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Abstract

Research has shown that convolutional neural networks
for object recognition are vulnerable to changes in depiction
because learning is biased towards the low-level statistics
of texture patches. Recent works concentrate on improving
robustness by applying style transfer to training examples
to mitigate against over-fitting to one depiction style. These
new approaches improve performance, but they ignore the
geometric variations in object shape that real art exhibits:
artists deform and warp objects for artistic effect. Motivated by
this observation, we propose a method to reduce bias by jointly
increasing the texture and geometry diversities of the training
data. In effect, we extend the visual object class to include
examples with shape changes that artists use. Specifically, we
learn the distribution of warps that cover each given object
class. Together with augmenting textures based on a broad
distribution of styles, we show by experiments that our method
improves performance on several cross-domain benchmarks.

1. Introduction
Recognising objects is a well-researched area of visual

computing, with performance rates exceeding 90%. More
exactly, state-of-the-art performance is attained for photographic
style inputs, performance falls significantly when artwork
is input. Consequently, object recognition regardless of
depiction remains a significant open problem. Not only is
this an interesting in-principle problem, but is one which if
solved would support many applications that currently are
out of reach, indexing digital collections in art galleries is an
obvious example. Less obvious applications we have come
across include curating large multi-media databases, building
interactive interfaces for professional artists, and IP protection.

The so-called “cross depiction” problem is that all classifiers
(trained on photographs) show a fall in performance when given
art work – this has been observed for some time [24]. One expla-
nation is that most learning algorithms assume that the training
(e.g., photographs) and test sets (e.g., art work) have very dif-
ferent low-level statistics. Furthermore, various types of built-in
bias (e.g., selection bias, capture bias, and negative set bias) are

ubiquitous in existing datasets [34,71]. Several studies [7,39,82]
have investigated the similarities and differences between neural
networks and human perception. Researchers [19, 62] found
the human visual system generalizes robustly across depictions,
whereas neural networks are vulnerable to depiction shifts.

Some research considers the problem as one of domain gen-
eralization (DG), with each depiction style being a different
domain [23,41,52]. However, it has been established that the
distance between the two images in the same object class but dif-
ferent styles tends to be larger than two images in the same style
but different objects [24] – sufficiently large to frustrate many
general DG approaches. Additionally, photographs and artworks
of objects do not appear in equal abundance. As a result, moving
from training data comprising almost exclusively of photographs
to test sets containing artwork is a significant challenge.

In response to such problems, recent literature has made
use of style transfer to widen visual object classes so that
different depiction domains are included [18]. The underlying
idea is that because the input texture varies, the network is
forced to learn object-class models that are not biased towards
the low-level statistics of any texture class (e.g., photo, line
drawing, etc.), rather they should rely more on characteristics
such as shape [27,46].

Using style transfer as a way to avoid depiction bias has met
with some success – performance levels are raised [18,46,55].
However, texture is not the only aspect of object appearance
that artists change: artists also warp and deform the objects they
render. This so-called “geometric style” has started to influence
the style transfer literature [37,49], and has been shown to have
a significant impact on subjective judgments regarding style
similarity [49]. In other words, people notice that the geometry
of objects in artwork differs from the geometry of objects in
photographs.

Contributions: First, we bridge the depiction-domain gap
in terms of both geometric and texture style, rather than tex-
ture alone. The underlying idea is inspired from the literature
(see Related Work), which is to robustify classification by in-
cluding random samples into the training data, a process called
“augmentation”. Second, our augmentation process differs from
state of the art. Current literature augments by processing pho-
tographs into artwork using a set of (textural) style exemplars. In



contrast, we build independent distributions of texture and geom-
etry descriptors and sample from them to augment the training
data. Our experiments show that the geometric and texture aug-
mentation improve classification generalization across several
common cross-domain benchmarks. Our code is available at:
https://github.com/xch-liu/geom-tex-dg.

2. Related Work
The problem of object recognition regardless of depiction

is considered as one of domain generalization (DG), with
each style being a different domain. DG considers how to
take knowledge from a group of related domains, and apply
it to previously unknown domains. The concept was first
introduced by Blanchard et al. [5] and later popularized by
Muandet et al. [52]. DG methods can be classified based on the
motivations behind them. In the following, we discuss the most
relevant work following the taxonomies proposed in [75, 87].
Interested readers can refer to comprehensive reviews [75,87]
for DG on other tasks (e.g., segmentation [12,22,38,83], person
reID [33,70], and face attack detection [32,66]).

2.1. Learning-based DG

Representation-Learning-based DG: Methods in this category
are characterized by learning domain-invariant representations
by minimizing the difference between source domains. Some
works [21, 44] align the marginal distributions of source
domains. Motiian et al. [51] proposed to reduce distribution
mismatch by minimizing the cross-domain contrastive loss.
Moreover, some work learns domain-invariant representations
through feature distribution alignment [58, 64], feature
normalization [54,57], or attribute regularization [15].
Learning-Strategy-based DG: Methods in this category are
characterized by exploiting the general learning strategy to en-
hance the generalization capability. Some works [3,13,42,45]
adopt meta-learning to gain general knowledge by constructing
meta-learning tasks to simulate domain shift. Huang et al. [30]
proposed a self-challenging training strategy that aims to learn
general representations by masking out over-dominant features
with large gradients. Besides, other learning strategies such as
self-supervised learning [8], random forest [63], episodic train-
ing [43], and flat minima seeking [9] can also be used for DG.

2.2. Data Augmentation-based DG

Data augmentation [68] is one of the most effective strategies
to avoid overfitting in deep learning models. This type of DG
method focuses on exploring techniques to enhance the size
and quality of training datasets, such that domain-shift-robust
models can be built. Our method also belongs to this category.

The basic idea of this strategy is to augment the original data
x with new A(x) where A(·) indicates a transformation and
is used to simulate domain shift. Hence the design of A(·) is
critical to performance. Wong et al. [79] found that it is better
to perform data augmentation in data-space, if label preserving

transformations are known. Liu et al. [48] leveraged disen-
tangled domain information to perform cross-domain image
translation and manipulation. Shankar et al. [65] leveraged
domain-adversarial gradients to synthesize domain-agnostic
images. Qiao et al. [60] exploited task-adversarial gradients
to perturb the input images. Xu et al. [81] used randomly
initialized convolutional network to transform the input images.
On the other hand, there are many mix-based methods such as
Mixup [85], Manifold-Mixup [73], CutMix [84], Mixmatch [4],
PuzzleMix [35], AugMix [26], and StyleMix [28].
Use of Neural Style Transfer: Neural style transfer (NST) [17]
is best known for its artistic applications, but it also serves
as a tool to improve the generalization ability of simulated
datasets, via augmentation, as it can change the color and
texture distributions of an image whilst preserving the content.
Currently NST methods used in domain generalization
researches are: AdaIN [29] used in [6, 11, 53, 55, 69, 88, 92],
Style-Swap [10] used in [36], ComboGAN [1] used in [61],
and style-complement modules used in [31,77].

Style transfer methods are also used in our approach. But
our use differs from most methods that interpolate the feature
statistics between different samples in a mini-batch. We are
inspired by a recent study [47] on the impact of style transfer on
model robustness which attributed the effectiveness of texture
augmentation to the diversity of images. Unlike others in this
literature category, we construct both geometric and texture
style distributions, which we use to augment training data and
so robustify classification. Details are provided in Section 4.
Summary: The problem of recognition in art as well as
photographs is a stubborn one, but “robustification” via style
transfer has to date offered the greatest uplift in performance.
This is possible because the distance between style domains
for any single class of object tends to be larger than the distance
between classes in a given style [24]: DG methods must shift
the domain a long way, style transfer has proven useful in
that regard. But, only recently has the style transfer literature
considered geometric style [37,49] – work we take advantage of.

3. Idea Overview
Art historians recognized that style can be decomposed into

two parts called “denotation” and “projection” [78]. Within style
transfer, these terms are approximated by “texture style” and
“geometric style”, which are broadly explained below. Under-
standing the nature of each of them is fundamental to the design
of our augmentation strategy. We use the term depiction style
to refer to the combination of texture style and geometric style.
Texture Style: There is a considerable texture difference
between different image domains (e.g., photo vs. painting),
which is caused by a range of factors including but not limited
to: the medium used, the way it was applied, the substrate
it was applied to. Such factors are included within Willet’s
“denotation” component of style [78]. Within NST these factors
are approximated via texture.
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Figure 1. Style comprises both textural and geometric components.
Texture style is independent of object class: knowing a picture is a
water-color or clip-art is not predictive of its object class. Geometric
style, though, is contingent on object class. We warp source images
that show the same object class but differ in texture style using [49]
(color-coded warp fields above the arrow and the corresponding
deformed results below). It can be seen that warp fields within object
classes are similar, but vary significantly between object classes.

We assume that any object can be successfully depicted in
any denotation, i.e., texture style and object class are indepen-
dent. This assumption is made (implicitly) by NST algorithms
and hence by methods that use NST for augmentation.
Geometric Style: Artistic geometric variations extend the
possible range of shapes in an object class beyond the
boundaries observed in natural images. As an example, Dali
painted melting watches that could never be photographed.
Artists routinely change the relative shape and size of an object’s
parts for artistic effect, caricature provides the most obvious
examples – but all artists practice geometric deformation of
some kind. Unlike texture style, the geometric style depends
on object class as illustrated by the following examples.

To make people look stronger, painters increase body mass
compared to the head and limb size. The inverse of this gives
the person relatively larger hands, feet, and especially eyes,
cues that make them look baby-like and cute. Facial caricatures
tend to enlarge some features and diminish, again the warp
fields form a related set. Figure 1 provides evidence that these
observations extend to objects more generally – that there are
similarities between warp fields within a given object class, but
significant differences in the warp fields between object classes.

4. Method
Augmentation expands training data by processing a training

input x to make a new training input A(x). We divide our aug-
mentation pipeline into two steps. Geometric augmentation is
first applied, which warps the image; then texture augmentation
is applied in which the warped image is re-textured.

These two steps are performed by independently sampling
two distributions: one for geometric style and one for texture
style. The distributions were constructed by leveraging the
pre-trained feature extractors, as shown in Figure 2.

To better describe the method, we introduce the notations
used. Let Ij,k be an image from depiction style domain j with
object class label k, a training image set S which consists of
N images from M depiction styles with C object classes can
be denoted as:

S={Ij,ki ∈RW×H×3|∃!j∈Z+
⩽M ,∃!k∈Z+

⩽C}
N
i=1; (1)

A simplified S of 9 images from 3 depictions with 3 object
classes is shown in the left of Figure 2.

Our goal is to use S to learn a predictive model f :T 7→Z+
⩽C

that generalizes well to an unseen style domain T . That is, use
S to build a classifier that performs well when given images
in an unseen style.

4.1. Augmenting Geometric Style

Geometric augmentation is applied by randomly deforming
training images. There are several requirements for every
random deformation: (1) The deformation should be fast
enough to be performed online during training; (2) The degree
of deformation should be constrained to avoid over-distortions;
(3) Most importantly, the type of deformation should be
abundant enough to ensure variability, and reasonable enough
to avoid meaningless and misleading distortions – geometric
augmentation is class-specific. Some widely used geometric
augmentations (e.g., rotation, translation, flipping, etc.) may
be useful for size, orientation, etc. but do not fully satisfy the
class-specific augmentations that we address.

We accomplish the above by constructing object-class
specific geometric distributions utilizing the training data. We
follow WarpST [49], a general method for estimating intra-class
and cross-domain warp fields that leverages feature correlations
encoded by pre-trained CNNs. It is the fastest algorithm we
know of that warps an image in one style to an image in another
style (so satisfies constraint (1), above). The geometric warping
module D accepts an image pair ⟨Ic, Ig⟩ ∈ RW×H×3 and
computes a non-parametric vector field w∈RW×H×2:

w=D(Ic,Ig), (2)

used to warp Ic onto Ig. It should be noted that we only
leverage the warping unit of [49] in the following process hence
texture transfer is not included in our geometric augmentation.

WarpST [49] imposes no constraint on the input images. We
impose a constraint: both inputs come from the same object
class. They can be in any texture style, provided they depict
the same kind of thing. Specifically, as shown in the middle of
Figure 2, given the training image set S (Eq. 1), we first build
new sets Pk of image pairs that disregard the depiction style
label but is specific to the object class, k:

Pk={⟨I∗,ki ,I∗,ki′ ⟩|i≠i′∈Z+
⩽N}, (3)
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Figure 2. Diagram of the proposed framework for the construction of style distributions. We leverage the training data to construct geometric
and texture distributions for data augmentation during the training. Left: A simplified training set S which includes three objects (C1-3: dog,
giraffe, guitar) from three depictions (art, photo, and sketch). Middle: Construction of the geometric distributions. Object-based image pair sets
P∗ are built and then fed into a geometric warping module D to generate the warp field sets W∗. Deformation distributions NW∗ are constructed
based on W∗ per category, and further sampled to achieve the corresponding augmentation effects. Right: Construction of the texture distribution.
Training set S is fed into a texture style prediction network F to generate the texture representation set V . Texture distribution NV is constructed
based on V . For better presentation, warp fields are color-coded, NW∗ and NV are visualized in low-dimensional spaces.

and |Pk|=
(
Nk

2

)
where Nk represents the number of images

in S with object label k.
Next, we feed the Pk into the warping module D (Eq. 2)

and get class-specific warp fields

Wk=D(Pk)={D(I∗,ki ,I∗,ki′ )|i≠i′∈Z+
⩽N}. (4)

And Wk can be simply denoted as:

Wk={wk
i }

|Pk|
i=1 , (5)

where wk
i ∈ RW×H×2 is the ith warp field in Wk. This

guarantees that every warp field obeys constraints (2), above.
Because images are paired regardless of style labels (Eq. 3),
warp fields for both intra-domain and cross-domain are taken
into account, meaning the variety and generalization are also
ensured: constraint (3) is satisfied.

A straightforward way for geometric augmentation is
sampling an element from Wk, then use it to deform the
training image. However, this means the diversity of geometric
style is limited by the cardinality of Wk. To enable our method
to support as broad a range of geometric styles as possible, we
construct a geometric distribution based on Wk and sample
new warp fields directly from it. That is, we generate a warp
field from the class distribution.

We model the deformation distribution with a multivariate
normal distribution: w∼NWk

(µk,Σk), where µk and Σk are
the mean vector and covariance matrix of Wk. These statistics
are computed by representing Wk as a 2-D matrix in which
each column is a “vectorised” warp field, then:

µk=E[Wk], (6)

Σk=E[(Wk−µk)
⊺(Wk−µk)]. (7)

As shown in Figure 2, the constructed distributions can well
describe the intra-class warping fields.

The sampling warp fields and the corresponding deformed
results are shown in Figure 2. Such a strategy can speed up the
processing and significantly increase the variety of geometric
styles. In practice, to reduce the amount of computation in
Equations 6-7, we downsample Wk before reshaping. Please
see Section 5.1 for more details.

4.2. Augmenting Texture Style

A common strategy for texture augmentation is applying
style transfer on pairs of images. Currently, there is a great
variety of choice of style transfer methods, such as AdaIN [29]
used in [55,88,92], NST [17] in STADA [86], CycleGAN [93]
in [83], etc. Most of them follow the same paradigm: sample
an image from the training data or a mini-batch as the style
exemplar, and use it to transfer the texture of another one.
Such sampling process means that the diversity of texture
representations are limited to the cardinality of the image set.

A recent study [47] on the impact of style transfer on model
robustness attributed the effectiveness of texture augmentation to
the diversity of images. Motivated by this observation, we adopt
a similar strategy as described in Section 4.1 to amplify the diver-
sity of texture style representations from limited images to the
utmost extent. To balance flexibility with speed, similar to [31],
we choose a model-based method [20] rather than optimization-
based methods [17,93] as the texture style representation extrac-



tor. The approach of Ghiasi et al. [20] predicts an embedding
vector v∈R100 from a style image Is through a texture style
prediction network F which was trained on the PBN dataset1:

v=F(Is), (8)

and transforms the texture style of content image Ic through
a style transfer network T leveraging conditional instance
normalization [14]:

Io=T (Ic,v). (9)

We leverage the texture style prediction network F in our
method with post-processing. Specifically, as shown in the right
of Figure 2, given a training image set S, we first feed S into F
(Eq. 8) and get a set V which consists of texture style vectors:

V ={vi|vi∈R100}Ni=1, (10)

where V can be regarded as a 2D matrix comprising texture-
style vectors. It should be noted that because texture style
and object class as assumed to be independent, we fuse both
category and domain labels to treat S as a whole (compare
with category-specific warp distributions used for geometric
augmentation Section 4.1).

Then we construct the texture style distribution based on
V as a multivariate normal distribution with mean µ and
covaraiance Σ given by:

µ=E[V ], (11)

Σ=E[(V −µ)⊺(V −µ)]. (12)

In the training stage, for every training image I, we apply
texture augmentation by randomly sampling a texture style
embedding vr from NV , and transferring the texture style of
I based on vr through the style transfer network T (Eq. 9).
To control the strength of the style augmentation, we linearly
interpolate between vr and the identity transformation achieved
by feeding I into the style prediction network F:

vs=αvr+(1−α)F(I), (13)

where α is the balancing weight to control the extent of
augmentation.

In addition to boosting the texture style representations,
an additional benefit of the above method is computational
efficiency. Batch process images to construct the texture
distribution followed by direct representation sampling can
largely reduce time cost during the training.

1https://www.kaggle.com/c/painter-by-numbers
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Figure 3. Usage of geometric and texture distributions in the training
process. During training, every image is possibly deformed by a warp
field sampled from the class-specific warp distribution, then possibly
re-textured using a sample from the class-irrelevant texture distribution.
Some potential augmentations with mixed geometric and texture styles
are shown in the dashed box below.

4.3. Using Deformation and Texture Distributions

During training, deformation distributions (NW ) and texture
distributions (NV ) are employed consecutively to augment
training images. As shown in Figure 3, training images are first
deformed according to their object class labels using the warp-
ing fields randomly sampled from the geometric distribution
NW . Then the deformed images are stylised using randomly
sampled style representations from the texture distribution NV .

5. Experiments

In this section, we evaluate the performance of our
approach on several benchmarks, and compare it with recent
state-of-the-art methods. We also carry out ablation studies to
verify the significance of each component in our method for
recognition regardless of depiction style. In every case, the
hypothesis under test is that augmentation robustifies object
classification performance by widening the visual object class
(VOC) to include unseen examples. Therefore we apply no
augmentation of any kind to any test image: our hypothesis is
the VOC is wide enough to include the new image.

5.1. Datasets and Implementation Details

We adopt three commonly used multi-domain (depiction
style) datasets: PACS [41] consists of four domains (Art
Painting, Cartoon, Photo, and Sketch) with a total of 9,991
images of 7 classes. Office-Home [72] consists of four
domains (Art, Clipart, Product, and Real World) with 15,500
images of 65 classes for home and office object recognition.
Digits-DG [89] contains four digit datasets (MNIST [40],



MNIST-M [16], SVHN [56], and SYN [16]). The digit images
in each dataset vary significantly in font style and background.

Our framework can be prepositioned in any CNN architec-
ture. For PACS and Office-Home, we use ResNet [25] as our
backbone. All images are resized to 2242. We train the network
using SGD with batch size 64 and a consistent learning rate of
0.001 for 50 epochs. For Digits-DG, we use the same backbone
as [89]. Images are resized to 642. We train the network using
SGD with batch size 128 and a consistent learning rate of 0.05
for 50 epochs. During the construction of geometric distribu-
tions (Section 4.1), warp fields wi (Eq. 5) are implemented
based on elastic deformations and resized to improve the later
computational efficiency. During the texture augmentation, the
balancing weight α (Eq. 13) is set to 0.5. Our framework only
applies to the training. For all experiments, we use two probabil-
ities to separately decide if geometric and texture augmentations
are performed for any given training image (we further discuss
this in Section 5.3). As stated above, at test time no augmenta-
tions are applied. We follow the training and evaluation protocol
as used in [80,91,92]. All the results are reported in terms of
accuracy and each performance is an average of three runs.

5.2. Comparison to Baseline and State-of-the-Art

We choose several methods from each of the literature
categories described in Section 2 as baseline methods:
representation-learning-based methods: CCSA [51] and MMD-
AAE [44]; learning-strategy-based methods: MetaReg [3],
JiGen [8], and Epi-FCR [43]; and data-augmentation-based
methods: ADA [74], CrossGrad [65], L2A-OT [90], and
DDAIG [89]. We also compare with recently proposed
state-of-the-art algorithms: FACT [80], SagNet [55], and
MixStyle [92]. Same as our method, the three state-of-the-art
can be categorized into data-augmentation-based methods, and
texture style transfer methods are also used in [55,92].

As the learning of our framework does not require domain
labels, we evaluate the performance of our approach on both
multi-source and single-source domain generalization tasks.
Multi-source approaches attempt to generalize to an unseen
style given a training set that spans multiple styles; single-source
differs in using a single training style.

5.2.1 Multi-Source Domain Generalization

We first test our approach on the multiple source domains
generation tasks. For every dataset listed in Section 5.1,
we train models using any three domains and evaluate their
performances on the remaining one domain.
Results on PACS: The results on PACS are shown in Table 1.
It can be seen that our method improves the performance
over baselines and achieves results that outperform recent
state-of-the-art methods. This implies that adding geometric and
texture augmentations to the training procedure improves the
generalization ability of models. Moreover, experiments without

Table 1. Multi-source domain accuracy on PACS. Each column
indicates the target domain. Our approach improves the performance
over baselines and achieves results that outperform recent state-of-the-
art methods. Ours-T-G refers to training without augmentation at all.
Ours-T refers to training without textural augmentation. Ours-G refers
to training without geometric augmentation.

Methods Art Cartoon Photo Sketch Avg.

ResNet-18

MetaReg [3] 83.70 77.20 95.50 70.30 81.70
JiGen [8] 79.42 75.25 96.03 71.35 80.51
Epi-FCR [43] 82.10 77.00 93.90 73.00 81.50
MMLD [50] 81.28 77.16 96.09 72.29 81.83
DDAIG [89] 84.20 78.10 95.30 74.70 83.10
CSD [59] 78.90 75.80 94.10 76.70 81.40
InfoDrop [67] 80.27 76.54 96.11 76.38 82.33
L2A-OT [90] 83.30 78.20 96.20 73.60 82.80
EISNet [76] 81.89 76.44 95.93 74.33 82.15
SagNet [55] 83.58 77.66 95.47 76.30 83.25
MixStyle [92] 84.10 78.80 96.10 75.90 83.70
FACT [80] 85.37 78.38 95.15 79.15 84.51
Ours-T-G 77.36 76.04 96.08 68.56 79.51
Ours-T 82.74 78.22 95.96 75.26 83.05
Ours-G 86.34 80.12 96.38 81.42 86.07
Ours 86.99 80.38 96.68 82.18 86.56

ResNet-50

MetaReg [3] 87.20 79.20 97.60 70.30 83.60
MASF [12] 82.89 80.49 95.01 72.29 82.67
EISNet [76] 86.64 81.53 97.11 78.07 85.84
FACT [80] 89.63 81.77 96.75 84.46 88.15
Ours-T-G 83.04 74.96 97.67 72.39 82.02
Ours-T 87.50 80.76 98.00 74.94 85.30
Ours-G 89.24 83.49 97.79 81.91 88.11
Ours 89.98 83.84 98.10 84.75 89.17

geometric augmentation (Ours-G) and texture augmentation
(Ours-T) verify the effectiveness of each component.
Results on Office-Home: We show the performance of differ-
ent algorithms on Office-Home in Table 2. On the whole, our
method achieves results that are comparable with state-of-the-art
methods. But the effects of deformation and texture augmenta-
tion are not as evident as that on PACS, especially the effect of
geometric augmentation (Ours-T). This is largely due to the cate-
gory differences between these two datasets. The animal objects
(e.g., giraffe, dog, etc.) in PACS exhibit wide intra-class shape
and pose variations, whereas the object categories in Office-
Home (e.g., bottle, pen, etc.) tend to vary far less in terms of
geometry. On the other hand, Office-Home itself offers a dif-
ferent challenge to PACS due to its larger number of categories
(65) and the average number of images per category (238) are
not so balanced as those of PACS (9,991 images of 7 categories).
This challenge difference is also reflected in the performance



Table 2. Multi-source domain accuracy on OfficeHome. Each column
indicates the target domain.

Methods Art Clipart Product Real Avg.

CCSA [51] 59.90 49.90 74.10 75.70 64.90
MMD-AAE [44] 56.50 47.30 72.10 74.80 62.70
CrossGrad [65] 58.40 49.40 73.90 75.80 64.40
DDAIG [89] 59.20 52.30 74.60 76.00 65.50
L2A-OT [90] 60.60 50.10 74.80 77.00 65.60
SagNet [55] 60.20 45.38 70.42 73.38 62.34
MixStyle [92] 58.70 53.40 74.20 75.90 65.50
FACT [80] 60.34 54.85 74.48 76.55 66.56
Ours-T-G 57.87 48.89 73.96 75.31 64.01
Ours-T 58.43 53.10 73.52 75.42 65.12
Ours-G 60.28 55.55 74.67 75.90 66.60
Ours 60.40 56.30 74.55 75.77 66.75

of other approaches. We further discuss this in Section 6.
Results on Digits-DG: Table 3 lists the results on Digits-DG.
Although the image categories in Digits-DG differ drastically
from those of PACS and Office-Home, there are still clear
improvements in the accuracy. Our approach attains clear
improvement over state-of-the-art methods in terms of average
performance, only the accuracy on SYN is 3% lower than that
of FACT [80].

5.2.2 Single-Source Domain Generalization

Unlike some methods [3, 43, 50, 59, 89, 92] which require
style labels for learning, our construction of augmentation
VOCs does not. This means that our method is applicable to
single-source domain generalization tasks. We train models
on each domain of PACS and evaluate the performance using
the remaining domains, resulting in 12 domain-to-domain
transitions in total. As shown in Table 4, our approach
performs well on this task, exceeding the second best average
performance (SagNet [55]) by around 3%.

5.3. Ablation Study

We examine the effect of adding deformation and texture
augmentation separately. To isolate the effect of each
component, we use the same parameters in all tests to train
the model and only change the augmentation spaces involved.
The results are shown in Tables 1-3 (Ours-T-G,-T,-G). As can
be seen, there are decreases in performance when omitting
either augmentation; best results are achieved when both
augmentations are used. Overall, texture augmentation increases
models’ robustness to wider texture styles by reducing the
dependency between visual perception and texture patches.
Geometric augmentation further enhances the performance by
overcoming variations in geometric shapes.

As described in Section 5.1, we use a probability threshold
to control whether to use geometric augmentation, and likewise

Table 3. Multi-source domain accuracy on Digits-DG. Each column
indicates the target domain.

Methods MNIST MNIST-M SVHN SYN Avg.

CCSA [51] 95.2 58.2 65.5 79.1 74.5
MMD-AAE [44] 96.5 58.4 65.0 78.4 74.6
CrossGrad [65] 96.7 61.1 65.3 80.2 75.8
DDAIG [89] 96.6 64.1 68.6 81.0 77.6
Jigen [8] 96.5 61.4 63.7 74.0 73.9
L2A-OT [90] 96.7 63.9 68.6 83.2 78.1
MixStyle [92] 96.5 63.5 64.7 81.2 76.5
FACT [80] 97.9 65.6 72.4 90.3 81.5
Ours-T-G 96.1 60.9 64.7 78.2 75.0
Ours-T 97.9 64.8 64.9 86.7 78.6
Ours-G 96.8 69.2 73.3 82.1 80.3
Ours 97.8 70.0 75.1 87.3 82.6

for texture augmentation. In Figure 4, we show the influence
of different probability thresholds on the results. We observe
that the threshold value makes little difference in performance,
but there is a weak peak around 0.5.

To better illustrate the effect of each augmentation on the
model, we visualize the feature statistics on PACS using the
T-SNE method, as shown in Figure 5, after employing texture
and geometric augmentations during the training, boundaries
among inter-class objects become cleaner while the intra-class
objects cluster closer together.

6. Discussion
The role of geometry and texture in robustness. From the
results and analysis above, we can conclude that geometry and
texture augmentation improve cross-domain robustness. In
terms of their individual influence, texture plays a greater role,
but we cannot neglect the role of geometry style – it too is
an important contributing factor. Our dual augmentations will
encourage the classifier to cope well with both forms of domain
shift. Our results also reflect an important property of neural net-
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Figure 4. Influence of different probability thresholds for augmentation
on classification. Results shown are for multi-source domain test on
PACS with ResNet-18 backbone. Statistics on domains with different
styles are colored differently.



Table 4. Single-source domain generalization performance on PACS. (A: Art Painting, C: Cartoon, S: Sketch, P: Photo). JiGen [8] results are
reproduced with their official code. ADA [74] and SagNet [55] results are reported based on implementations from [55]. ResNet-18 and our
results are produced with our implementation.

Methods A→C A→S A→P C→A C→S C→P S→A S→C S→P P→A P→C P→S Avg.

ResNet-18 56.5 45.6 95.8 59.1 62.6 84.0 20.9 37.1 27.4 60.7 25.4 30.2 50.4
JiGen [8] 57.0 50.0 96.1 65.3 65.9 85.5 26.6 41.1 42.8 62.4 27.2 35.5 54.6
ADA [74] 64.3 58.5 94.5 66.7 65.6 83.6 37.0 58.6 41.6 65.3 32.7 35.9 58.7
SagNet [55] 67.1 56.8 95.7 72.1 69.2 85.7 41.1 62.9 46.2 69.8 35.1 40.7 61.9
Ours 67.4 51.7 97.1 79.8 66.4 89.9 50.6 70.5 58.8 69.4 38.7 39.1 65.0

(a) (b) (c) (d)

Figure 5. T-SNE visualization of the feature statistics using different augmentations on PACS. (a) Basic training without any augmentation. (b)
Add only textural augmentation. (c) Add only geometric augmentation. (d) Using both textural and geometric augmentation. By adding textural
and geometric augmentation, object clusters become denser and easier to separate.

works: Texture bias is bigger than geometric bias. According to
our experimental results and the findings from some previous re-
searches, there are some possible reasons for this phenomenon:

1. It is related to the sensitivity of CNNs to non-shape
features. Studies [2, 27] have shown that CNNs are
sensitive to a wide range of image manipulations that have
little effect on human judgments.

2. CNNs with texture preferences could indicate an inductive
texture bias [18], making it difficult for models to learn
geometric-relevant features in small-data regimes, and to
generalize to different distributions than the distributions
that they were trained on.

The role of geometry and texture in different datasets.
Our experimental results also indicate that the effectiveness
of geometry and texture augmentations vary from dataset to
dataset. One of the biggest reasons is the object and style
variances between datasets. Some object classes have geometric
shape variances themselves, such as animals in PACS and
handwritten numbers in Digits-DG. By comparison, the static
objects in Office-Home are of fewer intra-class shape variations.
This means their dependencies on geometric style are different.
Limitations. As our geometric and texture distributions are
constructed based on the corresponding feature representations
of source images, they are strongly dependent on the image
quality. If the feature representations are far from being good,
the augmentation spaces will be sub-optimal.

In addition, for different tasks such as classification on scene-
level, multi-object images, our textural augmentation is applica-
ble but geometric augmentation can not be used directly, as it is
likely to introduce distortions without considering the scene con-
tent. A potential improved way is to augment individual objects
in the scene, which in turn requires object detection, a distinct
research area from classification. This is beyond the scope of
the present paper, but is a good future direction to explore.

7. Conclusion
In this work, we have presented a framework for domain

generalization. Our approach starts from the observation that the
differences among images span two aspects: textural appearance
differences between domains and geometric shape differences
between object class categories. We treat geometry and texture
as two complementary roles and have shown that using both
to augment the visual object class proves effective in the
robustification of classification. Experimental results show that
our method outperforms state-of-the-art methods on both multi-
and single-source domain generalization tasks. The specific
degree of improvement depends on the character of each dataset,
but in general, we conclude that widening visual object classes
to include geometric style always leads to an improvement.
Acknowledgements. We thank the anonymous reviewers for
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