompositions

With the basic operations described above, we can now define decompositions that

break a tensor down into smaller factors.

Canonical Polyadic (CP) decomposition (Hitchcock 1927). Also known as

tensor rank decomposition, PARAFAC, and CANDECOMP. This method can be

thought of as an extension of Singular Value Decomposition (SVD) into higher di-

mensions. A tensor X is typically only approximated with a decomposition, only

in rare cases is the original full tensor reproduced exactly. The CP decomposition

for a tensor X ∈ RI1×I2×···×IN is given as:

X ≈
R∑
r=1

I1,r ◦ I2,r ◦ . . . . . . IN,r

where R is the rank of the decomposition and defines the rank of the factors, Ii,r is

the ith rank-1 tensor and ◦ is the outer product.

Tucker decomposition (Tucker 1966) breaks a tensor X down into a smaller core

tensor G and a set of factor matrices, one for each dimension. G ∈ Rr1×r2×···×rN

where rn is the chosen rank of dimension n. The corresponding factor-matrix along

dimension n is U(n) ∈ Rrn×in . The decomposition is written as:

X ≈ G ×0 U(0) ×1 U(1) × · · · ×N U(N)

Tensor Train (Ivan V Oseledets 2011) for X ∈ Ri1×i2×···×iN can be described

as

X ≈
R∑
α=1

U(1)(i1, α)U(2)(i2, α) . . .U(d)(id, α)

For a comprehensive list and description of tensor methods and decompositions,

please refer to the monograph Tensor decompositions and application by Kolda and

Bader (2009).
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5.1.3 Other tensor methods

From the base tensor operations and decompositions, a large number of compos-

ite tensor methods have been introduced. I will describe one such methods as a

preliminary for the following section.

Tensor Regression Layer (TRL) (Kossaifi, Lipton, et al. 2020) combines low-

rank decompositions with deep neural networks’ weight tensors for parameter re-

duction. By defining a weight tensor as a composition of these low-rank factors,

only the factors have to be learned. This leads to a significantly reduced parameter

space that retains much of the expressiveness of the full tensor. I will use this tensor

layer as a testbed to implement and test the tensor dropout method. The TRL is

defined here, with a rank–(R1, · · · , RN) Tucker decomposition but without loss of

generality. For a deep neural network with input (typically from the previous layer)

X (k), weight tensor W , bias b, the output y(k) will be given as:

y(k) = 〈X (k),W〉+ b (5.1)

with W = G ×1 U(1) ×2 U(2) · · · ×N U(N)

with G ∈ RR1×···×RN , U(k) ∈ RIk×Rk for each k in [1 . . N ], U(N) ∈ R1×RN and O is

the output dimensionality.

5.2 Tensor dropout

Some of the work presented in this section has been published as “Tensor Dropout

for Robust learning” (Kolbeinsson, Kossaifi, et al. 2021) © IEEE 2021. This was a

collaborative project. Jean Kossaifi (NVIDIA AI) and Yannis Panagakis (University

of Athens) contributed to the idea conceptualisation, experiment guidance, results

interpretation, and drafting and editing of the manuscript. Adrian Bulat (Samsung

AI) performed experiments that are presented in the paper manuscript but omitted

here. Anima Anandkumar (Caltech) contributed to the conceptualisation of the

model and interpretation of the results. Ioanna Tzoulaki (Imperial College London)

and Paul Matthews (Imperial College London) contributed to the interpretation of

UK Biobank results. I use the plural “we” to acknowledge their contributions in this

section.
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5.2.1 Introduction

The overparameterisation of deep neural networks is a double-edged sword. On one

side its capacity allows for powerful predictive models with remarkable performance

on computer vision tasks (Krizhevsky, Sutskever, and Geoffrey E Hinton 2012; Le-

Cun, Bengio, and G. Hinton 2015; He et al. 2016). On the other side it makes them

notoriously prone to overfitting (Caruana, Lawrence, and Giles 2000). In addition,

deep networks are not robust to small perturbations to the input; changes imper-

ceivable to humans can lead to arbitrarily different predictions by the network (I. J.

Goodfellow, Shlens, and Szegedy 2015). Not only does this significantly degrade

trust in these networks, they are also chronically over-confident when predicting

on noisy inputs (Hein, Andriushchenko, and Bitterwolf 2019). These weaknesses

hinder the deployment of such systems in medical settings, and other fields that are

sensitive to trust reliability.

Adding regularisation to these networks has been shown to improve robustness to

adversarial perturbations (Bietti et al. 2019; Jakubovitz and Giryes 2018). Regular-

isation techniques can be classed as either: methods that constrain the parameters

directly or structural changes to the architecture to make them inherently more

robust. In the context of parameter constraints, regularisation can be applied in

the form of added randomness to the activations (e.g. dropout (Srivastava et al.

2014)) or to the weights (e.g. DropConnect (Wan et al. 2013)). Regularisation

functions (e.g. `1- or `2- norm) can also be directly applied to network’s param-

eters (Nowlan and Geoffrey E. Hinton 1992; Krogh and Hertz 1991; Scardapane

et al. 2017; Yuchen Zhang, J. D. Lee, and Jordan 2016).

However, the second class of methods: structural changes to the network itself,

is arguably preferable in many cases. A prime example of such structural induc-

tive biases are tensor methods that account for the structure in the data. Tensor

methods allow us to fully leverage the structure in that data as the transformation

from the input to the output can be generalised as a tensor map. Preserving multi-

dimensional structure is crucial for performance. By limiting the network to matrix

operations (e.g. with flattening layers followed by one or more fully-connected lay-

ers), we are ignoring this structure, resulting in deteriorated performance (Kossaifi,

Khanna, et al. 2017; Kossaifi, Lipton, et al. 2020; Kossaifi, Bulat, Panagakis, et

al. 2019). Tensor methods allow to leverage that structure to improve the model,

reduce the number of parameters and improve computational efficiency. One way

this is done is by leveraging multi-linear correlations in the network (Tai et al. 2016;

Y. Cheng et al. 2015; Yu et al. 2017; Kossaifi, Lipton, et al. 2020; Kossaifi, Bulat,
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Tzimiropoulos, et al. 2019).

This section introduces tensor dropout and details its application it to the TRL.

Specifically, we propose a new stochastic rank-regularisation, applied to low-rank

tensors in decomposed forms. This formulation is general and can be applied to

any type of decomposition. We introduce it here, without loss of generality, to the

case of Tucker and CP decompositions.

Summary of contributions:

• Tensor dropout, a novel stochastic tensor decomposition where non-linear

dropout is applied in the latent subspace spanned by a low-rank factorisa-

tion.

• The application of tensor dropout to tensor regression layers and show that it

improves the inductive bias of CNNs by fully leveraging the structure in the

data via stochastic tensor decomposition.

• Demonstration of state-of-the-art performance for large scale regression from

MRI data and that the model is significantly more robust to noise in the

input, as occurs naturally during capture.

• Show that the method makes neural networks significantly more robust to

adversarial noise, without adversarial training.

• Show that the method implicitly regularises the tensor decomposition. We

establish theoretically and empirically the link between tensor dropout and

the deterministic low-rank tensor regression.

5.2.2 Tensor dropout

I propose a novel randomised decomposition on the weight tensor W , which ap-

plies dropout in the latent subspace spanned by a tensor decomposition. For in-

stance, for an N th–order regression weight with a Tucker structure, we can define

for each k ∈ [1 . . N ], a sketch matrix M(k) ∈ RRk×Rk (e.g. a random projection

or column selection matrix). This can then be used to sketch the factors U(k) of

the decomposition as Ũ(k) = U(k)(M(k))> and the core tensor, G is sketched as

G̃ = G ×1 M(1) × · · · ×N M(N).

In the context of tensor regression, we can apply this tensor dropout technique to

the weights. Given an activation tensor X ∈ RI1×···×IN and a set of S target labels
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y(k) we can define a new type of layer, a Randomised Tensor Regression Layer (R-

TRL) from equation 5.1, which uses Tensor Dropout and aims at minimising the

empirical risk:

1

S

S∑
k=1

(
y(k) − 〈W̃ ,X (k)〉

)2
, (5.2)

where W̃ is a stochastic low-rank approximation of Tucker decomposition. In other

words, in addition to the low-rank structure of the weights, we apply our tensor

dropout in the latent subspace spanned by the decomposition. For the proof, please

refer to Kolbeinsson, Kossaifi, et al. (2021).

For instance, in the case of a Tucker R-TRL, we have:

W̃ = G̃ ×0 Ũ(0) × · · · ×N Ũ(N) (5.3)

This is the core of our proposed R-TRL, which incorporates tensor dropout within

a TRL. Even though several sketching methods have been proposed, the focus

here is on R-TRL with two different types of binary sketching matrices, namely

binary matrix sketching with replacement and binary diagonal matrix sketching

with Bernoulli entries, which we detail below.

5.2.3 Bernoulli Tucker randomised tensor regression

For any n ∈ [0 . . N ], let λ(n) ∈ RRN be a random vector, the entries of which

are i.i.d. Bernoulli(θ), then a diagonal Bernoulli sketching matrix is defined as

M(n) = diag(λ(n)).

When the low-rank structure on the weight tensor W̃ of the TRL is imposed using a

Tucker decomposition, the randomised Tucker approximation is expressed as:

W̃ =G ×1 M(1) × · · · ×N M(N)

×0

(
U(1)(M(1))>

)
× · · · ×N

(
U(N)(M(N))>

)
= JG̃; Ũ(0), · · · , Ũ(N)K

(5.4)

The main advantage of considering the above-mentioned sampling matrices is that

the products Ũ(k) = U(k)(M(k))> or G̃ = G×1M
(1)×· · ·×NM(N) are never explicitly

computed, the elements are selected from G and the corresponding factors.

Interestingly, in analogy to dropout, where each hidden unit is dropped indepen-
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dently with probability 1 − θ, in the proposed randomised tensor decomposition,

the columns of the factor matrices and the corresponding fibres of the core tensor

are dropped independently and consequently the rank of the tensor decomposition

is stochastically dropped.

The tensor dropout acts as an implicit regulariser on the regression, by limiting

the rank, at each iteration. This can be shown by examining the expectation of

the stochastic loss, which can be expressed deterministically as the unrandomised

empirical loss, plus an additional regularisation term.

Theorem 1. Tensor Dropout with Tucker decomposition is a deterministic regu-

larised loss.

The minimisation objective (equation 5.2) can be reformulated by expanding the

tensor contractions, and the expectation of the minimisation objective becomes:

Eλ
[ 1

S

S∑
k=1

(
y(k) − 〈W̃ ,X (k)〉

)2 ]
=

1

S

S∑
k=1

(
y(k) − θN〈W ,X (k)〉

)2
+
θN(1− θN)

S

S∑
k=1

〈G?2 ×1 (U(1))?2 · · · ×N (U(N))?2, (X (k))?2〉.

(5.5)

5.2.4 Bernoulli CP randomised tensor regression

An interesting special case of equation (5.3) is when the weight tensor W̃ of the

TRL is expressed using a CP decomposition. In that case, we set M = M(1) =

· · · = M(N) = diag(λ), with, for any k ∈ [1 . . R], λk ∼ Bernoulli(θ).

Then a randomised CP approximation is expressed as:

W̃ =
R∑
k=1

Ũ
(1)
k ◦ · · · ◦ Ũ

(N)
k (5.6)

The above randomised CP decomposition on the weights is equivalent to the fol-

lowing formulation:

W̃ =Jλ; U(1), · · · ,U(N)K (5.7)
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Based on the previous stochastic regularisation, for an activation tensor X and a

corresponding label vector y, the optimization problem for our tensor regression

layer with stochastic regularisation is given by:

min
U(1),··· ,U(N)

(
y(k) − 〈Jλ; U(1), · · · ,U(N)K,X (k)〉

)2
(5.8)

In addition, the above stochastic optimisation loss can be rewritten as a determin-

istic regularised one:

Theorem 2. Tensor Dropout with CP decomposition is equivalent to a deterministic

regularised loss.

Eλ
[ 1

S − 1

S∑
k=1

(
y(k) − 〈Jλ; U(1), · · · ,U(N)K,X (k)〉

)2 ]
=

1

S

S∑
k=1

(
y(k) − θ〈JU(1), · · · ,U(N)K,X (k)〉

)2
+
θ(1− θ)

S

S−1∑
k=1

〈J(U(1))?2, · · · , (U(N))?2K, (X (k))?2〉.

(5.9)

5.2.5 R-TRL with replacement

Previously, we focus on the R-TRL with Bernoulli sampling only. Our model is

more general and can be applied to many different sampling settings. Here, we

introduce one such case: the R-TRL with a binary sketching matrix sampled with

replacement. Specifically, we first choose θ ∈ [0, 1].

Mathematically, we then introduce the uniform sampling matrices M(1) ∈ RR1×R1 , · · · ,M(N) ∈
RRN×RN . Mj is a uniform sampling matrix, selecting Kj elements, where Kj =

Rj div θ. In other words, for any i ∈ [1 . . N ], M(i) verifies:

M(i)(j, :) =

 if j > K

Idm(r, :),m ∈ [1 . . Ri] otherwise
(5.10)

In practice this is done efficiently by selecting directly the correct elements from G
and its corresponding factors.
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5.2.6 Experiments

In this section, we introduce the experimental setting, databases used and im-

plementation details. We experimented on several datasets across various tasks,

namely image classification and MRI-based regression. All methods were imple-

mented using PyTorch (Paszke, Gross, Massa, et al. 2019) and TensorLy (Kossaifi,

Panagakis, et al. 2019). For all adversarial attacks, Foolbox (Rauber, Brendel, and

Bethge 2017) was used.

Phenotypic trait prediction from MRI data In the regression setting, we

investigate the performance of our R-TRL in a challenging, real-life application on

a very large-scale dataset. This case is particularly interesting since MRI volumes

are large 3D tensors, all modes of which carry important information. The spatial

information is traditionally discarded during the flattening process, which we avoid

by using a tensor regression layer. In these experiments we train the entire model,

but any pre-trained network can be easily modified post-hoc to make use of the

TRL.

UK Biobank brain MRI dataset (Sudlow et al. 2015a) is the world’s largest

MR imaging database of its kind. The aim of the UK Biobank Imaging Study is

to capture MRI scans of vital organs for 100 000 primarily healthy individuals by

2022. Associations between these images and lifestyle factors and health outcomes,

both of which are already available in the UK Biobank, will enable researchers

to improve diagnoses and treatments for numerous diseases. The data used here

consists of T1-weighted 182×218×182 MR images of the brain for 7 500 individuals

captured on a 3 T Siemens Skyra system. 5 700 are used for training, 800 are used

for validation and 1 000 samples are used to test. The target label is the age for each

individual at the time of MRI capture. We use skull-stripped images that have been

aligned to the MNI152 template (Jenkinson et al. 2002) for head-size normalization.

We then center and scale each image to zero mean and unit variance for intensity

normalisation.

Architecture Regression MAE

3D-ResNet FC 3.23 years
3D-ResNet Tucker 2.99 years
Ours Randomized Tucker 2.77 years
Ours Randomized CP 2.58 years

Table 5.1: Classification accuracy for UK Biobank MRI. The ResNet models with
R-TRL significantly outperforms the version with a fully-connected (FC) layer.
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Results: For MRI-based experiments we implement an 18-layer ResNet with

three-dimensional convolutions. We minimize the mean squared error using Adam

(Kingma and Ba 2015), starting with an initial learning rate of 10−4, reduced by a

factor of 10 at epochs 25, 50, and 75. we train for 100 epochs with a mini-batch

size of 8 and a weight decay (L2 penalty) of 5× 10−4. For Tucker-based R-TRL we

used a tensor with rank 128× 6× 7× 6. For CP-based R-TRL we used a Kruskal

tensor with 82 components. As previously observed, our randomized tensor regres-

sion network outperforms the 3D-ResNet baseline by a large margin, Table 5.1. To

put this into context, the current state-of-art for convolutional neural networks on

age prediction from brain MRI on most datasets is an MAE of around 3.6 years

(Cole, Poudel, et al. 2017).

Robustness study: I tested the robustness of our model to white Gaussian noise

added to the MRI data. Noise in MRI data typically follows a Rician distribution

but can be approximated by a Gaussian for signal-to-noise ratios (SNR) greater

than 2 (Gudbjartsson and Patz 1995). As both the signal (MRI voxel intensities)

and noise are zero-mean, we define SNR =
σ2
signal

σ2
noise

, where σ is the variance. We

incrementally increase the added noise in the test set and compare the error rate of

the models.
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Figure 5.1: Age prediction error on the MRI test set as a function of increased added
Gaussian noise. Shaded regions indicate 95% confidence intervals for 5 independent
runs. A baseline model that predicts the average age from the training set would
achieve an MAE of 7.6 years.

The ResNet with R-TRL is significantly more robust to added white Gaussian

noise compared to the same architectures without it (figure 5.1). At signal-to-

noise ratios below 10, the accuracy of a standard fully-connected ResNet is worse

than a naive model that predicts the mean of training set (MAE = 7.9 years).
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(a) FGS attack on
Bernoulli Tucker R-TRL
with different drop rates.
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(b) FGS attack on CP R-
TRL with different drop
rates.
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Figure 5.2: Robustness to adversarial attacks, measured by adding adversarial noise
to the test images, using the Fast Gradient Sign, on CIFAR-100 and Bernoulli
drop. We compare a Tucker tensor regression layer with dropout applied to the
regression weight tensor (Subfig. 5.2c) to our randomized TRL, both in the Tucker
(Subfig. 5.2a) and CP (Subfig. 5.2b) case. Our approach is more robust.

Brain morphology is an important attribute that has been associated with various

biological traits including cognitive function and overall health (Pfefferbaum et al.

1994; Swan et al. 1998). By keeping the structure of the brain represented in MRI

in every layer of the architecture, the model has more information to learn a more

accurate representation of the entire input. Randomly dropping the rank forces

the representation to be robust to confounds. This is a particularly important

property for MRI analysis since intensities and noise artifacts can vary significantly

between MRI scanners (L. Wang et al. 1998). Randomized tensor regression layers

enable both more accurate and more robust trait predictions from MRI that can

consequently lead to more accurate disease diagnoses.

Ablation Studies on CIFAR-100 In the image classification setting, we per-

form a thorough study of this method on the CIFAR-100 dataset. We empirically

compare this approach to both standard baseline, traditional tensor regression, and

regular dropout, and assess the robustness of each method in the face of adversarial

noise.

CIFAR-100 (Krizhevsky and G. Hinton 2009) consists of 60 000 32 × 32

RGB images in 100 classes, divided into 50 000 images for training and 10 000 for

testing. We processed the data by centering and scaling the intensities of each

image and then augmented the training images with random cropping and random

horizontal flipping.
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ResNet classification Top-1 accuracy

FC 75.88 %
FC + dropout 75.84 %
Tucker 76.02 %
CP 75.77 %
Randomized Tucker 76.05 %
Randomized CP 76.19 %

Table 5.2: Classification accuracy for CIFAR-100 with a ResNet and various regres-
sion layers for classification.

I compare the randomized tensor regression layer to full-rank tensor regression,

average pooling and a fully-connected layer in an 18-layer residual network (ResNet)

(He et al. 2016). For all networks, we used a batch size of 128 and trained for

400 epochs, and minimized the cross-entropy loss using stochastic gradient descent

(SGD). The initial learning rate was set to 0.01 and lowered by a factor of 10 at

epochs 150, 250 and 350. We used a weight decay (L2 penalty) of 10−4 and a

momentum of 0.9.

Classification results: Table 5.2 presents results obtained on the CIFAR-100

dataset, on which this method matches or outperforms other methods, including

the same architectures without R-TRL. Tensor dropout method makes the network

more robust by reducing over-fitting, thus allowing for superior performance on the

testing set.

A natural question is whether the model is sensitive to the choice of rank and θ (or

drop rate when sampling with repetition). To assess this, we show the performance

as a function of both rank and θ in figure 5.3a. The reduction in rank is presented

as the compression ratio = size of full tensor
size of factorized cores and factors

. As can be observed, there

is a large surface for which performance remains the same while decreasing both

parameters (note the logarithmic scale for the rank). This means that, in practice,

choosing good values for these is not an issue.

Performance as a function of rank and θ in replacement R-TRL: To

illustrate the generality of the approach, which does not depend on the Bernoulli

sampling, we perform a similar experiment with a different randomization: instead

of using a Bernoulli random variable, we sample components with replacement

according to a uniform sampling matrix (figure 5.3b). As for the Bernoulli case,

there is a large surface for which performance remains the same while decreasing

both parameters.
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(a) Bernoulli R-TRL (b) R-TRL with replacement

Figure 5.3: CIFAR-100 test accuracy, as a function of the compression ratio (loga-
rithmic scale) and drop rate θ. There is a large region for which reducing both the
rank and θ does not hurt performance.

Comparison with regular dropout: One question is whether the proposed ten-

sor dropout induces more robustness than traditional dropout applied directly to

the weights. To test this, we apply FGSM adversarial perturbations to each method,

with varying magnitudes λ × 10−3, λ ∈ {1, 2, 4, 8, 16, 32, 64, 128}. We sample 1 000

images from the test set (Brendel, Rauber, and Bethge 2018). The models were

trained without any adversarial training, on the training set, and adversarial noise

was added to the test samples using the Fast Gradient Sign method. The results

of which can be seen in figure 5.2. Our model is much more robust to adversar-

ial attacks. Intuitively the method is able to leverage redundancies in the latent

subspace, without creating holes in the weights, unlike dropout. In addition, since

the randomization is used during training, this forces the latent decomposition to

be over-complete and account for noise, thus rendering the model more robust to

perturbation.

5.2.7 Conclusion

We introduced tensor dropout, a novel randomized tensor decomposition, suitable

for end-to-end training of tensor regression layers. Adding stochasticity on the rank

during training renders the network significantly more robust and leads to better

performance. This results in networks that are more resilient to noise, both adver-

sarial and random, without any addition such as adversarial training. Our results

demonstrate superior performance on a variety of real-life, large-scale challenging

tasks, including MRI data and images, as well as increased robustness.
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5.3 High-order Kronecker machines for

multi-modal learning

5.3.1 Introduction

In many medical settings we can obtain observations from different sources. Each

source can contain unique information about the property under study. Our objec-

tive is to combine these sources to leverage all available information. This is vital

for learning an accurate representation, since no single metric sufficiently describes

an individual’s health status. However, combining these different sources is chal-

lenging and most medical analyses are limited to the use of only a single source or

dimension. Some advanced analyses model each source separately and then linearly

combine (i.e. superposition) the individual outputs to create a final output. A

major limitation is that this does not capture nonlinear interactions between fea-

tures. A linearly-restricted model of a biological system can overlook important

underlying processes.

Interaction mechanisms in biological systems are often non-linear and multivariate

(Coffey 1998; Shafer 1995). Combining multiple modalities together can help recon-

struct a latent representation of the health configuration of the individual. Learning

labels from that representation is more powerful, as richer representations will lead

to more accurate predictions of diseases and conditions. The data is already avail-

able yet underutilised, partly due to a lack of suitable analysis methods.

Multi-modal work can be classified based on where the mode fusion takes place.

One strategy is to concatenate the raw data from all modalities and learn a repre-

sentation from that merged data (Havaei et al. 2017; Pérez-Rosas, Mihalcea, and

Morency 2013). In this case, all the learning takes place after the modalities are

combined. At the other extreme, all the learning can be done prior to fusion,

whereby the final output is calculated based on a voting or averaging scheme from

multiple models that each operate on the different modalities (N. Liu et al. 2013;

Nojavanasghari et al. 2016). The third and most diverse class of methods are those

that first have modality-dependent learning, then fuse the learned representations

together and finally learn a joint output (Veličković et al. 2016; Y. Peng et al.

2017).

This can be further divided into observations of a property using the same modality,

for the same scene but captured from different positions (multi-view learning) and

observations of a property using two different modalities (multi-modal learning).
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Multi-modal learning often requires more general representation than multi-view

learning, as the input structures can be of varying forms. Multi-modal methods are

inherently multi-view, but the reverse does not necessarily hold.

However, most of these models are linear combinations of multimodal features and

do not capture higher-order interactions. A major challenge in modelling higher

order interactions is exponential growth in feature dimensions. Factorising the

weight tensors is a useful compromise that can significantly reduce the computa-

tional complexity by restricting the space to a low-rank manifold while maintaining

the expressive freedom for higher-order interactions.

Factorization machines (Rendle 2010) were not originally presented as a multi-

modal learning tool, but its general nature could easily be built upon to account for

multimodal data. That is precisely what has been done in Exponential machines

(Novikov, Trofimov, and Ivan V. Oseledets 2017) and Multi-view FMs (Cao et al.

2016). In the context of brain imaging, Anderson et al. (2014) learn a factorised

latent brain model using multimodal input features.

Here I seek inspiration from and build on these recent methods to develop a method

for modelling high-order interactions between multiple modalities. I model the in-

teractions using a factorised Kronecker product to reduce the number of parameters.

This constrains the learning space which leads to improved training. Specifically,

the contributions are:

• I present high-order Kronecker machines, a method to learn a latent repre-

sentation of the individual from multi-modal brain images.

• I model a low-rank representation of interactions between learned features of

each modality. This reduces the number of parameters, which has been shown

to improve generalisability (5.2).

• To demonstrate that the whole framework can be learned end-to-end in a

multi-modal settings in a large medical imaging application to outperform

single-view and simple multi-view methods.

5.3.2 Kronecker machine

In this section, I will describe the Kronecker machine to model higher order inter-

actions between multiple modalities, using a factorised Kronecker product. Factori-

sation allows us to learn representations in a low-rank tensor space, significantly

reducing the computational cost to make the models tractable.
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The Kronecker machine takes as input a set of tensors (X1,X2 . . .XN), that are

the learned representations of different modes, such as T1-weighted or T2-weighted

MRI, fMRI, genetic data etc, as shown in figure 5.4. The model is described as the

Kronecker product of all the tensors regressed with a weight tensor W :

ŷ =W ◦ (X1 ⊗X2 ⊗ . . .⊗XN) (5.11)

where W ∈ RI1×I2×...IN×l are the learned weights and l is the dimensionality of the

output. Although the model can, in theory, learn from raw data, a representation

of the data, modelled using a method appropriate for that particular might work

better in practice.

The Kronecker product of raw data or sufficiently rich representations of individual

inputs will be intractably large, in most real-world cases. O(dn) for n modalities,

each of dimension d. To alleviate this, we can initialise W as factorised representa-

tion where W = G ×1 U(1) ×2 U(2) × · · · ×N U(N)

With this factorisation the model can be approximated as:

ŷ = (G ×1 U(1) ×2 U(2) × · · · ×N U(N)) ◦ (X1 ⊗X2 ⊗ . . .⊗XN) (5.12)

which can be re-written as:

ŷ = G ◦ [(U(1) ×X1)⊗ (U(2) ×X2)⊗ · · · ⊗ (U(N) ×XN)] (5.13)

This captures the N th-order interactions between the inputs but does not explicitly

model < N th-order interactions. This is clear when inspecting the N = 2 case,

where all weights correspond to products of both modalities - and no weights applied

to only one or none of the modalities. This can be fixed with a simple trick, if we add

an additional element to the low-rank representation of each factor with a constant

value of 1, we can capture the 0th and 1st order interactions. The resulting tensor

is then defined as: Dn = (1,U(n) ×n Xn)

And then the final model with factorised weights and < N th-interactions is written

as:

ŷ = G ◦ (D1 ⊗D2 ⊗ · · · ⊗ DN) (5.14)

The factorisation reduced the complexity to O((k+ 1)n) for rank k decomposition,
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which is significantly lower than composing the full tensor with rank d.

Neural 
network
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Figure 5.4: The Kronecker machine learns a joint factorised model of the interac-
tions between multiple sources. Here three sources are depicted; e.g. T1-weighted
and T2-weighted MRI scans and metadata. Note that in the experiments done here
only the image inputs are used. The images are fed into separate 3D-CNNs that
learn individual representations. The interactions between these representations
are learned by the high-order Kronecker machine. A low-rank constraint through
tensor factorisation reduces the size of the high-order interaction space making the
operation far more efficient.

5.3.3 Experiments

I test the model in two phases. First, I use it to learn a toy image classification

task (MNIST) and compare it with baseline methods to validate that multi-modal

learning is taking place. This is followed by a test on multi-modal UK Biobank

imaging data to investigate its performance in real world medical settings.

MNIST benchmark. To test the effectiveness of Kronecker machine integration

of modalities I split the images into left and right as described previously (Andrew

et al. 2013). This artificial multimodal task serves as a positive control. Models

that are able to effectively use both halves of the images will perform similarly to

a model that has access to the full image. Defining the three baselines is therefore

straightforward: two separate models were trained for either side, and a third model

was trained on the entire 28 × 28 image. A Kronecker machine is then set up in



CHAPTER 5. TENSOR LEARNING 76

the hypothetical scenario where the spatial relationship between the left and right

image halves is unknown. The objective of the model is to learn the relationships

between the two sides without any prior knowledge about the spatial relationship

between the two halves.

The baseline models are simple CNNs with two convolutional layers, ReLU activa-

tion and max pooling, as described in the Pytorch MNIST demo (Paszke, Gross,

Massa, et al. 2019). The left- and right-only configurations follow the same general

configuration and differ only in the sizes of the activation tensors (and therefore,

equivalent weight tensors). The final set of activations is half the size of the full

CNN.

CNN

CNN-L

CNN-R

ŷ

ŷ

ŷ

CNN-L

CNN-R

Kronecker 
machine ŷ

Figure 5.5: Overview of models used for comparison. The full-image CNN (top
row) had access to the entire image while the CNN-L and CNN-R (rows two and
three) had access to only the left and right sides of the image, respectively. The final
model combines the output from CNN-L and CNN-R in a higher order Kronecker
machine. Note that the Kronecker machine is trained end-to-end.

For the Kronecker machine, the final softmax activations were removed and the
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layer instead fed into the fusion model as shown in figure 5.5.

All models were trained from random initialisation and optimised using Adam

(Kingma and Ba 2015) with an initial learning rate of 0.01 for the Kronecker ma-

chine and 1 for the other models. All used a learning rate scheduler as described in

the Pytorch MNIST demo (Paszke, Gross, Massa, et al. 2019) and were trained for

15 epochs.

Age prediction from T1 and T2 weighted brain MR images in UK Biobank.

The next set of experiments explore the Kronecker machine’s ability to combine in-

formation from two medical imaging sources: T1-weighted and T2-weighted MRI

scans. It tests whether the model is able to leverage the interactions between the

two sets of scans. These experiments are done under the assumption that the infor-

mation between the two modalities includes interactions that are both linear and

nonlinear.

I use the same T1-weighted brain MRI data as discussed in section 3.2. The T2-

weighted scans were available for the same individuals and followed identical pre-

processing as for the T1-weighted images. The resulting data gave inputs of 19 379

samples, each with two modalities, T1-weighted scans 182 × 218 × 182 and T2-

weighted scans of dimension 182× 218× 182.

The initial networks for the T1-weighted and T2-weighted are identical and follow

the 3D-Resnet architecture described in chapter 3. However, the activations from

the final convolutional layer were not regressed into an output but instead input

into the Kronecker machine, that factorised the Kronecker product using Tucker

decomposition with a rank of 64 for all dimension. For implementation, the Khatri-

rao product is used, with the batch dimension kept independent and not factorised.

These final activations are of size 6× 7× 6 for each of the two modalities.

For the single channel models, the activation tensors were flattened and a fully-

connected layer convert them to a final output. The concatenated baseline followed

identical architecture except the two modalities are concatenated at the input along

a new dimension, resulting in a 2× 182× 218× 182 input tensor. This is analogous

to the standard representation of RGB colour images. For all experiments I split

the samples at random into train, validation and test sets. The three sets contained

11 520, 3 847 and 3 847 samples, respectively.
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Biological sex prediction from T1 and T2 weighted brain MR images

in IXI. A second set of MR experiments was performed on the IXI brain im-

age dataset (IXI Dataset n.d.). This set of 582 individuals with both T1 and

T2-weighted brain MRI was used to test the model on a classification problem (bi-

ological sex) in a different population than that seen in UK Biobank experiments.

The model was trained from random initialisation. The data was pre-processed

using the methods described in Chapter 3, briefly: padding and/or cropping images

to size 182× 218× 182, per-image histogram intensity normalisation to zero mean

and unit variance. T1 and T2-weighted scans from 480 individuals were used for

training the model and scans from 102 individuals were used for testing.

Implementation details: Single channel 3D-Resnet models were trained as de-

scribed in Chapter 3. Kronecker machine models were trained for 30 epochs using

Adam (Kingma and Ba 2015) with a mini-batch size of 8 with an initial learning

rate of 10−3 and weight decay of 5 × 10−5. The learning rate was reduced by a

factor of 10 at epoch 25.

5.3.4 Results

MNIST

On the handwritten digit (MNIST) toy problem (table 5.3), the CNN with access

to the original full-image performs best with an accuracy of 99.31 %. Restricting

the view to either only the left or right side of the images reduces the accuracy by

around 4 percentage points. This is likely due to the model failing when one side

of a written digit is ambiguous. For example, the left hand sides of the digits 4 and

9 can be identical in certain writing styles. Similarly, the right hand sides of the

digits 3 and 8 can be attributable to either digit depending on writing style. The

position is equally important as a shift to the left or right can make the problem

of identification trivial, e.g. a digit 3 shifted sufficiently to the right will not be

confused with a digit 8.

The Kronecker machine, combining the left and right sides sources of the images,

performed significantly better than either side of the images alone. However, it

did not perform as well as the full-image CNN set-up. Although both models had

access to all pixels, the experiments were not identical. The original image contains

implicit structural information since the two halves are connected in the relevant

spatial dimension, which is lost when the images are bisected. Results on this

control experiment suggest that the Kronecker machine can leverage the two data
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sources.

Table 5.3: MNIST classification accuracy.

Model Top-1 accuracy
CNN - full image 99.31 %
CNN - left only 95.20 %

CNN - right only 95.46 %
Kronecker machine 98.19 %

UK Biobank

The Kronecker machine predicted age with a MAE of 2.39 years on the test set (N

=3 847) of UK Biobank individuals (table 5.4). This is a lower error than the 3D-

ResNet trained on either T1-weighed or T2-weighted MRI scans individually (lowest

MAE of 2.68 on the T1-weighted scans). The Kronecker machine also outperformed

the 3D-ResNet that combines T1 and T2-weighted scans via concatenation in the

input.

Table 5.4: Age prediction accuracy from brain MRI (UK Biobank). Reported here
is the MAE of predictions on the test set.

Model T1-weighted T2-weighted
3D-ResNet 2.68 years 2.74 years

3D-ResNet - concatenated 2.45 years
Kronecker machine 2.39 years

In classification experiments on IXI brain MRI scans, the Kronecker machine out-

performs the other models (last row in table 5.5). Here, the Kronecker machine took

inputs from two 10-layer 3D-ResNets and predicted with an accuracy of 92.31%

on the test set. The 3D-Resnet-10, which is directly comparable, was only able

to predict with accuracies of 89.41% and 90.38% with individual T1 and T2-

weighted scans, respectively. The deeper 18-layer 3D-Resnet performed better

on T1-weighted scans, but did not match the performance of the Kronecker ma-

chine.

Table 5.5: Biological sex classification accuracy from brain MRI (IXI test set,
N=480).

Model T1-weighted T2-weighted
3D-ResNet-10 89.41 % 90.38 %
3D-ResNet-18 91.35 % 84.54 %

Kronecker Machine 92.31 %
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5.3.5 Discussion

The Kronecker machine shows improvements over the other methods. MNIST ex-

periments show that it is combining information from the two sources (halves) of

the image for improved performance. UK Biobank tests show that the Kronecker

machine performs better than concatenating the two channels at the input, similar

to RGB images. The final IXI results further demonstrate benefits of the model.

The reported accuracy is lower on IXI data than UK Biobank due do a significantly

smaller training set.

Toy data experiments on MNIST suggest that the Kronecker machine leverages both

sources by outperforming both CNNs that used only a single side of the image. The

choice of factorisation rank was not explored as part of this study. As we saw in

Section 5.2, rank selection can have a significant impact on the network’s ability to

model the data. If the tensor factors have a rank that is insufficient, the model may

be too restricted to capture the necessary relationships. Conversely, larger ranks

increase computational complexity to consume the operational and memory budget.

Here, I have heuristically selected a rank of 64 and used throughout the study.

The optimal hyperparameter is likely dependent on the dataset and the intrinsic

dimension of the objective (C. Li et al. 2018). Optimising the rank conditioned on

the data will likely result in improved performance.

Related to the previous argument is the Kronecker machine input selection. In these

experiments I have used the state-of-the-art computer-vision models1 (a two-layer

CNN for MNIST and a 3D-Resnet for brain imaging tasks). The ability of the

Kronecker machine, and any mid- or late-stage fusion method, is highly dependent

on the quality of the learned representations returned from the CNNs. Training

the entire model end-to-end does, theoretically, allow the source-specific models to

optimise for representations that are best suited for the fusion model. Nevertheless,

all models are limited in their intrinsic modelling capacity.

A limitation of this study is lack of comparison with more multi-modal integration

models. Without direct comparisons, the relative benefits of the Kronecker machine

over other fusion models cannot be stated. Combining multiple MRI modalities to-

gether is known to provide better results over single-modality methods for medically

related tasks, including brain tumour segmentation (Soltaninejad et al. 2018), iden-

tifying neurological biomarkers for schizophrenia (Sui et al. 2018) and characterising

1Technically, CNNs with more than two layers is optimal for MNIST, here I refer to CNNs as
the class of methods that represent the state of the art.
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peripheral inflammation (Schrepf et al. 2018). However, these studies do not model

the nonlinear interactions between the source modalities as done here. For future

work, a controlled comparison between Kronecker machines and nonlinear fusion

methods, e.g. Exponential machines (Novikov, Trofimov, and Ivan V. Oseledets

2017) and Multi-view FMs (Cao et al. 2016), on an appropriate medical task will

bring the Kronecker machine performance into context. However, the results shown

here demonstrate the feasibility of the Kronecker machine factorisation technique

to combine multi-source medical data.

5.3.6 Conclusion

Combining multiple sources of information remains a challenge due to the exponen-

tial number of interactions that have to be modelled. Kronecker machines provide a

clever way of jointly modelling representations learnt by model-specific architectures

to improve prediction performance.

Low-rank constraints provide another benefit in the fact that the model contains

fewer parameters than the full-rank equivalent. This is particularly important when

deploying models in practice. Real-world products have limited memory capacity

that needs to be managed and shared with other applications. This is particularly

relevant to medical applications as privacy limitations often prohibit patient data

to be sent to a centralised server which can store large models. Smaller models are

more likely to fit on edge or mobile devices that can run model inference on site,

where the data is collected.

The results showcase the flexibility of the Kronecker machines. Their properties

makes them agnostic to the choice of model used for processing source-specific

inputs. They are also independent of the type of data being modelled, opening

up the possibility of incorporating different medical data, such as wearable device

recordings, genetic or metabolomic data to improve predictions. These practical

factors make them versatile and worthy of further research.



Chapter 6

Deep learning for polygenic

predictions

Risk stratification from genome sequences is a growing area of research with large

potential implications for disease prediction and prevention. However, most current

polygenic prediction methods lack the capability to model non-linear effects between

genetic variants. It is believed that the majority of phenotypes are controlled by

small compounding effects and interactions from genetic variants across the entire

genome. Here, I present a novel approach that can predict traits from large genome

sequences by leveraging both local and global interactions between genetic variants.

The model is a deep network of growing locally-connected receptive field layers

that capture an increasing proportion of the genome as the depth increases. In

experiments, the model matched state-of-the-art performance on two large datasets:

1000 Genomes and UK Biobank.

6.1 Introduction

Estimating phenotypes from an individual’s genotype is of high value to disease

prediction and, ultimately, prevention. Although many traits show significant asso-

ciations with Single Nucleotide Polymorphisms (SNP)s (Locke et al. 2015; Kunkle

et al. 2019), recent findings suggest that a significant number of traits are a func-

tion of small effects from a large number of genetic variants that are distributed

across the entire genome (Dudbridge 2013). Further studies have shown that mod-

elling multiple variants that are by themselves not genome-wide significant can lead

to improved prediction (Mavaddat et al. 2019). Therefore, the accuracy of map-

82
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pings from the genome to phenotype is theoretically increased with the number of

modelled genetic variants. This forms the first design motivation for the method

introduced here.

The second factor considered is the inherent structure of the data. As the order of

characters, words and sentences conveys meaning in text, the organisation of the

genome implicitly contains information. As with text, this includes both local and

global structure, from the arrangement of DNA bases in codons to entire haplotype

blocks (Gabriel et al. 2002). However, this auxiliary information is often excluded

in phenotype prediction methods.

Terminology

P-value thresholding at Pthres means to remove all variants with GWAS P-values of

association that are less than Pthres.

Shrinkage: Penalise regression coefficients, typically with either L1 (lasso) or L2

(ridge) regularisation.

Linkage Disequilibrium (LD): SNPs in a locus that are highly correlated with each

other will be overestimated in the PGS. LD pruning SNPs can reduce negative

effects of LD by removing highly correlated variants that bias the model. However,

excessive LD pruning can be detrimental to accuracy if variants that are slightly

correlated, but encode for unique information are removed.

A common approach for risk prediction from genomic data are GWASs, as applied

in chapter 4. Briefly, these studies typically investigate the associations between

individual SNPs and trait. GWASs involve multiple univariate association tests

on every available variant and is hypothesis free, although priors can be built-in

for certain cases (Walters, Cox, and Yaacob 2019; Wallace 2020). Associations

with individual SNPs are useful for many purposes, but they are weak signals for

most traits outside of a limited number of rare diseases (Dudbridge 2016). Efforts

have been made to combine the effect of multiple SNPs to improve heritability

predictions, demonstrated by the use of linear mixed modelling to predict human

height (J. Yang et al. 2010). Recently introduced, Polygenic scores (PGSs), also

known as a polygenic risk scores, are the current prediction method of choice.

The prototypical PGS formulation is a linear weighted sum of contributions from

the selected SNPs (Wray et al. 2014) defined as “a single value estimate of an

individual’s genetic liability to a phenotype, calculated as a sum of their genome-

wide genotypes, weighted by corresponding genotype effect size estimates derived

from GWAS summary statistic data.” (Choi, T. S.-H. Mak, and O’Reilly 2020), or
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more precisely:

ŷ =
P∑
j=1

xjβ̂j

where ŷ is the risk score, j is the index of P SNPs. x is the vector of genetic markers

for the individual and β̂j is the weight assigned to SNP j, as estimated from the

summary statistics.

More recent improvements to PGS, such as lassosum (T. S. H. Mak et al. 2017), have

made use of lasso regularisation to outperform linear regression PGS estimations

in both simulations and real-world risk stratification (J. Elliott et al. 2020). It is

argued that penalised regression makes p-value thresholding redundant.

The aforementioned methods account for only linear interactions between genetic

variants across the genome. Extensions beyond that are faced with three main

hurdles. First, how to effectively use information from summary statistics about first

order contributions. Second, to model nonlinear fusion between multiple genetic

variants. Finally, if and how to select variants to include in the analysis. Here, I

approach these challenges using a novel deep learning architecture for phenotype

prediction from genomic data. Specifically, the contributions are as follows:

• Introduce receptive field networks: a deep neural network architecture that

models nonlinear fusion between multiple variants and accounts for local and

global structure in the genome.

• Demonstrate that receptive field networks match state-of-the-art performance

in PGS prediction on multiple tasks in two large datasets: 1000 Genomes and

UK Biobank.

• Present an intuitive way of incorporating summary statistics into deep learn-

ing models.

• Provide proof-of-concept analysis for interpreting the model to identify vari-

ants of high importance.

6.2 Receptive Field Networks

Here I introduce a novel deep learning architecture for PGS estimation: receptive

field networks. The primary design criteria are to A) learn nonlinear interactions

between variants, B) make use of the inherent structure of genome and C) leverage

summary statistics from previous GWASs. The model seeks inspiration from convo-
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lutional layers in computer vision, and the Wavenet (Oord et al. 2016) and ResNet

(He et al. 2016) architectures. The design is motivated by the idea that initial

layers will both leverage summary statistics and capture local interactions between

variants that are located in the same region on the genome. As the network deep-

ens, further layers will capture more global relationships between the lower-level

features, eventually covering the entire input space to generate an output. The

entire network is trained end-to-end using backpropagation.

The novelty of the method comes from combining residual priors in the input layer

with local layers that build depth and learn interactions between variants. The

residual priors resemble traditional residual layers for deep networks, but learn

the deviation from the available GWAS summary statistics. Local layers connect

proximate variants and representations together and learn a representation for that

grouping.

6.2.1 Residuals priors

To incorporate summary statistics I modify the first layer of the network to learn

deviations (residuals) from the summary statistics. Most neural network layers can

be described in the framework of:

y = F(x,W) + Bx + b

in traditional networks B = 0 and the layer output y is a function of only the layer

input and the optional bias term b. In ResNets, B = 1 and F(x,W) denotes learned

deviations from the identify function. This allows residual networks to be much

deeper than traditional ones, as any redundant layers will tend to F(x,W) = 0,

allowing the information to pass through. I build on this idea in layers that I call

residual priors. In this case B = β̂, i.e. the corresponding genotype effect size

estimate derived from GWAS summary statistics data. Therefore, the unmodified

output (in the case when F(x) = 0) of the layer will be the weighted sum of

the summary statistics and correspond to a classic linear PGS for that region.

When summary statistics are not available, the layer can revert to a typical residual

network mode of operation where B = 1.
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6.2.2 Local layers

The local layer connects regions proximate in the previous layer together. A

schematic overview of this is shown in figure 6.1. There are many frameworks

in which this layer can be described. It can be described of as a standard neural

network layer where only nodes that are within a certain region are used as input. It

can also be thought of as a 1D-convolutional layer where the weights are unshared.

Each patch of input will have a unique set of learned weights. Finally, this is also

a temporally-static interpretation of Wavenets (Oord et al. 2016). Wavenets are a

generative model of raw audio that uses exponentially growing receptive fields to

process audio signals at various timescales. The local layer is defined for a set of

units, xsubset, in the preceding layer as:

ysubset = F
(∑

i

Wsubset,iWsubset,i + bsubset

)
where Wsubset) and bsubset are the learned set of weights and bias unique for this

subset and ysubset is a single unit in the layer.

...

...
Genome

Towards 
output

...

Receptive field 
layer with kernel 
size 3

Input

Figure 6.1: Schematic overview of a Receptive field network. Multicoloured boxes
represent different variants in the input genome sequence. These are connected to
receptive field layers. The size of the receptive field (kernel) in the first layer is 5
with a stride of two. The second layer has a receptive field of 3 and stride of two.
Each subsequent layer connects a greater proportion of the input together and all
parts are eventually connected in the output layer.
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6.3 Data and set up

Two genetic datasets will be used to test and compare the models: The 1000

Genomes Project (Consortium et al. 2012) and UK Biobank (Sudlow et al. 2015a).

Although they contain data from completely different populations and the variants

recorded do not overlap completely, the data is organised in a standard way. In

both cases, the genomic data is represented in a matrix where the rows correspond

to the samples (individuals) and the columns to the variants. X ∈ RN×P where

N is the number of samples and P is the number of variants. In both datasets

the hard-coded or “best guess” variant values are used. Therefore, each variant

can take value of 0, 1, 2, representing the number copies. For labels on geographic

populations, I use data as reported in the 1000G and UK Biobank databases, with

the UK Biobank recording self-reported data.

6.3.1 1000 Genomes dataset

The 1000 Genomes Project (Consortium et al. 2012) is a collection of low-coverage

whole-genome sequencing of over 1 000 individuals from 26 geographical popula-

tions. The resources’ objective was to capture the majority of SNPs at a frequency

of 1%.

Here, I use this dataset for development and comparison. Therefore I follow the

preprocessing described previously (Romero et al. 2017). This included: selecting

variants with frequencies ≥ 5% and with a linkage equilibrium r2 < 0.5, and exclud-

ing sex chromosomes, giving a total of 315 345 variants in the processed data.

The task is to predict the ethnicity (geographic group) of an individual based on

the genotype. By following the same task set up as done by Romero et al. (2017),

I can compare the methods directly.

6.3.2 UK Biobank dataset

UK Biobank is a very large population-based cohort study of approximately 500 000

participants from the UK, aged 40-69 years old. At the initial data collection,

a wide range of records were recorded including blood samples for biochemical

tests, whole genome sequencing, various physical measurements and self-reported

information, with their data linked to Hospital Episode Statistics. For a more

detailed description of the data collection and processing we refer the reader to

Sudlow et al. (2015a).
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The UK Biobank genetic dataset with Coronary Artery Disease (CAD) labels con-

tains 31 894 individuals where each sample x ∈ Z487 293 can take value of 0, 1, 2,

representing the number copies of each effective variant. I used UK Biobank’s

genotyped data and preprocessed by filtering variants with an INFO score > 0.999.

This resulted in a total of 473 876 variants. To adapt and calibrate the model ar-

chitecture initially to UK Biobank data, I performed a heuristic hyperparameter

search on ethnicity prediction and used the best performing setup as a starting

point for CAD hyperparameter tuning.

6.3.3 Benchmark models

To measure the performance of receptive field networks, I compare it against three

baselines: linear regression on all tasks, Diet Networks (Romero et al. 2017) on

ethnicity prediction in the 1000G dataset and a lassosum implementation (J. Elliott

et al. 2020) for CAD prediction in UK Biobank.

The linear regression model provides a lower-bound for performance while remaining

interpretable. The learned weights of the model are regularised with an L2 penalty

(also known as ridge regression), and a relatively high dropout (p = 0.5) to reduce

overfitting on the training set. In cases where summary statistics are available, the

weights of the linear model can be fixed to the corresponding variant effect size. In

other cases, the weights can be learned from a hold-out training set.

Diet Networks (Romero et al. 2017) are a recently introduced deep learning approach

for prediction from genomic data. Faced with the problem of an exponentially

growing number of parameters as more variants are included, the authors fix the

weights in the first layer of the fully-connected neural network to pre-calculated

embeddings, similar to summary statistics. The rest of the network is trained end-

to-end with both a supervised loss and a separate reconstruction loss that serves as

an unsupervised representation learning signal. This method is a direct comparison

for the ethnicity prediction task on the 1000G dataset. Finally, I compare the

performance of the receptive field networks on CAD prediction with a state-of-the-

art lassosum study (J. Elliott et al. 2020).

6.3.4 Set up and hyperparameters

For experiments on the 1000G data, I use a four-layer network. The first three layers

are local layers with receptive field (kernel) sizes 37, 37, 4 and strides 3, 3, 1 in the

first, second and third layer, respectively. The final layer is fully-connected and
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activated with a softmax to generate the logits used for prediction. The networks

were optimised by minimising the cross-entropy loss between the predicted and true

distributions using Adam (Kingma and Ba 2015) for 300 epochs and mini-batch size

of 128 with an initial learning rate of 10−4, decaying by a factor of 10 at epochs

30, 50, 100 and 200. To reduce overfitting and improve generalisation to unseen

data I applied an L2 weight decay of 10−3 on all parameters during training. For all

experiments I split the samples at random into train and test sets that contained

2 760 and 690 individuals, respectively. Summary statistics were not used for the

ethnicity predictions.

Heuristic hyperparameter search experiments on UK Biobank data resulted in a

slightly different architecture. The first three layers are local layers, all with a

receptive field (kernel) size of 64 and stride of 32. The final layer is fully-connected

and gives a scalar output representing the CAD risk prediction. The networks were

optimised by minimising the cross-entropy loss between the predicted and true

distributions using Adam (Kingma and Ba 2015) for 300 epochs and mini-batch

size of 128 with an initial learning rate of 10−2, decaying by a factor of 10 at epochs

30, 50 and 200. An L2 weight decay of 10−3 was applied on all parameters during

training. For all experiments I split the samples at random into train and test sets

that contained 23 920 and 7 937 individuals, respectively.

Summary statistics for CAD predictions were sourced from CARDIoGRAMplusC4D

(Nikpay et al. 2015). That data on coronary artery disease / myocardial infarc-

tion have been contributed by CARDIoGRAMplusC4D investigators and have been

downloaded from www.cardiogramplusc4d.org.

6.4 Results

6.4.1 Task visualisation

Using a similar approach as in chapter 3, I visualise the intrinsic structure of UK

Biobank genetic data using unsupervised manifold learning. UMAP (McInnes and

Healy 2018) learns the embedding shown in figure 6.2. We can see clear structure

in the embedding of ethnicity when individual samples are labelled. Figure 6.3

further highlights the clear separation of classes, with geographically proximate

and overlapping groups, such as Pakistan and Bangladesh, mapping so proximate

regions in the genetic embedding.
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Ethnicity
White British
Irish
White other
White and Black Caribbean
White and Black African
White and Asian
Mixed other
Indian
Pakistani
Bangladeshi
Asian other
Caribbean
African
Black other

Figure 6.2: UMAP of UK Biobank data using self-reported ethnicity coding. Each
point represents an individual, the labels were not available to UMAP during train-
ing.
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Figure 6.3: UMAP of UK Biobank data using self-reported ethnicity coding.
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6.4.2 Experiments on 1000G data

The linear model performs very well, as shown in table 6.1, achieving a top-1 error of

4.06% (±0.94%) (mean ± standard deviation of three runs). Diet Networks perform

worse with an error rate of 7.44%(±0.45%), here mean and standard deviation are

from five runs, as reported in the original study. Top-3 error rate was not reported.

The performance of Receptive Field Networks is between the linear model and Diet

Networks in Top-1 accuracy.

Since the models output the logits of all classes it is possible to rank the Top-3

error rate, i.e. the number of samples in the test set where the correct class was

not one of the three highest logit outputs. Receptive Field Networks outperformed

the linear model in this setting.

Table 6.1: Comparison of models on the ethnicity prediction task in 1000 Genomes
database. The top-1 and top-3 error rates are reported. Top-k error is the propor-
tion of samples in the test set where the correct label was not in the top-k highest
scoring outputs of the model. The top-3 error rate is not reported in the Diet
Networks study.

Model Top-1 Error (%) Top-3 Error (%)

Linear 4.06± 0.94 0.62± 0.16
Diet Networks (Romero et al. 2017) 7.44± 0.45 N/A
Receptive Field Networks 5.52± 0.32 0.47± 0.20

6.4.3 Predicting CAD in UK Biobank

Before predicting CAD, I test the model’s ability to learn from UK Biobank data

on the same task as for 1000G: ethnicity prediction. The Receptive field networks

outperformed the linear model (table 6.2), with a top-1 error rate of 6.95 % and

7.59 %, respectively. This demonstrates that the Receptive field networks are able

to learn a simple task from UK Biobank genetic data. The results suggest that

with more data (number of samples), leads to improved performance as the Re-

ceptive field networks outperform the linear model on the UK Biobank but not on

1000G.

For CAD risk stratification with a case-control dataset, the receptive field networks

achieve an AUC of 0.59 (table 6.3). This is substantially lower than the state-of-

the-art Lassosum method, which achieves an AUC of 0.63.



CHAPTER 6. DEEP LEARNING FOR POLYGENIC PREDICTIONS 93

Table 6.2: Ethnicity prediction in UK Biobank. The top-1 error represents the
proportion of samples in the test set (N=7 937) for which the model predicted an
incorrect class, out of the 14 labels available.

Model Top-1 Error (%)

Linear 7.59
Receptive Field Networks 6.95

Table 6.3: CAD prediction in UK Biobank. Reported here is the AUC of the receiver
operating characteristic curve for predictions of samples in the test set (N=7 937).

Model AUC

Lassosum (J. Elliott et al. 2020) 0.63 (95% CI, 0.62− 0.64)
Receptive Field Networks 0.59 (95% CI, 0.57− 0.61)

6.4.4 Analysis of receptive field activations

I conducted an activation analysis of the receptive field networks to investigate the

contribution of different regions on the final output. The objective of this analysis

is to see whether the network is relying on a small number of localised variants or

utilising effects from across the genome.

The results are presented in figure 6.4. The x-axis plots the distribution of the

mean activations of the units of the first layer of the receptive field network, when

predicting on the test set of 1000G data. Here, activation refers to the output of

the unit after the activation function has been applied. As can be seen on the top

bar plot, a significant number of regions have a mean of 0. In those cases, the

ReLU action has cut-off the negative output of the unit and effectively stopping

a signal being passed through these units. One way to interpret those is that

the network has learnt to ’ignore’ these zero-regions. The majority of the regions,

however, do return a nonzero signal. A region returning a nonzero signal is not a

sufficient condition for the region to be classed as informative. If the region returns

a constant signal independent of the input, then it contains no information. The

variation in the signal is visualised on the y-axis. There is a clear distribution of

standard deviations, indicating that the output of the different regions varies with

the input.
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Figure 6.4: Activation analysis of the first layer of a receptive field network tested
on 1000G data. The distributions plotted are for the mean (x-axis) and standard
deviation (y-axis) of the outputs of the first layer (after ReLU activations). The
wide distribution and relatively few zero values indicate that the network is varying
with a wide range of regions in the genome.
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6.5 Discussion

The Receptive field networks are a promising deep neural network architecture

designed to leverage local and global structure of the genome and nonlinear inter-

actions between variants. I showed that it outperforms both previous deep learning

methods and, given enough data, linear methods.

Given more data, in the form of increased samples and variants, the Receptive

field networks were able to outperform linear methods on the task of classification

by geographic ethnicity. Deep neural networks, including receptive field networks,

have significantly more capacity than their linear counterparts. Although the added

capacity allows them to capture more complex interactions, it comes with the added

cost of more difficult training.

Activation analysis revealed that the network was varying with a large number of

variants across the genome. However, variation does not guarantee influence on

prediction accuracy; a part of these dynamics is due to noise but the extent of

which is unknown. Another limitation is that this analysis is done only on first

layer, regions can be zeroed in deeper layers, therefore nullifying any contribution

from those regions. More advanced activation analyses could potentially be used to

interpret and identify variant contributions.

To what extent the model makes use of structure was not explicitly demonstrated.

Further work is needed, possibly by permuting the genome to break structure as a

negative control. Potentially, high LD pruning might be removing local structure.

Kernel size and stride were heuristically selected with a small set of hyperparam-

eter observations. A comprehensive hyperparameter search will inevitably lead to

improvements in prediction accuracy. Selection for the two hyperparameters is not

independent. When stride > Kernel size
2

, inputs on the kernel periphery are used as

inputs for two adjacent units in the following layer. This leads to an overrepresen-

tation of variants on the kernel peripheries, which can lead to bias.

A limitation of the input definition used in this study is that variants are not evenly

spaced relative to their absolute location on the genome, i.e. one receptive field

might span a region covering M basepairs in the genome, while the next receptive

field covers a different region spanning N basepairs. However, both regions will

take as input the same number of genotyped variants.

Previous attempts at using deep learning for heritability or risk prediction from ge-

netic data have focused on convolutional neural networks (Laksshman et al. 2017;
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Abdollahi-Arpanahi, Gianola, and Peñagaricano 2020). This is unsurprising, as

deep learning has revolutionised computer vision, with CNNs as the go-to modelling

method. The resulting fame of CNNs and abundance of available code implementa-

tions make them the obvious choice for a first attempt at deep learning for genomics,

but this can be misguided. The CNN architecture is not designed for genomic data.

Convolutional kernels are effective for capturing identical patterns that are observed

at different spatial locations in a data sample. For example, in image recognition

early layers learn to detect localised patterns, such as edges, while deeper layers

combine the outputs from the lower layers to identify objects and the final layers

unify the object semantics into a final output (LeCun, Bengio, and G. Hinton 2015).

The convolutional layers used in CNNs are translationally equivariant (Kondor and

Trivedi 2018). This quality allows the models to recognise scenes independently of

where the objects of interest appear - the location of a cat in an image does not

change whether the image contains a cat. However, this is fundamentally different

to genomic data, where the location of specific variants is constant across all data

points. For images, inverting a pixel or other such small perturbations does usually

not change the true interpretation and CNNs are relatively robust to such changes,

as we see in chapter 5. Genomic data behaves differently: changes to a single vari-

ant (SNP) can have profound effects on the phenotype or, more commonly, changes

to a small number of variants across the genome.

Genomic data is more similar to text than to images. Although all three are con-

structed with hierarchical semantics, vision is more pattern-based than the one-

dimensional data types. Small changes to text can completely change the meaning:

with only one removal and one character switch she has one apple can be changed

to she has no apple. CNNs struggle with these semantics and have not established

themselves as state-of-the-art models for natural language processing.

A class of deep learning architecture known as Transformers might be a solu-

tion. Transformers are extremely versatile. Originally proposed for natural lan-

guage processing (Vaswani et al. 2017), they have been adapted with relatively few

changes to work on other structurally different data, including images (Anonymous

2021).

Note that ethnicity is in general not well-defined and includes both genetic and

environmental (social) factors and is arguably a flawed determinant for disease cau-

sation (Collins 2004). However, the concept, as reported in 1000G and UK Biobank

data, includes a signal for ancestral geographic origins and genetic subgroups. Al-

though this labelling is imperfect, these geographic origins can be clustered, as the
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unsupervised manifold learning demonstrates. Learning these clusters serves as a

positive control to indicate that these clusters can be learned in a supervised system,

but the learned model serves no further purpose.

6.6 Conclusion

I have presented Receptive field networks, a deep learning approach that models lo-

cal and global genome structure in addition to nonlinear fusion interactions between

variants. Results show that the prediction advantage of Receptive field networks

over linear models increases with available training data. This suggests that the

network can pick up weaker signals in large population cohorts, demonstrating the

potential for future applications as sequencing becomes more readily available - a

trend that is likely to continue. A further comparison on CAD prediction with

state-of-the-art methods showed that Receptive field networks return similar re-

sults. Accurately predicting the genotypic contribution to CAD risk is important

for prioritising individuals who would benefit from risk reduction through treatment

or intervention.

Building on this concept of localised connections with exponentially growing re-

ceptive fields could provide a platform for architectural variations. With greater

computational resources and hyperparameters optimisation, it is likely that the

performance can be improved even further than seen here. Moreover, adding at-

tention mechanisms to help focus the relationships between layers is an interesting

research direction. Taken together, these results demonstrate novel deep learn-

ing approaches show merit as a predictor for serious health conditions from large

genome sequences.



Chapter 7

Conclusions

In this thesis we have seen how deep learning can be used to learn representations

for health outcome prediction. First, a deep neural network that learns a biomarker

from brain structural MRI that provides a useful measure for investigating systemic

health and can augment neuroradiological research. We also saw how deep learn-

ing can predict polygenic risk scores with performance comparable to, and in some

cases better than, that achieved in clinical settings. These advancements are made

possible by my developments in deep neural networks and tensor methods. Tensor

dropout improves generalisability and robustness to noise, and Kronecker machines

can combine multiple imaging modalities for improved predictive capabilities. To-

gether, these inventions and discoveries highlight the capabilities of deep learning

for health outcome prediction, and set the scene for real-world applications that

can significantly improve health and quality-of-life.

One application of these methods is polygenic risk scoring. More accurate risk scores

allows genetic determinants for ill-health to be identified early and individuals to be

stratified for proactive measures for risk factor remediation. Not only does this lead

to improved personal health outcomes, it also saves valuable healthcare resources

that otherwise would have been spent on reactive treatment.

Taking MRI into account can provide complementary benefits to polygenic risk

scoring. Brain structure is not wholly genetically pre-determined but is influenced

by lifetime exposure to environmental and lifestyle risk factors. Many diseases and

conditions are caused by or associated with such exposures, some of which manifest

as changes in brain structure. Combining genome sequences and brain MRI data in

a multi-modal system can improve prediction capabilities and would be a natural

98
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next step for the proposed Kronecker machine.

With further validation in new populations, these methods can serve in clinical

environments as decision-support tools. Further additions, such as a reliable uncer-

tainty measure on the predictions, can turn the systems such as the ones presented

into a part of a more complete automated healthcare framework, where decisions

are optimised based on previous patients. A reinforcement learning system with

that level of autonomy carries both enormous potential for improvements to effi-

ciency and big risks. A poorly calibrated model that learns nonsense actions can

cause almost unlimited damage. Trust can be built over time with interpretabil-

ity, similar to what I did with the MRI predictions. Interpretations can also guide

future research by shedding light on unknown relationships and aid in hypothesis

forming.

While this work is principally focused on supervised learning, recent developments

in deep self-supervised learning, where models learn representations without labels,

have shown great promise. This is particularly applicable to rare diseases, as pat-

terns from related conditions can be leveraged to improve learning. Moreover, the

disease classification scheme devised by humans does not perfectly reflect the inher-

ent biological relationships between disorders. Self-supervision might help us learn

more about the clusters of diseases, create finer ways of distinguishing between

two seemingly related, but biologically unrelated, diseases. A more comprehensive

overview of disease hierarchy and their relationships can aid identification of treat-

ments that can be adapted to related conditions. It is relatively straightforward to

use the models I presented in such self-supervised learning systems. The structure

of the models can be kept unchanged and only the loss function changed.

Using multi-modal methods to combine different types of data offers an exciting

future research avenue. Using high-order Kronecker machines (or similar methods),

it is possible to leverage both imaging and genomic data. In theory, any relevant

data can be combined in the prediction, including electronic health records, ac-

tivity data from wearable devices and biochemical measurements. UK Biobank

makes such analyses possible with its comprehensive data collection and detailed

labels.

These contributions clearly demonstrate the benefits of using deep learning for

health outcome prediction in both research and clinical settings. I hope my work

inspires other scientists and enables practitioners to build applications with great

and far-reaching impact.



References

Abdollahi-Arpanahi, Rostam, Daniel Gianola, and Francisco Peñagaricano (2020).
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