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Abstract
As one of the most important subtasks of automatic music transcription (AMT), multi-pitch estimation (MPE) has been 
studied extensively for predicting the fundamental frequencies in the frames of audio recordings during the past decade. 
However, how to use music perception and cognition for MPE has not yet been thoroughly investigated. Motivated by this, 
this demonstrates how to effectively detect the fundamental frequency and the harmonic structure of polyphonic music using 
a cognitive framework. Inspired by cognitive neuroscience, an integration of the constant Q transform and a state-of-the-art 
matrix factorization method called shift-invariant probabilistic latent component analysis (SI-PLCA) are proposed to resolve 
the polyphonic short-time magnitude log-spectra for multiple pitch estimation and source-specific feature extraction. The 
cognitions of rhythm, harmonic periodicity and instrument timbre are used to guide the analysis of characterizing contigu-
ous notes and the relationship between fundamental frequency and harmonic frequencies for detecting the pitches from the 
outcomes of SI-PLCA. In the experiment, we compare the performance of proposed MPE system to a number of existing 
state-of-the-art approaches (seven weak learning methods and four deep learning methods) on three widely used datasets 
(i.e. MAPS, BACH10 and TRIOS) in terms of F-measure ( F

1
 ) values. The experimental results show that the proposed MPE 

method provides the best overall performance against other existing methods.

Keywords Music cognition · Automatic music transcription · Multi-pitch estimation · Harmonic structure detection 
(HSD) · Polyphonic music detection

Introduction

Estimation and tracking of multiple fundamental frequencies 
is one of the major tasks in automatic music transcription 
(AMT) of polyphonic music analysis [1] and music infor-
mation retrieval (MIR) [2], which is referred to as a subtask 
in the Music Information Retrieval Evaluation eXchange 
(MIREX).1 Multiple fundamental frequency estimation 
(MFE), also namely multiple pitch estimation (MPE), is 
challenging in processing simultaneous notes from multi-
ple instruments in polyphonic music [3, 4]. There is often a 
trade-off between the robustness and efficiency of algorithms 

that focuses more on complexity rather than single-pitch 
estimation.

According to Benetos et al. [5], the MPE approaches are 
categorised into three types, i.e. feature based, spectrogram-
factorization based and statistical model–based methods. In 
feature-based methods, signal processing techniques such as 
the pitch salience function [6] and pitch candidate set score 
function [7] are used. In spectrogram-factorization methods, 
both the nonnegative matrix factorisation (NMF) and the 
probabilistic latent component analysis (PLCA) approaches 
have received a lot of attention in recent years [6], and 
numerous improved versions [8, 9] based on both methods 
have been published and are recognised as leading spec-
trogram factorization-based methods in the MPE domain. 
The statistical model-based methods employ the maximum a 
posteriori (MAP) [3] estimation, maximum likelihood (ML) 
or Bayesian theory [10] to detect the fundamental frequen-
cies.. It is worth noting that these three distinct types of MPE 
approaches can be joined or interacted with [6] for a variety 
of applications.
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In recent years, many deep learning (DL)–based super-
vised MPE approaches have also been developed. Cheuk 
et al. [11] presented a DL model for AMT by combining 
the U-Net and bidirectional long short-term memory (BiL-
STM) neural network modules. Mukherjee et al. [12] used 
statistical characteristics and an extreme learning machine 
for musical instrument segregation, where LSTM and the 
recurrent neural network (RNN) [13] were combined to dif-
ferentiate the musical chords for AMT. Fan et al. [14] pro-
posed a deep neural network to extract the singing voice, 
followed by a dynamic unbroken pitch determination algo-
rithm to track pitches. Sigtia et al. [15] developed a super-
vised approach for polyphonic piano music transcription 
that included a RNN and a probabilistic graphical model. 
Although DL approaches may provide adequate music tran-
scriptions, they often require high-performance computers 
and excellent graphic processing units (GPU) to speed-up 
the lengthy training process [16]. Furthermore, DL algo-
rithms may suffer from inaccurately labelled data, and the 
performance may be susceptible to the training samples and 
the learning procedures used. To this end, in this paper, we 
focus mainly on cognitive method, where the prior cognitive 
theories and assumptions from previous studies [17–19] will 
be used to guide the fundamental pitch detection in poly-
phonic music pieces.

To distinguish the pitch using harmonic analysis, two 
types of statistical models are often used. One is the expec-
tation–maximization (EM)-based algorithms [20], and the 
other is Bayesian-based algorithms [21]. For EM-based meth-
ods, Emiya et al. [22] proposed a maximum likelihood–based 
method for multi-pitch estimation. Duan and Temperley [23] 
proposed a three-stage music transcription system and applied 
maximum likelihood for final note tracking. For Bayesian-based 
methods, Alvarado Duran [24] combined Gaussian processes 
and Bayesian models for multi-pitch estimation. Nishikimi et al. 
[25] integrate hidden Markov Model and Bayesian inference 
together to precisely detect the vocal pitch. Those statistical 
models can be also considered as shallow learning methods, 
as data should first be observed to gain some prior knowledge, 
based on which the experiments should then be conducted. 
After constant addition of the information of the new samples 
into prior distribution, the posterior inference can be delivered 
along with the final results. Although the shallow learning 
approaches have been widely investigated [26], they still have 
much room to improve.

Apart from the aforementioned issues, most MPE meth-
ods are designed from the viewpoint of signal processing 
rather than music cognition, resulting in a lack of sufficient 
underpinning theory and inefficient modelling. To tackle this 
issue, we propose a general framework in which music cog-
nitions are used to guide the entire process of MPE. In the 
pre-processing, inspired by cognitive neuroscience of music 
[19], the Constant Q transform (CQT) [27] is employed to 

transfer the audio signal to time–frequency spectrogram. 
The pianoroll transcription is then generated using a con-
ventional matrix factorization approach, shift-invariant 
probabilistic latent component analysis (SI-PLCA) [9]. In 
the harmonic structure detection (HSD) process, the cogni-
tions of harmonic periodicity and instrument timbre [18] are 
used to guide the extraction of multiple pitches. The efficacy 
of the suggested methodologies has been fully validated by 
experiments on three publicly available datasets.

The major contributions of this paper may be highlighted 
as follows. First, a new HSD model that incorporates music 
cognition for multiple fundamental frequency extraction 
was proposed. Second, we proposed a new note track-
ing method guided by music connectivity and multi-pitch 
model. By combining conventional pianoroll transcription 
approaches and the proposed HSD model, a new music 
cognition–guided optimization framework is introduced for 
MPE. Experimental results on three datasets have demon-
strated the merits of our approach, when benchmarked with 
11 state-of-the-art methods.

The rest of the paper is structured as follows: “Cognition-
guided multiple pitch estimation” describes pre-processing 
for MPE including time–frequency representation, matrix 
factorization and the implementation of the proposed har-
monic structure detection method. “Experimental results” 
presents the experimental results and performance analysis. 
Finally, a thorough conclusion is drawn in “Conclusion”.

Cognition‑Guided Multiple Pitch Estimation

System Overview

The objective of this work is to detect the multiple pitches 
from music pieces of mixed instruments, where an MPE 
system is proposed, which contains three key modules, i.e., 
pre-processing, harmonic structure detection and note track-
ing. Preprocessing covers a standard procedure, in which 
an input music signal needs to go through time–frequency 
(TF) representation and matrix factorization for feature 
extraction. The overall diagram of the MPE framework is 
illustrated in Fig. 1, where the implementation details are 
presented as follows.

Pre‑processing

According to the cognitive neuroscience of music [19, 28], 
before selectively stimulating the auditory cortex, differ-
ent frequencies within the music need to be first filtered by 
human cochlea. As the frequency of human auditory per-
ception is logarithmically distributed [27], there is a greater 
discrimination when hearing relatively lower frequencies. 
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The Constant Q transform (CQT) [29], based on the FFT 
principle, can process a logarithmic compression similar to 
that of human’s cochlea helical structure [29]. Therefore, the 
CQT is employed as the TF representation module to derive 
the TF spectrogram, as it is efficient in lower frequencies. 
There are fewer frequencies required in a given range, which 
has testified its usefulness when the frequency distribution 
in several octaves is discrete. Meanwhile, an increased fre-
quency bin correlates to a decrease in the temporal reso-
lution rate, making it suitable for auditory applications. A 
spectral resolution of 60 bins per octave is used as suggested 
by Brown [27]. The outputs from the TF transformation are 
linear when using the Fast Fourier Transform (FFT) to ana-
lyse the frequency (Fig. 2a).

In the matrix factorization module, the CQT spectro-
gram results are used as the input, approximately modelled 
as a bivariate probability distribution P(p, t) . The output of 
this module is a 2-dimensional non-binary representation 
of pianoroll transcription (a pitch vs. time matrix shown in 

Fig. 2b). In this paper, the fast shift-invariant probabilistic 
latent component analysis (SI-PLCA) [30] is used for auto-
matic transcription of polyphonic music, as it is extremely 
useful for log-frequency spectrogram, due to the same inter-
harmonic spacing for all periodic sounds [31]. Given an input 
signal Xt , the output of CQT is a log-frequency spectrogram 
Vz,t that can be considered as a joint time–frequency distri-
bution P(z, t) where z and t denote the frequency and time, 
respectively. After applying the SI-PLCA, P(z, t) can be fur-
ther decomposed into several components by [30]:

where p, f , s are latent variables which denote respec-
tively the pitch index, pitch-shifting parameter and instru-
ment source. In Eq. (1), P(t) is the energy distribution of 
the spectrogram, which is known from the input signal. 
P(z − f |s, p) denotes the spectral templates for a given pitch 

(1)Vz,t = P(z, t) = P(t)
∑

p,f ,s

P(z − f |s, p)Pt(f |p)Pt(s|p)Pt(p)

Fig. 1  The overall MPE system

Fig. 2  a Result of CQT. b Result of PLCA. Illustration of input music signal TF representation module and pianoroll transcription module, the 
range from 200 to 300 bins in a are probably corresponding to 40–60 pitches in b 
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p and instrument source s with f pitch shifting across the 
log-frequency. Pt(f |p) is the log-frequency shift for each 
pitch on the time frame t, Pt(s|p) represents instrumentation 
contribution for the pitch in the time frame t, and Pt(p) is the 
pitch contribution which can be considered as transcription 
matrix on the time frame t. Since there are latent variables 
in this model, the expectation maximization (EM) algorithm 
[20] is often used to iteratively estimate the corresponding 
unknown variables.

In the Expectation step, the Bayes’s theorem is adopted 
to estimate the contribution of the latent variables p, f, s for 
reconstruction of the model:

In the Maximization step, the posterior of Eq. (2) is used 
to maximise the log-likelihood function in Eq. (3), which 
leads to the update of Eqs. (4)–(7). As suggested in [30], this 
step can converge after 15–20 iterations. The final result of 
the pianoroll transcription is derived by P(p, t) = P(t)Pt(p):

Harmonic Structure Detection

This section is the core of the proposed MPE system where 
music theories in terms of the pattern of beat length and 
assumption of equal energy between mixed monophonic and 
polyphonic music pieces are used to guide the model for the 
extraction of the multiple fundamental frequencies from a 
mixture of music sources.

For a given piece of music, the time domain representa-
tion is illustrated in the input module in Fig. 1. The results 
of CQT and SI-PLCA are given in Fig. 2a and b, respec-
tively. Upon observing Fig. 2b, the fundamental pitch and 
its harmonics have been highlighted by the shaded black 

(2)Pt(p, f , s�z) =
P(z − f �s, p)Pt(f �p)Pt(s�p)Pt(p)∑
p,f ,s P(z − f �s, p)Pt(f �p)Pt(s�p)Pt(p)

(3)L =
∑

z,t

Vz,t log (P(z, t))

(4)Pt(z�s, p) =
∑

f ,t Pt(p, f , s�z + f )P(z + f , t)
∑

f ,w,t Pt(p, f , s�z + f )P(z + f , t)

(5)Pt(f �p) =
∑

z,s Pt(p, f , s�z)P(z, t)∑
f ,z,s Pt(p, f , s�z)P(z, t)

(6)Pt(s�p) =
∑

z,f Pt(p, f , s�z)P(z, t)
∑

s,z,f Pt(p, f , s�z)P(z, t)

(7)Pt(p) =

∑
z,f ,s Pt(p, f , s�z)P(z, t)

∑
p,z,f ,s Pt(p, f , s�z)P(z, t)

and grey strips. However, there is considerable noise and 
redundant information represented by small and grey dots 
which may be misconstrued for pitches at lower frequen-
cies. Furthermore, the white gaps in the black and grey 
strips indicate frequency information that has been lost in 
the analysis. This suggests that the consistency of funda-
mental pitch is insufficient if considered frame by frame 
(each frame was set to 10 ms). To address these inconsist-
encies, the HSD method is proposed followed by a note 
tracking process (Fig. 1).

The proposed HSD includes two main stages. In the first 
stage, the pianoroll transcription P(p, t) is normalised into 
[0, 1] by using the following max-mean sigmoid activation 
function [32]:

where PN represents the normalised P(p, t) . By applying 
a mean filter in Eqs. (8) and (9), the spectrogram can be 
smoothed. For extreme values which are too large or too 
small than expected, they can also be rationalised. For any 
PN , the value of PNt at time t can be expressed by Eq. (10).

Inspired by the music theory that most high-order har-
monic components are in the high-frequency range with 
low amplitude [17], a two-step hard constrain is used to 
remove most of the high-frequency components, noise and 
redundancy. First, a fixed threshold TH

1
 is applied in Eq. 

(11) to remove small values. Based on the characteristic 
of sigmoid function (Eq. (8)), TH

1
 is set to 0.5. Finally, 

the filtered result PF of the whole frames is obtained and 
shown in Fig. 3a.

In the second step, the statistics of the beat length is 
used to guide the removal of noise and redundant infor-
mation. According to the cognition of music perception, 
most notes in musical rhythms have a large number of 
crotchets and quavers, but fewer numbers of semiqua-
vers and demisemiquavers [33]. The rate of occurrence 
of different notes in the BACH10 database was observed 
and measured according to the ground truth. A plot was 
generated of time vs. rate of occurrence in Fig. 4, with 
the labelled fractions (i.e. 1

2
,
1

4
,
1

8
,

1

16
,

1

32
 ) denoting minim, 

crotchet, quaver, semiquaver and demisemiquaver, respec-
tively. Figure 4 illustrates that the rate of occurrence of 

(8)PN =
1

1 + e−z

(9)z =
P(p, t) − mean (P(p, t))

max (P(p, t)) − min (P(p, t))

(10)PNt = (PNt−1 + PNt + PNt+1)∕3

(11)PFt = PNt × s; s =

{
1, if PN > TH

1

0, otherwise
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crotchets and quavers is larger than that of the demisemi-
quavers, semiquavers and minims. Especially, the number 
of demisemiquavers and semiquavers is extremely low. 
Furthermore, if the length of a semibreve is defined as � , 
the length of a demisemiquaver is �∕32 . Any notes shorter 
than a demisemiquaver will be removed in PF before any 
further processing in the second stage.

In Fig. 4, a peak value is identified at the initial time steps 
of the simulation, and this may be due to two reasons. Firstly, 
manually played music may contain some timing errors, for 
example, holding a note for its precise duration for every 
note in the piece may be impossible. Secondly, ornaments 
such as vibrato and glissando may be mistakenly performed 
despite not being present on the music score. The length of 
such vibrato and glissando is equal to a demisemiquaver or 
lower [34]. To extract more of the main body of multiple 
pitches, factors such as human playing habits or ornaments 

are ignored in the proposed work. Relevant results given in 
“Experimental results” demonstrate that the multiple pitches 
are highlighted whilst removing most of the unwanted noise.

After filtering the amplitudes from PLCA, the HSD 
framework was proposed to detect the fundamental pitch 
in the second stage. The flowchart in Fig. 5 outlines the 
process of HSD, and Table 1 lists the description of each 
parameter. As described in the flowchart in Fig. 5, the out-
put from previous steps will be analysed in two domains, 
i.e. pitch domain PD and energy domain ED . In this con-
text, each frame of PF is split into two vectors, PD(n) and 
ED(n) . PD(n)�ℝN∗1 is non-zero notes index in each frame, 
ED(n)�ℝN∗1 is the amplitude of PD(n) , and N is the num-
ber of non-zero notes. As seen, the process is only applied 
once on the non-zero notes rather than the whole frame, 
because there is no need to analyse those zero-value notes 
for efficiency.

Pitch Domain Analysis

After that, a matrix of pitch candidates and their correspond-
ing harmonics PCH�ℝ

N∗H can be extended from PD(n) . The 
first column of this matrix is non-zero pitch values and the 
rest of the columns have the associated harmonic pitches of 
each non-zero pitch, where the harmonic pitch is the corre-
sponding pitch value of the harmonic frequency. A harmonic 
map HMap�ℝM∗H is employed here to guide the extension 
process, which includes the pianoroll number (m) of the fun-
damental frequency ( F

0
 ) and the corresponding harmonic 

frequency for every note. Following the MIDI tuning stand-
ard, we transfer the nth non-zero fundamental frequency to 
its corresponding pianoroll number using Eq. (12). Here, PD 
needs to be subtracted by 20 due to the difference between 
the pianoroll and the MIDI number:

Fig. 3  Results from the first step (a) and second step (b) in HSD module

Fig. 4  The relationship between time (note type) and note appearance 
number extracted from the BACH10 database
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where 69 and 440 are the values of the MIDI number and 
frequency for the standard A, respectively. Twelve is the 
number of notes in one octave. Given a frequency of the 
input signal, its harmonic frequencies are multiples of the 
fundamental frequency. In this study, we set concert A as 
440 Hz for fast implementation. Note that the concert A is 
not always the standard A with 440 Hz, where its frequency 
may vary depending on the playing style of the instruments 

(12)PD(n) = 69 + 12 log
2

(
F
0
(n)

440Hz

)

m(n) = PD(n) − 20, |m|�[1, 88]

and music pieces. It is worth mentioning that our algorithm 
does not reply on the frequency setting of concert A, as our 
algorithm focuses on the analysis of the relationship between 
fundamental frequency and harmonic frequencies, which 
mainly depends on the music temperament.

An example of calculating MIDI number of harmonic 
frequency in HMap is given in Table 2.

PCH(n, h) is the hth harmonic pitch component of the 
pitch n where n lies within [1, N] and h is within [1, H]. H is 
set to 5 in the experiment, and N is the number of non-zero 
value in each frame:

Fig. 5  Flowchart of the proposed HSD

Table 1  Description of 
parameters

Parameters Definition Index/Dimension

N The number of non-zero fundamental-pitch; n�[1,N]

H The number of harmonic-pitch; default is 5 h�[1,H]

I The number of the instruments in the music piece i�[1, I]

m Vector of pianoroll ℝ
N∗1

PF Spectrogram of SI-PLCA after filtering ℝ
88∗Time

PD Pitch value of PF ℝ
N∗1

PCH Value of pitch candidates and their corresponding harmonics ℝ
N∗H

PCP Value of harmonics and their potential corresponding pitches ℝ
N∗H

PHC Value of harmonics and selected pitches ℝ
N∗H

ED Energy value of PF ℝ
N∗1

EDG Amplitude of fundamental pitch and their corresponding harmonic ℝ
N∗H

EHC Amplitude of harmonic components presented in the pitch n ℝ
N∗H

EFF Final result of pitch amplitude ℝ
N∗1
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Let PCP be a matrix of the harmonics and their potential 
corresponding pitches, which contains the harmonic compo-
nents and their associated pitches being calculated from the 
original pitch at a specific value of h as follows:

where �(x − y) is a function of the equivalence gate with 
two inputs. The output of the equivalence gate will be 1 if 
the two inputs equals (i.e. h = 1). Otherwise, it will become 
zero. Using Eqs. (14) and (15), PCP(n, h) can be identified 
for each harmonic component.

Let PHC(n, 1) be a harmonic component, and 
PHC(n, h)(h = 2,… ,H) represents the relative associated 
pitches. PHC is the value that correlates to PCP in identify-
ing potentially the original pitch values. The matrix for all 
of the potentially original pitch values is estimated below. 
If PCP(n, h) = PCP(n, 1) , an equivalence gate value of 1 
is assigned, and the output value from the square brackets 
becomes 1 in Eq. (16):

Energy Domain Analysis

In the energy domain, EDG(n, h) is a value generated from 
ED�ℝN∗H and PHC(n, h) as defined below:

In the following, we will describe two cognitive theories 
which have inspired our proposed guided weight mechanism 
for fundamental frequency detection. First, according to the 
harmonic periodicity and instrument timbre theory [18], 
the harmonic periodicity of different instruments should 
be the same, although the sound of which varies by their 

(13)PCH(n, h) = HMap(m(n), h), PCH�ℝ
N×H

(14)�(x − y) =

{
1, if x = y

0, otherwise.

(15)
PCP(n, h) = PCH(n, h) ⋅ �[PCH(n, h) − PCH(n, 1)], PCP�ℝN×H

(16)
PHC(n, h) = PCP(n, 1) ⋅ �[PCP(n, h) − PCP(n, 1)],

PHC � ℝ
N×H

, n � [1,N], h � [1,H]

(17)
EDG(n, h) = ED(n) ⋅ �[PHC(n, h) − PHC(n, 1)], EDG�ℝN×H

timbres as reflected on the ratio of harmonic amplitude to 
the fundamental amplitude [35]. The instruments from dif-
ferent families will have a large ratio, and vice versa. For 
the instrument that produces a sound from strings such as 
piano, and violin (Fig. 6d), their harmonic amplitudes gener-
ally decrease gradually. On a different note, for woodwind 
instruments such as clarinet (Fig. 6c) and bassoon (Fig. 6a), 
the amplitudes of their first harmonic would be lower than 
that of their second harmonic. Therefore, the energy ratio of 
the fundamental frequency and harmonic frequency energy 
(timbre) is unaffected by monophonic or polyphonic tex-
tures, but unique in individual instruments. Second, accord-
ing to the acoustic theory [36], when two or more sound 
waves occupy the same space, they move through rather 
than bounce off each other. For example, the result of any 
combination of sound waves is simply the addition of these 
waves. Theoretically, the energy of the mixed monophonic 
and polyphonic audio should be the same, though there is 
unavoidable difference in the real case. The results of a sin-
gle frame after step 1 (section III-B) of the harmonic struc-
ture detection (HSD) are plotted as profile of pitch values as 
shown in Fig. 6. The profiles of four single music sources are 
shown in Fig. 6a–d. The profile of the mixed monophonic 
notes is given in Fig. 6e, which is composed of four single 
music sources, i.e. notes no. 1–no. 4, and the profile of the 
polyphonic notes shown in Fig. 6f is generated from one 
mixed channel. Considering that the profile of mixed mono-
phonic notes is the ideal value, and the profile of the poly-
phonic notes is the predicted actual value. As seen in Fig. 6f, 
there are few amplitude differences between the profiles of 
the polyphonic and monophonic notes due to the resonance 
in the polyphonic notes and channel distortion during data 
recording and transmission, but the overall trend of the two 
profiles is very similar.

Motivated by these, we proposed the guided weight 
mechanism which is denoted as Eq. (18) in our model for 
improving the detection of the fundamental frequency. The 
guiding weight is calculated by the averaged ratio of the 
amplitude of harmonic ED_mono(h) and fundamental fre-
quency ED_mono(1) in the monophonic data, before apply-
ing to the polyphonic data. The variable I is the number of 
known instruments that can be identified in the music piece:

where T is the number of time frames in the monophonic 
data, the first non-zero value of ED_monot(1) is always the 
fundamental frequency, and the remaining non-zero values 
ED_monot(h) are the harmonic frequencies.

Equation (19) estimates the amplitude of harmonic 
components ( EHC ) presented in the pitch n by multiply-
ing the guided weight of selected instrument with EDG . 

(18)Wi(h) =
1

T

T∑
t=1

ED_monot(h)

ED_monot(1)
, h � [1,H], i � [1, I]

Table 2  Example of calculating A4 in the HMap 

Attribute Fundamental 
frequency,F

0

Harmonic Frequency, k × F
0
 (Hz)

2 F
0

3 F
0

4 F
0

5 F
0

Frequency (Hz) 440 880 1320 1760 2200
Pianoroll 49 61 68 73 77
MIDI number 69 81 88 93 97
Letter name A4 A5 E6 A7 C#7/Db7
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Theoretically, the amplitude of harmonic should be a portion 
to the amplitude of the fundamental frequencies. It is noted 
that the fundamental frequencies must occur at h = 1, then 
harmonic frequencies occur at h = 2:H.

Based on the EHCi determined from Eq. (19), the ampli-
tude of fundamental frequency in pitch n after subtracting 
the summed harmonic components’ amplitude will be kept 
updating until the fundamental frequencies from all instru-
ments are estimated.

Eventually, the amplitude of fundamental frequency in 
pitch n, represented as EFF , can be obtained by Eq. (21).

For each non-zero pitch n in each frame t, it will have a 
rank value R(n) according to the EFF(n) , then a 2D rank 
map R(n, t) will be generated for the whole music piece, 
i.e. pitch/pianoroll vs. time frame as shown in Fig. 3b, 
which will be used to fully represent our detected harmonic 

(19)
EHCi(n, h) = EDG(n, h) ⋅Wi(h),

EHCi�ℝ
N∗H

, n � [1,N], h � [1,H]

(20)ED(n) = EHCi(n, 1) −
∑H

h=2
EHCi(n, h)

(21)EFF(n) = ED(n), EFF�ℝN×1

structure. A brief implementation of energy domain proce-
dure is summarized in Algorithm 1.

Algorithm 1

Inputs:ED(n)
Step 1: Generate a matrix including the amplitude of fundamental 

pitch and their corresponding harmonic pitches using Eq. (17)
Step 2: Calculate the weight for each type of instrument using Eq. 

(18)
Step 3: Estimate the amplitude of harmonic components ( EHC ) 

presented in the pitch n using Eq. (19)
Step 4: Update ED by Eq. (20)
Step 5: Repeat steps 1–4 until the fundamental frequencies from all 

instruments are estimated
  Obtain the final estimated amplitude of fundamental frequency in 

pitch n by Eq. (21)

Note Tracking

As seen in Fig. 3b, although most fundamental pitches have 
been extracted, the notes still show a poor consistency. To 
improve this, a note tracking method based on the music 
perception and multi-pitch probability weight was pro-
posed. According to the music theory [33], the occurrence 

Fig. 6  a Note1, A2 = 25. b Note2, C4 = 40. c Note3 F#4 = 46. d 
Note4 C5 = 52. Profile of pitch values for monophonic and poly-
phonic analysis in a single frame. Single notes with its MIDI num-
ber for bassoon (a), saxophone (b), clarinet (c) and violin (d); e is 

the monophonic learning result when combining the four note; f is 
the comparison of real polyphonic value with expected mixed mono-
phonic notes
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of demisemiquaver is generally quite low in music pieces. As 
a result, notes with a length shorter than demisemiquaver are 
filtered out. The averaged rank of the connected pitch group 
in the rank map is calculated and denoted as R . If R is larger 
than an adaptive threshold TH

2
 , the pitch group is consid-

ered a harmonic and will be skipped from the analysis. As 
the polyphonic music pitches vary over time, the TH

2
 will 

also change accordingly. To account for this change, a fitting 
function was generated for TH

2
 (Fig. 7a), which is adaptive 

to the number of notes x ∈ [1, 12] for each frame, as given:

The fitting curve of TH
2
 is obtained by minimising the fit-

ting error between ground truth and our estimate. Figure 7b 
displays the note tracking results where most of the noise 
and the inconsistencies have been filtered out. The result 
has also achieved a similar profile to that of the ground truth 
data.

Experimental Results

Experimental Settings

To validate the effectiveness of the proposed approach, the 
first dataset used for evaluation is the MIDI Aligned Piano 
Sounds (MAPS) [37], in which all music pieces are recorded 
in the MIDI format initially and then converted into “.wav” 
format. MAPS also have differently purposed subsets such 
as monophonic excerpts and chords. For this case, only one 
subset is used which includes polyphonic music pieces. In 
addition, there are several instruments and recording condi-
tions in MAPS. The “ENSTDkCI” is chosen as the music 
played using a real piano rather than an acoustic one, i.e. a 
virtual instrument, and recording occurs in soundproofed 

(22)TH
2
= 1.26x0.9

conditions. The second dataset is BACH10 [38], which 
contains 10 pieces using violin, clarinet, saxophone and 
bassoon from J.S.Bach chorales, where each piece lasts 
approximately 30 s. The third dataset is TRIOS [39], which 
is the most complex one among the three as it contains five 
multitrack chamber music trio pieces. The sampling rate for 
all music pieces is 44,100 Hz.

For objective assessment, the most commonly used 
frame-based metric, F-measure ( F

1
 ) [40, 41], is adopted. It 

combines the positive predictive value (PPV, also namely 
precision) and the true positive rate (TPR, also namely 
recall) for a comprehensive evaluation as follows:

where TPR =
Tp

Tp+Fn

, PPV =
Tp

Tp+Fp

 , and Tp , Fp and Fn refer 
respectively to the number of correctly detected F

0
 , incor-

rectly detected F
0
 and missing detection of the F

0
 . Specifi-

cally, these three components can be calculated by compar-
ing the binary masks of the detected MPE results and the 
ground truth.

Performance Evaluation

Table 3 shows the quantitative assessment of 11 benchmark-
ing methods on MAPS, BACH10 and TRIOS datasets. We 
divide all benchmarking methods into two categories: shal-
low learning method and DL method. Weak learning meth-
ods include a traditional machine learning model or a prior 
knowledge-based model whereas DL methods include deep 
neural networks and deep convolutional neural networks.

Many MPE approaches select a pair of methods from 
CQT, PLCA, equivalent rectangular bandwidth (ERB) 
and NMF for pianoroll transcription. Therefore, two of the 
most representative methods, i.e. CQT + PLCA proposed 

(23)F
1
=

2 ⋅ PPV ⋅ TPR

PPV + TPR

Fig. 7  Poly function of threshold TH
2
 (a) and results from the note tracking in comparison to the ground truth (b)
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by Benotos and Dixon [31] and ERB + NMF proposed by 
Vincent et al. [42], are chosen for benchmarking. In Table 3, 
Benetos et al. [43] and Vincent [42] can produce the second 
best performance on the MAPS and TRIOS datasets, respec-
tively, which validates the effectiveness of CQT + PLCA 
and ERB + NMF. However, due to the lack of efficient har-
monic analysis, the performance of both methods is infe-
rior to the proposed HSD method. Unlike the methods from 
Benetos and Vincent, other methods adopt different ideas for 
MPE. SONIC [44] proposed a connectionist approach where 
an adaptive oscillator network was used to track the partials 
in the music signal. However, without a matrix factorization 
process, its performance is limited on the three datasets. Su 
and Yang [8] proposed a combined frequency and perio-
dicity (CFP) method to detect the pitch in both frequency 
domain and lag (frequency) domain. The CFP method in 
Table 3 gives the best performance on the BACH10 dataset, 
but relatively poorer results on the other two datasets. The 
main reason here is possibly because the music pieces in 
the MAPS and TRIOS datasets have more short notes than 
those in the BACH10 dataset, and CFP has the limited abil-
ity for detecting the short notes but exhibit less errors for 
continuous long notes. Furthermore, the assumption of CFP 
does not hold for high-pitch notes of piano, as both MAPS 
and TRIOS have many piano music pieces. In addition, the 
music pieces in the MAPS database contain multiple notes 
in most frames, which have led to extra difficulty for poly-
phonic detection. However, the proposed method can still 
successfully solve this problem by effectively analysing the 
relationship of the position and energy between the funda-
mental frequency and harmonic frequencies for the notes. 
As a result, the performance of the proposed method on 
MAPS is the best, which is 8% higher than that of CFP. 

Klapuri [3] proposed an auditory model–based F
0
 estimator, 

and Duan [38] proposed a maximum-likelihood approach for 
multiple F

0
 estimation, but both methods result in inferior 

performance compared to the results achieved by Benetos 
et al. [31, 43], Vincent et al. [42] or CFP [8]. Furthermore, 
Klapuri’s [3] and Duan et al.’s [38] methods lack an effec-
tive pre-processing stage (i.e. TF representation and matrix 
factorization) or harmonic analysis, which is the main reason 
why their overall performance is less effective in comparison 
to ours.

The proposed method was also compared with four deep 
learning–based supervised approaches on MAPS dataset. 
Due to lack of publicly available source codes, only the data 
that was reported in the original paper was duplicated for 
comparison. The first two methods are proposed by Sigtia 
et al. [15], which are mainly based on the music language 
models (MLMs). However, due to insufficiently labelled 
data in the existing polyphonic music databases for training, 
such limitations have affected further analysis of DL-based 
approaches. Furthermore, the MLM model is not robust to 
ambient noise, whereas music pieces in reality generally 
contain a lot of ambient noise. This has resulted in DL-based 
methods failing to fully analyse the inner structure of the 
music pieces. As a result, DL-based methods cannot achieve 
the same performance as the HSD method or some of the 
other unsupervised methods such as Benetos et al. [43] on 
the MAPS dataset. Su [40] and Kelz [41] also proposed DL-
based methods for AMT. Although better than [15], their 
performance is still not ideal as there is insufficient music 
knowledge support embedded. To this end, more music theo-
ries should be introduced for improved AMT.

In summary, referring to Table 3, the proposed method 
yields the best results on both the MAPS and TRIOS data-
sets, also the second-best in BACH10 according to F

1
 value, 

thanks to the guidance of music cognition. However, the 
method can still be improved, especially for reducing the 
computation cost. As it takes 2 min to process a 30-s music 
piece, this is longer than some other methods. In addition, 
although the profile of the real polyphonic note is close to 
the expected mixed monophonic note, as shown in Fig. 6e, 
f, there are still some differences in the final values of the 
monophonic and polyphonic profiles which can be further 
improved.

Key Stage Analysis

In this section, the contribution of several major stages in 
the proposed MPE system is discussed, where the perfor-
mance of each stage is evaluated on the MAPS dataset in 
terms of the precision, recall and F

1
 . To calculate these 

three metrics, the result of each stage is normalised by 
using Eqs. (8) and (9), and the results are binarized with a 
fixed threshold value of 0.5.

Table 3  Frame-level performance of different methods on three data-
sets

Top two methods are bold with the second also italic

Category Methods F
1

MAPS BACH10 TRIOS

Benetos [43] 64.17 68.40 66.46
Benetos [31] 59.31 70.57 64.93
Vincent [42] 72.35 79.78 59.40

Shallow Duan [38] 67.41 70.90 45.80
learning Klapuri [3] 60.10 68.30 50.50

CFP [8] 68.67 85.51 64.64
SONIC [44] 63.60 66.49 56.65
HSD(proposed) 76.30 80.17 67.63
ConvNet [15] 64.14 – –

Deep RNN [15] 57.67 – –
learning Li [40] 69.42 – –

INN [41] 72.29 – –
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We generalize our proposed MPE system into four key 
stages detailed as follows:

• Stage A: The transcription map from SI-PLCA and 
CQT.

• Stage B: The result after applying the first-step HSD.
• Stage C: The result after applying the second-step HSD.
• Stage D: The result after applying note tracking.

Table 4 illustrates the details of the system configura-
tions. By combination of different key stages, the cor-
responding system is built up for evaluation. Each stage 
has specific components which are indispensable to the 
results of the system. Stage A shows the highest recall and 
lowest precision after applying CQT and SI-PLCA. The 
presence of F

0
 and harmonics is all detected; however, 

many amplitudes are concentrated in higher frequency 
(harmonic) regions which inhibits the identification of 
F
0
 . After combining stage B, the recall value decreases 

by 0.03%, but the precision value increases by almost 
3%. This is mainly due to the removal of noise in HSD. 
In stage C, the core of the MPE system contributes to an 
increase of nearly 30% for precision and 15–18% for F

1
 

compared to previous combinations. Finally, after apply-
ing the proposed note tracking step (stage D), the recall 
value is further improved by 5.5% which leads to the 
final F

1
 value improved by 3.8% compared to the previ-

ous stage.

Assessment of CQT and ERB

In our proposed MPE system, CQT is employed to model 
the human cochlea perception. However, cochlea percep-
tion is not always constant in Q. Therefore, apart from CQT, 
the equivalent rectangular bandwidth (ERB) method is also 
widely used for time–frequency transform [42]. As most ERB 
methods are actually based on the Gamma tone filter-bank 
to model the human auditory system [45], it decomposes a 
signal and passes it through a bank of gamma tone filters, 
equally spaced on the equivalent rectangular bandwidth 
(ERB) scale. However, ERB methods may not be necessary 
to produce better MPE performance than CQT. To further 
validate this assumption, we have combined CQT [27] and 
ERB [42] pair-wisely with PLCA [43] and NMF [42] to form 
four hybrid methods, i.e. CQT + PLCA, CQT + NMF, ERB 
+ PLCA and ERB + NMF, for quantitative analysis in terms 
of the precision-recall, ROC, F-measure curve (Fig. 8), AUC, 
MAE and maxF (Table 5). Here AUC, MAE, and maxF 
denote respectively the area under the ROC curve, the mean 
average error and the max value of F-measure curve. These 
three criteria have the same importance. As seen in Fig. 8, the 
ERB + NMF and CQT + PLCA show comparable results; 
both outperform the other two methods. In Table 5, although 
ERB + NMF gives the best maxF value, CQT + PLCA gives 
the best AUC and lowest MAE, indicating a smaller false 
alarm. Therefore, CQT + PLCA is the best among these four 

Table 4  System configuration

The bold one indicates the best performed result in the column

Configurations Precision Recall F-measure

A 0.408 0.879 0.545
A + B 0.438 0.876 0.571
A + B + C 0.747 0.718 0.725
A + B + C + D 0.753 0.773 0.763

Fig. 8  Precision-recall, receiver operating characteristic and F-measure curve of four pair-wise methods where pairwise combinations of CQT 
and ERB with PLCA and NMF, respectively, are compared

Table 5  Time-freqeuncy transform and piano-roll transcription com-
parison

The bold one indicates the best performed result in the column

Methods AUC MAE maxF

ERB + PLCA 0.922 0.0403 0.6687
ERB + CNMF 0.939 0.0487 0.7213
CQT + PLCA 0.942 0.0390 0.7089
CQT + CNMF 0.906 0.0411 0.6296
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methods, which is also the main reason why it is used in our 
proposed MPE system.

Conclusion

In this paper, a harmonic analysis method is proposed for the 
MPE system, inspired by music cognition and perception. 
CQT and SI-PLCA are employed in the pre-processing stage 
for pianoroll transcription in mixture music audio signal, 
from which the proposed HSD is used to extract the multi-
pitch pianorolls. The proposed MPE system is not limited 
by the number of instruments. For multi-instrument cases 
(i.e. symphony in BACH10 and TRIOS datasets), the mix-
ture characteristics of each instrument can be extracted for 
adaptive detection of the fundamental frequencies. From the 
experiment results, the proposed MPE system yields the best 
performance on the MAPS and TRIOS datasets, and the 
second-best on the BACH10 dataset. Through investigation 
of the performance of key components, the HSD provided 
the greatest contribution to the system, which validates the 
value of adding an efficient harmonic analysis model for 
improving significantly the performance of the MPE system. 
Furthermore, adding note tracking can further improve the 
efficacy of the MPE system.

However, the proposed MPE system still has much room to 
improve. First, it is worth mentioning that the expectation max-
imization (EM) algorithm has some limitations, especially the 
low convergence speed, sensitive to initial settings and inher-
ent non-convex caused local optimum. As a result, it makes 
PLCA very time consuming, even unsuitable for processing 
large datasets. Therefore, how to better select the initial value 
and speed up the convergence can be a valuable work for future 
investigation. Second, the assumption of knowing the type of 
instruments in the music pieces is often unrealistic in real sce-
narios. Therefore, blind source separation can be integrated in 
our model to tackle this limitation. Third, analysis of the beat 
and chord along with integrated deep-learning models such as 
transformer networks [46] and long-short term memory [47] 
can be considered to further enhance the accuracy of pitch 
estimation. On the other hand, introducing more music per-
ceptions such as ornaments and rhythm into the model will be 
helpful for more precise interpreting of the music pieces. Fur-
thermore, an improved note tracking process can be introduced 
by fusing self-attention [48] and natural language processing 
model [49]. Finally, testing on larger datasets such as MusicNet 
[50] and MAESTRO [51] will be beneficial for more compre-
hensive modelling and validation.
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