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Every year, humanitarian organizations assign a sizable slice of their limited financial resources to procure,

operate and maintain operational assets, without which service delivery would be impossible. In this

paper, using vehicles as representative of operational assets, we identify policies for sizing and allocating

operational capacity to minimize deprivation costs in a humanitarian development context. In the first

stage, we develop a stochastic dynamic programming model and show that it is too complex to be solved

for medium- and large-size problems. Then, we develop an e�cient heuristic policy that considers the

interaction of asset purchasing and operating decisions when budget is uncertain. Based on a data set

provided by a large international organization, we estimate the parameters of our model to run numerical

experiments. Results demonstrate the following: (i) although budget uncertainty increases the deprivation

costs and decreases capacity utilization, but its negative impact is mitigated if budget saving between

periods is allowed; (ii) a policy to minimize deprivation costs over time may avoid using all available assets

in all the periods; (iii) in situations where the di↵erences of criticality of missions are large, both deprivation

costs and fleet utilization decrease; and (iv) in most situations, a centralized asset procurement model

outperforms a decentralized model in minimizing deprivation costs.

Keywords: asset procurement; fleet management; humanitarian development programs; stochastic dynamic

programming.

1. Introduction

The World Health Organization (WHO) reports that in South Sudan, a country where 91% of

citizens have no access to proper sanitation, essential medical and surgical equipment is outdated.

WHO also reports that the lack of service-delivery capacity (i.e., inadequate fleet size) in Ethiopia is
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the main cause of the low utilization rate of health services, which is only 0.32 per capita.1 Although

humanitarian organizations (HOs) need to maintain an adequate level of relief items (such as food,

blankets, medicines and vaccines) to satisfy their beneficiaries’ primary needs, they also require

su�cient operational assets (such as vehicles, generators and medical facilities) to deliver services.

Operational assets are the supporting equipment used to deliver aid to regions of urgent need.

Typically, they are durable items that supply services over multiple periods, are often expensive

to acquire and require costly, regular maintenance. Yet their shortage poses critical challenges for

e↵ective service delivery in poor countries (McCoy and Lee 2014). Therefore, HOs assign a sizable

slice of their limited financial resources to procure, operate and maintain operational assets. Due to

the amount of spending relative to other expenses and due to its essential role in service delivery,

asset management is arguably the most significant determinant of how e↵ectively the HO delivers

on its mandate. Nevertheless, the idiosyncratic characteristics of how humanitarian development

programs make decisions to acquire and use operational assets present a challenge. In this paper, we

propose policies about the purchase and allocation of operational assets. We also analyze whether

and to what extent external factors a↵ect the decisions of the proposed polices as well as the overall

deprivation costs.

To develop our model, we focus on vehicles as representative of operational assets that also

is the centerpiece of humanitarian service delivery (Eftekhar and Van Wassenhove 2016). For

example, in countries like Afghanistan, where 40% of population lives more than one-hour of travel

from a nearby health center,2 the availability of vehicles enhances the quality of service delivery

-in both frequency and consistency of visits- to outlying communities (McCoy and Lee 2014).

Also, vehicle procurement has characteristics similar to the acquisition of many other types of

assets, like power generators and water-purification systems (Besiou et al. 2014), which makes this

practice a suitable choice for our study. Finally, fleet management is the second-largest expense

to HOs (Pedraza Martinez and Van Wassenhove 2013) and is often cited as a major challenge for

1 World Health Organization. Retrieved February 25, 2015. http://www.who.int/countries/en/
2 World Health Organization. Retrieved July 17, 2016. http://www.who.int/countries/en/
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humanitarian operations (de la Torre et al. 2012); a well-managed fleet saves millions of dollars for

HOs every year (Eftekhar and Van Wassenhove 2016).

By and large, asset procurement in humanitarian settings is subject to many limitations, such

as unpredictability in funding (Natarajan and Swaminathan 2014), earmarked supports (Besiou

et al. 2014), and delays between receiving the pledged cash during the donation process. Although

facing budget limitation, HOs’ essential goal is to minimize deprivation costs, not necessarily the

operating expenditures (Holguin-Veras et al. 2013). In addition to these multiple [conflicting] objec-

tives, inherent challenges are attached to humanitarian operations, which further complicate fleet

management (i.e., purchasing and operating vehicles). First, security problems, lack of reliable

roads, and poor infrastructure depreciate vehicles less predictably than under normal conditions,

and increase the chance of accidents (Eftekhar and Van Wassenhove 2016). Therefore, instead of

following a preset policy based on age or mileage to replace used vehicles, delegations might get

rid of used vehicles much later or earlier than planned. Second, due to the lack of budget for

maintenance and fuel, the available vehicles may not always be usable (McCoy and Lee 2014).

Third, a vehicle is a multiple-use asset assigned to missions with di↵erent levels of criticality (e.g.,

sta↵ transportation and material distribution). Considering all these aspects, this paper proposes

a heuristic model that determines how many vehicles to buy, and how many to operate in each

period to minimize deprivation costs over multiple periods.

To derive general insights from the characteristics of our proposed policies under various opera-

tional conditions, we formulate the problem as an infinite-horizon Markov Decision Process (MDP).

Inspired by Holguin-Verasa et al. (2013) and Vanajakumari et al. (2016), we set minimizing depri-

vation costs as the objective function. In addition to the most common cost functions, such as

vehicle acquisition costs, operating costs, fixed costs and residual value (Vemuganti et al. 1989), we

take three essential factors into account: (i) the probability of individual vehicle dismissal, (ii) the

budget uncertainty and (iii) the variation of missions’ criticality. Since driving the optimal policy

is analytically and numerically complex, we develop a heuristic policy. To test the performance

of our heuristic and to derive additional managerial insights, we run numerical experiments. To
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avoid using synthetic data as the input for our experiments, we use field data to estimate the

model parameters empirically. Applying Bayesian analysis method, we obtain point estimation

for variables based on a data set containing information on 1,074 Toyota Land Cruisers that the

International Committee of the Red Cross (ICRC) had owned from 2000 to 2015 in five countries

(Iraq, Kenya, Liberia, Sudan and Syria).

Our analysis show that an increase in budget uncertainty increases the deprivation costs and

decreases utilization of fleet capacity. However, we find that the opportunity to budget savings

between periods neutralizes the negative e↵ect of budget uncertainty on deprivation costs. Also,

the deprivation costs rise in harsh environments where the probability of vehicle dismissal is high.

Nevertheless, an optimal policy that minimizes deprivation costs over time avoids operating all

vehicles in all periods. This is mainly due to the uncertainty in the budget and vehicle replacements

that suggests adopting frugality to a forward-looking HO. This pattern is di↵erent from commer-

cial, profit-oriented fleet management in which there is no limited financial budget, implying that

developing fleet management solutions specific to humanitarian sector is necessary. Furthermore,

results demonstrate that when the most critical missions are much more important than the least

critical ones, the deprivation costs are less than when the di↵erences of criticality of missions are

small. In other words, the average deprivation costs surges if there is less variation in the criticality

of the missions. Likewise, we observe that in situations where the di↵erences in mission criticality

decrease, fleet utilization grows. Finally, our numerical results indicate that a centralized vehicle

procurement model (with a longer procurement lead time but a cheaper purchase price) outper-

forms a decentralized model (with a shorter lead time but a more expensive purchase price) in

minimizing deprivation costs over time.

Literature review- Given their importance, asset procurement and utilization in the commercial

sector have been the subject of significant research (Rust 1985). Because we chose the vehicle

as a representative of an operational asset, we focused on references that concentrate on fleet

management. In particular, the OM/MS community paid substantial attention to fleet management

-due to its pivotal role in order fulfillment and its cost magnitude- to find an optimal level of
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transportation capacity under di↵erent circumstances. For example, Turnquist and Jordan (1986)

report that fleet sizing is a several billion dollar decision for asset-intensive companies like General

Motors. Attention has been dedicated to vehicle replacement policies (Brosh et al. 1975), fleet sizing

with deterministic demand but stochastic travel time (Turnquist and Jordan 1986), fleet sizing with

stochastic demand (Papier and Thonemann 2008; Slaugh et al. 2016) and optimal fleet capacity

allocation policies (Savin et al. 2005; Papier and Thonemann 2010). This body of literature studies

a variety of novel problems. Yet its results are not tailored to a humanitarian setting.

In a humanitarian context, fleet management has received ample attention in relief operations.

Scholars mostly consider aid distribution (Yi and Ozdamar 2007), vehicle routing (Campbell et al.

2008; Vanajakumari et al. 2016) and scheduling for victim evacuation (Barbarosoglu et al. 2002).

Typical objectives of these studies are to minimize service delivery time or to maximize demand

coverage. Compared to relief operations, fleet management in development programs is narrower in

number of studies but wider in topics; it studies the vehicle supply chain (Besiou et al. 2014), the

replacement policy and vehicle reliability (Pedraza Martinez and Van Wassenhove 2013; McCoy

and Lee 2014), field-vehicle utilization (Eftekhar and Van Wassenhove 2016) and the fleet-sizing

question (Eftekhar et al. 2014). The closest paper to the present study is that of Eftekhar et al.

(2014) that develop a stylized quadratic control model to determine optimal fleet sizing over time.

The objective of their study is to minimize the total operational costs (i.e., purchasing price,

operating costs and vehicle-price decline) over a finite horizon, where demand is deterministic but

varies frequently. In addition to the vehicle replacement policy, their model take a deterministic

earmarked budget (lower-bound) and deterministic budget limitation (upper-bound) into account.

Their model generate simple but interesting insights on fleet sizing in this context. Nevertheless,

it does not take any budget uncertainty, inherent to a humanitarian setting, into consideration.

In this paper, we take one step forward and develop this setting so it reaches to a more sophisti-

cated level. In particular, our model takes into account budget uncertainty, random vehicle dismissal

and di↵erences in mission criticality. Also, the objective function of our model is to minimize human

su↵ering due to a deficit in fleet capacity. Furthermore, our model determines the right quantities
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of vehicles to acquire and to operate. To the best of our knowledge, such a setting has not been

studied before.

The contribution of this paper to the existing literature has three components. First, it extends

the existing literature by conceding limitations and characteristics specific to humanitarian opera-

tions, such as demand variation, di↵erences in mission criticality, budget uncertainty and random

vehicle dismissal. Second, it considers the joint decisions of purchasing and operating vehicles, and

explicitly analyzes the interaction of the two decisions. We show that these decisions are highly

interdependent when missions have di↵erent levels of criticality and the budget is uncertain. Finally,

we construct a model that retains the dynamics enforced by all these limitations and determine a

heuristic policy that achieves close-to-minimal deprivation costs over time.

2. Model Description

In this section, we describe a model for vehicle fleet sizing and allocation at a national (or field)

delegation level with the objective of minimizing deprivation costs. Therefore, we consider a case

where, at the beginning of each period, the delegation makes two critical decisions: (i) how many

vehicles should be acquired and (ii) how many vehicles should be operated. These decisions are

made once the delegation knows the total budget available and the existing fleet size, given the

demand for humanitarian missions in the period. Next, we describe each component of our model.

A table of symbols is available in Appendix A.

2.1. Asset demand and deprivation cost

Similar to Eftekhar et al. (2014), we assume that delegations periodically predict the demand for

transportation services assigned to di↵erent missions and provide estimates of the demand for

capacity (e.g., the number of required vehicles), which we denote by Dt. Demand in humanitarian

development programs is usually predictable (Pedraza Martinez and VanWassenhove 2013), though

it may vary over time (Eftekhar et al. 2014). Therefore, inspired by Eftekhar et al. (2014), we

consider a non-monotonic sinusoidal demand pattern

Dt =


Dm + d sin

✓
2⇡

n
(t+!0)

◆�
, (1)
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in which Dm is the average demand during a cycle, d is the demand oscillation magnitude, n is the

number of seasons per cycle, !0 represents the initial phase, and [.] denotes the closest integer to

(.). Our model and the obtained solution can easily be adapted to any type of seasonal demand

pattern, though we use the assumption of sinusoidal demand for illustration.

If the delegation provides larger capacity (i.e., more vehicles) than Dt, it causes additional

operating and fixed costs, which is not desirable for the HO facing budget limitations. However, due

to the nature of humanitarian missions, it is reasonable to assume that failing to fulfill a demand

results in a deprivation cost. Deprivation cost is “valued as changes in human well-being” and

measures beneficiaries’ su↵ering from not receiving humanitarian aid (Holguin-Veras et al. 2013).

While HOs’ ultimate goal is to alleviate the deprivation costs by maximizing demand coverage,

all missions are not equally critical; the impact of some missions to alleviate human su↵ering

might be stronger than others. This is especially true for HOs like the ICRC that run development

programs in conflict zones as well. Thus, given the resource limitations, the delegation has to

prioritize the operations and assign vehicles to the most critical missions. Holguin-Veras et al.

(2013) explain that deprivation cost should be “monotonic, non-linear, and convex with respect to

the deprivation time”, and their results suggest an exponential function to capture it. An advantage

of the exponential function is that it allows valuing the relative importance of each mission (or

category of missions) with respect to the other missions. Inspired by this approach, we define the

per-period cost function

Rt(at) = ebt[Dt�at]
+ � 1, (2)

where Rt is the deprivation cost in period t if the delegation decides to assign at vehicles (at � 0)

to serve a proportion of demand (i.e., to operate at vehicles in period t). Parameter bt is the

deprivation cost function’s convexity factor that specifies the relative importance of missions. To

find bt rigorously, we borrow a Pareto analysis developed by the Unite States Coast Guard (USCG

2003) that prioritizes missions in health-related risk management. In this analysis, fraction ⌫ of the

total deprivation costs is addressed by fulfilling the most critical (1� ⌫) fraction of all potential

missions in a period. Consequently, bt should satisfy the following equation:
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ebtDt � e⌫btDt = ⌫
�
ebtDt � 1

�
, ⌫ > 0.5. (3)

We assume that, regardless of the variations in Dt from one period to another, the proportion

of missions belonging to each category of importance did not change. In other words, for a given

⌫, the total deprivation costs are the same in any period, that is

ebtDt � 1 = ebt0Dt0 � 1, 8t, t0. (4)

2.2. Purchasing and operating costs

At the beginning of period t, the delegation decides how many new vehicles to buy, denoted by ut, to

complement the existing asset capacity, denoted by xt. Each purchased vehicle costs p, and vehicles

bought during period t become e↵ectively available in period t+1 (i.e., there is a procurement lead

time of one period). Asset utilization imposes operating costs. For instance, assigning a vehicle

to missions in a period incurs costs such as maintenance, fuel and driver’s salary that are called

operating costs and are captured by co > 0 in our model. However, even maintaining an idle vehicle

in the field imposes fixed costs such as a refreshing cost, workshop and o�ce expenses, and a

monthly insurance fee, which we denote by cf � 0.

2.3. Financial resources

The financial resources to manage and operate the fleet that are available at the beginning of

the period is denoted by SBt and consists of three components. First, at the beginning of each

period, the delegation receives a budget, Kt, that is a random variable, which is independent and

identically distributed among periods. We assume that it is su�cient to at least cover the fixed

costs, i.e., Kt � cfxmax. Second, the delegation has some (non-earmarked) budget saved from the

previous periods that is available at the beginning of period t, St�1. The savings in each period

depends on the initial budget, SBt, and the amount spent during that period,

St(at, ut) = SBt � cfxt � coat � put. (5)

Third, the delegation earns revenue through selling used vehicles. Due to the environmental con-

ditions in which HOs operate, vehicle replacement may not follow a preset policy (Eftekhar and
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Van Wassenhove 2016). The literature indicates that many vehicles are replaced following unpre-

dictable events such as accidents. To model this situation, we assume that at the end of each period,

a random number of vehicles are dismissed, and an average residual value, r (0 r < p), for each

sold vehicle is obtained. For the sake of simplicity, we use a fixed probability � that a vehicle is

dismissed in a given period. This implies that the available fleet size at the beginning of a period,

L(xt), follow a binomial distribution with population xt and success probability 1� �. We tested

this assumption with our data set (see Section 4). A Kernel density estimation graphically supports

our assumption that the fleet size follows a binomial distribution, and a chi-square goodness-of-fit

test could not reject it.

For notational simplicity, we define cL = cf + co + �(p� r) as the average per-period cost of a

single vehicle at full utilization.

2.4. Dynamic programming model

We write the state equation for the fleet size in period t+1 as

xt+1 =L(xt)+ut, (6)

and the state equation for the available budget in period t+1 as

SBt+1 = St + r(xt �L(xt))+Kt+1. (7)

For the purpose of numerical analysis, we limit the fleet size to a maximum of xmax and the budget

to SBmax, which seem reasonable, given the typical budget limitations in the humanitarian sector.

This leads us to the following model:

J0(x0, SB0) =minE

 
lim

N!1

1

N

NX

t=0

Rt(at)

!
, (8)

subject to

at  xt, (9)

St = SBt � cfxt � coat � put, (10)
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SBt+1 =min{St + r(xt �L(xt))+Kt+1, SB
max}, (11)

xt+1 =min{L(xt)+ut, x
max} and (12)

St � 0, and at, ut, xt 2Z+. (13)

The objective function minimizes the average deprivation costs over an infinite horizon by choos-

ing the optimal values for purchasing, ut, and operating vehicles, at, in each period. The first

constraint implies that the number of vehicles to operate does not exceed the available number

of vehicles. Constraints (10)-(12) represent the state equations introduced above. Constraint (13)

ensures the non-negativity of the state and decision variables. We consider an infinite horizon,

because humanitarian development programs are typically long-term programs without a prior

known ending.

3. Heuristic Development

Our optimization model contains three state variables (t, xt and SBt), two decision variables (ut

and at) and two stochastic elements (L(xt) and Kt), all of which render it too complex to be

solved for problems of realistic size. Furthermore, the constraints do not allow the optimal policy

to have second-order properties, such as convexity, which implies that the optimal policy does not

have the typical monotone structure3. Consequently, due to the limitations in both analytical and

numerical methods, we propose a heuristic approach, the “Simultaneous Allocation Optimization

(SAO)” heuristic, which generates close-to-optimal decisions in a reasonable time.

3.1. Benchmark policy

In this subsection, we describe a policy of commercial fleet management that we use as a benchmark

for our solution. A key aspect of commercial fleet management (e.g., Papier and Thonemann 2008)

is that serving demand directly leads to cash inflow that can be used to pay for the operating

and fixed costs. Accordingly in this setting, it is optimal to serve as many demands as possible; It

3 For instance, decision variable at is not necessarily monotone in any of the state variables t, xt, or SBt. Likewise,
ut is not necessarily monotone in t.
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would make sense to operate all the capacity in the current period, as long as the revenues of the

marginal mission exceed the operating costs. This yields a myopic policy

ab
t(xt, SBt) =

�
min

⇢
xt,

SBt � cfxt

co
,Dt

�⌫
, (14)

where ab
t(xt, SBt) denotes the number of vehicles operated, which is constrained only by the fleet

size, the available budget to cover the operating costs, and the demand.

Furthermore, as long as the average lifetime revenues from an asset item (e.g., a vehicle) exceeds

its purchase and operating cost, it is reasonable to fulfill the demand completely. This implies an

order-up-to purchasing policy to fill the gap between demand and capacity (i.e., the fleet size) in

the next period. This leads to a purchasing decision of

ub
t(xt, SBt) =min

⇢�
SBt � cfxt � coab

t(xt, SBt)

p

⌫
, (Dt+1 �bxt(1� �)c)+

�
, (15)

where ub
t(xt, SBt) denotes the number of vehicles to be purchased in period t.

The aforementioned policy seems to correspond to the current practice not only in the commercial

sector but also in a humanitarian setting. Based on interviews with practitioners4, we learned

that conventional wisdom in the humanitarian sector is to completely fulfill demand (100% service

level) whenever su�cient capacity is available. Furthermore, the policy described previously also

coincides with a special case of Eftekhar et al. (2014). Consequently, we use the policy described

in equations (14) and (15) as a benchmark for our heuristic policy.

3.2. Development of the SAO heuristic

The SAO heuristic allocates the available budget among the decisions to purchase new vehicles,

to operate a fraction or all of the available vehicles, and to save part of the available budget for

future operations. The SAO heuristic estimates the marginal reduction in deprivation costs of every

possible amount of operating, purchasing and saving. Then, it applies a portfolio optimization to

allocate the available budget to these three allocation options such that the estimated social gain

is maximized. First, we describe how we estimate the marginal value functions.

4 Throughout this project, we discussed with executives of ICRC, Mercy Corps, American Red Cross, Catholic Relief
Services, and several freelance consultants specializing in the humanitarian sector.
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From equation (2), the social gain from operating i vehicles in period t is given by

V a
t (i) = ebtDt � ebt[Dt�i]+ . (16)

Due to the uncertainty in budget and in the number of available vehicles in future periods, as

well as the limitations on the number of operating vehicles, it is di�cult to calculate the marginal

gain from purchasing one additional vehicle. Therefore, we consider the fleet’s aggregated reliability

during a vehicle’s average operational life and use an approximation. To do so, we assume that the

fleet size is a↵ected only by ut in period t+1; for periods after t+1, the fleet size is adjusted by

further purchasing decisions (ut+1, ut+2, . . . ).

Also, due to the budget limitations, it is reasonable to assume that the HO cannot a↵ord owning

and operating a capacity (fleet of vehicles) larger than a certain threshold (i.e., an upper-bound).

To determine this threshold, we use a simplified version of the optimization model (8) in which

all variables are continuous and all stochastic elements are replaced by their expected values (i.e.,

Kt+1 = µ, and L(xt) = (1� �)xt). We denote the optimal number of vehicles to operate in this

simplified problem by āt. For details of the deterministic formulation and for a closed-form solution

of the deterministic model when demand is constant (d= 0), we refer the reader to Appendix B.

With this information, we can estimate the expected social gain from purchasing additional

vehicles in period t, V u
t , by considering the expected social gain in the next period, assuming that

the decision-maker will not operate more than āt vehicles. Therefore, we approximate the social

gain of purchasing i vehicles, given the current fleet size xt, by

V u
t (i, xt) =EL(xt)[V

a
t (min(L(xt)+ i, āt+1))�V a

t (min(L(xt), āt+1))]

=
xtX

l=0

P (L(xt) = l)
�
ebt+1[Dt+1�min(l,āt+1)] � ebt+1[Dt+1�min(l+i,āt+1)]

�
. (17)

Furthermore, we need to estimate the expected social gain from a saving budget for future

periods. Estimating the impact of saving on future social gain is complex since the saved budget

can be allocated either to operating or to purchasing at any time period in the future. We fit a
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function to estimate the value of saving, V s(s|✓), that increases in the amount of saving. As the

deprivation cost function consists of exponential functions, we define V s(s|✓) similarly, and propose

V s(s|✓) =
(
eb

0✓Ŝ � eb
0(✓Ŝ�s) if s < Ŝ,

ebmDm otherwise,
(18)

where bm is the convexity factor associated with Dm, Ŝ = SBmax�r�µ/cL�µ is an upper threshold

on savings, µ/cL is an estimation of the fleet size, b0 is a coe�cient of function V s which can

be determined from the model parameters, and ✓ is the heuristic’s parameter that determines

the marginal social gain of saving. The procedure to approximate V s(s|✓) and to determine b0 is

explained in detail in Appendix C.

After estimating V a
t , V

u
t , and V s, we have to solve the following allocation model to determine

the decisions of the SAO heuristic:

max
uh
t ,a

h
t

{V a
t (a

h
t )+V u

t (u
h
t , xt)+V s

�
SBt � cfxt � coa

h
t � puh

t |✓
�
}, (19)

subject to

cfxt + coa
h
t + puh

t  SBt, (20)

ah
t  xt and (21)

ah
t , u

h
t 2Z+. (22)

Figure 1 demonstrates the behavior of V s(s|✓) under di↵erent values of the heuristic parameter

✓. Larger values for ✓ put higher marginal value on savings and lead to a forward-looking behavior,

whereas smaller values of ✓ favor more myopic strategies (i.e., undervaluing future risks). There-

fore, as a rule of thumb, larger values of ✓ that tend to save more of the budget are suitable for

situations with high uncertainties and larger variations of missions criticality (i.e., high values for

bt). To find the best parameter value, ✓⇤, that yields the lowest deprivation costs, we use simula-

tion and the Quadratic Interpolation method (Bertsekas 1999). Based on ✓⇤, we find the heuristic

decisions for the number of operating and purchasing vehicles, which we denote by ah
t (xt, SBt,✓⇤)

and uh
t (xt, SBt,✓⇤).
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Figure 1 Estimated social gain from saving (V s(s|✓)) for di↵erent values of ✓.

The following proposition establishes second-order properties of the optimization model (19),

which can be used to design an e�cient algorithm to solve the problem in a short time in an

online fashion (i.e., in every time period in which the model is used). The proofs are contained in

Appendix D.

Proposition 1 The maximization function in the optimization model (19) is (non-strictly) con-

cave in ah
t and in uh

t and (non-strictly) sub-modular in ah
t and uh

t .

Proposition 1 implies that ah
t and uh

t are non-decreasing in the available budget SBt, which we

can use to further restrict the search space of the solution to (19). Finally, the computation of the

three functions V a
t , V

u
t and V s and the optimal parameter ✓⇤ can be done once in the beginning

and stored in memory.

3.3. Sensitivity analysis

In this subsection, we discuss how the decisions of the SAO heuristic depend on the model param-

eters. Proposition 2 unveils limits on the average fleet size, the operating level and the deprivation

costs.

Proposition 2 For the situation that the average donations are less than the average cost to fulfill

completely the demand (i.e., µ cLDm), and that the limits xmax
and SBmax

are su�ciently high,

we have the following results:
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1. It holds that µ= (cf + �(p� r))E(xt)+ coE(at).

2. The expression µ/cL is a lower limit for the average fleet size, E(xt), and an upper limit for

the average operating level, E(at).

3. The average deprivation costs, E(Rt), is bounded below by ebm
⇣
Dm� µ

cL

⌘

� 1.

Part 1 of Proposition 2 implies that for a given average budget (µ), an increase in the average

fleet size by one vehicle necessitates a reduction in the average operating level of co/(cf +�(p� r))

vehicles. As expected, since the average received budget and the residual value of a used vehicle

(r) have a positive impact on the total budget, they increase the bound µ/cL on the fleet size

and the operating level. However, it is easy to see that the bound µ/cL decreases in fixed costs,

cf , operating costs, co, purchase price, p, and the probability of vehicle dismissal, �. Therefore, a

well-framed fleet management that maintains vehicles properly and trains drivers frequently seems

to decrease not only the costs of fleet management but also, as a consequence, the deprivation

costs.

4. Numerical Experiments

In this section, we describe performing numerical experiments to assess the performance (i.e., the

optimality gap) of our SAO heuristic and to analyze the sensitivity of the heuristic’s decisions to

the parameters of the model. To avoid using synthetic data as inputs to our numerical experiments,

we use field data to estimate the model parameters empirically. Based on a data set provided by the

ICRC, we obtain point estimation for the variables of interest. Our data set contains information

on 1,074 Toyota Land Cruisers that the ICRC had owned from 2000 to 2015, in five countries;

Iraq, Kenya, Liberia, Syria and Sudan. A main reason for choosing these countries was that,

during the past few years, they simultaneously experienced di↵erent types of disasters, such as war

and political conflict, hunger, and poverty. Consequently, the ICRC has been among the leading

organizations that supplied a wide range of humanitarian services to these countries.

Our data set contains information on each vehicle’s identification number, date of purchase,

purchasing price, number and cost of accidents, maintenance and operating costs, total mileage,



Keshvari Fard, Eftekhar, and Papier: Asset Capacity for Humanitarian Programs

16

mission type, and the delegation (location) in which the vehicle was used. We also know when

and how a vehicle has been dismissed (i.e., sold, donated or scrapped) and its residual value.

Furthermore, the data set provides us with information on the monthly fleet size of each country

over a period of 15 years (mapped in Figure 8, Appendix E).

4.1. Parameter estimation

Similar to Eftekhar et al. (2014), our model is based on vehicle monthly utilization, and we assume

a generic average usage value for each variable. To calculate an average operating cost, we took into

account each vehicle’s total repair and preventive maintenance costs, accident cost, and fuel and

driver cost based on the vehicle’s cumulative odometer. Then, we divided this cost by vehicle age.

The first two cost components were directly found from our data set. However, to calculate the third

component, we used an average fuel and driver cost per kilometer in each country of operations

that was provided by an ICRC expert. Likewise, we calculated an average fixed cost of keeping an

additional vehicle in the fleet, considering driver’s training and refreshing cost, management and

technical sta�ng cost, workshop and o�ce cost, and monthly insurance cost. This data was also

directly provided by an ICRC expert.

For the point estimations, we applied Bayesian analysis that relies on the assumption that

the observed data is fixed while all parameters are random quantities, and provides more robust

estimations than frequentist methods (Kruschke et al. 2012). We estimated the posterior mean,

standard deviation, and minimum and maximum values of each variable. To estimate the posteri-

ors, we assumed a non-informative Uniform prior distribution, and the posteriors were estimated

via Markov Chain Monte Carlo (MCMC) sampling. A non-informative prior assigned equal proba-

bilities to all possible states of the parameter space to rectify the subjectivity problem. To increase

the accuracy of our simulation results, we used 42,500 MCMC iterations with a warm-up period

of 2,500 iterations. The parameter for the seasonal demand variation was obtained from the fleet

size information in the data set. For the budget Kt, we used a truncated log-normal distribution

(see also Okten and Weisbrod (2000)). The mean of Kt was also obtained from the fleet size infor-

mation, which gave the more accurate estimate. For the standard deviation of Kt (�) we used the
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variation in the budget data. The maximum values for fleet size and budget were chosen to be

su�ciently large so that the impact on the results was negligible. We report the results of the cost

and demand estimations as well as all parameters used in the numerical experiments in Appendix

E.

4.2. Performance assessment of the SAO heuristic

To run our experiments, we used the Policy Iteration Method (Puterman 2005) and simulated the

system with 50 replications, each of which consisted of 62,000 iterations that included a warm-up

period of 2,000 iterations. Due to the size of the problem, it was impossible to obtain an optimal

policy for large fleet sizes in an acceptable runtime. Therefore, to assess the optimality gaps, we

focused on the data of Sudan and Syria from 2000 to 2005, when both countries had comparably

small fleets. We kept the average budget (µ) constant and systematically changed the average level

of demand to obtain a ratio of average budget to demand (funding level µ/(cLDm)) of 0.5, 0.75 and

1.0. We also changed the factor of mission criticality (⌫) from 0.55 to 0.75. To make the scenarios

comparable when varying ⌫, we scaled the total deprivation costs potential to have the same total

value under any ⌫. In all our numerical experiments, we used a three-month interval as one period.

To analyze the performance of the heuristics, we use the social service level, (SSL), the ratio

of deprivation costs avoided through fleet management to the total potential to avoid deprivation

costs, i.e.,

SSL= 1� E(Rt)

ebmDm � 1
. (23)

Note that ebmDm in equation (23) represents the highest possible deprivation costs, when no mission

is satisfied in any period. The social service level can attain values between 0% and 100%, with

larger values indicating lower deprivation costs.

In Table 1, we compare the optimal, heuristic and benchmark policies, as well as the lower

bound (see Proposition 2), and report the deprivation costs, the social service level, (SSL), and the

optimality gap. The values are determined with simulation. The half-widths of all 95% confidence

intervals are less than 1% of the total performance.
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Table 1 Deprivation costs and social service levels of the SAO heuristic and the benchmark policy (data of

2000-2005).

Country Funding Solution ⌫ = 0.55 ⌫ = 0.65 ⌫ = 0.75
level dep. c. SSL gap dep. c. SSL gap dep. c. SSL gap

Sudan

0.5

lower bound 0.50 60.0% - 2.75 79.0% - 14.61 94.0% -
optimal 0.51 59.1% - 2.94 77.6% - 17.41 92.8% -
heuristic 0.51 59.0% 0.2% 2.95 77.5% 0.1% 17.77 92.7% 0.2%

benchmark 0.64 48.2% 18.5% 4.62 64.7% 16.6% 47.85 80.3% 13.5%

0.75

lower bound 0.22 82.0% - 0.94 92.8% - 2.95 98.8% -
optimal 0.24 80.8% - 1.13 91.4% - 4.53 98.1% -
heuristic 0.24 80.6% 0.2% 1.15 91.2% 0.2% 4.74 98.0% 0.1%

benchmark 0.34 72.9% 9.8% 2.30 82.4% 9.8% 22.68 90.7% 7.6%

1.00

lower bound 0.00 100.0% - 0.00 100.0% - 0.00 100.0% -
optimal 0.05 95.6% - 0.24 98.2% - 0.81 99.7% -
heuristic 0.06 95.3% 0.3% 0.26 98.0% 0.2% 0.91 99.6% 0.0%

benchmark 0.08 93.8% 1.9% 0.44 96.6% 1.6% 3.41 98.6% 1.1%

Syria

0.50

lower bound 0.50 60.0% - 2.75 79.0% - 14.61 94.0% -
optimal 0.50 59.7% - 2.83 78.4% - 15.79 93.5% -
heuristic 0.50 59.7% 0.0% 2.83 78.4% 0.1% 16.03 93.4% 0.1%

benchmark 0.57 54.1% 9.4% 3.85 70.6% 10.0% 35.94 85.2% 8.9%

0.75

lower bound 0.22 82.0% - 0.94 92.8% - 2.95 98.8% -
optimal 0.23 81.6% - 1.01 92.3% - 3.63 98.5% -
heuristic 0.23 81.6% 0.0% 1.03 92.1% 0.1% 3.76 98.4% 0.1%

benchmark 0.30 76.3% 6.6% 1.86 85.8% 7.0% 16.17 93.3% 5.2%

1.00

lower bound 0.00 100.0% - 0.00 100.0% - 0.00 100.0% -
optimal 0.03 97.3% - 0.13 99.0% - 0.39 99.8% -
heuristic 0.04 97.2% 0.2% 0.15 98.9% 0.1% 0.45 99.8% 0.0%

benchmark 0.04 96.4% 0.9% 0.23 98.2% 0.8% 1.50 99.4% 0.5%
dep. c. = Deprivation costs, gap = Optimality gap.

As shown in Table 1, the optimal policy achieves a performance fairly close to the lower bound.

Furthermore, the SAO heuristic demonstrates a performance close to the optimal policy, with an

average optimality gap of 0.12%, and it outperforms the benchmark policy (average optimality gap

of 7.21%) by a wide margin.

4.3. Sensitivity analyses and discussion

Next, we conducted numerical experiments to conclude managerial insights. Unless otherwise noted,

we used a funding level of 75% and a factor for di↵erences in mission criticality of ⌫ = 0.75.

Furthermore, for analyses in which we varied the parameters cL, p, or �, we also increased the

average budget (µ) to keep the level of funding constant.

Impact of uncertainty and variability- Our results indicate that uncertainty in budget and vari-

ability in demand have negative consequences on the deprivation costs and on fleet utilization (i.e.,

the number of vehicles operated compared to the size of the total fleet). These results, graphically

shown in Figure 2, are in line with conventional wisdom that uncertainty renders the operations
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(d) Impact of budget variation on fleet uti-

lization (data of Syria)

Figure 2 Impact of demand and budget variation on deprivation costs and fleet utilization.

problem more complex to manage.

Moreover, an increase in the vehicle dismissal probability, which corresponds to a decrease in the

average vehicle life time, increases the deprivation costs (Figure 3a) but reduces the fleet utilization

(Figure 3b). In fact, a greater vehicle dismissal probability pushes the delegation to more quickly

adjust the fleet size to the seasonality of demand. Yet, ceteris paribus, the impact of the vehicle

dismissal probability on the deprivation costs seems to be less severe than the impact of budget

uncertainty (cf. Figure 2c).

Impact of cost parameters- The impact of operating cost on the asset management policy is

interesting. With an increase in the operating unit cost (co) the decision-maker is more conservative

and spends resources on the more critical missions. Therefore, as shown in Figure 4a, an increase

in operating cost causes a decrease in fleet utilization. On the contrary, when the vehicle purchase

price increases, the decision-maker will keep a smaller fleet but will use the available vehicles as

often as possible, thus resulting in a higher fleet utilization (Figure 4b).
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(b) On fleet utilization (data of Syria)

Figure 3 Impact of the rate of vehicle dismissal on service level and fleet utilization.
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(a) Impact of operating cost (data of Syria)
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(b) Impact of purchase price (data of Syria)

Figure 4 Impact of the operating cost and purchasing price on fleet utilization.

Impact of the di↵erences in mission criticality- Figure 5a indicates that the deprivation costs

decrease according to the di↵erences of the criticality of the humanitarian missions (⌫). This means

that in situations where the most critical missions are considerably more important than the least

critical missions, the average deprivation costs is less than in situations where the di↵erence between

the most and the least critical missions is small. Furthermore, when the di↵erences in mission

criticality increase, the number of operating vehicles (i.e., the number of missions fulfilled) and the

utilization of the fleet decrease. This happens because the cost of missing an important mission

in the future is high, such that a forward-looking delegation avoids covering the less important

missions in the current period and preserves the budget for the future; the delegation needs to

protect the budget for future more critical missions. This observation is confirmed by Figure 6,

which indicates that the level of budget savings between periods increases with ⌫. Our finding is

similar to revenue management in the commercial sector, where a firm that does not have enough
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(b) On fleet utilization (data of Syria)

Figure 5 Impact of the di↵erences in mission criticality on deprivation costs and fleet utilization.
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Figure 6 Impact of di↵erences in mission criticality on the savings pattern (data of Iraq).

resources to cover all demands reserves its limited resources for the most profitable demand. Thus,

our findings imply that, ceteris paribus, delegations that are engaged in a limited range of programs

might maintain a higher fleet utilization over time compared to those delegations engaged in a

wide range of services.

5. Model Extensions

In this section, we extend our model to analyze the impact of the flexibility on budget savings as

well as the impact of procurement lead time on deprivation costs and fleet utilization.

5.1. Impact of flexibility on budget saving

Until now, we have assumed that financial donations can be fully saved for future periods. This

may not always be possible (e.g., for earmarked budgets that have to be used in a given period).

We extend our model to allow for partial saving by introducing a new parameter 0 ⇢ 1 that

indicates the flexibility of saving; a value of ⇢= 1 corresponds to the model that we have studied

so far in which saving is fully possible, while a value of ⇢= 0 refers to a situation where budget
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has to be spent entirely in the period in which it is received.

We can incorporate this new parameter by updating the state equation (11) to

SBt+1 = ⇢St + r(xt �L(xt))+Kt+1. (24)

Since the SAO heuristic has been designed for full saving flexibility, we numerically determined

the optimal policy to analyze the impact of parameter ⇢ on the results. Figures 7a-b indicate that

the possibility of budget savings can significantly reduce the deprivation costs, regardless of budget

variation and di↵erences in mission criticality. The importance of saving seems to be particularly

critical when the budget variation is high.

The opportunity of budget savings between periods seems to neutralize the negative e↵ect of

budget uncertainty to some degree. This indicates that a non-earmarked budget, which can also be

used for later periods, has more value than earmarked budgets. Interestingly, we also observe that

the saving option has a positive impact on fleet utilization (Figures 7c-d). This result is similar

to that of Besiou et al. (2014) that disclose a negative impact of an earmarked budget on the

performance of humanitarian operations.

5.2. Impact of procurement lead time

Besiou et al. (2014) compare vehicle procurement models (i.e., centralized, hybrid and decentral-

ized) by analyzing the procurement costs (e.g., vehicle purchasing prices from global versus local

markets, lead time costs, etc.). They highlight that vehicle procurement costs in a decentralized

model (where each delegation purchases vehicles from the domestic market) are higher than in

a centralized model (in which the headquarters purchase vehicles directly from a manufacturer).

Nevertheless, their results indicate that a decentralized model provides a higher service level driven

by the shorter procurement lead time. In their study, service level is defined as the ratio of available

vehicles to the total number of required vehicles. We looked at the same question with a di↵erent

objective function, where service level is based on deprivation costs.

To analyze the impact of procurement lead time on the deprivation costs, we define two new
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Figure 7 Impact of the possibility for budget saving (data of Sudan).

models, one with a zero procurement lead time and one with two periods of procurement lead time.

The case of one period of lead time corresponds to the standard case described in Section 2.

In the scenario with zero lead time, we have to adapt equations (9), (11) and (12) with

at  xt +ut, (25)

SBt+1 =min{St + r(xt +ut �L(xt +ut))+Kt+1, SB
max}, (26)

xt+1 =min{L(xt +ut), x
max}, (27)

to allow for the immediate availability of ut vehicles.

In the case of two periods of procurement lead time, we have to add a new state variable wt to

describe the number of vehicles that are purchased in period t�1. Hence, we replace equation (12)

with

xt+1 =min{L(xt)+wt, x
max} (28)

and add the additional constraint
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wt+1 = ut. (29)

Models with longer lead times can be defined equivalently through the introduction of additional

state variables, but lead to significantly higher computational complexity.

Similar to that of Besiou et al. (2014), our trade-o↵ is based on the assumption that shorter

lead times often come at additional procurement costs. Hence, we compare the impact of higher

vehicles procurement costs in the case of zero lead time by considering price mark-ups of 0%, 50%

and 100% on the base vehicle price. Furthermore, we vary the standard deviation of budget and

the rate of vehicle dismissal. Table 2 reports the deprivation costs for each scenario for Syria.

Table 2 Deprivation costs for di↵erent scenarios.

� �
Lead time Price markup ⇥0.5 ⇥1 ⇥1.5 ⇥0.5 ⇥1 ⇥1.5

2 - 3.370 3.755 4.801 3.627 3.755 3.879
1 - 3.254 3.631 4.600 3.556 3.631 3.719
0 0% 3.118 3.502 4.472 3.507 3.502 3.534
0 50% 6.323 6.825 7.987 5.110 6.825 8.701
0 100% 10.453 11.050 12.288 6.990 11.050 15.067

The results indicate that a procurement lead time of one period (which corresponds, in our

setting, to three months) has a negative impact on deprivation costs only if the manager is able to

procure the same vehicle at the same price and with no lead time, which is nearly impossible in

the real world. While decreasing the procurement lead time reduces per se the deprivation costs,

this e↵ect is mitigated by the vehicle price markups, which limit the financial resources for current

and future operations.

Also, results surprisingly indicate that the advantages of a centralized fleet policy are particularly

strong when the degree of uncertainty is high. Finally, we find that the centralized model is more

a↵ected by budget variation, i.e., the sensitivity with respect to the budget variation is higher than

the sensitivity with respect to the vehicle dismissal rate, whereas the decentralized model seems

to be more a↵ected by the vehicle dismissal rate.
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6. Conclusion

In this article, we develop a model for purchasing and operating asset capacity in a setting of

humanitarian development programs. The objective of our model is to minimize the human suf-

fering due to insu�cient humanitarian aid. We extend existing research by considering mission

criticality, budget uncertainty and uncertainty in asset replacement. We develop a heuristic based

on a portfolio approach, which achieves close-to-optimal results, with an average optimality gap in

our numerical experiments of 0.12%, outperforming existing policies by a wide margin. Based on a

real data set of the ICRC’s vehicle fleets in five di↵erent countries from 2000 to 2015, we perform

numerical experiments and derive managerial insights.

We find that budget variability increases the deprivation costs and decreases asset utilization.

Our results indicate, though, that a way to mitigate the negative e↵ects of system uncertainty

(such as budget uncertainty) is to allow the delegations to save a proportion of budget between

periods for future operations. Our results also demonstrate that it is not always preferable to

operate all assets at capacity in all periods, which renders asset management for humanitarian

development programs di↵erent from asset management in the commercial sector. Finally, we find

that di↵erences in mission criticality, even though they decrease the deprivation costs, lead to a

fewer missions served.

We believe that this avenue of research could be further developed by empirical analysis and/or

analytical work to better understand deprivation cost in humanitarian development settings. Also,

we studied a single-type asset procurement policy, and further research can explore multi-type asset

settings. Finally, it seems to be worthwhile to analyze settings in which an HO should trade-o↵

between operational assets and consumable relief items.
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Appendix A: Table of symbols

Model variables and parameters
at The operating decision in period t
bm Convexity factor of the demand function corresponding to Dm

bt Convexity factor of the demand function in period t
cf Fixed cost of a vehicle per period
cL The average per period logistics cost of a vehicle in case of 100% utilization rate
co Operating cost of a vehicle per period
d Magnitude of demand oscillation
Dm Average demand
Dt Demand in period t
� The probability of having to dismiss a vehicle in one period
Jt(xt, SBt) The average social cost under the optimal policy, with state variables xt and SBt, and time period t
Kt Financial donations received at the beginning of period t
L(xt) Part of the fleet size in period t that can be used in period t+1
µ The average financial donations received per period
n Number of periods in one cycle
⌫ Pareto parameter identifying the relative importance of the missions
!0 Initial phase of the demand function
p Purchasing cost of a vehicle
r Residual value of a dismissed vehicle
Rt The social cost incurred in period t
St Budget remains as savings at the end of period t
SBmax Maximum amount of budget
SBt Available budget at the beginning of period t
SSL Social service level
� The standard deviation of financial budget
t Indicator of a period
ut The purchasing decision in period t
xmax Maximum number of vehicles
xt Available vehicles at the beginning of period t

Heuristic and benchmark variables and parameters
ab
t (u

b
t) Benchmark operating (purchasing) policy in period t

ah
t (uh

t ) The heuristic policy for operating (purchasing) in period t under a given value of ✓
āt Optimal number of vehicles to operate in period t of the simplified problem
b0 Coe�cient of the gain function V s

Ŝ Upper threshold for savings
✓ Heuristic parameter
V a
t (i) Social gain from operating i vehicles in period t

V s(s|✓) Estimated social gain from a saving s under the heuristic parameter ✓
V u
t (i, xt) Estimated social gain from purchasing i vehicles in period t, when the fleet size is xt

ūt Optimal purchasing decision in period t of the simplified problem

Appendix B: Optimizing deterministic problem

The deterministic problem of Section 3.2 can be written as follows:

min 1
n

Pn
t=1Rt(āt) (30)

subject to

āt  xt, (31)

St = SBt � cfxt � coāt � pūt, 1 t n (32)
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SBt+1 =min{St + r�xt +µ,SBmax}, 1 t n (33)

xt+1 =min{(1� �)xt + ūt, x
max}, 1 t n (34)

(x1, SB1) = (xn+1, SBn+1), (35)

āt, ūt � 0, 1 t n (36)

where n was defined as the number of seasons and the minimization is taken over the controls ūt and āt.

For a simple case of constant demand, Proposition 3 expresses the optimal number of vehicles to operate,

āt, and the optimal number of vehicles to purchase, ūt, and describes the system in steady state.

Proposition 3 For a constant demand (d= 0),

• the optimal number of operating vehicles is equal to the fleet size āt = xt,

• the optimal purchasing decision is given by

ut =
SBt � cfxt � coat

p
, (37)

• the steady state fleet size, x̄, is given by

x̄=min

⇢
Dm,

µ

cL

�
, (38)

where, in the steady state, the number of operating and purchasing vehicles are āt = x̄ and ūt = �x̄.

Appendix C: Deriving V s
t (s|✓)

To design a proper function that estimates the social gain from a certain amount of savings, we note that

according to Equation (11), budgets larger than SBmax will be lost. Expression r�xt+µ=E(r(xt�L(xt))+

Kt+1) is the expected budget to be received at the end of period t. Therefore, we set the social gain of any

value of savings greater than SBmax�r�xt�µ to zero in our estimation. To simplify, we define the following

variable:

Ŝ = SBT � r�
µ

cL
�µ, (39)

where µ/cL comes from Proposition 3 and estimates the average fleet size in each period. For any s < Ŝ, the

behavior of V s(s|✓) should resemble the behavior of Jt(xt, SBt) in SBt. The following Lemma presents an

important characteristic of Jt.

Lemma 1 The average deprivation costs is decreasing in the budget, i.e. Jt(xt, SBt) is decreasing in SBt.
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Since the objective in Equation (19) is to maximize the social gain, which is the inverse of the objective in

the main model (minimization of the deprivation costs), we need to propose a function V s that is increasing

in s, so that it provides a similar behavior. Moreover, since our value function is the sum of exponential

functions, we also use an exponential function for V s. We assume V s(s|✓) =�eb
0(✓Ŝ�s) + b00, where ✓ is the

heuristic parameter. b0 and b00 are functions of ✓, where we use the following equations to determine their

values:

V s(0|✓) = 0, (40)

V s(s� Ŝ|✓) = ebmDm . (41)

Note that bmDm = btDt 8t, according to Equation (4). Equation (40) implies that the expected social gain

from no saving is zero, while Equation (41) expresses that for any s� Ŝ, the expected social gain is equal to

the social gain from satisfying all the demands in one period. Therefore, V s(s) can be written as in Equation

(18), where b0 and b00 are calculated by solving the following equations:

eb
0Ŝ✓ � eb

0Ŝ(✓�1) = ebmDm , (42)

b00 = eb
0✓Ŝ . (43)
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Online Appendix

Appendix D: Proofs

Proof of Proposition 1 We first establish concavity of the gain functions that is V a
t (a) is increasing and

concave in at, V u
t (ut, xt) is increasing and concave in ut, and V s(s|✓) is increasing and concave in s.

The proof that V a
t (at) is increasing and concave in at is straightforward.

Properties of V u
t (u|xt): First, we can rewrite V u

t (u|xt) as follows:

V u
t (u,xt) =EL(xt)āt+1�ut

�
ebt+1[Dt+1�L(xt)] � ebt+1[Dt+1�L(xt)�ut]

�
+

EL(xt) |āt+1�ut<L(xt)āt+1

�
ebt+1[Dt+1�L(xt)] � ebt+1[Dt+1�āt+1]

�
.

Note that EL(xt) |L(xt)>āt+1(e
bt+1[Dt+1�āt+1] � ebt+1[Dt+1�āt+1]) = 0.

V u
t (ut, xt) is decreasing in ut:

For every xt � 0 we have:

@V u
t

@ut
= bt+1e

bt+1[Dt+1�L(xt)�ut] > 0.

V u
t (ut, xt) is concave in ut: For every xt � 0 we have:

@2V u
t

@u2
t

=�b2t+1e
bt+1[Dt+1�L(xt)�ut] < 0.

Properties of V s(s|✓): First we show that b0 � 0.

8s > 0 : V s(s|✓)> 0 =) eb
0✓Ŝ

✓
1� 1

eb0s

◆
> 0 =) eb

0s � 1 =) b0 � 0. (44)

V s(s|✓) is increasing in s:

@

@s
V s(s|✓) =

(
b0eb

0(✓Ŝ�s) > 0 if s Ŝ,

0 otherwise.

V s(s|✓) is concave in s:

@2

@s2
V s(s|✓) =

(
�b02eb

0(✓Ŝ�s) < 0 if s Ŝ,

0 otherwise.

Since s is linear in at and ut, concavity of V s in s implies the concavity of V s in at and ut as well. From

the above concavity results follows that all three gain functions are concave in ut and in at (not necessarily

jointly). Thus, the sum of the functions is also concave.

Recall that submodularity of the saving function V s(·) in ut and at can be established as V s(ut +1, at)�

V s(ut, at) being non-increasing in at (we abuse notation and write V s directly as a function of ut and at).
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But this follows directly from the concavity of V s(·) in s and the fact that s = SBt � cfxt � coat � put,

which implies that V s((SBt � cfxt � coat � put)� p|✓)� V s(SBt � cfxt � coat � put|✓) is non-increasing

in at. Submodularity of the maximization function then follows from the fact that the sum of submodular

functions is also submodular and that the two remaining functions V a
t (at) and V u

t (ut, xt) are by definition

submodular in both ut and at because they each depend only on a single one of the two parameters.

Proof of Proposition 2 The first part holds, because

E(Cost per period) = cfE(xt)+ coE(at)+ pE(ut)� rE(L(xt)) = (cf + �(p� r)E(x)+ coE(at) = µ, (45)

because when in a stable system in which the maximum limits are su�ciently high, the average cost per

period corresponds to the average donations per period.

Next, we have to prove that E(at)
µ

cL
and E(xt)�

µ

cL
.

Since µ cLDm, assume E(at)>
µ

cL
. In this case we also have E(xt)�E(at)>

µ

cL
.

E(Cost per period) = cfE(xt)+coE(at)+p�E(xt)�r�E(xt)> cf
µ

cL
+co

µ

cL
+(p�r)�

µ

cL
= µ=E(Budget per period),

(46)

which violates the budget constraint. Therefore E(at)
µ

cL
.

On the other hand, if we assume that E(at) < E(xt) <
µ

cL
, by the same reasoning we get:

E(Cost per period)<E(Budget per period). However, it is not an optimal solution, since by increasing E(xt)

we can also increase E(at) and consequently, decrease the social cost. Therefore in optimality, we have

E(xt)�
µ

cL
�E(at).

Next, we show that in the optimal solution E [(at �E(at))(bt �E(bt))]< 0. The reward function is Rt =

ebt(Dt�at) � 1 = ebmDm�btat � 1, since according to Equation (4), we have

btDt = bmDm 8 t =) @at
@bt

=
�atebmDm�btat

btebmDm�btat
< 0 =) @ (at �E(at))

@ (bt �E(bt))
< 0

since E(at) and E(bt) are fixed values. From the equation above it is concluded that

E [(at �E(at))(bt �E(bt))]< 0. Moreover, according to part 1 of the proposition, E(at)
µ

cL
. Therefore:

E(btat) =E(bt)E(at)+E [(at �E(at))(bt �E(bt))]<E(bt)E(at) = bmE(at) bm
µ

cL
=) E(btat)< bm

µ

cL
.

Therefore:

E(bm
µ

cL
� btat)> 0 =) e

E(bm
µ
cL

�btat) > 1 =) E
⇣
e
bm

µ
cL

�btat
⌘
> 1 According to Jensen’s inequality,

=) e
bm

µ
cL E

�
e�btat

�
> 1 =) E

�
e�btat

�
> e

�bm
µ
cL =) ebmDmE

�
e�btat

�
> ebmDme

�bm
µ
cL

=) E
�
ebmDm�btat

�
> e

bm(Dm� µ
cL

)
=) E

�
ebt[Dt�at] � 1

�
> e

bm[Dm� µ
cL

] � 1 since btDt = bmDm 8t.
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Proof of Proposition 3 Assume we use the operating policy of āt = xt and the purchasing policy of ūt =

SBt�cfxt�coat

p . It is easy to see that under this policy SBt = µ+ r�xt�1 (since St = 0). Therefore, the state

equation describing the fleet size can be written as:

xt+1 = (1� �)xt + ūt = (1� �)xt +
µ+ r�xt�1 � cfxt � coāt

p
=) xt+1 =

µ

p
+


(1� �)� cf + co

p

�
xt +

r

p
�xt�1.

(47)

First we show that the above sequence converges to a unique number (i.e. limt!1�xt = 0).

xt+2 �xt+1 =


µ

p
+ [(1� �)� cf + co

p
]xt+1 +

r�

p
xt

�
�

µ

p
+ [(1� �)� cf + co

p
]xt +

r�

p
xt�1

�
=


1� cf + co + �p

p

�
xt+1 �


1� cf + co + �p

p
� �r

p

�
xt �

�r

p
xt�1 =


1� cf + co + �p

p

�
(xt+1 �xt)+

�r

p
(xt �xt+1).

Assume limt!1�xt = v. According to the above equation we have:

v=


1� cf + co + �p

p

�
v+

�r

p
v =) cf + co + �(p� r)

p
v= 0 =) v= 0.

Therefore, the sequence converges to a single value. In order to find out this value, we assume x̄= limt!1 xt.

Therefore:

x̄=
µ

p
+


(1� �)� cf + co

p

�
x̄+

r

p
�x̄ =) cf + co + �p� �r

p
x̄=

µ

p
=) cLx̄= cL

µ

cL
According to Eq. (38),

which concludes that x̄=
µ

cL
. Therefore, the Markov chain is absorbing with steady state variables x=

µ

cL

and SB = µ+ r�
µ

cL
:

xt+1 = (1� �)xt +u= xt =
µ

cL
,

SBt+1 = SBt � coāt � cfxt � p�xt + r�xt +µ= µ+ r�
µ

cL
� co

µ

cL
� cf

µ

cL
� p�

µ

cL
+ r�

µ

cL
+µ= SBt = µ+ r�

µ

cL
.

Therefore, in the steady state we have:

āt =
µ

cL
and ūt = �

µ

cL
.

Assuming g as the gain and h as the bias, according to Puterman (2005), we have:

g+h(xt, SBt) =R(at)+h(xt+1, SBt+1) =)

g+h(
µ

cL
, µ+ r�

µ

cL
) = e

b(D� µ
cL

) � 1+h((1� �)
µ

cL
+ �

µ

cL
, µ+ r�

µ

cL
� co

µ

cL
� cf

µ

cL
� p�

µ

cL
+ r�

µ

cL
+µ) =)

g+h(
µ

cL
, µ+ r�

µ

cL
) = e

b(D� µ
cL

) � 1+h(
µ

cL
, µ+ r�

µ

cL
) =) g= e

b(D� µ
cL

) � 1.
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To show that the above policy is optimal, we refer to Puterman (2005), where for a state space S and a

finite action space As, unichain Markov process, and bounded reward function, the optimality condition in

an average reward MDP is expressed as:

0 = min
a2As

(
r(s, a)� g+

X

j2S

p(j|s, a)h(j)�h(s)

)

and if (g0, h0) is any other solution of the average reward optimality equation, then g= g0.

Since at the steady state, there is only one absorbing state (
µ

cL
, µ+ r�

µ

cL
), which satisfy the above equation,

the policy is optimal.

Proof of Lemma 1 To show that Jt(xt, SBt) is decreasing in SBt, we need to show that:

8x2Z+, SB, � 2R+ : Jt(x,SB+ �) Jt(x,SB).

Assume the above equation holds for period t+1 that is for any (xt+1, SBt+1):

Jt+1(xt+1, SBt+1 + �) Jt+1(xt+1, SBt+1), (48)

we have to show that for period t: Jt(xt, SBt + �) Jt(xt, SBt), 8 xt, SBt. Let us define J̃t(xt, SBt, u, a) =

R(xt, SBt, u, a) +E[Jt+1(xt+1, SBt+1)]. Assume that û and â are the optimal solutions of Jt(xt, SBt + �),

and ǔ and ǎ optimize Jt(xt, SBt), we know that:

Jt(xt, SBt + �) = J̃t(xt, SBt + �, â, û) J̃t(xt, SBt + �, ǎ, ǔ).

The Lemma will be proved if we further show that:

J̃t(xt, SBt + �, ǎ, ǔ) J̃t(xt, SBt, ǎ, ǔ) = Jt(xt, SBt). (49)

Equation (49) can be simplified to:

Rt(ǎ)+E[Jt+1(L(xt)+ ǔ, SBt + �� cfxt � pǔ� coǎ+ r(xt �L(xt))+Kt+1)]

Rt(ǎ)+E[Jt+1(L(xt)+ ǔ, SBt � cfxt � pǔ� coǎ+ r(xt �L(xt))+Kt+1)]

=) E[Jt+1(xt+1, SBt+1 + �)]E[Jt+1(xt+1, SBt+1)], 8 L(xt),Kt+1,

where xt+1 =L(xt)+ ǔ and SBt+1 = SBt � cfxt � pǔ� coǎ+ r(xt �L(xt))+Kt+1. From Equation (48), we

know that E[Jt+1(xt+1, SBt+1)] is stochastically greater than E[Jt+1(xt+1, SBt+1+ �)]. This ends the proof.
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Appendix E: Results of Costs Estimates

Table 3 presents the results of our costs estimations. MCSE is the MCMC standard error and represents

the accuracy of our simulation results. Ideally, it must be equal to zero which requires an infinite number of

MCMC iterations. Columns 7-8 show the credible interval that provides a range for a parameter such that

the probability that the parameter lies in that range is 0.95. For example, the probability that the mean

of monthly operating cost for a vehicle in Sudan is between 512.7 and 572 is about 0.95. Column 9 shows

the acceptance rate that specifies the proportion of proposed parameter values that was accepted by the

algorithm. For example, an acceptance rate of 0.42 (for the purchase price in Sudan) means that 42% out

of 40,000 proposal parameter values were accepted by the algorithm. Gelman et al. (1997) show that an

optimal acceptance rate is 0.45. Therefore, our results provide near optimal acceptance rate.

Table 3 Cost Estimations.

Country Variable

Posteriors

Fixed cost

(cf )
95% credible interval

Mean SD MCSE Median min. max. Acc. Rate Obs.

Sudan

p 25,645.1 11.28 0.11 25,645.1 25,622.6 25,667 0.42 238

99
r 13,837.0 5.43 0.05 13,837.0 13,826.2 13,847.5 0.45 205

co 541.9 15.14 0.15 541.9 512.7 572.0 0.44 205

Kenya

p 23,950.8 5.63 0.06 23,950.9 23,939.8 23,962.0 0.48 310

255
r 12,806.1 6.69 0.07 12,806.2 12,792.8 12,819.31 0.43 210

co 203.9 6.70 0.07 203.9 190.5 216.9 0.42 210

Liberia

p 25,645.5 4.99 0.05 25,645.6 25,635.7 25,655.3 0.47 157

212
r 10,937.3 8.42 0.08 10,937.4 10,920.8 10,953.7 0.41 142

co 394.5 8.41 0.08 394.5 377.8 410.8 0.43 142

Iraq

p 24,315.7 5.61 0.05 24,315.6 24,304.9 24,326.8 0.40 321

203
r 8,934.5 6.90 0.07 8,934.4 8,921.0 8,947.9 0.46 211

co 368.8 6.91 0.07 368.8 355.3 382.2 0.47 211

Syria

p 23,875.7 10.05 0.10 23,875.7 23,856.1 23,895.6 0.45 49

132
r 16,007.9 13.09 0.13 16,007.9 15,982.2 16,033.8 0.45 49

co 525.3 13.06 0.13 525.3 499.7 550.9 0.42 49

Figure 8 shows the fleet sizes of the five countries studied in the whole period from 2000 to 2015. Table 4

summarizes all parameter values used in the numerical experiments.
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Figure 8 Fleet sizing of the five countries of operations in 2000-2015.

Table 4 Parameters used in the numerical experiments

Country Dm* d cf co p r � µ � bm**

Syria 9 1 396 1,575.9 23,876 16,008 0.03 19,871.41 17,977.72 0.61
Sudan 12 1 297 1,625.7 25,645 13,837 0.03 27,323.32 37,189.33 0.46
Liberia 49 2 636 1,183.5 25,646 10,937 0.06 132,397.61 108,118.60 0.11
Kenya 67 1 765 611.7 23,951 12,806 0.06 137,040.59 73,276.92 0.08
Iraq 90 2 609 1,106.4 24,316 8,934.5 0.03 195,915.24 106,445.80 0.06

* at a funding level of 100%, ** for ⌫ = 0.75
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