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and semi-empirical calculations:
a synergistic approach to rapid, accurate, and
mechanism-based reaction barrier prediction†

Elliot H. E. Farrar and Matthew N. Grayson *

Modern QM modelling methods, such as DFT, have provided detailed mechanistic insights into countless

reactions. However, their computational cost inhibits their ability to rapidly screen large numbers of

substrates and catalysts in reaction discovery. For a C–C bond forming nitro-Michael addition, we

introduce a synergistic semi-empirical quantum mechanical (SQM) and machine learning (ML) approach

that allows the prediction of DFT-quality reaction barriers in minutes, even on a standard laptop using

widely available modelling software. Mean absolute errors (MAEs) are obtained that are below the

accepted chemical accuracy threshold of 1 kcal mol�1 and substantially better than SQM methods

without ML correction (5.71 kcal mol�1). Predictive power is shown to hold when the ML models are

applied to an unseen set of compounds from the toxicology literature. Mechanistic insight is also

achieved via the generation of full SQM transition state (TS) structures which are found to be very good

approximations for the DFT-level geometries, revealing important steric interactions in some TSs. This

combination of speed, accuracy, and mechanistic insight is unprecedented; current ML barrier models

compromise on at least one of these important criteria.
Introduction

In the last thirty years, the ease-of-use, power, and accessibility
of highly sophisticated computational chemistry techniques
has increased substantially.1,2 These methods allow us to obtain
detailed understandings of reaction mechanisms via explora-
tion of their potential energy surface (PES) to identify reactant,
product, and transition state (TS) structures. Typically, the most
telling insights come from analysis of competing TS geometries,
from which key steric and electronic effects can be identied,
and their respective reaction barriers. This allows us to ratio-
nalise the mechanisms and selectivities of a huge range of
chemical reactions.3–6 In turn, this enables the rational design
of new reactions and catalysts,7–9 and reduces the need for
experimental trial-and-error approaches.

Although numerous toolkits have been developed to auto-
mate the location and subsequent optimisation of TS struc-
tures,10–12 the cost of these methods remains limited by the level
of molecular modelling method used in geometry optimisation
and energy calculations. Despite some reported shortcom-
ings,13–15 for example when TSs contain ion pairs,16 density
h, Claverton Down, Bath, BA2 7AY, UK.
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functional theory (DFT)17,18 is one of the most widely used
quantum mechanical (QM) reaction modelling techniques and
has been involved in the successful modelling of countless
reactions.2,19 However, a trade-off between speed and accuracy
must be made; typical DFT calculations take on the order of
hours to days, but this can be further exacerbated by the exact
combination of functional, basis set and solvation model used,
the number of atoms and complexity of the system in question,
and the necessity, in most cases, to optimise many distinct
chemical species and multiple conformations of each to draw
practical conclusions.

In terms of calculation time, molecular mechanics (MM)
typically improves on DFT by around six orders of magnitude.20

Accordingly, several force eld and force eld-cost methods
have been developed that allow the approximation of various
thermochemical properties.21–31 However, many do not provide
geometric information, or produce less accurate pictures of the
TS, for example by treating them as minima. Furthermore, force
eld methods are oen parameterised on niche training
domains with expensive DFT calculations or experimental data
or require complex and lengthy parameterisation procedures to
be effective, limiting their transferability and making their
implementation more difficult.

In contrast, most semi-empirical quantum mechanical
(SQM) methods are extensively parameterised, and thus widely
applicable to many areas of chemistry.32–35 Additionally, many
are embedded in widely available soware packages, such as
Gaussian,36 GAMESS,37 Spartan,38 MOPAC,39 and ORCA,40 and
Chem. Sci.
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Fig. 1 C–C bond forming nitro-Michael additions used to generate
the ML dataset.
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thus are straightforward to implement. Like force elds, SQM
methods are several orders of magnitude faster than DFT, on
the scale of seconds to minutes per calculation.20 However, this
comes at the expense of some chemical accuracy as parts of the
more expensive QM calculations are replaced with empirical
parameters tuned via experiment or full QM.41 Despite some
reported disagreements with more accurate ab initio methods,
for example in the assignment of Diels–Alder reactions as either
step-wise or concerted,42 SQM methods have been shown to
produce reliable geometries for TSs of many reactions,
including nucleophilic substitutions, isomerisations, alkene
epoxidations, metal-catalysed oxidations, and even some
cycloadditions.43–45 However, they require expensive, high-
accuracy DFT single point energy (SPE) corrections to give reli-
able barriers,43 and thus SQM data alone is not of a sufficient
quality for accurate reaction modelling.

Machine learning (ML) is an increasingly prevalent tool in
the eld of chemistry, used to identify patterns in chemical
datasets.46,47 Once a relationship is identied, the target
property can be predicted from the features (inputs) of the
model. Previously, ML has been used for the prediction of
reaction rates and barriers derived from both experiment48–53

and high-level reference calculations.54–63 However, many
models have errors signicantly above the accepted threshold
for chemical accuracy of 1 kcal mol�1,64,65 and offer little or no
mechanistic insight, for example using molecular ngerprints
or graphical representations of molecules. A few examples do
make use of TSs in their predictions but use DFT to generate
them, making the prediction process very time-consuming.48,66

Therefore, no current ML barrier model offers the combination
of fast and accurate predictions with mechanistic insight
derived from TSs. In recent years, several studies have used ML
to bridge the gap between SQM and high-level QM, allowing
prediction of various ground state thermochemical proper-
ties.67–71 We believe this combined SQM/ML approach could be
used to improve current standards in the prediction of reaction
barriers. Thus, we proposed to learn the relationship between
simple, interpretable, and readily available SQM-derived
molecular and atomic features and target DFT barriers, and
hence afford DFT-quality barriers with the calculation speed of
SQM. By calculating TSs using SQM, rapid mechanistic insight
would also be available.

Herein, we use a synergistic SQM/ML approach to predict
DFT-quality free energy activation barriers for a diverse class of
C–C bond forming nitro-Michael additions (Fig. 1). Michael
additions are one of the most efficient and prevalent methods
for formation of C–C bonds in organic and biosynthesis,72

nding important applications in asymmetric catalysis5,73–75 and
several natural product syntheses.72,76–79 Among the many
classes of these versatile reactions, the nitro-Michael addition is
one of the most useful;80–84 insertion of the nitro group into the
organic framework via Michael addition enables a variety of
synthetically important stereoselective reactions,85 and the
resulting nitro compounds can be the precursor for an assort-
ment of highly useful chemical functionalities, including pyr-
rolidines, lactones, aminocarbonyls, and aminoalkanes.86
Chem. Sci.
Methodology

Reactant and TS geometries for 1000 unique Michael addition
reactions were built using Schrödinger's R-Group enumera-
tion87 to vary four positions of a generic a,b-unsaturated
carbonyl Michael acceptor (MA) core with common organic
fragments across synthesis,79 toxicology,88,89 and covalent drug
design (Fig. 1).90 A set of 37 additional reactions were built using
Michael acceptors (aldehydes, ketones, and esters) from the
toxicology literature to be used for external validation
(Fig. S2†).91 Full details of dataset generation are provided in the
ESI, section 1.†

All structures were conformationally searched using
Schrödinger's MacroModel (version 12.7)87,92 with the OPLS3e
force eld93 before optimising the lowest energy conformation
of each with AM1,32 PM6,35 and uB97X-D/def2-TZVP94,95 using
Gaussian16 (Revision A.03).36 Additionally, each MA was opti-
mised with UFF for a comparison of SQM with classical force
eld methods.96 To incorporate the effect of solvent, SPE
corrections were performed with the same method as the opti-
misation and the integral equation formalism of the polarisable
continuum model (IEFPCM)97 with toluene. Temperature
(298.15 K) and concentration-corrected (1 mol l�1) quasi-
harmonic free energies were calculated with GoodVibes98 and
used to calculate reaction barriers (AM1 barrier range: 7.83–
42.38 kcal mol�1; PM6 barrier range: 2.54–42.01 kcal mol�1;
DFT barrier range: 3.17–39.35 kcal mol�1). Full computational
details are provided in the ESI, section 1.†

A variety of simple and interpretable molecular and atomic
physical organic chemical features were extracted for each MA
and TS at each level of theory (Table S4 and Fig. S7†). Prior to
tting, all features were standardised and processed to deal
with collinear and zero-variance features before dividing them
into several distinct feature subsets per level of theory (Table
S5†); MA features, TS features, and combined MA and TS
features (including the reaction barrier) denoted by “All”. Full
details of feature extraction are provided in the ESI, section 2.†
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Test MAEs and standard errors (20% test set) for each model
and feature subset; RBF ¼ radial basis function kernel; poly ¼ poly-
nomial kernel. GPR used the Matern kernel.
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The enumerated dataset was randomly split into an 80%
train set (800 reactions) and 20% test set (200 reactions) and the
former used to train each feature subset to predict the DFT free
energy reaction barrier. Seven scikit-learn99 regression algo-
rithms were used for training: ridge regression (Ridge), k-near-
est neighbour regression (NNR), random forest regression
(RFR), gradient boosting regression (GBR), support vector
regression (SVR), kernel ridge regression (KRR), and Gaussian
process regression (GPR). Feature selection and hyperparameter
tuning were employed using scikit-learn99 andmlxtend100within
the 80% train set to prevent overtting of the feature subsets to
the regression models and optimise the models parameters,
respectively.101 5-Fold cross validation (CV) was performed
within the train set to generate mean absolute errors (MAEs). To
assess the individual model performances, external validation
was performed using the unseen 20% test set to generate MAEs
with standard errors. To further assess the generalisability of
the models, MAE scores with standard errors, which are
comparable across different sample sizes, were also calculated
for the set of 37 unseen reactions from literature. However,
among these 37 reactions, two (E5 and E7) contain alcohol
groups within their R-groups that allow intra- and intermolec-
ular hydrogen bonding to take place within their respective MA
and TS geometries (Fig. S3†). As no such structures were present
in the train set, the generated ML models cannot reasonably be
expected to learn to account for hydrogen bonding. Indeed, for
all models and feature subsets, reactions E5 and E7 were found
to exhibit disproportionately worse predictions compared to the
MAE of the other 35 structures; for example, absolute errors of
4.26 and 4.74 kcal mol�1 were obtained for E5 and E7, respec-
tively, with GPR (AM1 All), compared to an MAE of
0.92 kcal mol�1 over the other 35 reactions. Thus, herein, the
nal literature set was dened as only the 35 structures other
than E5 and E7. Full details of the ML process and analyses are
provided in the ESI, sections 3 and 4.†

Results and discussion

The test MAEs and standard errors (from external validation
with the 20% test set) for each model and feature subset are
provided in Fig. 2. Full metrics, features, and hyperparameters
for each model are provided in the ESI, section 5.† In general,
train (5-fold CV) MAEs closely match the test MAEs, indicating
that no signicant overtting takes place in the models.

Impressive results are achieved by all models, with test MAEs
quenched below 2 kcal mol�1 for all feature subsets and each
regressor. However, the performances of the kernel-based
models (SVR, KRR, and GPR) are the most remarkable, with
each producing MAEs below the accepted threshold for chem-
ical accuracy of 1 kcal mol�1.64,65 Indeed, examples of SVR,102,103

KRR,67,104,105 and GPR48,106 are prevalent in chemistry. These
algorithms employ the Kernel trick, mapping the original input
features into a higher dimensional feature space in a computa-
tionally efficient way and thus allowing the generation of highly
complex models at a relatively low cost. In contrast, NNR is
a conceptually simple method, and so the complex relationship
between the input features and targets cannot be captured as
© 2022 The Author(s). Published by the Royal Society of Chemistry
easily. For the remaining models, the data presented does not
appear to be of the most suitable form to deliver optimal
performance. For example, ridge regression is a linear algo-
rithm that relies on the features having strong linear correla-
tions with the target barriers, which is oen not the case in
chemical systems;46 indeed, only three features across all levels
of theory (the AM1 barrier, and the percent buried volume (PBV)
of the nucleophile carbon for AM1 and PM6) have linear
correlations (Pearson's r) with the DFT barrier that are above
0.7, oen quoted as the threshold for collinearity.107 Similarly,
the decision-tree-based models (RFR and GBR) generally lend
themselves to the prediction of discrete data, such as reaction
selectivities, rather than continuous variables such as reaction
barriers.62,66 However, despite their apparent unsuitability, each
of these models still produces MAEs approaching chemical
accuracy, demonstrating the overall success of our SQM to DFT
ML approach.

Evaluation of the average performances of the SVR, KRR, and
GPR models (Table 1) reveals that all feature subsets produce
excellent train and test MAEs. In fact, the predictive power of the
MA-only and TS-only feature subsets were generally found to be
comparable with the combined subsets. This is important
Chem. Sci.
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Table 1 Average MAEs of all SVR, KRR, and GPR models

Feature subset

MAE/kcal mol�1

Train Test Literature

UFF MA 0.98 1.02 1.68
AM1 MA 0.99 1.04 1.44
AM1 TS 0.94 0.99 1.17
AM1 All 0.91 0.96 1.03
PM6 MA 0.98 1.05 1.43
PM6 TS 0.99 1.04 1.42
PM6 All 0.98 1.06 1.28
DFT MA 0.95 1.01 1.65

Fig. 3 Scatter plots showing the accuracy of DFT barrier prediction
using only the AM1 barrier (top) compared to ML with GPR (AM1 All)
(bottom), both with respect to the identity line (grey bands correspond
to �1 kcal mol�1).
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because conformationally searching and obtaining converged
structures for reactant states is a more trivial task than for TSs,
typically requiring less user input and computational expense.
This gives ML users the opportunity to use purely MA-derived
features and thus trade off a small amount of accuracy for
what could be a substantial amount of time when learning or
predicting over enough reactions. However, mechanistic insight
from TSs would not be available in such an approach. Addi-
tionally, both the MA-only and TS-only feature subsets were
found to perform relatively poorly for prediction of the literature
structures, with TS features performing slightly better but still
worse than their respective train and test metrics. This indicates
that TS features are more important than MA features with
respect to a model's ability to generalise. However, only when
both MA and TS features are combined with the reaction barrier
from the SQM method do literature predictions begin to
approach the accuracy of the train and test metrics. By inclusion
of the reaction barrier, these combined feature subsets repre-
sent a version of the D-ML approach, in which models are
trained to learn the difference between the SQM and DFT
barriers, rather than predicting the DFT barrier directly.67

Indeed, D-ML has previously been found to perform well for out-
of-sample predictions.58 Therefore, the use of feature subsets
without both MA and TS information, as well as the reaction
barrier, is generally not recommended.

Comparing performances across the different levels of
theory, the classical UFF method is found to perform similarly
to the AM1, PM6, and DFTMA-only subsets for the train and test
sets. However, with only MA information available, extension of
UFF to the literature set is poor and mechanistic insight from
TSs is not available. In addition to these same drawbacks, the
DFT MA subset also suffers from the relatively high cost of the
DFT calculations; on a 16-core node, the average DFT MA
calculation took over an hour, compared to 5, 14, and 32
seconds with UFF, AM1, and PM6, respectively. Furthermore,
DFT calculations scale poorly as the size of the chemical
structures become larger. Thus, the use of either UFF or DFTMA
features are not generally recommended.

Conceptually, AM1 and PM6 are very similar methods; both
are based on the neglect of diatomic differential overlap (NDDO)
formalism and share several fundamental approximations,
although PM6 is more extensively parameterised and makes
several improvements to the core–core potentials.35 Accordingly,
Chem. Sci.
the initial MAE between the PM6 and DFT barriers
(4.17 kcal mol�1) was found to be slightly better than between the
AM1 and DFT barriers (5.71 kcal mol�1). Nevertheless, AM1 was
found to perform marginally better aer ML, particularly when
making predictions on the literature dataset; overall, the
combined AM1 MA and TS feature subset (AM1 All) performed
the best across the train, test, and literature sets.

Overall, the best model obtained is via GPR using the
combined AM1 MA and TS feature subset with 101 features
(GPR (AM1 All)), yielding train, test, and literature MAEs of 0.93,
0.96 � 0.07, and 0.92 � 0.18 kcal mol�1, respectively. Indeed,
GPR was found to be the best model in several other studies for
the prediction of thermochemical properties,48,106 however,
using the same feature subset, both KRR(RBF) and KRR(poly)
also produced models with all MAEs below 1 kcal mol�1. By
plotting the AM1 and GPR (AM1 All)-predicted barriers against
the DFT barriers, the improvement gained over the untrained
model via our ML approach with respect to both the test set and
literature set predictions can be visualised (Fig. 3).

To validate that the success of the GPR model is genuine and
not due to any fortuitous test–train splitting, we performed an
extensive double CV approach by retraining the model at ve
additional random test–train splittings (Fig. 4).108 These
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 MAE learning curves for GPR (AM1 All).
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produced average train, test, and literature MAEs of 0.94, 0.89�
0.06, and 0.98 � 0.18 kcal mol�1, respectively, in line with the
original metrics. Additionally, learning curves for the model
(Fig. 5) atten out as the number of training points is increased
towards the maximum of 800, indicating that the size of the
train set is acceptable and does not substantially limit the
accuracy of the model or its ability to make predictions. Finally,
the train and test scores tend to be very similar, indicating that
no signicant overtting takes place in the model at any point.
Learning curves for the SVR and KRR models with the AM1 All
feature subset were found to display the same trends (see ESI,
section 6†).

To ascertain which features make the largest contributions
to determining the DFT barrier, as well as the overall general-
isability of the models, their permutation feature importances
were analysed. This process, in a typical ML study, can provide
useful chemical insights into the mechanism of the reaction,
depending on the interpretability of the highest-ranking
features. For the GPR (AM1 All) model, the AM1 barrier was
found to rank very highly in feature importance (Fig. 6).

The next most important feature, and themost important for
the literature set, is the Mulliken charge of the carbonyl oxygen.
The conjugated p-system of a,b-unsaturated carbonyls is so
and highly polarisable, whilst oxygen is a highly electronegative
atom.109 Thus, the charge of the oxygen is a good indicator of the
Fig. 4 Double cross validation; test (top) and literature (bottom) MAE
and standard errors for GPR (AM1 All) at the original test–train splitting
(yellow) and five additional splittings (blue).

© 2022 The Author(s). Published by the Royal Society of Chemistry
total electron density in the p-system of each MA. Accordingly,
as the charge of the oxygen becomes more negative, interaction
between the MA and negatively charged nucleophile becomes
Fig. 6 Top 15 train, test, and literature set permutation features
importances for GPR (AM1 All).

Chem. Sci.
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Fig. 7 Distribution of RMSDs (top) and bond distance differences
(bottom) between each TS in the enumerated dataset at its AM1 and
DFT geometries.

Fig. 8 AM1 and DFT geometries of the enumerated TS with the RMSD
closest to the average of 0.75 Å (hydrogens omitted for clarity).
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more difficult, and the reaction barrier increases. In addition,
several other features encoding electrostatic information for
specic atoms (largely the R1–R4 substituents and core Michael
acceptor atoms, C1–O4) are important, including orbital elec-
tronegativities (PEOE), dispersion descriptors (Pint), and elec-
trotopological characteristics (EState). Overall, these features
account for a signicant proportion of the electrostatic
component of the nitro-Michael addition reaction.

Finally, several steric features, including sterimol parame-
ters, PBVs, and solvent accessible surface areas (SASA),
comprise a substantial proportion of the remaining high-
importance features. This is in line with previous ndings
that a signicant extent of steric control exists in the rate of
Michael addition reactions with glutathione.89,110 For example,
steric parameters in the vicinity of the a,b-unsaturated carbonyl
describe the steric accessibility of the b-carbon, where the
nucleophile needs to be for 1,4-Michael addition to occur, and
thus correlate very strongly with the reaction barrier.

The top-performing features of GPR models with subsets
derived from PM6 calculations, in addition to each of the SVR
and KRR models with AM1 features, were of a similar nature to
GPR (AM1 All) (see ESI, section 7†), validating the importance of
the features discussed. However, whilst chemical insights can
be drawn from these features, allowing a subsequent under-
standing of their impact on the reaction mechanism, one of the
unique benets of our ML approach is that full SQM TS
geometries are produced as part of the feature generation
process. In turn, this allows mechanistic insights into the
reaction to be obtained via visualisation of the geometries,
without the need to analyse individual feature importances. But
how accurate are these SQM geometries, and can they be used
as approximations for the DFT TS geometries?

To test this, we calculated the root-mean-squared deviation
of atomic positions (RMSD)111 and difference in bond-forming
distance between each of the TS geometries at the AM1 and
DFT levels of theory (Fig. 7). In the context of molecular dock-
ing, an RMSD below 2 Å is considered successful when
comparing the conformations of organic ligands to their
protein-bound conformation.112 The average RMSD for our
enumerated dataset of 1000 structures was calculated at 0.75 Å,
with 99.2% of TSs falling below the 2 Å threshold. The bond-
forming distance is on average 0.04 Å larger in the DFT struc-
ture than in the AM1 structure, with 96.4% of TSs having an
absolute difference in bond-forming distance below 0.3 Å. Fig. 8
depicts the AM1 and DFT geometries of the TS with the RMSD
closest to 0.75 Å, and hence represents the approximate average
deviation that would be expected between an AM1 and DFT
geometry in our dataset. Close inspection of the structures
reveals that the major origin of deviation results from the angle
of approach of the nucleophile and the orientation of R-groups,
rather than any changes to the core structure of the MA.
Accordingly, removing the nucleophile or the R-groups from
each structure and recalculating the RMSDs drops the averages
to 0.6 Å and 0.45 Å, respectively, whilst removing both (leaving
only the core enone functionality) drops it to 0.14 Å (Fig. S20–
22†). In fact, even when the AM1MA geometries were compared
to the DFT TS geometries with the nucleophile removed, an
Chem. Sci.
average RMSD of 1.35 Å was calculated, substantially below the
2 Å threshold (Fig. S23†). In all cases, similar distributions and
average values were also calculated for the literature structures
and at each level of theory (see ESI, section 8†); notably, UFF
and DFT MA geometries were similarly comparable with DFT-
derived TS geometries (nucleophile removed), whilst PM6 was
found be slightly worse at predicting DFT TS geometries than
AM1, with a larger average RMSD of 0.87 Å.

The inclusion of solvent via SPE corrections results in highly
exible models that allow different solvents to be incorporated
without reoptimising every structure. However, to examine the
impact of solvent, AM1, PM6, and DFT TS optimisations with
the IEFPCM solvent model were performed on the literature set.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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We then superimposed each pair of gas and solvent optimised
TSs and calculated average RMSDs of 0.13 Å for AM1, 0.30 Å for
PM6, and 0.16 Å for DFT (Fig. S27 and S28†). These low RMSDs
indicate that, for the reaction investigated in our work, the use
of gas phase optimised structures is a valid approximation.

Overall, these analyses indicate that SQM geometries of TSs,
and even MAs to some extent, can be considered good substi-
tutes for the full DFT level geometries, on average, allowing
accurate mechanistic analysis of the TSs simply by their visu-
alisation. Importantly, no other ML barrier model that we are
aware of offers this level of mechanistic insight without the
need for time-consuming DFT calculations. For example, anal-
ysis of one TS structure at the DFT level reveals how severe C–C
steric interactions between the nucleophile and the R1 and R2

groups of the MA destabilise the structure, and these interac-
tions are also captured by the AM1 geometry (Fig. 9). Whilst
insights into the electronics and sterics of the reaction were
revealed by analysis of the most important predictive features,
direct visualisation of the geometries and interactions improves
upon this approach by identifying which groups are directly
involved in this steric clash and revealingmore about their exact
nature. Such information helps to validate the predictions
made by ML and can guide rational reaction design.

For the nitro-Michael addition reaction investigated here, the
full DFT level of theory took approximately 7 hours on a 16-core
node to obtain each of the 1000 enumerated MA and TS struc-
tures, compared to only 51 seconds for the respective AM1
calculations (Table S3†). On a 1-core laptop, this corresponds to
over 100 hours of calculation for DFT per structure, compared to
less than 15minutes for AM1. Thus, the ease and efficiency of our
SQM/ML approach is demonstrated; with a prebuilt ML model,
the user simply calculates a baseline barrier for a reaction (in
seconds, using widely available SQM or force eld approaches),
applies a correction via ML (in seconds), and accurate DFT-level
barriers and geometries can be obtained. Although users may be
concerned that the deciencies of a particular baseline method,
for example poor applicability to a particular chemical domain
(see introduction), may inhibit a model's ability to make accurate
predictions, our results demonstrate that feature subsets derived
from both classical force eld and SQM methods all lead to
comparable predictive performances. Thus, the user may simply
select an appropriate baseline method for the reaction in ques-
tion and, by the same principles described above, accurate
Fig. 9 AM1 and DFT geometries of an example TS revealing steric
interactions between the nucleophile and the R1 (Me) and R2 (Me)
groups of the MA; C–C distances within 90% of the sum of the van der
Waals radii (3.4 Å) are indicated by dotted red lines.

© 2022 The Author(s). Published by the Royal Society of Chemistry
predictions should be possible. For a more detailed account of
the applicability of SQM methods in modelling organic chem-
istry, we recommend a review by Thiel.113

Overall, the combination of highly accurate SQM geometries
and ML-derived energies represents a signicantly cheaper way
to obtain very good approximations of DFT-level geometries and
energies. In turn, this enables the rapid prediction of reaction
barriers and delivers mechanistic insight for this essential class
of nitro-Michael additions, which could lead to much faster
screening of these kinds of reactions, and thus much more
efficient design of new synthetic methodology.

Conclusion

We have combined ML and SQM calculations to achieve the fast
and accurate prediction of DFT-quality free energy activation
barriers using widely available computational techniques. Using
a variety of regression algorithms with simple and highly inter-
pretable features, MAEs below the accepted chemical accuracy
threshold of 1 kcal mol�1 were achieved with a calculation time of
seconds, even when making predictions on an unseen set of
compounds from the toxicology literature. Evaluation of the most
predictive features provided clear insights into important aspects
of the nitro-Michael addition reactionmechanism. However, SQM
geometries of TSs, and to some extent MAs, were found to be very
good approximations to the full DFT TS geometries and thus offer
mechanistic insight with no additional work required. Combina-
tion of these SQM geometries with highly accurate ML-derived
energies allows the prediction of barriers and the screening of
reactions at DFT level, without the need for time-consuming DFT
calculations. No current ML barrier models offer our combination
of speed, accuracy, and mechanistic insight. The generalised
nature of the study means the ML approach can be highly cus-
tomised, for example by choosing from various regression algo-
rithms, features, and molecular modelling methods. We believe
that the same principles could also be applied to achieve the rapid
prediction of reaction barriers and mechanisms for other impor-
tant classes of chemical reactions, paving the way for more effi-
cient drug discovery and rational reaction design.
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