UNIVERSITY OF

BATH

Citation for published version:

Fatania, K, Pirkl, CM, Menzel, Ml, Hall, P & Golbabaee, M 2022, A Plug-and-Play Approach To Multiparametric
Quantitative MRI: Image Reconstruction Using Pre-Trained Deep Denoisers. in ISBI 2022 - Proceedings: 2022
IEEE International Symposium on Biomedical Imaging., 9761603, Proceedings - International Symposium on
Biomedical Imaging, vol. 2022-March, IEEE, U. S. A., 19th IEEE International Symposium on Biomedical
Imaging, ISBI 2022, Kolkata, India, 28/03/22. https://doi.org/10.1109/ISBI152829.2022.9761603

DOI:
10.1109/1SB152829.2022.9761603

Publication date:
2022

Document Version _
Peer reviewed version

Link to publication

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Jun. 2022


https://doi.org/10.1109/ISBI52829.2022.9761603
https://doi.org/10.1109/ISBI52829.2022.9761603
https://researchportal.bath.ac.uk/en/publications/a-plugandplay-approach-to-multiparametric-quantitative-mri(0888941d-c7be-423f-83a8-2be789567c97).html

A PLUG-AND-PLAY APPROACH TO MULTIPARAMETRIC QUANTITATIVE MRI:
IMAGE RECONSTRUCTION USING PRE-TRAINED DEEP DENOISERS

Ketan Fatania, Carolin M. Pirkl, Marion I. Menzel, Peter Hall and Mohammad Golbabaee

ABSTRACT

Current spatiotemporal deep learning approaches to Magnetic Res-
onance Fingerprinting (MRF) build artefact-removal models cus-
tomised to a particular k-space subsampling pattern which is used
for fast (compressed) acquisition. This may not be useful when the
acquisition process is unknown during training of the deep learning
model and/or changes during testing time. This paper proposes an it-
erative deep learning plug-and-play reconstruction approach to MRF
which is adaptive to the forward acquisition process. Spatiotemporal
image priors are learned by an image denoiser i.e. a Convolutional
Neural Network (CNN), trained to remove generic white gaussian
noise (not a particular subsampling artefact) from data. This CNN
denoiser is then used as a data-driven shrinkage operator within
the iterative reconstruction algorithm. This algorithm with the same
denoiser model is then tested on two simulated acquisition processes
with distinct subsampling patterns. The results show consistent de-
aliasing performance against both acquisition schemes and accurate
mapping of tissues’ quantitative bio-properties. Software available:
https://github.com/ketanfatania/QMRI-PnP-Recon-POC

Index Terms— Quantitative MRI, Magnetic Resonance Finger-
printing, Compressed Sensing, Inverse Problems, Deep Learning, It-
erative Image Reconstruction, Plug-and-Play

1. INTRODUCTION

Magnetic Resonance Fingerprinting (MRF) [1] is an emerging
Quantitative MRI technology for simultaneous measurement of mul-
tiple quantitative bio-properties (e.g. T1 and T2 relaxation times,
and proton density (PD)) of tissues in a single and time-efficient
scan. However, due to the aggressive spatiotemporal subsampling
needed for short scan times, the MRF time-series data and conse-
quently the tissue maps usually contain aliasing artefacts.

Compressed sensing reconstruction algorithms based on us-
ing analytical image priors (e.g., sparsity, Total Variation and/or
low-rank) have been proposed to address this problem [2, 3, 4].
Recent works e.g. [5, 6] have been focussed around deep learning
approaches that utilise spatiotemporal image priors learned from
data for artefact removal. These approaches which are conven-
tionally trained end-to-end on pairs of subsampled and clean data,
outperform those using analytical image priors and produce excel-
lent results. However, unlike the traditional compressed sensing
algorithms, current trained deep learning models are specific to
the subsampling processes used during their training and unable to
generalise and remove aliasing artefacts from other subsampling
processes given at the testing time.
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The contribution of this work is to propose the first deep Plug-
and-Play (PnP) iterative reconstruction algorithm for MRF to ad-
dress this issue, and to demonstrate that this approach effectively
adapts to changing acquisition models, specifically, the MRF k-
space subsampling patterns. Iterations of the PnP algorithm [7, 8]
follow steps of the Alternating Direction Method of Multipliers
(ADMM) [9] which is an optimisation method for model-based
compressed sensing reconstruction (for imaging applications of deep
learning ADMM and competing methods, see [8, 10, 11, 12, 13]).
In our work, the spatiotemporal MRF image priors are learned from
data through an image denoiser i.e. a Convolutional Neural Network
(CNN), that is pre-trained for removing Additive White Gaussian
Noise (AWGN), and not any particular subsampling artefact. This
CNN denoiser is used as a data-driven shrinkage operator within
the ADMM’s iterative reconstruction process. The reconstructed
(de-aliased) image time-series are then fed to an MRF dictionary
matching step [1] for mapping tissues’ quantitative parameters.

2. THE MRF INVERSE IMAGING PROBLEM
MREF adopts a linear spatiotemporal compressive acquisition model:

y=Ax+w 1)
where y € C™*7 are the k-space measurements collected at 7' tem-
poral frames and corrupted by some bounded noise w. The acqui-
sition process i.e. the linear forward operator A : C"** — C™*7T
models Fourier transformations subsampled according to a set of
temporally-varying k-space locations in each timeframe combined
with a temporal-domain compression scheme [2, 3, 4] for (PCA
subspace) dimensionality reduction i.e. t < T. & € C™** is the
Time-Series of Magnetisation Images (TSMI) across n voxels and
t dimension-reduced timeframes (channels). Accelerated MRF ac-
quisition implies working with under-sampled data which makes the
inversion of (1) i.e. estimating the TSMIs @ from the compressed
MRF measurements y, an ill-posed problem.

The Bloch response model: The TSMIs magnetisation time-
responses are the main source of tissue quantification. At each
voxel v, the time responses i.e. the fingerprints, are related to the
corresponding voxel’s bio-properties, namely, the T1 and T2 relax-
ation times, through the solutions of the Bloch differential equations
B scaled by the proton density (PD) [1, 14]:

x, ~ PD, B(T1,,T2,) 2)

While this relationship could temporally constrain the inverse prob-
lem (1), it turns out to be inadequate to make the problem well-
posed [4]. The model (2) alone does not capture cross-voxel cor-
relations. Spatial-domain image priors that account for this must be
further added to resolve the ill-posedness problem. For this we rely
on datasets of anatomical quantitative maps i.e. the T1, T2 and PD



maps, to create the TSMIs via (2), and train a denoiser model on
them to learn the spatiotemporal structures/priors for . We then use
this trained denoiser to iteratively solve (1) for any given forward
model A. This process is detailed in the next section.

3. IMAGE RECONSTRUCTION ALGORITHM

We describe our algorithm to reconstruct artefact-free TMSIs before
feeding them to MRF dictionary-matching for quantitative mapping.

3.1. The PnP-ADMM algorithm

A model-based reconstruction approach to solve inverse problems
like (1) would typically lead to an optimisation of the form

argmin [y — Az3 + (=) 3)

which can be solved by variety of iterative shrinkage algorithms in-
cluding ADMM [9] and by iterating between a step to minimise
the first term and promote the k-space data consistency according
to the tested acquisition process, and another shrinkage step accord-
ing to a regularisation term ¢ to promote certain structural priors on
x to combat the ill-posedness of (1). In the Plug-and-Play (PnP) ap-
proach [7], the shrinkage term is an AWGN image denoiser f that
builds an implicit regularisation for (1). The denoiser model f could
be a trained convolutional neural network (CNN) like [8] that cap-
tures the structural image priors for & by removing generic gaussian
noise from x + n, where n ~ N (0, o), and the noise power o is an
experimentally-chosen hyperparameter.

We use the following ADMM based iterations of the PnP algo-
rithm [8]: vo = AHy, uo = 0, Vk, iteration number = 1, 2, ...

xp =h (ve—1 — uk—1) (4a)
v = f (@r + up—1) (4b)
ur = Ugp—1 + (Tr — V) (4¢)
where
h (z) = argmin |y — Az|3 +y]z - 2|3 (5)

The step (4a) enforces the k-space data consistency, where h is
solved using the conjugate gradient algorithm. Here the ADMM’s
internal convergence parameter is set to v = 0.05 and z =
vi—1 — wk—1. The step (4b) applies the image denoising shrinkage
to promote spatiotemporal TSMI priors, and the final step aggregates
the two previous steps to update the next iteration.

3.2. CNN denoiser

Our PnP algorithm is combined with a pre-trained CNN denoiser
which is plugged in as f in (4b) to iteratively restore the TMSI us-
ing learned image priors. The denoiser has a U-Net shape archi-
tecture following that of [15]. Here we modified the network’s in-
put and output dimensions to match the number of TSMI’s multiple
channels (i.e. we used real-valued TSMIs with ¢ = 10 in our ex-
periments) to enable multichannel spatiotemporal image processing.
A noise level map, filled with o values, of the same dimensions as
other channels was appended to the network’s input for multi-noise
level denoising, following [15]. Other hidden layers follow exactly
the same specifications as [15]. We trained this model using (multi-
channel) image patches extracted from {(z,  + n)} pairs of clean
and noise-contaminated TSMIs for various levels o of AWGN noise.
Further, image patches are patch-wise normalised to the [0,1] range.
The clean TSMIs were obtained from a dataset of anatomical quan-
titative maps via (2).

4. NUMERICAL EXPERIMENTS

Dataset: A dataset of quantitative T1, T2 and PD tissue maps of 2D
axial brain scans of 8 healthy volunteers across 15 slices each were
used in this study'. Clean (groundtruth) TSMIs were retrospectively
simulated from these maps via (2) using the EPG Bloch model for-
malism [16] and a truncated (accelerated) variant of the FISP MRF
protocol [14] with T" = 200 repetitions. PCA was applied to obtain
t = 10 channel dimension-reduced TSMI data [2]. The TSMIs were
real-valued and their spatial resolution was cropped from 230 x 230
pixels to 224 x 224 pixels for the U-Net. The dataset was split into
105 slices (from 7 subjects) for training and 15 slices (for 1 held-out
subject) for testing.

Training the CNN denoiser: The TSMI training data was aug-
mented by random resizing of the spatial resolution. The CNN is a
multichannel image-patch denoiser. For this we extracted patches
of size 128 x 128 x 10 with spatial strides of 17 from the TSMIs.
We augmented the patches by flipping across image axes and used
random rotations. The patches were then [0,1] normalised. Random
AWGN was then added during each iteration of the training algo-
rithm to create pairs of clean and noisy TSMI patches. The CNN
was trained following [15] to 500 epochs using L1 loss, Adam opti-
miser, batch size 16, initialised weights using Kaiming uniform with
no bias, and the learning rate initialised at 10~* and halved every
100,000 iterations. Randomly selected levels of AWGN noise from
o = 10174 were used for training the denoiser, following [15].
For the PnP algorithm, the denoiser was tested with five levels
of AWGN noise ¢ = 1017%7%72-10} from which ¢ = 1072
yielded the best result. A second denoiser trained solely on the
optimum noise level found was utilised for our comparisons.

Subsampling models: We simulated two single-coil Cartesian ac-
quisition processes with distinct k-space subsampling patterns: (i) a
spiral readout as in [6] with rotating patterns across 1" = 200 repeti-
tions was used to subsample the 224 x 224 Cartesian FFT grid across
all timeframes, and (ii) k-space multiple rows subsampling pattern
i.e. the multi-shot Echo Planar Imaging (EPI) [17], with shifted
readout lines across the timeframes was used for MRF subsampling.
Both MRF acquisitions subsampled 771 k-space locations in each
timeframe from a total of 224 x 224, leading to a compression ratio
of 65, and were contaminated with AWGN noise of 30 dB SNR.

Tested reconstruction algorithms: We compared the performance
of the proposed PnP-ADMM algorithm to the SVD-MRF [2] and
LRTV [4] TSMI reconstruction baselines. All algorithms incorpo-
rated subspace dimensionality reduction (¢t = 10). Further they
can all adapt to the MRF subsampled acquisition process at testing
time. SVD-MREF is a non-iterative approach based on zero-filling
reconstruction & = Afy. The LRTV is an iterative approach to (3)
based on an analytical Total Variation image (prior) regularisation
for ¢. The PnP approach uses data-driven image priors learned by
the CNN denoiser. The PnP-ADMM ran for 100 iterations, used
v = 0.05 and its conjugate gradient steps ran to the solution toler-
ance 10~%. The LRTV ran for 200 iterations and used regularisation
parameter A = 4 x 107°.

'Data was obtained from a 3T GE scanner (MR750w system - GE Health-
care, Waukesha, WI) with 8-channel receive-only head RF coil, 230 x 230
mm? FOV, 230 x 230 image pixels, 5 mm slice thickness, and used a FISP
acquisition protocol with 7" = 1000 repetitions, the same flip angles as [14],
inversion time of 18 ms, repetition time of 10 ms and echo time of 1.8 ms.
The groundtruth tissue maps were obtained by the LRTV algorithm [4].
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Fig. 1: Tissue Map Results using Spiral Subsampling - Col 1-3: T1,
T2, PD; Row 1-4: Ground Truth, SVD-MRF, LRTV, PnP-ADMM

Quantitative mapping: Dictionary matching was used for mapping
the reconstructed TSMISs to the T1, T2 and PD images. For this an
MREF dictionary of 94’777 atoms (fingerprints) was created using
the EPG Bloch response simulations for a logarithmically-spaced
grid of (T1, T2) € [0.01,6] x [0.004,0.6] (s). PCA was applied
to compress this dictionary’s (i.e. the Bloch responses) temporal
dimension to a ¢ = 10 dimensional subspace [2]. The same sub-
space was used for the TSMIs dimensionality reduction and within
all tested reconstruction algorithms.

Evaluation Metrics: For evaluation of the TSMI reconstruction
performance, the Peak Signal-to-Noise-Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) averaged across all 10 temporal
channels were used. To evaluate tissue maps, the Mean Absolute
Error (MAE), PSNR and SSIM were used. Metrics were calculated
for all 15 slices of the held-out test subject and averaged.

Results and Discussion: Fig.1, Fig.2 and Table.1, shows PnP-
ADMM utilising the same CNN denoiser, trained on generic
AWGN, can apply to two different forward models with drastically
different subsampling patterns. The output is consistent de-aliasing
performance for time-series data and consequently the tissue maps
(see supplementary material for a comparison of TSMIs).

PnP-ADMM outperforms tested baselines subjectively (Fig.1,
Fig.2) and objectively (Table.1) across all tested metrics, for both
tested subsampling patterns. Recovering tissue maps from EPI sub-

T1 Relaxation Time (s) T2 Relaxation Time (s) Proton Density (a.u.)

Fig. 2: Tissue Map Results using EPI - Col 1-3: T1, T2, PD; Row
1-4: Ground Truth, SVD-MREF, LRTV, PnP-ADMM

sampled data is observed to be generally more challenging than the
spiral subsampling scheme (because the centre of k-space is densely
sampled by spiral readouts), however, as observed the PnP-ADMM
algorithm succeeds while other tested baselines fail. The key to
the superior performance of PnP-ADMM lies in its ability to utilise
spatiotemporal prior information related to the dataset. SVD-MRF
utilises only temporal prior information through the use of PCA,
while LRTV utilises generic prior information in the form of tem-
poral priors through PCA and spatial priors through Total Variation.
The use of dataset specific spatiotemporal priors, learned by a CNN
denoiser, is the crux of PnP-ADMM’s superior performance.

5. CONCLUSION

A proof-of-concept is proposed for a PnP-ADMM approach using
deep CNN image denoisers for multi-parametric tissue property
quantification using MRF compressed sampled acquisitions, which
may be useful for cases where the measurement acquisition scheme
is unknown during training for deep learning methods and/or may
change during testing. The method was validated on simulated data
and consistently outperformed the tested baselines. This was pos-
sible due to the use of data-driven spatiotemporal priors learnt by
a pre-trained CNN denoiser, which were critical for enhancing the
reconstruction of the TSMIs. Future work will include a variety of
measurement acquisition settings, the use of non-gridded sampling
trajectories and prospective in-vivo scans.



Spiral | EPI
[ SVD-MRF__LRTV _ PnP-ADMM || SVD-MRF__ LRTV__ PnP-ADMM
MAE (ms) T1 0.7216 0.1235 0.0630 0.3916 0.1756 0.0549
T2 0.1477 0.0425 0.0240 0.3208 0.2308 0.0250
TSMI 38.7898 50.5719 61.9822 46.0254 40.6593 61.2355
PSNR (dB) T1 2.3836 12.5453 17.3983 4.8648 13.0147 19.3664
T2 9.6561 21.7319 27.6446 6.5304 10.3662 27.8087
PD 12.5959 30.5244 36.0676 21.5727 27.7092 40.3840
TSMI 0.6896 0.9656 0.9959 0.8375 0.8215 0.9964
SSIM T1 0.5695 0.8859 0.9551 0.7588 09119 0.9640
T2 0.7673 0.8410 0.9364 0.6021 0.6859 0.9391
PD 0.5978 0.8550 0.9668 0.7001 0.8845 0.9776

Table 1: The metrics for time-series data and tissue maps obtained using Spiral and EPI subsampling patterns averaged over 15 slices.
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SUPPLEMENTARY MATERIAL:
A PLUG-AND-PLAY DEEP APPROACH TO MULTIPARAMETRIC QUANTITATIVE MRI:
IMAGE RECONSTRUCTION USING PRE-TRAINED DEEP DENOISERS
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Fig. 1. A visual comparison of the TSMIs obtained using the Spiral Subsampling pattern for channels 1, 2 and 3, for slice 10.
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Fig. 2. A visual comparison of the TSMIs obtained using the Spiral Subsampling pattern for channels 4, 5 and 6, for slice 10.
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Fig. 3. A visual comparison of the TSMIs obtained using the Spiral Subsampling pattern for channels 7, 8 and 9, for slice 10.
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Fig. 4. A visual comparison of the TSMIs obtained using the Spiral Subsampling pattern for channel 10, for slice 10.
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Fig. 5. A visual comparison of the TSMIs obtained using the EPI Subsampling pattern for channels 1, 2 and 3, for slice 10.
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Fig. 6. A visual comparison of the TSMIs obtained using the EPI Subsampling pattern for channels 4, 5 and 6, for slice 10.
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Fig. 7. A visual comparison of the TSMIs obtained using the EPI Subsampling pattern for channels 7, 8 and 9, for slice 10.
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Fig. 8. A visual comparison of the TSMIs obtained using the EPI Subsampling pattern for channel 10, for slice 10.



