
        

Citation for published version:
KeshvariFard, M, Ljubic, I & Papier, F 2021, 'Budgeting in International Humanitarian Organizations',
Manufacturing and Service Operations Management, vol. 24, no. 3. https://doi.org/10.1287/msom.2021.1016

DOI:
10.1287/msom.2021.1016

Publication date:
2021

Document Version
Peer reviewed version

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Jun. 2022

https://doi.org/10.1287/msom.2021.1016
https://doi.org/10.1287/msom.2021.1016
https://researchportal.bath.ac.uk/en/publications/budgeting-in-international-humanitarian-organizations(3a656529-a5a1-44d5-8732-d763e8ab5217).html


MANUFACTURING & SERVICE OPERATIONS MANAGEMENT
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 1523-4614 |eissn 1526-5498 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

© 0000 INFORMS

Budgeting in International Humanitarian Organizations

Milad Keshvari Fard
Newcastle University Business School, NE1-4SE Newcastle upon Tyne, United Kingdom. milad.keshvarifard@newcastle.ac.uk

Ivana Ljubić
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Problem definition: International humanitarian organizations (IHOs) prepare a detailed annual allocation

plan for operations that will be conducted in the countries they serve. The annual plan is strongly a↵ected

by the available financial budget. The budget of IHOs is derived from donations, which are typically limited,

uncertain, and to a large extent earmarked for specific countries or programs. These factors, together with

the specific utility function of IHOs, render budgeting for IHOs a challenging managerial problem. In this

paper, we develop an approach to optimize budget allocation plans for each country of operations.

Academic relevance: The current research provides a better understanding of the budgeting problem in

IHOs, given the increasing interest of the operations management community for nonprofit operations.

Methodology: We model the problem as a two-stage stochastic optimization model with a concave utility

function, and identify a number of analytical properties for the problem. We develop an e�cient generalized

Benders decomposition algorithm as well as a fast heuristic.

Results: Using data from the International Committee of the Red Cross (ICRC), our results indicate 21.3%

improvement in the IHO’s utility by adopting stochastic programming instead of the expected value solution.

Moreover, our solution approach is computationally more e�cient than other approaches.

Managerial insights: Our analysis highlights the importance of nonearmarked donations for the overall

performance of IHOs. We also find that putting pressure on IHOs to fulfill the targeted missions (e.g.,

by donors or media) results in a lower beneficiaries’ welfare. Moreover, the IHOs benefit from negative

correlation among donations. Finally, our findings indicate that if donors allow the IHO to allocate unused

earmarked donations to other delegations, the performance of IHO improves significantly.

Keywords: International humanitarian organization; Earmarked donations; Budgeting; Nonlinear stochastic

programming; Generalized Benders decomposition.
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1. Introduction

International humanitarian organizations (IHOs) operate worldwide to run relief operations and

development programs. Typically, IHOs have headquarters (HQ) that are responsible for strategic

planning and budgeting decisions as well as a number of national delegations that coordinate

activities within each country of operation.

In this paper, we study the problem of budgeting in an IHO that is prepared at the HQ level, given

the specific characteristics of budget and operations in the humanitarian sector. At the beginning

of each year, an IHO typically makes annual plans regarding its operations in each country based

on factors such as the humanitarian needs, the ability of the organization to deliver aid, and a

realistic assessment of what can actually be implemented. The result is a detailed plan breaking

down the required budget based on the country, operations, targeted population, and other factors.

However, unlike corporate supply chains (which are financed by revenues from ongoing operations)

and entrepreneurial ventures (which are financed from private and corporate venture capital), IHOs

typically finance their operations from donations. Relying on donations is challenging, because

of the typical lack of su�cient donations, the uncertainties in both the amount and timing of

donations, and the fact that part of the financial donations are typically earmarked to specific

regions or programs (Van Wassenhove 2006). For example, the International Committee of the

Red Cross (ICRC) allows its donors to earmark their donations to a specific country, region, or

operation of their choice.

Budget earmarking is one of the main sources of complexity in IHOs. According to Eichenauer

and Reinsberg (2017), the amount of bilateral and earmarked aid (both to the NGOs and mul-

tilateral agencies) that was donated by OECD members from 1990 to 2012 has increased from

USD 50 billion to almost USD 120 billion, while their nonearmarked donations to the multilateral

agencies remained almost unchanged in the same period (USD 20 billion). The share of nonear-

marked donations received by ICRC has decreased from 29% to 22% between 2012 and 2017. Such

an increasing trend in the amount of earmarked donations can be a serious challenge to IHOs and

has negative impact on humanitarian operations. However, since it reduces the fundraising costs

of the IHO (Toyasaki and Wakolbinger 2014) and provides a higher control over the donations
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by donors, budget earmarking has become inevitable and is pursued by both sides. But donors’

preferences over the aid recipient destinations may not always match with the IHO’s priorities. For

instance, none of the five poorest countries in terms of GDP per capita were among the top ten

recipients of bilateral aid from the US or the UK. The same situation holds with the multilateral

aid (Malik 2018). Collier and Dollar (2002) estimate that an e�cient reallocation of current aid

among recipient countries would have a similar impact on poverty reduction as tripling aid budgets

under the existing aid allocation. These findings highlight that the nonearmarked budget plays a

vital role, as it allows decision makers to finance underfunded delegations.

The main objective of an IHO is to minimize humanitarian su↵ering and to bring welfare to

the a↵ected communities (Holgúın-Veras et al. 2013). On the other hand, the range of activities

undertaken by the IHOs in one country can consist of a diverse set of missions. For example, the

World Health Organization (WHO) performs operations in di↵erent areas, such as HIV, maternal

and child health, water sanitation hygiene, mental health, and vaccination in the same country.

Each of these programs represents di↵erent impacts on the welfare of the beneficiaries, and investing

one dollar of budget in some programs leads to a higher impact on the beneficiaries’ welfare than

the others (Keshvari Fard et al. 2019). Given a limited budget, IHOs try to fulfill the missions with

the highest impact on the welfare of the society. Therefore, the marginal value of each dollar of

donations spent in a country decreases in terms of the resulting beneficiaries’ welfare.

Looking at the problem from a larger scale, di↵erent delegations may not pose the same level of

priority to an IHO. The overall population, ongoing civil wars, higher possibility of natural disasters

or outbreaks of contagious diseases, the availability of the infrastructure, the education level and

the overall welfare of the society, and media coverage are factors that can result in the greater focus

of the IHO’s leadership on specific countries and regions. The average cost of operations in di↵erent

countries, i.e., landed cost, is also not the same. Several factors such as the logistics performance

index (LPI), the geographical situation of the country, the distance from warehouses and suppliers,

the work conditions, the purchasing power parity, and the availability of skills among the local

population also determine the impact of one dollar of donations.

Last but not the least, the amount of future donations depends on the IHO’s performance (Hyn-

dman and McDonnell 2009); thus, the budget plans and targeted programs should not be overly
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ambitious such that they cannot be met. Having a low implementation rate (the ratio of the expen-

ditures to the initial budget plans) could have a negative impact on the reputation and credibility

of the IHO and subsequently direct donors to other organizations in the future. Therefore, IHOs

try to be realistic and precise in their targets. For example, the average implementation rate of the

ICRC from 2012 to 2016 exceeded 91%.

Our contribution We model the budgeting problem as a two-stage nonlinear stochastic program

with recourse. We develop an e�cient generalized Benders decomposition (GBD) algorithm that

outperforms other alternative solutions, namely, the extensive form, and the GBD algorithm where

its subproblems are solved by a general-purpose nonlinear solver. We also develop a simple heuristic

approach that provides budgeting solutions with small optimality gaps in a short computing time.

Both approaches outperform the expected value solution by a large margin, highlighting the need

for a stochastic formulation of the problem. We also develop two extensions of the main model; in

Section 6, we consider the situation in which the distribution of donations depends on the budget

targets, and in Appendix B, we study the possibility of budget adjustments during the year. To

evaluate our model, we conduct numerical experiments based on data provided by the International

Committee of the Red Cross between 2012 and 2017.

We present several interesting results that could help decision makers in humanitarian orga-

nizations. We show that the contribution of nonearmarked donations in the utility of the IHO

and welfare of beneficiaries is higher than that of the earmarked donations, and this contribution

disparity is more significant for larger IHOs. In our experiments, increasing the 22% share of non-

earmarked donations to 50% of total donations leads to an increases of 19.9% of the welfare of

beneficiaries.

We also find that the more pressure the public and donors put on the IHO to meet its specified

objectives or the more diverse operations in a delegation are, the smaller are the optimal targets

and the more the welfare of the beneficiaries is reduced. In our experiments, a 50% increase of the

penalty factor on unmet targets leads to a 3.3% reduction in budget targets.

Finally, we propose a donation scheme in which donors can earmark their donations for a delega-

tion of their choice; however, they approve that their donation can be allocated to other countries
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if all the planned operations in their chosen country are fulfilled. Our results indicate that such

scheme can significantly enhance the utility of IHOs.

Our work contributes to the current literature in three di↵erent ways. First, our paper extends

existing research on budgeting in IHOs, because our model combines in a new way donation

uncertainty with earmarking and with the concave utility functions of delegations. Second, we

develop a model of budget allocation for which we derive managerial insights that help decision

makers in IHOs to better plan for the operations to implement. Third, from a technical point of

view, we develop an e�cient GBD algorithm based on a problem-tailored procedure for derivation

of Benders cuts as well as a fast heuristic to derive IHO’s budgeting decisions.

2. Literature review

Financial donations to nonprofit organizations (NPOs) have been subject of several studies from

various disciplines (in this section, we use for precision the general term NPO). Several topics, such

as determinants of the amount of donations collected by an NPO (Okten and Weisbrod 2000) or the

timing of receiving donations (Petrovits 2006), or the so-called crowding-out mechanism between

donations of the government and private sector (Ribar and Wilhelm 2002), have received consider-

able attention in the literature. In the following, we focus on studies that consider the problem from

an operational perspective. For a comprehensive review on challenges faced by NPOs, including

budget management, please refer to Anheier and Ben-Ner (2003), Tomasini and Van Wassenhove

(2009), Berenguer and Shen (2019), and Besiou and Van Wassenhove (2020).

Several research have considered the impact of budget uncertainty on the performance of an

NPO. Natarajan and Swaminathan (2014) analyze the impact of uncertainty in the timing of

receiving the pledged donations and conclude that the front-loading has a considerable impact on

the performance of the NPO. They also show that the benefits of front-loading are significantly

lower for products with a low critical ratio. Aflaki and Pedraza-Martinez (2016) show that increas-

ing nonearmarked donations can mitigate the impact of donation uncertainty and improve the

NPO’s operational e�ciency. Devalkar et al. (2017) argues that when a proportion of donors only

contribute after the delivery of results, the NPO can use an ex-post funding scheme to reduce

the impact of budget uncertainty. Keshvari Fard et al. (2019) show that under a higher budget

uncertainty, the deprivation cost increases, while the fleet utilization rate decreases.
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Considering the impact of earmarking, Jahre and Heigh (2008) find that earmarked funding could

impair postponement strategies, which are vital for relief operations. Wakolbinger et al. (2011) state

that not only the total amount of funds but also speed and timing, flexibility, predictability and

fluctuation of funds impact the value of funds from the perspective of an NPO. Pedraza-Martinez

and VanWassenhove (2013) find that incentive issues resulting from earmarked funding increase the

operating cost of vehicles in humanitarian operations, because earmarked funding creates incentive

misalignment between the NPO’s headquarters and the field o�ces. Besiou et al. (2014) show

that earmarked funding decreases the performance of NPOs during disasters, especially if decision

making on the vehicle procurement is decentralized. Toyasaki and Wakolbinger (2014) find that

although allowing for earmarked donations decreases the fundraising costs and usually results in

higher total donations collected, it restricts the e�ciency of the NPOs. Bhattacharya et al. (2014)

show that even collaboration of di↵erent programs in sharing their resources does not necessarily

eliminate the ine�ciencies associated with earmarked funding.

Accepting earmarked funding as inevitable, a number of studies have designed mechanisms to

improve the operations when donors can earmark their donations. Toyasaki and Wakolbinger (2014)

consider the reputation of the NPO as well as the media coverage on a disaster the determining

factors for the NPOs when deciding upon their fundraising strategies. They conclude that well-

known NPOs should be careful about accepting earmarked donations. Bhattacharya et al. (2014)

study the reallocation of earmarked funding between the NPO’s programs and show that allowing

aid programs the flexibility of transferring primary resources improves the e�ciency of the system.

Other studies have shown that lack of coordination among donors, and higher fragmentation of

donations, donors and aid channels lead to higher transaction costs and lower operational e�ciency

of an NPO (Buse and Walt 1996, Acharya et al. 2006, Berenguer et al. 2016).

Finally, several research contributions propose measures to increase the amount of donations,

e.g., announcing the past contributions of other donors (Varian 1994), using a publicized and

tiered fundraising scheme (McCardle et al. 2009), dynamically allocating assets between revenue

generating activities and nonprofit operations (De Vericourt and Lobo 2009), allowing donors to

audit and penalize NPOs (Privett and Erhun 2011), and using ex-post funding scheme which allows

donors to contribute only after the delivery of NPO’s projects (Devalkar et al. 2017).
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Simpler variants of our model have been studied in the literature. If the utility functions of the

delegations were strictly linear, the model would be equivalent to the multiproduct newsvendor

problem with uncertain budget and could be solved by the method proposed in Bansal and Dyer

(2017). If the budget constraint were also deterministic, the model would further simplify to the

well-known multiple newsvendor problem (see, e.g., Erlebacher (2000)). Finally, nonlinear utility

functions for a single newsvendor have been studied by Halman et al. (2012).

3. Model Description and Analytical Results

In this section, we describe the model and provide some analytical insights into the optimal solution.

3.1. Model Description

Consider an IHO that runs operations in n delegations. Let I = {1, . . . , n} be the index set of

all delegations. At the beginning of the year, the HQ decides upon the level of operations to be

done in each delegation i 2 I, and consequently the required budget target for this delegation,

denoted by xi. To finance this target, the HQ first relies on the donations earmarked for that

delegation, which are referred to as ⇠i � 0, for each i 2 I. The value of ⇠i is not known at the

time of planning; however, the IHO knows its distribution. We denote the marginal probability

distribution function of ⇠i by Bi(⇠i) and the marginal cumulative distribution function by Bi(⇠i).

The donation distributions Bi(⇠i) are independent of targets xi. In Section 6 we also investigate a

setting in which the distribution Bi(⇠i) depends on xi. Note that we do not make any assumption

about the correlation among the donation distributions.

If the amount of earmarked donations received for the delegation i is not su�cient to cover all

the planned missions, the HQ may allocate part of the nonearmarked budget to the delegation,

denoted by yi. We denote the part of the nonearmarked donations that can be distributed among

delegations, e.g., after deducting the HQ’s budget, by ⇠ne � 0 and its density function by Bne(⇠ne).

For simplicity, we assume that the decision regarding the allocation of nonearmarked budget

among the delegations is taken at the end of the year, although technically, the money could be

transferred to the delegations in one or more payments at any time of the year, based on the needs

of the delegations. For example if the earmarked donations for delegation i are mainly back-loaded,

the HQ may allocate some nonearmarked budget to the delegation and receive it back in the future
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when the earmarked donations for that delegation arrive. Such an assumption especially fits with

the reality when the arrival of the donations mainly follows a front-loaded pattern, i.e., the majority

of the donations arrive early in the period (Natarajan and Swaminathan 2014).

At the beginning of the period, the IHO decides on the budget targets, with the knowledge of

the distribution of donations. During the period, the delegations receive the earmarked donations,

which are usually immediately available to be allocated to di↵erent missions. At the end of the

period, given the declared budget targets and the donations received during the period, the IHO

finalizes the allocation of the nonearmarked donations, such that the utility is maximized. In

Appendix B, we also develop a model in which the IHO can revise its targets during the year.

Note that we only consider two types of donations in this research: earmarked for a delegation,

or nonearmarked at all. In reality, however, donors may be given more options to earmark their

donations (e.g., earmarking the donation for a program or for a program in a specific country).

Nonetheless, reducing the donation patterns to these two schemes is not confining, since most of

the donations usually belong to one of the two categories considered in this paper. For example,

according to ICRC, from 2015 to 2016, on average 79% of the donations were either earmarked for

a country or not earmarked at all. Other earmarking schemes can be fitted in the current model

with a good approximation.

We assume that even if ⇠i exceeds xi, the e↵ective budget that will be spent by delegation i is

xi. This assumption matches the practice of operations in IHOs because fulfilling extra missions

usually requires advance planning, extra skills, operational assets, coordination, human resources,

and other acticities, and receiving extra budget late in the year usually does not trigger additional

operations; instead, the additional budget can be saved for the next year. Therefore, the total

e↵ective budget that contributes to the welfare of the beneficiaries in delegation i is identified as

↵i =min{xi, ⇠i + yi}.

We consider fi(↵i) to be the resulting beneficiaries’ welfare from spending a budget of ↵i in

delegation i. We assume fi, i 2 I to be strictly increasing, concave, and twice di↵erentiable, i.e.,

allocating extra budget results in fulfilling additional missions and therefore higher welfare for the

beneficiaries; however, the marginal impact of these additional missions on the beneficiaries’ welfare
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is decreasing. If the allocated budget to delegation i, ⇠i+yi, is less than xi, the IHO fails to fulfill the

planned missions, which brings disutility for the IHO. This disutility can be modeled as a function

of the budget shortage for delegation i 2 I, defined as [xi � ⇠i � yi]+, where [x]+ =max{0, x}. We

refer to this disutility as gi([xi � ⇠i � yi]+), which can be simplified to gi(xi � ↵i). Since gi is a

loss function, it should be increasing and convex in its argument. For simplicity, in this paper we

assume that gi is linear for all i 2 I, i.e., gi(.) = a
g
i [.]

+
, a

g
i � 0, even though our GBD method and

most of our analytical findings also apply to convex, nonlinear gi functions. Finally, we refer to the

net utility for delegation i, given xi, yi and ⇠i as the following:

ui(xi, ⇠i, yi) = fi(min{xi, ⇠i + yi})� gi([xi � ⇠i � yi]
+), i2 I.

Hence, the overall goal of the IHO is to decide the target values of xi � 0, i2 I, so that the sum

of the expected net utilities over all delegations is maximized. Referring to the budget targets as

x= [x1, x2, . . . , xn], the donations received by the IHO as ⇠ = [⇠1, ⇠2, . . . , ⇠n, ⇠ne] and the allocation

of the nonearmarked budget to di↵erent delegations as y = [y1, y2, . . . , yn], we can formulate the

budget allocation problem as the following two-stage stochastic problem:

Stage 1: max
x�0

Q(x) =E⇠̃[Q(x,⇠)] (1)

Stage 2: Q(x,⇠) =max
y�0

U(x,⇠,y)

s.t.
nX

i=1

yi  ⇠ne,

where ⇠ refers to the vector of random variables modeling uncertain donations, and U(x,⇠,y) =
Pn

i=1
ui(xi, ⇠i, yi) calculates the overall utility under budget targets of x, observed donations of ⇠,

and allocation of nonearmarked donations of y. Q(x,⇠) is called the recourse function and refers

to the maximum possible utility for a given x and ⇠, and finally Q(x) is the expected overall utility

that the IHO can obtain under a given x.

Lemma 1 identifies the behavior of the allocation decisions in optimality. All proofs and additional

technical results are contained in the Supplementary Appendix, which is available online at https:

//papers.ssrn.com/sol3/papers.cfm?abstract_id=3464619.

Lemma 1. Given x and ⇠, for the optimal allocation decisions, y⇤, we have y
⇤
i  [xi � ⇠i]+, for

all i2 I.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3464619
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3464619
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Given Lemma 1, we propose a simplified formulation of the recourse function Q(x,⇠), by adding

the constraints yi  [xi � ⇠i]+, i= {1, . . . , n} to the model which leads to the following:

Q(x,⇠) =max
y�0

U(x,⇠,y) =max
y�0

X

i2C(x,⇠)

[fi(⇠i + yi)� gi(xi � ⇠i � yi)] +
X

i/2C(x,⇠)

fi(xi), (2)

s.t. yi  xi � ⇠i, i2 C(x,⇠)

X

i2C(x,⇠)

yi  ⇠ne,

where C(x,⇠) = {i 2 I : xi � ⇠i} refers to the set of delegations that can benefit from the nonear-

marked donations, i.e., for which yi � 0.

3.2. Analytical insights into the optimal solution

We begin by analyzing the role of earmarked donations. Proposition 1 compares the importance of

these donations to nonearmarked donations for the IHOs’ utility and the welfare of beneficiaries.

Proposition 1. Regarding the earmarked and nonearmarked donations, we have the following:

1.
@Q

@⇠ne
(x,⇠)� @Q

@⇠i
(x,⇠), for all i2 I, and at any given point (x,⇠)� 0.

2.
@Q

@⇠ne
is non decreasing in n.

3. With fi(↵i) = a
f
i (↵i)b

f
i , af

i � 0, and 0< b
f
i  1,

@Q/@⇠i

@Q/@⇠ne
is non decreasing in a

f
i , b

f
i and a

g
i

for all i2 I.

4. The contribution of nonearmarked donations to the IHO’s overall utility are higher than that

of earmarked donations.

Part 1 of the proposition states that the contribution of one dollar of nonearmarked donations to

the IHOs’ utility in the recourse function is higher than that of the earmarked donations, which is

intuitive because nonearmarked donations have less constraints on their use. Part 2 states that by

expanding the operations to a larger number of delegations, it becomes more important for the IHO

to receive more nonearmarked donations. Part 3 implies that while nonearmarked donations are

always preferred, for delegations with higher importance (larger af
i , e.g., higher urgency of missions,

larger population of beneficiaries), higher concentration of operations (larger bfi ), or larger media

attention (larger a
g
i ), earmarked donations have higher contributions than those for delegations

that do not meet these conditions. Part 4 extends the results to the overall IHO utility, Q(x⇤).
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It is straightforward to show that Proposition 1 holds true if the IHO’s utility
Pn

i=1
ui(xi, ⇠i, yi)

is replaced with the overall beneficiaries’ welfare,
Pn

i=1
fi(↵i). In other words, the aforementioned

advantages of earmarked donations are still valid even if the IHO focuses exclusively on the max-

imization of the beneficiaries’ welfare. Note that in such a case, there would be no finite solution

to the problem, and the IHO would set x=1.

Next, we show how di↵erent schemes of implementing a more flexible budget allocation a↵ect

the IHO utility. We define a partially relaxed earmarking scheme as the setting that allows the

IHO to re-allocate the surplus of funds for a delegation i, [⇠i � xi]+. In other words, donations

earmarked for i that exceed the target of delegation i can be allocated to other delegations. Let us

define Q0 as the recourse function of this scheme, which can be modeled by replacing the constraint

of the second stage in Model (1) with
Pn

i=1
yi  ⇠ne +

Pn
i=1

[⇠i � xi]+. We compare this scheme

against a full relaxation of the earmarking constraints, which we refer to as fully relaxed earmarking

scheme. Let us denote its recourse function by Q
00. The scheme can be modeled by replacing the

non-negativity of yi with yi ��⇠i for all i, in Model (1). Corollary 1 shows the order of the IHO

utility under the di↵erent schemes.

Corollary 1.

Q(x⇤)max
x�0

E⇠̃[Q
0(x,⇠)]max

x�0
E⇠̃[Q

00(x,⇠)]. (3)

This finding highlights the importance of a partial earmarking scheme for an IHO, which we

analyze in detail in Section 6.

Proposition 2 analyzes the sensitivity of the budget target with respect to the model parameters.

Proposition 2. With fi(↵i) = a
f
i (↵i)b

f
i , x⇤

i is non decreasing in a
f
i and b

f
i and non increasing in

a
g
i .

Proposition 2 implies that for delegations with higher importance and urgency of missions or

delegations with a less diverse (e.g., type, location, target groups) set of operations, a higher

budget target should be set. This is interesting, because it implies that delegations with more

diverse operations receive lower targets. On the other hand, if the penalty of target fulfillment for

a delegation is large, the IHO should act conservatively and set a lower budget target.

It is also straightforward to infer that in optimality, the overall beneficiaries’ welfare
Pn

i=1
fi(↵i)

is decreasing in ag = [ag
1
, . . . , a

g
n]. In other words, with a lower pressure on the IHO to meet its

targets (e.g., by media), the contribution of the IHO to the society is higher.
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Even though the current research focuses on IHOs, the budgeting problem may exist in local

humanitarian organizations as well. Proposition 3 determines the budget target for a single dele-

gation (in which case all donations can be considered as earmarked).

Proposition 3. If n= 1 the optimal budget target x⇤ is given by the following:

x
⇤ =B�1

✓
f
0(x)

f 0(x)+ ag

◆
, (4)

where f
0(x) is the derivative of f(x), B(.) is the cumulative distribution function of the earmarked

donations received by the humanitarian organization, and B�1(.) its inverse function.

Note that if function f is linear in its argument, then the solution of Proposition 3 reduces to

the well-known newsvendor solution.

4. Solution Methods

In this section we propose three ways to approach the problem from a computational perspective.

The first two methods are based on sampling a finite number of possible scenario realizations

and solving the underlying problem approximation. They provide exact solutions for the given

subset of scenarios. The first one (cf. Section 4.1) is based on a deterministic reformulation of

the problem as a nonlinear program. Due to the size of the model and the nonlinearity of the

objective function, its application is limited to small problem inputs. However, this deterministic

reformulation provides theoretical foundation for deriving a much e�cient exact method, called the

generalized Benders decomposition approach, which we present in Section 4.2. The third method

(cf. Section 4.3) is a fast and e�cient heuristic procedure that exploits the cumulative distribution

function of earmarked donations and does not require scenario sampling. This heuristic can be

applied (complementary or alternatively to GBD) to large problem inputs to find a high-quality

solution in short computing time.

4.1. Deterministic Equivalent

In the Model (1), we assume that the donations can be modeled as a random vector ⇠̃ with a

known probability distribution. To solve Model (1) using optimization techniques, we can assume

that ⇠̃ has a finite number of possible realizations, called scenarios. In that case, the expectation

function can be written as the weighted sum of the recourse values over all possible realizations

for the value of ⇠̃. In case ⇠̃ follows a continuous distribution, we have to discretize its elements.
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Consider a finite set K of di↵erent scenarios, with ⇠k being the kth realization of donations vector

⇠, with respective probability mass pk, for all k 2K. In this case, Model (1) can be expressed by

its deterministic equivalent, which is a large nonlinear programming problem. The optimal value

of the deterministic equivalent is calculated as follows:

Q̄⇤ =max
x�0

X

k2K

pkQ(x,⇠k). (5)

It is well-known that Q̄⇤ and the associated optimal solution, x̄⇤, converge to the optimal value

Q(x⇤) and the optimal solution x⇤ of the true problem maxx�0E⇠̃[Q(x,⇠)], respectively, as |K|!

1. Hereinafter, we refer to x̄⇤ and Q̄⇤ as the optimal solution and the optimal value of the

discretized problem, respectively.

For small n and |K|, we can write the deterministic equivalent of the problem and use one of

the o↵-the-shelf nonlinear programming solvers to obtain its optimal solution. Model (6) identifies

the extensive form of the deterministic equivalent, in which, for each scenario k 2K, we introduce

a second-stage variable yk. Furthermore, we also introduce variables ↵k
i to linearize the expression

min{xi, ⇠
k
i + yi}, for all i2 I, k 2K:

max
x,↵,y

Q̄(x,↵,y) =
X

k2K

pk

nX

i=1

[fi(↵
k
i )� gi(xi �↵

k
i )] (6)

s.t. ↵
k
i  xi k 2K, i2 I

↵
k
i  ⇠

k
i + y

k
i k 2K, i2 I

nX

i=1

y
k
i  ⇠

k
ne k 2K

xi, y
k
i ,↵

k
i 2R+

k 2K, i2 I

In this model, Q̄(x,↵,y) denotes the objective function of the discretized problem, ⇠ki represents

the kth realizations of ⇠̃i, yk
i is the allocation of ⇠kne to delegation i for realization k, and ↵

k
i is the

e↵ective budget for delegation i under ⇠k.

Lemma 2. In Model (6), Q̄(x,↵,y) is jointly concave in (x,↵,y).

Given Lemma 2, the global optimum can be found for Model (6). We note that the total number

of variables and constraints is O(n · |K|); hence, by increasing the number of delegations or the

number of scenarios, Model (6) easily becomes numerically intractable.
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4.2. Generalized Benders Decomposition

To solve larger instances of the deterministic equivalent, we propose an e�cient decomposition

method, namely, a generalization of the L-Shaped technique for nonlinear problems, also known

as generalized Benders decomposition. In this paper, we design a problem-tailored GBD approach

that in contrast to the standard recipes from the literature, does not require a general-purpose

nonlinear solver for derivation of Benders cuts and uses a combinatorial procedure instead. For a

general introduction to the L-shaped method and (generalized) Benders decomposition, see, e.g.,

Benders (1962). Recent advances in Benders decomposition for solving mixed-integer (stochastic)

optimization problems are presented in Carøe and Tind (1998), Liu et al. (2009), Fischetti et al.

(2016, 2017). The concept has been extended to robust optimization (Takriti and Ahmed 2004).

For a given set of scenarios K, we project out second-stage decision variables (namely, y and

↵), and formulate the whole problem in the natural space of first-stage variables x� 0. Thereby,

we reduce the number of decision variables from O(n · |K|) to O(n+ |K|). To this end, instead

of solving a compact but nonlinear optimization problem with a large number of variables and

constraints given by Model (6), we first reformulate the deterministic equivalent using the value

function reformulation as follows:

max
X

k2K

pk✓
k (7)

✓
k Q(x,⇠k), k 2K (8)

x� 0, ✓ 2R|K|
,

where ✓
k refers to the underestimation of the overall utility under ⇠k. Due to the maximization of

the objective function, at optimality, equality is attained.

Since we are dealing with a problem with a complete recourse, the problem Q(x,⇠k) is well

defined for any x� 0 and any ⇠k. To obtain the Benders reformulation, we will replace constraints

(8) with a family of linear Benders optimality constraints. These cuts are separated on the fly, in a

cutting plane fashion. The relaxed Benders master problem contains only a small fraction of these

cuts (at the beginning, it can be empty), and whenever an optimal solution (x̌, ✓̌) of the relaxed

master problem is found, its feasibility is validated by solving the Benders subproblem. The latter
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consists of checking whether ✓k Q(x̌,⇠k), for all k 2K. If this is not the case, a violated Benders

cut is detected, inserted into the master problem, and the process is repeated until ✏-convergence

is achieved. We observe that in this process, we need to solve Benders subproblems for all |K|

realizations of ⇠. Given that the subproblems are nonlinear and require considerable computational

e↵orts, it is better to extract as much information as possible at each iteration by adding multiple

cuts each time the Benders subproblem is called. This leads to the multicut approach (see, e.g.,

Birge and Louveaux (2011), You and Grossmann (2013), Leitner et al. (2018)).

In the following, we provide a closed-form formula to calculate Benders optimality cuts for

any given solution of the master problem (x̌, ✓̌). We first observe that the function Q(x̌,⇠k) is

concave in x, that the Slater conditions hold and that the maximum is attained (cf. Lemma 3 in

the supplementary appendix). Let Q(x̌,⇠k) denote the optimal solution value of the k-th Benders

subproblem, and let y̌k be the corresponding optimal solution. If ✓̃k >Q(x̌,⇠k), a violated Benders

cut for the k-th subproblem can be obtained by overestimating the value ofQ(x,⇠k) by a supporting

hyperplane in x̌ as follows:

✓
k Q(x̌,⇠k)+�k(x� x̌), (9)

where �k denotes a supergradient of the concave function Q(x,⇠k) at point x̌. Rather than hav-

ing these supergradients computed from a black-box nonlinear solver (using the tools of convex

optimization), Theorem 1 shows how to obtain the subgradients in a combinatorial fashion.

Deriving a Benders cut (9) requires solving a deterministic convex allocation problem, for which

there is a vast literature on solution methods (see, e.g., Patriksson (2008) for an overview). In our

implementation, due to the simplicity of our allocation model, we use a modified version of Zipkin

(1980)’s algorithm to find the optimal solution for Q(x̌,⇠k). Once this solution is attained, the

Benders cut can be derived according to the result shown below.

Theorem 1. Let y̌ denote the optimal solution of the convex allocation problem Q(x̌,⇠k). Coe�-

cients of the supergradient �k in the Benders optimality cut (9) can be calculated as follows:

�
k
i =

8
>>><

>>>:

�g
0
i(x̌i � ⇠

k
i � y̌

k
i )+ µ̌

k
i , if x̌i � ⇠

k
i + y̌

k
i ,

f
0
i(x̌i), otherwise,

i2 I, k 2K (10)
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and µ̌
k
i is computed as follows:

µ̌
k
i =

8
>>><

>>>:

@ui
@yi

(x̌i, ⇠
k
i , y̌

k
i )� µ̌

k
ne, if y̌

k
i = x̌i � ⇠

k
i ,

0, otherwise,

i2 I, k 2K (11)

and

µ̌
k
ne =

8
>>><

>>>:

@uj

@yj
(x̌i, ⇠

k
i , y̌

k
i ), if 9 j such that 0< y̌

k
j < x̌j � ⇠

k
j ,

0, otherwise.

k 2K. (12)

In short, we apply Lagrangian duality to derive formula (10), and then apply KKT conditions on

the k
th recourse subproblem to calculate the optimal dual multipliers provided in (11)-(12). What

makes our result particularly interesting is the fact that Theorem 1 allows computing the values of

�k only using the optimal solutions of the subproblems, y̌k. Using the concavity of U(x,⇠,y) in y

for any given x and ⇠ (see Part 1 of Lemma 3 in the supplementary appendix), the subproblem of

Model (2) can be solved e�ciently using the current literature on concave allocation problems. In

this way, we significantly decrease the computational e↵ort by avoiding the use of generic nonlinear

solvers to obtain the values of y̌ and the associated dual multipliers. Our results in Section 5

provide computational evidence for this claim.

Initial upper bounds for ✓. To initialize the cutting plane procedure, it is crucial to start with

strong upper bounds for ✓k, k 2K. Let UB
k
✓ denote this initial bound, which is added to the master

problem before any separation of cutting planes. For UB
k
✓ , we consider the utility obtained given

the perfect information under scenario k by solving the following optimization model. Note that

in case of perfect information, we would have xi = ⇠i + yi and therefore, gi(xi �↵i) = 0.

UB
k
✓ =max

y�0

(
nX

i=1

fi(⇠
k
i + y

k
i ) :

nX

i=1

y
k
i = ⇠

k
ne

)
. (13)

Algorithmic details. To accelerate the convergence of the algorithm, we generate several

optimality cuts before starting the GBD method. To that purpose, we first compute x̄k =

argmaxx�0Q(x,⇠k) for each k, as the optimal solution under ⇠k and generate Benders cuts that

potentially cut o↵ these points.
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Since a cut can be generated for any pair x̄k and ⇠k0 , for each k, k0 2K, a total of |K|2 initial

cuts can be generated at this stage. However, to avoid overloading of the master problem with

a large number of cuts, for each x̄k, we randomly select n possible realizations of ⇠ and solve

the associated subproblem to obtain n · |K| initial optimality cuts. Given these cuts, we start the

Benders decomposition algorithm and continue until we reach ✏ convergence, i.e., until we obtain

a solution (x̌, ✓̌) such that ✓̌k �Q(x̌, ⇠̌k) ✏ holds, for all k 2K.

4.3. Developing a fast heuristic

Although performing the generalized Benders decomposition under a well-designed SAA scheme

provides an optimal (or near-optimal) solution for Model (1), it may require considerable computa-

tional e↵ort, especially for larger values of n and |K|. Therefore, it is necessary to have an e�cient

heuristic that can find high-quality solutions in a short amount of time.

To that purpose, we decompose the budget target for delegation i, xi, into two parts: x0
i, which

refers to the budget target solely from the earmarked donations for delegation i; and x
00
i , which is

an additional budget target from taking the nonearmarked donations into account. If all elements

of ⇠ are independent (i.e., there exists no correlation in the donors’ decision on earmarking for a

certain delegation or not earmarking at all), then according to Proposition 3, we can find x
0
i by

solving the following equation for each i:

Bi(x
0
i) =

f
0
i(x

0
i)

f 0
i(x

0
i)+ a

g
i

. (14)

To find x00, we maximize the overall beneficiaries’ welfare,
P

i fi(↵i), by optimally allocating the

expected value of nonearmarked donations, E(⇠̃ne), among n delegations, considering a previously

allocated vector of x0:

x00 = argmax
x00�0

nX

i=1

fi(x
00
i +x

0
i), s.t.

nX

i=1

x
00
i =E(⇠̃ne). (15)

The above function is concave in x00 and therefore can be solved easily. Given Equations (14) and

(15), one can compute the heuristic solution as xh =x0 +x00.

5. Numerical experiments

In this section, we describe the data set and report on the results of the numerical computations.
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5.1. Description of Data Set from ICRC

To evaluate our model under a valid range of parameters, we use ICRC’s annual reports to extract

required data. These are comprehensive reports from the activities of ICRC on di↵erent delegations

and are publicly available from its website. By the beginning of year 2018, ICRC operated on 57

main delegations (we skipped the New York delegation since it is ICRC’s delegation to the UN).

We focus on the data of the last six years, from 2012 to 2017, and interpolate missing values.

We used the same ratio of earmarked donations to total expenditure for estimating the donation

distributions of the delegations; this implies that for the year 2012, 29% of total expenditure was

from nonearmarked donations, while the rest is financed from earmarked donations. This ratio

is 28%, 27%, 26%, 23% and 22% for years 2013 to 2017. We consequently compute the mean

and standard deviation for all earmarked and nonearmarked donations. We assume the mean

nonearmarked budget to be 22% of the total expected donations (the ratio of 2017). The standard

deviation is then easily computed using the coe�cient of variation, which we already found for

the nonearmarked donations. As in Okten and Weisbrod (2000), we assume that all donations,

whether earmarked or not, follow log-normal distributions. All budget values are given in million

Swiss franc (MCHF).

We assume that fi(.) = a
f
i (.)

bfi . To compute a
f
i , we assume that a delegation with more critical

missions accomplished in the last year would be of higher priority for the ICRC in the current

year. Therefore, we consider key performance metrics on 2017 that are reported by the ICRC for

each delegation. After rescaling the values of each metric, an expert from a Canadian foundation

assigned weight to each metric. The weighted sum of these values provides af
i for each country.

To compute b
f
i , we look at the expenditure break down for each delegation in 2017 in five main

categories, protection, assistance, prevention, cooperation with national societies and general. We

assume that the more evenly the expenditures are divided among these areas, the more diverse

are the operations on that delegation, and therefore, bfi should be smaller. Thus, we compute

maximum of the 5 expenditures
average of the 5 expenditures for each country, followed by rescaling them between 0 and 1

by setting the largest value to 0.95. This will guarantee that all welfare functions are concave.

Alternatively, factor bfi of each delegation i can be computed using the Herfindahl-Hirschman Index

(HHI) (Rhoades 1993) on the five main expenditures mentioned above and by rescaling the values.
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Finally, for ag
i , we consider the logarithm of the total population who live in the domain of the

delegation (using data from World Population Prospects 2017 ), as an indicator of awareness to

penalize the unsatisfied targets. We then rescale ag such that maxi a
g
i =maxi a

f
i to make a balance

between the two factors.

The parameters for all 57 delegations are presented in Appendix A. For problems with n < 57

we use the first n delegations with the highest targeted budget for 2018. In our data, the first 30

delegations represent approx. 85-90% of the total spending; since n= 30 is a better representative

of an average IHO compared to n= 57, we use it for the majority of our numerical experiments.

5.2. Computational Performance

To conduct our computations, we use MATLAB R2019a as well as Gurobi 9.0.2. We run the

computations in a system that consists of a 2.7 GHz Intel Core i7 processor with 16 GB of RAM

and a MacOS Catalina.

Computational e�ciency and sample stability: To evaluate the computational e�ciency

of the proposed new generalized Benders decomposition method presented in Section 4.2 and our

analytical findings in Theorem 1, we compare it with a GBD algorithm in which an o↵-the-shelf

nonlinear solver (MATLAB’s fmincon) is used to solve the subproblems and calculate dual variables.

We refer to the latter as GBD-g. We also report the computational performance of the extensive

form method (cf. Section 4.1) in Appendix E of the supplementary document; the latter scales very

poorly with the increasing size of n and |K|, and is up to three orders of magnitude slower than

GBD and up to two orders of magnitude slower than GBD-g.

Our results in Figure 1 indicate that for any n and |K|, the CPU time for GBD is several times

less than that of GBD-g. Therefore, using GBD (instead of GBD-g) allows for significant savings

in computing time.

To evaluate the underlying scenario generating scheme and estimate the required sample size

for achieving good and stable solutions, we use two related quality measures, namely, in-sample

stability and out-of-sample stability (see, e.g., King and Wallace (2012), Ljubić et al. (2017)). We

refer to the supplementary appendix for more details. We also show the adequacy of samples of

size |K|= 500 for our computation, and thus, we use |K|= 500 for the following computations.
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Figure 1 Comparison between GBD and GBD-g in terms of required CPU time.

Value of stochastic solution and other performance measures: We aim to answer the

following questions: (1) why the IHO should not simplify the budgeting problem by assuming a

deterministic (rather than a stochastic) model, (2) why the IHO should not simplify the budgeting

problem by assuming a linear (rather than a non-linear concave) objective function?, and (3) what

is the quality of solutions obtained by the heuristic proposed in Subsection 4.3?

To address these questions, we compare the IHO’s utility under di↵erent budgeting plans, where

each plan is obtained using a di↵erent modeling assumption. While the GBD method provides

IHO’s utility under our default setting (stochastic with non-linear objective), to achieve the maxi-

mum precision we replicate several iterations of GBD under Sample Average Approximation (SAA)

framework. Please refer to Appendix F in the online supplementary material for more informa-

tion about our SAA approach. |K 0|= 4000 scenarios were used as the reference set in the SAA

approach. For a fair comparison, we also used the same K 0 scenarios to evaluate the utilities of the

solutions obtained with other methods. The next proposition (whose results can be derived from,

e.g., Mangasarian and Rosen (1964)) helps to explore the first question.

Proposition 4. Let ⇠̄ = E(⇠) and x̄ be the optimal solution for maxx�0Q(x, ⇠̄). We have the

following:

E⇠̃[Q(x̄,⇠)]
| {z }

EEV

Q(x⇤)E⇠̃[max
x�0

Q(x,⇠)]
| {z }

WS

Q(x̄, ⇠̄). (16)

The value x̄ in Proposition 4 is usually referred to as the Expected Value (EV) solution. The first

term in Equation (16) identifies the Expected value of the EV solution (EEV). This is the maximum
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Table 1 The expected utility obtained by GBD embedded in the SAA framework, its lower and upper bounds
(EV and WS respectively), the heuristic solution, and the expected value for a linear utility function.

EV GBD WS Heuristic Linear UF

n utility VSS gap utility utility EVPI [%] utility gap utility gap

10 14079 1745 12.4% 15824 18040 12.3% 15431 2.5% 14077 12.4%

20 15772 2576 16.3% 18347 20902 12.2% 17910 2.4% 15681 17.0%

30 16080 3200 19.9% 19280 21944 12.1% 18825 2.4% 16295 18.3%

40 16377 3433 21.0% 19810 22574 12.2% 19397 2.1% 16719 18.5%

50 16556 3592 21.7% 20148 22916 12.1% 19703 2.3% 16896 19.2%

57 16768 3567 21.3% 20335 23148 12.2% 19891 2.2% 16967 19.9%

utility that can be achieved by solving a deterministic instead of a stochastic problem, in which

the uncertain donations are replaced by their expected values. The larger the gap between EEV

and Q(x⇤), the more important it is to solve the stochastic problem. The value of the stochastic

solution (VSS) is defined as V SS =Q(x⇤)�EEV , and is reported in Table 1 in its absolute and

relative terms. We observe that there is a significant benefit from considering donation uncertainty

in our model: the stochastic solution outperforms the EV solution by a large margin (i.e., the IHO

could loose up to 21.7% of its utility, on average, if the decision maker adopts a simplified modeling

by replacing the uncertain donations by their expected values).

If it was possible to predict in advance all uncertainties, one would achieve the maximum possible

utility, which provides a theoretical upper bound to Q(x⇤). Such obtained Wait and See (WS)

solution value corresponds to the third term in Equation (16), WS =E⇠̃[maxx�0Q(x,⇠)]. In Table

1 we report the utility of the WS solution, and we also compute the Expected Value of Perfect

Information (EVPI) [%], which is the relative loss of utility with respect to the value of WS due

to the lack of access to the perfect information, i.e., EV PI[%] = (WS�Q(x⇤))/WS ⇤ 100. As we

can observe from Table 1, the IHO looses around 12% of its utility, on average, due to the inability

to perfectly predict the donations.

To answer the second question regarding the impact of simplifying the concave utility function

with a linear function, we calculate the optimal solution, xL, for bfi = 1 for all i, and its expected

utility E⇠̃[Q(xL
,⇠)]. The latter value is reported in Table 1 in the column denoted by Linear

UF. Our results demonstrate that considering linear utility functions for the delegations results in

significantly sub-optimal outcomes, with potential utility losses ranging between 12.4% and 19.9%

in our experiments, which are nearly as high as the losses incurred by the EV solution. We conclude
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that it is important for the IHO to use a modeling approach that takes the concavity of the utility

function into account.

Finally, to answer the third question, Table 1 also reports the expected utility of the heuristic

solution, together with the relative gap between this value and the value of Q(x⇤). The obtained

results indicate that our heuristic approach provides solutions with small optimality gaps (ranging

between 2.1% and 2.5%) in a short time (0.22 seconds for n = 57). The required computational

time for GBD is about 16 minutes, and for GBD under the SAA framework is nearly 3 hours (with

n= 57 and |K|= 500). These results indicate that the heuristic can be successfully used for IHOs

with a large number of delegations without a significant loss of the expected utility, when the exact

methods cannot handle the problem.

From Table 1, we can also see that the overall utility of the IHO does not increase significantly

by expanding the operations into more countries (with less urgent missions). For example, by

accomplishing the operations in the first 10 countries of the list in Table A.1, ICRC can achieve

78% of the utility that it can obtain by conducting operations in all of its delegations. Note that

while these 10 countries only represent 7.1% of the world’s population, they are engaged in the

worst humanitarian crises. Considering the costs of operating in new countries, this finding may

explain why the majority of the IHOs focus on a small number of countries.

5.3. Sensitivity Analyses and Managerial Insights

In this subsection we present two sensitivity analyses concerning the impact of the degree of

earmarking and the impact of correlation among donations. For additional analyses of the impact

of the parameters of the utility functions and the impact of budget uncertainty please see the

supplementary appendix. The GBD method has been used to derive these sensitivity analyses.

Note that our numerical findings are specific to the data set that we used.

Impact of the degree of earmarking: To study the performance of the IHO under di↵erent

shares of the earmarked budget, we vary
E(⇠ne)

E(⇠ne)+
P

iE(⇠i)
from 5% to 80%.

In each scenario, we keep
P

iE(⇠i)+E(⇠ne) the same. We then proportionally change the means

and standard deviations of all elements of ⇠.

Figure 2 demonstrates the importance of nonearmarked donations on the performance of the

IHOs under di↵erent values of n. Figure 2a shows that by convincing more donors not to earmark
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(b) Overall welfare of beneficiaries
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(c) Overall utility of the IHO

Figure 2 The impact of the share of the nonearmarked donations on (a) budget targets, (b) beneficiaries’ welfare,
and (c) IHO’s utility.

their donations, the IHO would target significantly larger plans, since the managers are now less

worried about fulfilling the targets. The improvement is especially sharp under smaller shares

of the nonearmarked budget. Higher budget targets would in turn lead to higher welfare of the

beneficiaries (Figure 2b). The latter, combined with a higher fulfillment of initial plans (due to

having more flexibility in budget allocation), results in a higher overall utility for the IHO (Figure

2c). We can also see that larger IHOs benefit more from a higher share of nonearmarked funding,

which is in line with our findings of Proposition 1.

We can observe a 15.7% increase in the total budget targets as well as a 65.3% improvement in

the overall welfare of beneficiaries when moving from a 5% share of the nonearmarked budget to

80% (for n= 30), indicating the benefit of nonearmarked donations.

Impact of correlation among donations: In some settings, donors for the n delegations

and the nonearmarked donations may be overlapping, and the delegations may be in competition

for donations, depending on the ongoing crises in the di↵erent countries. Some donors may also

hesitate between donating earmarked funds and nonearmarked funds to the IHO. These settings

lead to correlation in the donations.

We test the e↵ect of correlation in a numerical experiment, assuming correlation between the

delegations’ earmarked donations, ⇠i, and the nonearmarked donations, ⇠ne, and with di↵erent

earmarked donations being independent with respect to each other. For simplicity, we assume the

same correlation coe�cient ⇢ for all i. The maximum possible correlation ⇢ for n+1 distributions

is ±|1/
p
n|.

The results of our experiments are shown in Figure 3 and indicate that the IHO benefits from

negative correlation between earmarked and nonearmarked distributions, which is in line with
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(a) Overall utility of the IHO
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(b) Sum of budget targets

Figure 3 The impact of negative and positive correlation between earmarked and nonearmarked donations on
(a) IHO’s utility and (b) the expected sum of budget targets.

expectations and prior research on allocation problems; see, for example, Netessine et al. (2002).

The e↵ect is the opposite in case of positive correlations. The results also relate to the findings

of Acharya et al. (2006) which emphasizes the necessity of coordination among donors to enhance

the aid e�ciency.

We also observe from Figure 3 that negative correlation leads to higher targets and vice versa.

For example, for n= 30 delegations, the sum of targets increases by 1.9% when moving from zero

to the maximum negative correlation, while it decreases by 1.1% when moving to the maximum

positive correlation. In fact, negative correlation implies that whenever delegation i receives few

earmarked donations, the IHO is more likely to receive more nonearmarked donations and vice

versa. Consequently, the IHO is able to set a higher target and to fulfill the target either with

earmarked or with nonearmarked donations depending on the distributional outcome. An opposite

mechanism applies to settings with positive correlations. We also observed in our experiments

that correlation among donations does not significantly a↵ect the optimality gap of our heuristic

solution.

6. Extension to Target-Dependent Donations

In this section, we extend our model to a setting where the distribution of earmarked donations for

each delegation i depends on the target for that delegation, xi. This extension models situations in

which the IHO’s fundraising e↵orts are a↵ected by the target it has set and in which a high target
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motivates donors to give more. The objective function of the extended model can be written as

follows:

max
x�0

Q(x) =E⇠̃|x[Q(x,⇠)]. (17)

This extension can be considered a Stackelberg game, in which the IHO decides first about the

budget targets, anticipating the reaction of the donors, and the donors decide in a second step on

the donations as a function of the targets. In its generic form as presented in Equation (17), the

distribution of donations depends on the decision variables, and thus the resulting problem belongs

to the class of stochastic programming with decision-dependent uncertainty, which is fairly new in

the stochastic programming literature (Hellemo et al. 2018). In this model, Q(x) is not concave

in x, and thus, we cannot use standard convex optimization techniques to derive the optimal x. A

full investigation of this generic model would require a new research paper. Consequently, in this

paper, we propose a simple model and heuristic solution approach using the Nelder-Mead Simplex

algorithm to address the new problem. Details of the model and solution approach can be found

in Appendix C.

Next, we run numerical experiments to analyse the extended model. To that purpose, we assume

a linear relationship between the mean of the earmarked donations and the budget target for a

given delegation i, E(⇠i) = dw̄i + exi, where w̄i is the default mean of earmarked donations that

was extracted from ICRC data (cf. Table A.1), dw̄i is the line’s intercept, and e represents the

slope. The slope can be interpreted as the donors’ sensitivity to budget targets, while the intercept

represents the minimum expected budget that the IHO can expect even with a zero target. For

simplicity, we assume common parameters d and e for all delegations. The coe�cient of variation

of each distribution remains the same as the one implied by Table A.1, and similar to Section 5,

we assume a Lognormal distribution for all donations. We also assume that ⇠ne is independent of

x. We use the heuristic approach presented in Appendix C for the computations.

Furthermore, we analyze the impact of partially and fully relaxed earmarking schemes that we

introduced in Section 3.2. The partially relaxed earmarking scheme is especially relevant under the

assumption of target-dependent donations, because it a↵ects the Stackelberg game between the

IHO and the donors. Note that Corollary 1 is still valid under the assumption of target dependent

donations, i.e., Q(x)maxx�0E⇠̃|x̃[Q
0(x,⇠)]maxx�0E⇠̃|x̃[Q

00(x,⇠)].
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Figure 4 IHO utility and total budget targets as a function of slope e for di↵erent values of intercept d and for
di↵erent relaxation schemes (none, partial, full) with n= 30.

Figure 4 demonstrates the results. Concerning the relationship between the distribution of dona-

tions and budget targets, our results indicate that as the slope e, i.e., the donor sensitivity to call

for donations, increases, the IHO sets higher targets at a more aggressive rate (Figure 4c and 4d).

This implies a faster increase in the IHO’s utility (see Figures 4a and 4b). Our insights highlight

the importance of measures to increase the slope e, such as with the IHO’s fundraising e↵orts,

the visibility of the IHO and its missions to potential donors, and by obtaining donors’ trust in

the IHO’s credibility and capabilities. On the other hand, comparing Figure 4a with Figure 4b,

shows that increasing the intercept multiplier d may not be as beneficial as increasing slope e for

the IHOs. In other words, investing on factors that impact the awareness of donors about IHO’s

missions could be more beneficial than securing donations from additional sources.

Figures 4a and 4b also indicate that by using the partial earmarking scheme, the IHO can

obtain a utility close to the scheme with no earmarking constraints, performing significantly (33%

in average over the test problems) better than under the original scheme with full earmarking

constraints. This e↵ect increases with increasing slope e, i.e., it becomes more important with

stronger dependency of donations on the targets, and also with increasing intercept d. The partially
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relaxed earmarking scheme also leads the IHO to set targets that are significantly higher than

those under the original scheme (see Figures 4c and 4d). This important finding implies that IHOs

should ask (and incentivize) donors to give permission to reallocate donations after targets are

fulfilled.

Indeed, many IHOs such as ICRC ask donors at the end of the year to allow for the reallocation or

return of earmarked donations that have not been spent. What we propose is to ask the permission

at the beginning of the year, which gives the IHO more flexibility in setting targets and spending the

budget. Donations under this scheme have an e�ciency close to that of non-earmarked donations,

and compared to earmarked donations, our scheme could be more attractive for donors, because

the IHO commits to fully meeting the targets of the specified use.

7. Discussion and Conclusion

In this research, we study budgeting in international humanitarian organizations, which is primor-

dial to improve beneficiaries’ welfare. We model the problem as a nonlinear two-stage stochastic

program with recourse and develop an e�cient generalized Benders decomposition algorithm for

the problem that outperforms other alternatives in terms of computational e�ciency. Our results

indicate a significant improvement over the expected value solution (21.3% optimality gap for the

largest problem in our tests), which highlights the importance of taking the stochastic nature of

the problem into account. We also propose a heuristic approach that can find close-to-optimal

solutions (2.2% optimality gap when considering all delegations), and can be easily adapted to

IHOs that run numerous delegations. We also developed two model extensions to consider budget

adjustments during the year and budgeting under target-dependent donations.

We derived a number of interesting managerial insights, both analytically and numerically. Our

study confirms existing research that nonearmarked donations have a higher contribution on bene-

ficiaries’ welfare and IHOs’ performance, compared to the earmarked donations. The current trend

that donors earmark their donations forces the IHOs to set lower targets, resulting in beneficiaries

being worse o↵, ceteris paribus. With the analysis of our data set, we find for example that if the

share of nonearmarked donations decreases from 22% to 5%, ICRC should set its budget targets

6.5% lower for the main 30 delegations (leading to a decrease of 16.0% of welfare).
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We observed that large IHOs gain more from nonearmarked donations than smaller IHOs, for

which earmarked donations create more ine�ciency. For example, an IHO with 30 delegations,

compared to one with 10 delegations, will experience a 7.9% greater increase in beneficiaries’ welfare

(19.9% vs 12%) from moving from 22% share of nonearmarked donations to a 50% share.

We showed that the more the donors are concerned about the fulfillment of targets for a given

delegation or the more diverse the operations in a delegation are, the lower the target that IHO

sets for that delegation, which in turn leads to less welfare for the beneficiaries. In our experiments,

a 50% increase of the penalty factor on unmet targets leads to a 3.3% reduction of budget targets

for the main 30 delegations. Therefore, interestingly, it is better for the donors not to be strict on

getting the IHO responsive for the targets it sets.

We also proposed a donation scheme that can significantly improve IHO performance, by 33%

in our numerical experiments. Under this scheme, donations earmarked to a delegation can be

allocated to other delegations if the declared budget target for the delegation is met. Note that

the IHO can still benefit from this scheme if only a fraction of the donors of earmarking donations

adopt it. Knowing the distribution of flexible and nonflexible earmarked donations, our model can

be applied with few modifications to calculate the optimal targets.

We extended our model to the possibility to update budget targets during the year. We found

that this extension leads to, on average, higher targets than under the standard model. In addition,

an IHO may face unpredictable events during the year for some delegations, e.g., in case of disasters

or disease outbreaks. In such a case, when the situation arises, the IHO can use our model and

reoptimize the budget targets based on updated utility functions and donation distributions and

also taking into account the donations already received by the time of event. The solutions methods

that we proposed in this paper can be adapted to derive optimal solutions for the updated model

which are then implemented from the time of the event.

Our research can be further developed in a number of directions. First, empirical and analytical

studies are required to better understand the beneficiaries’ welfare function in the context of

humanitarian programs. Second, the concave utility function can be replaced with an S-shaped

scheme, given the marginal welfare resulting from initial investments. Third, the problem can be

extended to consider a dynamic setting with multiple time periods in which the distribution of

donations in future periods is a function of the IHO’s performance in previous years.
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Keshvari Fard, Ljubić, and Papier: Budgeting in International Humanitarian Organizations
30 Manufacturing & Service Operations Management 00(0), pp. 000–000, © 0000 INFORMS

Birge, J. R. and Louveaux, F. (2011). Introduction to stochastic programming. Springer Science & Business

Media.

Buse, K. and Walt, G. (1996). Aid coordination for health sector reform: a conceptual framework for analysis

and assessment. Health Policy, 38(3):173–187.

Carøe, C. C. and Tind, J. (1998). L-shaped decomposition of two-stage stochastic programs with integer

recourse. Mathematical Programming, 83:451–464.

Collier, P. and Dollar, D. (2002). Aid allocation and poverty reduction. European economic review,

46(8):1475–1500.

De Vericourt, F. and Lobo, M. S. (2009). Resource and revenue management in nonprofit operations.

Operations research, 57(5):1114–1128.

Devalkar, S. K., Sohoni, M. G., and Arora, P. (2017). Ex-post funding: How should a resource-constrained

non-profit organization allocate its funds? Production and Operations Management, 26(6):1035–1055.

Eichenauer, V. Z. and Reinsberg, B. (2017). What determines earmarked funding to international develop-

ment organizations? Evidence from the new multi-bi aid data. Review of International Organizations,

12(2):171–197.

Erlebacher, S. J. (2000). Optimal and heuristic solutions for the multi-item newsvendor problem with a

single capacity constraint. Production and Operations Management, 9(3):303–318.
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Online appendix for Budgeting in International Humanitarian Organizations

Appendix A: Parameters used for computations

Table A.1 Parameters used for computations

No Delegation
mean std. dev.
earmarked earmarked af

i bf
i ag

i
(MCHF) (MCHF)

1 Syrian Arab Republic 138.651 41.447 30.592 0.950 51.509
2 Iraq 99.863 23.961 60.688 0.781 53.787
3 South Sudan 90.580 32.590 20.497 0.815 50.359
4 Yemen 60.760 16.679 60.794 0.809 52.852
5 Nigeria 74.427 30.195 36.592 0.828 58.738
6 Somalia 72.458 11.533 36.975 0.918 50.848
7 Congo, Democratic Republic of the 52.099 3.353 31.787 0.679 56.110
8 Afghanistan 58.580 4.168 65.066 0.742 53.558
9 Ukraine 41.389 20.574 13.826 0.790 54.232
10 Myanmar 30.796 9.744 21.976 0.682 54.812
11 Israel and the Occupied Territories 38.640 5.413 28.240 0.478 50.518
12 Central African Republic 33.697 9.374 4.971 0.815 47.300
13 Mali 31.270 4.648 14.881 0.792 51.555
14 Lebanon 34.189 11.518 13.492 0.784 48.121
15 Libya 26.176 6.373 12.667 0.774 48.266
16 Niger 24.317 6.995 11.601 0.839 52.008
17 Jordan 23.304 10.228 3.838 0.758 49.560
18 Colombia 22.298 1.287 10.716 0.494 54.553
19 Yaoundé (regional) 18.705 6.710 6.433 0.671 53.313
20 Mexico City (regional) 17.365 3.916 7.132 0.501 58.869
21 Bangladesh 10.892 3.368 12.650 0.693 58.282
22 Ethiopia 14.681 2.340 17.784 0.577 56.895
23 Philippines 13.527 11.718 10.506 0.536 56.894
24 Pakistan 12.932 3.352 29.959 0.573 58.835
25 Abidjan (regional) 8.086 1.280 6.573 0.375 56.465
26 Beijing (regional) 10.677 1.897 3.972 0.507 65.066
27 Sudan 6.869 8.980 10.448 0.337 53.964
28 Bangkok (regional) 10.233 0.557 6.050 0.401 58.680
29 Pretoria (regional) 6.452 2.002 0.971 0.509 57.360
30 Moscow (regional) 11.840 3.798 0.300 0.471 58.146
31 New Delhi (regional) 9.985 0.609 10.833 0.398 64.808
32 Chad 8.594 3.274 3.387 0.549 50.881
33 Burundi 7.772 2.222 10.716 0.543 49.908
34 Nairobi (regional) 9.876 1.925 10.616 0.347 56.982
35 Paris (regional) 8.169 2.252 2.397 0.583 59.543
36 Tashkent (regional) 9.864 0.617 2.494 0.463 55.684
37 Suva (regional) 6.937 1.239 2.094 0.329 53.916
38 Azerbaijan 7.620 1.178 1.257 0.578 49.599
39 Dakar (regional) 6.320 0.854 0.928 0.423 51.843
40 Brasilia (regional) 7.709 1.048 1.223 0.312 59.938
41 Sri Lanka 6.819 1.503 3.604 0.456 51.920
42 Washington (regional) 5.561 0.412 0.033 0.588 60.701
43 Georgia 5.747 0.777 5.643 0.534 46.762
44 Caracas (regional) 3.336 0.767 0.038 0.425 53.866
45 Kuala Lumpur (regional) 5.071 0.855 1.587 0.509 58.293
46 Kuwait (regional) 5.042 1.121 1.077 0.386 54.767
47 Tunis (regional) 4.430 0.568 2.645 0.462 50.236
48 Balkans (regional) 4.475 0.780 1.664 0.722 54.670
49 Iran 3.757 0.440 0.550 0.381 56.103
50 Rwanda 4.225 0.365 11.176 0.493 50.267
51 Lima (regional) 4.297 0.356 7.380 0.372 55.164
52 Uganda 3.186 0.433 7.348 0.516 54.136
53 Egypt 3.271 1.124 2.357 0.323 56.670
54 London 3.069 0.689 0.306 0.437 55.688
55 Armenia 2.588 0.470 0.265 0.408 45.872
56 Jakarta (regional) 3.473 0.336 3.980 0.626 59.718
57 Brussels 2.671 0.340 0.306 0.722 50.064
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Appendix B: Mid-Year adjustments of budget targets

In this subsection, we allow for an adjustment of targets during the planning period. This extension models

the situation in practice in which targets are updated during the year. For example, the ICRC annual report

2017 shows that 12 delegations out of 57 had budget amendments.

To study the impact of this flexibility, we assume that the IHO has the possibility to modify the initial

plan once during the year, e.g., after 6 months, for some or all delegations. In other words, at the beginning

of the year the IHO determines the initial budget targets, x. Then, depending on donations received until

then, the IHO may decide to update the initial targets and we denote the updated targets by vector x. We

allow a maximum deviation of the updated targets from the initial targets of (1� �i)xi  xi  (1 + �i)xi,

where 0 �i < 1 is a parameter of the maximum allowed deviation from the initial target of delegation i.

Note that we allow updating in both directions, that is, increasing and decreasing targets.

Let us denote the donations received in the first and in the second half of the year by vectors ⇠̇ and ⇠̈,

respectively. The problem can be written as a three-stage stochastic program as follows:

Stage 1: max
x�0

Q(x) =E˜̇⇠
[Q1(x, ⇠̇)] (B.1)

Stage 2: Q1(x, ⇠̇) =max
x�0

E˜̈⇠|⇠̇[Q
2(x, ⇠̇+ ⇠̈)]

s.t. xi(1� �i) xi  xi(1+ �i), 8 i2 I

Stage 3: Q2(x, ⇠̇+ ⇠̈) =max
y�0

U(x, ⇠̇+ ⇠̈,y)

s.t.
nX

i=1

yi  ⇠̇ne + ⇠̈ne

In the above model, the IHO first decides upon x, knowing the distribution of donations in the first and

second half of the year (Stage 1). Then, in the middle of the year, based on the observed donations from the

first period, x is chosen to optimize Q1(x, ⇠̇, ⇠̈) (Stage 2). Finally, at the end of the year, the nonearmarked

donations are allocated to the di↵erent delegations in order to maximize the IHO’s overall utility, U(x, ⇠̇+ ⇠̈,y)

(Stage 3). A similar logic could be applied to further extend the model to multiple adjustments of the budget

targets.

In Model (B.1), if �i = 0 for all i and B(⇠) = B(⇠̇ + ⇠̈), xi = xi, and the results will be the same as the

model that we presented in Section 3. As �i increases, the feasible space does not decrease, and thus, the

maximum IHO utility is non decreasing in �i.

Developing an e�cient solution method for this 3-stage model is out of the scope of this paper. We therefore

solve it using its extensive form. By discretizing the uncertainty into a limited number of scenarios, the model

can be written as follows:

max
x,x,↵,y

Q̄(x, x,↵,y) =
X

k̇2K̇

X

k̈2K̈(k̇)

pk̇pk̈

nX

i=1

[fi(↵
k̇k̈
i )� gi(x

k̇
i �↵k̇k̈

i )] (B.2)

s.t. xk̇i  xi(1+ �i) k̇ 2 K̇, i2 I

xi(1� �i) xk̇i k̇ 2 K̇, i2 I

↵k̇k̈
i  xk̇i k̇ 2 K̇, k̈ 2 K̈(k̇), i2 I
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↵k̇k̈
i  ⇠k̇i + ⇠k̈i + yk̇k̈i k̇ 2 K̇, k̈ 2 K̈(k̇), i2 I
nX

i=1

yk̇k̈i  ⇠k̇ne + ⇠k̈ne k̇ 2 K̇, k̈ 2 K̈(k̇)

xi, x
k̇
i , y

k̇k̈
i ,↵k̇k̈

i 2R+ k̇ 2 K̇, k̈ 2 K̈(k̇), i2 I

In this model, K̇ represents the set of potential scenarios for donations in the first period, while K̈(k̇) is

the set of donation scenarios for the second period if donation k̇ is received in the first period. This would

allow to model scenarios where donations in the two periods are dependent. pk̇ and pk̈ are the probabilities

of k̇th and k̈th scenarios in K̇ and K̈(k̇), xk̇i is the revised target for delegation i after observing ⇠k̇, ↵k̇k̈
i

and yk̇k̈i are the budget spent by delegation i, and the nonearmarked budget allocated to delegation i under

realizations k̇ and k̈, respectively. The objective function is concave, so the optimal value for x,↵ and y can

be found.

Solving the above model is computationally intensive; hence, we can only compute the optimal solution

for the case of n= 2 and n= 3 delegations and with |K̇|= |K̈|= 25 (equivalent to 625 scenario combinations).

We assume that the deviation threshold is the same for all delegations, i.e., �i = � for all i and that B(⇠̇)

and B(⇠̈) are i.i.d. normal distributions such that E(⇠̇) =E(⇠̈) = 0.5 E(⇠) and �2(⇠̇) =�2(⇠̈) = 0.5 �2(⇠).

Figure B.1 shows the numerical results for di↵erent values of �. For n= 2 delegations, our findings indicate

that by increasing deviation threshold � from 0 to 0.2, IHO utility increases by 8.9%, beneficiaries’ welfare

by 4.3%, with 2.8% higher final budget targets x. For n= 3 delegations, we obtain 5.8% more IHO utility,

3.2% higher welfare with 3.2% greater final targets.

It is interesting to note that the flexibility to adjust leads to on average higher targets in our numerical

experiments. A possible explanation may be that the reduced variability at the time of adjustment requires

less protection against the penalty for unmet targets and hence allows for updating the targets upwards;

similar e↵ects have been observed before in the literature on allocation problems; see, e.g., Papier (2016).

0   0.05 0.1 0.15 0.2 

5500

6000

6500

7000

7500

O
ve

ra
ll 

ut
ili

ty
 o

f t
he

 IC
R

C

(a) Overall utility of the IHO

0   0.05 0.1 0.15 0.2 

6000

6500

7000

7500

O
ve

ra
ll 

w
el

fa
re

 o
f b

en
ef

ic
ia

rie
s

(b) Overall welfare of beneficiaries

0   0.05 0.1 0.15 0.2 

250

300

350

400

Ex
pe

ct
ed

 su
m

 re
vi

se
d 

ta
rg

et
s

(c) Sum of budget targets

Figure B.1 The IHO utility, beneficiaries’ welfare, and final targets when allowing updating budget targets in

the middle of the year for two di↵erent sets of delegations.
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Appendix C: Numerical procedure for the target-dependent distribution of
donations

In this appendix we propose a simple procedure based on Nelder-Mead Simplex algorithm to solve generic

Model (17) presented in Section 6. By discretizing the donations, for any given x, Q(x) can be written as

follows:

Q̄(x) =max
↵,y

X

k2Kx

"
P(⇠k|x)

nX

i=1

[fi(↵
k
i )� gi(xi �↵k

i )]

#
(C.1)

↵k
i  xi k 2Kx, i2 I

↵k
i  ⇠ki + yki k 2Kx, i2 I
nX

i=1

yki  ⇠kne, k 2Kx

where Kx is the discretized set of scenarios under budget target x. The model is feasible for any x� 0, and

the feasible space is a convex set. The objective function is jointly concave in ↵ and y; therefore, Model (C.1)

can be easily solved for any given x and Kx. However, because the probability distribution of donations

depends upon the target decisions, Q̄(x) is not concave in x (see, for example, Hellemo et al. (2018)), and

thus, we cannot use standard convex optimization techniques, such as the interior point method, to find the

optimal value of x.

A strong optimization heuristic that is frequently used for nonconvex optimization is the Nelder-Mead

simplex algorithm (Nelder and Mead 1965), although this method does not guarantee finding the global

optimum. We implemented the Nelder-Mead simplex algorithm by using the standard parameter values. For

each new set of budget targets x, we identified the distribution of all ⇠i and generated |Kx| realizations

accordingly. Model (C.1) was then solved to find Q̄(x). The Nelder-Mead simplex algorithm continued to

find new x and updated the basis, until the terminating condition was met.

Appendix D: Systematic identification of utility function parameters

In this section, we present a systematic estimation tool for the three parameters of the utility function that

capture a delegation’s characteristic in our model, afi , b
f
i , and agi .

To derive the welfare gains of each delegation, the decision maker first has to identify the di↵erent oper-

ations that a delegation can perform as well as their impact on the beneficiaries’ welfare. This impact may

comprise factors such as the nature of the operation, the number of people a↵ected, localities, and target

groups (Mullen 1995).

Consequently, multicriteria optimization models have been developed for resource allocation in healthcare

and humanitarian operations. These models require the relative weights of each criteria as a basis for deter-

mining the relative impact or importance of each operation. Methods to elicit these weights using the stated

preferences of the IHO managers and other field experts include conjoint analysis (Orme 2010), contingent

valuation (Holgúın-Veras et al. 2016), and discrete choice experiments (de Bekker-Grob et al. 2012). One can

refer to Mullen and Spurgeon (2018) for an overview of additional techniques as well as a detailed discussion

of priority evaluation.
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For each operation of a delegation, the IHO estimates the impact on the welfare of beneficiaries and

the cost of the operation. The operations are sorted by decreasing welfare per cost unit and plotted in a

cumulative welfare chart. A power function is fitted to the plotted welfare function to estimate parameters

afi and bfi of the delegation.

We illustrate the above steps with an example, which is based on data of the countries of South Sudan

and Somalia from the ICRC Annual Report 2017 where possible. In our example, an IHO performs two

operations, food commodities and water and habitat activities by two delegations in two di↵erent countries,

A and B. The IHO prioritizes operations based on three factors: the number of beneficiaries being served

(N), the importance of an operation (W f
j ), and the criticality of a location (W f

i ).

Using conjoint analysis, the IHO managers conclude that the importance of food commodities is twice

as high as the importance of water and habitat activities for an average beneficiary, and thus, W f
j 2 {2,1},

where j = 1 and j = 2 refer to food commodities and water and habitat activities, respectively. Similarly,

due to civil war in the territory of delegation A, the IHO puts a higher weight on the operations in this

delegation and thus W f
i 2 {2,1.5}, with i= 1 and i= 2 refer to delegation A and B, respectively.

Finally, the IHO uses a utility function where the utility of performing operation j for N beneficiaries in

delegation i is computed as u(i, j,N) =NW f
j W

f
i . In other cases, the prioritization can be more complex; for

example, ICRC distinguishes the beneficiaries into men, women, and children.

Next, delegations and the top IHO management estimate the costs of each operation. Similar to Gralla

et al. (2014), Jana et al. (2019), the IHO considers di↵erent levels of demand fulfillment, e.g., 40%, 60% and

80% coverage of all potential beneficiaries in the territory of each delegation. The territory of delegation B

has a long coastal line with functioning ports and lower dispersion of demand points. The currency exchange

rate and purchasing power parity of B is low as well, which reduces the costs of operations. On the other

hand, the logistics costs of operations of delegation A are higher due to lack of access to the sea, destruction of

roads during the civil war, geographical dispersion of demand points, and higher risks involved in conducting

missions. Figure D.1 shows the map of these countries.

In general, one can expect that the densely populated areas near the IHO centers are served first, as they

pose less logistical needs with faster and more e�cient demand fulfilment. The more distant and dispersed

locations lead to higher cost to serve per beneficiary, given the larger number of trips, longer travel times,

and higher risks involved. Therefore, the cost per beneficiary rises as the coverage level increases. In this

example, large, medium and small demand points are served at 40%, 60% and 80% coverage, respectively.

Table D.1 summarizes the required data to determine the beneficiaries’ welfare function for delegations A

and B. The last column contains the additional impact per unit cost spent on each operation. To achieve

e�ciency and e↵ectiveness, the IHO prioritizes the operations w.r.t. this ratio.

Figure D.2 shows the cumulative utility for each country as a function of the budget spent. We use a trust-

region algorithm (see Helfrich and Zwick (1996)), to fit a power function ui(↵i) = afi ↵
bfi
i to each delegation.

The fitted functions are shown in Figure D.2. We obtain af1 = 458.76 and af2 = 1007.73, and bf1 = 0.55 and

bf2 = 0.51.

The IHO also uses stated preference techniques to determine the demand mismatch penalty factor agi for

each delegation i. The factors that can contribute to the preferences and a↵ect the penalty factor may include
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National Delegation

Sub-Delegation/ ICRC presence

Major demand points

Medium demand points

Small demand points

Water and Habitat services only

Food commodities and Water and Habitat services

Country A Country B

Figure D.1 Dispersion of demand points in the territories of delegations A and B.

Table D.1 Information about operations for delegations A and B

Country Operation

code

Operation Name Cumulative

coverage

Population

served

Operation

Weight

Location

Weight

Impact Cost

(KCHF)

Impact/

cost ratio

A

AF40 Food Commodities 40% 132,000 2 2 528,000 588600 0.897
AF60 Food Commodities 60% 66,000 2 2 264,000 501400 0.527
AF80 Food Commodities 80% 66,000 2 2 264,000 1090000 0.242
AW40 Water and habitat activities 40% 156,000 1 2 312,000 264500 1.180
AW60 Water and habitat activities 60% 78,000 1 2 156,000 264500 0.590
AW80 Water and habitat activities 80% 78,000 1 2 156,000 621000 0.251

B

BF40 Food Commodities 40% 180,000 2 1.5 540,000 940500 0.574
BF60 Food Commodities 60% 90,000 2 1.5 270,000 855000 0.316
BF80 Food Commodities 80% 90,000 2 1.5 270,000 1054500 0.256
BW40 Water and habitat activities 40% 444,000 1 1.5 666,000 347500 1.917
BW60 Water and habitat activities 60% 222,000 1 1.5 333,000 417000 0.799
BW80 Water and habitat activities 80% 222,000 1 1.5 333,000 625500 0.532
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Figure D.2 Estimated data and fitted function for utility as a function of budget.

but are not limited to the delegation’s population, population in need of aid, number of donors, their type

(e.g., governments or corporations), their importance and size of their donations, geopolitical importance

of the country, media coverage, and the presence of other NGOs in the region. These factors a↵ect the

IHO’s reputation and visibility as well as its access to future fundraising for that region. The penalty scores
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Table D.2 Summary of the systematic estimation approach.

No. Step Description Potential methods

1 Identification of mis-
sions of each delega-
tion

Identification of all relevant missions
that a delegation could perform

Interviews/requests from local and
regional managers, local authorities,
etc.

2 Estimation of the
impact of each mission

Identification of impact criteria, elicita-
tion of criteria weights, estimation of
impact for each mission on each criterion

Stated preferences technique with
conjoint analysis, contingent valua-
tion, or discrete choice experiments

3 Estimation of the cost
of each mission

Calculation of the expected cost of each
operation, given the population covered,
logistical expenses, personnel cost, etc.

Expert interviews, historical data,
statistical methods

4 Derivation of welfare
function of each dele-
gation

Sorting missions by decreasing welfare
per unit cost, fitting power function to
the data

Curve fitting approaches such as
Trust region algorithm

5 Estimation of mis-
match penalty cost
factor

Identification of relative weight of mis-
match penalty for di↵erent delegations,
normalization of the factors to same scale
as welfare function

Expert interviews, Stated prefer-
ences technique

allocated to each delegation are then normalized to the scale of the beneficiaries’ welfare function to make

them comparable.

For our example, we assume that the IHO considers three main factors: number of active IHOs in the

country (W g
1 ), overall population (W g

2 ) and the number of followers of the countries’ WHO twitter account

(W g
3 ). For delegation A, these numbers are 37, 10.98M and 6.1K, while for delegation B, these numbers are

74, 15.1M and 41K. Assuming the IHO computes the penalty factors using 3 ln (W g
1 )+2 ln (W g

2 )+1 ln (W g
3 ),

the unnormalized penalty factors are obtained as 52.0 for delegation A and 56.6 for delegation B. Using an

approach similar to that in Section 5.1 to normalize the penalty function w.r.t. the welfare function (setting

maxi a
f
i =maxi a

g
i ), we obtain ag1 = 925.4 and ag2 = 1007.7.

The approach that we have illustrated above with an example can be used for systematic estimation of

the function parameters. Table D.2 summarizes the key steps of this approach.

References
de Bekker-Grob, E. W., Ryan, M., and Gerard, K. (2012). Discrete choice experiments in health economics:

a review of the literature. Health economics, 21(2):145–172.

Gralla, E., Goentzel, J., and Fine, C. (2014). Assessing trade-o↵s among multiple objectives for humanitarian

aid delivery using expert preferences. Production and Operations Management, 23(6):978–989.

Helfrich, H.-P. and Zwick, D. (1996). A trust region algorithm for parametric curve and surface fitting.

Journal of computational and applied mathematics, 73(1-2):119–134.

Hellemo, L., Barton, P. I., and Tomasgard, A. (2018). Decision-dependent probabilities in stochastic programs

with recourse. Computational Management Science, 15(3-4):369–395.
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Supplementary Appendix for Budgeting in International Humanitarian Organizations

Appendix E: Additional numerical experiments

In this section, we first present comparison of computational time for GBD, GBD-g and extensive-form

formulations for small size problems. We then present two additional numerical experiments: the sensitivity

of the model with respect to changes in the parameters of the utility functions and the impact of budget

uncertainty.

Comparison of computational time: As we can see in Table E.1, the proposed GBD algorithm signifi-

cantly outperforms the other two alternatives. We focus on smaller instances (n 15) that can be addressed

by all three methods. We observe that the extensive form scales very poorly with the increasing size of n

and |K|.

Table E.1 Comparison of the required computational time (in seconds) by the new proposed GBD algorithm, a

GBD algorithm using general-purpose nonlinear solver (GBD-g), and the extensive form (Ex-form).

n= 5 n= 10 n= 15

Sample size GBD GBD-g Ex-form GBD GBD-g Ex-form GBD GBD-g Ex-form

|K|= 25 0.5 1.0 2.2 1.0 4.9 13.3 1.9 9.2 55.0
|K|= 50 0.9 2.0 28.0 1.8 6.2 154.1 2.6 10.4 396.5
|K|= 75 1.4 3.5 88.1 2.8 9.0 837.6 4.7 23.6 1997.7
|K|= 100 1.8 4.4 169.2 4.2 18.5 1864.8 5.0 17.1 7486.9

Sensitivity analysis of the parameters of the utility functions: In addition to Proposition 2, which

describes the behavior of budget targets with respect to variations in af , bf and ag, we performed numerical

experiments of these changes to quantify the magnitude of the impact.

Figure E.1 shows the case where all afi are changed by ±50%, while other parameters are held fixed at

their default values. For n= 30, a 50% increase in af results in a 1.9% increase in total budget targets, while

a 50% decrease leads to a 2.7% decrease in the targets.
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Figure E.1 The impact of variation in af : (a) IHO’s utility, (b) budget targets.

Increasing and decreasing ag by 50% while keeping all other parameters fixed results in a 3.3% decrease

and a 2.2% increase in budget targets, respectively (n= 30), which can be observed in Figure E.2.
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Figure E.2 The impact of variation in ag: (a) IHO’s utility, (b) budget targets.
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Figure E.3 The impact of variation in bf : (a) IHO’s utility, (b) budget targets.

To investigate the impact of variation in bf , we slightly changed our experiments, since increasing bf by

50% would result in convex beneficiaries’ welfare functions for some delegations. Therefore, we fix all bf

at three di↵erent values, 0.5, 0.75 and 1.0. Note that the latter value leads to linear beneficiaries’ welfare

functions. From Figure E.3, we can see that by decreasing bfi from 0.75 to 0.5 for all i (n = 30), targets

decrease by 2.5%, while increasing all bfi to 1 (linear functions) leads to a 5.5% increase in budget targets.

Impact of budget uncertainty: We investigate the impact of budget uncertainty on the IHO’s perfor-

mance by changing the standard deviation of ⇠. We consider three settings for the change in all donations

(earmarked and nonearmarked), namely, 50% decrease, no change, and 50% increase in the standard devia-

tions. We solve the problem using our proposed GBD algorithm.

As we can see in Figure E.4a, high degrees of uncertainty force the IHO to set lower budget targets because

decision makers are less certain about receiving donations in the future to fulfill their initial plans, which

leads to a lower overall welfare for beneficiaries (Figure E.4b). The risk of failing to meet planned targets

due to the additional uncertainty in the budget leads to a comparably sharp decrease in the IHO’s utility.

Moreover, we can observe that such an impact is independent of the number of delegations that the IHO

serves.
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(b) Overall welfare of beneficiaries
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(c) Overall utility of the IHO

Figure E.4 The impact of uncertainty in donations on (a) budget targets, (b) beneficiaries’ welfare, and (c)

IHO’s utility.

Our results show an average increase of 7.1% in the average targets when reducing the uncertainty by 50%

compared to an average decrease of 6.3% when increasing uncertainty by 50%. The IHO’s utility increases

by 5.4% and welfare by 7.1% when reducing uncertainty, while utility decreases by 6.4% and welfare by 4.9%

when uncertainty increases.

Given the above results, measures to reduce uncertainty in donations, such as proposing incentives for

donating regularly rather than sporadically, or building online communities could be e↵ective; see, for exam-

ple, Hart et al. (2005).

Appendix F: Sample Average Approximation algorithm

We consider replicating the GBD method for M times, with each replication of a size of |K| scenarios. We

denote by Q̂m
K and x̂m

K the optimal value and optimal solution of the mth SAA replication, m2 {1, . . . ,M}.
An estimator of Q(x⇤) is given by

Q̄M
K =

1

M

MX

m=1

Q̂m
K . (F.1)

In order to choose among M di↵erent solutions of SAA replications, we consider a large sample of size

|K 0|> |K|, and evaluate the expected utility of each solution x̂m
K under this new sample. Let us define x̂ as

the solution that provides the highest utility under the sample of size |K 0|.

x̂= argmaxQ⌦K0 (x), x2 {x̂1
K , . . . , x̂M

K }, (F.2)

where ⌦K0 refers to the set of scenarios in the sample of size |K 0|, and Q⌦K0 (x̂) is the expected utility of the

IHO under ⌦K0 and x̂. Note that Q⌦K0 (x̂) is a stronger estimator of Q(x⇤) than Q̄M
K . Here, x̂ would serve

as the optimal solution of the SAA algorithm. We further compute

qmK (x̂) =Q⌦m
K
(x̂), m2 1, . . . ,M. (F.3)

which refers to the utility of x̂ under the scenarios of the mth replication of the SAA, ⌦m
K . We define

q̄MK (x̂) = 1
M

PM
m=1 q

m
K (x̂). Now, Q̄M

K � q̄MK (x̂) is an estimator of the optimality gap, Q(x⇤)�Q⌦K0 (x̂), and

its variance, which we refer to as Š2 is estimated as

Š2 =
1

M(M � 1)

MX

m=1

[(qmK (x̂)� Q̂m
K)� (q̄MK (x̂)� Q̄M

K )]2. (F.4)
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Figure G.1 In- and out-of-sample stability.

To determine the number of required replications, M , we start with M = 2 and continue the process

until the (1�↵)% optimality gap (one-sided) is less than the 1% of the optimal solution, i.e., Š⇥ tM�1,↵ 

0.01 Q⌦K0 (x̂). If this condition is not satisfied until M is reached to a given upper bound, Mmax, we increase

|K| and repeat the process.

Appendix G: Sample stability

Let QS(x) =ESQ(x,⇠), and maxxQS(x) denote the stochastic program restricted to a sampled scenario

set S. Moreover, let S̄ and Ŝ denote two sets of scenarios of the same size, with x̄ and x̂ optimal solutions

to maxxQS̄(x) and maxxQŜ(x). A scenario generation method is called in-sample stable if the optimal

solution values of two independently sampled scenario sets are similar, i.e., if QS̄(x̄)⇡QŜ(x̂). On the other

hand, if QŠ(x̄)⇡QŠ(x̂) holds for a separate set of scenarios Š, the method is called out-of-sample stable.

For an in-depth discussion of these concepts, one can refer to King and Wallace (2012).

In order to check for sample stability, we consider the problem with the main n= 25 ICRC delegations,

and find its pseudo-optimal solution using a sample K 0 of size |K 0|= 1500. We then compute in- and out-

of-sample stability values by sampling subsets of size |K| from K 0. We let this sample size vary between 50

and 500, where for each given size, we sample M = 20 instances K1, . . . ,KM , from K 0. Figure G.1 shows the

results of our analysis. The solid horizontal line represents the value of the pseudo-optimal solution i.e., the

solution obtained by taking all scenarios in K 0 into account, and the dashed horizontal lines indicate the

99% confidence interval, i.e., [0.99opt, 1.01opt].

As we can see in Figure G.1, out-of-sample stability can be reached under |K|= 50 scenarios (i.e., optimal

first-stage solutions, evaluated on the whole set of 1500 scenarios, fall within a 99% of the optimal solution).

However, in-sample stability is not reached until |K|� 500.

Appendix H: Proofs and technical results

Lemma 3. Following are a number of properties of the problem:

1. For a given budget target x and realization of donations ⇠, U(x,⇠,y) is concave and non decreasing in

y.

2. Model (1) is a stochastic program with complete recourse.
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3. Q(x,⇠) is non decreasing in ⇠ne and ⇠i, for all i2 I.

4. Q(x,⇠) is jointly concave in (x,⇠), and is an upper semicontinuous function in x for all ⇠.

5. Q(x) is concave and upper semicontinuous in x.

6. Model (1) has a finite optimal solution and the maximum is attained.

Proof of Lemma 1 For each i that yi > [xi � ⇠i]+, min{xi, ⇠i + yi}= xi, and fi(min{xi, ⇠i + yi}) = fi(xi).

Also, yi > [xi � ⇠i]+ =) [xi � ⇠i � yi]+ = 0 =) gi([xi � ⇠i � yi]+) = gi(0) = 0 =) ui(xi, ⇠i, yi) = fi(xi); in

other words, for yi > [xi � ⇠i]+, fi(.) and gi(.) would be equal to the case that yi = [xi � ⇠i]+, and thus in

optimality, yi  [xi � ⇠i]+.

Proof of Proposition 1 Using linearization ↵i min{xi, ⇠i + yi}, the recourse problem for any given pair

(x̌,⇠) can be written as follows.

Q(x̌,⇠) =max
y,↵

X

i2I

[fi(↵i)� gi(x̌i �↵i)] , (H.1a)

s.t. ↵i  x̌i, i2 I (H.1b)

↵i  ⇠i + yi, i2 I (H.1c)
nX

i=1

yi  ⇠ne, (H.1d)

yi � 0, i2 I (H.1e)

Let ⌘i, µi, and µne and ⇢i refer to the dual variables associated with Constraint sets (H.1b), (H.1c), (H.1d)

and (H.1e) respectively. The associated Lagrangian function reads as:

L(x̌,⌘,µ,⇢) =
X

i2I

[fi(↵i)� gi(x̌i �↵i)+ ⌘i(x̌i �↵i)+µi(⇠i + yi �↵i)+ ⇢iyi] +µne(⇠ne �
X

i2I

yi). (H.2)

Note that since the constraints in the above optimization model are a�ne, the Slater’s condition always hold

(Boyd and Vandenberghe 2004). Let y̌ and ↵̌ denote the optimal solution to Model (H.1), while ⌘̌, µ̌ and ⇢̌

are the optimal Lagrangian dual multipliers associated with the point (y̌, ↵̌). Using the Langrangian duality

we have:

@Q

@⇠i
(x̌,⇠, y̌, ↵̌) =

@L

@⇠i
(x̌,⇠, y̌, ↵̌) = µ̌i, and

@Q

@⇠ne
(x̌,⇠, y̌, ↵̌) =

@L

@⇠ne
(x̌,⇠, y̌, ↵̌) = µ̌ne. (H.3)

On the other hand, from the KKT conditions we have

@L

@yi
(x̌,⇠, y̌, ↵̌) = 0 =) µ̌i + ⇢̌i � µ̌ne = 0 =) µ̌ne = µ̌i + ⇢̌i

=) since ⇢i � 0 and consequently ⇢̌i � 0 for all i =) µ̌ne � µ̌i for all i. (H.4)

From Equations (H.3) and (H.4), we can conclude that
@Q

@⇠ne
(x̌,⇠, y̌, ↵̌)� @Q

@⇠i
(x̌,⇠, y̌, ↵̌) for all i2 I.

For Part 2, Equation (H.2) implies

@Q

@↵i
(x̌,⇠, y̌, ↵̌) = 0 =) f 0

i(↵̌i)+ g0i(x̌i � ↵̌i)� ⌘̌i � µ̌i = 0. (H.5)

Consequently, from Equations (H.4) and (H.5) we have

µ̌ne = f 0
i(↵̌i)+ g0i(x̌i � ↵̌i)� ⌘̌i + ⇢̌i, for all i2 I. (H.6)
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Now, depending on the value of ↵i at optimality, each delegation i falls into one of the following sets.

i2

8
>>><

>>>:

V0, if ↵̌i = x̌i  ⇠i, y̌i = 0,

V1, if ↵̌i = y̌i + ⇠i = x̌i & y̌i > 0 =) ⇢̌i = 0 & ⌘̌i > 0 =) µ̌ne < f 0
i(↵̌i)+ g0i(x̌i � ↵̌i),

V2, if ↵̌i = y̌i + ⇠i < x̌i & y̌i > 0 =) ⇢̌i = 0 & ⌘̌i = 0 =) µ̌ne = f 0
i(↵̌i)+ g0i(x̌i � ↵̌i),

V3, if ↵̌i = y̌i + ⇠i < x̌i & y̌i = 0 =) ⇢̌i > 0 & ⌘̌i = 0 =) µ̌ne > f 0
i(↵̌i)+ g0i(x̌i � ↵̌i).

(H.7)

According to Zipkin (1980) if we sort all i in V1 [ V2 [ V3, in terms of f 0
i(⇠i) + g0i(x̌i � ⇠i) from highest to

lowest, there will be an optimal separation level k⇤ = |V1 [ V2| such that y̌i > 0 for i= 1, . . . , k⇤ and y̌i = 0

for i= k⇤ +1, . . . , k⇤ + |V3|.

Now consider a problem with an additional delegation j, with x̌j and ⇠j , though the available resource,

⇠ne, stays the same. Denoting the optimal separation level of the new problem as k⇤⇤, from Theorem 2

of Zipkin (1980), it can be deduced that k⇤⇤ � k⇤. Moreover, from Theorem 1 of the same reference, we

know that µ̌ne is increasing in the separation level. Therefore, adding a new delegation does not decrease
@Q

@⇠ne
(x̌,⇠, y̌, ↵̌) = µ̌ne. Note that if for the new delegation j, x̌j < ⇠j , we will have y̌j = 0; consequently, the

optimal allocation problem and
@Q

@⇠ne
(x̌,⇠, y̌, ↵̌) = µ̌ne remain unchanged. This ends the proof of Part 2.

For Part 3, from Equations (H.3), (H.5) and (H.6) we have

@Q

@⇠i
(x̌,⇠, y̌, ↵̌)

@Q

@⇠ne
(x̌,⇠, y̌, ↵̌)

=
µ̌i

µ̌ne
=

f 0
i(↵̌i)+ g0i(x̌i � ↵̌i)� ⌘̌i

f 0
i(↵̌i)+ g0i(x̌i � ↵̌i)� ⌘̌i + ⇢̌i

= 1� ⇢̌i
f 0
i(↵̌i)+ g0i(x̌i � ↵̌i)� ⌘̌i + ⇢̌i

(H.8)

Let us refer to the value specified by Equation (H.8) as A. We have

@A

@afi
=

@f 0
i(↵̌i)/@af

i

[f 0
i(↵̌i)+ g0i(x̌i � ↵̌i)� ⌘̌i + ⇢̌i]2

> 0. (H.9)

The same holds true for bfi and agi . This ends the proof of Part 3.

Finally, for Part 4, we know from Part 1 that for every x and every possible realization of ⇠ =

[⇠̃1, . . . , ⇠̃i, . . . , ⇠̃ne], we have

Q(x, [⇠1, . . . , ⇠i + �, . . . , ⇠ne])Q(x, [⇠1, . . . , ⇠i, . . . , ⇠ne + �]).

Therefore,

E[⇠̃1,...,⇠̃i+�,...,⇠̃ne]
[Q(x,⇠)]E[⇠̃1,...,⇠̃i,...,⇠̃ne+�][Q(x,⇠)], for all i.

Since the above equation holds true for every x, we have

Q(x⇤)|⇠̃i+� Q⇤(x⇤)|⇠̃ne+�, for all i.

Proof of Proposition 2 To prove that x⇤ is increasing in af , we first show that Q(x) is supermodular

in x and af . For our discussions on supermodularity we refer to Simchi-Levi et al. (2014). First, it is

straightforward to show that U(x,⇠,y) is supermodular in x and af , since
@2U

@x @af
� 0. On the other hand,

since Q(x,⇠) = supy U(x,⇠,y) and U(x,⇠,y) is supermodular in x and af , Q(x,⇠) is supermodular in x

and af too. Finally, as Q(x) = E⇠̃[Q(x,⇠)] is a linear combination of a supermodular function, Q(x) is

supermodular as well.
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Next, we show that Q(x) is increasing in af > 0. To that purpose, first note that U(x,⇠,y) =
P

i ui(xi, ⇠i, yi) is increasing in af for each y. This implies that Q(x,⇠) is increasing in af . Consequently,

Q(x) is increasing in af .

Since Q(x) is supermodular in x and af , and the domain of x, Rn
+ is a lattice, according to Topkis’s

theorem (Topkis 2011), x⇤ = argmaxx2Rn
+
Q(x) is non-decreasing in af . Similarly, one can prove the behavior

of x⇤ in ag.

Proof of Proposition 3 We have ↵=min{⇠, x}. Therefore, Model (1) can be simplified to

Q(x) =max
x

Z x

⇠=0

[f(⇠)� ag(x� ⇠)]B(⇠)d⇠+

Z 1

⇠=x

f(x)B(⇠)d⇠.

Taking derivative of the above equation w.r.t. x results in

@Q(x)

@x
=�ag

Z x

⇠=0

B(⇠)d⇠+ f(x)B(x)+

Z 1

⇠=x

f 0(x)B(⇠)d⇠� f(x)B(x) = 0

=) f 0[1�B(x)] = agB(x) =) B(x) = f 0(x)

f 0(x)+ ag
.

Proof of Proposition 4 The proof for the first inequality is straightforward. For the second inequality,

let x⇤ be the solution that maximizes Q(x); moreover, for a given ⇠, let x̄(⇠) denote the solution which

maximizes Q(x,⇠) for a given ⇠. That is

Q(x⇤) =max
x�0

Q(x) =max
x�0

E⇠̃[Q(x,⇠)], and E⇠̃[max
x�0

Q(x,⇠)] =E⇠̃[Q(x̄(⇠),⇠)].

We have,

Q(x⇤,⇠)Q(x̄(⇠),⇠) =) E⇠̃[Q(x⇤,⇠)]E⇠̃[Q(x̄(⇠),⇠)], 8 ⇠ 2R+
n+1,

=) Q(x⇤) =max
x�0

E⇠̃[Q(x,⇠)]E⇠̃[max
x�0

Q(x,⇠)].

For the last inequality, from Part 4 of Lemma 3, we know that Q(x,⇠) is jointly concave in (x,⇠). Now, we

show that maxxQ(x,⇠) is a concave function of ⇠. Assume T (⇠) = maxxQ(x,⇠). Moreover, let x1 and x2

represent the optimal solutions of T (⇠1) and T (⇠2). We have

�T (⇠1)+ (1��)T (⇠2) = �Q(x1,⇠1)+ (1��)Q(x2,⇠2)Q(�(x1,⇠1)+ (1��)(x2,⇠2))

max
x�0

Q(x,�⇠1 +(1��)⇠2) = T (�⇠1 +(1��)⇠2).

Therefore maxx�0Q(x,⇠) is concave in ⇠. Using Jensen’s inequality, it follows that E⇠̃[maxx�0Q(x,⇠)] 
maxx�0Q(x, ⇠̄) =Q(x̄, ⇠̄), which is the desired third inequality.

Proof of Lemma 2 The objective function is concave and separable on each variable. Moreover, the con-

straints are linear and form a convex set; therefore, Q̄ is jointly concave in (x,↵,y).

Proof of Theorem 1 For a given x̌, we can rewrite the k-th Benders subproblem Q(x̌,⇠k) as follows,

assuming ui(x̌i, ⇠ki , y
k
i ) = fi(⇠ki + yki )� gi(x̌i � ⇠ki + yki ), and ȳki = x̌i � ⇠ki .

max
yk

X

i2C(x̌,⇠k)

ui(x̌i, ⇠
k
i , y

k
i )+

X

i/2C(x̌,⇠k)

fi(xi),

s.t.
X

i2C(x̌,⇠k)

yki  ⇠ne,

yki  ȳki , i2 C(x̌,⇠k)

yki � 0, i2 I
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Let µk
ne, µk

i , and ⇢ki refer to the dual variables associated with the first, second and third constraints,

respectively. The associated Lagrangian function reads as:

Lk(x̌,µ,⇢) =
X

i2C(x̌,⇠k)

⇥
ui(x̌i, ⇠

k
i , y

k
i )+µk

i (x̌i � ⇠ki � yki )
⇤
+µk

ne(⇠
k
ne �

X

i2C(x̌,⇠k)

yki )

+
X

i/2C(x̌,⇠k)

fi(x̌i)+
X

i2I

⇢ki y
k
i .

It is not di�cult to see that for �k given in (10) we have:

�k
i 2

@Lk

@xi
(x̌, µ̌, ⇢̌), i2 I, k 2K

where µ̌, ⇢̌ are the optimal Lagrangian dual multipliers associated with the point y̌. Hence, �k calculated

as in (10) gives a valid supergradient vector for Q(x,⇠k). It remains to show that the values of µ given in

(11)-(12) are properly calculated. Using the KKT conditions for the Lagrangian function, we have:

@Lk

@yki
=

@ui

@yi
(x̌i, ⇠

k
i , y̌

k
i )�µk

ne �µk
i + ⇢ki = 0, i2 C(x̌,⇠k),

⇢ki y
k
i = 0, i2 I,

µk
ne � 0, ⇢ki , µ

k
i � 0, i2 I.

Hence, we have

if y̌ki > 0 =) ⇢̌ki = 0, µ̌k
i =

@ui

@yi
(x̌i, ⇠

k
i , y̌

k
i )� µ̌k

ne. (H.10)

From complementary slackness we also have µ̌k
i (ȳ

k
i � y̌ki ) = 0; therefore

0 y̌ki < ȳki =) µ̌k
i = 0. (H.11)

Moreover, from Equations (H.10) and (H.11) it follows:

if 0< y̌ki < ȳki =) µ̌k
i =

@ui

@yi
(x̌i, ⇠

k
i , y̌

k
i )� µ̌k

ne = 0, µ̌k
ne =

@ui

@yi
(x̌i, ⇠

k
i , y̌

k
i ). (H.12)

Note that the latter result implies that the values of @ui
@yi

(x̌i, ⇠ki , y̌
k
i ) are the same for all i such that 0< y̌ki < ȳki ,

which is why any such j 2 I can be used to obtain µ̌k
ne in (12). This ends the proof.

Proof of Corollary ?? Let us refer to the space of feasible solutions of Q, Q0 and Q00 as C, C 0 and C 00

respectively. C ⇢ C 0, since the di↵erence between the two is the right hand side of the budget allocation

constraint, and ⇠ne  ⇠ne +
P

i[⇠i �xi]+. On the other hand:

C 0 =

(
X

i

yi  ⇠ne +
X

i

[⇠i �xi]
+;y� 0

)
,

C 00 =

(
X

i

yi  ⇠ne;yi ��⇠i 8i
)
⌘
(
X

i

yi  ⇠ne +
X

i

⇠i;y� 0

)
,

=) 8 y 2C 0 ! y 2C 00 =) C 0 ⇢C 00

As the objective function remains the same in all three problems, we can conclude that Q(x⇤) 
maxxE⇠̃[Q

0(x,⇠)]maxxE⇠̃[Q
00(x,⇠)].

The proof also holds for the model with target-dependent donations. Any feasible x for Q(x), including

argmaxQ(x) is also feasible for E⇠̃|x[Q
0(x,⇠)]. On the other hand, for any given x and ⇠, the space of feasible

solutions, i.e., y for Q(x,⇠) is a subset of that for Q0(x,⇠). Thus, Q(x⇤)maxx�0E⇠̃|x[Q
0(x,⇠)]. The same

reasoning applies to the second inequality.
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Proof of Lemma 3 First, note that the linearity constraint qualification holds for Q(x,⇠).

Part 1: The function min{xi, ⇠i+yi} is concave in yi. Since fi is concave in its argument, fi(min{xi, ⇠i+yi})
is also concave in yi. Similarly, [xi � ⇠i � yi]+ =max{0, xi � ⇠i � yi} is convex in yi. Since gi is convex in its

argument, gi([xi � ⇠i � yi]+) is also convex in yi, and therefore ui(xi, ⇠i, yi) = fi(min{xi, ⇠i + yi})� gi([xi �
⇠i � yi]+) is concave in yi. As a result,

P
i2C(x,⇠) [fi(⇠i + yi)� gi([xi � ⇠i � yi]+)] is concave in y. Note that

P
i/2C(x,⇠) fi(xi) is a constant. Since the constraints form a convex set,

Pn
i=1 ui(xi, ⇠i, yi) is concave in y.

Moreover, it is easy to show that for all i2 C(x,⇠), ui(xi, ⇠i, yi) = fi(⇠i+yi)�gi(xi�⇠i�yi) is non-decreasing

in yi and therefore,
Pn

i=1 ui(xi, ⇠i, yi) is non-decreasing in y.

Part 2: Similar to Birge and Louveaux (2011), we define

K1 = {x2Rn : x� 0}

K2(⇠) = {x2Rn : 9 y(⇠)| y� 0 and
nX

i=1

yi  ⇠ne}

and K2 = {x2Rn : Q(x)>�1}

where K1 refers to the feasible set of Stage 1 of Model (1), K2 refers to the values of x for which the recourse

problem is feasible (independently of the realization of random elements in the second stage), and K2(⇠)

refers to the values of x for which the recourse problem is feasible for a given realization of ⇠. Since x does

not appear in the constraints of the recourse problem, every feasible value of x in Model (1) is also feasible

in Model (2), i.e., K1 ⇢K2 (indeed K1 =K2), and therefore, the stochastic program has relatively complete

recourse. On the other hand, regardless of choice of x and realization of ⇠ 2 Rn+1
�0 , there exist a recourse

action y= 0, thus, the problem has a complete recourse as well.

Part 3: ui(xi, ⇠i, yi) is non-decreasing in ⇠i for all i; moreover, y is non-decreasing in ⇠ne, i.e., yi is non-

decreasing in ⇠ne for all i 2 I. Therefore, U(x,⇠,y) is non-decreasing in ⇠ for any given x. Consequently,

Q(x,⇠) =maxy�0U(x,⇠,y) is non-decreasing in ⇠.

The proofs of Parts 4 to 6 are similar to (Birge and Louveaux 2011). Thus we skip these proofs for

conciseness.

References
Birge, J. R. and Louveaux, F. (2011). Introduction to stochastic programming. Springer Science & Business

Media.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Hart, T., Greenfield, J. M., and Johnston, M. (2005). Nonprofit internet strategies: best practices for mar-

keting, communications, and fundraising success. John Wiley & Sons.

King, A. J. and Wallace, S. W. (2012). Modeling with Stochastic Programming. Springer.

Simchi-Levi, D., Chen, X., and Bramel, J. (2014). Convexity and supermodularity. In The Logic of Logistics,

pages 15–44. Springer.

Topkis, D. M. (2011). Supermodularity and complementarity. Princeton university press.

Zipkin, P. H. (1980). Simple ranking methods for allocation of one resource. Mgmt Science, 26(1):34–43.


	Introduction
	Literature review
	Model Description and Analytical Results
	Model Description
	Analytical insights into the optimal solution

	Solution Methods
	Deterministic Equivalent
	Generalized Benders Decomposition
	Developing a fast heuristic

	Numerical experiments
	Description of Data Set from ICRC
	Computational Performance
	Sensitivity Analyses and Managerial Insights

	Extension to Target-Dependent Donations
	Discussion and Conclusion
	Parameters used for computations
	Mid-Year adjustments of budget targets
	Donation distributions as a function of budget targets
	Systematic identification of utility function parameters
	Additional numerical experiments
	Sample Average Approximation algorithm
	Sample stability
	Proofs and technical results




