Frequency domain analysis of the mean and osculating trajectories of LAGEOS-1

Davide Amato,¹ Isaias A. Araya^{1,2} Stardust Global Virtual Workshop II 13 September 2021

Imperial College London, London, United Kingdom

2. Bank of America, London, United Kingdom

Motivation

- US Space Catalogue of Two-Line Elements (TLEs) is still the most complete source of ephemerides for Resident Space Objects (RSOs)
- TLEs originally devised singly-averaged elements under the SGP4 theory
- Individual TLE accuracy limited due to lack of short-periodic terms

Department

PONAUTICS

Singly-averaged elements

- Perturbed two-body problem in osculating elements:
 - Numerical solution timestep dictated by highest frequency, O(n)
 - No closed-form solutions
- Method of averaging: take the average of the dynamics
 - Equivalent to *low-pass filtering*, or removing DoFs from Hamiltonian
 - Numerical solution generally faster
 - Simplification enables general perturbations
- Singly-averaged elements associated with a **theory**, i.e., definition of f(E, t)
 - TLEs associated with Simplified General Perturbations 4

 $\frac{\mathrm{d}\hat{E}_i}{\mathrm{d}t} = n(\hat{a})\delta_{i,6} + \epsilon F_i(\hat{E}, t).$

 $\langle f(\boldsymbol{E},t)\rangle \triangleq \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\boldsymbol{E},t) \,\mathrm{d}\lambda$

Osculating solutions from TLEs according to SGP4

• Mean-to-osculating transformations include short periodic terms $\mathcal{O}(J_2), \mathcal{O}(e^0)$ (Hoots, 2004; Spacetrack Report #3):

$$u = \tan^{-1} \left(\frac{\sin u}{\cos u} \right), \qquad \Delta r = \frac{k_2}{2p_L} (1 - \cos^2 i) \cos 2u$$
$$\Delta u = -\frac{k_2}{4p_L^2} (7\cos^2 i - 1) \sin 2u, \qquad \Delta \Omega = \frac{3k_2 \cos i}{2p_L^2} \sin 2u$$
$$\Delta i = \frac{3k_2 \cos i}{2p_L^2} \sin i \cos 2u, \qquad \Delta \dot{r} = -\frac{k_2 n}{p_L} (1 - \cos^2 i) \sin 2u$$
$$\Delta r \dot{f} = \frac{k_2 n}{p_L} \left[(1 - \cos^2 i) \cos 2u - \frac{3}{2} (1 - 3\cos^2 i) \right]$$

The short-period periodics are added to give the osculating quantities,

leparmen

PONAUTIC

$$r_{k} = r \left[1 - \frac{3}{2}k_{2} \left(\sqrt{1 - e^{2}} / p_{L}^{2} \right) (3\cos^{2} i - 1) \right] + \Delta r$$
$$u_{k} = u + \Delta u, \qquad \Omega_{k} = \Omega + \Delta \Omega, \qquad i_{k} = i + \Delta i$$
$$\dot{r}_{k} = \dot{r} + \Delta \dot{r}, \qquad r \dot{f}_{k} = r \dot{f} + \Delta r \dot{f}$$

US Space Catalogue state-of-art

• Currently (2021), TLEs are obtained as a numerical fit on underlying Special Perturbations solutions (Cappellucci 2006, Hejduk et al. 2013)

Fourier transform

- Understand energy distribution as a function of frequency
- **Discrete Fourier transform:** $E(\omega_k) = \sum_{j=0}^{N-1} e(t_j) \exp(-i \omega_k j), \quad \omega_k = \frac{2\pi}{N} k, \quad k = 0, ..., N-1$
- Amplitude spectrum (one-sided): $A(\omega_k) = \sqrt{2} |E(\omega_k)| / N$
- Classical DFT defined for <u>uniform sampling interval</u> Δt , $t_j = t_0 + j\Delta t$
 - Nyquist critical frequency $\omega_c = \frac{\pi}{\Delta t}$ limits accuracy of frequency reconstruction

Orbit determination from TLEs

- TLEs are 1) **not uniformly spaced** 2) **not updated frequently enough** to ascertain short-periodic terms directly from TLE series (<u>Nyquist limit</u>)
- TLEs are often used as pseudo-observations in an OD process
 - Piecewise osculating solution

LAGEOS-1 osculating trajectory

LAGEOS-1 orbit characteristics:

- Stable MEO, a = 12270 km. No drag, **constant mean period** of 225 minutes
- Very low $\frac{A}{m} \sim 10^{-3} \text{ m}^2/\text{kg}$ implies small SRP perturbations
- Precise Orbit Ephemerides easily available
- Piecewise osculating solution generated from TLEs for epochs from 24-Jul-2015 to 24-Feb-2021
- Sampling interval: 36 minutes, $f_c = 1/2\Delta \approx 3n$
 - *f_c* corresponding to highest frequency of *Brouwer (1959)* short-periodic terms

Credit: NASA

LAGEOS-1 spectral analysis setup

- Only short-periodic terms of frequency 2n from Brouwer (1959) are retained in SGP4
- If TLEs still **consistent with SGP4**, we should see only the retained terms in the amplitude spectrum
- Comparison with THALASSA orbit propagator (Amato et al, 2019)
 - Physical model includes 14x14 geopotential
- DFT window is entire 5.5-year timespan
- DFT performed for each element, with mean removed
 - Will only show a, e, i as secular trend in Ω, ω makes analysis slightly more involved

LAGEOS-1 semi-major axis spectrum

Jeba

PONAUTTE

- Additional harmonics at $n, \frac{9n}{4}$, 3n present in TLE solution
- Complex frequency response in THALASSA solution likely due to higher-order harmonics

LAGEOS-1 eccentricity spectrum

Department

PONAUTIC

XXXI

• Additional harmonics at $n, 2n, \frac{9n}{4}, 3n$ present in TLE solution

LAGEOS-1 inclination spectrum

Department

PONAUTICS

KXX1

• Additional harmonics at n, 2n, 3n present in TLE solution

Conclusion

 Analysis of mean and osculating TLE solutions by examining Fourier amplitude spectrum

leparmei

PONAUTIC

- Non-SGP4 short-periodic terms present in osculating trajectories recovered from TLEs
 - Higher order terms in *J*₂, *e*?
- Short-periodic terms likely introduced through:
 - "Numerical extrapolation" of TLEs to match underlying special perturbations vectors performed by 18th SpCS
 - Observational updates \rightarrow jumps in the osculating solution
- Additional short-periodic terms should not be added to TLEs
 - SGP4-XP ephemeris data (introduced from 2021) might include more short-periodic terms

Future work

- Time-frequency analysis methods for objects in dissipative regimes
 - Short-period Fourier transforms (for spectrograms)
 - Wavelet transforms
- Spectral integration methods
- "Synthetic proper elements" for RSOs
 - Talk by Vartolomei et al. (ESR4) this afternoon

PONAUTTE

