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Abstract. In this paper, we introduce a new concept in VIP-STB, a funded pro-

ject through Agri-Tech in China: Newton Network+ (ATCNN), in developing 

feasible solutions towards scaling-up STB from village level to upper level via 

some generic models and systems. There are three tasks in this project, i.e. nor-

malized difference vegetation index (NDVI) estimation, wheat density estimation 

and household-based small farms (HBSF) engagement. In the first task, several 

machine learning models have been used to evaluate the performance of NDVI 

estimation. In the second task, integrated software via Python and Twilio is de-

veloped to improve communication services and engagement for HBSFs, and 

provides technical capabilities. In the third task, crop density/population is pre-

dicted by conventional image processing techniques. The objectives and strategy 

for VIP-STB are described, experimental results on each task are presented, and 

more details on each model that has been implemented are also provided with 

future development guidance. 

Keywords: Precision agriculture, Machine learning, Information fusion. 

1 Introduction 

According to the national statistics announced in Dec 2017, ~25% of the population 

or ~314million people in China are working in the agriculture sector, where less than 

20% is below 35-year old. Among them, over 43% have been educated up to primary 

school level, and only less than 8.5% have achieved the senior high-school level. Within 

these, ~96% are household-based small farms (HBSF). For the aging and poor-educated 

HBSFs, their poverty has been a persistent problem that affects the social and economic 

development of China. 

To tackle this serious problem, the Chinese government has put strategic plans to 

innovate HBSF, where STB is one of the successful examples. In STB, skilled and well-

educated researchers are assigned to villages to identify problems and provide solu-

http://www.stats.gov.cn/tjsj/tjgb/nypcgb/qgnypcgb/201712/t20171215_1563599.html
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tions. By closely monitoring the environmental parameters and crop growing condi-

tions with sensors and smartphones, the production yield has been improved by 90% 

whilst the environmental factors have been reduced by 30-40%.  

Although STB shows a successful model for innovation of HBSF, several critical 

drawbacks have constrained its migration from village level to the county or province 

level as detailed below.   

1) Labour intensive:  manual acquisition of data for monitoring growing conditions 

and estimation of yield is very labour intensive and costly thus economically 

inviable and non-scalable; 

2) Lack of automation: Empirical guidance was adopted followed by estimated 

plant density and yield which seems to be not statistical sound and effective as 

modern HPC and machine learning can offer smart decision-making with negli-

gible extra cost;  

3) Inefficient communications in response to recommendations sent in texts;   

4) Environmental issues and limited sustainability due to uncontrolled waste of wa-

ter and other resources as well as potential land degradation by over-applying 

fertiliser and chemicals.   

Taking STBs in Laoling City and Yangxin County of Shandong Province for a case 

study, we aim to demonstrate feasible solutions to improve the balanced, quality-en-

sured and sustainable innovation of rural areas of China. Some effective techniques and 

systems are used in the project and three contributions are summarized as follows: 

1) Automatic NDVI estimation agricultural digital camera (ADC) from multispec-

tral data acquired from Landsat satellite; 

2) Effective TTS interface is built up to ensure HBSFs understand the recommen-

dations and act timely;  

3) Automation of the process to reduce the labour cost, where estimation from re-

mote sensing data will be derived to replace the labour-intensive manual data 

acquisition from fields which are separately located and can be hard to access 

under severe weather conditions, where image processing techniques will be 

used to estimate crop population density based on readily available datasets; 

The outline of this paper is as follows: Section 2 evaluates the performance of dif-

ferent regression methods for the ADC-NDVI estimation purpose. Section 3 describes 

the implementation of the test-to-speech (TTS) module. Automatic estimation of crop 

density is introduced in Section 4. Finally, some concluding remarks and future work 

are summarized in Section 5. 

2 Estimation of ADC-NDVI from remote sensing data 

As one of the most important index, NDVI is usually used to detect vegetation 

growth status and coverage, etc. Generally, the NDVI value is calculated by TM data 

acquired from remote sense, and we name it as TM-NDVI in this paper. For more ac-

curate statistics, agricultural digital camera (ADC) is used to determine the NDVI 

which is named as ADC-NDVI in the rest of the paper, where several students are 

needed to work for days to serve one particular STB site. However, manual acquisition 
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of data is very labor intensive and costly, which is economically inviable and affect the 

scalability of STB to the upper level. To reduce the labour cost, the estimation from 

remote sensing data will be derived to replace the labour-intensive manual data acqui-

sition from fields which are separately located and can be hard to access under severe 

weather conditions. In this section, we design two experiments to estimate the ADC-

NDVI through TM data. As the TM-NDVI is calculated by NIR and red band which 

are TM3 and TM4, thus, TM3-4 is set as a baseline feature to compare. Five machine 

learning models (i.e. Ridge regression [1], Support vector regression (SVR)[2, 3], Cas-

cade neural network[4], Random forest[5] and Gaussian kernel regression[6, 7]) are 

used in this work to evaluate the prediction performance in terms of RMSE and 𝑟2. The 

reason for choosing these models is because they are all classic models and have good 

capabilities for many regression problems in the real world[8-10]. 

The TM data is acquired from Landsat, and SPAD, LAI and ADC-NDVI data is 

provided by a Chinese partner. There are 110 fields with one ADC-NDVI value and 6 

TM bands data where TM1 is blue band ranging from 0.45-0.52 um, TM2 is green band 

ranging from 0.52-0.60 um, TM3 is red band ranging from 0.62-0.69um, TM4 is near 

infrared ray (NIR) band ranging from 0.76-0.97um, TM5 is middle-infrared band rang-

ing from 1.55-1.75um and TM6 is thermal infrared band ranging from 10.4-12.5um. 

We use 50% data for training and 50% data for testing. The prediction performance is 

evaluated in terms of RMSE and 𝑟2 followed by the standard deviation in the bracket 

which is used to show their stability. 

In the first strategy, TM1-6 multispectral information is used to be training and test-

ing features. From Table 1, it can be seen TM1-6 shows better overall performance than 

TM3-4, which means more spectral information from remote sense is helpful for the 

estimation of ADC-NDVI. The cascade neural network shows the best prediction per-

formance on TM1-6 but it cost much computation source. This is because the initial 

weight of the hidden layer in the neural network is randomly selected, and some ill-

Table 1 Performance evaluation in terms of RMSE and 𝒓𝟐 in strategy 1  

Regressors TM3-4 TM1-6  

 RMSE 𝑟2 RMSE 𝑟2 
Time 

(s) 

Ridge 
0.030 

(±0.0017) 

0.708 

(±0.0465) 

0.028 

(±0.0024) 

0.731 

(±0.0704) 
0.0089 

SVR 
0.106 

(±0.0072) 

0.698 

(±0.0574) 

0.101 

(±0.0129) 

0.720 

(±0.0800) 
3.7471 

Random 

forest 

0.035 

(±0.0021) 

0.596 

(±0.0488) 

0.036 

(±0.0028) 

0.579 

(±0.0479) 
0.1094 

Cascade neu-

ral network 

0.030 

(±0.0027) 

0.702 

(±0.0632) 

0.025 

(±0.0032) 

0.778 

(±0.0636) 
3.1944 

Gaussian 

kernel 

0.031 

(±0.0022) 

0.674 

(±0.0615) 

0.028 

(±0.0019) 

0.726 

(±0.0542) 
0.0371 

Overall 0.046 0.676 0.044 0.705  
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suited initial value will cause the convergence time longer. Ridge regression has the 

lowest computation cost, and the second-best stability and prediction performance. This 

is because ridge regression is mainly used to solve the linear regression problem. Alt-

hough ADC-NDVI and TM-NDVI are derived from different sources, it still has some 

linear connection between each other. In addition, Gaussian kernel regression and SVR 

have similar prediction performance, but the former has the best stability. Random for-

est has the worst performance. As a result, ridge regression and cascade neural network 

can be considered as the top two methods with either best usefulness or efficiency.  
In the second strategy, TM3-4, SPAD and LAI are used to be training and testing 

features. SPAD and LAI are two important parameters of crops, which have been al-

ready given by the Chinese partner. Therefore, how are those parameters and spectral 

data related to ADC-NDVI will be investigated in our experiment. From Table 2Error! 

Reference source not found., the random forest regression still performs the worst. 

For the other four techniques, their performance in strategy 2 is better than that in strat-

egy 1. Gaussian kernel and ridge have just little gap between each other but are still not 

as good as cascade neural network and SVR. The prediction accuracy and stability of 

cascade neural network are better than SVR and the computation time is lower in strat-

egy 2 than that in strategy 1. As a result, cascade neural network works the best in 

strategy 2. However, it relies on the feature selection, which affects its performance and 

computation cost much. 

From the experimental results, some findings are summarized as follows: 

1) LAI and SPAD are more useful than TM 1,2,5,6 for ADC-NDVI estimation.  

2) ADC-NDVI can be potentially predicted through remote sensing data.  

3) Both cascade neural network and ridge are the best two model which either has 

best prediction performance or the most efficient.  

4) With better feature selection, the prediction performance of most regression 

model can be well improved. 

Table 2 Performance evaluation in terms of RMSE and 𝒓𝟐 in strategy 2  

Regressors TM3-4 TM3-4+LAI+SPAD  

 RMSE 𝑟2 RMSE 𝑟2 
Time 

(s) 

Ridge 
0.030 

(±0.0017) 

0.708 

(±0.0465) 

0.028 

(±0.0024) 

0.742 

(±0.0449) 
0.0228 

SVR 
0.106 

(±0.0072) 

0.698 

(±0.0574) 

0.095 

(±0.0129) 

0.764 

(±0.0576) 
3.8931 

Random 

forest 

0.035 

(±0.0021) 

0.596 

(±0.0488) 

0.033 

(±0.0028) 

0.648 

(±0.0241) 
0.1859 

Cascade neu-

ral network 

0.030 

(±0.0027) 

0.702 

(±0.0632) 

0.025 

(±0.0032) 

0.793 

(±0.0355) 
2.4197 

Gaussian 

kernel 

0.031 

(±0.0022) 

0.674 

(±0.0615) 

0.028 

(±0.0019) 

0.737 

(±0.0497) 
0.1508 

Overall 0.046 0.676 0.042 0.735  
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For the future work, instead of using TM1-6, SWIR data (1000-1700nm) can be 

also used for NDVI prediction. Then some novel band selection methods[11, 12] can 

be used to extract the most useful information and help to get more accurate prediction 

results. In addition, some novel deep learning methods such as segmented auto en-

coder[13] and deep neural network[14] can be also used to improve the prediction per-

formance.  

3 Text to speech module for HBSFs engagement 

This section will present a TTS module which can send a voice call message to 

farmers and remind them to finish the farming task(s). It is very important since each 

type of crop has different growth condition, irrigation and cultivation strategies. Wrong 

cultivation strategies or wrong irrigation time may affect the yield of the crops. Alt-

hough smartphones are recommended as the best way to communicate with HBSFs to 

provide them crop conditions and suggested operations, these may not be fulfilled as 

50%  HBSFs failed to receive the text message or to respond accordingly. Also, it is 

found 57% HBSfs have no smartphones and only 31% using social media such as 

WeChat, due to the aging and poorly-educated background and limited income. This 

leads to a communication barrier where effective solutions are needed, simply because 

a large portion of them cannot read or understand the instructions in texts. Therefore, it 

is necessary to develop a TTS module to help those farmers make the right move. 

Fig. 1 shows the concept of the TTS module. Twilio is an open PaaS (platform as a 

service) platform which focuses on communication services and provides technical ca-

pabilities. It is a well-known and leading cloud computing communication company in 

the world, which has more than 50 million registered develops and three billion market 

cap. Twilio packages the complex underlying communication function into API which 

allows software developers to programmatically make the function of phone calls, mes-

saging and VoIP (voice on internet protocol) on any web, desktop and mobile applica-

tions. In another word, any function can be achieved by a few lines of code. Although 

the Twilio service is not free, the price is still very cheap. It uses pay-as-you-go model 

and the price of voice and message is $0.0218/min and $0.028/min, respectively. In 

addition, it has not only web platform, but also mobile Twilio Client which can be used 

to Android and iphone platform. It means the voice and messaging functions can be 

also added into any mobile app, which benefits the users a lot. In the future, we can also 

develop a special TTS app for HBSFs.  

Due to too many advantages, we employ the Twilio’s voice and messaging func-

tions and build a basic interactive GUI (Fig. 2) in Python to call its functions. Once the 

 
Fig. 1. Concept of TTS module. 
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farmer’s phone number and command are input, the farmer’s phone will receive a voice 

call. If the farmer doesn’t hear the voice call clearly, he can also call back to the server 

and rehear it. The workflow of the TTS module involves the following steps:  

1) Input message 

2) Encode message to be used in a URL and create a XML file 

3) Return XML file to Twilio cloud server 

4) Transfer the XML file to a MP3 file 

5) Call from Twilio’s number to target’s number and play the MP3. 

4 Automatic estimation of crop density/population from images 

In this section, a threshold-based segmentation method is introduced to calculate 

the crop density (d) in an image. With the growth of the crops, the density of crops, as 

a key factor of the final yield, is increasing as well. Therefore, the precise calculation 

of the crop density is very helpful for yield prediction. However, the existing challenge 

is most official agricultural data is acquired from the satellite and the resolution of those 

image data is very low, which leads to density calculation difficult. 

Although we don’t have the satellite data, we simulate the low-resolution condition 

by rescaling the image data acquired from some Chinese field (Fig. 3). Leaf detection 

in this work is performed by color discrimination. Unlike the traditional Red-Green-

Blue (RGB) color space, the Hue-Saturation-Value (HSV) approach involves para-

metrization including not only true color (hue) but also color depth (saturation) and 

color darkness (value), as can be seen in Fig. 4. As a result, the HSV color space is 

 
Fig. 2. Basic GUI for TTS 

 

  

Fig. 3. Manual data acquisition for crop density estimation. 
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much more suited for addressing real-world environments consisting of light reflec-

tions, shadows and darkened regions etc. Therefore, the real-time image processing 

workflow involves the following steps (Fig. 4): (i) transformation from RGB image to 

HSV image, (ii) binalization of HSV image, by means of applying the selected HSV 

color range thresholds, and (iii) posterior treatment of the binary image, including size 

filtering and morphologies, to avoid the detection of unrelated pixels. Finally, the crop 

density (D) is calculated by the ratio of foreground pixels (𝐹𝑝) and whole pixels (𝑊𝑝) 

in the segmented result.  

Due to the color of crop leaf is mostly green include light and dark green. The se-

lected color range thresholds of H, S and V is usually defined by 𝐻 ∈ [35°, 99°], 𝑆 ∈
[43,255], 𝑉 ∈ [46,255], respectively. With reducing the resolution of the image, the 

bit per pixel (bpp) is also getting lower and lower. In the experiment, we also notice 

that the density value will become larger when the resolution of the image decreases. 

To avoid too much variate, we introduce a penalty value 𝛾 so that the final density value 

(Eq.1) can keep constant under different image scale.  

𝐷 =
𝐹𝑝

𝑊𝑝

−  𝛾 (1) 

The penalty value 𝛾 is estimated by ridge regression which is expressed in Eq.2: 

𝛾 = (𝑋𝑇𝑋 + λ𝐼)−1𝑋𝑇𝑦 (2) 

where 𝑋  is the scale rate ranging from 1 to 100 with 1 interval, y = 𝐹𝑝 ∗ 𝑊𝑝
−1 −

𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ, λ = 0.001. 

From Table 3, we can see the density value under different scale is very close to the 

that of the ground-truth, and the MAE is 0.02. However, due to limited sample, the 

performance of this model needs to further validate on more samples in the future. To 

further improve the segmentation method, saliency detection[15], image segmenta-

tion[16] and deep learning method[17] can be employed to get better segmentation per-

formance and also get more accurate density/population estimation.  

 

 

Fig. 4. Workflow of leaf area calculation method. 
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5 Conclusion  

In this paper, by introducing data fusion and AI-driven machine learning techniques, 

three solutions are derived towards three different challenges of Chinese agriculture. 

The performance still has many rooms to improve, but the STB programme for eco-

nomic growth in precision agriculture is scaled up with such concepts, especially in 

promoting the largest and most vulnerable groups, i.e. HBSFs, and has a significant 

impact to improve the balanced, quality-ensured and sustainable innovation of rural 

areas of China. Our future work mainly focuses on the improvement of current three 

solutions which are summarised as follows:  

1) Fusion of multi-modal and multi-source data for accurate modeling and predic-

tion including field measurements and remotely sensed. 

2) AI-driven method for more accurate estimation of crop population. 

3) Improvement of TTS module where a more interactive function will be included 

for more effective communication with HBSFs to fulfill the recommended oper-

ations.  

Table 3 Visualization of low resolution image and density value under different 

scale. 

Image Legend 𝑋 (%) Bpp 𝐷 (%) 

 

50% scale 

Ground-truth 

100 
17.03 45.26 

50 14.94 45.29 

10 7.17 45.39 

 

8% scale 

9 6.71 45.12 

8 6.21 45.40 

7 5.68 45.11 

 

5% scale 

6 5.41 45.43 

5 4.81 45.08 

4 4.23 45.46 

 

1% scale 

3 3.81 45.02 

2 3 45.60 

1 1.34 44.75 
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