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Abstract

There is a growing need for analysing network data due to their prevalence in applications

arising from various scientific fields. A broad literature has been developed for the

statistical analysis of networks as single observations, while the formulation of statistical

frameworks for modelling multiple network data has only recently been considered by

researchers. This thesis contributes to the statistical analysis of multiple network data

sets, where now each observation in the data comprises a network rather than a scalar

quantity.

Our first contribution is the development of a Bayesian model-based approach for

clustering multiple network data with respect to similarities detected in the connectivity

patterns among the networks’ nodes. Our model-based approach allows us to interpret

the clusters with respect to a parameterisation, notably, through a network represen-

tative for each cluster. Our framework can also be formulated to detect networks in a

population that are different from a majority group of networks. Extensive simulation

studies show our model performs well in both clustering multiple network data and in-

ferring the model parameters. We further apply our model on two real-world multiple

network data sets resulting from the fields of Computing (Human Tracking Systems)

and Neuroscience.

Our second contribution is twofold. First, we introduce a new network distance

metric that measures dissimilarities between networks with respect to their cycles, mo-

tivated by an ecological application. Second, we propose a new Markov Chain Monte

Carlo (MCMC) scheme for inferring the parameters of the intractable Spherical Network

Family (SNF) model for multiple network data. Specifically, we introduce an Importance

Sampling (IS) step within a Metropolis-Hastings (MH) algorithm that allows the approx-

imation of the intractable normalising constant of the SNF model within the MH ratio.

We explore the behaviour of the newly proposed distance metric and the performance of
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our MCMC scheme through simulation studies, and apply our algorithm on a real-world

ecological application.
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Chapter 1

Introduction

Complex relationships in a system can often be described by a network representation.

The advantage of describing such relationships through networks is the ability to exploit

the structure of the network to reveal information about the system it describes. Data

arising from various scientific fields exhibit such complex relationships, giving rise to di-

verse research questions. For example, neuroscientists are often interested in discovering

abnormal connectivity patterns among brain regions of individuals suffering from a psy-

chiatric disorder (Nelson et al. [2017], Lynall et al. [2010]), while Biologists are interested

in uncovering relationships among a set of genes or proteins (Zhu et al. [2007]). The

statistical analysis of a network observation involves the formulation of models that best

describe the underlying mechanism that generates its edges. In this respect, different

network models capture different types of information about a network’s structure.

The advancement of the technological means that measure relationships among a

set of objects has become prominent in recent years. This has led to the emergence of

network populations resulting from multiple measurements taken over a set of nodes.

An example arising from computational neuroscience, is the collection of networks rep-

resenting interconnections of brain regions for a group of individuals (Zuo et al. [2014]).

Thus, there is a growing need for analysing such complex data sets, in which the unit of

observation is now a network rather than a scalar. The statistical analysis of multiple

network data sets will be the key objective of the work presented in this thesis. An

extensive review of the frameworks developed for modelling multiple network data is

provided in Chapter 2.

In Section 1.1 we present the network notation that will be used through the remain-
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der of this thesis, and in Section 1.2 we provide an overview of the statistical models

formulated for the analysis of a network as a single observation. Finally, in Section 1.3

we outline the content and contributions for each Chapter of this thesis.

1.1 Notation

A network can be represented as a graph G = (V,E), where V = {1, . . . , n} represents

the set of n nodes and E represents the set of observed edges in G, with E ∈ En and

En = {(i, j)|i, j ∈ V }. Edges characterise different types of networks as follows:

• Undirected networks that have unordered edges such that (i, j) ≡ (j, i).

• Directed networks that have ordered edges, such that (i, j) is distinct to (j, i).

• Weighted networks that have weights wij ∈ R+ assigned to their edges.

• Simple networks that have unique edges (i, j) ∈ E and no self-edges (i, i) /∈ E.

The analysis performed in this thesis focuses on undirected, simple graphs for the sake

of simplicity. However, extensions to the directed case are straightforward. For an

undirected network with n nodes, the number of possible edges is equal to |En| =
(
n
2

)
.

A common way to mathematically represent a network is through an n×n adjacency

matrix AG , with the AG(i, j) entry of the matrix denoting the edge state of the (i, j) pair

of nodes. Thence, the (i, j)th element of the adjacency matrix for a graph with binary

edges is,

AG(i, j) =


1, if an edge occurs between nodes i and j,

0, otherwise.

The adjacency matrix of an undirected, simple graph is symmetric with AG(i, j) =

AG(j, i) and AG(i, i) = 0, for i, j ∈ {1, . . . , n}.

By G1, . . . ,GN we represent a population of N graphs, with corresponding adjacency

matrices AG1 , . . . , AGN . In this thesis, we assume that the networks in the population

G1, . . . ,GN are labelled, exchangeable and share the same set of n nodes. We represent

the space of graphs with n nodes by {G|n|}, such that {G|n|} = {G = (V,E) : |V | = n}.

Thus the size of the space of undirected, simple graphs is |{G|n|}| = 2(n2).
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A way to quantify similarities among networks is through the use of distance metrics

(Donnat and Holmes [2018]), which we denote by dG(·, ·). Two well-known distance

metrics that we regularly discuss in this thesis are the following:

1. The Hamming distance, that counts the not in common edges and non-edges be-

tween two graphs Gk and Gl for k, l ∈ {1, . . . , N}, defined as:

dH(Gk,Gl) =
∑
i,j

|AGk(i, j)−AGl(i, j)|
n · (n− 1)

2. The Jaccard distance, that counts the not in common edges and non-edges between

two graphs, accounting for the number of edges present in the graphs under com-

parison, using a normalisation with respect to the union of their edges, defined

as:

dJ(Gk,Gl) =

∑
i,j |AGk(i, j)−AGl(i, j)|∑

i,j max(AGk(i, j), AGl(i, j))

Various network properties in the literature allow us to evaluate diverse character-

istics of a network. In this section we focus on the most popular network properties in

the literature, which are also most relevant to the rest of this thesis. First, a well-known

network property is the density of a graph, which is calculated by the ratio of the ob-

served edges in the graph
∑

i,j AG(i, j) to the number of possible edges
(
n
2

)
. Second, a

fundamental property for undirected graphs is their degree distribution. The degree of

node i expresses the number of nodes adjacent to node i, thus Degi =
∑

i 6=j AG(i, j).

In this regard, the probability of a node in the graph to have degree k is equal to the

proportion of nodes in the graph with degree k, pk = {i∈V |Degi=k}
n , representing the

degree distribution of the graph. Third, another useful network property is transitivity.

Connections in a graph are called transitive, if a connection from node i to node j and

from node j to node k, implies also a connection from node i to node k. In this respect,

if there is a connection between nodes i and k we say that nodes i, j and k form a

triangle, while if there is no edge between i and k we say that nodes i, j and k form a

connected triple. Thence, the transitivity of a graph is calculated by the the number of

triangles in the graph over the number of connected triples.

As shown by Maugis et al. [2017], two network features that are dominant with

respect to the information they reveal about the networks’ topology are trees and cycles.
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Figure 1.1: Example of tree net-
work.

1

2

3

4 5

6

Figure 1.2: Example of graph with
cycles {1− 2− 6− 1} and {1− 3−
5− 4− 1}.

A tree is a connected, undirected graph with no closed-loops. By the term connected

we describe a graph in which every node is accessible through a path from every other

node. Trees are often described by a root node from which edges to other nodes originate.

The nodes branching down from the root node are called leaves. An example of such a

structure is illustrated in Figure 1.1. Trees are a network motif of interest in the network

literature. Another feature of interest about the structure of a network relevant to our

study, are the cycles. A cycle in an undirected network is a sequence of connected nodes

in which the only repeated nodes are the first and the last node in the sequence. An

illustrative example of an undirected graph with two cycles is presented in Figure 1.2.

We note here that {1− 2− 6− 1} and {1− 6− 2− 1} are considered as the same cycle.

1.2 Statistical models for networks

Networks have caught the interest of statisticians due to the complex structure they can

exhibit. The statistical analysis of networks aims to describe the structure of a network

by modelling the mechanism that generates a network’s edges. Under this framework,

there are various approaches that have been developed to model single network observa-

tions, which we briefly review in this section. For a more detailed review refer to Yang

[2013], Salter-Townshend et al. [2012], Goldenberg et al. [2010] and Hand [2010].

In the simplest set up, a network is modelled under the assumption that edges can

occur with the same probability. This model is known as the Erdös-Rényi (ER) model

(Erdös and Rényi [1959], Gilbert [1959]). To simulate an undirected network with n

nodes under the ER model, we need to specify a probability p of observing an edge

which is common across all
(
n
2

)
possible edges of the graph, and generate the edges of
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the network as

AG(i, j) ∼ Bern(p)

for (i, j) ∈ {1, . . . , n|i < j}. However, real networks usually exhibit more complex

structures than the structure dictated by the ER model. Specifically, the nodes of

the graphs generated under the ER model tend to have the same number of neighbours,

however in most real-world applications, networks have few nodes with a large number of

neighbours while the rest of the nodes have a substantially smaller number of neighbours.

A model that attempts to capture this characteristic of real-world networks, is the

preferential attachment model (Barabási and Albert [1999]). Under the preferential

attachment model, we assume an initial graph with n0 nodes, and gradually add new

nodes to that graph. Each new node added has a probability of connecting to one of

the already existing nodes i = 1, . . . , n0 that depends on the degree of node i. In this

regard, nodes with higher degrees tend to gather more and more edges.

Another model that accounts for the degree of the network’s nodes is the p1 model.

Under the p1 model the probability of observing an edge between two nodes depends on

some unknown node-specific parameters that are assumed to be constant. An extension

to this model is the p2 model which assumes that the node-specific parameters are

random variables instead of constants, thus they are assumed to be drawn from some

underlying distribution, and the parameters of that distribution are estimated.

A generalisation of the p1 and p2 models, is the Exponential Random Graph model

(ERGM), which is a model from the the exponential family. The probability of observing

a graph G under the ERGM, depends on network summary statistics u(G), which are

specified according to the information the analyst wants to capture. Common choices

of u(G) are the number of edges and the number of triangles in a graph. Thus the

probability of observing G can be written as

P (G) = exp(θ′u(G)− ψ(θ))

where θ is the model parameter and ψ(θ) is the normalising constant.

A popular network model that reveals information about the communities formed by

the network’s nodes, is the Stochastic Block Model (SBM). The SBM assumes that each

node belongs in some unobserved block k ∈ {1, . . . ,K}, and the probability of observing
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an edge between two nodes depends on the block membership of the nodes denoted by

{bi}ni=1. Thus, Θ denotes the K×K symmetric probability matrix with elements θkl, for

k, l ∈ {1 . . . ,K}, representing the probability of observing an edge between two nodes

belonging in blocks k and l respectively. The connection between nodes i, j under the

SBM is modelled as

AG(i, j) ∼ Bern(θbibj ).

The classic SBM assumes that the number of communities K are known and pre-

specified. However, in the studies of Mørup et al. [2011], Tang and Yang [2011] and

Schmidt and Morup [2013] the number of blocks K is treated as an unknown variable

and is estimated along with the other parameters. An important extension to the classic

SBM has been proposed by Karrer and Newman [2011], namely the degree-corrected

SBM, that accounts for the heterogeneity of the degree of the nodes which is a commonly

observed feature of real-world networks, as previously discussed.

Another important class of network models is the class of Latent Space Models which

assume that the nodes of a network lie in an unobserved space and the probability of

observing an edge between two nodes depends on the latent positions of the nodes.

Hoff et al. [2002] were the first to introduce the latent space model assuming that each

node i has a latent position zi in space, and the distance between two nodes in the

space determines the probability of observing an edge connecting them. Thence, the

connection between nodes i, j is modelled as

AG(i, j) ∼ Bern(pij)

pij = P (AG(i, j) = 1) =
1

1 + e−ηij
, with

ηij = α+ β′xij − |zi − zj |

where |zi− zj | denotes the Euclidean distance between zi and zj , and xij represents the

observed covariates characterising the dyad.

An extension of the latent space model presented in Hoff et al. [2002] is the Random

Dot Product graph, which was first introduced by Nickel [2008]. The random dot product

graph assumes that the probability of observing an edge between nodes i, j depends on

the dot product of the vectors zi and zj . This implies that the vectors of nodes that
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have the same direction in the space are more likely to be connected. Generalisations of

the Random dot product graph have been proposed by Young and Scheinerman [2007]

and Ng and Murphy [2019].

Another network generative model that expresses the limit of a sequence of finite

graphs is the graphon (Lovász [2012], Borgs et al. [2008]). A graphon is a symmetric,

measurable function W : [0, 1]2 → [0, 1] representing the probability of observing an

edge. Thus, to generate a graph with n nodes using a Graphon, we first need to sample

n uniform random variables xi ∼ U([0, 1]), for i ∈ {1, . . . , n}, corresponding to each node

of the graph, and generate an edge between nodes i, j as

AG(i, j) ∼ Bern(W (xi, xj)).

Eldridge et al. [2016] perform community detection in graphs generated under a graphon

model, while Avella-Medina et al. [2018] develop centrality measures to identify impor-

tant nodes in graphs which are assumed to be partially observed, and they are generated

by a graphon.

1.3 Thesis outline and contributions

This thesis introduces two main contributions to the network literature, each presented

in Chapters 3 and 4 respectively. Both contributions involve the statistical analysis

of populations of networks. In this section, we present a summary of the content and

contributions of each Chapter in this thesis.

In Chapter 2, we provide an analytic review of the diverse frameworks developed

in the literature to model the underlying mechanism that generates a population of

networks. Notably, we consider three distinct modelling frameworks, namely the la-

tent space models, the distance-based models and the measurement error models. For

each study presented, we discuss the key idea, the modelling and inferential framework

developed and the potential limitations.

In Chapter 3, we introduce a model-based approach for clustering networks in a pop-

ulation with respect to similarities detected in the connectivity patterns of the networks’

nodes, and interpreting the clusters with respect to our model parameterisation. Despite

the growing research interest on modelling populations of networks, most studies in the
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literature do not account for the heterogeneity that can exist in a network population,

while the approaches that aim to identify variations between network data entail key

limitations. To address these limitations, we extend the work by Le et al. [2018] through

the formulation of a mixture of measurement error models for clustering networks, as-

suming that networks lying within each cluster are noisy realisations of a true underlying

cluster representative. We adopt a Bayesian modelling approach that allows us to simul-

taneously infer the cluster membership of the networks, together with model parameters

characterising the distribution of the networks within each cluster as well as those that

characterise the structure of the underlying cluster specific representatives. We assess

the performance of our algorithm in clustering network populations, and inferring the

model parameters through extensive simulation studies. In addition, our framework is

flexible enough to answer a diverse range of applied questions with respect to the hetero-

geneity in a network population. These include being able to detect clusters of networks

as well as inferring key different features between clusters through comparisons between

the underlying representatives. In addition, when interest is in identifying observations

that do not follow the distribution of the majority of the network data, the framework

can also be formulated to detect outlying network observations. The approach will be

illustrated through two different applied examples, one involving monitoring movement

of people across a University Campus and another measuring individuals’ connectivity

patterns across different regions of the brain.

In Chapter 4, our contribution is twofold. First, we introduce an Importance Sam-

pling (IS) step within a Markov Chain Monte Carlo (MCMC) algorithm, that allows us

to make inferences for an intractable distribution for network populations, namely the

Spherical Network Family of models introduced by Lunagómez et al. [2021]. Second, we

develop a new network distance metric that quantifies similarities among networks with

respect to their cycles. As a motivating example we consider a collection of networks

representing aggressive interactions among species of fish, for which we are interested

in identifying competitive behaviours among them. From an ecological perspective, the

formation of cycles describes a type of competitive behaviour. To capture information

with regard to cycles in networks, we develop a new network distance metric that mea-

sures dissimilarities between networks with respect to their cycles. One way to make

inference for the fish network data is to implement the SNF model. The SNF model
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is a distance-based model that allows the statistician to specify a distance metric of

interest to make inferences for network populations. Despite the flexibility that it allows

with respect to the distance metric specification, the SNF model typically involves an

intractable normalising constant. Lunagómez et al. [2021] implemented an Auxiliary

Variable technique (Møller et al. [2006]) to overcome the intractability issue, however,

this approach provides poor mixing results for some distance metric specifications such

as the new metric we propose. Our proposed IS step within the MCMC algorithm allows

us to overcome the mixing issue. We evaluate the performance of our proposed MCMC

scheme through simulation studies and explore the behaviour of the new distance metric

through synthetic and real data experiments.

In Chapter 5, we discuss potential directions for future work involving the develop-

ment of approaches for (i) modelling network populations under the assumption that

the network observations are dependent, and (ii) performing anomaly detection for the

applications presented in this thesis. We conclude with some general remarks on future

work directions for the analysis of networks.
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Chapter 2

Review of Multiple Network Data

Modelling

In the network literature there is a range of diverse studies focusing on the analysis of

networks as single observations. The latent space approaches and measurement error

models are two well-established frameworks in the network literature for modelling sin-

gle network observations. Nonetheless, it is only until recently that researchers started

focusing on modelling the mechanism that generates network populations. The research

questions arising within the context of modelling multiple network data are the follow-

ing. Would a latent space representation of the networks’ nodes be useful to explain

the mechanism that generates a network population? Would the assumption of a mea-

surement error process be meaningful in the context of modelling network populations?

These are research questions that have recently been considered in the literature for

modelling multiple network data. On the other hand, a natural way to explain the vari-

ability of networks is through the use of distance metrics. This gives rise to another

newly considered framework for modelling network populations based on the notion of

a mean network representing a network population, with respect to a distance metric.

In this Chapter we review the studies developed for modelling network populations,

under three frameworks. First, the latent space models reviewed in Section 2.1. Second,

the distance-based models reviewed in Section 2.2, and third, the measurement error

models reviewed in Section 2.3.
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2.1 Latent space models for multiple network data

The concept of modelling a single network observation, assuming that the occurrence

of an edge between two nodes depends on the positions of the nodes in a latent space,

has been extensively considered in the network literature (Hoff et al. [2002], Young and

Scheinerman [2007]). Recent studies (Gollini and Murphy [2016], Wang et al. [2017],

Nielsen and Witten [2018], Arroyo et al. [2019], Durante et al. [2017]) on modelling

multiple network data have borrowed this idea to build models for populations of net-

works with aligned vertex sets, under the assumption that the nodes lie in a common,

unobserved subspace.

Hoff et al. [2002] introduce the Latent Space Model (LSM) for modelling single

network observations, assuming that the probability of observing an edge between two

nodes depends on the Euclidean distance between the nodes in a latent space. Building

on this idea, Gollini and Murphy [2016] model multiple network data which share the

same vertex set, assuming that each network observation can be represented by an LSM,

while the latent positions of the nodes are unique across all networks. Thus, they obtain

the Latent Space Joint Model (LSJM) which has the following form

P (AG1 , · · · , AGN |Z,α1, · · · , αN ) =
N∏
k=1

n∏
i 6=j

exp(αk − |zi − zj |2)AGk (i,j)

1 + exp(αk − |zi − zj |2)
,

where Z is an n×D matrix of the latent positions of the nodes in a D-dimensional space

and α is an N-length vector corresponding to the parameter of the kth LSM fitted on

the kth network observation.

To infer the nodes’ latent positions and the parameters of the LSJM, they implement

an Expectation-Maximisation (EM) algorithm using Variational inference, as opposed

to Hoff et al. [2002] who apply a Bayesian approach. In the expectation and maximisa-

tion steps of the Variational EM algorithm, instead of maximising the log likelihood of

the data, they minimise the Kullback-Leibler divergence between the true posterior of

their model and the variational posterior. Variational inference provides an alternative

to MCMC approaches that can naturally lead to stochastic optimisation, thus signifi-

cantly reducing the computational cost of implementing an MCMC scheme (Gopalan

and Blei [2013]). With this approach, Gollini and Murphy [2016] tackle the problem of

the computationally intensive task of sampling from the posterior through MCMC.
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Under the assumption that the nodes of a network lie in an unobserved space, another

approach for modelling the probabilistic mechanism that generates an edge between two

nodes in a network, is proposed by Young and Scheinerman [2007] who introduce the

Random Dot Product Graph (RDGP). Under the RDPG model, each vertex is assigned

a vector in a predefined space, and the probability of an edge to occur between two

nodes depends on the dot product of the vectors associated to the two nodes. Inspired

by this idea, Durante et al. [2017], Wang et al. [2017] and Nielsen and Witten [2018]

build models for multiple network data to infer their distribution.

Durante et al. [2017] model the unknown distribution of a network population

AG1 , · · · , AGN , assuming that each observed network is a realisation of a random vari-

able A. Specifically, they consider the case of undirected networks, thus instead of the

adjacency matrix representation they use a vectorised version of the lower triangular

elements of the adjacency matrix of A, denoted as L(A). Under this specification, the

goal is to infer the probability mass function of the random variable L(A).

To achieve this goal, the authors assume that the distribution of L(A) is a mixture

of Bernoulli distributions, with probabilities that vary among the mixture components.

Notably, the probability mass function of L(A) is:

P (L(A) = α) =
H∑
h=1

vh

n·(n−1)/2∏
l=1

(π
(h)
l )αl(1− π(h)

l )1−αl , (2.1)

where α is a realisation of the random variable L(A), vh is the probability of the re-

alisation α to be assigned to the h ∈ {1, · · · , H} mixture component, and π
(h)
l is the

probability of observing an edge between the lth pair of nodes in mixture component

h ∈ {1, · · · , H}.

The component specific probability of observing an edge between two nodes depends

on a latent space configuration of the networks’ nodes in the corresponding mixture

component, through the formulation of the dot product of the vectors associated to that

pair of nodes,

π(h) = {1 + exp(−Z −D(h))}−1, where D(h) = L(X(h)Λ(h)X(h)T ),

with X(h) representing the n × R matrix of the R latent coordinates for the n nodes,
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Λ(h) denoting the R × R diagonal matrix with diagonal elements that determine the

importance of each R dimension, and Z denoting a similarity vector of the edges shared

by all mixture components h ∈ {1, · · · , H}.

To infer the parameters v,π(h) of the model, the authors adapt a non-parametric

Bayesian approach by implementing a Gibbs sampler algorithm that draws values for

v,π(h) from their full conditional posteriors. For each posterior sample of v and π(h),

the authors simulate a large number of networks from model (2.1), and calculate for each

network a summary measure of interest (e.g. density, degree mean, triangle frequency).

Hence, they can also infer the distribution and the expectation of different network

summary measures with respect to the distribution of the network data.

The model presented by Durante et al. [2017] can potentially address the problem

of clustering network populations. However, a limitation of this formulation would be

that each mixture component would be characterised by a specific network property

and topological structure. This can be quite restrictive as under this construction only

specific network characteristics would be potentially captured.

Wang et al. [2017] adapt a similar formulation to that of Durante et al. [2017], with

some fundamental differences nevertheless. The ultimate idea behind the model of Wang

et al. [2017] is still based on the RDPG model, however they do not assume a mixture

model for the distribution of the network data. Instead, they consider a generalisation of

the RDPG model as seen in Young and Scheinerman [2007], namely the Multiple Random

Eigen Graphs (MREG) model. Under the MREG model, the network population has

a common vertex set and the vertices share a common embedding space. Thence the

probability of observing the adjacency matrix AGk of graph Gk is described as follows:

P (AGk |λk, h1, · · · , hD) =
∏
i<j

(

D∑
d=1

λk(d)hd(i)hd(j))
AGk (i,j)(1−

D∑
d=1

λk(d)hd(i)hd(j))
1−AGk (i,j),

where λk ∈ RD is the projection of AGk into the common subspace for each graph Gk,

and {hd}Dd=1 are shared across graphs k = 1, · · · , N .

They estimate the parameters of the MREG model by implementing an alternating

descent algorithm which optimises the D-dimensional Joint Embedding of graphs given

by:
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(λ̂1, · · · , λ̂N , ĥ1, · · · , ĥD) = argminλK ,‖hd‖=1

N∑
k=1

‖AGk −
D∑
d=1

λk(d)hdh
T
d ‖2F ,

with ‖·‖F denoting the Frobenius norm.

Their algorithm solves a one-dimensional embedding problem at each iteration, which

makes the optimisation task easier. However, this formulation does not guarantee the

orthogonality of the vectors of each of the D dimensions. Nielsen and Witten [2018] tackle

this limitation of the MREG model by presenting the Multiple Random Dot Product

Graph (multi-RDPG) model which is a direct extension of the RDPG, and implement

an algorithm which estimates all D dimensions concurrently in each iteration.

Specifically, the probability of observing an edge between two nodes in graph Gk

under the multi-RDPG model is:

P (AGk(i, j) = 1) = f(W k(i, j)), W k = UΛkUT , k = 1, · · · , N

The key differences between the multi-RDPG model and the MREG model presented

in Wang et al. [2017] are:

• For the multi-RDPG, the columns of the n × D matrix U are constrained to be

orthogonal, and the D ×D diagonal matrices Λ1, · · · ,ΛN are constrained to have

non-negative entries. Thus, the n×D matrix W k is positive semi-definite, which

allows the interpretation of its rows as the coordinates of the n nodes in a D-

dimensional space.

• For N=1, the multi-RDPG model breaks down into the RDPG model for a single

network observation.

Nielsen and Witten [2018] fit the multi-RDPG model by solving the following opti-

misation problem, for a population of N networks:

min
U∈Rn×D,UTU=I,Λ1,··· ,ΛN∈∆D

+

N∑
k=1

‖AGk,+ − UΛkUT ‖2F , (2.2)

However, the optimisation problem (2.2) does not have a closed-form solution, thus

[Nielsen and Witten, 2018] implement an alternating minimisation approach which al-
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ternates between updating U and Λ1, · · · ,ΛN , at each iteration. The key difference to

the algorithm applied in Wang et al. [2017], is that Nielsen and Witten [2018] estimate

simultaneously all D dimensions of matrix U at each iteration.

In a similar set up, Arroyo et al. [2019] model a population of networks which share

the same set of nodes, assuming that the nodes lie in a common subspace for all networks,

while allowing heterogeneity to exist within and across the networks. The probability of

observing the AGk adjacency matrix for the kth network under the Common Subspace

Independent Edge graphs (COSIE) model is:

P (AGk |V,Rk) =
∏
i<j

(V (i)TRkV (j))AGk (i,j)(1− V (i)TRkV (j))1−AGk (i,j),

where V represents the nodes’ common subspace and Rk is the score matrix of network

k, depicting the heterogeneity among the k = {1, · · · , N} networks.

To estimate the common subspace V and the score matrices {Rk}Nk=1, the authors

apply a Multiple Adjacency Spectral Embedding (MASE) algorithm. The first step

of the MASE algorithm is to obtain the Adjacency Spectral Embedding (ASE) of the

adjacency matrix AGk by decomposing AGk , which gives an estimator for Vk for k =

{1, · · · , N}. Finally, they infer the V common subspace and the score matrices {Rk}Nk=1,

by concatenating the estimators V̂k and applying a Singular Value Decomposition.

In the studies of Arroyo et al. [2019] and Wang et al. [2017], the authors also test the

performance of their models in the inference task of graph classification. However, both

studies use non model-based approaches for inferring underlying groups of networks. On

the one hand, Wang et al. [2017] use a 1-nearest neighbour classifier, given the estimators

they obtain for the loadings {λ̂i}Ni=1. On the other hand, Arroyo et al. [2019] obtain the

Frobenious distance of the estimated parameters of their model, and conduct a Multi

Dimensional Scaling (MDS) to infer underlying groups of networks. In addition, their

approach is constrained in detecting similar community structures among networks.

In Chapter 3, we provide a model-based framework for clustering multiple network

data, that has the advantage of inferring the clusters with respect to the structure of

the networks, as well as interpreting each cluster via a parametrisation.
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2.2 Modelling multiple network data using metrics

Distance functions are used to measure the distance between two elements in a metric

space. Such elements may not only be real numbers, but also vectors or matrices.

Networks fall into the category of elements that can be described via a matrix, namely the

adjacency matrix which contains information about the interconnections of the graph’s

nodes.

In the network literature, distance metrics have been used to measure similarities

among networks, capturing either local (structural distances) or global (spectral dis-

tances) characteristics of the networks (Donnat and Holmes [2018]). Specifically, spec-

tral distances assess the overall structure of the graphs using some representation of the

adjacency matrix of the graph. One approach to modelling multiple network data, relies

on the notion of an average network that represents a network population with respect

to a specified distance metric.

Ginestet et al. [2017] build their theoretical framework on the idea of a representa-

tive network, motivated by a population of network data that represents measurements

of individuals’ brain connections through neuroimaging. Notably, the authors seek to

investigate whether there are brain connectivity differences between populations of net-

works that are grouped by the individuals’ sexes or ages, considering global network

characteristics.

To fulfil this aim, they obtain analogues of the one and two-sample t-tests for network

data, under the assumption of an average network that summarises the information

contained in a network population. To obtain an average network, they consider the

notion of the sample Fréchet mean which can be defined as follows:

µ̂n(Y ) := argminx∈X
1

n

n∑
i=1

ρ2(x, Yi),

for a (X , ρ) metric space and for any sample of realisations denoted by Y := {Y1, · · · , Yn}.

Thence, to exploit the notion of the Fréchet mean, they first need to identify a

metric space where the network realisations lie, as well as a distance function ρ with

respect to that space. They define a metric space for networks utilising the Laplacian

representation of the networks, which can be defined as LGk = DGk − AGk , where AGk

denotes the n × n adjacency matrix of graph Gk and DGk denotes a diagonal matrix
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with diagonal entries the vertex degrees. Thus, they obtain a space of Laplacians, with

corresponding distance function ρ the Frobenius distance between the Laplacians, which

takes the form

ρ(LGk , LGm) :=
n∑

i,j=1

(LGk(i, j)− LGm(i, j))2,

for any pair of the Laplacian matrices LGk , LGm of graphs Gk,Gm. In this regard,

the authors can specify the sample Fréchet mean with respect to the Frobenius distance

function ρ.

Having specified a metric space and a distance function with respect to that space,

they derive an analogue to the central limit theorem for sequences of network data.

This allows the definition of a t-statistic for a one-sample test under the null hypothesis

that the true Fréchet mean is equal to some value Λ0. Thus, under the null hypothesis

H0 : E(L) = Λ0 the test statistic

T1 := N(φ(L̂)− φ(Λ0))
′
Σ̂−1(φ(L̂)− φ(Λ0)),

converges to a χ2-distribution with p :=
(
d
2

)
degrees of freedom, φ(L) denoting the half-

vectorisation of L and Σ̂ := 1/(N − 1)
∑N

i=1(φ(Li)− φ(L̂))(φ(Li)− φ(L̂))
′

denoting the

sample covariance. Respectively, they obtain a Tk statistic to test the null hypothesis

H0 : Λ1 = · · · = Λk, for k independent samples of network populations.

In a similar set up, Kolaczyk et al. [2017] construct a theoretical framework in order

to define the notion of an average network, for a population of unlabelled networks. By

the term unlabelled network, they characterise a network in which each vertex does not

have a unique label. To accomplish this goal, equivalently to Ginestet et al. [2017], they

consider the notion of the sample Fréchet mean and specify a space where unlabelled

graphs lie, as well as a distance function in that space.

To determine a space for unlabelled graphs, they use equivalence classes that relate

the space of labelled graphs to the space of unlabelled graphs. Notably, they consider

the group of permutations Σn of {1, · · · , n} nodes, and obtain the quotient space

Un = Ln/Σn,
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which is the space of unlabelled graphs, with Ln denoting the space of labelled graphs.

They further specify a distance function that measures how close two networks are in

the space of unlabelled networks. Notably, the authors consider the Procrustean distance

which has the form

ρ([~x], [~y]) := minσ1,σ2∈ΣndE(σ1 · ~x, σ2 · ~y),

where [~x], [~y] ∈ Un are the vectorisations of the unlabelled networks and dE(·, ·) is the

Euclidean distance between two elements.

Analogously to Ginestet et al. [2017], they obtain a central limit theorem for the

sample Fréchet mean in the space of unlabelled graphs, which provides the groundwork

for performing statistical inference in that space. Notably, they construct a test statistic

for k independent samples of networks, for testing whether all k samples share the same

true, unknown mean µ, i.e test the hypothesis H0 : φ(µ(1)) = · · · = φ(µ(k)). Under the

null hypothesis they show that

Tk :=

k∑
j=1

nj(φ(µj,nj )− φ(µn))
′
Ξ̂−1(φ(µj,nj )− φ(µn)) −→ χ2

(k−1)D,

where nj denotes the size of the jth sample with n =
∑k

j=1 nj for j ∈ {1, · · · , k}, µj,nj

represents the empirical mean of the jth sample, µn represents the empirical mean of

the whole sample n, and Ξ̂ :=
∑k

j=1 Ξ̂j/nj is a pooled estimate of covariance, with each

Ξ̂j denoting the covariance matrices estimates of each subsample.

In the aforementioned studies, the authors approach the problem of interpreting

a network population by extending classical statistics methodologies (e.g. t-tests), to

datasets where the observational units are networks. However, these approaches intro-

duce computational challenges as the size of the networks and the size of the population

of networks increases, especially due to the estimation of the covariance matrices re-

quired. A more natural modelling approach for multiple network data, that also utilises

the notion of the Fréchet mean, is introduced in the study of Lunagómez et al. [2021]

who adopt a Bayesian perspective to make inferences for network populations. In Sec-

tion 2.2.1, we review the model presented by Lunagómez et al. [2021] which has pivotal

role in the work presented in Chapter 4 of this thesis.
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A fundamental assumption made in all aforementioned studies, is the uniqueness

of the Fréchet mean in a network population, which can be an unrealistic modelling

assumption for many real-world data sets. This constraint does not allow the conception

of the heterogeneity within a network population, which is common especially in data

sets where each observational unit corresponds to an individual.

In the recent work by Arora et al. [2020] the authors investigate the ability of ex-

isting network models to capture the variability in a network population, utilising the

idea of a dissimilarity space with a set of corresponding distance metrics on that space.

Specifically, the authors consider a set of four network generative models (Chung and Lu

[2002], the ERGM by Robins et al. [2007], the dk-random graphs by Orsini et al. [2015],

the ABNG by Arora and Ventresca [2017]), and fit them using a single network observa-

tion from an observed network population. Then, they synthesise a network population

using the fitted generative model, and compare the synthesised network population to

the observed network population. To achieve this comparison, they assume a dissimi-

larity space and place the networks in that space with respect to a set of dissimilarity

measures that capture node based properties of the networks.

The experimental results obtained, show that all of the four network generative mod-

els considered are unable to adequately encode the variability in a network population.

They further investigate that using entropy as a measure for evaluating the variability

in the properties of the networks under comparison. Specifically, they define the edge

existence entropy as,

He(AG(i, j)) = −(p1 log2 p1 + p0 log2 p0),

between nodes i, j with p1 = P (AG(i, j) = 1) and p0 = P (AG(i, j) = 0), which explains

the average uncertainty of edge existence in a network population; and the geodesic

entropy as,

He(δij) = −
∑
d∈∆

pd log|∆| pd,

with δij denoting the hop distance between nodes i, j, pd representing the proportion of

networks in the population with δij = d and ∆ determined empirically.

In their experiments, they evaluate the variability contained in a population of struc-

tural brain networks using the edge existence and geodesic entropies. Their exploration
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verifies their statement that existing network generative models fail to capture the vari-

ability of a network population, and highlight the need of the development of network

models that explicitly account for that variability in the network data.

2.2.1 The Spherical Network Family of Models (SNF)

In this Section, we describe the Spherical Network Family (SNF) of models presented

by Lunagómez et al. [2021], that highly motivated the methods developed in Chapter 4

of this thesis.

Lunagómez et al. [2021] extend the idea of the Normal distribution to the case of

network data, assuming an underlying mean network representing the network popula-

tion and a dispersion parameter denoting the variation of the networks about this mean.

They express the mean network in terms of a Fréchet mean, as seen in the studies of

Ginestet et al. [2017] and Kolaczyk et al. [2017], and the dispersion parameter in terms

of an entropy. Under this construction, they obtain the probabilistic mechanisms that

generate data sets of multiple network data.

The functional form of the SNF model is inspired by the symmetry of the density

property, which aligns with the assumption of a unique Fréchet mean in Lunagómez

et al. [2021]. A model that presents that property is the Ising model, which is a special

case of the random field spherical model in the Physics literature (Metz et al. [2014]),

which also motivated the name of the SNF model. Thus, the likelihood of observing a

population of undirected and unweighted graphs G1, · · · ,GN under the SNF model is

P (AG1 , · · · , AGN | AGm , γ) ∝ exp

{
−γ ·

N∑
i=1

φ(dG(AGi , AGm))

}
,

where Gm is the Frechét mean, dG(·, ·) is a distance metric, γ is the temperature with

γ > 0, φ(·) > 0 is a monotone increasing function and the partition function of this

model is the reciprocal of

Z(AGm , γ) =
∑

AG∈{G|n|}

exp{−γ · φ(dG(AG , AGm))},

where {G|n|} is the space of n-node networks.

The term temperature for parameter γ is also inspired by the Physics literature for
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this class of models. However, we note here that in the rest of this thesis we will refer

to γ as the dispersion parameter, which is also another term used by Lunagómez et al.

[2021].

A special case of the SNF model with the Hamming distance metric specification for

dG(·, ·), is the Centered Erdös-Rényi (CER) model, also presented in Lunagómez et al.

[2021]. As introduced in Section 1.1, the Hamming distance is defined as

dH(Gk,Gl) =
∑
i,j

|AGk(i, j)−AGl(i, j)|
n · (n− 1)

.

Under the Centered Erdös-Rényi (CER) model proposed by Lunagómez et al. [2021],

a population of networks is generated by perturbing the edges of a centroid network Gm

using a Bernoulli distribution with probability α, as follows:

AG(i, j) | (AGm(i, j), α) = |AGm(i, j)− Z(i, j)|,

where notation | is used to represent dependence, Gm is the Frechét mean and Z(i, j)’s

are iid Ber(α), with 0 < α < 0.5. Thence, the likelihood of observing a population of

undirected and unweighted G1, · · · ,GN graphs under the CER model is

P (AG1 , · · · , AGN |AGm , α) =
N∏
i=1

αdH(AGi ,AGm ) · (1− α)
n(n−1)

2
−dH(AGi ,AGm )

where dH(·, ·) denotes the Hamming distance metric and n is the number of the networks’

vertices.

To infer the parameters of the model, the authors specify a prior distribution for the

centroid network and the dispersion parameter, and implement an MCMC scheme to

draw samples from their posterior distributions. However, it is not possible to directly

implement a Metropolis-Hastings algorithm for the SNF model, as its normalising con-

stant depends on the parameters of the model. Thus, the normalising constants do not

cancel out in the Metropolis-Hastings ratio.

To tackle the problem of the intractable normalising constants, the authors apply the

Auxiliary Variable technique presented in Møller et al. [2006]. This method involves the

use of an auxiliary variable with proposal density that has the same functional form as

the likelihood, thus allowing the normalising constants of the proposal density and the
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likelihood to cancel out, and the Metropolis-Hastings algorithm to be applied as normal.

However, a limitation with the implementation of the Auxiliary Variable technique

(Møller et al. [2006]) for the SNF model, is the poor mixing and the non-convergence

of the MCMC chains for some distance metrics specifications. In Chapter 4, we present

an alternative method, namely an Importance Sampling step within the MCMC, that

allows us to address this limitation.

Respectively to the studies of Ginestet et al. [2017], Kolaczyk et al. [2017] and Arora

et al. [2020] presented in this Section, Lunagómez et al. [2021] assume that a network

population is generated by a common generative process. However, this assumption may

lead to a misconception of the information contained in such data sets, as it does not

account for the variability of the network data within a population.

In Chapter 3, we aim to relax the aforementioned assumptions through the use of

mixture models for interpreting the process that generates a network population. Our

model allows for the existence of clusters of networks within a network population, and

represents each cluster through a network representative and some measure of dispersion

of the network data about the representative. Thus, we do not only identify subpopula-

tions of networks, but also allow their interpretation through their parameterisation.

2.3 Measurement Error Models for multiple network data

A common issue arising from the data collection process, is that the final data sample

may not encompass all the true, underlying information due to the presence of noise.

This implies that if the sampling procedure was repeated, the resulting sample might

not be identical to the previously collected sample. A fundamental source of noise found

in network data originates from the various measurement tools used for the construction

of networks, i.e. the processes used to measure an interaction (edge) between two ob-

jects (nodes). For example, in the case of biological networks (e.g. protein interaction

networks and gene networks), different high-throughput methods used to record interac-

tions between genes or proteins can lead to high rates of falsely recorded edges (Sprinzak

et al. [2003]).

Researchers focusing on the statistical analysis of networks as single observations,

have developed methods to incorporate the uncertainty of falsely observing edges or non-
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edges in a network. Such studies involve predicting network topologies accounting for the

falsely non-observed edges (Jiang et al. [2011]), estimating the adjacency matrix from a

set of noisy entries (Chatterjee et al. [2015]), classifying nodes of networks with errorful

edges (Priebe et al. [2015]), developing a regression model for networks assuming that the

observed network is a perturbed version of a true unobserved network (Le and Li [2020])

and performing Bayesian inference on the network’s structure utilising information from

measurements (Young et al. [2020]). Another group of studies focuses on the propagation

of the error to network summary statistics (Balachandran et al. [2017], Chang et al.

[2020]) and to estimators of average causal effects under network interference (Li et al.

[2021]), when the error arises from a measurement process used to construct the network.

Recent studies (Le et al. [2018], Newman [2018b], Peixoto [2018]), extend the idea of

a measurement error process to the case of multiple network data sets, with ultimate

goal to model the probabilistic mechanism that generates a network population under

the assumption that the networks therein are noisy realisations of a true unobserved

network.

An example of multiple noisy network realisations comes from neuroimaging, where

nodes correspond to different regions of an individual’s brain, and edges correspond to

the connections among the different regions. This type of network data regularly in-

volves measurement errors due to the different preprocessing methods and thresholds

used to consider a connection (edge) or not (non-edge) between two regions of the brain.

In the study of Buchanan et al. [2020], the authors argue the effect of different thresh-

olding levels and methods on the resulting networks and their associations with external

variables, by considering various network measures. Nonetheless, there is no study to

our knowledge to date that has looked into the effect of thresholding against network

models. Inspired by the noisy nature of brain networks, Le et al. [2018] build an inferen-

tial framework to estimate the adjacency matrix of a true underlying network, resulting

from multiple noisy network realisations.

Le et al. [2018] assume that the observed network population results from perturbing

the edges of a true underlying network, with some probabilities that depend on the

existence or non-existence of an edge in the true network. Specifically, they assume that

the noise in the data has the form of false positive and false negative edges with respect

to the true underlying network. Thence, if there is an edge between two nodes in the
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true network, the observed network will not have an edge between the same two nodes

with some probability called false negative probability, while if there is no edge between

two nodes in the true network, the observed network will have an edge between the two

nodes with some probability called false positive probability. This can be interpreted

mathematically as follows:

If AG(i, j) = 1 then AGk(i, j) ∼ Bernoulli(1−Qij),

If AG(i, j) = 0 then AGk(i, j) ∼ Bernoulli(Pij),

where AG(i, j) is the (i, j) entry of the adjacency matrix of the true network, AGk(i, j)

is the (i, j) entry of the adjacency matrix of the kth observed network, Pij is the (i, j)

entry of an n×n matrix P of false positive probabilities and Qij is the (i, j) entry of an

n× n matrix Q of false negative probabilities.

Thus, the likelihood of observing AG given the data {AGk}Nk=1, with W = EAG , is

L(AG ;AG1 , · · · , AGN ) =
∏

(i,j):i<j

[
Wij ·

N∏
k=1

(1−Qij)AGk (i,j)Q
1−AGk (i,j)

ij

]AG(i,j)

×

×

[
(1−Wij) ·

N∏
k=1

(Pij)
AGk (i,j)(1− Pij)1−AGk (i,j)

]1−AG(i,j)

. (2.3)

In the case of neuroimaging applications, inferences on the sizes of p and q can potentially

be informative for constructing a threshold that indicates the presence or absence of an

edge between two brain regions.

Studies have shown that brain imaging networks can reveal underlying clusters of

brain regions that are densely connected while an individual either performs a task or

rests (Garcia et al. [2018], Power et al. [2011]). Subsequently, Le et al. [2018] impose

some community structure on the true latent network motivated by the neuroimaging

application. Specifically, they assume that the true network AG has the structure of a

Stochastic Block Model (SBM), which is one of the most commonly used models for

community detection in network analysis. They further assume that the matrices of

false positive probabilities P , false negative probabilities Q and the expectation of AG ,

W = EAG , share the same block structure as that of AG .

To obtain estimates for the true adjacency matrix AG , the false positive/negative
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probabilities P,Q and the expectation of the true adjacency W , they first apply a Spec-

tral Clustering algorithm to estimate the SBM structure for known number of blocks

B, for an initial estimate of the true adjacency AG , defined as ÂG(i, j) = 1(Sij ≥ N/2),

with S =
∑N

k=1AGk .

After having specified the block membership {ci}ni=1 ∈ {1, · · · , B} of the n nodes of

the initial estimate of AG , they implement an Expectation-Maximisation (EM) algorithm

that estimates the parameters of their model by taking the conditional expectation of

the log of likelihood (2.3) (E step) and maximising it with respect to W,P,Q (M step).

The EM algorithm is iterated until convergence, and the Spectral Clustering algorithm

is then applied on the new estimate of AG obtained from the EM algorithm. The whole

process is then repeated for T iterations.

One limitation of the method proposed by Le et al. [2018] is that their algorithm

does not simultaneously update the parameters of their model and the block membership

of the true network’s nodes, as this would require the development of new techniques.

Newman [2018b] suggests an alternative method that potentially addresses this limita-

tion, using the Maximum a Posteriori (MAP) estimates for estimating an underlying

true network from noisy data, as well as the parameters of his model.

Notably, the method proposed by Newman [2018b] involves the predefinition of two

models:

1. A network model, that encodes information about the structure of the true net-

work. The probabilistic mechanism that generates a network of structure A is

represented by P (A|γ), where γ denotes the parameters of the model.

2. A data model, that explains the measurement error mechanism that generates the

noisy data from the true network with structure A. The probability of observing

the D data model is represented as P (D|A; θ), where θ denotes the parameters of

the data model.

Thus, the joint posterior distribution of the parameters γ, θ and the true network

structure A is,

P (A, γ, θ|D) =
P (D|A, θ) · P (A|γ) · P (γ) · P (θ)

P (D)
.

Summing over all the possible network structures A, the author obtains the posterior
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distribution of the models’ parameters,

P (γ, θ|D) =
∑
A

P (A, γ, θ|D), (2.4)

which is then maximised with respect to γ, θ to obtain their MAP estimates.

Specifically, the author takes the log of the posterior (2.4), and applies the Jensen’s

inequality which gives:

logP (γ, θ|D) = log
∑
A

P (A, γ, θ|D) ≥
∑
A

q(A) log
P (A, γ, θ|D)

q(A)
, (2.5)

where q(A) satisfies the equation
∑

A q(A) = 1.

Inequality (2.5) becomes an equality for,

q(A) =
P (A, γ, θ|D)∑
A P (A, γ, θ|D)

= P (A|D, γ, θ), (2.6)

which can be interpreted as the probability distribution over networks with structure A.

Thus for q(A) given as per (2.6), Newman [2018b] derives the MAP estimates of γ, θ

by maximising the right-hand side of (2.5), which is equal to the posterior distribution of

these parameters. Under this set up, Newman [2018b] implements an EM algorithm that

iterates over the maximisation of the posterior distribution with respect to q(A), γ, θ,

until convergence is achieved.

An example of a network model that could be used to describe the structure of the

true network, is the Stochastic Block Model (SBM), which has also been considered

in the study of Le et al. [2018]. Newman [2018a] suggests that the combination of an

SBM and a suitably chosen data model, can tackle the limitation of the non-concurrent

estimation of the block structure and the models’ parameters seen in Le et al. [2018].

However, Newman [2018b] does not explicitly obtain the complete algorithm for the

case in which A is an SBM, as the calculations involved would require the use of new

techniques as stated in Newman [2018b].

A similar formulation to that presented by Newman [2018b] is adapted in the study of

Peixoto [2018], who infers a true underlying network AG from either a single or multiple

noisy network realisations D = {AGk}Nk=1, under the assumption of a known or unknown

measurement error process. The framework introduced in Peixoto [2018] consists of
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the specification of a network generative model denoted by P (AG |θ), which encodes

information about the structure of the true underlying network, and a measurement error

model denoted by P (D|AG , φ), that describes the type of measurement error contained

in the network realisations.

The fundamental difference between the studies of Peixoto [2018] and Newman

[2018b] is in the type of inference adapted in each of these studies. Specifically, Peixoto

[2018] performs Bayesian inference in order to decode the uncertainty of the measurement

process that is reflected in the unobserved true network. Thence, instead of obtaining a

single MAP estimate of the true underlying network as seen in Newman [2018b], Peixoto

[2018] obtains draws from the posterior distribution of the true network given the noisy

data, described as follows:

P (AG |D) =
P (D|AG) · P (AG)

P (D)
, (2.7)

where

P (D|AG) =

∫
P (D|AG , φ)P (φ)dφ and P (AG) =

∫
P (AG |θ)P (θ)dθ,

with P (θ) and P (φ) representing the prior distributions of the parameters of the network

generative model and the measurement error model respectively.

In order to draw values from the posterior distribution of the true network (2.7),

one first needs to define a network generative model and a measurement error model.

Peixoto [2018] considers the case of a Degree Corrected SBM model (DCSBM) as the

network generative process, which has the following form:

P (AG |λ, κ, b) =
∏
i<j

exp
−κiκjλbiλbj (κiκjλbiλbj )

AG(i,j)

AG(i, j)!
, (2.8)

where κiκjλbiλbj denotes the rate of a Poisson process, with λbjλbj controlling the num-

ber of edges between two groups and κi representing the expected degree of node i. An

advantage of using the DCSBM over the general SBM, is that the DCSBM can model

networks with right-skewed degree distributions, which is a feature encountered in the

majority of real-world networks.

For the calculation of the posterior (2.7), P (AG) is needed which can be derived by

54



(2.8) as follows:

P (AG) =
∑
b

P (AG |b)P (b), (2.9)

with

P (AG |b) =

∫
P (AG |λ, κ, b)P (κ|b)P (λ|b)dκdλ. (2.10)

However, the sum over b is intractable, thus Peixoto [2018] obtains the joint posterior

of the true network AG and block membership b

P (AG , b|D) =
P (D|AG)P (AG |b)P (b)

P (D)
, (2.11)

from which draws can be obtained using an MCMC algorithm with a Metropolis-Hastings

step. By marginalising out the block membership b from the conditional posterior (2.11),

Peixoto [2018] finally obtains the posterior distribution of the true network AG ,

P (AG |D) =
∑
b

P (AG , b|D).

What remains is to also define a measurement error model P (D|AG) that describes

the measurement error in the observed data. Equivalently to Le et al. [2018] and Newman

[2018b], Peixoto [2018] defines the measurement error process as the process by which

edges in the network data are observed with some false positive p and false negative q

probabilities. Thus, the probability of observing xij edges between a pair of nodes (i, j)

given nij measurements is

P (xij |nij , AG(i, j), p, q) =

(
nij
xij

)[
(1− q)xijqnij−xij

]AG(i,j)[
pxij (1− p)nij−xij

]1−AG(i,j)
.

The above expression is further simplified by assuming non-informative Beta priors

for the false positive and false negative probabilities p, q as follows:

P (x|n, A) =

[∏
i<j

(
nij
xij

)](
E

T

)−1 1

E + 1

(
M − E
X − T

)−1 1

M − E + 1
,
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where

M =
∑
i<j

nij , X =
∑
i<j

xij ,

E =
∑
i<j

nijAG(i, j), X =
∑
i<j

xijAG(i, j).

Consequently, although Peixoto [2018] uses an MCMC scheme to infer the true un-

derlying network and its block membership, he does not infer the parameters of his model

simultaneously in the same MCMC algorithm. Instead, he obtains posterior estimates

of the parameters p, q of his model by marginalising their posterior distributions condi-

tioned on AG , with respect to the posterior samples of AG obtained from the algorithm.

In Chapter 3, we provide an extension of the Measurement Error model presented in

Le et al. [2018] through the formulation of a mixture model, that allows us to account

for the heterogeneity in a network population in the following two ways: (i) through the

detection of multiple clusters of networks in a population, and (ii) through the detection

of an outlier cluster of networks in a population. In contrast to the aforementioned stud-

ies, we further obtain an MCMC scheme that simultaneously infers all the parameters

of our model by drawing samples from their posterior distributions. The benefit of this

formulation is that it allows the interpretation of the uncertainty contained in all the

model parameters.

In this Chapter we provided a review of the three alternative modelling frameworks

considered in the literature, that aim to describe the probabilistic mechanism that gen-

erates a network population. However, most of these studies do not account for the

potential variability of the network data in a network population. In the recent studies

of Mukherjee et al. [2017], Diquigiovanni and Scarpa [2019] and Signorelli and Wit [2020],

the authors develop approaches that address this limitation assuming the presence of

underlying clusters of networks in a population. In Chapter 3, we provide an extensive

review of the studies that consider the topic of clustering multiple network data, along

with the limitations that they entail.
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Chapter 3

Bayesian model-based clustering

for multiple network data

3.1 Introduction

In this chapter we present a mixture model for identifying clusters of networks in a

network population, with respect to similarities detected in the connectivity patterns

of the networks’ nodes. Specifically, we consider the case when the networks in the

population share the same set of n nodes and build a mixture model with a predefined

number of clusters C. The mixture components of our mixture model are measurement

error models, building on the study of Le et al. [2018]. This formulation allows us not

only to identify clusters in multiple network data sets, but also to characterise them with

respect to a parameterisation.

The availability of multiple network data has risen substantially in recent years due to

the advancement of technological means that record this type of data (White et al. [1986],

Fields and Song [1989]). This has inspired many researchers to seek for statistical models

that most accurately describe the probabilistic mechanism that generates a network

population. Despite the growing research interest on modelling multiple network data,

only few studies developed to date consider the heterogeneity that can exist in a network

population.

Notably, Mukherjee et al. [2017] were the first to consider the problem of clustering

multiple network data, under two different settings, (a) when the networks in the pop-

ulation share the same set of nodes, (b) and when the networks in the population do
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not share the same set of nodes. For case (a), which is relevant to the assumption made

in our work, the authors obtain a mixture model of graphons and implement a spectral

clustering algorithm to infer the membership allocation of each network observation.

An application driven study on clustering multiple network data is introduced by

Diquigiovanni and Scarpa [2019] who aim to cluster a population of networks where

each network observation represents the playing style of a football team at a specific

match, for a set of different football teams and matches throughout a season. The

clustering approach seen in this study involves the specification of an ad hoc measure

of similarity between networks, and the implementation of an agglomerative method for

clustering the networks according to their similarities.

To the best of our knowledge, the third and last study that examines the problem

of clustering network populations is that of Signorelli and Wit [2020]. In this study, the

authors deal with the problem of clustering using a mixture model whose components

can be any statistical network model, under the restriction that it can be specified as a

Generalised Linear Model (GLM). For estimating the parameters of their model, they

implement an Expectation Maximization (EM) algorithm for a predefined number of

clusters. To determine the network model for their mixture, the authors propose the

initial use of a mixture of saturated network models to reveal information about the

structure of the data at hand. The saturated network model assumes that each edge in

each network in the population is generated with some unique, unconstrained probability.

Another group of studies that accounts for the heterogeneity in a set of network

observations, are the studies that perform the task of network classification. Some of

these studies consider either specific network summary measures (Prasad et al. [2015]),

or vectorise only the important entries (edges) of the adjacency matrix (Richiardi et al.

[2011], Zhang et al. [2012]) to classify networks, thus they ignore the overall networks’

structure. In contrast to these studies, Relión et al. [2019] perform prediction of the class

membership of networks using a linear classifier with predictors the adjacency matrices

of the networks. Their approach accounts for the networks’ structure by using a penalty

to select important nodes and edges.

The key limitations found in the aforementioned studies are the following:

L1 In the studies of Mukherjee et al. [2017], Diquigiovanni and Scarpa [2019] and

Relión et al. [2019], the methods proposed are non model-based. Mukherjee et al.
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[2017] and Diquigiovanni and Scarpa [2019] propose algorithms that detect un-

derlying network clusters in the data and Relión et al. [2019] predict the class

membership of the networks, while in all three studies the groups of networks

identified cannot be interpreted with respect to some parametric representation.

Interpretability of the different groups of networks in a population is crucial in

many applications in order to infer group specific properties and differences.

L2 Even though Signorelli and Wit [2020] provide a model-based approach for clus-

tering multiple network data, the use of already existing network models as the

mixture components implies that only specific characteristics of the networks can

be inferred, depending on what these model assumptions allow. It would be ideal

to have a framework that is flexible enough to incorporate different modelling as-

sumptions as deemed appropriate to application allowing the most scientifically

relevant inferences to be made from the data.

L3 Signorelli and Wit [2020] propose to initially obtain a mixture of saturated net-

work models, thus resulting in an overly complex model with a large number of

parameters to estimate. This can substantially increase the computational time

needed for the EM algorithm to converge as well as increasing the potential for

non-convergence due to having to explore a very high dimensional parameter space.

L4 The supervised approach of Relión et al. [2019] requires a training data set to pre-

dict the class of a set of network observations. In this regard, the class labels of the

networks in the training data set should be pre-specified, which can be restrictive

for some network applications for which we do not have a priori information about

the networks. Thus, the proposed supervised approach can predict class labels

with respect to a specific characterisation of the networks.

In our study we aim to tackle these limitations by providing a model based approach

for detecting clusters of networks in a network population, and interpreting the clusters

with respect to a parameterisation. Inspired by the approach of Le et al. [2018], we adopt

a measurement error formulation, assuming networks lying within each of the C clusters

are noisy realisations of a true underlying cluster representative. The attractive feature

of this approach is that it decouples the statistical model for the network data from

the underlying cluster specific network properties. We are thus able to provide a flexible
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model based approach for detecting clusters of networks in a network population, as well

as interpreting these clusters with respect to our model parameterisation. Our framework

is also flexible enough to incorporate, and thus exploit, any underlying assumptions

about the structure of the networks within the clusters that are of scientific interest or

otherwise supported by the data.

Le et al. [2018] model a network population assuming the existence of a true un-

derlying adjacency matrix, resulting from multiple noisy network-valued observations.

The inferential framework built in their study, consists of two steps. First, they use a

Spectral Clustering algorithm to infer the community structure formed by the nodes of

the true underlying network, and second they implement an EM algorithm to estimate

the model parameters. An evident limitation of their inferential framework is that their

algorithm does not simultaneously update the parameters of their model and the block

membership of the true network’s nodes, as this would require the development of new

techniques. In addition, the assumption of a sole true underlying adjacency matrix is

quite restrictive, especially for large data sets of networks.

The contributions of the work presented in this chapter are the following. First, we

extend the work by Le et al. [2018] through the formulation of a mixture model with

components the measurement error models. Second, we provide a Bayesian framework

for inferring the parameters of the mixture of measurement error models that allows to

simultaneously infer all the model parameters, along with the block membership of the

nodes. Third, our work adds to the literature on clustering multiple network data as we

introduce a model-based approach that is not restricted to describing only specific net-

work characteristics. Fourth, through our model-based approach we are able to interpret

the clusters with respect to a network representative and a variability of the network data

from that representative, encoded by the false positive and false negative probabilities.

Fifth, the framework can also be formulated to detect outlying network observations

when interest is in identifying observations that do not follow the distribution of the

majority of the network data.

The remainder of this chapter is organised as follows. In Section 3.2, we provide

the background to our modelling framework. In Section 3.3, we introduce our proposed

Bayesian formulation of a mixture of measurement error models for network data, along

with the MCMC scheme to make inferences. In Section 3.4, we present simulation studies
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to assess the performance of our method for various network sizes and sample sizes. In

Section 3.5, we analyse two different multiple network data examples to illustrate the

broad applicability of our methods. Lastly, in Section 3.6, we give some concluding

remarks.

3.2 Background

In this Section we discuss the relevant background to our modelling framework for clus-

tering network populations introduced in Section 3.3. Specifically, in Section 3.2.1 we

provide a review of the measurement error model of Le et al. [2018] which has also been

discussed in Chapter 2, and in Section 3.2.2 we provide a detailed review of the studies

focusing on the topic of clustering network populations and discuss their limitations.

3.2.1 Measurement Error Model

A natural assumption arising from the objective of modelling a network population, is the

assumption of a measurement error that occurs during the construction of the network

data. Under this hypothesis, the researcher assumes that the observed network data

result from measuring the edges of a true underlying network, which leads to recording

some erroneous edges due to the existence of an underlying measurement error process.

Le et al. [2018] were the first to introduce this approach for modelling populations of

networks, which has inspired the study presented in this chapter.

Let G1, · · · ,GN denote a population of networks, which share the same vertex set

|V | = n. Le et al. [2018] assume that the information contained in the network population

can be summarised by a representative network G∗ and a measurement error process

that does not allow us to accurately observe the representative network. Specifically,

the authors assume a false positive probability Pij of observing an edge between nodes

i, j in the kth network observation Gk, given that there is no edge between the same two

nodes in the representative network G∗; and respectively, a false negative probability Qij

of not observing an edge for the nodes i, j in the kth network observation Gk, while there

is an edge for the same two nodes in the representative network G∗. Thus, the entries of

the matrices P, Q, are the false positive and false negative probabilities of observing or

not and edge between two nodes in the data.
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The mathematical formulation of the above set up is the following. Let AG1 , · · · , AGN

denote the adjacency matrices for the network population, and AG∗ the adjacency matrix

of the representative network. Thence, the false positive and false negative probabilities

Pij , Qij can be described as follows,

if AG∗(i, j) = 1, then AGk(i, j) =


1, with prob 1−Qij

0, with prob Qij

;

if AG∗(i, j) = 0, then AGk(i, j) =


1, with prob Pij

0, with prob 1− Pij
. (3.1)

From (3.1), it follows that the probability of the occurrence or non-occurrence of an edge

between nodes i, j in the kth network observation is,

P (AGk(i, j)|AG∗(i, j) = 1, Pij , Qij) = (1−Qij)AGk (i,j) ·Q1−AGk (i,j)

ij , if AG∗(i, j) = 1;

P (AGk(i, j)|AG∗(i, j) = 0, Pij , Qij) = P
AGk (i,j)

ij · (1− Pij)1−AGk (i,j), if AG∗(i, j) = 0.

In the study of Le et al. [2018], the adjacency matrix of the representative network

AG∗ is treated as a latent variable, while the false positive and false negative probabilities

Pij and Qij are the model parameters. Thus, the likelihood of the representative network

AG∗ given the network data AG1 , · · · , AGN , as seen in Le et al. [2018], is

L(AG∗ ;AG1 , · · · , AGN ) =

N∏
k=1

∏
(i,j):i<j

[(1−Qij)AGk (i,j) ·Q1−AGk (i,j)

ij ·Wij ]
AG∗ (i,j)·

[P
AGk (i,j)

ij · (1− Pij)1−AGk (i,j) · (1−Wij)]
1−AG∗ (i,j).

where Wij = EAG∗(i, j), represents the probability of observing an edge between nodes

i, j in the representative network. Le et al. [2018] further assume that the nodes of the
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underlying true network, form communities that can be described by an SBM, and re-

spectively the corresponding block structure is assumed to be shared among the matrices

P , Q and W .

The inference of the model parameters and the latent variable is conducted in two

stages. First, a Spectral Clustering algorithm is applied to reveal the underlying block

membership of the representative’s nodes, and second, an EM algorithm is implemented

to estimate the model parameters. While this formulation has some appealing features

it would be ideal to have a coherent modelling framework that can jointly infer block

membership of the representative’s nodes together with the parameters characterising

the distribution of the network data. In addition, using an EM algorithm to estimate

model parameters means that measures of uncertainty such as standard errors for the

noise and the SBM parameters, will need to rely on asymptotic approximations that

may not be valid in many applications, particularly when involving small samples sizes.

In our work, we extend the model seen in Le et al. [2018] to a mixture of error

measurement models, and formulate a Bayesian inferential framework that allows us to

jointly infer the parameters of the measurement error model as well as those character-

ising the underlying network representatives corresponding to each cluster. In addition,

the Bayesian formulation is flexible enough to accommodate diverse modelling assump-

tions for the network representatives.

3.2.2 Clustering multiple network data

Due to the continuous advancements occurring in the field of technology, there is a grow-

ing availability of large data sets with network-valued observations. That has triggered

the development of new statistical techniques for modelling multiple network data, as

seen in Chapter 2. However, most of the studies for modelling multiple network data do

not consider the heterogeneity that can potentially exist in a large sample of network

observations.

Mukherjee et al. [2017] address this limitation assuming the existence of underlying

clusters of networks within a network population, and provide the framework for inferring

them under two different conditions:

1. When the network observations share the same set of nodes.
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2. When the network observations do not share a common set of nodes.

Under condition (i), the authors assume that a network population is generated

by a mixture model of graphons f . A graphon f : [0, 1]2 7→ [0, 1] is a non negative,

bounded, measurable and symmetric function that models the probability of observing

an edge between two nodes i, j in a network. Notably, each of the i, j nodes is given

a Uniform(0, 1) random value ξi, ξj , and the graphon f determines the probability of a

connection to occur between the two nodes as Pij = f(ξi, ξj).

Thus, the probability of observing a network AGk under the graphon mixture model

for a fixed number of clusters C is

P (AGk) =
C∑
c=1

qcPΠc(AGk), with PΠc(AGk) =
∏
u<v

Π
AGk (u,v)
c,uv (1−Πc,uv)

1−AGk (u,v)

where q1, · · · , qC represent the weights for each mixture component, and Π1, · · · ,ΠC

denote the edge probability matrices generated by the graphons f1, · · · , fC .

Under this model, the authors seek to infer the underlying clusters of networks in

a network population AG1 , · · · , AGN by first estimating for each observational unit AGi

its link probability matrix Πi, using already existing methods for graphon estimation.

For the estimates of the link probability matrices Π̂1, · · · , Π̂C obtained, they compute

an N×N distance matrix D̂ with D̂ij = ‖Π̂i− Π̂j‖F , where ‖ ·‖F is the Frobenius norm.

Finally, the apply a spectral clustering algorithm on the distance matrix estimate D̂, in

order to detect the cluster membership of the N network observations.

For the case when the network observations do not share a common set of nodes

(condition (ii)), the authors adopt the idea of constructing a vector that encodes features

of each network observation AGi , in order to cluster the networks according to their

similarities with regard to their feature vectors. Specifically, they consider different

network summary statistics which can be calculated by obtaining the trace of powers of

the adjacency matrix,

mk(AGi) = trace(AGi/n)k with k integer,

and are called graph moments by the authors. Thus, different powers k give different

types of summary statistics (e.g. total number of edges, triangle counts, directed cir-

cuits). The advantage of this representation over the subgraph counts is that the former
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is more computationally efficient.

Therefore, the authors obtain a feature vector for each network observation AGi ,

which has the following form

gJ(AGi) := (logm1(AGi), · · · , logmJ(AGi)) ∈ RJ ,

for some positive integer J ≥ 2. Similarly to their approach under condition (i), the

authors form an N × N distance matrix D by calculating the distance between the

feature vectors of the networks d(gJ(AGi), gJ(AGk)). Lastly, they cluster the network

data using a spectral clustering algorithm to the distance matrix estimate D̂ obtained.

Under this framework, the authors achieve to cluster network populations when the

networks share or do not share a common vertex set, however the k-means algorithm

within the spectral clustering algorithm applied under their construction, is very sensitive

to the initialisation of the centroids of the clusters which might lead to unsteady results.

Specifically, Spectral clustering is very sensitive to the choice of the similarity graph and

its parameters, as different similarity graph and parameter specifications can capture

different type of similarities in the data, thus their choice needs to depend on the desired

type of information that the researcher aims to capture (Von Luxburg [2007]).

An application oriented study on clustering multiple network data is introduced by

Diquigiovanni and Scarpa [2019]. The authors of this study aim to cluster a network

population in which each network observation represents the playing style of a football

team at a specific match, for a set of different football teams and matches throughout a

season. Specifically, the nodes of the networks represent different areas of the pitch, and

the edges result from the movements of the ball among these areas; thus, the network

population considered in this study shares the same set of nodes. In addition, the edges

are directed and weighted, with each weight representing the number of times that the

ball consecutively moved from one area of the pitch (node) to another.

The methodological approach presented in Diquigiovanni and Scarpa [2019] involves

two stages. At the first stage, the authors pre-process the network data by normalising

the weighted edges of the network population. Specifically, for each pair of nodes, they

consider the minimum and maximum edge weight observed in the whole population of

networks, and use min-max normalisation to normalise the weights corresponding to the
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specific pair of nodes in the observed network data. In this way, each normalised edge

weight accounts for the different sizes of weights observed for the corresponding pair of

nodes across the population of networks. The next step of that stage is to detect the

communities formed by the nodes of each network observation using the Louvain method

(Blondel et al. [2008]). A limitation arising from this method is that it cannot be applied

on directed network data. Due to this restriction, the authors consider the undirected

case for the network data, which can potentially lead to loss of information.

An issue arising from the normalisation of the edges is that the resulting weights of the

edges might vary significantly between two networks, while having the same community

structure. To overcome this problem, the authors consider a threshold s for the size of

the edge weight to be considered in the following way,

wk(i, j) =


uk(i, j) if uk(i, j) > s

0 if uk(i, j) ≤ s
;

for k ∈ {1, · · · , N}, where N corresponds to the size of the network population and

uk(i, j) is the normalised edge weight between nodes i, j, for the kth network observation.

The value of the threshold s is crucial in order to keep a balance between dealing with

the issue arising from the normalisation, and avoiding any loss of information enclosed

in the data. The authors propose to obtain a different threshold s(i, j) for each pair of

(i, j) nodes in the following way,

s(i, j) = q(u(i, j), α),

where u(i, j) is a vector of all the normalised edges found in the N network data for

the (i, j) pair of nodes, and q(x, α) is the quantile of order α for x.

At the second stage of Diquigiovanni and Scarpa [2019] method, the authors conduct

a clustering process on the network data. To accomplish that, they first define an ad

hoc measure of similarity to compare the community structures detected in the network

data. Notably, the authors apply the Adjusted Rand Index (ARI) (Hubert and Arabie

[1985]) on the community structures of the network data, resulting in a N ×N distance

matrix with elements the distances measured under the ARI between the N networks.

Lastly, they feed the distance matrix to the UPGMA method (Sokal [1958]) which starts
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with the assumption that each network belongs to its own cluster, and gradually merges

the networks until they all belong to a single cluster.

The identification of the number of clusters existing in the football network popula-

tion is determined by the size of the difference of the maximum ARI index, between two

successive steps of the method. Under this procedure, the authors detected 15 clusters

in the network population. In order to characterise each cluster detected, the authors

consider network summary statistics (pairs, triads) of the nodes allocated in the same

community. The results obtained from the summary statistics, lead to the description

of 15 different playing styles in the network population.

Two critical issues that need to be dealt with under the framework proposed by Diqui-

giovanni and Scarpa [2019] are the determination of the threshold in the pre-processing

phase of their method, and the consideration of only undirected network data, which

both imply a potentially high loss of information in the data.

A key limitation found in both studies of Mukherjee et al. [2017] and Diquigiovanni

and Scarpa [2019] is that the clustering schemes proposed are non model-based. Thus,

despite the fact that the algorithms proposed detect underlying clusters of networks in

multiple network data sets, the clusters identified cannot be interpreted with respect to

some parameterisation.

On the other hand, Signorelli and Wit [2020] tackle this limitation by proposing a

model-based framework for clustering multiple network data according to their similari-

ties, with respect to a parameterisation. Notably, the authors assume that a population

of networks is generated by a mixture model, having as mixture components any sta-

tistical network model that can be specified as a Generalised Linear Model (GLM) or

Generalised Mixed Model (GLMM).

Under this framework, the authors predefine the number of clusters C underlying in

a network population, and denote by zk ∈ {1, · · · , C} the unknown cluster membership

of the kth network observation. Thence, the likelihood of their model, given the latent

membership z of the networks is

L(θ;AG1 , · · · , AGN , z) =
N∏
k=1

πzkf(AGk |θzk),

where πc denotes the probability of network to belong to cluster c, f(·) corresponds to
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the network model assumed, θ denote the parameters of the network model, varying

among the C clusters, and AG1 , · · · , AGN correspond to the adjacency matrices of the N

network observations.

The choice of the statistical network model f(·) depends on the network character-

istics that the researcher wants to capture, under the restriction that the corresponding

model can be defined as a GLM or GLMM. For example, if the researcher wants to iden-

tify clusters in a network population according to similarities of the networks’ degree

distributions, the p1 and p2 network models are two candidate models that allow this

information to be encoded. Specifically, p1 and p2 assume that a probability of observing

an edge between two nodes, depends on the nodes’ expected degrees.

The authors implement an Expectation-Maximization (EM) algorithm on the likeli-

hood of their model, to estimate the model parameters θ = (θ1, · · · , θC) and the N ×C

probability matrix P , whose pkc entries denote the probability of the kth network ob-

servation to belong to the c cluster. To determine the number of mixture components

C, the authors formulate three model selection criteria, namely the Akaike (AIC), the

Bayesian (BIC) and the Generalized (GIC) Information Criteria.

Notwithstanding that Signorelli and Wit [2020] provide a model-based approach for

clustering multiple network data, their framework involves some underlying constraints.

One limitation is the use of already existing network models as the mixture components

of their model, which ultimately implies that only specific, global characteristics of the

networks will be explained under their formulation. In addition, a large number of

parameters can negatively affect the computational time needed for the EM algorithm

to converge.

3.3 Mixture of Measurement Error models

In this section we detail our proposed modelling framework for clustering network pop-

ulations, that tackles the limitations of the studies discussed in Section 3.2. We first

describe the motivation and objectives of our modelling framework in Section 3.3.1, the

Bayesian formulation of the measurement error model when there is only one cluster is

presented in Section 3.3.2. Thence, we extend this to multiple clusters in Section 3.3.3,

and describe how posterior samples can be obtained using MCMC in Section 3.3.4. Fi-
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nally, we describe a special case of this formulation that can correspond to detecting

outlying networks in the data in Section 3.3.5.

3.3.1 Motivation

We now introduce a motivating example that has driven the research objectives of our

study. This example comes from the data collected by the Tacita mobile application,

created by members of the Computing and Communications department at Lancaster

university (Shaw et al. [2018]).

The Tacita application was created to serve as a mean of communication between a

display and a viewer, in order for the viewer to be able to see content relevant to his

interests. Specifically, the viewer can request what to see on the screen of the display,

but also the display can detect when a user is in its proximity in order to show content

aligned with his interests. Thus, the application records the consecutive displays visited

by the users, along with the time visited and the type of content shown.

Consequently, the Tacita data set serves as an example of multiple network obser-

vations, as the movements of each individual can be represented by a network. Thus,

for each individual we can obtain a network where nodes represent displays and edges

represent the movements of the user among the displays. The questions arising from

this data set are the following:

Q1 Can we detect different patterns among the users’ movements?

Q2 Can we cluster the users according to their movements?

Q3 How informative can the clustering be for the users in our data?

The aforementioned research questions have motivated the development of a mixture

model with mixture components the measurement error model, building upon the work

by Le et al. [2018] presented in the previous section. Notably, the research objectives of

the mixture model presented in this chapter are:

O1 The development of a model-based approach for clustering multiple net-

work data

We aim to capture the multimodality in a network population by formulating a

mixture of measurement error models. Under this construction, the cluster mem-
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bership of the network data will be inferred according to similarities found in the

connectivity patterns of the network data.

O2 The interpretation of the clusters detected with respect to a parame-

terisation

The use of the measurement error model as the mixture component of our mixture

model not only detects potential clusters formed in the data, but also allows the

characterisation of the clusters by a network representative, and a false positive

and false negative probability that reflect information about the amount of noise

in the data, in a given cluster.

O3 The formulation of a flexible framework to model the heterogeneity in

a network population

Our framework allows the flexibility to answer diverse research questions with

respect to the heterogeneity in a network population. Specifically the mixture

model can be formulated to detect network observations that are different from a

majority of networks in the sample.

O4 The construction of a Bayesian framework that allows to simultaneously

infer of all the model parameters

We propose a novel Bayesian framework for the measurement error model that

tackles the limitation of having a two-stage inferential scheme for the parameters

of the model, as seen in Le et al. [2018]. Specifically, we introduce an MCMC

scheme that infers the latent block membership of the nodes and the latent cluster

membership of the networks, along with the posterior distribution of the model

parameters.

O5 Allowing varying block structure among the representatives

Under our formulation, the nodes of each network representative can form a dis-

tinct community structure. Our MCMC scheme reveals the unique block struc-

tures formed by the nodes of each representative, allowing more information to be

decoded about the corresponding cluster.
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3.3.2 Bayesian set up for measurement error model with SBM struc-

ture for the representatives

In this section, we introduce a Bayesian set up for the measurement error model presented

in Le et al. [2018]. To begin with, we assume the presence of a latent representative

network with adjacency matrix denoted by AG∗ , underlying the observed network data.

In addition, we assume that the probability of observing a false positive or false negative

edge between two nodes in a the network data, is independent of the pair of nodes

considered. Thus, the false positive probability p and false negative probability q are

scalars in our case. Under this specification, the probability mass function of the edge

state between nodes (i, j) in network observation k, given AG∗(i, j), p, q, is

P (AGk(i, j)|AG∗(i, j), p, q) = [(1− q)AGk (i,j) · q1−AGk (i,j)]AG∗ (i,j)·

[pAGk (i,j) · (1− p)1−AGk (i,j)]1−AG∗ (i,j).

Hence, the conditional probability of observing a network population AG1 , · · · , AGN given

AG∗ , p, q is,

P (AG1 , · · · , AGN |p, q, AG∗) =

N∏
k=1

∏
(i,j):i<j

P (AGk(i, j)|AG∗(i, j), p, q) =

N∏
k=1

∏
(i,j):i<j

((1− q)AGk (i,j) · q1−AGk (i,j))AG∗ (i,j) · (pAGk (i,j) · (1− p)1−AGk (i,j))1−AG∗ (i,j).

An advantage of the measurement error formulation is that the model specification

for the representative network AG∗ can vary depending on the type of information the

statistician wants to capture for the data at hand. As the SBM model is a widely used

model for networks with neat interpretation, and motivated by the work of Le et al.

[2018], as a general approach we also assume an SBM structure for the representative

AG∗ . We note here, that this can be easily modified, e.g. reduced to a simpler model

such as the Erdös-Rényi if supported by the data.

Under the SBM assumption, each node of the representative network belongs to an

unobserved block k ∈ {1, · · · ,K}, and the probability of observing an edge between

two nodes depends on their block membership. We represent the block membership of
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the n nodes by {bi}ni=1, with bi ∈ {1, · · · ,K}, and the probability of observing an edge

between nodes (i, j) with bi = k, bj = l by θkl. Under this specification, the hierarchical

structure of the SBM model is as follows:

AG∗(i, j)|θ, b ∼ Bernoulli(θbibj );

θkl ∼ Beta(εkl, ζkl);

b|w ∼ Multinomial(w);

where wk represents the probability of a node to belong to block k ∈ {1, · · · ,K}. For

the vector of probabilities w = {w1, · · · , wK} we assume a symmetric Dirichlet prior

distribution with hyperparameter χ,

w ∼ Dirichlet(χ).

Common choices for the hyperparameter χ are 0.5 and 1.

Thus the hierarchical structure of the model is,

N∏
k=1

∏
(i,j):i<j

P (AGk(i, j)|AG∗(i, j), p, q)P (AG∗(i,j)|θ, b)

where

P (AG∗(i, j)|θ, b) = θ
AG∗ (i,j)
bibj

(1− θbibj )
1−AG∗ (i,j).

We further specify a Beta prior distribution for both the false positive p and false negative

q probabilities,

p ∼ Beta(α0, β0), q ∼ Beta(γ0, δ0),

for the sake of convenience. A common choice of the hyperparameters for the Beta priors

stated in this section is 0.5 corresponding to Jeffreys prior.

As stated previously the Bayesian formulation allows us to jointly infer the SBM

parameters in together with the rest of the model parameters when making posterior

inferences.
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3.3.3 Mixture of measurement error models

We further extend the measurement error model to a mixture of measurement er-

ror models, with a predefined number of mixture components C, in order to provide

a model-based approach for identifying clusters of networks in a network population

AG1 , · · · , AGN . Under this specification, we assume that each cluster c of networks, is

described by a unique network representative AG∗c , a false positive probability pc and

a false negative probability qc, where c ∈ {1, . . . , C}. In this section, we present the

Bayesian framework for the mixture of measurement error models, with each cluster-

specific representative network being expressed by an SBM. We note here, that the

block structure of each representative is allowed to vary.

Let z = (z1, · · · , zN ) ∈ {1, · · · , C} be the latent variables representing the cluster

membership of the network data AG1 , · · · , AGN . Under this construction, the conditional

probability of the data, given the z latent variable, takes the form

P (AG1 , · · · , AGN |{pc, qc, AG∗c }
C
c=1, z1, · · · , zN ) =

=
N∏
k=1

( ∏
(i,j):i<j

(
(1− qzk)AGk (i,j)q

1−AGk (i,j)
zk

)AG∗zk (i,j)
·
(
p
AGk (i,j)
zk (1− pzk)1−AGk (i,j)

)1−AG∗zk
(i,j))

.

Respectively, taking the log of the conditional probability of the data reduces to,

logP (AG1 , · · · , AGN |{pc, qc, AG∗c }
C
c=1, z1, · · · , zN )) ∝

∝
N∑
k=1

( ∑
(i,j):i<j

(
AG∗zk

(i, j)
(

log(1− qzk)AGk(i, j) + log(qzk)(1−AGk(i, j))
)

+

+(1−AG∗zk (i, j))
(

log(pzk)AGk(i, j) + log(1− pzk)(1−AGk(i, j))
)))

=

=
N∑
k=1

( ∑
(i,j):i<j

(
AG∗zk

(i, j)
(
AGk(i, j) log

(1− qzk)(1− pzk)

qzkpzk
+ log

qzk
1− pzk

)
+

+
(
AGk(i, j) log

pzk
1− pzk

+ log(1− pzk)
)))

.

We assume that the cluster labels z1, · · · , zN follow a Multinomial distribution with

parameter τ = (τ1, · · · , τC), where τc represents the probability that a network obser-
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vation belongs to class c, and
∑C

c=1 τc = 1. We assume a symmetric Dirichlet prior

distribution for the vector of probabilities τ which has the advantage of being condi-

tionally conjugate with the conditional probability of z. As commented in Section 3.3.2,

common choices of the Dirichlet hyperparameter are 0.5 or 1.

In Section 3.3.4 we present details on how posterior inferences can be made using

MCMC.

3.3.4 MCMC scheme for mixture model

With the modelling framework described above we are able to draw samples from the

joint posterior distribution of the parameters using MCMC. The joint posterior distri-

bution is known up to a normalising constant, specifically

P (AG∗ ,p, q, z, τ ,w, b,θ|AG1 , . . . , AGN )

∝ P (AG1 , . . . , AGN |AG∗ ,p, q, z) · P (AG∗ |w, b,θ) · P (p|α0,β0)

·P (q|γ0, δ0) · P (z|τ ) · P (τ |ψ) · P (θ|ε, ζ) · P (b|w) · P (w|χ),

(3.2)

where P (AG1 , . . . , AGN |AG∗ ,p, q, z) is the conditional probability of the network data,

P (AG∗ |w, b,θ) is the conditional probability of the latent variable AG∗ and the rest of

the components of the right hand side of the expression are the prior distributions on

the model parameters, as defined in Sections (3.3.2) and (3.3.3).

To obtain posterior samples from the joint posterior in (3.2), we note that many of

the full conditional distributions of the unknown quantities (parameters/latent data) are

available in closed form, and when these are not available these can be approximated us-

ing Metropolis-Hastings. As a result we obtain posterior inferences through a component

wise MCMC sampler, also known as a Metropolis-Hastings-within-Gibbs sampler. This

closely follows a Gibbs sampler, where all parameters and latent data are updated from

their full conditional distributions except for the full conditionals of {AG∗c , pc, qc}
C
c=1,

which are approximated using Metropolis-Hastings proposal distributions.

In the Metropolis-Hastings step, we use a mixture of kernels for updating the param-

eters of the measurement error model {AG∗c , pc, qc}
C
c=1, in analogy to the MCMC scheme

seen in Lunagómez et al. [2021]. Specifically, we update the adjacency matrix AG∗c of

the network representative of cluster c, using either of the following two proposals with
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some fixed probability, in every iteration of the MCMC:

(I) We perturb the edges of the current network representative A
(curr)
G∗c of cluster c in

the following way:

A
(prop)
G∗c (i, j) =


1−A(curr)

G∗c (i, j), with probability ω

A
(curr)
G∗c (i, j), with probability 1− ω

.

(II) We propose a new network representative A
(prop)
G∗c for cluster c, with each edge of the

proposed representative A
(prop)
G∗c (i, j) being drawn independently, from a Bernoulli

distribution with parameter 1
N

∑N
k=1AGk(i, j).

For case (I), we accept the proposed network representative A
(prop)
G∗c with probability

min

{
1,
P (AG1 , · · · , AGN |A

(prop)
G∗c , p

(curr)
c , q

(curr)
c , z(curr))P (A

(prop)
G∗c |bc(curr),θc

(curr))

P (AG1 , · · · , AGN |A
(curr)
G∗c , p

(curr)
c , q

(curr)
c , z(curr))P (A

(curr)
G∗c |bc(curr),θc

(curr))

}
,

(3.3)

where P (A
(·)
G∗c |bc,θc) is the SBM model assumed for the representative, as seen in section

(3.3.2). We note that the proposal distribution under case (I) is symmetric, thus, it

cancels out from the Metropolis ratio in expression (3.3).

Under case (II), we accept the proposed network representative A
(prop)
G∗c with proba-

bility

min

{
1,
P (AG1 , · · · , AGN |A

(prop)
G∗c , p

(curr)
c , q

(curr)
c , z(curr))P (A

(prop)
G∗c |bc(curr),θc

(curr))

P (AG1 , · · · , AGN |A
(curr)
G∗c , p

(curr)
c , q

(curr)
c , z(curr))P (A

(curr)
G∗c |bc(curr),θc

(curr))

·
Q(A

(curr)
G∗c |A(prop)

G∗c )

Q(A
(prop)
G∗c |A(curr)

G∗c )

}
,

(3.4)

where Q(A
(·)
G∗c |A

(·)
G∗c ) corresponds to the proposal distribution, which is not cancelling out

from the Metropolis ratio in expression (3.4).

To update the false positive probability pc of cluster c, we use a mixture of random

walk proposals indexed by l (Lunagómez et al. [2021]), constrained to lie in the interval

(0,0.5) for identifiability reasons, in the following way:

• Draw v ∼ Unif(−ul, ul).
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• Calculate the candidate proposal value y = p
(curr)
c + v.

• Propose a new value for pc as follows,

p(prop)
c =


y, if 0 < y < 0.5;

−y, if y < 0;

1− y, if y > 0.5.

The mixture is over {u1, . . . , uL}. Thus, we perturb the current state of the false positive

probability p
(curr)
c using various sizes of ul, each imposing a less or more drastic change

on p
(curr)
c . We accept the proposed value p

(prop)
c with probability

min

{
1,
P (AG1 , · · · , AGN |A

(curr)
G∗c , p

(prop)
c , q

(curr)
c , z(curr))P (p

(prop)
c |α0,c, β0,c)

P (AG1 , · · · , AGN |A
(curr)
G∗c , p

(curr)
c , q

(curr)
c , z(curr))P (p

(curr)
c |α0,c, β0,c)

}
, (3.5)

where P (p
(·)
c |α0,c, β0,c) is the Beta prior with hyperparameters α0,c, β0,c, as stated in

section (3.3.2). We note again that the proposal distribution for pc is symmetric, thus it

does not appear in the Metropolis ratio in expression (3.5). In exactly the same manner,

we update the false negative probability qc, for c ∈ {1, . . . , C}.

The rest of the parameters are updated via Gibbs samplers, by drawing values from

their full conditional posteriors. The full conditional posterior for τ is given by

P (τ |AG∗ ,p, q, z,w, b,θ, AG1 , . . . , AGN ) = Dirichlet(ψ + η1, . . . , ψ + ηC). (3.6)

where ηc =
∑N

j=1 1c(zj), c = 1, . . . , C, denotes the number of networks that belong to

cluster c.

We draw the latent cluster-membership zk for each network observation k from a

Multinomial distribution with unnormalised probabilities specified in the following way:

P (zk = c|τ ,AG∗ ,p, q, AGk) ∝ P (AGk |zk = c,AG∗ ,p, q) · P (zk = c|τ )

= τc ·
∏

(i,j):i<j

(
(1− qc)AGk (i,j)q

1−AGk (i,j)
c

)AG∗c (i,j)
·
(
p
AGk (i,j)
c (1− pc)1−AGk (i,j)

)1−AG∗c (i,j)

(3.7)
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where P (AGk |zk = c,AG∗ ,p, q) is the probability we observe network k given cluster

membership zk = c, described by a measurement error model. The normalised proba-

bilities are obtained via Bayes Theorem.

The full conditional posterior for wc is

P (wc|AG∗c , pc, qc, z, τ , bc,θc, AG1 , . . . , AGN ) = Dirichlet(χ+ h1, . . . , χ+ hK).

where hk denotes the number of the nodes that belong to block k.

The full conditional posterior for the vector of the block-specific probabilities of an

edge occurrence for the network representative of cluster c, θc, is

P (θc|AG∗c , pc, qc, z, τ , bc,wc, AG1 , . . . , AGN ) = Beta(AG∗c [kl] + εkl, ζkl + nc,kl −AG∗c [kl]).

(3.8)

where AG∗c [kl] =
∑

(i,j):bc,i=k,bc,j=lAG∗c (i, j) represents the sum of the entries for the pairs

of nodes of the network representative for cluster c that have block membership k, l

respectively, and nc,kl =
∑

(i,j):i 6=j I(bc,i = k, bc,j = l) represents the number of the pair

of nodes of the representative for cluster c that have membership k, l respectively.

Similarly to the formulation obtained for updating the latent cluster-membership

z of the network data, we obtain updates of the latent block-membership bc for the

nodes of the network representative of cluster c from a Multinomial distribution with

unnormalised probabilities specified as follows:

P (bc,i = k|AG∗c , pc, qc, z, τ ,θc,wc, AG1 , . . . , AGN ) ∝ P (AG∗c |wc,θc, bc,i = k) · P (bc,i = k|wc)

= wc,k ·
n∏
j=1

θ
AG∗c (i,j)

kbc,j
(1− θkbc,j )

1−AG∗c (i,j).

(3.9)

where P (AG∗c |wc,θc, bc,i = k) is the probability of observing the representative of clus-

ter c, AG∗c , described by an SBM, given its ith node belongs to block k. Normalised

probabilities are obtained by Bayes Theorem.

For the detailed derivation of the full conditional posterior distributions refer to

Appendix A.1. In addition, the MCMC algorithm for clustering is sketched in Appendix
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A.4.

3.3.5 Outlier network detection

In this section we present a modification of the mixture model presented in Section

3.3.3, that allows us to explore the heterogeneity in a population of networks under a

different perspective. Notably, we modify our mixture model to detect a cluster of outlier

networks that are different to the majority of the networks in the population. Under

this formulation, we are able to answer different type of research questions for the data

at hand, compared to the case of multiple cluster detection.

In contrast to the mixture model formulated for multiple cluster detection, the outlier

cluster detection model assumes a single network representative for the whole population

of networks. Under this set up, we assume that there are ultimately two clusters of net-

works formed within the population of networks, one cluster being the majority cluster,

while the other cluster enclosing the outlier networks of the population. Thus, while the

false positive and false negative probabilities remain component specific for each of the

two clusters, the network representative is no more a component specific latent variable.

Similarly to the mixture model formulated in Section 3.3.3, we now specify the num-

ber of clusters to C = 2, and z = (z1, · · · , zN ) ∈ {1, 2} denotes the latent cluster

membership of the network data AG1 , . . . , AGN . Under the assumption of a single net-

work representative AG∗ , the likelihood of the data given the z latent variable takes the

form

P (AG1 , · · · , AGN |{pc, qc}
C
c=1, AG∗ , z1, · · · , zN ) =

N∏
k=1

( ∏
(i,j):i<j

(
(1− qzk)AGk (i,j)q

1−AGk (i,j)
zk

)AG∗ (i,j)
·
(
p
AGk (i,j)
zk (1− pzk)1−AGk (i,j)

)1−AG∗ (i,j))
.

As in the case of the mixture model for multiple cluster detection, the model specifi-

cation for the representative network can vary depending on the type of information we

want to capture for the data at hand. A common choice is to consider an SBM structure

again for the representative. Due to having now a single representative, the SBM model

parameters are no more component specific to the cluster.

To sample from the joint posterior of this model, we develop a Metropolis-Hastings-
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within-Gibbs MCMC scheme, as presented in Section 3.3.4. The full conditional posterior

distributions are obtained as seen in the expressions of Section 3.3.4, with sole difference

that the parameters/latent variables involving the representative AG∗ , namely the block-

depending probability of an edge θ, the probability of a node to belong to a block w and

the block membership of the nodes b, are no more component specific, i.e. not indexed

by cluster c.

3.4 Simulation study for Mixture Error Measurement Model

In this Section, we perform simulation studies to assess the performance of our algorithm

in inferring the model parameters/latent variables and clustering network data. In Sec-

tion 3.4.1, we explore the performance of our algorithm for moderate network sizes and

various noise levels and SBM models, and in Section 3.4.2, we investigate the algorithm

performance for various network and sample sizes.

3.4.1 Moderate network sizes

In this simulation study, we explore and evaluate the performance of our model in

inferring the model parameters for network populations with a moderate size of nodes,

under different parameterisations of the model. Specifically, we consider the case of

networks with n = 21 number of nodes, and a network population size of N = 180

networks. In addition, we consider C = 3 number of clusters where each network belongs

and B = 2 number of blocks where the nodes of each representative network belong, and

allow varying sizes of the parameters of the model, in order to explore performance. To

simulate the network population, we first need to simulate the representative network

of each cluster. We generate representatives of the clusters under two different SBM

structures with the following parameters,

• SBM 1: (w
(1)
1 , w

(1)
2 ) = (0.5, 0.5), (w

(2)
1 , w

(2)
2 ) = (0.5, 0.5), (w

(3)
1 , w

(3)
2 ) = (0.5, 0.5),

(θ
(1)
11 , θ

(1)
12 , θ

(1)
22 ) = (0.8, 0.2, 0.8), (θ

(2)
11 , θ

(2)
12 , θ

(2)
22 ) = (0.8, 0.2, 0.8), (θ

(3)
11 , θ

(3)
12 , θ

(3)
22 ) =

(0.8, 0.2, 0.8);

• SBM 2: (w
(1)
1 , w

(1)
2 ) = (0.7, 0.3), (w

(2)
1 , w

(2)
2 ) = (0.5, 0.5), (w

(3)
1 , w

(3)
2 ) = (0.3, 0.7),

(θ
(1)
11 , θ

(1)
12 , θ

(1)
22 ) = (0.7, 0.05, 0.8), (θ

(2)
11 , θ

(2)
12 , θ

(2)
22 ) = (0.7, 0.05, 0.8), (θ

(3)
11 , θ

(3)
12 , θ

(3)
22 ) =

(0.7, 0.05, 0.8).
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In Figure 3.1 we visualise the 21-node representatives for each of the C = 3 clusters,

under each of the SBM structures (1 and 2) described above.
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Figure 3.1: Top panel: Each network corresponds to a network representative for cluster
c ∈ {1, 2, 3}. The network representatives were generated under the parameters specified
for ”SBM 1”. Bottom panel: Each network corresponds to a network representative for
cluster c ∈ {1, 2, 3}. The network representatives were generated under the parameters
specified for ”SBM 2”. Nodes grouped under the same colour (red or blue) are nodes
belonging in the same block. Nodes’ layout is random.

Next, we generate a population of 180 networks by perturbing the edges of each

representative through a measurement error process. Specifically, we generate edges for

60 networks in each cluster c, depending on the existence or non-existence of an edge in

the representative network of the corresponding cluster c, given a false positive pc and

false negative qc probability. The simulation regimes considered for pc, qc and the SBM

parameters described above, are gathered in Table 3.1.

For each simulation regime, we run our MCMC for 500,000 iterations with a burn-in

of 150,000. We assess the performance of our model in inferring the model parameters by

obtaining the posterior means and credible intervals for these parameters. Indicatively,

in Tables 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 we present the posterior means and credible

intervals for the false positive probabilities pc, false negative probabilities qc, the block

probabilities of having an edge θc. In addition in Table 3.10, 3.11, 3.12 we present the

posterior means for the block membership probabilities wc, for c ∈ {1, 2, 3}.

In order to investigate the performance of our algorithm in identifying the true repre-
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Sim (p1, p2, p3) (q1, q2, q3) (w
(1)
1 , w

(1)
2 ) (w

(2)
1 , w

(2)
2 ) (w

(3)
1 , w

(3)
2 )

1 (0.1,0.1,0.1) (0.2,0.2,0.2) (0.5,0.5) (0.5,0.5) (0.5,0.5)
2 (0.1,0.1,0.1) (0.2,0.2,0.2) (0.7,0.3) (0.5,0.5) (0.3,0.7)
3 (0.1,0.1,0.1) (0.3,0.3,0.3) (0.5,0.5) (0.5,0.5) (0.5,0.5)
4 (0.1,0.1,0.1) (0.3,0.3,0.3) (0.7,0.3) (0.5,0.5) (0.3,0.7)
5 (0.2,0.2,0.2) (0.1,0.1,0.1) (0.5,0.5) (0.5,0.5) (0.5,0.5)
6 (0.2,0.2,0.2) (0.1,0.1,0.1) (0.7,0.3) (0.5,0.5) (0.3,0.7)
7 (0.2,0.2,0.2) (0.3,0.3,0.3) (0.5,0.5) (0.5,0.5) (0.5,0.5)
8 (0.2,0.2,0.2) (0.3,0.3,0.3) (0.7,0.3) (0.5,0.5) (0.3,0.7)
9 (0.3,0.3,0.3) (0.1,0.1,0.1) (0.5,0.5) (0.5,0.5) (0.5,0.5)
10 (0.3,0.3,0.3) (0.1,0.1,0.1) (0.7,0.3) (0.5,0.5) (0.3,0.7)
11 (0.3,0.3,0.3) (0.2,0.2,0.2) (0.5,0.5) (0.5,0.5) (0.5,0.5)
12 (0.3,0.3,0.3) (0.2,0.2,0.2) (0.7,0.3) (0.5,0.5) (0.3,0.7)

Sim (θ
(1)
11 , θ

(1)
12 , θ

(1)
22 ) (θ

(2)
11 , θ

(2)
12 , θ

(2)
22 ) (θ

(3)
11 , θ

(3)
12 , θ

(3)
22 )

1 (0.8,0.2,0.8) (0.8,0.2,0.8) (0.8,0.2,0.8)
2 (0.7,0.05,0.8) (0.7,0.05,0.8) (0.7,0.05,0.8)
3 (0.8,0.2,0.8) (0.8,0.2,0.8) (0.8,0.2,0.8)
4 (0.7,0.05,0.8) (0.7,0.05,0.8) (0.7,0.05,0.8)
5 (0.8,0.2,0.8) (0.8,0.2,0.8) (0.8,0.2,0.8)
6 (0.7,0.05,0.8) (0.7,0.05,0.8) (0.7,0.05,0.8)
7 (0.8,0.2,0.8) (0.8,0.2,0.8) (0.8,0.2,0.8)
8 (0.7,0.05,0.8) (0.7,0.05,0.8) (0.7,0.05,0.8)
9 (0.8,0.2,0.8) (0.8,0.2,0.8) (0.8,0.2,0.8)
10 (0.7,0.05,0.8) (0.7,0.05,0.8) (0.7,0.05,0.8)
11 (0.8,0.2,0.8) (0.8,0.2,0.8) (0.8,0.2,0.8)
12 (0.7,0.05,0.8) (0.7,0.05,0.8) (0.7,0.05,0.8)

Table 3.1: Simulation regimes for 21-node networks and C = 3 clusters.

Sim (p1, p2, p3)

1 (0.09,0.10,0.11)
2 (0.10,0.10,0.10)
3 (0.10,0.10,0.10)
4 (0.11,0.10,0.10)
5 (0.19,0.19,0.20)
6 (0.20,0.20,0.20)
7 (0.20,0.20,0.19)
8 (0.20,0.20,0.19)
9 (0.31,0.30,0.31)
10 (0.31,0.30,0.31)
11 (0.30,0.29,0.30)
12 (0.30,0.30,0.28)

Table 3.2: Posterior means for false positive
probabilities pc, for c ∈ {1, 2, 3}, for simula-
tion regimes 1-12.

Sim (q1, q2, q3)

1 (0.20,0.21,0.21)
2 (0.21,0.19,0.19)
3 (0.31,0.29,0.30)
4 (0.30,0.31,0.30)
5 (0.10,0.10,0.11)
6 (0.10,0.09,0.10)
7 (0.29,0.29,0.30)
8 (0.30,0.32,0.30)
9 (0.10,0.10,0.10)
10 (0.10,0.10,0.10)
11 (0.20,0.19,0.21)
12 (0.20,0.19,0.20)

Table 3.3: Posterior means for false negative
probabilities qc, for c ∈ {1, 2, 3}, for simula-
tion regimes 1-12.

sentatives, we obtain the Hamming distance between the posterior representatives (after

a burn-in of 150,000 and a lag of 50, leaving 7000 posterior draws) and the true repre-

sentatives, and calculate the proportion of times that the distance is less or equal to 1,
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Sim p1 p2 p3 q1 q2 q3
1 (0.09,0.10) (0.09,0.11) (0.10,0.11) (0.19,0.21) (0.20,0.21) (0.19,0.22)
2 (0.09,0.11) (0.09,0.11) (0.09,0.11) (0.20,0.22) (0.18,0.20) (0.18,0.20)
3 (0.09,0.10) (0.10,0.11) (0.09,0.11) (0.30,0.32) (0.28,0.30) (0.28,0.31)
4 (0.10,0.11) (0.09,0.10) (0.09,0.11) (0.29,0.31) (0.30,0.32) (0.29,0.32)
5 (0.18,0.20) (0.18,0.20) (0.19,0.21) (0.09,0.10) (0.09,0.11) (0.10,0.12)
6 (0.19,0.21) (0.19,0.21) (0.19,0.21) (0.09,0.11) (0.09,0.10) (0.10,0.11)
7 (0.19,0.21) (0.19,0.21) (0.18,0.20) (0.28,0.30) (0.28,0.31) (0.28,0.31)
8 (0.19,0.21) (0.19,0.21) (0.18,0.20) (0.29,0.31) (0.30,0.33) (0.29,0.31)
9 (0.29,0.32) (0.29,0.31) (0.30,0.32) (0.09,0.11) (0.09,0.11) (0.10,0.11)
10 (0.30,0.32) (0.29,0.31) (0.30,0.32) (0.09,0.11) (0.09,0.11) (0.09,0.11)
11 (0.29,0.32) (0.28,0.31) (0.29,0.31) (0.19,0.21) (0.18,0.20) (0.20,0.22)
12 (0.29,0.31) (0.29,0.31) (0.27,0.30) (0.19,0.21) (0.18,0.20) (0.19,0.21)

Table 3.4: 95 % credible intervals for false positive probabilities pc and false negative
probabilities qc, for c ∈ {1, 2, 3}, for simulation regimes 1-12.

Sim (θ
(1)
11 , θ

(1)
12 , θ

(1)
22 )

1 (0.84,0.22,0.90)
2 (0.68,0.02,0.78)
3 (0.84,0.22,0.90)
4 (0.68,0.02,0.78)
5 (0.84,0.22,0.90)
6 (0.68,0.02,0.78)
7 (0.84,0.22,0.90)
8 (0.68,0.02,0.78)
9 (0.84,0.22,0.90)
10 (0.68,0.02,0.78)
11 (0.90,0.22,0.84)
12 (0.68,0.02,0.78)

Table 3.5: Posterior
means for block specific
edge probabilities θ1 of
cluster 1, for simulation
regimes 1-12.

Sim (θ
(2)
11 , θ

(2)
12 , θ

(2)
22 )

1 (0.83,0.21,0.82)
2 (0.60,0.05,0.71)
3 (0.83,0.21,0.82)
4 (0.60,0.05,0.71)
5 (0.83,0.21,0.82)
6 (0.60,0.05,0.71)
7 (0.83,0.21,0.82)
8 (0.71,0.05,0.60)
9 (0.82,0.21,0.83)
10 (0.60,0.05,0.71)
11 (0.82,0.21,0.83)
12 (0.71,0.05,0.60)

Table 3.6: Posterior
means for block specific
edge probabilities θ2 of
cluster 2, for simulation
regimes 1-12.

Sim (θ
(3)
11 , θ

(3)
12 , θ

(3)
22 )

1 (0.79,0.18,0.74)
2 (0.78,0.03,0.83)
3 (0.79,0.18,0.74)
4 (0.78,0.03,0.83)
5 (0.79,0.18,0.74)
6 (0.78,0.03,0.83)
7 (0.74,0.18,0.79)
8 (0.83,0.03,0.78)
9 (0.74,0.18,0.79)
10 (0.78,0.03,0.83)
11 (0.79,0.18,0.74)
12 (0.83,0.03,0.78)

Table 3.7: Posterior
means for block specific
edge probabilities θ3 of
cluster 3, for simulation
regimes 1-12.

5 and 10 respectively, as seen in Table 3.13.

In addition, we assess the effectiveness of our algorithm in identifying the cluster

membership of the networks, using the clustering entropy and clustering purity indices.

Notably, we obtain the 7,000 posterior draws (burn-in of 150,000 and lag of 50) for the

cluster membership z, calculate the clustering entropy and clustering purity with respect

to the true membership of the networks and obtain the mean, for each simulation regime.

We note here that a clustering entropy value of 0 and clustering purity value of 1, indicate

a perfect cluster allocation of the networks. The results are illustrated in Table 3.14.

In Figures 3.2, 3.3, 3.4, 3.5, we display the traceplots and histograms for the false
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Sim θ
(1)
11 θ

(1)
12 θ

(1)
22 θ

(2)
11 θ

(2)
12 θ

(2)
22

1 (0.73,0.94) (0.15,0.30) (0.82,0.97) (0.73,0.92) (0.14,0.29) (0.70,0.92)
2 (0.59,0.77) (0.00,0.04) (0.58,0.96) (0.47,0.72) (0.01,0.09) (0.58,0.83)
3 (0.73,0.94) (0.15,0.30) (0.82,0.97) (0.73,0.92) (0.14,0.29) (0.70,0.92)
4 (0.60,0.77) (0.00,0.04) (0.59,0.96) (0.47,0.72) (0.01,0.09) (0.58,0.83)
5 (0.73,0.94) (0.15,0.30) (0.82,0.97) (0.73,0.92) (0.14,0.29) (0.70,0.92)
6 (0.60,0.77) (0.00,0.04) (0.59,0.96) (0.47,0.72) (0.01,0.09) (0.58,0.83)
7 (0.73,0.94) (0.15,0.30) (0.82,0.97) (0.73,0.92) (0.14,0.29) (0.70,0.92)
8 (0.60,0.77) (0.00,0.04) (0.59,0.96) (0.58,0.83) (0.01,0.09) (0.47,0.72)
9 (0.73,0.94) (0.15,0.30) (0.82,0.97) (0.70,0.92) (0.14,0.29) (0.73,0.92)
10 (0.60,0.77) (0.00,0.04) (0.59,0.96) (0.47,0.73) (0.01,0.09) (0.57,0.83)
11 (0.82,0.97) (0.15,0.30) (0.73,0.94) (0.70,0.92) (0.14,0.29) (0.73,0.92)
12 (0.59,0.77) (0.00,0.04) (0.58,0.96) (0.58,0.83) (0.01,0.09) (0.47,0.72)

Table 3.8: 95 % credible intervals for block specific edge probabilities θ1 of cluster 1 and
θ2 of cluster 2, for simulation regimes 1-12.

Sim θ
(3)
11 θ

(3)
12 θ

(3)
22

1 (0.68,0.90) (0.11,0.26) (0.63,0.85)
2 (0.59,0.96) (0.00,0.06) (0.75,0.89)
3 (0.68,0.90) (0.11,0.26) (0.63,0.85)
4 (0.58,0.96) (0.00,0.06) (0.75,0.89)
5 (0.68,0.90) (0.12,0.26) (0.63,0.85)
6 (0.59,0.96) (0.00,0.06) (0.75,0.89)
7 (0.63,0.85) (0.12,0.26) (0.68,0.90)
8 (0.75,0.89) (0.00,0.06) (0.59,0.96)
9 (0.63,0.85) (0.12,0.26) (0.68,0.90)
10 (0.59,0.96) (0.00,0.06) (0.75,0.90)
11 (0.68,0.90) (0.11,0.26) (0.63,0.85)
12 (0.75,0.89) (0.00,0.06) (0.59,0.96)

Table 3.9: 95 % credible intervals for block specific edge probabilities θ3 of cluster 3, for
simulation regimes 1-12.

positive p and false negative q probabilities, for the third simulation regime of Table 3.1

indicatively, after a burn-in of 150,000 iterations. In Appendix A.2, we also present the

traceplots and histograms for θ probabilities of an edge occurrence.

We further investigate the performance of the model for various noise levels in the

network population. Specifically, we generate network populations by perturbing the

edges of the representatives of SBM structure 1, illustrated in Figure 3.1, with vary-

ing sizes of the false positive and negative probabilities. Specifically we consider the

simulation regimes presented in Tables 3.15 and 3.16.

For each regime presented in Table 3.15 and 3.16, we generate a network population,

and run our MCMC algorithm for 500,000 iterations with a burn-in of 150,000. We

obtain the posterior means for the varying false positive probability (Table 3.15) and
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Sim (w
(1)
1 ,w

(1)
2 )

1 (0.48,0.52)
2 (0.70,0.30)
3 (0.48,0.52)
4 (0.70,0.30)
5 (0.48,0.52)
6 (0.70,0.30)
7 (0.48,0.52)
8 (0.70,0.30)
9 (0.48,0.52)
10 (0.70,0.30)
11 (0.52,0.48)
12 (0.70,0.30)

Table 3.10: Posterior
means for the probability
of a node to belong to a
block w1 for cluster 1 for
simulation regimes 1-12.

Sim (w
(2)
1 ,w

(2)
2 )

1 (0.52,0.48)
2 (0.52,0.48)
3 (0.52,0.48)
4 (0.52,0.48)
5 (0.52,0.48)
6 (0.52,0.48)
7 (0.52,0.48)
8 (0.48,0.52)
9 (0.48,0.52)
10 (0.52,0.48)
11 (0.48,0.52)
12 (0.48,0.52)

Table 3.11: Posterior
means for the probability
of a node to belong to a
block w2 for cluster 2 for
simulation regimes 1-12.

Sim (w
(3)
1 ,w

(3)
2 )

1 (0.48,0.52)
2 (0.30,0.70)
3 (0.48,0.52)
4 (0.30,0.70)
5 (0.48,0.52)
6 (0.30,0.70)
7 (0.52,0.48)
8 (0.70,0.30)
9 (0.52,0.48)
10 (0.30,0.70)
11 (0.48,0.52)
12 (0.70,0.30)

Table 3.12: Posterior
means for the probability
of a node to belong to a
block w3 for cluster 3 for
simulation regimes 1-12.

Sim dH <= 1 dH <= 5 dH <= 10

1 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
2 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
3 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
4 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
5 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
6 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
7 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
8 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
9 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
10 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
11 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
12 (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)

Table 3.13: Proportion of times that the Hamming distance between the posterior rep-
resentatives and the true representatives is less or equal than 1, 5 and 10 respectively,
for simulation regimes 1-12.

the varying false negative probability (Table 3.16), for each cluster c = {1, 2, 3}, and

plot them against their true values as seen in Figures 3.6 and 3.7 respectively.

We observe that the posterior means lie mostly close to the y = x line, indicating

that our model performs well in inferring the true false positive and false negative prob-

abilities, even for high noise levels. However, in Figure 3.6, for the highest noise value of

pc = 0.45 for c = {1, 2, 3}, the posterior mean of the false negative probability of cluster

3, p3, is equal to 0.2, which is away from its true value. These results suggest that

our model performs well in most cases, even for high noise levels, however we must be

cautious when drawing inference for network populations with great variability in their
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Sim Mean Entropy Mean Purity

1 0 1
2 0 1
3 0 1
4 0 1
5 0 1
6 0 1
7 0 1
8 0 1
9 0 1
10 0 1
11 0 1
12 0 1

Table 3.14: Mean clustering entropy and clustering purity for simulation regimes 1-12.

Figure 3.2: Traceplots of the posterior draws for false positive probability pc, for c ∈
{1, 2, 3}, for 500,000 iterations with a burn-in of 150,000.
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Figure 3.3: Histograms for false positive probability pc, for cluster c ∈ {1, 2, 3}. The
pink solid line indicates the posterior mean, the blue solid line the posterior median and
the pink dashed lines indicate the 95% credible interval.

structure. Notably, different edge connectivity patterns among networks in a population

indicate variability in the networks’ structure, and one way to quantify such variability

in a population is to perform EDA by calculating pairwise distances between networks,

for different distance metrics.
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Figure 3.4: Traceplots of the posterior draws for false negative probability qc, for c ∈
{1, 2, 3}, for 500,000 iterations with a burn-in of 150,000.
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Figure 3.5: Histograms for false negative probability qc, for cluster c ∈ {1, 2, 3}. The
pink solid line indicates the posterior mean, the blue solid line the posterior median and
the pink dashed lines indicate the 95% credible interval.

Sim (p1, p2, p3) (q1, q2, q3)

1 (0.01,0.01,0.01) (0.1,0.1,0.1)
2 (0.05,0.05,0.05) (0.1,0.1,0.1)
3 (0.1,0.1,0.1) (0.1,0.1,0.1)
4 (0.15,0.15,0.15) (0.1,0.1,0.1)
5 (0.2,0.2,0.2) (0.1,0.1,0.1)
6 (0.25,0.25,0.25) (0.1,0.1,0.1)
7 (0.3,0.3,0.3) (0.1,0.1,0.1)
8 (0.35,0.35,0.35) (0.1,0.1,0.1)
9 (0.4,0.4,0.4) (0.1,0.1,0.1)
10 (0.45,0.45,0.45) (0.1,0.1,0.1)

Table 3.15: Simulation regimes for vary-
ing sizes of false positive probabilities pc
and fixed false negative probabilities qc,
for c ∈ {1, 2, 3} and 21-node networks.

Sim (p1, p2, p3) (q1, q2, q3)

1 (0.1,0.1,0.1) (0.01,0.01,0.01)
2 (0.1,0.1,0.1) (0.05,0.05,0.05)
3 (0.1,0.1,0.1) (0.1,0.1,0.1)
4 (0.1,0.1,0.1) (0.15,0.15,0.15)
5 (0.1,0.1,0.1) (0.2,0.2,0.2)
6 (0.1,0.1,0.1) (0.25,0.25,0.25)
7 (0.1,0.1,0.1) (0.3,0.3,0.3)
8 (0.1,0.1,0.1) (0.35,0.35,0.35)
9 (0.1,0.1,0.1) (0.4,0.4,0.4)
10 (0.1,0.1,0.1) (0.45,0.45,0.45)

Table 3.16: Simulation regimes for vary-
ing sizes of false negative probabilities qc
and fixed false positive probabilities pc,
for c ∈ {1, 2, 3} and 21-node networks.
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Figure 3.6: Posterior means for false pos-
itive probabilities pc for c ∈ {1, 2, 3} (y
axis), plotted against the true values of pc
(x axis). The red dotted line corresponds
to the y = x.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
true qc

po
st

er
io

r 
m

ea
n 

q c

Cluster c 1 2 3

Figure 3.7: Posterior means for false neg-
ative probabilities qc for c ∈ {1, 2, 3} (y
axis), plotted against the true values of qc
(x axis). The red dotted line corresponds
to the y = x.
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3.4.2 Varying sizes of networks and network populations

In this Section, we explore how well our model infers the parameters with respect to

various network sizes and sample sizes. We keep C = 3 clusters and B = 2 blocks. We

consider four different network sizes of 25, 50, 75 and 100 nodes, and simulate populations

of 45, 90, 135, 180, 225, 270 and 315 networks, for each network size respectively.

To simulate the network populations, we first generate the network representatives

of each cluster under the SBM network model. We specify the parameters of the SBM

model so that the expected degree of the resulting network representatives is preserved,

for all network sizes considered. The network representatives obtained for each cluster

and network size considered, are visualised in Figures 3.8, 3.9, 3.10 and 3.11. The

underlying community structures formed by the nodes of the representatives vary, as

can be noticed from the Figures. The resulting network populations are obtained by

perturbing the edges of each network representative, for each network size considered,

with a false positive pc and false negative qc probability fixed at 0.08, for c ∈ {1, 2, 3}.
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Figure 3.8: 25-node representatives of cluster 1 (top left), cluster 2 (top right) and cluster
3 (bottom).

88



1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

2122

23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43

44

45
46

47

48

49

50

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41
42

43

44

45

46

47

48

49

50

1
2

3

4

5

6

7

8

9

10

11

12

1314

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31
32

33

34

35
36

37

38

39

40

41

42

43

44

45
46

47
48 4950

Figure 3.9: 50-node representatives of cluster 1 (top left), cluster 2 (top right) and cluster
3 (bottom).
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Figure 3.10: 75-node representatives of cluster 1 (top left), cluster 2 (top right) and
cluster 3 (bottom).
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Figure 3.11: 100-node representatives of cluster 1 (top left), cluster 2 (top right) and
cluster 3 (bottom).

For each simulated data set we run the MCMC for 500,000 iterations with a burn-in

of 150,000, using Jeffrey’s non-informative priors. We demonstrate the performance of

our model by obtaining the absolute error of the model parameters for each simulation

regime, as seen in Figures 3.12 and 3.13. Specifically, the plots demonstrate the variabil-

ity of the absolute error (y axis) for various sample sizes (x axis). The absolute error is

the absolute value of the difference between the posterior means obtained after burn-in,

and the true value of the parameter. The different coloured lines and dots correspond

to the different clusters considered. The multiple dots of the same colour correspond to

5 replications of the MCMC, each on a different randomly generated data set. The lines

connect the absolute errors averaged across the replications.

The plots indicate that the sample size affects the performance of our model for

the network sizes considered. We observe as the number of nodes increase, there is an

increase in the required number of networks to preserve the same level of accuracy in es-

timation. Nevertheless, even for large networks and small sample sizes, it is encouraging

to see the posterior means obtained are not far away from their true values.

We further visualise the performance of our model in identifying the true represen-

tatives of each cluster, for the various sample sizes and network sizes. Indicatively, we
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Figure 3.12: Left: Absolute error (y axis) for model parameters p, q and τ , for 25-node
networks and varying population sizes (x axis). Right: Absolute error (y axis) for model
parameters p, q and τ , for 50-node networks and varying population sizes (x axis).
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Figure 3.13: Left: Absolute error (y axis) for model parameters p, q and τ , for 75-node
networks and varying population sizes (x axis). Right: Absolute error (y axis) for model
parameters p, q and τ , for 100-node networks and varying population sizes (x axis).

obtain the proportion of times that the Hamming distance between the representative

posterior draws and the true representative, for the corresponding cluster, is less or equal

than 1, 5 and 10. We consider the 350,000 posterior draws for the representatives, after

a burn-in of 150,000 iterations. The results are presented in Figure 3.14. The multiple

subfigures correspond to the 25, 50, 75 and 100 node representatives, and y axis indicates

the proportion of times the Hamming distance is less or equal to 1, 5 and 10 respectively.

We observe that for the 25-node and 50-node cases, the true representatives are

closely identified 100% of the times, considering the Hamming distance between the

posterior draws and the true representatives. For the 75-node case the posterior repre-

sentative of each cluster is also closely revealed with only 10 edges different from the

true representative, 100% of the times. Lastly, for the 100-node case, the identification

of the true representative of each cluster is challenging due to the huge space of graphs
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Figure 3.14: Top Left: Proportion of times the Hamming distance is less or equal to 1 (y
axis) for 25-node, 50-node, 75-node and 100-node network representatives and varying
population sizes (x axis). Top Right: Proportion of times the Hamming distance is less
or equal to 5 (y axis) for 25-node, 50-node, 75-node and 100-node network representa-
tives and varying population sizes (x axis). Bottom: Proportion of times the Hamming
distance is less or equal to 10 (y axis) for 25-node, 50-node, 75-node and 100-node net-
work representatives and varying population sizes (x axis).

that is being explored.
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3.5 Real data examples

In this Section we apply our model on two real-world data examples. First, in Section

3.5.1 we apply our mixture model on the Tacita data introduced in Section 3.3.1, which

motivated our study. Second, in Section 3.5.2 we apply our model on a collection of

networks representing connections among regions of the brain for a group of individuals.

3.5.1 Tacita application

Data preprocessing and EDA

A motivating example for our study is the population of networks resulting from the

Tacita mobile application. As introduced in Section 3.3.1, Tacita was created to enable

users to interact with displays located on Lancaster University campus. Displays are

large screens located at various public places, both indoors and outdoors, showing diverse

content such as advertisements, news and bus timetables. Tacita application allows

personalisation of the content shown on a display, according to the interests of the user

detected in close proximity of the display. In Figure 3.15 (left) we show the display

located at Alexandra Square on Lancaster University campus, while Figure 3.15 (right)

shows the locations of the displays installed on Lancaster University campus.

Tacita records the consecutive displays visited by users, along with the time visited

and the type of content shown on the display. One way to represent the data collected

from the Tacita application is through a network, where nodes correspond to displays and

edges correspond to movements of users among the displays. Consequently, we obtain

a multiple network data set, where each network observation therein corresponds to a

user’s movements across displays. Under this representation of the Tacita data, we are

Figure 3.15: Left: Display located at Alexandra Square on Lancaster University campus.
Right: Lancaster University campus map. Pink marks indicate the locations of the
displays on campus.
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interested in identifying different movement patterns of the individuals, and clustering

them according to their similarities.

The Tacita data were originally in raw format, thus preprocessing was required to

obtain the final network representations. As typically occurs with raw data, there were

faulty entries that we needed to eliminate. The faulty entries involved NAN or 0 value

ids of users, requests and displays, as well as other type of false entries such as the

detection of a user at two distant displays with very short time difference. To eliminate

the latter, we obtained a minimum time threshold for which a user can move from one

display to another, considering the coordinates of the displays and a maximum speed

that a user can move.

To derive a network representation for each user, we obtain the consecutive displays

that the user visited in chronological order for all the days and all hours of the day

that the user has been detected, and create the edges of the networks from the pairs of

consecutive displays visited. Thus, each network represents the aggregated movements

of each user across campus displays. The final data sample consists of 120 undirected

and unweighted network observations, that share the same set of 37 nodes corresponding

to displays presented in Table 3.17.

Display name Node label

SCC (C-floor) 1
Infolab Foyer 2
Faraday Left 3
Engineering Foyer (far) 4
LZ1 5
LZ3 6
Furness 1 7
Furness 2 8
Furness College 9
Engineering Foyer (near) 10
LEC 1 11
LEC 2 12
County College 13
Lonsdale College 14
Grizedale College 15
The Base 16
Faraday B 17
Faraday C 18
Bowland JCR 19

Display name Node label

ISS 20
Pendle College 21
New Engineering 22
Fylde College 23
Graduate College 24
Library A 25
Library B 26
Library C 27
Bowland Main B 28
Bowland North B 29
Hotel Conference 30
Chemistry A 31
Psychology 32
Physics 33
Law 2 34
Law 1 35
Welcome Screen 1 36
Welcome Screen 2 37

Table 3.17: Node label assigned to each display at Lancaster University.
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As our mixture model requires the pre-specification of the number of clusters C, we

conduct exploratory data analysis (EDA) to explore the potential number of clusters

formed within the Tacita network population. One way to explore that, is through the

use of network distance metrics. Specifically, for each distance metric we can derive a

distance matrix that encloses the pairwise distances of the networks in the population.

In that sense, the (i, j) element of a distance matrix encloses the value of the distance

between graphs Gi and Gj , for a specified distance metric. We note here that in our

EDA we consider various distance metrics, as our model is not a distance-based model,

thus different metrics can give us different information with respect to the presence of

clusters in the network population.

One graphical representation of the pairwise distances between networks using dis-

tance matrices is the Multi Dimensional Scaling (MDS) plot. The MDS algorithm maps

objects in a 2-d space respecting their pairwise distances. In Figures 3.16 and 3.17, we

demonstrate the MDS representation of the distance matrices calculated under the Ham-

ming distance, the Jaccard distance, the l2 distance and the distance based on wavelets.

For a description of the distance metrics considered, see Appendix A.3 and Section 1.1

of Chapter 1.

The EDA representations derived can be interpreted in more than one way. For the

Hamming and the Jaccard distance metrics, a natural assumption is the presence of

two clusters of networks in the population. However, one might argue that these plots

suggest the formation of a single cluster of networks with several networks being away

from that cluster, playing the role of outlier network observations. On the other hand,

the visualisation of the distance matrices for the l2 distance and the wavelets, suggest

more clearly the presence of two or three clusters of networks.

Due to the multiple interpretability of the EDA results, we explore the following

cases:

1. We assume C = 2 clusters of networks, with component specific representatives.

2. We assume the presence of a majority cluster of networks and a cluster of outlier

networks.

3. We assume C = 3 clusters of networks, with component specific representatives.

The initialisation of our algorithm and the results are presented in the following
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Figure 3.16: Left: MDS for Hamming distance matrix for the Tacita data. Right: MDS
for Jaccard distance matrix for the Tacita data.
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Figure 3.17: Left: MDS for wavelets distance matrix for the Tacita data. Right: MDS
for l2 distance matrix for the Tacita data.

section.

Results

We first start with the case where we have pre-specified a number of clusters C = 2. To

initialise the networks’ cluster membership, we combine the results from three different

distance metrics, namely the Jaccard, the l2 and the wavelets distance. Specifically, we

use a k-means algorithm using the R package kmed (Budiaji [2019]) to determine three

different cluster memberships, corresponding to the three different metrics considered,

and determine the final cluster membership initialisation using majority vote, i.e. by

determining which networks are consistently allocated to one of the two clusters among

the three memberships obtained. We initialise the representative of each cluster by gen-

erating its edges using independent Bernoulli draws. The probability with which we

draw an edge between two specific nodes of the representative, corresponds to the pro-

portion of times that we see that edge in the network data of the corresponding cluster.
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To initialise the block membership of the nodes of each initialised cluster representative,

we use the R package blockmodels (INRA and Leger [2015]) to obtain SBM estimates

for each representative. The results suggest the presence of two underlying blocks of

nodes in each initialised representative, however, the estimated block membership of the

nodes is different between the two representatives. As previously stated, our algorithm

allows inferences of different block structures for the representatives of different clusters,

thus we are able to initialise the block structure of each representative using the results

from the R package blockmodels. This is a particularly useful attribute of our model,

as it is anticipated that network data allocated in different clusters can have different

structures, and the structure of the networks in each cluster is depicted by the network

representative of the cluster.

We run our MCMC for 500,000 iterations with a burn-in of 100,000. In Figures 3.18

and 3.19, we present the traceplots of the false negative and false positive probabilities

for each of the two clusters. In Figure 3.20, we obtain the proportion of times that an

individual is allocated to one of the two clusters, while in Figures 3.21 we present the

proportion of times that the nodes of each representative belong in each of the two blocks

specified. To visualise a network representative for each cluster, we obtain the posterior

mode from the posterior network draws of each cluster. In Figure 3.22, we visualise the

posterior mode of each cluster network representative, with posterior masses 100% and

17% for cluster labelled 1 and 2 respectively. The posterior mass of each posterior mode

corresponds to the proportion of times that the corresponding network representative

was drawn among the last 100,000 posterior draws. The node labels of the posterior

mode network representatives correspond to the numbering of the displays presented in

Table 3.17, and the nodes positions (layout) correspond to the positions of the displays

in the physical space, thus distances correspond to real physical distances between the

displays. The two different colours of the nodes denote the block structure inferred by

our algorithm for each network representative.

For cluster 1, we observe that the representative concentrating the whole posterior

mass, is sparse having only few edges. Specifically, we note that the edges of the rep-

resentative correspond to movements of individuals among displays that are very close

to each other (e.g. edge between nodes 4 and 10 corresponding to displays in the Engi-

neering building). In addition, most of the networks in the population are allocated to
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Figure 3.18: Traceplots for false positive probabilities pc for c = 1 (left) and c = 2
(right), for 500,000 iterations and a burn-in of 100,000.

Figure 3.19: Traceplots for false negative probabilities qc for c = 1 (left) and c = 2
(right), for 500,000 iterations and a burn-in of 100,000.
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Figure 3.20: Proportion of times (y axis) an individual (x axis) is allocated to each of
the 2 clusters, after a burn-in of 100,000 iterations.

this cluster, with a very small false positive probability with posterior mean 0.0049 and

very large false negative probability with posterior mean 0.49. The small false positive

probability indicates that the edges observed in the network data are correctly recorded,

while the high false negative probability indicates that there are edges in the network

data that we do not observe. One way to explain the high false negative probabilities
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Figure 3.21: Left: Proportion of times (y axis) that each node (x axis) of the repre-
sentative network of cluster labelled 1 is allocated in Blocks 1 or 2, after a burn-in of
100,000 iterations. Right: Proportion of times (y axis) that each node (x axis) of the
representative network of cluster labelled 2 is allocated in Blocks 1 or 2, after a burn-in
of 100,000 iterations.

1

2

3

4

5
6

7

89

10
11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26
27

28 29

30

31

32

33

34

35

36 37

1

2

3

4

5
6

7

89

10
11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26
27

28 29

30

31

32

33

34

35

36 37

Figure 3.22: Left: Posterior mode of representative of cluster c = 1 with posterior mass
100%, for last 100,000 iterations. Right: Posterior mode of representative of cluster
c = 2 with posterior mass 17%, for last 100,000 iterations.

inferred by our model is the presence of very sparse networks in the population, sug-

gesting that there might be movements of users that we do not observe. Unrecorded

movements of users can be attributed to lost or weak Wi-Fi connection which affects the

functionality of Tacita application. This remark can also be justified by the movements

observed in the representative network that correspond to movements among displays

very close to each other, suggesting that when a user is in a building the WiFi connection

is preserved, thus the application can record the movements of the user. Another pos-

sible triggering factor for the high false negative probabilities inferred for both clusters,

can be the misspecification of the number of clusters in our model. The assumption of

two underlying clusters might be restrictive for the Tacita data, causing the formation of
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clusters of users with very dissimilar movements, which subsequently leads to high noise

levels. Specifically, the high false negative probability inferred for cluster c = 1 with the

sparser networks allocated to it, could be attributed to our algorithm clustering users

with short, different movements into a single cluster. Later in this Section, we further

investigate how the assumption of C = 3 clusters affects inferences for the Tacita data.

For Cluster 2, we observe that the posterior mode of the representative network

concentrates a relatively smaller posterior mass, while being denser compared to repre-

sentative of cluster 1. Moreover, an SBM structure is revealed, with the mostly connected

nodes belonging in the same block. We observe that the block with the denser connec-

tions mostly represents the central part of campus close to the central square, namely

Alexandra Square, which is a highly visited area of Lancaster University campus. How-

ever, we also notice that displays located at the eastern and western part of campus

are also allocated to the block with the centrally located displays. Notably, the Library

(nodes 25, 26, 27) and the Furness College (nodes 7, 8, 9) are centrally located buildings

on campus, while County College (node 13) and Infolab (node 2) are away from central

campus. The block structure assumed for the representative allows us to understand

the movement behaviour of the users within the cluster, by indicating the groups of

displays among which is more probable to see a connection. The goal of our analysis

is to understand the structural properties of the users’ movements without imposing

any restrictions with respect to spatial information, however it would be interesting to

explore how inferences change using the information about the displays’ locations in the

physical space. Lastly, we observe that a smaller proportion of networks is allocated

to Cluster 2, indicating that the denser networks in the population are fewer. Notably,

the posterior mean of the probability of a network to belong to cluster c, τc, is equal to

0.26 for cluster c = 2 while for c = 1 it is 0.74 as can also be deduced by Figure 3.20.

Nonetheless, the small false positive with posterior mean 0.02 and high false negative

probability with posterior mean 0.49 observed again for Cluster 2, indicate that there

might be movements of users not recorded by the application.

The ability of our model to interpret the clusters by the representatives inferred,

allows us to reveal interesting information about the data. The clusters formed are

characterised by the density of the graphs therein, indicating the sparsity of the network

population analysed. In order to explore how the networks’ sparsity affects inference, we
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apply our model on a subsample of the Tacita users whose movements between displays

are denser. One way to determine the denser networks in the sample is by utilising

the inferential results from the application of our model for C = 2 clusters. We note

here that the subsample of denser networks considered in this analysis is indicative,

and serves as an example to demonstrate how inference changes when implementing our

model on a sample of denser networks. In this regard, an alternative way to determine

a subsample of denser networks could have been considered, for example by considering

only the network observations having density above a specified threshold. The results

presented in Figures 3.23, 3.24, 3.25 and 3.26, correspond to the application of our model

on a subsample of 27 network observations of the original sample, determined by the

inferential results for C = 2. Notably, we run our MCMC for 500,000 iterations with

100,000 burn-in.

Figure 3.23: Trace plots for false positive probabilities pc for c = 1 (left) and c = 2
(right), for 400,000 iterations after a burn-in of 100,000, for denser network data.

Figure 3.24: Trace plots for false negative probabilities qc for c = 1 (left) and c = 2
(right), for 400,000 iterations after a burn-in of 100,000, for denser network data.
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Figure 3.25: Left:Proportion of times (y axis) an individual (x axis) is allocated to each
of the 2 clusters, after a burn-in of 100,000 iterations. Middle: Proportion of times
(y axis) that each node (x axis) of the representative network of cluster labelled 1 is
allocated in Blocks 1 or 2, after a burn-in of 100,000 iterations. Right: Proportion of
times (y axis) that each node (x axis) of the representative network of cluster labelled 2
is allocated in Blocks 1 or 2, after a burn-in of 100,000 iterations.
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Figure 3.26: Left: Posterior mode of representative of cluster c = 1 with posterior mass
6%, for last 100,000 iterations, for the denser networks in Tacita population. Right:
Posterior mode of representative of cluster c = 2 with posterior mass 8%, for last 100,000
iterations, for the denser networks in Tacita population.

We observe a stationarity issue, mainly for the chains of the false positive probability

of cluster 1, p1, and the vector of probabilities θ of the SBM structure (Appendix A.3.1).

With respect to p1, the non-stationarity of the chain can be attributed to the small size

of the sample of networks. Specifically, we observe that only 7 networks are allocated to

Cluster 1, imposing challenges with respect to the inference of the component specific

parameters.

Irrespectively of the denser network data considered in this example, the inference for

the false positive and false negative rates of both clusters does not change much compared
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to the whole data set considered previously. However, we observe a meaningful change

in the representatives inferred for both clusters. Notably, the representative of cluster

1 reveals movements of users mainly among the Info lab (node 2), the Furness College

(nodes 7, 8, 9) and the Library (nodes 25, 26, 27), while it introduces a new finding with

the Graduate College (node 24) becoming a commonly visited location as well. On the

other hand, the representative of cluster 2 is very similar to the representative of cluster

2 inferred in the previous application of our algorithm on the whole data set, suggesting

dense connections among 4 different locations on campus, indicatively the Infolab (2),

the Furness College (nodes 7, 8, 9), the Library (nodes 25, 26, 27) and County College

(13). Finally, we observe that only 26% of the network observations are allocated to

Cluster 1, while the rest 74% of the networks are allocated in Cluster 2.

We further apply the outlier cluster model, to explore the inferential results under

this set up. In the case of the outlier cluster model, we have a single network representing

the network population, a group of networks forming the majority cluster and a group of

networks forming the outlier cluster. We first apply this model on the whole data pop-

ulation observed for the Tacita application. We initialise the algorithm similarly to the

case were we had two clusters of networks with component specific representatives and

run our MCMC for 500,000 iterations with 100,000 burn-in. The results are presented

in Figures 3.27, 3.28, 3.29 and 3.30.

Figure 3.27: Trace plots for false positive probabilities pc for outlier cluster labelled by
c = 1 (left) and majority cluster labelled by c = 2 (right), for 400,000 iterations after a
burn-in of 100,000.
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Figure 3.28: Trace plots for false negative probabilities qc for outlier cluster labelled by
c = 1 (left) and majority cluster labelled by c = 2 (right), for 400,000 iterations after a
burn-in of 100,000.
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Figure 3.29: Posterior mode of representative network with posterior mass 74%, for last
100,000 iterations.
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Figure 3.30: Left: Proportion of times (y axis) an individual (x axis) is allocated to each
of the 2 clusters, after a burn-in of 100,000 iterations. Right: Proportion of times (y
axis) that each node (x axis) of the representative network is allocated in Blocks 1 or 2,
after a burn-in of 100,000 iterations.
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We observe that the outlier cluster is the cluster with the denser networks, as a

result the representative is highly determined by the majority cluster which encloses the

sparser networks. The posterior mode of the representative concentrates a high posterior

mass of 75%, however and SBM structure for the representative is not identified. We

further observe good chain mixing for the false positive and false negative probabilities,

and a slightly lower posterior mean for the false negative of the outlier cluster labelled

by 1, which can be justified by the higher density of the networks in that cluster. We

further investigate the impact of the sparsity of the network data on the results of the

outlier detection, and specifically on the false negative rates, by fitting the outlier cluster

model for the denser data. In Figures 3.31, 3.32, 3.33 and 3.34, we present the results

for after fitting our outlier cluster algorithm to the denser network observations. We run

our MCMC for 500,000 iterations with 100,000 burn-in.

Figure 3.31: Traceplots for false positive probabilities pc for outlier cluster labelled by
c = 1 (left) and majority cluster labelled by c = 2 (right), for 400,000 iterations after a
burn-in of 100,000, for the denser networks in Tacita population.

Figure 3.32: Traceplots for false negative probabilities qc for outlier cluster labelled by
c = 1 (left) and majority cluster labelled by c = 2 (right), for 400,000 iterations after a
burn-in of 100,000, for the denser networks in Tacita population.
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Figure 3.33: Posterior mode of representative network with posterior mass 10%, for last
100,000 iterations, for the denser networks in Tacita population.
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Figure 3.34: Left: Proportion of times (y axis) an individual (x axis) is allocated to
each of the 2 clusters, after a burn-in of 100,000 iterations, for the denser networks in
Tacita population. Right: Proportion of times (y axis) that each node (x axis) of the
representative network is allocated in Blocks 1 or 2, after a burn-in of 100,000 iterations,
for the denser networks in Tacita population.

The false negative probability inferred for the outlier cluster labelled by 1 (Figure

3.32) drops significantly when we consider only the denser network data for the outlier

cluster model. In addition, there is a discrepancy between the region of values that are

being explored for the false negative probabilities of each cluster. Specifically, for the

outlier cluster labelled by 1, the algorithm explores a region of smaller values for the

false negative probability, as opposed to the majority cluster labelled by 2 for which the

region of values being explored for the false negative probability is larger, which can

be explained by the sparser networks in that cluster. Finally, the representative has a

similar block structure with those seen in the representative of the previous applications

of our algorithm, with mostly connected nodes being the nodes representing the displays
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at the Info lab (node 2), the Furness College (nodes 7, 8, 9), the Library (nodes 25, 26,

27) and the County College (node 13).

We further investigate how the inferential results change when specifying a simpler

network model for the representatives of the clusters, namely the Erdös-Rényi model.

As discussed in Chapter 1, Section 1.2, the Erdös-Rényi model assumes that all edges in

a network are equally probable to occur with a common probability θ. Our motivation

for the Erdös-Rényi model results from the non-identified block structure for the rep-

resentatives in the previous implementations of our algorithms, as seen in Figures 3.29

and 3.22. In appendix A.3.1, we present the results after specifying the Erdös-Rényi

model, for both the case of C = 2 and the outlier cluster model, applied on the whole

population of users. The inferential results for the parameters and latent variables of

our model under the Erdös-Rényi model specification are similar to the results obtained

with the SBM presented in this Section, suggesting that our method is consistent under

any model specification for the representatives.

Lastly, we implement our clustering algorithm for C = 3 on the whole multiple

network data set, assuming a SBM structure for the component specific network repre-

sentatives. We initialise the algorithm similarly to the initialisation performed for the

C = 2 cluster case, with sole difference that we now consider four distance metrics,

namely the Hamming, the Jaccard, the l2 and the wavelets distances, to initialise the

cluster membership of the networks using majority vote. We run our MCMC for 500,000

iterations with 100,000 burn-in, and illustrate the results in Figures 3.35, 3.36, 3.37, 3.38

and 3.39.

Figure 3.35: Trace plots of false positive probabilities pc for c = {1, 2, 3}, for 400,000
iterations of the MCMC after a burn-in of 100,000 iterations.
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Figure 3.36: Trace plots of false negative probabilities qc for c = {1, 2, 3}, for 400,000
iterations of the MCMC after a burn-in of 100,000 iterations.
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Figure 3.37: Left: Proportion of times (y axis) that each node (x axis) of the repre-
sentative network of cluster labelled 1 is allocated in Blocks 1 or 2, after a burn-in of
100,000 iterations. Middle: Proportion of times (y axis) that each node (x axis) of the
representative network of cluster labelled 2 is allocated in Blocks 1 or 2, after a burn-in
of 100,000 iterations. Right: Proportion of times (y axis) that each node (x axis) of the
representative network of cluster labelled 3 is allocated in Blocks 1 or 2, after a burn-in
of 100,000 iterations.
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Figure 3.38: Proportion of times (y axis) an individual (x axis) is allocated to each of
the 3 clusters, after a burn-in of 100,000 iterations.
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Figure 3.39: Top Left: Posterior mode for the representative of cluster labelled by 1,
with posterior mass 100%, for the last 100,000 iterations. Top Right: Posterior mode for
the representative of cluster labelled by 2, with posterior mass 37%, for the last 100,000
iterations. Bottom: Posterior mode for the representative of cluster labelled by 3, with
posterior mass 15%, for the last 100,000 iterations.

From Figure 3.37, we observe that a block structure is not identified for the repre-

sentative of cluster c = 1, while for the representatives of clusters 2 and 3, a similar

block membership is revealed. However, we notice some differences between the block

memberships of the representatives’ nodes for clusters 2 and 3, namely for nodes labelled

1, 3, 5, 7, 10, 11, 12 and 13. In addition, for the representative of cluster 3, the nodes are

more clearly allocated to each of the two blocks, as seen from the proportions in Figure

3.37.

As commented earlier, the high false negative probabilities inferred by our algorithm

can be attributed to a misspecification of the number of clusters C. Specifically, the
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assumption of C = 3 clusters may be restrictive, thus forcing dissimilar network obser-

vations to group together, which subsequently increases the noise in each cluster. In

this regard, the specification of more than 3 clusters could potentially improve the noise

levels in each cluster, however, it could also lead to the formation of smaller clusters with

only few observations, making inferences of cluster-specific representatives impractical.

This can also be noticed from Figure 3.38 where clusters 2 and 3 contain only 17% and

18% of the network observations respectively, which observations previously formed a

single cluster under case C = 2. Thus, the cluster with the less observations under case

C = 2, split into two smaller clusters under case C = 3. Nonetheless, from Figure 3.38

we observe that most individuals are clearly allocated to one of the three clusters.

For cluster c = 1, we observe that the representative concentrating the whole pos-

terior mass is sparse having only few edges and no SBM structure. We notice that

the connectivity patterns of the network representative of cluster 1, are similar to the

connectivity patterns of the sparser network representative obtained under the C = 2,

in Figure 3.22, with edges connecting displays closely located to each other (e.g. edge

between nodes 4 and 10 corresponding to displays both located in the same building).

In addition, most of the networks in the population are allocated to this cluster with

a very small false positive probability with posterior mean 0.003 and very large false

negative probability with posterior mean 0.49, similarly to previous results discussed in

this Section.

For cluster c = 2, we observe that the posterior mode of the representative network

concentrates a posterior mass of 37%, while being slightly denser compared to the repre-

sentative of cluster 1. Moreover, an SBM structure is revealed, with the mostly connected

nodes belonging in the same block. This representative reveals a specific movement pat-

tern of the users allocated in cluster 2, corresponding to the displays located at the

central part of the campus (nodes 5, 6, 16, 25, 26, 27), as well as displays located at

Infolab (nodes 1 and 2), and Furness College (4 and 10). However, there is a smaller

proportion of networks allocated to cluster 2 compared to cluster 1. Furthermore, the

posterior mean of the false positive probability is equal to 0.02 while the posterior mean

of the false negative probability is equal to 0.49.

Lastly, for cluster c = 3 the posterior mode of the network representative concentrates

a posterior mass equal to 15%, which is smaller compared to the posterior masses of the
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posterior modes obtained for the other two representatives. We notice similarities both in

the block structure and the connectivity patterns of the representatives of clusters 2 and

3. However, the representative of cluster 3 is notably denser, and some new movements

of individuals at displays labelled 3 and 13 (Faraday College and County College) are

discovered. We also note that for cluster 3, the posterior means obtained for the false

positive and false negative probabilities are similar to those of cluster 2. In addition,

clusters 2 and 3 have a similar proportion of individuals. Overall, a common movement

pattern is discovered for individuals in clusters 2 and 3, indicating movements among

displays located in the central part of the campus.

In general, we see that under the specification of C = 2, the individuals previously

allocated to cluster 2 with the denser network representative (Figure 3.22) are now

divided into clusters 2 and 3, under the case of C = 3 specified. Thus, pre-defining the

number of clusters to C = 3 leads to the discovery of a new, slightly different movement

pattern of the individuals.

In conclusion, we observe that our model identifies clusters of individuals with differ-

ent movement patterns, which was the main research question raised for the Tacita data.

Our modelling framework allows inferences of cluster-specific representative networks,

that usefully summarise information about the network observations in the correspond-

ing cluster. As we would anticipate, most network representatives indicate movements

of users between displays located at the most central part of campus, close to Alexan-

dra Square, which is a popular area on Lancaster University campus. Nonetheless, we

further observe high false negative probabilities inferred for each cluster. There are mul-

tiple ways to explain the high false negative probabilities inferred. One triggering factor

is the networks’ sparsity, as indicated by the lower noise levels inferred for the denser

network observations under the outlier cluster model. The sparsity of the networks can

be attributed to the Tacita application not recording movements of users due to weak

signal or users’ disengagement from the application. Another triggering factor for the

high false negative noise can be the misspecification of the number of clusters C. In

our analysis, we considered both the case of C = 2 and C = 3 clusters, however, the

specification of more than three clusters could potentially assist in obtaining clusters

with lower noise levels.
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3.5.2 Brain data application

In this section we analyse a real multiple network data example, emerging from the field

of Neuroscience. In this data example, the brain connectivity patterns across different

regions of the brain were measured for 30 healthy individuals at resting state. For

each individual, a series of 10 measurements were taken over a one-month period, using

diffusion magnetic resonance imaging (dMRI). The measurements are represented as

networks, with nodes corresponding to fixed regions of the brain and edges denoting

the connections recorded among those regions. Specifically, the network data consist of

200 nodes (regions of the brain) according to the CC200 atlas (Craddock et al. [2012]).

However, we have no information about the correspondence between the nodes’ labels

and the physical structure of the brain at the time of our analysis. The resulting network

population consists of 300 undirected networks, corresponding to the 10 brain-scans

taken for the 30 individuals.

This data have been discussed in the study of Zuo et al. [2014], Arroyo et al. [2019] and

Lunagómez et al. [2021], with the latter two studies analysing the data from a modelling

perspective. Specifically, Arroyo et al. [2019] investigate the ability of their method

to identify differences among individuals with respect to communities formed from the

networks’ nodes, while Lunagómez et al. [2021], assume unimodality of the probabilistic

mechanism that generates the network population, and infer a representative network

for the population of individuals, according to a pre-specified distance metric. None of

these approaches seek to determine and interpret clusters of networks. In this study we

aim to answer the following research questions about the brain network data: First, can

we detect clusters of individuals with similar brain connectivity patterns? Specifically,

can we detect similarities between the brain scan measurements taken for the same

individual, and cluster those accordingly? Can we obtain meaningful summaries for

the clusters utilising the parameterisation of our model? Notably, can we infer network

representatives for the clusters as well as make inferences for their structure assuming a

Stochastic Block Model?

Before implementing our mixture model on the brain network population, we first

conduct EDA to investigate information contained in the data with respect to the forma-

tion of underlying clusters. Similarly to the EDA performed for the Tacita application

in Section 3.5.1, we obtain the pairwise distances among the network data, with respect
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to the Jaccard distance, the wavelets and the l2 distance. Thence, we obtain a 2-d rep-

resentation of the distance matrices using MDS. In Figures 3.40 and 3.41, we illustrate

the MDS representations of the three distance metrics considered.
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Figure 3.40: Left: MDS for Jaccard distance matrix for brain network data. Right:
MDS for Wavelets distance matrix for brain network data.
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Figure 3.41: MDS for l2 distance matrix for brain network data.

From the MDS plots, we observe that the three different distance metrics reveal

different information about similarities between the brain networks, similarly to the

Tacita application (Section 3.5.1). The MDS plot for the spectral distances being the

wavelets and the l2 distance, suggest that the network population forms a single cluster,

with some networks being away from that cluster. In contrast, considering the MDS

plots of the Jaccard distance, we observe that the network data are more scattered on

the 2-d surface, potentially suggesting the formation of multiple clusters of networks.

To begin, we implement the outlier cluster detection algorithm on the brain networks,

assuming a single representative that has SBM structure with B = 2 blocks. We initialise

the algorithm in the same way we initialised the algorithm for the Tacita data (Section

3.5.1). Hence, we determine an initial membership of networks in two different clusters

by implementing a k-means algorithm using the R package kmed (Budiaji [2019]). This
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is done for three distance matrices that correspond to the Jaccard, the wavelets and

the l2 distance metrics. We combine the results using majority vote, to obtain the

initial cluster membership of each network. We initialise the network representative by

generating its edges through independent Bernoulli draws, with probabilities equal to

the proportion of times the corresponding edge is observed in the network data. We

initialise the block membership of the representative’s nodes by SBM estimation on the

initial representative using the R package blockmodels (INRA and Leger [2015]). For

the rest of the parameters of the model we consider three different random initialisations,

and run the MCMC for each initialisation for 1,000,000 iterations.

In Figures 3.42 and 3.43, we present the traceplots of the false positive and false

negative probabilities, for the majority cluster and the outlier cluster, after running our

algorithm for 1,000,000 iterations under three different initialisations. We observe that

under the three different initialisations the algorithm converges very quickly to the same

region. This is encouraging and suggests that a high posterior region has been identified.

Figure 3.42: Left: Trace plot for false positive probability p for majority cluster for
1,000,000 iterations and three different initialisations. Right: Trace plot for false nega-
tive probability q for majority cluster for 1,000,000 iterations and three different initial-
isations.

We also compare the results of our algorithm under the three different initialisations,

by obtaining the posterior mode of the representative network for the last 50,000 itera-

tions. In Figure 3.44 (left), we obtain the posterior mode for the network representative

under the first initialisation of our algorithm, with posterior mass 0.08. The colours of

the nodes correspond to the block membership of the representative’s nodes. In Figure

3.44 (middle), we visualise only the not in common edges between the posterior modes

of the first and second initialisation to facilitate comparisons. The black edges corre-

spond to the edges present in posterior mode of the first initialisation and not present

in the posterior mode of the second initialisation, and the pink edges correspond to the
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Figure 3.43: Left: Trace plot of false positive probability for outlier cluster pout for
1,000,000 iterations and three different initialisations. Right: Trace plot of false negative
probability for outlier cluster qout for 1,000,000 iterations and three different initialisa-
tions.

Figure 3.44: Left: Posterior mode of representative network from 1st initialisation. Mid-
dle: Network with not in common edges between posterior modes of representatives from
1st and 2nd initialisation. Right: Network with not in common edges between posterior
modes of representatives from 1st and 3rd initialisation. The nodes’ colours correspond
to the block structure identified under each initialisation.

edges present in the posterior mode under the second initialisation and not present in

the posterior mode of the first initialisation. In Figure 3.44 (right), we visualise the not

in common edges between the posterior modes of the first and third initialisation. In

addition, the posterior mode of the second initialisation has posterior mass of 0.08, while

the posterior mode of the third initialisation has posterior mass of 0.16.

In Figure 3.45, we further illustrate the empirical marginal probability of observing an

edge in the representative network inferred under each initialisation, considering the last

50,000 posterior draws. The darker colours in the matrices correspond to higher marginal

probabilities, while the brighter colours correspond to smaller marginal probabilities.

To illustrate the block membership structure in the matrices, we reorder the rows and

columns according to the block structure inferred for the representative from the first

initialisation, and keep the same order for the matrices of the representatives from the
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Figure 3.45: Left: Matrix of empirical marginal probability of each respective edge for
representative under 1st initialisation. Middle: Matrix of empirical marginal probabil-
ity of each respective edge for representative under 2nd initialisation. Right: Matrix
of empirical marginal probability of each respective edge for representative under 3rd

initialisation. The darker colours correspond to higher marginal probabilities.

second and third initialisation, so that the results are comparable. The matrices show

the two underlying blocks in the representatives under each initialisation, with the higher

marginal probabilities of an edge occurring for nodes belonging in the same block. We

also notice that the matrices obtained under all three different initialisation are very

similar.

There are three interesting findings with respect to the representative inferred under

the three different initialisation. First, there is only a small proportion of edges not in

common among the posterior modes under the three different initialisations, considering

the density of the graphs. Second, our algorithm infers the same block structure for

the three posterior modes of the representative networks. Third, the posterior masses

concentrated by the posterior mode representatives are small, as anticipated due to the

high dimensional space of the networks.

We further observe a smaller false negative rate inferred for the outlier cluster com-

pared to the majority cluster, suggesting that the edges not observed in the network

data for the outlier cluster are more likely to be correct compared to the majority clus-

ter. This finding also suggests that the network data in the outlier cluster are sparser

compared to the majority cluster. Also, the small false positive probabilities for both

clusters indicate that the edges observed in the network data are likely correct.

In Figure 3.46, we present the results for the cluster membership z of the network

observations for the first initialisation. Specifically, we calculate the proportion of times

that a network observation is allocated to the majority or the outlier cluster, labelled by

1 and 2 respectively, for the last 100,000 iterations. Each subfigure in Figure 3.46, shows

the cluster allocation of the multiple brain scans obtained for the same individual. We
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see that our model mostly allocates scans of the same individual to the same cluster.

Thus, our model detects similarities among the brain scans of the same individual, giving

credence to our model clustering the networks sensibly. From Figures 3.47 and 3.48, we

further notice that the same cluster membership is inferred for the networks under the

second and third initialisation of the algorithm. In addition, the posterior means for the

cluster weights τ1 and τ2 after a burn-in of 200,000 iterations of our MCMC are 0.62

and 0.38 respectively, under all three initialisations.

This is a common finding with Arroyo et al. [2019] who performed semi-supervised

classification on the brain network population. However, our approach is different to

Arroyo et al. [2019] in two ways. First, we implement an unsupervised method to infer

underlying clusters of networks. We only pre-define the number of cluster in the popu-

lation. Second, the interpretation of the results of our model-based clustering method

compared to Arroyo et al. [2019] differs significantly, as our model reveals a cluster of

individuals whose brain connectivity patterns are different to a majority group, and are

interpreted through a parametric model.
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Figure 3.46: Proportion of times that each of the 10 brain scans taken for the 30 indi-
viduals is allocated in cluster labelled 1 and/or 2, under the first initialisation.
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Figure 3.47: Proportion of times that each of the 10 brain scans taken for the 30 indi-
viduals is allocated in cluster labelled 1 and/or 2, under the second initialisation.
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Figure 3.48: Proportion of times that each of the 10 brain scans taken for the 30 indi-
viduals is allocated in cluster labelled 1 and/or 2, under the third initialisation.

We now implement our cluster detection algorithm, assuming C = 2 clusters of

networks, with component specific network representatives having SBM structure with

B = 2 blocks. Considering the dimensionality of the problem, inferring two 200-node

network representatives is a very challenging task. Challenges arise not only from the

dimensionality of the space of graphs with 200 nodes, but also from the association

between the sample size N and the networks’ size n.

We initialise our algorithm similarly to the outlier cluster detection algorithm pre-

sented in this Section, and run the MCMC for 1,000,000, under the three different
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initialisations. The trace plots for the false positive and false negative probabilities, for

clusters labelled 1 and 2, are presented in Figures 3.49 and 3.50, respectively.

Figure 3.49: Left: Trace plot for false positive probability p1 for cluster labelled by 1, for
1,000,000 iterations and three different initialisations. Right: Trace plot for false nega-
tive probability q1 for cluster labelled by 1, for 1,000,000 iterations and three different
initialisations.

Figure 3.50: Left: Trace plot for false positive probability p2 for cluster labelled by 2, for
1,000,000 iterations and three different initialisations. Right: Trace plot for false nega-
tive probability q2 for cluster labelled by 2, for 1,000,000 iterations and three different
initialisations.

Similarly to the results obtained from the outlier cluster detection, we observe that

the algorithm converges to the same region of values under the three initialisations, for

both the false positive and false negative probabilities. However, we note a stationar-

ity issue of the chains, suggesting that potentially more iterations of our MCMC are

required. Again, we notice that the false positive probabilities inferred are significantly

lower than the false negative probabilities, for both clusters. As discussed in the previous

Section 3.5.1 for the Tacita data, this finding may suggest that the assumption of C = 2

clusters may be restrictive for the data. This result could also potentially suggest that

there are edges not recorded in the brain networks leading to an increase of the false
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negative rates. Constructing networks from brain images may result in false recording

of edges and non-edges, due to the use of thresholds for determining the presence or

absence of edges between brain regions (Prajapati and Emerson [2020]).

In Figures 3.51 (left) and 3.53 (left), we visualise the posterior modes for the net-

work representatives of clusters 1 and 2 respectively, while in Figures 3.51 (middle and

right) and 3.53 (middle and right), we visualise networks with the not in common edges

between the posterior modes from each initialisation, similarly to the visualisation ob-

tained for the outlier detection for the brain data presented earlier. The posterior modes

for the network representatives of each cluster under the three different initialisations

vary significantly, as can be seen from the not in common edges visualised in the mid-

dle and right networks of Figures 3.51 and 3.53. The results indicate the challenging

nature of the problem, as anticipated. However, the block structure inferred for the net-

work representative of each cluster remains largely stable under all three initialisations,

as can be noticed from the coloured nodes of the posterior modes in Figures 3.51 and

3.53. This can also be noticed from Figures 3.52 and 3.54 that illustrate the empirical

marginal probabilities of edges in representatives of cluster 1 and 2 respectively, similarly

to the visualisation obtained for the representative of the outlier cluster model on the

brain data, which illustrate that the probability of observing an edge is higher for nodes

within the same block.

In Figures 3.55, 3.56 and 3.57, we present the cluster membership of the networks

inferred from each initialisation of the algorithm. The figures show that our model

tends to allocate brain-scans of the same individual, to the same cluster, however, the

results are not very consistent under the three different initialisations. Specifically, the

posterior means for the cluster weights τ1 and τ2 after a burn-in of 200,000 iterations of

our MCMC, are 0.61 and 0.39 respectively under the first initialisation, 0.54 and 0.46

respectively under the second initialisation and 0.59 and 0.41 respectively under the

third initialisation.

In summary, we observe that both the implementation of our model for C = 2

clusters as well as the implementation of our outlier cluster model on the brain networks,

reveal a sensible clustering of the network observations as can be deduced from the

results showing that brain scans of the same individual are mostly allocated in the same

cluster. In addition, for the outlier cluster model, we observe that the clustering of the
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Figure 3.51: Left: Posterior mode of representative network of cluster 1 from 1st ini-
tialisation. Middle: Network with not in common edges between posterior modes of
representatives of cluster 1 from 1st and 2nd initialisation. Right: Network with not in
common edges between posterior modes of representatives of cluster 1 from 1st and 3rd

initialisation. The nodes’ colours correspond to the block structure identified under each
initialisation.

Figure 3.52: Left: Matrix of empirical marginal probability of each respective edge for
representative of cluster 1 under 1st initialisation. Middle: Matrix of empirical marginal
probability of each respective edge for representative of cluster 1 under 2nd initialisation.
Right: Matrix of empirical marginal probability of each respective edge for representative
of cluster 1 under 3rd initialisation. The darker colours correspond to higher marginal
probabilities.

networks is consistent under all three initialisations, however, this is not the case with

the two-cluster model. The unstable clustering results of the C = 2 cluster model can be

explained by the challenging nature of inferring two 200-node network representatives

(one for each cluster) considering the size of the sample N = 300 networks. This can

also be noticed from the posterior modes obtained for the network representatives of the

clusters under the C = 2 cluster model, which are also unstable under the three different

initialisations. Nonetheless, inferring a single network representative under the outlier

cluster model is a feasible task as can be noticed from the stability of the results under

the three initialisations, indicating that we can obtain a meaningful summary for the

data. Lastly, it is encouraging that the traceplots of the false positive and false negative

probabilities explore the same region of values under all three initialisations, however,

high false negative rates may suggest the presence of more than two clusters in the data.
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Figure 3.53: Left: Posterior mode of representative network of cluster 2 from 1st ini-
tialisation. Middle: Network with not in common edges between posterior modes of
representatives of cluster 2 from 1st and 2nd initialisation. Right: Network with not in
common edges between posterior modes of representatives of cluster 2 from 1st and 3rd

initialisation. The nodes’ colours correspond to the block structure identified under each
initialisation.

Figure 3.54: Left: Matrix of empirical marginal probability of each respective edge for
representative of cluster 2 under 1st initialisation. Middle: Matrix of empirical marginal
probability of each respective edge for representative of cluster 2 under 2nd initialisation.
Right: Matrix of empirical marginal probability of each respective edge for representative
of cluster 2 under 3rd initialisation. The darker colours correspond to higher marginal
probabilities.
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Figure 3.55: Proportion of times that each of the 10 brain scans taken for the 30 indi-
viduals is allocated in cluster labelled 1 and/or 2, under the first initialisation.
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Figure 3.56: Proportion of times that each of the 10 brain scans taken for the 30 indi-
viduals is allocated in cluster labelled 1 and/or 2, under the second initialisation.
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Figure 3.57: Proportion of times that each of the 10 brain scans taken for the 30 indi-
viduals is allocated in cluster labelled 1 and/or 2, under the third initialisation.

3.6 Discussion

In this Chapter we introduced a mixture model for multiple network data that allows

us to identify clusters of networks in a population. To achieve this, we formulated a

mixture of measurement error models and developed a Bayesian framework that allows

us to make inferences for all model parameters jointly. This framework permits a diverse

specification of the network model for the representative networks in the population,
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determined according to the type of information we want to exploit based on the data.

We examined the performance of our model in both the task of clustering network

data and inferring the model parameters, through extensive simulation studies. Notably,

for moderate-sized networks our algorithm successfully inferred the model parameters

and accurately clustered the network data, even for regimes with high noise levels. This

is an interesting result, as for high noise levels there is great variability in the structure

of the simulated network population, making inference a challenging task. The results

suggested that our model can perform well for a range of real data applications.

In Section 3.4.2, we further examined the model performance for large network and

population sizes. This had not been explored by Signorelli and Wit [2020] who also

develop a model-based approach for clustering multiple network data. The simulations

performed under this setting have led to two interesting findings. First, we observed

that the absolute errors of the posterior means for the parameters were small, even for

large network sizes and a relatively small sample size. This suggests that our algorithm

does not require a large number of network observations to accurately infer the model

parameters. Second, the representative networks for each cluster were inferred with good

accuracy, for network sizes of up to 75 nodes. Thence, in contrast to Signorelli and Wit

[2020] who infer only scalar parameters for interpreting the clusters detected, we are able

to infer network representatives characterising the network data of the cluster with good

accuracy. However, we note that for the 100-node case the network representatives are

not closely identified. This is not surprising considering the size of the space of 100-node

graphs.

The flexibility of our modelling framework in answering diverse research questions

was demonstrated through two real-world applications. The clustering performed on

the Tacita application revealed different movement patters of the users. This can be

deduced by the network representatives inferred for the clusters, which are primarily

characterised by their density. The clusters characterised by the sparser representative,

reveal movements among closely located displays on campus. This can be interpreted

in two ways: (i) the Tacita application fails to record movements of the individuals

due to weak WiFi connection, as a result only movements between displays at close

proximity are recorded (ii) the users are not engaged to the Tacita application. The

clusters represented by the denser networks, reveal a specific movement patterns of the
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individuals. As the majority of the networks are very sparse it was encouraging to see

that our model was able to separate out the denser networks and further distinguish

different clusters among this subset of individuals.

The analysis of the brain network data led to some interesting findings. First, the

results from both the cluster detection and the outlier cluster detection, suggest that we

identified a high posterior region for the false positive and false negative probabilities

of each cluster. Second, for the outlier cluster detection performed, a similar posterior

mode for the network representative was inferred under the three different initialisations.

These are especially encouraging given the high dimensional space spanned by 200-node

network representatives. Lunagómez et al. [2021] who also obtain a network represen-

tative in terms of a Fréchet mean for the same brain network population, resorted to

divide-and-conquer methods to be able to make inferences, while Arroyo et al. [2019] do

not characterise the population via a parameterisation, and specifically via a network

representation.

Our model could potentially incorporate covariates at the node or edge level to inform

the inference. In some network applications, it is common to have additional information

about the nodes or the edges of the network. For example, the Tacita mobile application

also records the type of content shown by the display at the time visited by the user.

The incorporation of this additional information could potentially lead to interesting

additional findings.

For outlier cluster detection, although we assume one majority and one outlier cluster,

our framework can be more flexible. We could assume the presence of two or more

clusters of outlier networks that could describe different levels of variability in the data.

However, the data may not always support such inferences.

An interesting result from both the Tacita and the brain networks application, is

the high false negative probabilities inferred for the clusters. Notably, for the Tacita

application this finding suggests that there are edges in the network data not recorded

by the application, which is a meaningful result considering that the application might

fail to record a user due to weak signal, or due to inactive users. We further investigated

whether the sparsity of the network data results in high false negative probabilities by

applying our algorithm on the denser network data of the Tacita population. From this

application we noticed that lower false negative probabilities were inferred, indicating
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that network data sparsity results in higher false negative rates.

Network sparsity is a common issue in many real world network applications. One

way to deal with the sparsity would be to consider shrinkage priors e.g. formulating

the Horseshoe priors (Carvalho et al. [2009]). Another way to account for the networks’

sparsity, is to assume that the networks are partially observed. In the literature, partially

observed networks have been considered under two different perspectives. The coarsening

approach focuses on incorporating the coarsening mechanism, that allows us to only

partially observe the networks in the model, and efficiently impute the partially observed

data thereafter (Heitjan and Rubin [1991], Handcock and Gile [2010], Heitjan and Rubin

[1990], Kim and Hong [2012]). Another approach focuses on the missingness of certain

edges and performs edge prediction (Koskinen et al. [2013], Marchette and Hohman

[2015], Zhao et al. [2017], Airoldi and Blocker [2013]). Under the first approach, one

way we could incorporate the coarsening mechanism is through the assumption of a

sampling design, while under the second approach we could have a two-stage method

which would first involve performing link prediction, and second performing inference.

All the aforementioned approaches require significant modifications of our model and

present interesting avenues for future research.

Finally, a natural extension of our model, is to allow simultaneous inference for the

number of clusters as well. To achieve this, methods in the literature such as the re-

versible jump MCMC (Richardson and Green [1997]) and Dirichlet Process (DP) mixture

models (Neal [2000]) could be adopted. Reversible jump MCMC would be particularly

challenging due to the MCMC moving between very different dimensions to make in-

ferences. DP mixture models would require a different MCMC scheme but present an

interesting possibility to consider.
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Chapter 4

Bayesian Inference for Models in

the Spherical Network Family

(SNF) using Importance

Sampling (IS)

4.1 Introduction

In this Chapter we return to the Spherical Network Family (SNF) of models presented

earlier in Chapter 2, Section 2.2.1 of this thesis. The SNF model was introduced by

Lunagómez et al. [2021] as a model for capturing the probabilistic mechanism that

generates a network population. The key idea behind the modelling approach proposed

by Lunagómez et al. [2021], is the presence of a network representative playing the

role of the mean in a network population, and a dispersion parameter describing the

concentration of the observed network data around the network representative, with

respect to a distance metric specified by the statistician. Under this assumption, the

likelihood of observing a population of graphs G1, · · · ,GN is

P (AG1 , · · · , AGN | AGm , γ) ∝ exp

{
−γ ·

N∑
i=1

φ(dG(AGi , AGm))

}
,

where Gm is the network representative, dG(·, ·) is a distance metric, γ is the dispersion

with γ > 0 and φ(·) > 0 is a monotone increasing function. The normalising constant of
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this model is the reciprocal of

Z(AGm , γ) =
∑

AG∈{G|n|}

exp{−γ · φ(dG(AG , AGm))},

which involves the sum over the space of n-node graphs, denoted by {G|n|}. The number

of graphs that a space of n-node undirected graphs encloses is equal to 2
n(n−1)

2 , thus,

as the network size n increases the corresponding space of graphs increases drastically,

making the calculation of the normalising constant computationally infeasible even for

small network sizes. Several approximation techniques have been proposed for tackling

the problem of an intractable normalising constant (Chen and Shao [1997], Meng and

Wong [1996], Gelman and Meng [1994], Murray et al. [2012], Alquier et al. [2016]).

Lunagómez et al. [2021] circumvent the problem of the double-intractable normalising

constant for the SNF model using the Auxiliary Variable method presented by Møller

et al. [2006]. More details about the implementation of the Auxiliary Variable technique

for the SNF model are discussed in the following Section 4.2.1. However, for some

network distance metrics, the Auxiliary Variable method provides poor mixing results. In

our work, we propose the use of an alternative method to the Auxiliary Variable method,

namely an Importance Sampler (Chen and Shao [1997]), as it allows better mixing

of the MCMC chains under different distance metric specifications in the SNF model.

In addition, we introduce a new network distance metric that measures dissimilarities

between networks with respect to their cycles, as cycles reveal information about network

topology (Maugis et al. [2017], Fan et al. [2019]), and is a motif of interest in many

applications (Sokhn et al. [2012], Koutrouli et al. [2020], Sizemore et al. [2018], Han

et al. [2017]) .

A multiple network data set that motivated our work is a collection of ecological

networks representing aggressive interactions between species of fish, at multiple reefs

in the Indo-Pacific ocean. From an ecological perspective, it is of interest to identify

competitive behaviours among species of fish in the observed network data (Keith et al.

[2018]). One way to make inferences about the population of fish networks is to formulate

the SNF model that allows us to determine a distance metric, according to the type of

information that we want to capture. In light of this, we elicited a network distance

metric that captures information about the competitive behaviours between species of
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fish, namely the Hamming-Symmetric difference (HS) distance metric, which involves the

symmetric difference between the networks’ cycles. However, making inferences using

the SNF model with our proposed HS distance metric is challenging due to the presence

of the intractable normalising constant.

Among the most widely used approaches for addressing the problem of the intractable

normalising constant, is the Importance Sampling (IS) approximation technique. In

broad terms, IS is a method that uses random samples from a proposal density, instead

of sampling directly from the distribution of interest. In the context of intractable dis-

tributions, IS and generalisations of it, namely the Bridge Sampling, the Path Sampling

and the Sequential Monte Carlo Samplers (Chen and Shao [1997], Gelman and Meng

[1994], Everitt et al. [2017a], Everitt et al. [2017b]), are used to estimate either the nor-

malising constant of the distribution of interest directly, or the ratio of two normalising

constants, or the evidence and the Bayes Factor (BF) of two models under comparison.

On the other hand, exact sampling methods involve the use of auxiliary variables in a

Metropolis-Hastings algorithm that allow the cancellation of the normalising constants

from the MH ratio, as seen in Møller et al. [2006] and Murray et al. [2012]. For a more

descriptive review on the approaches developed for approximating normalising constants,

refer to Section 4.2.2.

Lunagómez et al. [2021] formulate a Metropolis-Hastings algorithm to infer the pa-

rameters of the SNF model, and apply the Auxiliary Variable technique presented in

Møller et al. [2006], to circumvent the problem of the double-intractable normalising

constant. However, the implementation of Moller’s technique in the case of the SNF

model encompasses the following limitations:

L1 The mixing of the MCMC chains is poor, thus an extended number of iterations

is required for the chains to converge.

L2 For some distance metrics, including the HS distance metric elicited for the fish

networks, the implementation of the Auxiliary Variable technique for the SNF

model leads to inferences that do not encode any uncertainty for the parameters

under estimation.

L3 The implementation of Moller’s technique as seen in Lunagómez et al. [2021] re-

quires sampling from the SNF model, which can be computationally challenging
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for some distance metrics.

These limitations led us to consider an alternative method to overcome the problem

of the intractable normalising constant, inspired by Vitelli et al. [2017] who develop a

Bayesian inference scheme for the Mallow’s model (Mallows [1957]). The Mallow’s model

is a widely used model for analysing rank data, that has the same functional form with

the SNF model. However, a key difference between the Mallow’s model and the SNF

model is that the normalising constant in the latter involves both the representative

network and the dispersion parameter, while for the Mallow’s model the normalising

constant depends only on the dispersion parameter, for right-invariant distance metrics

considered in Vitelli et al. [2017].

This attribute of the Mallow’s model allows an off-line approximation of the normal-

ising constant by implementing an IS scheme, using a pseudo-likelihood approximation

of the target distribution. On the other hand, in our work we formulate an Importance

Sampler within our MCMC algorithm, under a different specification of the IS density

for sampling network data, that allows a good approximation of the normalising constant

for the SNF model.

The contributions of this Chapter can be summarised as follows. First, our MCMC

scheme with IS step allows better mixing of the MCMC chains in less iterations of the

algorithm, compared to the Auxiliary Variable technique (Møller et al. [2006]). Second,

we develop a new network distance metric, namely the HS distance, that has not been

considered in the network literature, motivated by the ecological application. Third, our

MCMC scheme works under distance metric specifications, such as the HS distance met-

ric, for which the Auxiliary Variable technique showed poor performance in identifying

a posterior distribution for the model parameters.

The remainder of this Chapter is organised as follows. In Section 4.2, we provide

the background to our proposed MCMC with IS step. In Section 4.3, we introduce the

HS distance metric, along with the motivation for formulating it, and we present our

proposed MCMC with IS step algorithm for inferring the parameters of the SNF model.

In addition in Section 4.3, we discuss some challenges arising with the formulation of the

HS distance and with the implementation of an IS step within the MCMC. In Section

4.4, we present the simulation studies conducted to explore the behaviour of the HS

distance and assess the performance of the MCMC with IS step. In Section 4.5, we
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apply our MCMC with IS step for the SNF model with the HS distance metric on the

ecological application that motivated our study. Lastly, in Section 4.6, we conclude

with a discussion on the methods presented in this Chapter and potential future work

directions.

4.2 Background

In this Section we discuss the relevant literature to the MCMC scheme with IS step that

we propose in Section 4.3. First, we detail the MCMC scheme developed in Lunagómez

et al. [2021] for the SNF model in Section 4.2.1. Second, in Section 4.2.2, we provide

a brief review of the alternative approximation methods for distributions involving in-

tractable normalising constants. Lastly, in Section 4.2.3, we review the study by Vitelli

et al. [2017] on the Mallow’s model for rank data, that inspired our proposed approach

presented in Section 4.3.

4.2.1 Bayesian inference for the SNF model

In this Section, we provide details about the inferential scheme proposed by Lunagómez

et al. [2021] for the intractable SNF model. Notably, Lunagómez et al. [2021] formulate a

Bayesian inference scheme to estimate the network representative Gm and the dispersion

parameter γ of the SNF model. In this regard, they specify a prior distribution P (γ |

α0) for the dispersion parameter which has support on R+. The choice of the prior

distribution and its associated support is strongly related to the distance metric specified

in the SNF model. In addition, a prior distribution for the network representative

P (AGm |AG0 , γ0) is specified, that has the same functional form as that of the SNF model.

Thence, the posterior distribution of the model parameters given the network data, takes

the form

P (AGm , γ | AG1 , · · · , AGN ) ∝ 1

Z(AG0 , γ0)
exp {−γ0φ(dG(AGm , AG0))}P (γ | α0)·

1

Z(AGm , γ)N
exp{−γ

N∑
i=1

φ(dG(AGi , AGm))}.

Under this hierarchical model, Lunagómez et al. [2021] formulate a Metropolis-

Hastings algorithm to sample from the posterior of the network representative and the
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dispersion parameter. The normalising constant of the prior for the centroid cancels in

the MH ratio, as it does not depend on the model parameters. However, the normalising

constant of the likelihood depends on both the centroid and the dispersion parameter

updated in the MCMC algorithm, leading to the problem of double-intractability. The

authors overcome that issue using the Auxiliary Variable Method presented by Møller

et al. [2006], that introduces an auxiliary variable into the computations for making

posterior inferences that allow the normalising constants to cancel in the MH ratio.

Notably, the formulation of the Auxiliary Variable Method in the case of the SNF

model involves the simulation of a set of auxiliary variables G∗, defined in the same state

space as the network data {Gi}Ni=1. Lunagómez et al. [2021] exploit the probabilistic

mechanism of the CER model to specify the conditional density of the auxiliary network

variables G∗1 , . . . ,G∗N , which is a special case of the SNF model under the specification of

the Hamming distance metric. Thus, the functional form of the conditional density of

the auxiliary network variables is

f(AG∗1 , . . . , AG∗N | AGm , α̃) = α̃
∑N

i=1 dH(AG∗
i
,AGm )

(1− α̃)
N ·n(n−1)

2
−
∑N

i=1 dH(AG∗
i
,AGm )

, (4.1)

where α̃ denotes the posterior mean of α, obtained after fitting the data {Gi}Ni=1 to the

CER model.

Following the technique proposed by Møller et al. [2006], in each iteration of the MH

algorithm a new state of both the model parameters and the auxiliary network variables

will be proposed, with the latter sampled from a proposal distribution that has the same

functional form as the likelihood. Under this formulation, the normalising constants of

the likelihood and the proposal distribution of the auxiliary variables cancel out in the

MH ratio, which takes the following form,

MH
(A

(prop)
Gm ,γ(prop)|A(curr)

Gm ,γ(curr))
=
f(A

(prop)
~G∗

|A(prop)
Gm , α̃)

f(A
(curr)
~G∗

|A(curr)
Gm , α̃)

×
P (A

(prop)
Gm , γ(prop)|AG0 , γ0, α0)

P (A
(curr)
Gm , γ(curr)|AG0 , γ0, α0)

×

P (A~G |A
(prop)
Gm , γ(prop))

P (A~G |A
(curr)
Gm , γ(curr))

×
P (A

(curr)
~G∗

|A(curr)
Gm , γ(curr))

P (A
(prop)
~G∗

|A(prop)
Gm , γ(prop))

×
Q(A

(curr)
Gm , γ(curr)|A(prop)

Gm , γ(prop))

Q(A
(prop)
Gm , γ(prop)|A(curr)

Gm , γ(curr))

where ~G = {G1, . . . ,GN} are the data, ~G∗ = {G∗1 , . . . ,G∗N} are the auxiliary variables and:
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• f(A
(·)
~G∗
|A(·)
Gm , α̃) is the conditional density for the auxiliary variables, as per equation

(4.1).

• P (A
(·)
Gm , γ

(·)|AG0 , γ0, α0) is the prior for the parameters (AGm , γ), with AG0 , γ0, α0

denoting the hyperparameters of the prior.

• P (A~G |A
(·)
Gm , γ

(·)) is the probability mass function of the SNF model, evaluated at

the data ~G.

• P (A
(·)
~G∗
|A(·)
Gm , γ

(·)) is the proposal distribution of the auxiliary variables ~G∗, that has

the functional form of the SNF model.

• Q(A
(·)
Gm , γ

(·)|A(·)
Gm , γ

(·)) is the proposal distribution for the parameters (Gm, γ).

A main challenge arising with the implementation of the Auxiliary Variable Method

for the SNF model is the slow mixing of the chain for the γ parameter. Notably, there

are batches of iterations with no proposals being accepted, resulting in the chain sticking

on a single state for a series of iterations. Depending on the distance metric choice, this

issue can become more apparent even for small network sizes. The occurrence of this

phenomenon can be attributed to the discrepancy between the likelihood of the data,

being the SNF model, and the choice of the auxiliary density, being the CER model.

Depending on the choice of the distance metric for the SNF model, this discrepancy may

become more drastic leading to a bad mixing of the chain or, in some cases, to the chain

not exploring the state space at all. In Appendix B.1, we illustrate the mixing issue

arising with the implementation of the Auxiliary Variable method on the SNF model,

and compare it to the mixing of the MCMC chains under our proposed MCMC scheme

with IS step.

4.2.2 Approximation Methods for Distributions with Intractable Nor-

malising Constants

Statistical models of the form

P (ω) = q(ω)/Z, (4.2)

withZ =
∫
q(ω)dω denoting the normalising constant and ω denoting a high-dimensional

random variable, arise in a range of statistical problems (Ising [1925], Goodreau et al.
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[2009], Rue and Held [2005]). Statistical inference on such models can become a chal-

lenging task, as typically the calculation of the normalising constant becomes compu-

tationally infeasible. The problem of approximating intractable normalising constants

has been widely studied by researchers. Notably, there are two classes of approxima-

tion techniques developed in the literature, (i) the inexact-approximate techniques and

(ii) the exact-approximate techniques, also called pseudo-marginal approaches. In this

section we discuss the alternative methods developed under each class of approaches (i)

and (ii).

Under the inexact-approximation techniques, the methods developed focus on ob-

taining a consistent estimator of the ratio of normalising constants,

r =
Z1

Z2
, (4.3)

resulting from two intractable distributions of the form Pi(ω) = qi(ω)/Zi for i = 1, 2. A

widely used approach for achieving this goal is through Importance Sampling.

As seen in the review presented by Chen and Shao [1997], there are two versions for

approximating ratios of the form (4.3) using Importance Sampling. For the first version,

a consistent estimator of (4.3) is obtained after specifying two IS densities P ISi (ω) for

i = 1, 2, and drawing two independent samples ωi1, . . . , ωini from P ISi (ω) to yield the

following estimator of r,

r̂ =
(1/n1)

∑n1
j=1 q1(ω1j)/P

IS
1 (ω1j)

(1/n2)
∑n2

j=1 q2(ω2j)/P IS2 (ω2j)
. (4.4)

A second method for approximating r using Importance Sampling can be imple-

mented when Ω1 ⊂ Ω2 where Ωi is the support of Pi. Under this condition, the ratio in

(4.3) can be re-written as,

r =
Z1

Z2
= E2

[
q1(ω)

q2(ω)

]
, (4.5)

and can be approximated by drawing a sample ω21, . . . , ω2n from P2 and obtaining,

r̂ =
1

n

n∑
i=1

q1(ω2i)

q2(ω2i)
. (4.6)

A similar approach to the standard IS methods discussed above is the Bridge Sam-

pling technique presented by Meng and Wong [1996]. Under the Bridge Sampling tech-
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nique, the ratio r seen in (4.3) can be written as,

r =
Z1

Z2
=

E2[q1(ω)α(ω)]

E1[q2(ω)α(ω)]
, (4.7)

where α(ω) is an arbitrary function defined on Ω1 ∩Ω2 . Thence, r can be approximated

by,

r̂ =
(1/n2)

∑n2
j=1 q1(ω2j)α(ω2j)

(1/n1)
∑n1

j=1 q2(ω1j)α(ω1j)
, (4.8)

where ωi1, . . . , ωini ∼ Pi. A limitation of the latter two approximations is their poor

performance when there is little overlap between Pi. Gelman and Meng [1994] address

this restriction by implementing the Path Sampling technique. Under this framework, a

scalar quantity λ ∈ [0, 1] is introduced and the logarithm ξ = − log(r) is approximated

instead of r, where ξ can be written as,

ξ = − log(r) = − log

(
Z(λ1)

Z(λ2)

)
= E

[
U(Ω,Λ)

πλ(Λ)

]
, (4.9)

with λ1 = 0 and λ2 = 1, U(ω, λ) = (d/dλ) log(q(ω|λ)), πλ(λ) is a prior density for λ and

the expectation is taken with respect to the joint density q(ω, λ) = q(ω|λ)πλ(λ). For

(ωi,Λi), i = 1, . . . , n drawn from q(ω, λ), a consistent estimator of ξ is,

ξ̂ =
1

n

n∑
i=1

U(ωi,Λi)

πλ(Λi)
. (4.10)

The last inexact-approximation method that we review in this section is Ratio Im-

portance Sampling introduced by Chen and Shao [1997]. Under this method, Chen

and Shao [1997] introduce an arbitrary density g(ω), namely the Ratio IS density and

re-write (4.3) as,

r =
Z1

Z2
=

Eg[q1(ω)/g(ω)]

Eg[q2(ω)/g(ω)]
, (4.11)

which is a generalisation of the ratio obtained in (4.4). Hence, by drawing a sample

ω1, . . . , ωn ∼ g, they obtain an estimate of r,

r̂ =

∑n
i=1 q1(ωi)/g(ωi)∑n
i=1 q2(ωi)/g(ωi)

, (4.12)

which is consistent even for a dependent sample ω1, . . . , ωn drawn.

We now introduce the exact-approximate or pseudo-marginal approaches, that focus

135



on obtaining an unbiased estimator of the normalising constant or the ratio of normalis-

ing constants. A key feature of these methods is the utilisation of an auxiliary variable for

the approximation. We re-write (4.2) by introducing θ to denote the model parameters

as follows,

P (ω|θ) = q(ω|θ)/Z(θ). (4.13)

Møller et al. [2006] propose the use of an auxiliary variable x that has the same

support as that of ω, with density f(x|θ, ω) to obtain an unbiased estimator of Z(θ). In

light of Importance Sampling, under Møller et al. [2006] Z(θ) can be written as,

Z(θ) = E
[
q(x|θ)
f(x|θ, ω)

]
, (4.14)

where the expectation is taken with respect to the density of the auxiliary variable x,

f(x|θ, ω). In this regard, they propose sampling x from the distribution P (·|θ) and use

the approximation,

Z(θ) ≈ q(x|θ)
f(x|θ, ω)

. (4.15)

Thus, they can substitute the normalising constant Z(·) by its unbiased estimator

q(x|·)/f(x|·, ω) in the MH acceptance ratio.

Analogously to Møller et al. [2006], Murray et al. [2012] also use an exact-approximate

method to obtain an unbiased estimator for the ratio of normalising constants found in

the acceptance ratio of a Metropolis-Hastings algorithm. Specifically, they also utilise

an auxiliary variable x drawn from distribution P (·|θ(prop)), and obtain the unbiased

estimator,

Z(θ)

Z(θ(prop))
≈ q(x|θ)
q(x|θ(prop))

. (4.16)

A key weakness of the exact-approximate methods is the incidence of non-acceptance

of newly proposed states for (θ, x), for a large number of iterations. Notably, Møller et al.

[2006] explain that this behaviour of the algorithm can be attributed to the choice of

the auxiliary density f(x|θ, ω), with regard to how good it approximates the likelihood

q(·)/Z(θ). The problem of non-acceptance for long runs, also increases the autocor-

relation between posterior draws, implying that more iterations are required for the

algorithm to converge and explore the posterior distribution.

Finally, a more recent class of algorithms related to the inexact-approximate meth-
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ods discussed, is the Noisy MCMC algorithms. Notably, the Noisy Metropolis-Hastings

algorithm as introduced in Alquier et al. [2016] focuses on replacing the intractable ac-

ceptance ratio in the Metropolis-Hastings algorithm with an approximation, by drawing

values from a suitable probability distribution. They further consider an extension of the

Exchange algorithm (Murray et al. [2012]), namely the Noisy Exchange algorithm, that

replaces the acceptance ratio with its estimator, by substituting the ratio of normalising

constants with

Z(θ)

Z(θ(prop))
≈ 1

n

n∑
i=1

q(xi|θ)
q(xi|θ(prop))

, (4.17)

where x1, . . . , xn sampled from the distribution P (·|θ). For n = 1 the Noisy Exchange al-

gorithm is the Exchange algorithm as presented in Murray et al. [2012]. An investigation

on the stability of Noisy Metropolis-Hastings algorithms is provided in Medina-Aguayo

et al. [2016].

This review should not be considered as an extensive review on approximating in-

tractable distributions. We note that there is a vast literature on this topic, while in

this section we outlined the methods that are most relevant to our work. In view of this,

there is more than one way to deal with the intractability of the SNF model. As dis-

cussed in Section 4.2.1, the Exact-Approximate methods and specifically the Auxiliary

Variable technique introduced by Møller et al. [2006] provide poor results with respect

to the MCMC convergence for some distance metric specifications for the SNF model.

In this respect, we formulated an Importance Sampling step within our MCMC as that

proposed by Chen and Shao [1997], namely the Ratio Importance Sampling presented

in this section. Under this approach, we are able to confront the mixing issues arising

under the Auxiliary Variable technique.

4.2.3 Importance Sampling for the Mallows Model

We now review the Importance Sampling technique used in Mallow’s model for multiple

rank data, which inspired the development of our MCMC scheme described in Section

4.3. Rank data is a data type used to represent individual preferences over a set of n

items, labelled A = {A1, . . . , An}. There are various real-life instances where rank data

emerge, from sports, where teams are ranked according to their performance, to market-

ing, where different products or services are ranked according to consumer preferences.
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Let X1, . . . ,XN denote N permutations of the set of labels A, for N assessors. Let also

Pn denote the n!-sized space of permutations of n items. Thence, the ranking of the jth

assessor can be represented by Rj = (R1j , . . . , Rnj), with Rij = X−1
j (Ai) denoting the

rank given to the ith item, from the jth assessor.

Mallows model (Mallows [1957]) has been broadly used for statistical inference on

multiple rank data, as it allows to model a set of N rankings R1, . . . ,RN with respect

to a consensus ranking ρ and a scale parameter a, under a specified distance function

d(·, ·) : Pn ×Pn → [0,∞). Notably, Mallows model has the same functional form as the

SNF model, thus, the likelihood of observing a set of N rankings R1, . . . ,RN has the

form,

P (R1, . . . ,RN | α,ρ) =
1

Z(α,ρ)N
exp

−αn
N∑
j=1

d(Rj ,ρ)


N∏
j=1

{1Pn(Rj)},

with Z(α,ρ) =
∑

r∈Pn
exp{−α

nd(r,ρ)} representing the normalising constant depending

on both the latent consensus ranking ρ and scale parameter α. Drawing inference for

this model can be a challenging task for specific distance functions and large number of

items n, due to the presence of the normalising constant.

In the case of rank data, there are distance functions which remain unchanged after

a relabelling of the items, called right-invariant distance functions. For a right-invariant

distance function, we have that d(r1, r2) = d(r1r
−1
2 ,1n), with 1n = {1, 2, . . . , n}, which

leads to the following simplified form of the normalising constant

Z(α) =
∑
r∈Pn

exp{−α
n
d(r,1n)},

that depends only on the scale parameter α. The exclusion of the consensus ranking ρ

from the normalising constant is advantageous for the calculation of the latter in the

Mallows model.

Despite this simplification of the form of the normalising constant, there are dis-

tances in the class of right-invariant distances, for which Z(α) still can not be calculated

analytically. In the work by Vitelli et al. [2017] only right-invariant distances are consid-

ered, and the authors propose an Off-line Importance Sampling scheme to approximate
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the normalising constant Z(α) for the right-invariant distances, that render the exact

calculation of the normalising constant infeasible.

Notably they consider drawing a sample of K rankings, R1, . . . ,RK , from an IS

density q(R), to obtain an unbiased estimate of the normalising constant as follows,

Ẑ(α) =
1

K

K∑
k=1

exp{−α
nd(Rk,1n)}
q(Rk)

.

The choice of the IS density q(R) plays a key role to obtain an unbiased estimate of

the normalising constant. Ideally, one would need to simulate an Importance sample

directly from the likelihood, however, this is infeasible in the case of the Mallows model.

To obtain an IS density that closely approximates the likelihood, Vitelli et al. [2017] use

a pseudo-likelihood approximation of the Mallows model in the following way:

• Draw a uniform sample {i1, . . . , in} from the set of permutations of n items, Pn.

• Obtain the pseudo-likelihood factorization:

P (R | 1n) = P (Ri1 | Ri2 , . . . , Rin ,1n)P (Ri2 | Ri3 , . . . , Rin ,1n) · · ·

P (Rin−1 | Rin ,1n)P (Rin | 1n),

with P (· | ·,1n) having the form of the Mallows model.

• Sample first Rin from its conditional distribution P (Rin | 1n), and then condition-

ally on Rin sample Rin−1 from its conditional distribution P (Rin−1 | Rin ,1n), and

so forth.

• Thence, the kth sample Rk has density q(Rk) = P (Rk | 1n).

In our work, we formulate an Importance Sampler using a different set up for the IS

density to that presented in Vitelli et al. [2017]. The right-invariance property does not

hold for the majority of distance functions measuring dissimilarities among networks, as

there are different properties governing rank data compared to network data. Thus, it

is not straightforward to obtain a simplification of the normalising constant for the SNF

model. Alternatively, we formulate an approximation of the normalising constant which

depends both on the representative network and the dispersion, using the CER model

139



presented in Lunagómez et al. [2021] as the IS density. Our approach allows us to infer

the parameters of the SNF model for various distance metric specifications.

4.3 MCMC scheme with IS step for the SNF model

In this section we introduce a new network distance metric, namely the HS distance,

and describe our proposed MCMC scheme with IS step for the SNF model. Notably, in

Section 4.3.1, we introduce the HS distance metric and the motivation for formulating

it. In Section 4.3.2, we present the IS step for approximating the normalising constant in

the SNF model. In Section 4.3.3, we discuss alternative specifications of the IS density.

In Section 4.3.4, our proposed MCMC scheme with IS step is introduced, while the

tuning of the IS density is discussed in Section 4.3.5. In Section 4.3.6, we describe our

investigation on the bias of the estimate of the normalising constant with respect to

increasing sample size N , and lastly in Section 4.3.7, we discuss our approach on dealing

with the computationally intensive task of detecting cycles in a network, associated with

the HS distance metric.

4.3.1 A Motivating Example

In this section we present a multiple network data example that motivated the work

presented in this Chapter. Data have been collected on the aggressive interactions

among species of fish in different coral reefs, at multiple regions in the Indo-Pacific

ocean (Keith et al. [2018]). We use a network representation for the data collected,

where nodes represent fish species and edges represent aggressive interactions between

them.

From an ecological perspective, directed cycles indicate a form of competition among

fish, called intransitive competition. Intransitive competition is a type of competition

in which no species become dominant, and it is important because it stabilises species

coexistence in the system (Muyinda et al. [2020a], Muyinda et al. [2020b], Mohd [2019]).

However, this type of competition can be liable to disruption due to environmental

disturbance. Hence, a research question arising for the network data collected is the

following: To what extent are cycles formed from the aggressive interactions between

fish in the network data?
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One way to answer this research question is to consider the SNF model that allows

inferring a representative network for a network population, determined through a user-

specified measure of dissimilarity. In addition, the SNF model involves a dispersion

parameter that quantifies the level of dissimilarity between the network data and the

network representative, with respect to the specified distance metric. The flexibility in

the choice of the distance metric was a key factor for implementing the SNF model for

the multiple network data example presented in this section. As our interest lies in the

cycles formed in the network data, we construct a dissimilarity measure that captures

information about dissimilarities between the cycles of two networks. Specifically, we

obtain the Hamming-Symmetric difference (HS) distance metric consisting of two parts:

1. The Hamming distance, that counts the not in common edges and non-edges be-

tween two graphs.

2. The symmetric difference between the cycles formed in two graphs, that counts

the number of not in common cycles in two graphs.

Hence, a mathematical representation of the constructed distance metric is,

dHS(G1,G2) = dH(G1,G2) + λ· | CG1∆CG2 |,

where dH(·, ·) denotes the Hamming distance, CGi denotes the cycles in graph i, ∆

indicates the symmetric difference and λ ∈ R is a weighting factor. In Appendix B.2,

we show that HS is a distance metric. Under this construction, we encode information

about dissimilarities in the structure of the networks, with respect to both their edges

and cycles. The tuning of the λ parameter corresponds to how much influence we allow

the symmetric difference to have on the total distance. In Section 4.4.1, we explore the

behaviour of the HS distance for various sizes of λ through synthetic data experiments.

In the simulations studies and real data examples presented in this Chapter, we assume λ

to be equal to 1 suggesting equal importance between the Hamming and the Symmetric

difference distance.

The specification of the HS distance metric for the SNF model induces challenges with

respect to the Bayesian inference scheme proposed by Lunagómez et al. [2021]. Notably,

the problem of non-acceptance of new states for a great number of iterations becomes

more evident with the use of the HS distance metric. As a result, the inference drawn
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for the dispersion parameter γ resembles to obtaining a single estimate for it, rather

than draws from its posterior distribution, thus no uncertainty is encoded about γ. This

finding led us to consider an alternative method to infer the SNF model parameters,

and specifically to deal with the problem of the intractable normalising constant in the

likelihood.

Inspired by Vitelli et al. [2017], we formulate an Importance Sampling scheme in

our MCMC algorithm, with research objective the development of a Bayesian inference

scheme for the SNF model that is applicable for a range of different distance metrics.

This includes the newly proposed HS distance, as well as considering the Jaccard distance

which is a well-known distance metric capturing information about the edge structure

of the networks (Levandowsky and Winter [1971], Donnat and Holmes [2018]). We note

here that for both the Jaccard and the HS distance, the Auxiliary Variable technique

(Møller et al. [2006]) adapted in Lunagómez et al. [2021] provided poor chain mixing

results.

4.3.2 Formulation of IS step for the SNF model

Importance Sampling is a method originating from the problem of evaluating the integral,

Ef [h(X)] =

∫
SX

h(x)f(x)dx, (4.18)

with SX denoting the support of the random variable X (Robert and Casella [2013]).

Notably, (4.18) can be rewritten as,

Ef [h(X)] =

∫
SX

h(x)
f(x)

g(x)
g(x)dx, (4.19)

and can be approximated by sampling X1, . . . , XK from distribution g and calculating

the empirical mean

Ef [h(X)] ≈ 1

K

K∑
j=1

f(Xj)

g(Xj)
h(Xj), (4.20)

when sampling directly from the target distribution f is not feasible.

The problem of approximating normalising constants is associated with this class

of problems, as it involves the calculation of an intractable sum or integral as that

of equation (4.18). Hence, Importance Sampling and variations of it, have been used
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extensively for statistical models that involve an intractable normalising constant. In

our case, the normalising constant of the SNF model has the following form,

Z(AGm , γ) =
∑

AG∈{G|n|}

exp{−γ · φ(dG(AG , AGm))}, (4.21)

involving a sum over the space of n-node graphs, {G|n|}. Considering the formulation

seen in (4.19), we can rewrite the sum as

∑
AG∈{G|n|}

exp{−γ · φ(dG(AG , AGm))} =
∑

AG∈{G|n|}

exp{−γ · φ(dG(AG , AGm))}
g(AG)

g(AG) =

Eg
[

exp{−γ · φ(dG(AG , AGm))}
g(AG)

]
,

(4.22)

which can then be approximated by drawing a sample of networks G1, . . . ,GK from the

IS density g and calculating,

Ẑ(AGm , γ) ≈ 1

K

K∑
k=1

exp{−γ · φ(dG(AGk , AGm))}
g(AGk)

. (4.23)

The choice of the IS density plays a key role to obtain a good approximation of the

normalising constant. In the next section, we discuss the specification of the IS density

for the SNF model and the possible sampling schemes.

4.3.3 IS density specification for multiple network data

One advantage of the IS method is the flexibility that allows with respect to the specifi-

cation of the IS density. In this regard, choices of distributions that are easy to sample

from are preferred (Robert and Casella [2013]). However, different IS densities can have

different performances in estimating the normalising constant in equation (4.21).

In the network literature, there are several frameworks under which we can simulate

a population of networks, as reviewed in Chapter 2. In our problem, a natural choice

of the IS density is the distance-based CER model for two main reasons, (i) the CER

model is a member of the Spherical Network Family (SNF) of models (Lunagómez et al.

[2021]), and (ii) sampling network data from the CER model is quick, thus will result in

a less computationally intensive MCMC algorithm. In this section we consider both a

single CER model as well as a mixture of CER models as the IS density, with the latter
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allowing a heavy tailed proposal density to be implemented (Robert and Casella [2013]).

IS1 Single CER model

We now briefly review the CER model introduced by Lunagómez et al. [2021]. For

a more detailed description of the model, refer to Section 2.2. Under the CER

model, Lunagómez et al. [2021] assume that a population of networks is generated

by perturbing the edges of a centroid network AGm , using a sequence of Bernoulli

random variables with probability α as follows:

AG(i, j) | (AGm(i, j), α) = |AGm(i, j)− Z(i, j)|. (4.24)

where Z(i, j)’s are iid Ber(α), with 0 < α < 0.5.

Thus the CER model is a network distribution which depends on the Hamming

distance metric, and the probability of observing a graph AG under this model has

the form:

p(AG |AGm , α) = αdH(AG ,AGm) · (1− α)
n(n−1)

2
−dH(AG ,AGm ) (4.25)

where dH(·, ·) denotes the Hamming distance metric and n is the number of the

networks’ nodes.

Sampling from the CER model can be performed in two different ways:

1. Using an MCMC scheme with target distribution the density of the CER

model (4.25) with fixed parameters α̃ and ÃGm , as seen in Lunagómez et al.

[2021].

2. Using a Monte Carlo scheme to sample independent network data from the

CER model with parameters α̃ and ÃGm .

Under sampling scheme (1), an MH algorithm is formulated to sample network

data AG from the CER model. This sampling scheme was proposed in Lunagómez

et al. [2021] to sample network data from the SNF model. As CER is a member

of the SNF, we adapt a similar sampling scheme for the case of the CER model.

Notably, we propose a new network with adjacency A
(prop)
G by perturbing the edges

of the current network with adjacency A
(curr)
G in the following way:
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A
(prop)
G (i, j) =


1−A(curr)

G (i, j), with probability ω

A
(curr)
G (i, j), with probability 1− ω

, (4.26)

and accept it with probability,

min

{
1,
α̃dH(A

(prop)
G ,ÃGm )(1− α̃)

n(n−1)
2
−dH(A

(prop)
G ,ÃGm )

α̃dH(A
(curr)
G ,ÃGm )(1− α̃)

n(n−1)
2
−dH(A

(curr)
G ,ÃGm )

}
. (4.27)

We note here that under this proposal scheme, the proposal distribution cancels

from the MH ratio.

Under sampling scheme (2), we obtain a sample of independent network data from

the CER model with parameters ÃGm and α̃. Each network in the sample is drawn

independently by perturbing the edges of the centroid ÃGm using a sequence of iid

Bernoulli random variables with probability α̃, as per equation (4.24).

In Figures 4.1 and 4.2, we illustrate the differences between the two sampling

schemes for a specific example of 5-node networks. In this illustration, we consider

5-node networks as the space of 5-node graphs consists of 1024 networks, allowing

us to identify the number of times that each network in the space of graphs is

being sampled, under each of the two sampling schemes for the CER model with

specified parameters ÃGm and α̃.

A key difference between the two sampling procedures lies in the network samples

obtained under each scheme. Notably, the MCMC sampling scheme that involves

an accept/reject step is more rigid with the networks being sampled, so that they

maintain a Hamming distance from the centroid according to the size of the dis-

persion α̃. On the other hand, the Monte Carlo sampling scheme allows greater

variability in the network data sampled that resembles sampling Uniformly from

the space of graphs, even for small sizes of the dispersion parameter.

Even though the variability of the network data sampled under the MC scheme

can be advantageous for the performance of the IS, a challenge arises with the HS

distance metric specification. Notably, the HS distance involves the calculation of

cycles formed within a network which is a computationally intensive task, even for

moderate network sizes. The variability of the networks sampled under the MC
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Figure 4.1: Proportion of times that each network in the space of 5-node graphs is being
sampled under the MCMC sampling scheme. The red line indicates the centroid ÃGm .
The dispersion is α̃ = 0.2. Networks on the x axis are ordered according to their density,
from sparser to denser.
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Figure 4.2: Proportion of times that each network in the space of 5-node graphs is being
sampled under the MC sampling scheme. The red line indicates the centroid ÃGm . The
dispersion is α̃ = 0.2. Networks on the x axis are ordered according to their density,
from sparser to denser.

scheme implies denser networks in the IS sample, rendering the cycle detection

task computationally intensive, and in some cases infeasible. In view of that limi-

tation, in the simulation studies performed in Section 4.4, we consider the MCMC

sampling scheme to sample from the CER model as a more holistic approach. We

further note here that dependent IS samples still allow for a consistent estimator of

the ratio of normalising constants to be obtained, as presented in Chen and Shao

[1997].

IS2 Mixture of CER models
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To guarantee the derivation of a finite variance estimator for the normalising con-

stant, a key attribute of the IS density is to be heavier tailed than the target

distribution (Robert and Casella [2013]). In this regard, another choice of IS den-

sity considered herein is a mixture of CER models, that allows sampling of a wider

range of network data, resulting in a heavier tailed IS distribution compared to

considering a single CER model.

Notably, in our problem we consider a mixture of CER models with varying sizes

of the dispersion parameter α̃, while keeping fixed the centroid parameter ÃGm .

Under this set up, the sampling distribution of AG has the form

p(AG |ÃGm , α̃,β) =
J∑
j=1

βjα̃
dH(AG ,ÃGm )
j · (1− α̃j)

n(n−1)
2
−dH(AG ,ÃGm ), (4.28)

where j ∈ {1, . . . , J} indicates the mixture component, and β is a vector of prob-

abilities for the mixture components.

To sample from the mixture of CER models, we adapt the standard procedure for

sampling from a mixture model, involving the following steps:

1. Specify the number of mixture components J and the vector of probabilities

{βj}Jj=1 such that
∑J

j=1 βj = 1.

2. Draw a categorical random variable with probability β.

3. Depending on the category drawn, sample from the corresponding CER model

with dispersion parameter α̃j being component specific, and centroid ÃGm

using the MC sampling scheme presented in this section.

We note here that similarly to the MC sampling scheme for the single CER model,

sampling from the mixture of CER models results in greater variability of the

networks drawn, imposing challenges when implemented for the HS distance spec-

ification. In Section 4.4.2, we explore the performance of the different specifications

of the IS density and the different sampling schemes presented in this section.

In the next section, we introduce the MCMC scheme formulated to sample from

the posterior distribution of the parameters of the SNF model, using an IS step for the

approximation of the normalising constant.
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4.3.4 MCMC scheme with IS step

In this section we present the algorithmic scheme formulated to obtain draws from the

posterior distribution of the SNF model parameters. As seen in subsection 4.2.1, the

joint posterior distribution of the centroid AGm and the dispersion parameter γ has the

following hierarchical structure,

P (AGm , γ | AG1 , · · · , AGN ) ∝ 1

Z(AG0 , γ0)
exp {−γ0φ(dG(AGm , AG0))}P (γ | α0)·

1

Z(AGm , γ)N
exp{−γ

N∑
i=1

φ(dG(AGi , AGm))}.
(4.29)

Similarly to Lunagómez et al. [2021], we implement a Metropolis-Hastings algorithm

to sample from the joint posterior of the parameters. However, to overcome the double-

intractability problem, we implement an IS scheme as seen in section 4.3.2, conversely to

the Auxiliary Variable Method adapted in Lunagómez et al. [2021]. Notably, we obtain

posterior draws from the target distribution seen in equation (4.29), after substituting

the normalising constant in the likelihood with its estimator, that takes the following

form under the specification of a single CER model for the IS density:

Ẑ(AGm , γ) ≈ 1

K

K∑
k=1

exp{−γ · φ(dG(AGk , AGm))}

α̃dH(AGk ,ÃGm )(1− α̃)
n(n−1)

2
−dH(AGk ,ÃGm )

, (4.30)

where {AGk}Kk=1 are network data sampled from the CER model with parameters α̃ and

ÃGm . To obtain posterior draws for the parameters AGm and γ, we use a mixture of

kernels similarly to the scheme proposed in Lunagómez et al. [2021].

Notably, we update the adjacency matrix of the centroid AGm using either of the

following two proposals,

(I) We perturb the edges of the current centroid A
(curr)
Gm as follows:

A
(prop)
Gm (i, j) =


1−A(curr)

Gm (i, j), with probability ω

A
(curr)
Gm (i, j), with probability 1− ω

.

(II) We propose a new network representative A
(prop)
Gm , with each edge of the proposed

representative being drawn independently, from a Bernoulli distribution with pa-
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rameter 1
N

∑N
l=1AGl(i, j).

Under case (I), we accept the proposed network representative A
(prop)
Gm with proba-

bility

min

{
1,

exp
{
−γ0dG(A

(prop)
Gm , AG0)

}
Ẑ(A

(prop)
Gm , γ(curr))−N exp{−γ(curr)

∑N
i=1 dG(AGi , A

(prop)
Gm )}

exp
{
−γ0dG(A

(curr)
Gm , AG0)

}
Ẑ(A

(curr)
Gm , γ(curr))−N exp{−γ(curr)

∑N
i=1 dG(AGi , A

(curr)
Gm )}

}
,

while under case (II), we accept the proposed network representative A
(prop)
Gm with prob-

ability

min

{
1,

exp
{
−γ0dG(A

(prop)
Gm , AG0)

}
exp{−γ(curr)

∑N
i=1 dG(AGi ,A

(prop)
Gm )}

Ẑ(A
(prop)
Gm ,γ(curr))N

Q(A
(curr)
Gm |A(prop)

Gm )

exp
{
−γ0dG(A

(curr)
Gm , AG0)

}
exp{−γ(curr)

∑N
i=1 dG(AGi ,A

(curr)
Gm )}

Ẑ(A
(curr)
Gm ,γ(curr))N

Q(A
(prop)
Gm |A(curr)

Gm )

}
,

We note here that the proposal distribution under case (I) is symmetric, thus it can-

cels out from the Metropolis ratio, while under case (II) the proposal distribution

Q(A
(·)
Gm |A

(·)
Gm) does not cancel.

Accordingly, we use a mixture of K random walks to propose values for the dispersion

parameter γ, as follows:

1. Draw a uniform random variable u ∼ Unif(−vk, vk), with k indicating the kth

proposal.

2. Perturb the current state γ(curr) by the uniform random variable drawn,

y = γ(curr) + u.

3. The newly proposed value for γ is γ(prop) =


y, if y > 0

−y, if y < 0

,

which we accept with probability

min

{
1,
Ẑ(A

(curr)
Gm , γ(prop))−N exp{−γ(prop)

∑N
i=1 dG(AGi , A

(curr)
Gm )}P (γ(prop) | α0)

Ẑ(A
(curr)
Gm , γ(curr))−N exp{−γ(curr)

∑N
i=1 dG(AGi , A

(curr)
Gm )}P (γ(curr) | α0)

}
.

Under this scheme, in each iteration of the MCMC algorithm, we draw a new sample

from the IS density to calculate Ẑ in the nominator and denominator of the MH ratio.

In the next section we discuss the choice of the parameters α̃ and ÃGm for the CER

model.
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4.3.5 Tuning of the IS density

In this section we discuss the tuning of the parameters of the IS densities considered in

this study. Specifically, we discuss the specification of the centroid and the dispersion in

the case of a single CER model, as well as in the case of a mixture of CER models.

For the case of a single CER model being the IS density, we consider two alternative

ways to specify the parameters α̃ and ÃGm . Under the first construction, we develop

an MCMC scheme in which the parameters of the IS density remain fixed throughout

the iterations. We call this scheme a non-adaptive MCMC scheme. Under the second

construction, we allow the values of the parameters α̃ and ÃGm to vary throughout the

iterations, depending on the current values of the SNF model parameters. We call this

scheme an adaptive MCMC scheme. Below we discuss in more detail the two alternative

schemes.

A1 Non-adaptive MCMC scheme

Under the non-adaptive MCMC scheme, we determine α̃ and ÃGm by fitting the

data to the CER model to obtain the posterior mean of α̃ and posterior mode of

ÃGm .

In this way, we encode information about the data at hand, that may allow a better

approximation of the normalising constant. We investigate this potential in the

simulation studies following in Section 4.4.2.

A2 Adaptive MCMC scheme

Under the adaptive MCMC scheme, we specify the parameters α̃ and ÃGm depend-

ing on the current values of the parameters of the SNF model. To determine ÃGm

from the current value of the centroid network of the CER model, is straightfor-

ward, as both represent centroid networks and no transformation is required.

However, for the specification of α̃, we consider a transformation of γ under which

the CER model is the SNF model with the Hamming distance metric specification,

as seen in Lunagómez et al. [2021]. Under this case, the transformation of γ into

α is the following:

α =
1

1 + eγ
. (4.31)
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We note here that this transformation is applicable for the HS distance metric only, as

it involves the Hamming distance metric.

For the mixture of CER models IS density, we determine a single centroid ÃGm

resulting from fitting the data to the CER model, while for α̃ we consider a range of

values within its support [0, 0.5].

4.3.6 Bias with N

Despite the advantages of the implementation of an IS step within the MCMC scheme

for the approximation of the normalising constant, there is one limitation with respect

to its implementation for the likelihood of the SNF model. As seen in equation (4.29),

the likelihood of the SNF model for a set of network observations N , results in the

exponentiation of the normalising constant to the power of N . However, under our

framework we approximate Z instead of ZN , as otherwise the implementation of the IS

would not be feasible. This leads to an increasing bias of the estimate, as the number

of observations N increases.

Vitelli et al. [2017] who also formulate an Importance Sampler for the Mallow’s model

that has the same functional form with the SNF, acknowledge this limitation and prove

that in order for the approximate posterior to converge to the true posterior, the IS

sample size K must grow faster than N2. Thus for large N we should significantly

increase the IS sample size K to achieve convergence. In the case of rank data and

the Mallow’s model, Vitelli et al. [2017] consider only right-invariant distances that

allow them to reduce the expression of the normalising constant into an expression that

depends only on the dispersion parameter as seen in Section 4.2.3. This allows an Off-

line approximation of the normalising constant on a grid of the dispersion parameter α,

thus they do not need to draw an IS sample in each iteration of the MCMC as in our

case. In this regard, Vitelli et al. [2017] can obtain very large K samples, without a

significant computational cost.

On the other hand, for network data and the SNF model, the right-invariance prop-

erty does not hold for the majority of network distance metrics, as discussed in Section

4.2.3, thus an off-line approximation of the normalising constant cannot be achieved.

Therefore, for large N we need to obtain significantly larger IS samples K, which would

lead to a significant increase in computational time. To address this issue, we forge
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an error adjustment for the estimator of the normalising constant under two different

approaches.

First, we explore the error of approximating ZN by ẐN using a second order Taylor

expansion of Z around Ẑ, with f(x) = xN . In this section, we write Z instead of

Z(AGm , γ) for the sake of simplicity. Thence, the Taylor expansion for ZN is:

ZN = ẐN +NẐN−1(Ẑ − Z) +
1

2
N(N − 1)ẐN−2(Ẑ − Z)2. (4.32)

Taking the expectation for both sides of equation (4.32) we have:

E(ZN ) = E(ẐN ) +NẐN−1E(Ẑ − Z) +
1

2
N(N − 1)ẐN−2E((Ẑ − Z)2)⇔

E(ZN ) = ẐN
(

1 +
N(N − 1)

2Ẑ2
V ar(Z)

)
, (4.33)

as E(ẐN ) = ẐN and E(Ẑ − Z) = 0. For small N(N−1)

2Ẑ2
V ar(Z), equation (4.33) can be

written as

E(ZN ) = ẐNe
N(N−1)

2Ẑ2 V ar(Z). (4.34)

We further consider an alternative way for adjusting the error of the normalising

constant approximation as follows. First, we introduce an estimation error term δ,

Z = Ẑ + δ. (4.35)

If we raise to the power of N and take the logarithm for both sides we have,

ZN = (Ẑ + δ)N ⇔

log(ZN ) = log((Ẑ + δ)N )⇔

N logZ = N log

(
Ẑ

(
1 +

δ

Ẑ

))
⇔

N logZ = N log Ẑ +N log

(
1 +

δ

Ẑ

)
⇔

N logZ = N log Ẑ +N
δ

Ẑ
, (4.36)
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for δ
Ẑ

small, and δ ∼ N(0, σ2
Ẑ

) given Monte Carlo draws. Thus,

N logZ ∼ N(N log Ẑ,N2σ2
Ẑ
/Ẑ2), (4.37)

or equivalently ZN follows a log Normal distribution with expectation

E(ZN ) = ẐN · eN
2σ2

Ẑ
/2Ẑ2

(4.38)

We observe that both methods for adjusting the error of the normalising constant

approximation, result in a very similar expression as seen in equations (4.34) and (4.38).

4.3.7 Challenges with cycle detection

A motivation for our study has been the research questions arising from the fish data

example, presented in Section 4.3.1. Under this data example, the formulation of a dis-

tance metric that quantifies differences in cycles among networks is essential to address

the research questions. However, cycle detection in networks is a computationally in-

tensive task even for moderate-sized networks, resulting in computationally expensive

algorithms with respect to the time and memory required to run.

In our study we perform cycle detection using the R package igraph (Csardi and

Nepusz [2006]), and specifically the all simple paths function that detects all the simple

paths connecting two nodes. We note here that a simple path is a sequence of nodes

connecting an origin node to a destination node, without repeated nodes in that sequence.

Thus, path detection can easily be extended to cycle detection, where now the only

repeated nodes are the first and the last node in the sequence. If a network is not

sparse, the number of paths connecting two nodes can grow exponentially depending on

the number of nodes in the graph. Specifically, in the case of a complete graph with n

nodes, the time complexity for performing path detection is O(n!) (Csardi and Nepusz

[2006]), making calculations infeasible.

Under the MCMC scheme described in section 4.3.4, we draw a new IS sample in each

iteration of our algorithm to estimate the normalising constant under equation (4.30).

The estimation involves the calculation of the HS distance between each network in the

newly drawn IS sample and the corresponding proposed and current centroid, as seen in

the nominator of the sum in (4.30). Thus, the cycles in each network of the IS sample
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need to be identified in every iteration that we draw a new IS sample, which can lead to

a computationally heavy algorithm.

To avoid the exact cycle calculation in every iteration of our MCMC, we consider an

approximation of the symmetric difference distance between the cycles of two networks.

The idea behind this formulation is that other network distance metrics that are less

computationally intensive to calculate, can be informative for predicting the symmet-

ric difference distance. In this context, various distance metrics can be thought of as

covariates in our problem.

There is a range of different frameworks to perform predictions in the Statistics and

Machine Learning literature (Yan and Su [2009], Song and Ying [2015], Biau [2012],

Friedman et al. [2001]). In our study, we use supervised learning and specifically the

xgboost algorithm (Chen and Guestrin [2016]) to predict the symmetric difference of

cycles between networks, using the R package xgboost (Chen et al. [2021]). The basis of

supervised learning algorithms, such as the xgboost, is the use of a training data set to

find the values of the parameters that best fit the data, in order to make predictions for

a target variable. Xgboost uses decision trees ensembles to perform prediction, through

additive training. Additive training refers to the process of sequentially adding new

decision trees with ultimate goal the optimisation of an objective function. The objective

function comprises of a loss function and a regularization term which controls the model

complexity. Boosted trees use a regularization term that performs well in predicting the

target variable, and prevents from overfitting. This attribute of the xgboost along with

its fast execution render it as a great approach for prediction. However, we note here

that other prediction methods could have been equally applied.

In our framework, we train the xgboost in every iteration of the algorithm in order

to make accurate predictions for the newly drawn IS sample. To train the xgboost, we

use a single training sample of networks for which we calculate the cycles, thus the cycle

detection task is performed only once in our algorithm. Thence, we calculate distances

between the training sample of networks and the current or proposed centroid network,

and train the model to identify associations between the distance metrics considered as

predictors in our problem, and the symmetric difference distance which is the target

variable. Notably, the distance metrics considered as covariates in our problem are the

Hamming distance, the Jaccard distance and the centrality-betweenness distance. For
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a description of the Hamming and Jaccard distance metrics refer to Section 1.1, and

for the centrality-betweenness distance refer to Appendix B.3. Lastly, to calculate the

estimator of the normalising constant for the newly drawn IS sample, we obtain the

Hamming, the Jaccard and the centrality betweenness distance between each network

in the new IS sample and the current or proposed centroid, and predict the symmetric

difference distance using the trained xgboost. In this manner, we avoid the calculation

of the cycles of the newly drawn IS sample in every iteration.

In Section 4.4.3, we present the results from our simulation study using the xgboost

algorithm to predict the symmetric difference against its exact calculation for the HS

distance metric, along with the computational time required in each case.

4.4 Simulation Study

In this Section we investigate the behaviour of the newly proposed HS distance metric, as

well as the performance of our proposed MCMC with IS step for inferring the parameters

of the SNF model. Specifically, in Section 4.4.1 we investigate the HS distance metric

behaviour through synthetic data experiments, in Section 4.4.2 we perform simulation

studies to assess the performance of our proposed MCMC with IS step, for both the

HS and the Jaccard distance, for small network sizes that allow comparisons to the

inferences made under the exact calculation of the normalising constant. In addition in

Section 4.4.2 we investigate the performance of the MCMC with IS step for various IS

densities and IS sample sizes. Lastly, in Section 4.4.3 we investigate the performance of

the MCMC with IS step in inferring the model parameters for moderate network sizes,

for both the HS and the Jaccard distance, and explore the performance of the xgboost

in predicting the symmetric difference of cycles, along with the computational benefit

from its formulation.

4.4.1 Synthetic data experiments for HS distance metric

In section 4.3.1, we introduced a new network distance metric, namely the HS distance,

formulated to extract information about differences between networks with respect to

their cycles. Inspired by the study of Donnat and Holmes [2018] who explore the prop-

erties of various network distance metrics from the network literature, in this simulation
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study we explore the properties of the HS distance through its application on a set of

network observations with diverse structures. Specifically, we simulate network data

characterised by different topologies, and obtain distance matrices containing the pair-

wise distances between the simulated networks. Thence, we analyse the distance matrices

obtained in the following ways:

• We map the pairwise distances of the networks in a two dimensional space through

an MDS projection. This representation allow us to observe whether networks with

similar characteristics are identified to be closer with respect to the distance metric

specified.

• We obtain the minimum spanning tree graph and apply a Friedman-Rafsky test,

as presented in Donnat and Holmes [2018]. This hypothesis testing framework

allows us to examine whether the distance metric under consideration captures

similarities between networks with respect to their structure.

First, we generate network observations under three well-known network models

that exhibit diverse structures, similarly to the synthetic data experiments presented

in Donnat and Holmes [2018]. In our study, we consider networks with n = 20 nodes,

motivated by the network sizes of the fish data application. The network models used

to simulate network data, along with the parameter specification are the following:

1. The Erdos-Renyi (ER) model with probability of connection p = 0.1

2. The Preferential Attachment (PA) model with power equal to 1.

3. The Stochastic Block Model (SBM) with two equally sized communities of nodes

and probability matrix

 0.2 0.01

0.01 0.3

.

For each network model specification, we simulate 10 independent network observations,

resulting in a set of N = 30 networks. We further fix the density of the graphs to be

equal to 0.1, so that the variability of the simulated networks originates only from the

networks’ structure.

As presented in section 4.3.1, the HS distance metric involves a weighting factor λ

indicating the importance of the symmetric difference on the overall distance between

two networks. In this respect, we consider a range of values for the weighting factor
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λ = {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 8}, to explore its impact on the distance metric per-

formance. To further understand the behaviour of the HS distance, we also consider

two widely used network distance metrics, the Hamming and the Jaccard distance, to

serve as a reference for comparing the results obtained from the HS distance. Lastly,

we obtain the Symmetric difference distance solely, to observe its behaviour when we do

not combine it with the Hamming distance in the HS distance metric.

Figure 4.3 shows the MDS projections for each distance metric considered, where

each dot corresponds to a network observation and the colour of the dots correspond

to the network model used to simulate the networks. For both the Hamming and the

Jaccard MDS projections, we notice that the networks simulated from the same model

are positioned closer in the 2-d plane, while for the Symmetric difference of the cycles,

the networks are clustered together irrespectively of the network structure, with some

networks placed away from that cluster. This finding indicates that it is hard to iden-

tify similarities among networks with respect to their structure, considering solely the

Symmetric difference distance.

−10

−5

0

5

10

15

−15 −10 −5 0 5 10

y

Hamming

−0.2

0.0

0.2

−0.2 −0.1 0.0 0.1 0.2 0.3
x

Jaccard

−10

0

10

−10 0 10 20 30

Symmetric Differene

Model ER PA SBM

Figure 4.3: MDS for the Hamming distance matrix (left), the Jaccard distance matrix
(middle) and Symmetric difference distance matrix (right), for networks generated under
the Erdos-Renyi (ER), the Preferential Attachment (PA) and the Stochastic Block Model
(SBM).

In Figure 4.4, we show the MDS projections for the HS distance, for different λ

weights for the Symmetric difference part of the metric. We notice that as the impact

of the Symmetric difference distance increases over the Hamming distance, the networks

tend to cluster together in one group. This is an anticipated result considering the
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Figure 4.4: MDS for the HS distance matrix for varying sizes of λ, for networks generated
under the Erdos-Renyi (ER), the Preferential Attachment (PA) and the Stochastic Block
Model (SBM)

behaviours of the Hamming and Symmetric difference distance independently, as seen in

MDS projections in Figure 4.3. It is worth noting that as λ increases, the first network

data that start to form a cluster are those simulated from the ER and PA models,

while the SBM networks differentiate from that cluster, even for greater λ values. This

result highlights the importance of combining the Hamming distance with the Symmetric

difference to form the HS distance metric, as the Hamming distance captures information

about the overall structure of the networks. In addition, the illustration in Figure 4.4

shows the importance of the weight factor λ in the overall behaviour of the HS distance.

We further identify other characteristics of the simulated networks, to investigate

whether the distance metrics considered are able to detect similarities among networks

with similar characteristics. Network characteristics summarise information about struc-

tural properties of the networks on both node and edge level. Maugis et al. [2017] show

that two dominant network features that reveal information about a network’s topology

are trees and cycles. The latter is also a network characteristic that we aim to capture

with the HS distance metric formulated. In this regard, we calculate the number of

cycles of all sizes and star-trees of size 4 in the simulated networks, and illustrate the

results through the MDS projections obtained from the distance metrics.
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Figures 4.5 and 4.6 show the MDS projections for the networks, where colours cor-

respond to the number of cycles identified in the networks and shapes correspond to the

network model used to simulate the networks. In Figure 4.5, we observe that the Ham-

ming and the Jaccard distance identify similarities among networks that have less cycles,

while the networks having 5 up to 25 cycles are not distinguishable. On the other hand,

the Symmetric difference identifies as dissimilar the networks with the largest number

of cycles, from the rest of the networks. We further notice that the networks with the

less cycles are those simulated under the PA model as expected due to their tree-like

shape, while the networks simulated under the ER and the SBM enclose varying number

of cycles.

For the HS distance metric in Figure 4.6, we notice that as we increase the size of λ

the networks with the less cycles start to group together, while the networks involving a

large number of cycles are still identified as dissimilar to all the other networks, as seen

from the three networks consistently positioned away from all other networks in the 2-d

plane. This is a sensible result if we consider that the more cycles two networks have, it

is likely that the less cycles will have in common.
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Figure 4.5: MDS for the Hamming distance matrix (left), the Jaccard distance matrix
(middle) and Symmetric difference distance matrix (right), for networks generated under
the Erdos-Renyi (ER), the Preferential Attachment (PA) and the Stochastic Block Model
(SBM), with colours corresponding to number of cycles.

We now detect the 4-node star-tree motifs (Figure 4.7) formed in the simulated

networks, and present the results through the MDS projections in Figures 4.8 and 4.9.

We observe that the Hamming and the Jaccard distance display a similar behaviour with
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Figure 4.6: MDS for the HS distance matrix for varying sizes of λ, for networks generated
under the Erdos-Renyi (ER), the Preferential Attachment (PA) and the Stochastic Block
Model (SBM), with colours corresponding to number of cycles

respect to the similarities identified among the networks enclosing varying numbers of

star-trees. Overall, we observe that both metrics do not strongly group together networks

with similar amount of star-trees. However, we notice that the networks with the largest

number of star-trees tend to be identified as more similar, and they are distinguishable

from the networks with the less star-trees. Instead, the Symmetric difference identifies

as identical the networks with the largest number of stars, as can be deduced by their

overlapping positions in the 2-d plane. The latter can also be noticed for the HS distance

metric in Figure 4.9, for which we observe that increasing λ leads to the identification of

the networks with the largest number of star motifs as identical, as opposed to the rest

of the networks which are more dispersed in the 2-d plane. This finding suggests that

the HS distance can detect similarities among networks characterised by many star-tree

motifs.

Another informative summary about the networks’ topology, is the networks’ tran-

sitivity which expresses the probability that connected triples in a graph close to form

triangles, as previously discussed in Section 1.1. In Figures 4.10 and 4.11, we present the

MDS projections with respect to the networks’ transitivity. We notice that the Ham-

ming and the Jaccard distance tend to detect similarities between networks having close
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Figure 4.7: 4-node star-tree motif.
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Figure 4.8: MDS for the Hamming distance matrix (left), the Jaccard distance matrix
(middle) and Symmetric difference distance matrix (right), for networks generated under
the Erdos-Renyi (ER), the Preferential Attachment (PA) and the Stochastic Block Model
(SBM), with colours corresponding to number of stars.

transitivity probability. However, Symmetric difference is not consistently grouping to-

gether graphs that have close transitivity probability, as can be noticed for the networks

positioned away from the group of networks forming a cluster.

Alternatively, the HS distance metric appears to identify similarities among graphs

with close transitivity probabilities as seen in Figure 4.11. Specifically, increasing the

importance of the Symmetric difference on the overall metric, assists in identifying sim-

ilarities between networks with small transitivity probability, while simultaneously net-

works with moderate to higher transitivity also group together. This becomes more

prominent for λ = 0.75 for which we can clearly see networks grouping according to

their transitivity.

We now describe the Friedman-Rafsky test performed on the minimum spanning tree

induced by the distance matrices, as presented in Donnat and Holmes [2018]. Under this
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Figure 4.9: MDS for the HS distance matrix for varying sizes of λ, for networks generated
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framework we want to test whether the distance metrics are able to identify groups of

networks with respect to their structure. Thus, in our case we have three different groups

corresponding to the three different network models used to simulate the networks. By

performing this test we are able to quantify the uncertainty of what we observed from

the MDS projections.
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Figure 4.11: MDS for the HS distance matrix for varying sizes of λ, for networks gener-
ated under the Erdos-Renyi (ER), the Preferential Attachment (PA) and the Stochastic
Block Model (SBM), with colours corresponding to transitivity measure.

As commented above, to perform the Friedman-Rafsky test we first obtain the min-

imum spanning tree (MST) resulting from a distance matrix. The minimum spanning

tree is a connected graph with nodes representing networks, and edges connecting net-

works with the greatest similarities, such that no cycles are being formed. Figures 4.12

and 4.13 show the minimum spanning trees obtained for the Hamming, the Jaccard,

the Symmetric difference and the HS distance matrices, for λ = {0.25, 1, 2} indicatively.

The colours of the graphs’ nodes correspond to the three different network models. We

observe that the minimum spanning trees obtained for the Hamming, the Jaccard and

the HS distance, mostly connect graphs simulated under the same network model, while

this is clearly not the case for the Symmetric difference distance.

We further investigate that by performing a Friedman-Rafsky test in the following

way. First, we derive the test statistic for our sample, which is the number of edges

connecting graphs of the same group (network model), for each minimum spanning

tree. Then, we construct the sampling distribution of the test statistic by obtaining

50,000 permutations of the node labels of each minimum spanning tree graph, while

keeping fixed the graph’s topology. Thence we obtain 50,000 graphs from the node label

permutation, and for each graph we calculate the number of edges connecting graphs of
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Figure 4.13: MST for the HS distance matrix with λ = 0.25 (left), λ = 1 (middle) and
λ = 2 (right).

the same group. This give us the probability of seeing a test statistic at least as extreme

as the one observed, namely the p-value of our test. If the p-value is significantly small,

then we can claim that there is evidence suggesting that the corresponding distance

metric groups together graphs simulated from the same network model.

In Table 4.1, we report the p-values obtained under the Friedman-Rafsky test, formu-

lated for the minimum spanning trees of the Hamming, the Jaccard and the HS distance

for λ = {0.25, 1, 2}. We comment here that it is not meaningful to obtain the Friedman-

Rafsky test for the minimum spanning tree of the Symmetric difference distance, as any

label permutation would result in the same test statistic due to the graph’s topology

seen in Figure 4.12 (right). We observe that the p-values derived for all the distance

metrics are statistically significant, except for the HS distance with λ = 2. This result

supports the findings from the MDS projections which showed that the Hamming and

the Jaccard are able to detect similarities among networks of the same group. Moreover,

the p-values obtained for various lambda values of the HS distance indicate the impact
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of the weight on the overall behaviour of the HS distance. Notably, we observe that

the HS distance with lambda=0.25 and 1 is able to detect similarities among networks

belonging in the same group.

Distance metric FR p-values

Hamming 0.0000

Jaccard 0.0000

HS
λ = 0.25

0.0001

HS
λ = 1

0.0732

HS
λ = 2

0.2584

Table 4.1: p-values for Friedman-Rafsky test applied on the MSTs for the Hamming,
the Jaccard and the HS distance.

4.4.2 Performance of MCMC for small network sizes

In this section we investigate the performance of our algorithm in inferring the model

parameters, for small networks sizes. Specifically, we consider networks with 5 nodes,

as the space of graphs for this size of networks {G|5|} encompasses 210 = 1024 graphs,

rendering the calculation of the true normalising constant feasible. This is an important

condition in order to investigate the performance of our MCMC algorithm with the

IS step, as it enables us to compare its results against the results obtained from the

implementation of an MCMC algorithm with the true normalising constant calculated

within the MH ratio.

To explore the behaviour of our MCMC algorithm with IS step for the SNF model, we

consider the Jaccard and the HS distance metrics, and determine various regimes of the

dispersion parameter γ and network population sizes N . The network population sizes

that we consider in this simulation study are N = {5, 20, 50}. To determine the sizes

of γ, we first need to investigate the behaviour of the SNF model under each distance

metric specification.

To achieve that we conduct some Exploratory Data Analysis by sampling networks

from the SNF model with fixed parameters G0 and γ0. Sampling networks from the

SNF model is accomplished by implementing an MH algorithm that updates network

data in each iteration, while keeping fixed the SNF model parameters, as presented in

Lunagómez et al. [2021]. In Section 4.3.3, we presented how sampling networks from
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Figure 4.14: 5-node centroid G0.

the CER model using an MH algorithm is performed, which is similar to the sampling

scheme used for the SNF model in this simulation study. We note here that under this

set up, the normalising constant cancels from the MH ratio, making the implementation

of the MH algorithm straightforward.

Under this formulation, we generate a 5-node network playing the role of the centroid

G0 and simulate network data from the SNF model for various sizes of the dispersion

parameter γ0. In Figure 4.14 we show the 5-node centroid G0 simulated. Subsequently,

we obtain the distance between the simulated network data and the centroid G0, for each

regime of γ0 considered, with respect to the distance metric specified. We visualise the

results using boxplots representing the distribution of the distances for each size of γ0.

This visualisation allows us to observe how the distribution of the distance changes for

different sizes of γ0, and for each distance metric specified. In Figures 4.15 and 4.16, we

present the EDA results for the HS and the Jaccard distance, respectively.

We observe that the average distance E[d(G,G0)] scales differently with γ0, for each

distance metric specification. Notably, E[d(G,G0)] reaches 0 for different sizes of γ0 for

each distance metric considered. In addition different step sizes for γ0 impose more

or less drastic changes in the distribution of distance according to the distance metric

specified. For example, step sizes similar to that obtained for the HS distance (e.g.

step equal to 0.1), would impose less drastic changes to the distance distribution for the

Jaccard distance metric.

In the following subsections, we demonstrate the simulation regimes for the HS and

the Jaccard distance informed by the EDA, and present the results from our simulation

study.
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Figure 4.16: Distribution of the Jaccard distance between networks generated from the
SNF(G0,γ0) for various sizes of γ0, for 5-node networks.

Simulation study for HS distance metric

Under the HS distance metric specification in 4.15, we observe that the distances between

the network data simulated and the centroid are close to 0 for γ = 1.6. Thus, network

data simulated for γ0 > 1.6 are closer to the centroid, resulting in less variability in the

network population generated for those regimes. Considering the EDA results, we set up

our simulation study for γ = {0.01, 0.6, 1.1, 1.6}, to investigate the performance of our

algorithm in inferring the model parameters for a range of network populations, with

respect to their variability from the centroid. In addition, we consider two sample sizes

K for the IS step, equal to 2000 and 4000, to explore the effect of the IS sample size in

the inference task for the 5-node network case. In Table 4.2, we present the simulation

regimes considered for the HS distance metric for the 5-node networks.

We generate network data for each simulation regime specified, and fit them to the

SNF model under three different MCMC schemes, (i) an adaptive MCMC scheme for

the specification of the parameters of the IS density, (ii) a non-adaptive MCMC scheme,
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n N K γ

5 5 2000 0.01
5 20 2000 0.01
5 50 2000 0.01
5 5 4000 0.01
5 20 4000 0.01
5 50 4000 0.01
5 5 2000 0.6
5 20 2000 0.6
5 50 2000 0.6
5 5 4000 0.6
5 20 4000 0.6
5 50 4000 0.6
5 5 2000 1.1
5 20 2000 1.1
5 50 2000 1.1
5 5 4000 1.1
5 20 4000 1.1
5 50 4000 1.1
5 5 2000 1.6
5 20 2000 1.6
5 50 2000 1.6
5 5 4000 1.6
5 20 4000 1.6
5 50 4000 1.6

Table 4.2: Simulation regimes for 5 node networks for the HS distance metric.

in which the parameters of the IS density are held fixed throughout the iterations, and

(iii) an MCMC scheme in which the true normalising constant is calculated. For the

adaptive scheme (i), we implement the MCMC with an IS step as presented in section

4.3.5. For the non-adaptive scheme (ii), we set the parameters of the CER model to the

posterior mean of α and the posterior mode of Gm after fitting the simulated network

data to the CER model. The formulation of scheme (iii) is straightforward as we are

able to identify the networks in the space of 5-node graphs {G|5|}.

We further specify a Gamma prior distribution for the dispersion γ, with hyperpa-

rameters informed by the corresponding scale of γ, as proposed in Lunagómez et al.

[2021]. The prior specified for the centroid Gm is the SNF model as presented in section

4.3.4, with hyperparameters G0 and γ0. We set G0 to the network from the simulated

network data that minimises the distance from all the other networks, and γ0 to a low

value so that the we allow high variation to be encoded.

In Figure 4.17, we visualise the posterior distribution for the dispersion parameter γ

obtained after running our MCMC for 10,000 iterations with 1,000 burn-in. We notice
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that the results obtained from the MCMC with IS step under the two different schemes,

are similar to the results obtained for the MCMC with the true normalising constant

calculated in each iteration. This is an interesting result, suggesting that the IS step

implemented provides a good approximation of the normalising constant. In addition,

we observe similar inferential results under the two different IS schemes formulated,

except for the regime of γ = 1.6 and N = 50, where the adaptive scheme seems to

perform better considering the results from the MCMC with the exact calculation of the

normalising constant.

In Figures 4.18, 4.19 and 4.20, we further obtain the traceplots for γ to probe the mix-

ing of the chains under each inferential scheme, and for the diverse simulation regimes.

Specifically, each subfigure corresponds to the posterior draws obtained for γ under each

simulation regime, while the colours of the traceplots correspond to the different infer-

ential schemes implemented. Notably, we observe that for each simulation regime, all

MCMC chains are mixing well and explore the same region of values for γ, close to its

true value.

We investigate the performance of the MCMC with IS step algorithm in inferring the

centroid network Gm, by obtaining the posterior mode from the MCMC draws for Gm,

calculating the posterior mass that the mode concentrates and computing the Hamming

distance between the posterior mode and the true centroid to detect how accurately the

centroid has been inferred. We summarise the results through the plots seen in Figures

4.21, 4.22, 4.23 and 4.24, for each regime of γ considered and K = 2000.
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Figure 4.17: Posterior distribution of γ for simulation regimes presented in Table 4.2,
after applying the adaptive MCMC scheme, the non-adaptive MCMC scheme and the
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line indicates the true value of γ.
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Figure 4.18: Traceplots for γ for simulation regimes presented in Table 4.2 with sample
size N = 5, after applying the adaptive MCMC scheme, the non-adaptive MCMC scheme
and the MCMC scheme with the calculation of the true normalising constant.
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Figure 4.19: Traceplots for γ for simulation regimes presented in Table 4.2 with sample
size N = 20, after applying the adaptive MCMC scheme, the non-adaptive MCMC
scheme and the MCMC scheme with the calculation of the true normalising constant.
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Figure 4.20: Traceplots for γ for simulation regimes presented in Table 4.2 with sample
size N = 50, after applying the adaptive MCMC scheme, the non-adaptive MCMC
scheme and the MCMC scheme with the calculation of the true normalising constant.
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Figure 4.21: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for
γ = 0.01 and K = 2000, and various sample sizes N and MCMC schemes.
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Figure 4.22: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for γ = 0.6
and K = 2000, and various sample sizes N and MCMC schemes.
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Figure 4.23: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for γ = 1.1
and K = 2000, and various sample sizes N and MCMC schemes.
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Figure 4.24: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for γ = 1.6
and K = 2000, and various sample sizes N and MCMC schemes.

For the regime of γ = 0.01 corresponding to the populations of networks with the

greatest variability from the centroid, we note that the centroid is not fully identified

and the posterior modes concentrate low masses ranging from 0.006 to 0.009, for all the

different MCMC schemes implemented. On the other hand, for the remaining simulation

regimes of γ, the true centroid is accurately inferred from the MCMC, with the posterior

modes having a Hamming distance from the true centroid equal to 0. Nonetheless, the

posterior masses concentrated by the modes are substantially lower for the smallest

population size N = 5. We further note here that the inferential results are the same

between the MCMC with the IS step and the MCMC with the calculation of the true

normalising constant.

In Appendix B.4.1, we further present the autocorrelation plots for γ under the

simulation regimes γ = {0.01, 0.6, 1.1, 1.6} and N = 50, for both IS sample sizes K =

{2000, 4000} and the two distinct IS schemes (adaptive and non-adaptive scheme).

In the next section we set up the simulation study for the 5-node network case and the

SNF model with the Jaccard distance metric specified, and present the simulation results

after applying the MCMC with the IS step and the MCMC with the true normalising

constant obtained in each iteration.
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Simulation study for Jaccard distance metric

We now specify the simulation regimes for the 5-node networks case and the Jaccard

distance metric specification, utilising the information obtained from the boxplots in

Figure 4.16. Similarly to the HS distance, we consider a range of values for γ, such that

each network population generated has different variability from the centroid. Notably,

we consider γ = {1, 7, 11, 15}, as presented in Table 4.3.

n N K γ

5 5 2000 1
5 20 2000 1
5 50 2000 1
5 5 4000 1
5 20 4000 1
5 50 4000 1
5 5 2000 7
5 20 2000 7
5 50 2000 7
5 5 4000 7
5 20 4000 7
5 50 4000 7
5 5 2000 11
5 20 2000 11
5 50 2000 11
5 5 4000 11
5 20 4000 11
5 50 4000 11
5 5 2000 15
5 20 2000 15
5 50 2000 15
5 5 4000 15
5 20 4000 15
5 50 4000 15

Table 4.3: Simulation regimes for 5-node networks for the Jaccard distance metric.

In this simulation study, for each network population generated according to the

simulation regimes seen in Table 4.3, we implement the following two MCMC schemes: (i)

a non-adaptive MCMC scheme with an IS step, where we keep fixed the parameters of the

IS density, as seen in the simulation study for the HS distance, and (ii) an MCMC scheme

in which we calculate the true normalising constant in each iteration. We note here

that the adaptive scheme presented in Section 4.3.5 and implemented in the simulation

study for the HS distance is not implemented for the Jaccard distance as well, as the

transformation applied involves the Hamming distance metric, which is not relevant to
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the Jaccard distance considered in this section.

We tune the prior distributions for γ and Gm in the same way as presented in the

simulation study for the HS distance. However, in this simulation study we also consider

a non-informative prior for the dispersion parameter γ, in order to demonstrate that our

algorithm performs equally well under both set ups. We note that obtaining Jeffreys

prior is not straightforward for the SNF model, due to the sum over the space of graphs

that the likelihood involves. Alternatively, we consider a Uniform prior over an interval

[a, b], specified according to the EDA conducted for the SNF model. In this regard, for

the Jaccard distance, we consider a Uniform distribution over the interval [0.01, 18]. In

Appendix B.4.2, we present the results under the non-informative prior specification, for

N = 50 indicatively.

We run each MCMC algorithm for 10,000 iterations with a burn-in of 1,000 iterations,

and visualise the results for γ in Figures 4.25, 4.26, 4.27, 4.28 and 4.29. As commented

previously, our ability to compare the results from the MCMC with the IS step to

the MCMC with the true normalising constant calculated is key in order to validate

the performance of the IS in approximating the normalising constant. We notice that

the posterior distribution obtained under the two distinct MCMC schemes are similar,

suggesting that our MCMC with IS step performs well in inferring γ.

We summarise the inferential results for Gm in Figures 4.30, 4.31, 4.32 and 4.33.

For each MCMC scheme and each simulation regime considered, we demonstrate the

posterior mass concentrated by the mode of Gm along with its Hamming distance from

the true centroid. We notice that for the simulation regime of γ = 1, the true centroid is

not fully identified and the posterior modes obtained concentrate low masses, which can

be attributed to the high variability of the network population generated. In contrast

to this, for γ = {7, 11, 15} the posterior modes are identical to the true centroid and

concentrate high posterior masses.
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Figure 4.25: Posterior distribution for γ for simulation regimes presented in Table 4.3,
after applying the non-adaptive MCMC scheme and the MCMC scheme with the calcu-
lation of the true normalising constant. The red dashed line indicates the true value of
γ.
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Figure 4.26: Posterior distribution for γ for simulation regimes presented in Table 4.3,
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Figure 4.27: Traceplots for γ for simulation regimes presented in Table 4.3 with sample
size N = 5, after applying the non-adaptive MCMC scheme and the MCMC scheme
with the calculation of the true normalising constant.

0

2

4

6

0 2500 5000 7500

γ = 1 , K = 2000

5

6

7

8

9

0 2500 5000 7500

γ = 7 , K = 2000

10

11

12

13

14

0 2500 5000 7500

γ = 11 , K = 2000

14

16

18

0 2500 5000 7500

γ = 15 , K = 2000

0

2

4

0 2500 5000 7500

Po
st

er
io

r d
ra

w
s 

fo
r γ

γ = 1 , K = 4000

5

6

7

8

9

0 2500 5000 7500

γ = 7 , K = 4000

10

11

12

13

14

0 2500 5000 7500
iterations

γ = 11 , K = 4000

13

14

15

16

17

18

0 2500 5000 7500

γ = 15 , K = 4000

non_adaptive true_Z

Figure 4.28: Traceplots for γ for simulation regimes presented in Table 4.3 with sample
size N = 20, after applying the non-adaptive MCMC scheme and the MCMC scheme
with the calculation of the true normalising constant.
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Figure 4.29: Traceplots for γ for simulation regimes presented in Table 4.3 with sample
size N = 50, after applying the non-adaptive MCMC scheme and the MCMC scheme
with the calculation of the true normalising constant.
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and K = 2000, and various sample sizes N and MCMC schemes.

179



0

1

2

3

4

5

6

7

8

9

10

0.25 0.50 0.75 1.00
posterior mass

H
am

m
in

g 
di

st
an

ce

N

5
20
50

MCMC scheme

non adap
true

γ = 7 , K = 2000

Figure 4.31: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for γ = 7
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Figure 4.32: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for γ = 11
and K = 2000, and various sample sizes N and MCMC schemes.
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Figure 4.33: Hamming distance between the posterior mode centroid and the true cen-
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Investigation for various IS sample sizes and different IS densities

In Section 4.3.6, we discussed how the bias in estimating ZN increases as a function of N ,

when we estimate Z under an IS scheme. As shown in section 4.3.6, we expect this bias to

increase for increasing network population sizes N . However, in the previous simulation

studies for 5-node networks, the effect of the bias was not obvious from the simulation

results which can be attributed to the large IS sample sizes K obtained, as discussed

in Vitelli et al. [2017]. In this simulation study, we explore the bias occurring with N

considering a range of IS sample sizes K, and investigate how alternative formulations

of our algorithm perform in dealing with the bias.

We first consider one of the simulation regimes introduced for the Jaccard distance

in this section. Notably, we consider the population of N = 50 networks generated from

the SNF model with γ = 11. Thence, we apply our MCMC algorithm with IS step, for

various IS sample sizes ranging from 100 up to 900 samples, and different formulations

of the IS step. With respect to the IS step formulations, we consider two alternative

ways to sample from the CER model, namely the MCMC and the Monte Carlo sampling

schemes, as introduced in Section 4.3.3. In addition, we specify a mixture of CER models

as the IS density and lastly, we apply an error adjustment as obtained in section 4.3.6

for correcting the bias in our estimate.

For the single CER IS density, we tune its parameters similarly to the tuning in-

troduced in the previous simulation studies in this section. Specifically, we obtain the

posterior mode for Gm and posterior mean for α, after fitting the simulated network

population to the CER model. For the mixture of CER IS density, we specify a common

centroid being the posterior mode obtained for the single CER model, and determine

J = 3 mixture components with probabilities β = (1/3, 1/3, 1/3) corresponding to three

different sizes of α̃ = (0.2, 0.3, 0.4).

In Figure 4.34 we present the results for the posterior distribution of γ under the four

different formulations of our algorithm. We run each algorithm for 10,000 iterations with

a burn-in of 1,000. We now see the effect of the IS sample size K on the performance

of our algorithm in inferring the model parameters. Notably, for K ranging from 100 to

600 networks our algorithm with IS density the CER model and the MCMC sampling

scheme, consistently underestimates the dispersion parameter γ. A similar behaviour is

identified for the algorithm with the error adjustment, indicating that this formulation

182



does not correct the bias in our estimation. However, we observe that the formulation

of a Monte Carlo sampling scheme for the CER model (red boxplots) provides more

accurate inferential results for small IS sample sizes K. Similarly, the specification of

a mixture of CER models for the IS density (blue boxplots) leads to more accurate

inference of γ. This result indicates that both the IS density specified and the sampling

scheme used to sample from the IS density, play a significant role in the performance of

the MCMC.
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Figure 4.34: Posterior distribution of γ under the four different formulations of our
algorithm (colours), for varying IS sample size of K.

In the next section we further probe the performance of our algorithm in inferring the

parameters of the SNF model for larger network sizes, under both the Jaccard and the

HS distance metric specification. For the latter, we also explore the performance of the

MCMC with the xgboost algorithm formulated to perform prediction of the symmetric

difference in the HS distance, as presented in section 4.3.7.

4.4.3 Performance of MCMC for moderate network sizes

We now introduce the simulation study performed to explore the performance of the

MCMC with IS step for moderate network sizes. Specifically, we consider networks with

n = 20 nodes, motivated by the network sizes of the ecological application presented in
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Section 4.3.1. In contrast to the 5-node case, for the 20-node networks the computation

of the true normalising constant is not feasible, as now the size of the space of 20-

node graphs is |{G|20|}| = 2190. Thence, in this simulation study it is not feasible to

compare the results of our algorithm to the results of an MCMC which involves the

exact calculation of the normalising constant. However, synthetic data experiments

still allow a controlled environment to draw conclusions about the performance of our

algorithm.

Analogously to the 5-node case, we set up the simulation regimes with respect to

varying sizes of the dispersion γ and the population size N . We examine the performance

of our MCMC for both the Jaccard and the HS distance metric, thus, the sizes for γ

are determined after conducting EDA for each distance metric. The network population

sizes considered are N = {5, 20, 50}, which are common for both the simulation study

for the Jaccard and the HS distance.

To determine the sizes of the dispersion γ, we conduct EDA similarly to the EDA

performed for the 5-node networks in section 4.4.2. In this respect, we simulate network

populations from the SNF model with centroid G0 presented in Figure 4.35 and various

sizes of γ0, and obtain the distances between the simulated networks and the centroid

with respect to the distance metric considered. Figures 4.36 and 4.37 show the distribu-

tion of the distance obtained for each size of γ0, for the 20-node networks case and for

the Jaccard and the HS distance metric, respectively.
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Figure 4.35: 20-node centroid G0.

As previously discussed, we expect that different distance metric specifications will

reveal different relationships between the expected distance E[d(G,G0)] and the disper-

sion γ0. To begin with, for the Jaccard distance metric, we observe a significant drop in

the average distance of the simulated networks from the centroid when gamma ranges

from 80 to 100, while for ranges of gamma outside of this interval, the average distance
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Figure 4.37: Distribution of the HS distance between networks generated from the
SNF(G0,γ0) for various sizes of γ0, for 20-node networks.

scales gradually with gamma. On the other hand, we observe a smoother behaviour of

the distribution of the distance for the HS distance metric for increasing γ0.

In the following sections we set up the simulation regimes for which we generate

populations of 20-node networks under the SNF model, and implement the MCMC

with IS step to explore whether our algorithm accurately infers the true sizes of the

parameters.

Simulation study for Jaccard distance

We now introduce the simulation regimes for the Jaccard distance metric, utilising

the information captured by the EDA. Various sizes of γ imply various levels of vari-

ability between the simulated network population and the centroid, as seen in Figure

4.36. In our simulation study, we consider a range of values for γ such that network

populations with different levels of variability are simulated. Specifically, we consider

γ = {30, 90, 100, 120} and specify two IS sample size K = {2000, 6000}. The simulation
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regimes for the 20-node case and the Jaccard distance, are summarised in Table 4.4.

n N K γ

20 5 2000 30
20 20 2000 30
20 50 2000 30
20 5 6000 30
20 20 6000 30
20 50 6000 30
20 5 2000 90
20 20 2000 90
20 50 2000 90
20 5 6000 90
20 20 6000 90
20 50 6000 90
20 5 2000 100
20 20 2000 100
20 50 2000 100
20 5 6000 100
20 20 6000 100
20 50 6000 100
20 5 2000 120
20 20 2000 120
20 50 2000 120
20 5 6000 120
20 20 6000 120
20 50 6000 120

Table 4.4: Simulation regimes for 20-node networks for the Jaccard distance metric.

For each regime, we simulate a network population and apply solely a non-adaptive

MCMC with IS step, as the implementation of an MCMC involving the calculation of

the true normalising constant is not feasible for 20-node networks. We tune the prior

for γ and Gm similarly to the tuning conducted for the simulation study in section 4.4.2,

and run our MCMC algorithm for 10,000 iterations with a burn-in of 1,000 iterations.

The boxplots in Figures 4.38 and 4.39 show the posterior distribution for γ, for each

simulation regime. We observe that our algorithm performs well in inferring γ for N = 5,

as the posterior mean of the distribution is close to the true value of γ. However, we

notice that our algorithm consistently underestimates γ for some simulation regimes,

and specifically for increasing population sizes N and dispersion sizes γ equal to 30, 90

and 100. As discussed in section 4.3.6, the poor performance of our algorithm under

these regimes can be attributed to the bias increasing with N . In Figures 4.40 and 4.41,

we also present the traceplots for γ, with colours corresponding to the two different sizes

of K.
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Figure 4.38: Posterior distribution for γ for simulation regimes presented in Table 4.4
after applying the non-adaptive MCMC scheme. The red dashed line indicates the true
value of γ.
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Figure 4.39: Posterior distribution for γ for simulation regimes presented in Table 4.4
after applying the non-adaptive MCMC scheme. The red dashed line indicates the true
value of γ.
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Figure 4.40: Traceplots for γ for simulation regimes presented in Table 4.4 after applying
the non-adaptive MCMC scheme.
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Figure 4.41: Traceplots for γ for simulation regimes presented in Table 4.4 after applying
the non-adaptive scheme.

In Section 4.4.2, we investigated the impact of the IS density specification on the

bias occurring with large N through simulation studies. We observed that a mixture

of CER models IS density outperformed a single CER model IS density in inferring

the true size of γ. Utilising this result, we investigate whether the mixture model IS
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density specification in our MCMC scheme achieves more accurate results for the 20-node

network case, and further increase the IS sample size K to 10,000 networks.

Figures 4.42 and 4.43 show the posterior distribution of γ for the non-adaptive

MCMC algorithm, with IS density specification a mixture of CER models. We no-

tice that the inferential results obtained are similar to those obtained for the single CER

IS density. Thus, the effect of the IS density on the bias occurring with N is not ev-

ident for the 20-node networks case. However, we note that the posterior distribution

for the regime of γ = 120 is concentrated on the upper bound of γ equal to 130, where

E[d(G,G0)] = 0, as seen from the EDA. This can be explained by the similar behaviour

of the distribution of the distance for γ ≥ 120, as seen in figure 4.36.
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Figure 4.42: Posterior distribution for γ for simulation regimes presented in Table 4.4
after applying the non-adaptive MCMC scheme, with IS density the mixture of CER
models and IS sample size K = 10, 000. The red dashed line indicates the true value of
γ.

In addition, we obtain summaries for the posterior draws for the centroid Gm, for

both IS density specifications, and present the results in Figures 4.44, 4.45, 4.46 and 4.47.

We observe that the centroids inferred are dissimilar to the true centroid with respect

to the Hamming distance and they also gather small posterior masses, under both the

mixture model and the single CER model IS density. However, for the simulation regime
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with the less variation in the simulated network population, we notice that the algorithm

with the mixture model IS density specification accurately infers the true centroid, and

the posterior mode concentrates a high mass.
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Figure 4.43: Posterior distribution for γ for simulation regimes presented in Table 4.4
after applying the non-adaptive MCMC scheme, with IS density the mixture of CER
models and IS sample size K = 10, 000. The red dashed line indicates the true value of
γ.
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Figure 4.44: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for γ = 30
and K = 6000, and various sample sizes N and MCMC schemes.
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Figure 4.45: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for γ = 90
and K = 6000, and various sample sizes N and MCMC schemes.
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Figure 4.46: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for γ = 100
and K = 6000, and various sample sizes N and MCMC schemes.
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Figure 4.47: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for γ = 120
and K = 6000, and various sample sizes N and MCMC schemes.
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In Appendix B.5.1, we further present the simulation results of our MCMC for a

greater size of K = 18, 000 networks, for one of the challenging regimes where γ = 90

and N = 20. However, we do not notice any change in the inferential results.

We note here that despite the limitation of our algorithm to accurately infer the

parameters of the SNF model for large populations sizes N , we are still able to implement

our algorithm on multiple network data sets that involve only few network observations.

This is the case with the ecological application that has motivated our study, which

involves date sets with less than 5 network observations each.

In the next section we explore the performance of our MCMC algorithm for the HS

distance metric specification, for network sizes and population sizes similar to the sizes

of the real data example.

Simulation study for HS distance

In the previous Sections, we examined the performance of the IS step for approximat-

ing the normalising constant within the MCMC algorithm, for a range of population

sizes N = {5, 20, 50} and two network sizes n = {5, 20}. Motivated by the ecological

application, in this section we aim to assess the performance of the MCMC with IS

step for the SNF model whith the HS distance metric, for network and sample sizes

similar to the sizes of the fish multiple network data. Notably, the network populations

sizes from the ecological application are N = {3, 4}, and the number of networks’ nodes

are n = {18, 19, 22} . Motivated by the application, in this simulation study we con-

sider populations of networks with N = 5 networks, and n = 20 nodes to assess the

performance of our algorithm.

A key challenge associated with the HS distance metric is the cycle detection, which

is a computationally intensive task for 20-node networks. Hence, we consider only two

simulation regimes involving two alternative sizes of γ = {0.06, 0.6}. We then simulate

two network populations, corresponding to two different levels of variability from the

centroid, as seen from the EDA boxplots in Figure 4.37. Similarly to the 20-node simu-

lation study for the Jaccard distance, the centroid Gm specified in this simulation study

is as seen in figure 4.35.

In Section 4.3.7, we introduced an alternative way to obtain the HS distance between

networks avoiding the cycle detection step for every new IS sample drawn, through
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the implementation of an xgboost algorithm. In this simulation study, we explore the

performance of the xgboost within our MCMC algorithm and compare its results to

the results obtained from the MCMC with the exact calculation of the HS distance.

Moreover, we demonstrate the computational time benefit from applying the xgboost

algorithm, instead of calculating the exact HS distance in each iteration.

The IS density specified for this simulation study is a single CER model and the

tuning performed is similar to that presented in Section 4.4.2. We consider two alter-

native schemes for sampling from the CER model, namely the MCMC scheme and the

Monte Carlo scheme, and obtain IS samples of K = 6, 000 networks in each iteration of

our main algorithm. We run our MCMC for 5,000 iterations for each simulation regime

considered.

Figure 4.48 shows the posterior distributions for γ for the network population gener-

ated from the SNF model with γ = 0.06. We observe that the posterior draws for γ are

similarly distributed for both the case of the MCMC with the exact calculation of the

HS distance and the case of the MCMC with the xgboost algorithm. For the IS sampling

scheme using MCMC and the xgboost predictions of the HS distance, we notice that

the posterior distribution covers a wider range of values for γ, and the 50% confidence

interval encloses the true value of γ = 0.06. This can also be noticed from the traceplots

obtained in Figures 4.49 and 4.50, that show the posterior draws for γ for the MCMC

with the exact and the MCMC with the predicted HS distance, and the two alternative

IS sampling schemes. Notably, the traceplots under the MC IS sampling scheme explore

the same region of values for γ under both the MCMC with the exact calculation of the

HS distance and the MCMC with the xgboost implementation. In addition, the chains

mix well in both cases.

For the second simulation regime involving γ = 0.6, the inferential results for γ are

more perturbed compared to the the first simulation regime of γ = 0.06. Figure 4.51

illustrates the posterior distribution of γ under each MCMC implementation. In this

case, the posterior distribution under the exact calculation of the HS distance, entails a

range of values for γ closer to its true size. However, the traceplots presented in Figures

4.52 and 4.53, show that the chains for the exact and the xgb scheme perform similarly,

having mixing and stationarity issues. One way to explain the chains’ behaviour under

this simulation regime, is through the EDA boxplots obtained in figure 4.37. Notably,
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Figure 4.48: Posterior distribution of γ for simulation regime γ = 0.06 resulting from the
MCMC scheme with the exact calculation of the HS distance versus the MCMC scheme
with the implementation of the xgboost algorithm (x axis), and two alternative schemes
for sampling from the IS density (colours). The red dashed line indicates the true value
of γ.
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Figure 4.49: Traceplots for γ for simulation regime γ = 0.06 resulting from the MCMC
scheme with the exact calculation of the HS distance versus the MCMC scheme with
the implementation of the xgboost algorithm (colours) and sampling from the IS density
using an MCMC scheme.
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Figure 4.50: Traceplots for γ for simulation regime γ = 0.06 resulting from the MCMC
scheme with the exact calculation of the HS distance versus the MCMC scheme with
the implementation of the xgboost algorithm (colours) and sampling from the IS density
using Monte Carlo scheme.
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for the range of γ values explored by the MCMC chains, specifically for 0.3 < γ < 0.8,

the distribution of the distance does not change considerably. This may affect the

convergence of the MCMC chains, due to the non distinguishable regimes of γ being

explored.
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Figure 4.51: Posterior distribution of γ for simulation regime γ = 0.6 resulting from the
MCMC scheme with the exact calculation of the HS distance versus the MCMC scheme
with the implementation of the xgboost algorithm (x axis), and two alternative schemes
for sampling from the IS density (colours). The red dashed line indicates the true value
of γ.
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Figure 4.52: Traceplots for γ for simulation regime γ = 0.6 resulting from the MCMC
scheme with the exact calculation of the HS distance versus the MCMC scheme with
the implementation of the xgboost algorithm (colours) and sampling from the IS density
using an MCMC scheme.

A common result from both the MCMC with the xgboost algorithm and the MCMC

with the exact HS calculation, is that the centroids inferred under each scheme are

different from the true centroid by approximately 40 edges with respect to the Hamming

distance, and they concentrate low masses for both simulation regimes of γ = 0.06

and γ = 0.6, as presented in Figures 4.54 and 4.55. In addition, the IS sampling

scheme specified does not appear to have a significant effect on the centroid inference.
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Figure 4.53: Traceplots for γ for simulation regime γ = 0.6 resulting from the MCMC
scheme with the exact calculation of the HS distance versus the MCMC scheme with
the implementation of the xgboost algorithm (colours) and sampling from the IS density
using a Monte Carlo scheme.

Specifically, we notice that for the MCMC IS sampling scheme the posterior modes for

Gm concentrate only slightly higher posterior masses than the MC IS sampling scheme.
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Figure 4.54: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for
simulation regime γ = 0.06.
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Figure 4.55: Hamming distance between the posterior mode centroid and the true cen-
troid (y axis) versus the posterior mass of the posterior mode centroid (x axis) for
simulation regime γ = 0.6.
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As seen in the 20-node simulation study for the Jaccard distance, the specification

of the mixture of CER models as the IS density improves the centroid inference for the

simulated network populations with the less variability from the centroid. However,

for the HS distance metric the use of the mixture of CER models as the IS density

can be computationally challenging depending on the sizes of the dispersion α̃ specified.

Notably, for greater sizes of α̃ there is greater variability between the simulated networks

sampled and the centroid, thus dense networks are also sampled for which the task of

cycle detection can be computationally infeasible. We note here that even with the

xgboost implementation, we still need to calculate the cycles of the training IS sample.

However, we can explore the performance of the mixture of CER models IS density,

for small sizes of the dispersion, and specifically for J = 2 mixture components with

probabilities β = (1/2, 1/2) corresponding to two dispersion parameters α̃ = (0.02, 0.07),

resulting in a sample with less variability from the centroid. The traceplots of the

posterior draws for γ after running the MCMC with xgboost algorithm are presented

in Appendix B.5.2. We note here that the inferential results for the dispersion γ and

the centroid Gm, are similar to the results obtained from the MCMC with IS density

specification the single CER model, presented above.

Lastly, in Figure 4.56 we demonstrate the computational benefit of formulating an

xgboost algorithm to predict the HS distance between networks, as opposed to its exact

calculation. We observe that under both the MC and the MCMC sampling scheme for

the IS density, the MCMC algorithm with the xgboost formulation is remarkably faster

than the MCMC with the exact calculation of the HS distance. Specifically, for the

MC IS sampling scheme, 5,000 iterations of the MCMC with the xgboost formulation

complete in approximately half a day, while 5,000 iterations of the MCMC with the exact

HS distance calculation need 16 days to be completed. Thus, the xgboost formulation

is 26 times faster than the exact calculation of the HS distance. Respectively, under the

MCMC IS sampling scheme, the xgboost is 16 times faster than the exact calculation of

HS within the MCMC.

It is further worth noting that the MC IS sampling scheme, is considerably more

computationally intensive compared to the MCMC IS sampling scheme, particularly

for the MCMC algorithm with the exact calculation of the HS distance. This is an

anticipated result considering that the MC IS sampling scheme resembles to sampling
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uniformly from the space of graphs as discussed in Section 4.3.3, thus a wider range of

20-node networks is sampled resulting in denser networks that can potentially enclose

many cycles.
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Figure 4.56: Computation time in days (y axis) required for 5,000 iterations of the
MCMC with the exact calculation of the HS distance (light blue) versus the MCMC with
the xgboost implementation (dark blue), under two alternative IS sampling schemes (x
axis).

4.5 Real data examples

We now return to the ecology application that motivated our study. In this section

we analyse three multiple network data sets, corresponding to data collected at three

different regions in the Indo-Pacific ocean. In each multiple network data set, each

network observation represents the aggressive interactions between species of fish at a

specific reef of the corresponding region. Specifically, in our study we consider the Bali

region, the Christmas Island and the Aceh region. In table 4.5, we present details about

the network sizes n and the population sizes N for each region, and in table 4.6 we

present all the fish species recorded at the three regions, along with their node labels.

Thence, each region involves a subset of the total 29 species of fish (nodes) presented in

table 4.6.

The goal of our analysis is to fit the SNF model to obtain posterior draws for the

centroid network Gm and the dispersion parameter γ, assuming the HS distance metric
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Region N n

Bali 3 22
Christmas Island 3 18
Aceh 4 19

Table 4.5: Network sizes n and sample sizes N for three different regions in the Indo-
Pacific ocean.

Fish Species Label Fish Species Label

adiergastos 1 melannotus 16
andamanensis 2 meyeri 17
auriga 3 ornatissimus 18
baronessa 4 punctatofasciatus 19
citrinellus 5 rafflesii 20
collare 6 semeion 21
decussatus 7 speculum 22
ephippium 8 triangulum 23
falcula 9 trifascialis 24
guttatissimus 10 trifasciatus 25
interruptus 11 ulietensis 26
kleinii 12 unimaculatus 27
lineolatus 13 vagabundus 28
lunula 14 xanthocephalus 29
lunulatus 15

Table 4.6: Node labels assigned to species of fish observed at the Bali, the Christmas
Island and the Aceh region.

that captures information about the networks’ cycles, as cycles indicate a form of com-

petition among species of fish. We note here that originally the edges of the networks

are directed, denoting the direction of the aggressive encounter, and weighted, denoting

the probability of the aggressive encounter. However, in this analysis we consider the

undirected and unweighted version of the networks, as otherwise a different formulation

of our MCMC algorithm would be required.

In the following subsections, we present summaries of the results obtained after

applying the SNF model with HS distance metric specification on each of the three

multiple network data sets.

4.5.1 Bali region

We first fit the SNF model to the multiple network data set corresponding to the Bali

region. The data were collected at three different reefs of the Bali region, resulting in

a multiple network data set with N = 3 network observations, that share the same set

of n = 22 nodes. In Figure 4.57 we illustrate the network observations collected at the
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region of Bali.
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Figure 4.57: Networks representing interactions of fish at three different reefs of the Bali
region.

We centre the prior for the centroid network at the network observation that min-

imises the HS distance from the rest of the network observations, as proposed by Lu-

nagómez et al. [2021]. In our case, the network that minimises the HS distance from the

other two networks is the left network in figure 4.57. We also specify a Gamma prior

distribution for the dispersion parameter, and centre it with respect to the information

from the EDA boxplots obtained for the HS distance in Figure 4.37 of section 4.4.3.

Specifically, we obtain a centroid estimate for the data using majority vote, and calcu-

late the HS distance between the centroid estimate and the data to identify the value of

γ that the distance corresponds to, using the boxplots in figure 4.37. We then centre the

prior of γ to that value identified. Lastly, we centre the single CER model IS density

at the posterior mode obtained after fitting the data to the CER model, and specify a

small size of the dispersion parameter α̃ for the CER IS density, in order to be computa-

tionally feasible to run our MCMC algorithm. We further implement an MCMC scheme

to sample from the CER model, and obtain an IS sample size of K = 6, 000 networks,

after a burn-in of 1,000 networks.

In Figures 4.58, 4.59 and 4.60, we present the results after running the MCMC

with xgboost algorithm for 5,000 iterations. Specifically, in figure 4.58 we present the

traceplot of the posterior draws for γ, in figure 4.59 we present the histogram of the

posterior distribution for γ, while in figure 4.60 we present the 5 most commonly drawn

networks from the posterior of the centroid. We further highlight in pink colour the

edges of the centroid posterior draws that are present in the network data as well, to

demonstrate which inferred edges are also observed in the data.

We note that our algorithm explores a region of small values for γ indicating a
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Figure 4.58: Traceplot for γ for 5,000 iterations of the MCMC for data recorded at the
Bali region, using the xgboost algorithm to predict the HS distance in each iteration.
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Figure 4.59: Histogram of posterior distribution of γ for data recorded at the Bali region,
with red solid line indicating the mean 0.016, and red dashed lines indicating the 95%
credible interval (0.01,0.03).

high dispersion of the data from the posterior centroids drawn. Notably, the most

commonly drawn centroid networks are concentrating only small posterior masses of

approximately 0.02, and most of their edges are not observed in the network data as

well. This result suggests that inferring a centroid network for this multiple network

data set is challenging, due to the variability of the network data with respect to the HS

distance metric. Notably, the network observations corresponding to the Bali region seen

in Figure 4.57, enclose 6, 1219 and 154 cycles respectively from left to right, resulting in
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Figure 4.60: Top 5 most commonly drawn centroids with posterior masses from top
left to bottom right 0.0262, 0.0234, 0.0232, 0.018 and 0.0176 respectively. Pink edges
indicate edges that are also present in the data recorded at the Bali region.

having many not in common cycles between them.

As the posterior draws for the centroid network concentrate only small masses, a

single centroid is not encoding all the information for the data. To summarise the

information obtained from the posterior draws we investigate whether there are cycles

repeatedly found in the posterior centroids drawn, as well as which of the most common

cycles are found in the network data as well. In this respect, we identify the 10 most

common cycles found in the 5,000 posterior centroids drawn, and count the number of

posterior centroid networks that contain each of these cycles. Lastly, we detect which

of the cycles identified are also observed in the network data. The results from this

computations are gathered in table 4.7.

From table 4.7, we observe that each of the most common cycles are identified in

a large proportion of the posterior centroids drawn. Thus, we can deduce that those

cycles can be informative about the data. We further note that the only cycle of the

most common cycles that is present in the network data as well is the the cycle between

the fish species baronessa (node 4), lunulatus (node 15) and citrinellus (node 5), which

is found in the 0.33 proportion of centroid networks drawn.
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most common
cycles

proportion of
times identified

observed/inferred

7-26-8-7 0.66 inferred

15-24-22-15 0.39 inferred

13-26-16-25-13 0.38 inferred

5-27-21-5 0.37 inferred

1-28-5-4-15-14-1 0.35 inferred

7-25-13-26-7 0.34 inferred

7-26-13-25-7 0.34 inferred

4-15-5-4 0.33 observed

13-26-25-13 0.33 inferred

7-25-13-8-7 0.3 inferred

Table 4.7: 10 most common cycles detected in posterior draws for centroid network,
proportion of times each cycle detected in posterior draws and presence (observed) or
absence (inferred) of cycle in the data recorded at the Bali region.

4.5.2 Christmas island

We now analyse the multiple network data set corresponding to the Christmas island.

Aggressive interactions of n = 18 species of fish were recorded at three different reefs of

the Christmas island resulting in N = 3 network observations, as shown in figure 4.61.

We note that each network observation involves 12, 1834 and 0 cycles respectively, from

left to right.
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Figure 4.61: Networks representing interactions of fish at three different reefs of the
Christmas island.

To fit the SNF model with HS distance, we first tune the prior distributions of the

parameters and the IS density. Similarly to the tuning performed for the Bali region

in the previous section, we centre the prior of the centroid network at the network

observation that minimises the distance from the other network data, being the right

network of figure 4.61. The tuning of the prior for γ and the IS density, is performed

in the same way as performed for the Bali region. Notably, we specify the single CER

model as the IS density of our algorithm, and sample from it using an MCMC sampling
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scheme. The size of the IS sample drawn is K = 6, 000 networks, after a burn-in of 1,000

networks.

We run our MCMC with xgboost algorithm for 5,000 iterations and obtain the trace-

plot of the posterior draws for γ in figure 4.62, the histogram of the posterior distribution

for γ in figure 4.63 and the 5 most commonly drawn networks from the posterior of the

centroid shown in figure 4.64. We note again that the pink edges of the centroid posterior

draws correspond to edges that are also present in the network data.
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Figure 4.62: Traceplot for γ for 5,000 iterations of the MCMC for data recorded at the
Christmas island, using xgboost to predict the HS distance in each iteration.
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Figure 4.63: Histogram of the posterior distribution of γ for data recorded at the Christ-
mas island, with red solid line indicating the mean 0.0085567, and red dashed lines in-
dicating the 95% credible interval (0.0028,0.017).
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Figure 4.64: Top 5 most commonly drawn centroids with posterior masses from top left
to bottom right 0.027, 0.025, 0.023, 0.021 and 0.019 respectively. Pink edges indicate
edges that are also present in the data recorded at the Christmas island.

In Figure 4.62, we observe good mixing of the MCMC chain for γ. Similarly to

the Bali region, we further notice that the sizes of the posterior draws for γ are small,

indicating a high dispersion of the data from the posterior centroids inferred. Moreover,

the 5 most commonly drawn centroids involve edges that are not observed in the network

data, and concentrate small posterior masses. A reason for the challenging nature of

inferring a single centroid for the network data of the Christmas island is the many not

in common cycles among the network observations, as the middle network of figure 4.61

contains 1834 cycles while the other two network observations contain only 0 and 12

cycles respectively.

To further investigate the centroid inference, we obtain the 10 most common cycles

observed in the posterior centroid draws along with the proportion of the posterior

centroids enclosing each cycle, and detect whether these cycles are also observed in the

network data. The results for the centroids’ cycles are gathered in Table 4.8. We observe

that most of the cycles that are frequently observed in the posterior centroids are not

present in the network observations as well, except for the cycle between the fish species

auriga (node 3), trifascialis (node 24) and lunula (node 14), which is observed in 16% of

the posterior centroids drawn. Furthermore, the rest of the cycles presented in Table 4.8

are also observed in a high proportion of the posterior centroids, indicating that those

cycles might be meaningful for the network data at hand.
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most common
cycles

proportion of
times identified

observed/inferred

14-24-22-14 0.2 inferred

5-19-8-5 0.19 inferred

10-25-24-17-10 0.18 inferred

14-27-18-14 0.18 inferred

10-27-18-10 0.17 inferred

15-22-19-15 0.16 inferred

3-24-14-3 0.16 observed

8-24-17-19-8 0.15 inferred

12-28-14-24-20-12 0.15 inferred

3-14-27-5-3 0.14 inferred

Table 4.8: 10 most common cycles detected in posterior draws for centroid network,
proportion of times each cycle detected in posterior draws and presence (observed) or
absence (inferred) of cycle in the data recorded at the Christmas island.

4.5.3 Aceh region

The third and last real data example that we consider is the multiple network data

collected at the Aceh region. The data were recorded at four different reefs of the Aceh

region resulting in a collection of N = 4 network observations, sharing the same set

of n = 19 nodes, as depicted in figure 4.65. We notice that the networks of the Aceh

region are sparser compared to the Bali region and the Christmas island presented in

the previous sections. Accordingly, the number of cycles that each network observation

encloses is 3, 0, 6 and 0 respectively, from top left to bottom right of figure 4.65.
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Figure 4.65: Networks representing interactions of fish at four different reefs of the Aceh
region.
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The tuning of the prior distributions and the IS density is similar to that described

in the previous two sections. In this respect, we now centre the prior of the centroid

network to the top-right network seen in figure 4.65, as it minimises the HS distance

from the rest of the network data. We further specify the CER model as the IS density

of our algorithm and sample from it using an MCMC scheme. The IS sample size is

K = 6, 000 networks, after a burn-in of 1,000 networks.

In figures 4.66, 4.67 and 4.68, we present the results after running our MCMC with

xgboost algorithm for 5,000 iterations. Figure 4.66 shows the traceplot of the posterior

draws for γ, which demonstrates a poorer mixing compared to the MCMC chains of γ

obtained for the network data of the two previous regions in sections 4.5.1 and 4.5.2.

We further notice that the most frequently drawn centroid networks, depicted in figure

4.68, are denser compared to the network data of the Aceh region. Motivated by this

observation, we formulate a restriction on the density of the centroid networks proposed

in our MCMC algorithm, to explore whether we can achieve better chain mixing and

centroid inference.

We comment here that a similar restriction on the sizes of γ proposals is proposed by

Lunagómez et al. [2021]. Specifically, Lunagómez et al. [2021] propose an upper bound

for γ according to the information revealed by the EDA boxplots for the SNF model, for

each distance metric specification. In this regard, the upper bound of γ is determined

by the corresponding size of γ for which the distribution of the distance reaches 0. This

restriction is necessary for the MCMC to explore a reasonable region of values for γ.
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Figure 4.66: Traceplot for γ for 5,000 iterations of the MCMC for data recorded at the
Aceh region, using the xgboost algorithm to predict the HS distance in each iteration.
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Figure 4.67: Histogram of posterior distribution of γ after a burn-in of 1,000 iterations,
for data recorded at the Aceh region, with red solid line indicating the mean 0.96, and
red dashed lines indicating the 95% credible interval (0.8,1.18).

2

3

5

6

7

9

10

11

12

13

14

16
17 20

23

24

25

28

29

2

3

5

6

7

9

10

11

12

13

14

16
17 20

23

24

25

28

29

2

3

5

6

7

9

10

11

12

13

14

16
17 20

23

24

25

28

29

2

3

5

6

7

9

10

11

12

13

14

16
17 20

23

24

25

28

29

2

3

5

6

7

9

10

11

12

13

14

16
17 20

23

24

25

28

29

Figure 4.68: Top 5 most commonly drawn centroids with posterior masses from top left
to bottom right 0.025, 0.025, 0.024, 0.024 and 0.023 respectively. Pink edges indicate
edges that are also present in the data recorded at the Aceh region.

We now present the results of our MCMC with xgboost algorithm and restriction on

the density of the centroid proposals. We further specify a mixture of CER models for

the IS density and centre it to the same network observation that we previously centred

the single CER IS density. Our CER mixture model involves J = 2 equally weighted

mixture components, thus we specify two alternative sizes of α̃ = (0.02, 0.07). We note

here that we specified small values for the two alternative dispersion parameters of the
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CER mixture model, as otherwise it would be computationally prohibitive to run our

MCMC algorithm. Figures 4.69, 4.70 and 4.71 illustrate the results from 5,000 iterations

of our MCMC.
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Figure 4.69: Traceplot for γ for 5,000 iterations of the MCMC with restriction, for data
recorded at the Aceh region, using xgboost to predict the HS distance in each iteration.
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Figure 4.70: Histogram of posterior distribution of γ after a burn-in of 1,000 iterations
from MCMC with restriction, for data recorded at the Aceh region, with red solid line
indicating the mean 1.02, and red dashed lines indicating the 95% credible interval
(0.88,1.17).

Under the restricted MCMC, the mixing of the MCMC chain for γ slightly improved

compared to the non-restricted case, and the posterior centroids illustrated in figure 4.71

appear to be more meaningful for the network data of the Aceh region. The region of
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Figure 4.71: Top 5 most commonly drawn centroids with posterior masses from top
left to bottom right 0.022, 0.022, 0.021, 0.021 and 0.02 respectively, from MCMC with
restriction. Pink edges indicate edges that are also present in the data recorded at the
Aceh region.

γ values explored by the MCMC chain indicates small variability of the network data

from the centroids drawn, with respect to the HS distance. Notably, both the networks

observations of the Aceh region and the posterior centroids involve only a small number

of cycles, resulting in a small number of not in common cycles between the network data

and each centroid drawn. Specifically, each posterior centroid depicted in figure 4.71 has

only 1 cycle, except for the top right centroid draw which encloses 3 cycles.

We note here that another possible direction for exploring the behaviour of our model

in inferring the complex posterior distribution of the parameters for the Aceh region data,

would be to investigate how the sampling of γ affects the model performance. This could

be achieved by treating γ as fixed in our inferential scheme, and perform a search over

different sizes of γ to investigate how the performance of our algorithm in inferring a

centroid changes. In this way, we would avoid the additional complexity of sampling γ

from its posterior distribution, which accordingly affects centroid inference.

Similarly to the results obtained from the previous data examples of sections 4.5.1

and 4.5.2, the posterior masses that the most commonly drawn centroids concentrate

are approximately equal to 0.02. Due to this result, we cannot summarise information

about the network data from a single centroid inferred. Thence, we investigate which

cycles are mostly observed in the posterior centroids drawn, similarly to the previous

210



most common
cycles

proportion of
times identified

observed/inferred

7-17-10-7 0.12 inferred

7-29-9-7 0.11 inferred

5-28-23-25-5 0.11 inferred

3-17-7-3 0.08 inferred

3-25-6-3 0.06 inferred

3-17-10-7-3 0.06 inferred

3-23-9-25-28-13-3 0.05 inferred

5-25-13-9-24-12-5 0.05 inferred

3-29-13-3 0.05 inferred

10-24-23-10 0.05 observed

Table 4.9: 10 most common cycles detected in posterior draws for the centroid network,
proportion of times each cycle is detected in posterior draws and presence (observed)
or absence (inferred) of cycle in the data recorded at the Aceh region, from the MCMC
with restriction.

sections.

From the cycle detection task, we observed that only 48% of the centroid posterior

draws involved cycles. The rest 52% of the centroids drawn did not enclose any cycles.

In Table 4.9 we present the 10 most common cycles found in the posterior centroids

that involved cycles, along with the proportion of times that each cycle was detected in

the posterior sample of centroids. In addition, we identify which of the cycles are also

observed in the network data.

We observe that only one of the 10 most common cycles found in the centroid pos-

terior draws is also identified in the data, which is the one involving the fish species

guttatossimus (node 10), trifascialis (node 24) and triangulum (node 23). The rest of

the cycles are not identified in the network observations of the Aceh region, however,

they are repeatedly found in the posterior centroid draws, which suggests that these

cycles can be informative for the network observations of the Aceh region. Nonetheless,

the proportion of centroids inferred involving no cycles is significant.

4.6 Discussion

In this Chapter we proposed an Importance Sampler as an alternative to the Auxiliary

Variable technique implemented by Lunagómez et al. [2021], that allows us to make

inferences for the SNF model that involves an intractable normalising constant. The IS

formulated allowed better chain mixing for distance metric specification for which the
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Auxiliary Variable technique provided poor mixing results. In addition, we introduced

a new network distance metric, namely the HS distance, that quantifies dissimilarities

between networks with respect to their cycles. The motivation for developing the HS

distance metric was the ecological application presented in section 4.3.1. Nonetheless,

as cycles are a common network feature of interest, we believe that the HS distance can

be an informative measure of dissimilarity for other network applications as well.

To better understand the behaviour of the HS distance, we performed synthetic data

experiments and examined the performance of the HS distance in identifying different

network structures and characteristics. The MDS projections and the FR test performed

highlighted the importance of the inclusion of the Hamming distance and the weight

factor λ in the HS distance, with respect to the performance of the metric in capturing

information about the networks’ structure. This is an anticipated result if we consider

that the Hamming distance is a structural distance metric, as presented in Donnat and

Holmes [2018], while the symmetric difference focuses on specific information about the

networks’ topology.

From the synthetic experiments performed for the HS distance, we further noticed

that the metric is able to detect similarities among networks with similar number of

cycles. Nonetheless, an interesting finding is that the networks involving the largest

number of cycles were not identified as similar to any of the other simulated networks.

This result suggests that the HS distance might fail to detect similarities among networks

with many cycles, even when the networks share a similar structure. This is a reasonable

finding if we consider that the more cycles two networks have, the more likely it is that

they will have less cycles in common. Thence, it is important to adjust the weight λ

according to the characteristics we want to reveal for the networks.

In Section 4.4, we further explored the performance of the MCMC with IS step for

the Jaccard and the HS distance, which are both metrics for which the implementation of

the MCMC with the Auxiliary variable technique presented in Lunagómez et al. [2021],

resulted in poor chain mixing. The simulation results led to a number of interesting

findings. First, for the 5-node network simulation study, we observed that our MCMC

with IS step performed well in inferring the dispersion parameter γ, and this was further

supported by the similar inferential results obtained under the formulation of an MCMC

with the exact calculation of the normalising constant in each iteration.
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However, a key observation arising from the simulations performed is the bias for large

sizes of N , which was also discussed in Section 4.3.6. As previously commented, Vitelli

et al. [2017] propose that a large IS sample can adjust for the bias with increasing N .

The impact of the size of the IS sample in the bias was also noticed by the investigation

we performed in section 4.4.2. In this respect, the bias for increasing N observed for the

20-node case could be potentially corrected by a very large IS sample. However, for the

case of the SNF model with the HS distance specification, drawing a drastically large IS

sample is computationally prohibitive.

Another finding from the investigation performed about the bias of our IS estimator

in Section 4.4.2, was the impact of the choice of the IS density and the IS sampling

scheme. In this respect, we observed that the mixture of CER models IS density pro-

vided more accurate inferential results, regardless of the small IS sample size K and

large population N . A similar finding resulted from the Monte Carlo sampling scheme

implemented to sample from the IS density being the CER model. The better perfor-

mance of the algorithm under these two cases can be attributed to the greater variability

of the networks sampled, resulting in heavier tailed IS densities which is an important

condition for the good performance of the IS (Robert and Casella [2013]). However, for

the 20-node networks the mixture of CER models IS density did not improve the results

with respect to the bias. Nonetheless, we observed that our method can still provide

accurate results for small populations of networks.

With respect to the inferential results for the centroid network, we observed that

for the simulation regimes with smaller values of γ indicating a higher variability in the

network population simulated, the true centroid was harder to be identified. This is a

reasonable finding as the networks simulated are significantly different from the centroid.

Equivalently, small populations of networks N made the inference of the centroid harder,

which can be justified by the less information encoded in the data due to the fewer

observations.

For the SNF model with HS distance, another triggering factor for the challenging

nature of inferring a centroid is the behaviour of the HS distance metric with respect to

identifying similarities among networks with many cycles as previously noted. Specif-

ically, we noticed from both the 20-node network simulation studies and the real data

examples, that different posterior centroid networks concentrate low posterior masses.
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From the real data examples we noticed that inferring a single centroid is challenging

for a multiple network data set that involves a network observation with a large number

of cycles, while the rest of the network observations involving only a small number of

cycles. This is reasonable if we consider that a centroid aims to minimise the distance

from all the network observations simultaneously.

An extension to our framework would be the incorporation of information about edge

weights. As discussed in Section 4.5, the network representations of the fish interactions

have weighted edges, corresponding to the multiple interactions observed between species

of fish. The incorporation of this network characteristic would require two modifications

in our framework. First, we would need to modify our HS distance by replacing the

Hamming distance part with a distance metric that quantifies dissimilarities between

weighted graphs. As highlighted from the synthetic data experiments the inclusion of

the Hamming distance to the HS distance metric is important to capture structural

information about the networks. An alternative metric that could be used in the case of

weighted networks is the Frobenius distance. In this respect we would need to perform

synthetic data experiments to explore the behaviour of the new combination of distance

metrics.

The second and most substantial modification that would be required in order to

incorporate edge weight information, is the formulation of the MCMC to allow sampling

networks from the weighted space of graphs. This would be essential for two reasons, (i)

to draw proposal centroids and (ii) to draw IS samples of weighted graphs. For the first

case, we would need to modify our MCMC scheme to also update the edge weights of

the proposed network. In this case, a Uniform distribution could be an option to sample

a new vector of weights, and adjust the weights of the current centroid according to

the newly drawn weights. For the second case, we would need the specify an IS density

other than the CER model, as the CER is not a model for weighted graphs. We note

that the specification of the SNF model as the IS density would not be feasible due

to the normalising constant that would appear in the denominator of Ẑ, thence such a

formulation is not straightforward.

As described in this chapter, there is a vast literature on techniques developed to

sample from intractable distributions. In our study we proposed the implementation of

an IS to tackle the challenges arising with the Auxiliary Variable technique implemented
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for the SNF model in Lunagómez et al. [2021]. An alternative approach to sample from

the posterior of the intractable SNF model would be the Noisy Exchange algorithm

reviewed in section 4.2.2. This method requires sampling from the SNF model which is

feasible by using an MCMC scheme. In this respect the sample obtained from the SNF

model would be used to substitute the ratio of normalising constants by the sum of the

ratio of the unnormalised SNF likelihood. However this would not fix the bias due to N .
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Chapter 5

Conclusions and Further Work

In this thesis we developed new statistical frameworks that allow inferences for multiple

network data sets. In Chapter 3, a new framework was proposed for clustering het-

erogeneous network populations, while in Chapter 4 we proposed an MCMC scheme to

make inferences for the SNF model. In both Chapters 3 and 4, we discussed potential

extensions of the work presented. In Sections 5.1 and 5.2 of this Chapter, we further

introduce two new directions for future work for the analysis of multiple network data,

while in Section 5.3 we conclude with our general view on future research in the context

of networks.

5.1 Dependent network data

A common assumption made in the literature for modelling multiple network data is

that the network observations in the population are independent. Even though studies

focusing on the analysis of single network observations have considered the problem of

edge dependence in a network (Hoff [2003], Chen et al. [2020]), the problem of modelling

the dependence among network observations has yet to be analysed. A reason why the

analysis of dependencies among network observations has not yet been considered, is

the recent need in analysing multiple network data sets due to their currently increasing

availability.

The real data examples presented in Chapters 3 and 4 can serve as cases where de-

pendencies among the observed networks may be present. First, the Tacita real data

presented in Chapter 3 can be analysed as a multiple network data set in various ways.

216



As presented in Chapter 3, one way to analyse the data recorded by the Tacita appli-

cation is to consider the aggregated movements of the users recorded during different

times of the day and different days of the week, resulting in a set of multiple network

observations corresponding to different individuals. Another way to analyse this data

would be to consider the movements of each individual depending on specific hours of the

day (morning, afternoon, evening, night), during different days of the week. In this case,

we would obtain network populations corresponding to movements of the users during

a specific time interval of the day, thus the network populations would be comprised

by network observations corresponding to the same individuals. One research question

arising in the latter set up is whether we can detect different movement patterns of the

individuals during different times of the day, thus compare dependent network popula-

tions.

Second, the ecological application that motivated the study of Chapter 4 can also

be considered under another perspective. Notably, in our analysis we focused on fitting

the SNF model with the HS distance metric to three network populations corresponding

to three different regions of the Indo-Pacific ocean. However, for some of these regions,

data were collected both before and after a coral bleaching event (Hughes et al. [2017],

McClanahan et al. [2009]). Thus, for each region, we have two dependent populations

of networks: one population of networks resulting from measurements taken before the

bleaching event, and one population of networks resulting from measurements taken

after the bleaching event. A research question arising in this set up is whether we can

detect structural changes between two dependent populations of fish networks, before

and after a bleaching event.

One way to address these research questions would be through the formulation of

a hypothesis testing framework for comparing dependent network populations. As re-

viewed in Chapter 2, Ginestet et al. [2017] developed a frequentist hypothesis testing

framework for comparing populations of networks, under the assumption that the net-

work populations are independent. Thus, an interesting extension to the hypothesis

testing problem would not only be the consideration of dependent network populations,

but also the formulation a Bayesian hypothesis testing framework, e.g. using Bayes

factor (Robert [2007]).

The research problems described above focus on comparing populations of networks

217



that are assumed to be dependent. An alternative way to think about dependence in

the context of networks, would be to model a network population assuming dependence

among the network observations therein. The brain network data presented in Chapter

3 can be regarded as a population of dependent network observations. Specifically, the

brain network population was constructed from repeated measurements taken over a

set of individuals. Thus, in this data set we have network observations corresponding

to the same individuals. Our study, along with the studies of Arroyo et al. [2019] and

Lunagómez et al. [2021], model this network population without accounting for potential

dependencies among the network observations.

In this regard, an interesting extension to our work would be to model dependent

observations for a population of networks, building on the studies of Le et al. [2018]

and Lunagómez et al. [2021]. Specifically, we may model dependence among network-

valued observations by allowing the deviations from the centroid/true network to be

correlated. We now introduce some additional notation to make this notion precise.

Let Hk(i, j) = xor(Gk(i, j),Gm(i, j)), denote the perturbation of network observation Gk

with respect to the centroid/true network Gm, for k ∈ {1, . . . , N}. The measurement

error models introduced in Newman [2018a] and Le et al. [2018] assume that Hk are

independent for each k. However, this assumption is not realistic for datasets such as

the brain multiple network data set presented in Chapter 3. One way to overcome this

limitation would be to assume that the perturbations are such that the random vectors

(Hk(i, j), Hl(i, j)), k, l ∈ {1, . . . , N}, follow a multivariate Bernoulli as discussed by

Teugels [1990], accounting for the dependencies among the Bernoulli random variables.

5.2 Anomaly detection

Many recent applications involve networks that evolve over time, and examples include

social networks representing relationships among actors changing over time, or computer

networks representing interactions between Internet Protocol (IP) addresses. This type

of networks are often introduced as dynamic networks in the network literature. Dy-

namic networks are networks that can exhibit changes in their structure with respect

to their nodes, edges or attributes. In light of this, researchers are interested in the

problem of anomaly detection in dynamic networks, with goal the detection of changes
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in the networks’ structure over time. Type of anomalous behaviour can emerge from the

networks’ nodes, edges and/or underlying subgraphs (Ranshous et al. [2015]).

A common characteristic of the methods developed for anomaly detection is the

formulation of a two stage approach, where the first step involves mapping the graphs to a

common graph representation, while the second step involves scoring the anomalousness

of the graph representations obtained in the first step (Ranshous et al. [2015]). In a

probabilistic set up, this requires the construction of a model that best describes the

”normal” network data and then detect a graph as anomalous with some probability.

Such approaches are presented in Heard et al. [2010] who build a Bayesian framework for

anomaly detection, Priebe et al. [2005] who employ a scan statistics method on the nodes

of the graph to detect anomalous behaviour and the recent work by Lee et al. [2019] who

perform anomaly detection on networks assuming a latent space representation.

The anomaly detection problem links to the outlier cluster detection introduced in

Chapter 3, which was formulated to identify network data that differ from the major-

ity with respect to their structure. However, under our construction there is no time

component characterising the networks. An interesting extension to the outlier clus-

ter detection presented would be its formulation for networks characterised by a time

component. The network applications considered in both Chapter 3 and 4 can serve us

examples of time dependent networks. Specifically, one way to view the data recorded

by the Tacita application, is to consider the movements of individuals over time. In this

respect, we could investigate changes in their movements over time, and specifically, an

interesting extension would be to consider users’ movements recorded before and after

the Covid-19 pandemic.

The second application presented in this thesis that can serve as an example of time

dependent networks, is the ecological study measuring interactions between different

species of fish, introduced in Chapter 4. As previously discussed, this data can be

modelled as dependent network data as the recording of the fish interactions took place

in two different time stamps, before and after a coral bleaching event. Another way

to view the dependence among the fish networks is to index them by the time they

were observed. Under this set up, it would be interesting to investigate changes in the

structure of the networks after the bleaching event by performing anomaly detection. In

this regard, the aim would be to model the distribution of the data before the bleaching
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event, with respect to the cycles formed in the networks, playing the role of history data,

and quantify the probability of a network to be anomalous after the bleaching event.

Thus an interesting extension could be developed for the SNF model to perform outlier

cluster detection. A relevant work is that introduced by Aggarwal et al. [2011], however

they perform outlier detection on graph streams which are series of graphs {Gt}Tt=1 for

T →∞.

5.3 Closing remarks

One of the biggest challenges in the field of statistics and machine learning is the ability

to analyse big data (Chauhan and Sood [2021], Espinosa et al. [2019]). In this context,

the availability of massive networks involving billions of nodes and edges is continuously

increasing (Chung [2018]). The storage and analysis of such big network data require

substantial computing resources, however, such computing resources are not accessible

to everyone. In light of this, it is essential not only to formulate scalable algorithms for

network analysis (Teng [2016]), but also to develop modelling frameworks in such way

that they will require less computing resources.

Two application examples which involve the analysis of massive network data, arise

from the fields of cyber-security and social network analysis. In cyber-security, a type

of network representation commonly analysed is the traffic (edges) recorded among IP

addresses (nodes) (Wang and Jones [2020]). Such networks become drastically massive

in size and often their online analysis is required. On the other hand, a social network

instance can represent interactions (edges) among individuals (nodes) through the use

of Internet services (e.g. Facebook, Twitter) (Sapountzi and Psannis [2018]). This type

of network data are huge in size considering the billions of Internet users (Chauhan and

Sood [2021]).

Common characteristics of the network data in the applications described above

among others, are their continuous evolving nature through time (dynamic networks),

as well as their multiple views or measurements taken (multiple network data discussed

in this thesis), which both give rise to challenges considering the huge number of nodes

and edges that they usually involve. In this regard, we believe that the development

of modelling frameworks and scalable algorithms for big network data will be an active
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research area in the forthcoming years.
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Appendix A

Appendix for ‘Bayesian

model-based clustering for

multiple network data’

A.1 MCMC scheme

In this Section we provide the full conditional posteriors for the model parameters that

are updated through a Gibbs sampler, as discussed in Section 3.3.4.

The full conditional posterior for the probability of a network to belong to cluster τ

is given by

P (τ |AG∗ ,p, q, z,w, b,θ, AG1 , . . . , AGN ) ∝ P (z|τ ) · P (τ |ψ)

where P (z|τ ) = Multinomial(1; τ1, . . . , τC) and P (τ |ψ) = Dirichlet(ψ), as specified in

Section 3.3.3 of the main article. Thus, we have

P (τ |AG∗ ,p, q, z,w, b,θ, AG1 , . . . , AGN ) ∝
N∏
j=1

τzj · Γ(ψC) · Γ(ψ)−C ·
C∏
c=1

τψ−1
c

∝ Γ(ψC) · Γ(ψ)−C · τz1 · · · τzN · τ
ψ−1
1 · · · τψ−1

C

∝ Γ(ψC) · Γ(ψ)−C · τη11 · · · τ
ηC
C · τ

ψ−1
1 · · · τψ−1

C ∝ τη1+ψ−1
1 · · · τηC+ψ−1

C

(A.1)

where ηc =
∑N

j=1 1c(zj), c = 1, . . . , C, denotes the number of network data that belong
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to cluster c. Thence we obtain,

P (τ |AG∗ ,p, q, z,w, b,θ, AG1 , . . . , AGN ) = Dirichlet(ψ + η1, . . . , ψ + ηC).

The derivation of the full conditional posterior for the vector of the nodes’ block-

membership probabilities wc for cluster c, is similar to the derivation of the the full

conditional posterior for τ , as already described above, thus we have

P (wc|AG∗c , pc, qc, z, τ , bc,θc, AG1 , . . . , AGN ) ∝ P (bc|wc) · P (wc|χ)

where P (bc|wc) = Multinomial(wc) and P (wc|χ) = Dirichlet(χ), as specified in Section

3.3.2. Hence we obtain

P (wc|AG∗c , pc, qc, z, τ , bc,θc, AG1 , . . . , AGN ) ∝
n∏
i=1

wc,bi · Γ(χK) · Γ(χ)−K ·
K∏
k=1

wχ−1
c,k

∝ Γ(χK) · Γ(χ)−K · wc,b1 · · ·wc,bn · w
χ−1
c,1 · · ·w

χ−1
c,K

∝ Γ(χK) · Γ(χ)−K · wh1c,1 · · ·w
hK
c,K · w

χ−1
c,1 · · ·w

χ−1
c,K ∝ w

(h1+χ)−1
c,1 · · ·w(hK+χ)−1

c,K .

where hk denotes the number of the nodes that belong to block k. Thus the full condi-

tional posterior for wc is

P (wc|AG∗c , pc, qc, z, τ , bc,θc, AG1 , . . . , AGN ) = Dirichlet(χ+ h1, . . . , χ+ hK).

The full conditional posterior for the vector of the block-specific probabilities of an

edge occurrence θc, for the network representative of cluster c is

P (θc|AG∗c , pc, qc, z, τ , bc,wc, AG1 , . . . , AGN ) ∝ P (AG∗c |wc, bc,θc) · P (θc|ε, ζ)

where P (AG∗c |wc, bc,θc) = SBM(wc, bc,θc) and P (θc|ε, ζ) = Beta(ε, ζ), as specified in

Section 3.3.2. Thus,
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P (θc|AG∗c , pc, qc, z, τ , bc,wc, AG1 , . . . , AGN )

∝
∏

(i,j):i<j

θ
AG∗c (i,j)

c,bibj
(1− θc,bc,ibc,j )

1−AG∗c (i,j) ·
K∏
k=1

K∏
l=1

θεkl−1
c,kl (1− θc,kl)ζkl−1

∝
K∏
k=1

K∏
l=1

θ
AG∗c [kl]

c,kl (1− θc,kl)nc,kl−AG∗c [kl]θεkl−1
c,kl (1− θc,kl)ζkl−1

∝
K∏
k=1

K∏
l=1

θ
AG∗c [kl]+εkl−1

c,kl (1− θc,kl)nc,kl−AG∗c [kl]+ζkl−1,

where AG∗c [kl] =
∑

(i,j):bc,i=k,bc,j=lAG∗c (i, j) represents the sum of the entries for the

pairs of nodes of network representative of cluster c, that have block membership k, l

respectively, and nc,kl =
∑

(i,j):i 6=j I(bc,i = k, bc,j = l) representing the number of the pair

of nodes of representative of cluster c that have membership k, l accordingly. Hence we

obtain

P (θc|AG∗c , pc, qc, z, τ , bc,wc, AG1 , . . . , AGN ) = Beta(AG∗c [kl] + εkl, ζkl + nc,kl −AG∗c [kl]).

A.2 Simulation study for moderate network sizes

We now demonstrate additional results for the Simulation study of Section 3.4.1. Specif-

ically, in Figures A.1, A.3 and A.5, we present the traceplots for simulation regime 3

of Table 3.1 for θ. We demonstrate the last 50,000 iterations due to the traceplots be-

ing very dense. In addition, we present the histograms for θ after burn-in of 150,000

iterations in Figures A.2, A.4 and A.6.

Figure A.1: Traceplots of the posterior draws for θ11, θ12, θ22 block probabilities of an
edge occurrence for cluster 1.
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Figure A.2: Histograms for θ11, θ12, θ22 block probabilities of an edge occurrence for
cluster 1.The pink solid line indicates the posterior mean, the blue solid line the posterior
median and the pink dashed lines indicate the 95% credible interval.

Figure A.3: Traceplots of the posterior draws for θ11, θ12, θ22 block probabilities of an
edge occurrence for cluster 2.
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Figure A.4: Histograms for θ11, θ12, θ22 block probabilities of an edge occurrence for
cluster 2. The pink solid line indicates the posterior mean, the blue solid line the
posterior median and the pink dashed lines indicate the 95% credible interval.
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Figure A.5: Traceplots of the posterior draws for θ11, θ12, θ22 block probabilities of an
edge occurrence for cluster 3.
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Figure A.6: Histograms for θ11, θ12, θ22 block probabilities of an edge occurrence for
cluster 3. The pink solid line indicates the posterior mean, the blue solid line the
posterior median and the pink dashed lines indicate the 95% credible interval.

A.3 Real data examples

We now present the distance metrics used to perform EDA and initialise the algorithms

for both the Tacita data and the brain networks data.

A spectral distance which utilises the eigenvalue decomposition of some matrix rep-

resentation of the graph (e.g. the adjacency matrix), is the lp distance. The general

form of the lp distance between graphs G and G̃, as introduced in Donnat and Holmes

[2018] is

d(G, G̃)p =
R−1∑
i=0

|f(λi + εi)− f(λi)|p,

where λ0 ≤ λ1 ≤ . . . ≤ λR−1 are graph’s eigenvalues and f(·) is any (almost everywhere)
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differentiable function.

In the EDA performed for both applications of Section 3.5, we implemented the l2

distance and specified the low-pass filters f(λ) = e−0.1λ, similarly to the formulation

seen in Donnat and Holmes [2018] for the application on Microbiome data.

Another metric discussed in Donnat and Holmes [2018] that we adapted for the real

data analysis, is the distance that uses heat spectral wavelets. This metric captures

neither too global nor too local changes between two graphs G and G̃, and has the form

d(G, G̃) =
1

n
Tr[∆T∆]

where ∆ = Ue−τΛUT − Ũe−τ Λ̃ŨT , with UΛUT and Ũ Λ̃ŨT being the eigenvalue decom-

position of the laplacian matrices of graphs G and G̃ respectively.

A.3.1 Tacita data

In Figure A.7, we present the results for θ2 for representative of cluster c = 2, for

clustering algorithm applied on whole data set and C = 2.

Figure A.7: Trace plots for block specific probabilities of observing an edge θ2 for
representative of cluster c = 2, for 400,000 iterations after a burn-in of 100,000.

In Figures A.8 and A.9, we present the results for θc for representatives of cluster
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c = 1, and 2, for clustering algorithm applied on the denser network data set and C = 2.

Figure A.8: Trace plots for block specific probabilities of observing an edge θ1 for
representative of cluster c = 1, for 400,000 iterations after a burn-in of 100,000.

Figure A.9: Trace plots for block specific probabilities of observing an edge θ2 for
representative of cluster c = 2, for 400,000 iterations after a burn-in of 100,000.
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The stationarity issue of the chains for θ can be explained by the small posterior mass

(6% and 8%) that the posterior modes for the representatives concentrate, affecting the

inference of the SBM parameters.

In Figure A.10, we present the results for θ for single network representative after

implementing the outlier clustering algorithm on the denser network data.

Figure A.10: Trace plots for block specific probabilities of observing an edge θ for single
network representative, for 400,000 iterations after a burn-in of 100,000.

In Figures A.11, A.12, A.13 and A.14, we present the results for the outlier cluster

model with the Erdös-Rényi model assumed for the sole representative of the population.

In Figures A.15, A.16, A.17, A.18 and A.19 we present the results for C = 2 with

two representatives with the Erdös-Rényi model assumed.
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Figure A.11: Trace plots for false positive probabilities pc for majority cluster labelled
by c = 1 (left) and outlier cluster labelled by c = 2 (right), for 400,000 iterations after
a burn-in of 100,000, for the Erdös-Rényi model specification.

Figure A.12: Trace plots for false negative probabilities qc for majority cluster labelled
by c = 1 (left) and outlier cluster labelled by c = 2 (right), for 400,000 iterations after
a burn-in of 100,000, for the Erdös-Rényi model specification.
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Figure A.13: Left: Trace plot for probability of an edge θ for network representative,
for 400,000 iterations after a burn-in of 100,000, for the Erdös-Rényi model specifica-
tion. Right: Posterior mode of representative network with posterior mass 52%, for last
100,000 iterations, for the Erdös-Rényi model specification.
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Figure A.14: Proportion of times (y axis) an individual (x axis) is allocated to each of the
2 clusters, after a burn-in of 100,000 iterations, for the Erdös-Rényi model specification.

Figure A.15: Trace plots for false positive probabilities pc for clusters c = 1, and 2, for
400,000 iterations after a burn-in of 100,000, for the Erdös-Rényi model specification.

Figure A.16: Trace plots for false negative probabilities qc for clusters c = 1, and 2, for
400,000 iterations after a burn-in of 100,000, for the Erdös-Rényi model specification.
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Figure A.17: Left: Trace plot for probability of an edge θ1 for network representative of
cluster c = 1, for 400,000 iterations after a burn-in of 100,000, for the Erdös-Rényi model
specification. Right: Trace plot for probability of an edge θ2 for network representative
of cluster c = 2, for 400,000 iterations after a burn-in of 100,000, for the Erdös-Rényi
model specification.
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Figure A.18: Left: Posterior mode of representative network for cluster c = 1, with
posterior mass 100%, for last 100,000 iterations, for the Erdös-Rényi model specification.
Right: Posterior mode of representative network for cluster c = 2, with posterior mass
17% for last 100,000 iterations, for the Erdös-Rényi model specification.
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Figure A.19: Proportion of times (y axis) an individual (x axis) is allocated to each of the
2 clusters, after a burn-in of 100,000 iterations, for the Erdös-Rényi model specification.
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A.4 MCMC algorithm

Below, we present details of how the MCMC algorithm is implemented to make posterior

inferences from the proposed model.
Algorithm 1: MCMC Algorithm for Clustering Network Populations

input : G1,G2, . . . ,GN ;C,K,M,w0, θ0, α0, β0, γ0, δ0, ε0, ζ0, ψ, χ

output: Posterior distributions of AG∗1 , . . . , AG∗C , p1, . . . , pC , q1, . . . , qC , τ1, . . . , τC ,

z1, . . . , zN , θ1, . . . ,θC , w1, . . . ,wC , b1, . . . , bC

Initialisation: randomly generate A
(0)
G∗1
, . . . , A

(0)
G∗C

, p
(0)
1 , . . . , p

(0)
C , q

(0)
1 , . . . , q

(0)
C ,

τ
(0)
1 , . . . , τ

(0)
C , z

(0)
1 , . . . , z

(0)
N , θ1

(0), . . . ,θC
(0), w1

(0), . . . ,wC
(0), b1

(0), . . . , bC
(0)

for i← 1 to M do

Gibbs step: Update τ1, . . . , τC

compute: ηc =
∑N

j=1 1c(z
(i−1)
j ) for c = 1, . . . , C

sample: τ
(i)
1 , . . . , τ

(i)
C ∼ Dir(ψ + η1, . . . , ψ + ηC)

for c← 1 to C do

MH step with a mixture of kernels: Update AG∗c or pc or qc

sample: v ∼ Multinomial(ξ1, . . . , ξL)

Depending on the value of v, update either AG∗c or pc or qc as per the

Measurement Error model with SBM structure, where the sum in likelihood is

over the networks {j : z
(i−1)
j = c}

Gibbs step: Update wc

compute: hk =
∑n

j=1 1k(b
(i−1)
j )

sample: wc
(i) ∼ Dir(χ+ h1, . . . , χ+ hK)

Gibbs step: Update θc

compute: A[st] =
∑

(u,v):bu=s,bv=tA
(i)
G∗c (u, v) and

nst =
∑

(u,v):u6=v I(bu = s, bv = t) for s, t ∈ {1, . . . ,K}

sample: θ
(i)
c,st ∼ Beta(A[st] + ε0, ζ0 + nst −A[st])

Gibbs step: Update bc

for j ← 1 to n do

compute: pkj = w
(i)
c,k ·

∏n
m=1 θ

(i)A(j,m)

kb
(i−1)
c,m

(1− θ(i)

kb
(i−1)
c,m

)1−A(j,m) for k = 1, . . . ,K

sample: b
(i)
c,j ∼ Multin(plj , . . . , pKj)

end

end

Gibbs step: Update z1, . . . , zN

for j ← 1 to N do

compute: pcj = τ
(i)
c ·

∏
(u,v):u<v

(
(1− q(i)

c )
AGj (u,v)

q
(i)(1−AGj (u,v))
c

)A(i)

G∗c
(u,v)
·(

p
(i)AGj (u,v)
c (1− p(i)

c )
1−AGj (u,v)

)1−A(i)

G∗c
(u,v)

for c = 1, . . . , C

sample: z
(i)
j ∼ Multin(p1j , . . . , pCj)

end

end
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Appendix B

Appendix for ‘Bayesian Inference

for Models in the Spherical

Network Family (SNF) using

Importance Sampling (IS)’

B.1 Mixing issue with Auxiliary Variable method for the

SNF model

In this Section we demonstrate the MCMC chain mixing issue that arises with the

implementation of the Auxiliary Variable method (Møller et al. [2006]) for the SNF

model (Lunagómez et al. [2021]), through the use of a specific simulated data example.

We further demonstrate the improvement in the chain mixing after the implementation

of our proposed MCMC scheme with IS step, for the same simulated data example.

To illustrate the mixing issue, we first simulate a population of N = 50 networks,

with n = 5 nodes from the SNF model with parameters γ = 7 and centroid Gm as seen

in Figure B.1.

We apply the MCMC scheme with Auxiliary Variable method proposed in Lu-

nagómez et al. [2021] on the simulated network data to make inferences for the SNF

model parameters. Figure B.2 shows the traceplot for the dispersion parameter γ, after

running the MCMC for 10,000 iterations with no burn-in.
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Figure B.1: 5-node centroid Gm generated for simulated data example.
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Figure B.2: Traceplot of γ for 10,000 iterations of the MCMC with Auxiliary Variable
method applied on the simulated population of 5-node networks.
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Figure B.3: Traceplot of γ for 10,000 iterations of the MCMC with IS step applied on
the simulated population of 5-node networks.

To facilitate comparisons, we apply our MCMC scheme with IS step on the same

simulated network data, and present the traceplot for the dispersion γ for 10,000 it-

erations of the MCMC and no burn-in in Figure B.3. From the figures we notice a

significant improvement in the mixing of the MCMC chain for γ, under our proposed

MCMC scheme with IS step.
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B.2 Proof of HS distance metric

We now show that the HS dissimilarity measure proposed in Section 4.3.1 is a distance

metric. The HS measure is the weighted sum of the Hamming distance and the symmetric

difference of cycles between two graphs. The Hamming distance is a well-known distance

metric, thus, to prove that the HS measure is also a distance metric, we need to prove

that the symmetric difference between graphs’ cycles is a distance metric.

Let Cn be the set of cycles for graphs of size n, and each CGi , CGj , CGk ∈ Cn be the

subset of cycles found in graphs Gi, Gj and Gk respectively. Thence, the symmetric

difference of the cycles of two graphs is dsymm = |CG·∆CG· |. The function dsymm :

Cn × Cn → [0,∞) is a distance metric if the following conditions are satisfied:

1. dsymm(CGi , CGj ) = 0⇔ CGi = CGj

2. dsymm(CGi , CGj ) = dsymm(CGj , CGi)

3. dsymm(CGi , CGj ) ≤ dsymm(CGi , CGk) + dsymm(CGk , CGj )

Conditions 1 and 2 are clearly satisfied. Thus, we need to prove that the triangle

inequality holds for the symmetric difference of cycles. The symmetric difference has the

following property,

CGi∆CGj = (CGi∆CGk)∆(CGk∆CGj ).

It follows that

CGi∆CGj ⊆ (CGi∆CGk) ∪ (CGk∆CGj )⇒

|CGi∆CGj | ≤ |CGi∆CGk |+ |CGk∆CGj |.

Thus condition 3 is satisfied for the symmetric difference of cycles between graphs.

B.3 Challenges with cycle detection

We now present the centrality-betweenness distance metric considered as covariate for

the xgboost algorithm, to predict the HS distance between graphs in each iteration of

the MCMC.
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As discussed in Donnat and Holmes [2018], the centrality-betweenness dissimilarity

measure for two graphs G and G̃, quantifies changes between graphs with respect to

the betweenness of the graphs’ nodes, i.e. the centrality of the nodes in each graph.

Specifically, the centrality-betweenness of node i denoted by ci, measures the number of

shortest paths going through node i. Thus, the centrality-betweenness distance between

graphs G and G̃ is

d(G, G̃) =

√√√√ n∑
i=1

(cGi − c
G̃
i )2.

B.4 Simulation study: Performance of MCMC for small

network sizes

B.4.1 Simulation study for HS distance

In Figures B.4, B.5, B.6, B.7 we present the autocorrelation plots for γ under the

simulation regimes γ = {0.01, 0.6, 1.1, 1.6} and N = 50, for both IS sample sizes

K = {2000, 4000} and the two distinct IS schemes (adaptive and non-adaptive scheme),

as discussed in Section 4.4.2.
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Figure B.4: Autocorrelation plots for γ under the simulation regimes γ =
{0.01, 0.6, 1.1, 1.6} and N = 50, for IS sample size K = 2, 000, for the adaptive MCMC
scheme.
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Figure B.5: Autocorrelation plots for γ under the simulation regimes γ =
{0.01, 0.6, 1.1, 1.6} and N = 50, for IS sample size K = 4, 000, for the adaptive MCMC
scheme.
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Figure B.6: Autocorrelation plots for γ under the simulation regimes γ =
{0.01, 0.6, 1.1, 1.6} and N = 50, for IS sample size K = 2, 000, for the non-adaptive
MCMC scheme.
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Figure B.7: Autocorrelation plots for γ under the simulation regimes γ =
{0.01, 0.6, 1.1, 1.6} and N = 50, for IS sample size K = 4, 000, for the non-adaptive
MCMC scheme.

B.4.2 Simulation study for Jaccard distance

In Figure B.8, we present the simulation results under the specification of a Uniform

distribution over the interval [0.01, 18] for the dispersion parameter γ, and for N = 50

indicatively, as discussed in Section 4.2.2.
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Figure B.8: Posterior distribution of γ, for simulation regimes γ = {1, 7, 11, 15}, N = 50
and IS sample K = {2000, 4000}, for MCMC algorithm with informative and non-
informative prior for γ, and MCMC with exact calculation of Z.
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B.5 Simulation study: Performance of MCMC for moder-

ate network sizes

B.5.1 Simulation study for Jaccard distance

In Figure B.9, we present the simulation results of our MCMC for a greater size of

K = 18, 000 networks, for the simulation regime where γ = 90 and N = 20, discussed in

Section 4.4.3.
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Figure B.9: Traceplot of γ for the simulation regime γ = 90 and N = 20 and IS sample
size K = 18, 000.

B.5.2 Simulation study for HS distance

In Figures B.10 and B.11, we present the traceplots for γ for IS density specification the

mixture of CER models with J = 2 mixture components with probabilities β = (1/2, 1/2)

corresponding to two dispersion parameters α̃ = (0.02, 0.07), discussed in Section 4.4.3.

We run the MCMC for 5,000 iterations, implementing the xgboost algorithm.
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Figure B.10: Traceplots for γ, for simulation regime γ = 0.06, using a mixture of CER
as the IS density.
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Figure B.11: Traceplots for γ, for simulation regime γ = 0.6, using a mixture of CER as
the IS density.

The posterior mode of the representative for γ = 0.06 concentrates a posterior mass

0.039, and its Hamming distance from the true centroid is 41 edges. The posterior mode

of the representative for γ = 0.6 concentrates a posterior mass 0.0204, and its Hamming

distance from the true centroid is 35 edges.
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