

Tshukudu, Ethel (2022) Understanding conceptual transfer in students

learning a new programming language. PhD thesis.

https://theses.gla.ac.uk/82984/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/82984/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Understanding Conceptual Transfer in Students Learning a
New Programming Language

Ethel Tshukudu

Submitted in fulfilment of the requirements for the
Degree of Doctor of Philosophy

School Of Computing Science
College of Science and Engineering

University of Glasgow

June 2022

Abstract

There is a large literature from at least as early as 1985 on the difficulties encountered in learn-
ing programming languages, and in particular additional programming languages. This thesis
concentrates on how students transfer their knowledge from their first programming language to
their second. The central idea is to adapt and use theories from linguistics of how people learn
second natural languages to illuminate the problems of learning second programming languages.
The major claim of this thesis is that: Semantic transfer based on syntax similarities plays a role
in relative novices’ conceptual transfer between programming languages; the implementation
of deliberate semantic transfer interventions during relative novices’ second language learning
can lead to improved conceptual transfer and understanding in learning a second programming
language.

This thesis uses mixed methods to investigate how students transition from procedural Python
to object-oriented (OO) Java. It includes a sequence of nine research studies building on each
other. First, an exploratory qualitative study is carried out on how semantic transfer in natural
language applies to programming language transfer; secondly, a Model of Programming Lan-
guage Transfer (MPLT) is developed based on the first study’s findings; thirdly, four quantitative
studies are carried out to validate the model; fourthly, a study that collects school teachers’ views
and experiences on second language learning is carried out; fifthly, a study is conducted to ex-
plore transfer interventions with students; and the last study builds and investigates a pedagogy
for transfer deriving from the MPLT.

The findings support the thesis claim that semantic transfer based on syntax similarities plays
a role in relative novices’ conceptual transfer between programming languages. The transfer can
be positive when the first programming language (PL1) and the second programming language
(PL2) share similar syntax and semantics, negative when PL1 and PL2 share similar syntax but
have different semantics, and there is little or no transfer when PL1 and PL2 have different
syntax but share similar semantics. The results also reveal that transfer teaching interventions
based on the MPLT could improve conceptual transfer and understanding in students learning a
second PL.

The contribution of this thesis is two-fold: First, a validated model of programming language
transfer that has three categories that reflect the types of potential transfer students encounter
when learning a second programming language. The model provides a unified way to measure

i

ABSTRACT ii

transfer in second language learning. Second, a validated unified pedagogical guideline for pro-
moting transfer in programming languages derived from the MPLT. Researchers, educators and
curriculum designers can use these instruments to advance research, teach, and design teach-
ing materials. First, the researchers can use the instruments to further programming language
transfer research by adopting them in other programming language contexts. Second, educa-
tors can use the instruments as a guideline for improving second and subsequent programming
language teaching. Lastly, Computer Science (CS) curricular designers can draw on these in-
struments as guidance to design teaching material that promotes transfer as students transition
to new programming languages. They can also use them for teacher professional development.

Contents

Abstract i

Acknowledgements xi

Declaration xiii

1 Introduction 1
1.1 Transfer in Programming Languages . 2
1.2 Transfer in Natural Languages . 3
1.3 Thesis Statement . 4
1.4 High-level Research Questions . 4
1.5 Thesis Contributions . 6
1.6 Publications . 7
1.7 Thesis Structure . 9

2 Literature Review 11
2.1 Transitioning between Programming Languages 11

2.1.1 Transitioning from Block-based to Text-based Languages 11
2.1.2 Transitioning between Text-based Languages 14

2.2 Theoretical Research on PL Transfer . 16
2.3 Learning Transfer . 20
2.4 Program Comprehension . 21
2.5 Transfer in Natural Languages . 24

2.5.1 Second Language Learning and Cognitive Approaches 30
2.5.2 The context of Programming Languages 33

2.6 Pedagogical Approaches in PL Transfer . 34
2.7 Summary of Literature Review . 36

3 Methodology 38
3.1 The Research Design . 38
3.2 Issues of Validity and Reliability . 39

iii

CONTENTS iv

3.2.1 Quantitative Studies . 39
3.2.2 Qualitative Studies . 41

3.3 Ethical Considerations . 41
3.4 Summary of the Methodology . 42

4 Exploratory Study on Semantic Transfer 43
4.1 Participants . 44
4.2 Procedure . 45
4.3 Analysis . 48

4.3.1 Session 1 . 50
4.3.2 Session 2 . 53
4.3.3 Session 3 . 56
4.3.4 Session 4 . 58

4.4 Summary of Discussion . 63

5 The Model of Programming Language Transfer 66
5.1 Knowledge Structures in the MPLT . 66
5.2 Predictions of what actually happens during Learning PL2 69
5.3 Summary . 71

6 Validation of the Model 73
6.1 Hypotheses . 74
6.2 Instrument . 75
6.3 Participants . 81
6.4 Data Collection Procedures . 83
6.5 Data Analysis . 84
6.6 Results of Transfer Before learning Java . 85

6.6.1 Study 2a Results . 85
6.6.2 Study 2b Results . 87

6.7 Results of Transfer After beginning to Learn Java 88
6.7.1 Study 2c Results . 89
6.7.2 Study 2d Results . 91

6.8 Discussion . 93
6.9 Summary of Discussion . 98

7 Teachers’ Experiences on Transfer 100
7.1 Research Questions . 101
7.2 Participants and Context . 102
7.3 Interview Protocol . 103
7.4 Data Collection . 105

CONTENTS v

7.5 Data Analysis . 106
7.6 Results . 107

7.6.1 RQ3a: Reasons for Multiple Languages 107
7.6.2 RQ3b: Problems/benefits of Teaching Multiple Languages 109
7.6.3 RQ3c: Views on the use of Transfer Strategies 111
7.6.4 RQ3d: Types of Transfer Strategies 113

7.7 Discussion . 115
7.7.1 RQ3a: Reasons for Multiple Languages 115
7.7.2 RQ3b: Problems/benefits of Teaching Multiple Languages 115
7.7.3 RQ3c: Views on the use of Transfer Strategies 116
7.7.4 RQ3d: Types of Transfer Strategies 116

7.8 Summary of Discussion . 117

8 Exploring Explicit Interventions on Transfer 118
8.1 Research Questions . 119
8.2 The Research Design . 120
8.3 Participants and Context . 121
8.4 Instrument . 122
8.5 Data Collection Procedures . 122

8.5.1 Pre-quiz . 122
8.5.2 The Transfer Intervention (Student Centered Approach) 123
8.5.3 Post-quiz . 123

8.6 Data Analysis . 124
8.7 Results . 124
8.8 Discussion . 125

9 The Pedagogy for Transfer 128
9.1 Research Questions . 129
9.2 The Development of the Transfer Pedagogy 130

9.2.1 The Pedagogic Approaches used for the Interventions 130
9.2.2 The Pedagogy for Second Programming Language Learning 132

9.3 Participants . 134
9.4 The Research Design . 135

9.4.1 The Control Group Course Delivery 135
9.4.2 The Intervention Group Course Delivery 136

9.5 Instrument . 138
9.6 Data Collection . 139
9.7 Data Analysis . 139

9.7.1 Quantitative Analysis . 140

CONTENTS vi

9.7.2 Qualitative Analysis . 140
9.8 Results . 140

9.8.1 Week 3 Java Quiz Results Comparisons 140
9.8.2 Students’ Feedback . 141
9.8.3 Lecturer’s Feedback . 143

9.9 Discussion . 145

10 Discussion and Conclusion 147
10.1 Research Questions and Key Findings . 148
10.2 Emerging Findings and Contributions to the Larger Field of CSE Research . . . 154

10.2.1 Relative Novices’ Fragile Knowledge 155
10.2.2 Deepening Conceptual Understanding through Second Language Learning158
10.2.3 Multiple Programming Languages in the Curriculum 161
10.2.4 MPLT in other Programming Languages Contexts 162

10.3 Implications and Future Work . 163
10.4 Study Limitations . 166
10.5 Conclusions . 167

A Chapter 4: Exploratory Study Materials 185
A.0.1 Week 0 interview activities: Before Java 185
A.0.2 Week 2 interview activities: After two weeks of Java 186
A.0.3 Week 4 interview activities: After four weeks of Java 188
A.0.4 Week 6 interview activities: After six weeks of Java 189

B Chapter 6: Validation of the MPLT Study Materials 193

C Chapter 7 Appendix: Teachers and their Experiences Study Materials 206

D Chapter 8 Appendix: Exploring Transfer Interventions Study Materials 209

E Chapter 9 Appendix: Pedagogy for Transfer Study Materials 215

F Chapter 9: Ethics Documents 219

List of Tables

1.1 A summary table of the thesis contributions mapped to the chapters and research
questions . 7

1.2 A summary table of the thesis contributions mapped to the chapters and research
questions . 9

2.1 A summary table of empirical work on transitioning between text-based languages 15

4.1 The Design of the exploratory study showing all the four sessions conducted for
a period of four months . 47

4.2 Session 1, analyzed students data of comprehension of a Java program in List-
ing 4.1 (guess activity) . 51

4.3 Scores of answers participants gave for the Session 2 mappings activity in Fig-
ure 4.1 . 55

4.4 Session 3 activity: The students’ talk-through in explaining the Java for-loop in
Figure 4.1 (Question 4, Option a). 57

4.5 Session 4: The breakthroughs, challenges with learning objects talk-through
with participants on week 6 of learning Java 60

4.6 The overall themes derived from the Exploratory study 64

6.1 Participants in the four studies that validate the MPLT 83
6.2 Mean score, p-value and effect size of individual concepts tested in Study 2a

Guess quiz: N=46 . 86
6.3 Mean score, p-value and effect size of individual concepts tested in Study 2b

Guess quiz: N=101 . 88
6.4 Mean score, p-value and effect size of individual concepts tested in Study 2c:

N=70 . 89
6.5 Mean score, p-value and effect size of individual concepts tested in Study 2d:

N=33 . 93

7.1 Details over the participating teachers. Teacher’s code reflects the order of their
interview, where T1 is the first interviewed and T23 is the last interviewed. . . 104

vii

LIST OF TABLES viii

7.2 Reasons teachers provide for teaching multiple languages 107
7.3 Benefits and problems highlighted by teachers of teaching multiple languages . 109
7.4 Views on transfer strategies . 112
7.5 Types of transfer strategies . 113

8.1 Pre-quiz comparisons: Mean scores grouped by concept category 124
8.2 Post-quiz comparisons: Mean scores grouped by concept category 124
8.3 Post-quiz mean comparisons between the Control group and the Intervention

groups using the Mann-Whitney U test. 125

9.1 A Python baseline assessment analysis using Mann-Whitney U test comparison:
Mean scores (out of total 4) grouped by MPLT concept category. 135

9.2 A Java post-quiz analysis using Mann-Whitney U test comparison: Mean scores
(out of total 4) grouped by concept category 141

9.3 Mean scores and effect size of individual constructs tested in Control and Inter-
vention groups in Week 3 . 141

9.4 Week 3: Intervention group (2020) feedback on the transfer interventions per
concept category on a Likert Scale, n=32. 142

10.1 A summary table of the a total of nine experiments conducted to answer the
research questions. These experiments are presented in Chapter 5-9. 148

List of Figures

2.1 Model of plan transfer for Icon by Scholtz and Wiedenbeck taken from from [22] 18
2.2 Mind-shift Learning Theory by Armstrong and Hardgrave taken from [9] . . . 19
2.3 The internal structure of the lexical entry adapted from Levelt, 1989 [63]) . . . 25
2.4 Jiang’s model of second language acquisition drawn from [26] 27

3.1 The adopted mixed methods design for this thesis. This design uses the Ex-
ploratory Sequential and Convergent design [75]. The studies were conducted
for a period of 3 years. 40

4.1 Mapping multiple-choice questions on Python and Java presented to participants
for the Session 2 activity. 54

4.2 Session 3 and 4 participants’ self-rated confidence levels on Java constructs . . 59

5.1 Model of PL transfer (MPLT) . 68
5.2 MPLT showing constructs categories a learner encounters during the learning

process, and the consequences . 70

6.1 Example of the while loop concept in the TCC category 79
6.2 Example of the type coercion concept in the FCC category 79
6.3 Example of the data structure concept in the ATCC category 79
6.4 A sample TCC question on a While-loop construct which was given as a Java

guess quiz before students were given the Java instruction 80
6.5 A screenshot of a sample TCC question on a While-loop construct which was

given as a Python quiz . 80
6.6 A screenshot of a sample FCC question on a Type-checking construct which was

given after students were given the Java instruction 81
6.7 A screenshot of a sample FCC question on a Type-checking construct which was

given as a Python quiz . 81
6.8 A screenshot of a sample ATCC question on an Object-aliasing construct which

was given after students were given the Java instruction 82

ix

LIST OF FIGURES x

6.9 A screenshot of a sample ATCC question on an Object-aliasing construct which
was given as a Python quiz . 82

6.10 Study 2a Participants’ mean score grouped by concept category and program-
ming language: N=46 . 86

6.11 Study 2b Participants mean score grouped by concept category and program-
ming language: N=101 . 87

6.12 Mean scores of individual concepts tested in Study 2c when participants in week
3 of learning Java (PL2): N=70 . 90

6.13 Mean scores of individual concepts tested in Study 2d of participants in week 6
of learning Python (PL2): N=33 . 92

8.1 A screenshot of the sample Java question in the quiz given to the students after
the interventions . 122

8.2 A screenshot of an activity sheet given to students in the 90 minutes seminar
activities for Intervention group at the University of Oslo. Students were asked
to compare Java and Python semantics. 124

9.1 Transfer Pedagogy Framework aligning to the MPLT categories 132
9.2 A screenshot with an example of an FCC concept variable declaration in Lesson

2 as it was taught in the control group (2019) without explicitly comparing with
Python . 136

9.3 Lesson 2 notes and live coding screenshot of FCC concept: The explicit instruc-
tion of dynamic vs static concept during a live coding session in class 137

9.4 Lesson 5 screenshot: The bridging intervention technique the lecturer used for
Python dictionaries and Java objects during live coding session in class 138

9.5 Sample screenshot for the post test question-FCC category 138
9.6 An example of a FCC concept of array equality in Java and Python 139
9.7 Week 3 sample Java quiz on array equality . 139

A.1 program 1 mapping . 187
A.2 program 2 mapping . 187
A.3 program 3 mapping . 187
A.4 program 4 mapping . 188
A.5 program 5 mapping . 188
A.6 program 6 mapping . 188
A.7 Consent Form for the first exploratory study 192

B.1 Consent form for the experiments that validated the model 197

F.1 Ethics approval . 220
F.2 Ethics approval . 221

Acknowledgements

First and foremost, I would like to appreciate and thank God for granting me grace, strength,
and knowledge to accomplish the thesis finally.

I want to thank my esteemed supervisor, Professor Quintin Cutts, for his invaluable super-
vision, support, knowledge, and guidance during my Ph.D. journey. I want to thank him for
giving me the opportunity and trust to pursue a Ph.D. degree under his supervision. Professor
Cutts, thank you for teaching me to be a good researcher. Your advice and the lessons are in-
valuable. Thank you for providing cheerful moments when times were hard, especially during
the Covid-19 pandemic.

Special thanks to all the lecturers that supported me, provided me with access to their stu-
dents, and were willing to assist with implementations of my interventions in their classrooms:
Dr. Mary Ellen Foster, Ms. Siri Annethe Moe Jensen, Dr. Matthew Barr, and Dr. Gerardo
Aragon Camarasa. Without such support, this research would have been impossible.

I want to give a big thank you to all my research participants (the teachers and the students).
Your support is invaluable.

Special thanks to Professor Felienne Hermans and Dr. Steve Draper, who supported me and
gave their valuable time to review and provide constructive feedback on my thesis. Professor
Felienne Hermans, thanks for your mentorship, for believing in my work, and for always being
eager to do research collaborations with me. Dr. Steve Draper, thank you for showing interest
in my work and providing a platform for stimulating discussions. You have both been a great
source of encouragement.

To my co-authors and research collaborators, thank you. Collaborating with you gave me
new knowledge, skills, techniques, and new friends and mentors in the academic field.

I would like to thank Dr. Sue Sentance for her support and encouragement. She is one of
the most influential people in my life. She has had a positive impact on me academically and
personally.

I thank my fellow CCSE lab colleagues from the University of Glasgow. Thank you for the
support, advice, stimulating discussions, and refreshing hangout sessions.

Last but not least, I would like to give my most enormous thanks to my family. Firstly, my
husband, Thabo Tshukudu, has shown the most significant support during my Ph.D. journey. I
thank him for his selfless sacrifice of quitting his job to come with me to the UK to support my

xi

ACKNOWLEDGEMENTS xii

Ph.D. endeavor. I thank him for his patience and tolerance over the last four years. Thabo, I
could not finish this work without your support. Thank you for being proud of me for what I ac-
complished and always looking for ways to help bring out the best version of myself. Secondly,
I would like to thank my children for their support, prayers, and patience. I apologize for not
spending enough time with you while writing my thesis.

I dedicate this work to my late mother Priscilla Ndiko Daniel.

Declaration

I declare that all the work in this thesis was carried out by the author unless otherwise explicitly
stated.

xiii

Chapter 1

Introduction

Students learning to program in K-12 (primary to secondary school) and higher education are not
only faced with the challenge of developing and implementing solutions for problem-solving,
but they also have to understand the programming languages (PLs) they use to solve different
problems. The research that attempts to investigate and understand the source of these diffi-
culties has reported that students struggle with syntactic, semantic, clerical, and logical errors
when writing programs [1, 2]. Prior work has also reported that, in the early stages of learning
programming, students tend to struggle more with the syntax of programming language [2, 4],
therefore focus more on the syntax than on understanding the program’s function [3]. Stefik
et al. [4] reports that some of the reasons students struggle with syntax are the types of word
choices and symbols used in programming languages which may not be intuitive or easy for
them to understand. For example, they found that for the programming concept of iteration,
programming language keywords that are common in English and literal such as repeat are
more intuitive for students than keywords such as for.

Efforts to mitigate these challenges have resulted in the evolution of multiple programming
languages explicitly designed to ease how students learn to program. The various programming
languages introduced in the K-12 and higher education classrooms result in students transition-
ing from one PL to the other during their education. For example, students may start learning
to program using block-based languages and then transition to text-based languages later on or
transition between paradigms within text-based languages.

Research relating to the learning of second and subsequent programming languages has
reported the difficulties experienced by students when they transition. The challenges have
been reported in the context of block-based languages to text-based languages [11,18,29,30],
paradigm shifts [2,16] and within text-based languages [15,16,20–22,33]. This line of research
has largely not been theory-driven, hence not describing the cognitive processes and mechanisms
involved in learning new PLs. Given that students learn different sets of common underlying PL
concepts during their education [5, 6], the overarching question, therefore, is how do students
transfer their understanding of concepts between PLs? Uncovering the mechanisms involved in

1

CHAPTER 1. INTRODUCTION 2

PL transfer is a necessary step for a detailed understanding of second PL learning and assists
educators in understanding the success and failure of transfer in the classroom.

The following introductory section lays out the prior research relating to transfer in pro-
gramming languages. This is followed by the objectives and statement of this thesis. Finally,
the structure and content of the forthcoming chapters are presented.

1.1 Transfer in Programming Languages

Prior work has explored aspects of novice programmers transferring knowledge when learning
their first PL. For example, students’ understanding of natural language may interfere with their
understanding of the meanings of programming language constructs when learning their first
PL [4,174–176]. Prior knowledge of mathematics can also interfere with learning programming
concepts; for example, the concept of a variable is used in both mathematics and program-
ming but has significantly different meanings in each [177]. These interferences could occur
because when learning the first PL, students learn new concepts and use their intuition to try and
understand these concepts. Intuition relies on the unconscious transfer of previously acquired
knowledge and therefore is not apparent to the student during learning. This transfer has been
seen as an essential source of error in computing education, leading to misconceptions in under-
standing programming concepts as summarised in [176]. Stefik et al. [4] explored which words
(e.g. the word for that represents iteration) and symbols (e.g. ++ in the for loop) novices
find intuitive in PLs. Their study found that variations in the first PL syntax matter to novice pro-
grammers such that they find some syntax more intuitive than others. For example, the novice
programmers rated x=x+1 as more intuitive than the shorthand x++, which the experienced
programmers found intuitive.

By comparison, however, there is minimal research on how students move on to learn a sec-
ond and subsequent PL when they already have established conceptual knowledge from their
first programming language. Finding the answer to this question is particularly important be-
cause several studies reported transition challenges relative novices face as they switch between
programming languages [8–17, 178].

Early work on transfer to second and subsequent programming languages mainly focused on
experiments that observed experienced programmers solving programming problems in a new
language. Participants in these studies were reported to start solving problems using familiar
plans from the prior language. This transfer was negative when they had to implement the plans
in a new language that had different constructs from the prior language [19,20]. However, it was
positive if the new language had similar constructs as the prior language [21].

For instance, Scholtz and Wiedenbeck [19] reported negative transfer of plans on experi-
enced programmers with C and Pascal knowledge planning in the new Icon language. They
discovered that in the early stages of learning a new language, experienced programmers use

CHAPTER 1. INTRODUCTION 3

a top-down and depth-first approach to solve a problem [22]. Programmers then change their
plans repeatedly when they reach implementation as they become familiar with the new lan-
guage constructs, resulting in delays in solving the problem. This fits with the observations of
transfer of plans made by their later studies [20]. However, in investigating novice program-
mers, Scholtz et al. [23] reported that novice programmers tend to use a bottom-up approach in
solving problems in a new language.

Wu and Anderson [21] reported that experienced programmers experienced the positive
transfer of plans between LISP and PROLOG and between LISP and PASCAL. Participants
were reported to use the familiar algorithms in the first language to cut down the planning in
the second language, which reduced the number of revisions needed to finalize the plan. They
concluded that the positive effect was because of the three languages’ commonalities in some
concepts, such as recursion. Syntactic interference was reported to be minor.

Computer science education researchers have tried to address essential questions of how
transfer occurs when problem-solving in new languages, thus not focusing on the interaction
between the linguistic elements of known PL and new PL in the programmer’s brain when
reading code in a new language. Learning programming is more than problem-solving and
plans; it is also about understanding the underlying programming language constructs used to
write programs and how they behave when executed. In addition, prior work gives little attention
to how relative novices move on from their first or second language, considering that novice
programmers often only have limited knowledge of plans [23, 24]. When learning to program,
novice programmers tend to focus more on the syntax of a programming language [3, 4] which
is intimately tied to their understanding of programming language constructs [6]. Therefore, this
thesis is interested in investigating how a novice programmer’s knowledge of concepts in their
first PL transfers to learning a second PL. This research draws from second language acquisition
models in natural languages to understand programming language transfer as a starting point.

1.2 Transfer in Natural Languages

Jiang [25, 26] has developed a model of lexical development in second language acquisition,
explaining how the lexical entries in the second language lexicon evolve. A lexicon is the col-
lection of all words in a language in linguistics [201]. Each word in the lexicon is referred to
as a lexical item and is described in the dictionary by a lexical entry [201]. In turn, each lexi-
cal entry comprises information about the lexical item and is divided into two components: the
lemma and the lexeme [25]. The lemma consists of the syntax and semantics components (e.g.,
parts of a sentence and their meaning), and the lexeme consists of the morphological and formal
components (e.g., how a word is formed and its context, spelling, and pronunciation). Further
clarification of the lexeme and lemma components with examples is presented in Section 2.5.

This thesis focuses on the lemma because syntax and semantics apply to programming lan-

CHAPTER 1. INTRODUCTION 4

guages. Programming languages, just like natural languages, use syntax, which is a set of rules
that inform us how to combine words and symbols to create well-formed sentences/programs.
One crucial aspect emphasized by Jiang is that the lexical representation components (in this
research context, only syntax and semantics) are highly connected. The activation of one com-
ponent in the mind of a language learner results in automatic simultaneous activation of the other
components.

Jiang’s model has provided valuable insights into how learners learn new languages based
on their first languages. Empirical work has confirmed the validity of this model in the natural
languages context [25–27]. One of the ways that lexical association may occur when learning
new languages is through cross linguistic-similarities. Ringbom [28] proposes that comprehen-
sion of a new language can start with perceiving lexical similarities to elements of the language
they already know, which is followed by the assumption of the associated semantic or functional
similarity.

From the theories of natural languages reported above, it seems clear that when learners learn
their second language, the semantic transfer will occur [25–27]. In some cases, the semantic
transfer can be influenced by cross-linguistic similarities [28].

1.3 Thesis Statement

Given the semantic transfer principles in natural languages research, the major claims of this
thesis are as follows: Semantic transfer based on syntax similarities plays a role in relative
novices’ conceptual transfer between programming languages; the implementation of de-
liberate semantic transfer interventions during relative novices’ second language learning
can lead to improved conceptual transfer and understanding in learning a second pro-
gramming language.

This research uses Jiang’s definition of semantic transfer. They define that semantic transfer
occurs when the semantic content in a second language word is transferred from the first lan-
guage [26]. It means that the first language semantic structures influence the second language
semantic development in the mind of a language learner. In the context of this research, a rel-
ative novice programmer is a programmer who has knowledge of one programming language
and has, on average, one year or less of programming experience.

1.4 High-level Research Questions

In order to investigate the hypothesis about semantic transfer in the thesis statement, high-level
research questions were designed. The first research question addressed whether the seman-
tic transfer principles in natural languages are also applicable to the context of programming
language transfer. Understanding how relative novice programmers transfer in PLs can be help-

CHAPTER 1. INTRODUCTION 5

ful for educators to better account for the success and failure of PL conceptual transfer in the
teaching and learning of second and subsequent programming languages.

• RQ1: How are principles of semantic transfer in natural languages applicable to
patterns of transfer in the context of relative novices transferring from first to sub-
sequent PLs?

The qualitative study yielded results that led to the development of a Model of Programming
Language Transfer (MPLT) tailor-made for relative-novices transfer in programming languages.
This model is used to investigate transfer in programming languages quantitatively. Therefore
the second research question was:

• RQ2: Do relative-novices transfer their programming language conceptual and se-
mantic knowledge to a new programming language during code comprehension as
proposed by the MPLT?

In addition to RQ1 and RQ2, this thesis explored how second and subsequent programming
languages are taught, given that transition challenges reported in prior work are experienced in
the classroom. This thesis investigated the transfer strategies and attitudes of teachers towards
second language learning and teachers’ awareness, from their own classroom experiences, of
the transfer issues. Therefore the third research question was:

• RQ3: How do teachers experience PL transfer for relative novices in the classroom?

As mentioned in RQ1, understanding relative novices’ transfer and how teachers approach
transfer in the classroom can help educators account for the success and failure of transfer in
the second PL classroom. Therefore, the last question considers how such an understanding
could help build transfer interventions that can help improve second language learning in the
classroom.

• RQ4: How can transfer teaching interventions based on our understanding of se-
mantic transfer improve second PL learning?

RQ1 will be addressed in Chapter 4, and this chapter consists of an exploratory qualitative
study conducted over ten weeks with students transitioning from procedural Python to object-
oriented Java. RQ1 and RQ2 are addressed in Chapter 5 that involves the designing of the model
of PL transfer based on the exploratory study results. Chapter 6 addresses RQ2, and it includes
experiments that validate the model. RQ3 is addressed in Chapter 7 and consists of studies that
explore teachers’ experiences with the transfer. Finally, Chapter 8 and Chapter 9 address RQ4
and both consist of investigating transfer interventions.

CHAPTER 1. INTRODUCTION 6

1.5 Thesis Contributions

This thesis offers a number of contributions:

Model of PL Transfer: The first contribution is a model of PL transfer (MPLT) presented in
Chapter 5, drawn from existing literature on programming and natural language transfer prin-
ciples. The model has been empirically validated in several studies in students transitioning
between Python and Java in Chapter 6. This model helps us answer RQ1 and RQ2. The model
demonstrates the role of syntax similarity and subsequent semantic transfer as a bridge to learn-
ing new PLs. It also offers an understanding of the relationship between PLs in the mind of
a novice programmer. Furthermore, students transfer partial or no semantics to concepts that
do not have similar syntax but have identical semantics. It demonstrates that semantic transfer
mainly occurs from PL1 to PL2 but can also happen bi-directionally from PL2 to PL1 depending
on experience and knowledge. The model can be used to explain the learning processes involved
in language transfer and aid in guiding teachers who teach new programming languages.

Teacher transfer practices on second PL learning: The second set of contributions help
answer RQ3 by reporting on the teacher transfer practices on second PL learning; See Chapter 7.
The findings reveal that many teachers use simple programming languages initially, creating an
opportunity for transfer learning. Furthermore, teachers reported both benefits and problems
of transfer from PL1 to PL2, as predicted by the MPLT. Regarding transfer strategies, it was
observed that teachers mostly don’t see the need to implement and don’t capitalize upon the
opportunity transfer could bring. These findings opened up opportunities to build a pedagogy
that can guide teachers in PL transfer to improve learning outcomes.

A pedagogy for PL Transfer: The final contribution is a second programming language ped-
agogical design rooted in both general and specific theory and a detailed study of applying this
pedagogy in an actual classroom setting; See Chapter 9. This pedagogy helps answer RQ4.
The pedagogy uses implicit, explicit, and bridging techniques aligned with the MPLT’s predic-
tions. This thesis investigated the effects of this pedagogy on the learning of concepts in a new
language. Furthermore, the lecturer reported on their experiences of using the pedagogy. The
findings suggest that the transfer pedagogy can benefit second language learning and can be of
value in teaching second programming languages.

A summary of the contributions mapping between research questions, contributions and
chapters is presented in Table 1.1.

CHAPTER 1. INTRODUCTION 7

Table 1.1: A summary table of the thesis contributions mapped to the chapters and research
questions

Contributions Chapter Research questions
Model of PL Transfer 5, 6 RQ1, RQ2
Teacher transfer practices on second PL learning 7 RQ3
A pedagogy for PL Transfer 8, 9 RQ4

1.6 Publications

This section summarizes the published work that addresses the research questions. So far, this
research has resulted in paper publications, conference presentations, reading group talks, sem-
inar presentations, and research newsletter features.

Long papers and Long Abstracts

1. Publication 1: Ethel Tshukudu and Quintin Cutts. 2020. Semantic Transfer in Pro-
gramming Languages: Exploratory Study of Relative Novices. In Proceedings of the
2020 ACM Conference on Innovation and Technology in Computer Science Education.
307–313. [29].

This publication presents the initial links between semantic transfer in natural languages and
semantic transfer in novice programming context, laying the foundations for a model of PL
transfer in CS which is the first major contribution of this thesis. This study addresses RQ1 and
aspects of this publication are presented in Chapter 4.

1. Publication 2: Ethel Tshukudu and Quintin Cutts. 2020. Understanding Conceptual
Transfer for Students Learning New Programming Languages. In Proceedings of the 2020
ACM Conference on International Computing Education Research. 227–237. [30]

This publication presents the first main contribution of this thesis, the model of PL transfer,
which demonstrates the role of syntax similarity and subsequent semantic transfer when relative
novices learn second and subsequent PLs. In addition, this publication presents two empirical
studies that validate the model’s hypothesis. This study addresses RQ1 and RQ2 and aspects of
this publication are presented in Chapter 5 and Chapter 6.

In addition to the above, an additional Doctoral Consortium paper and a symposium paper
presents a summary of the above publications. These were presented at the ICER conference and
the Cambridge Computing Education Research Symposium, respectively. These studies address
RQ1 and RQ2 and aspects of these publications are presented in Chapter 4 and Chapter 6.

1. Publication 3: Ethel Tshukudu and Quintin Cutts. [n. d.]. Understanding conceptual
transfer in second and subsequent programming languages. In Cambridge Computing
Education Research Symposium 18 [31].

CHAPTER 1. INTRODUCTION 8

2. Publication 4: (Doctoral consortium) Ethel Tshukudu. 2019. Towards a Model of Con-
ceptual Transfer for Students Learning New Programming Languages. In Proceedings of
the 2019 ACM Conference on International Computing Education Research. 355—356.
[32].

Papers that presented the teachers’ experiences (RQ3), initial transfer interventions, and the
final pedagogy aligned with the model were published. These papers include qualitative and
quantitative research methods. These studies demonstrate how interventions can help students
transition to second or subsequent PLs and show the second and third thesis contributions.

1. Publication 5: Ethel Tshukudu and Siri Annethe Moe Jensen. 2020. The Role of Explicit
Instruction on Students Learning their Second Programming Language. UKICER ’20:
United Kingdom Ireland Computing Education Research conference. 10–16 [33]. This
study addresses RQ4 and aspects of this publication are presented in Chapter 8.

[This paper was co-authored with one other researcher: I led and guided the study by
coming up with the research idea, research questions, study design, developing the data
collection methods (e.g., transfer quizzes), data analysis, and discussion. My co-author,
Siri Annethe Moe Jensen, contributed by reviewing the study material and implementing
the study design in their classroom at the University of Oslo.]

2. Publication 6: Ethel Tshukudu, Quintin Cutts, Olivier Goletti, Alaaeddin Swidan, and Fe-
lienne Hermans. 2021. Teachers’ Views and Experiences on Teaching Second and Subse-
quent Programming Languages . In Proceedings of the 17th ACM Conference on Interna-
tional Computing Education Research (ICER 2021), Au- gust 16–19, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3446871.3469752.
This study addresses RQ3 and aspects of this publication are presented in Chapter 7.

[This paper was co-authored with other researchers as follows: I led and guided the
study by coming up with the research idea, research questions, study design, developing
the data collection methods (e.g., interview scripts), interviewing the Scottish teachers,
data analysis (thematic analysis), and writing the discussion of the results. My co-authors’
contributions are as follows: Felienne Hermans, Olivier Goletti, and Alaaeddin Swidan
contributed to the data collection by conducting the teacher interviews in the Netherland.
In addition, they helped in conducting Thematic analysis (which includes data cleanup,
coding, and creating themes). In addition, Felienne Hermans guided the study and also
used her expertise to guide the design of thematic analysis methods. My supervisor pro-
vided the overall support and guidance.]

3. Publication 7: Ethel Tshukudu, Quintin Cutts, Mary Ellen Foster. 2021. Evaluating a Ped-
agogy for Improving Conceptual Transfer and Understanding in a Second Programming

CHAPTER 1. INTRODUCTION 9

Table 1.2: A summary table of the thesis contributions mapped to the chapters and research
questions

Publication Chapter Research questions
1. Semantic Transfer in Programming Languages:
Exploratory Study of Relative Novices.

4 RQ1

2. Understanding Conceptual Transfer for Students
Learning New Programming Languages.

5, 6 RQ1, RQ2

3. Understanding Conceptual Transfer in second and
Subsequent Programming Languages.

5, 6 RQ1, RQ2

4. Towards a Model of Conceptual Transfer for Stu-
dents Learning New Programming Languages.

5, 6 RQ1, RQ2

5. The Role of Explicit Instruction on Students
Learning their Second Programming Language.

8 RQ4

6. Teachers’ Views and Experiences on Teaching
Second and Subsequent Programming Languages.

7 RQ3

7. Evaluating a Pedagogy for Improving Conceptual
Transfer and Understanding in a Second Program-
ming Language Learning Context

9 RQ4

Language Learning Context . KoliCalling ’21. This study addresses RQ4 and aspects of
this publication are presented in Chapter 9.

[The paper was recognised at the conference as Best Paper Runner-up. This paper
was co-authored with two other researchers: I led the study by coming up with the re-
search questions, study design, transfer pedagogy, data collection methods (e.g., transfer
quizzes), data analysis, and discussion. My co-author, Mary Ellen Foster contributed by
reviewing the study material and implementing the study design in their classroom at the
University of Glasgow, and lastly my supervisor gave the overall review and guidance of
the study.]

The publication of these papers were at high quality peer-reviewed conferences in the re-
search area hence providing a degree of value in the work of this thesis. The presentation of the
details of these studies will be in the later chapters of this thesis. A summary of the publications
mapping with the chapters and the research questions is presented in Table 1.2.

1.7 Thesis Structure

This section will provide the structure of the rest of this thesis. Chapter 2 reviews the detailed
literature on research in programming language transfer which touches on both the transition
challenges and cognitive aspects of programming language transfer. Next will be the theoretical
perspectives of second language learning from programming languages and natural languages
research. The gaps in existing research work that this thesis aims to address are presented last.
Chapter 3 is presented next with a broad description of the philosophical underpinning to the

CHAPTER 1. INTRODUCTION 10

chosen research methods. It includes the study design, issues of validity and reliability, and
ethical considerations. Chapter 4 provides the analysis and findings of the first pilot study that
explored the aspects of transfer based on the existing transfer theories from both natural and
programming language transfer. Chapter 5 presents the MPLT, drawn from existing literature
on programming and natural language transfer principles and Chapter 4 study findings. Chapter
6 presents four experiments that validate the MPLT. Chapter 7 presents a study on teachers’
experiences and transfer strategies. Chapter 8 and 9 present interventions and pedagogy for
transfer, respectively. Lastly, Chapter 10 presents the discussions, contributions, implications,
limitations and conclusions.

Chapter 2

Literature Review

This chapter provides a broad overview of the most relevant programming language and natural
language transfer research. This thesis investigates how students transfer knowledge between
programming languages; therefore, this chapter starts by reviewing the empirical studies that
address transition challenges experienced by students who learn new programming languages
and why investigating transfer matters. From there, empirical studies that specifically address
knowledge transfer between programming languages are reviewed. As this thesis investigates
PL transfer drawing from both programming languages and natural language theories, the next
part of this chapter examines the theories on language transfer from programming languages
and natural languages. This thesis also investigates if implementing transfer strategies based on
semantic transfer improves the learning of a second PL; therefore, the last part of the chapter
reviews empirical work that addresses pedagogical approaches in PL transfer and their effects on
learning new PLs. The terms used in this thesis are used as they are explained in the literature.

2.1 Transitioning between Programming Languages

This section reviews empirical research that reported the challenges of programming language
transition. This research is not particularly concerned with designing the underpinning theories
behind programming language transfer but is concerned with gaining knowledge on the prac-
tical experiences and effects of second and subsequent programming language learning. This
research reports various language transition experiences such as block-based languages (e.g.,
Scratch) to text-based languages, within textual languages, and between programming language
paradigms.

2.1.1 Transitioning from Block-based to Text-based Languages

The first set of experiments discussed are researchers investigating the transition from block-
based to text-based languages. Unlike text-based languages, which allow learners to write lines

11

CHAPTER 2. LITERATURE REVIEW 12

of code to build a program, block-based languages enable learners to manipulate visual ele-
ments such as dragging and dropping blocks of instructions to create a program. Researchers
have reported both positive and negative impacts of transitioning from block-based languages to
text-based languages. One notable example is the study conducted by Powers et al. [34], which
followed students who learned Alice for the first half of the semester, transitioning to Java in
the second half of the semester. Students were given lab assignments and guided to write code
in Java translating from an Alice program. The results showed that while prior Alice knowl-
edge showed some benefits of increased confidence and retention, it also had some significant
transition challenges. These were related to the students feeling intimidated by the Java textual
language and syntax. In addition, the students could not recognize the connection between the
Alice code and the Java code. Powers et al. [34] reported that the difficulty was due to the mis-
match of the code organization in the two languages on concepts such as object declarations and
methods. For example, students expected the creation of objects in Alice to be the same as in
Java which was not the case; in Alice, objects are created in the IDE and then manipulated by
code, which is not the case for Java objects.

In another study of block-based to text-based language transition, Armoni et al. [16] inves-
tigated students transitioning from Scratch (middle-school) to Java (high-school). The study
investigated how students’ learning of CS at secondary school is affected by their previous
knowledge of CS learned from middle school. The study involved an group of 44 students
who had taken a course in Scratch and a control group of 76 students who had not. Students
wrote multiple tests covering reading and writing programs in C# or Java at different cogni-
tive levels. The results showed no significant differences between the experimental and control
groups in most concepts. Students in the experimental group recognized some concepts in the
early days of learning, although the recognition was restricted to the form they learned them in
Scratch. For example, explaining variables as a means to count game points. Furthermore, both
groups encountered difficulties with some concepts such as static typing in C# or Java. Despite
these challenges, the authors reported that students in the experimental group had higher levels
of motivation and self-efficacy.

Weintrop and Wilensky [35] conducted a study to investigate the effect of different modal-
ities (blocks-based versus text-based) on ninety novice programmers’ understanding of basic
programming concepts. The study was not particularly addressing transition challenges but com-
pared students’ scores side-by-side on a Commutative Assessment that includes short program
questions represented in either a blocks-based or text-based form. The findings revealed that
modality (e.g., text-based, hybrid, block-based PLs) affects novice programmers’ understand-
ing of basic programming concepts. This effect affects different concepts in different ways; it
also does not seem to influence comprehension of programs in the same way it affects basic
comprehension of what a construct does within a program. Students in the graphical condition
performed significantly better with the blocks-based modality on questions related to iterative

CHAPTER 2. LITERATURE REVIEW 13

logic, conditional logic, and functions. For example, students found it easier to understand the
repeat in block-based environment as compared to a for-loop in a text-based language.

In a another study, Weintrop and colleagues [36] further investigated how introductory pro-
gramming tools (block-based, text-based, and hybrid blocks/text) prepare learners for the tran-
sition to a text-based language (Java). Their study followed 90 students in an introductory pro-
gramming course that used three introductory programming environments: Text, Blocks, and
Hybrid condition in the Pencil Code platform 1 for the first five weeks before transitioning to
Java for the remaining ten weeks. Their findings are based on the results of programs written
by students in the Java portion of the class. They concluded that there were minor differences
in the programming patterns adopted by novices as they transitioned from different program-
ming environments to Java. They also discovered that students who used the Hybrid and Text
programming environments made slightly more common errors during the transition than the
Blocks programming environment. For example, one of the most common errors experienced
when switching to Java was “cannot find symbol”, which occurred when students tried to use a
variable before it had been defined. The authors suggest that students made assumptions based
on how their previous programming environments worked; variables did not need to be instan-
tiated before they were used. Their subsequent studies [37] reveal that the initial difference
in conceptual learning that emerged after five weeks between the block-based and text-based
programming environments fades after ten weeks of students transitioning to Java. Thus, this
suggests that modality impacts learners’ experiences with programming only in the early stages
of transitioning to Java.

Kölling et al. [178] analyzed and reported that the challenges involved in the transition from
blocks to text, among others, involve: readability (block-based environments are easier to read
than text-based languages), memorization of commands and syntax (students struggle less with
having to remember the syntax in a block-based environment because all available commands
are visually represented on screen), typing/spelling (the necessity to type in a text-based lan-
guage may add an extra cognitive load), matching identifiers (students deal with case-sensitive
syntax for identifiers in text-based languages), understanding types (unlike in block-based pro-
gramming environments, students need to understand data types for the construction of simple,
meaningful programs in text-based languages) and interpreting error messages (students may
struggle with error messages in text-based languages which are not shown in block-based pro-
gramming environments).

Moors et al. [38] argued that although block-based programming environments are success-
ful at motivating students and reducing the programming barriers, they can cause students to
lose confidence when they transition to text-based languages. They argue that block-based en-
vironments can make students form bad programming habits, e.g., block-based environments
allow students to leave individual blocks of instructions in the script area without affecting the

1https://pencilcode.net

CHAPTER 2. LITERATURE REVIEW 14

execution of the main program.

Summary of Transition Challenges from Blocks-based to Text-based Programming Lan-
guages

So far, the focus has been on studies that mainly investigate the transition between block-based
to text-based languages. The overall summary of these studies is the conceptual learning and
efficacy gains in the early stages of transitioning from blocks to a textual language which starts
to fade away at the end of learning the textual language. The above studies have reported some
transition challenges related to syntax and misconceptions. These could result from the differ-
ence in modalities (graphical versus text) in representing code. Students learning in block-based
environments usually are not expected to work with syntax; hence they may be intimidated by
textual languages. The thesis aims to investigate how students would transition within the same
programming modality (textual languages). The following subsection will present the studies
addressing this question.

2.1.2 Transitioning between Text-based Languages

Some researchers reported on the challenges students face when transitioning between textual
languages. An earlier study by Walker and Schach [12] observed six junior-level software en-
gineering students transitioning from at least one programming language (e.g., Pascal) to Ada.
At the beginning of the course, the teacher taught the students the Ada programming language
syntax and constructs. Students were then asked to perform some problem-solving tasks in the
Ada language. The authors then analyzed the program changes to deduce the programming style
in the new Ada language. The findings were that students frequently used familiar constructs to
their known Pascal language and ignored the features of the new Ada language. For example,
some students opted to use the more familiar Pascal while construct (also available in Ada) in-
stead of the loop-exit-end construct of Ada (not available in Pascal). The students who chose to
start developing programs in the new Ada constructs quickly abandoned them and went back to
familiar Pascal-like constructs when the programs failed.

In a different approach of students transitioning to a new programming language paradigm,
Nelson et al. [11] followed 19 students with various computing backgrounds (from one semester
to 10 years experience) through a semester to explore how they transition to object-oriented pro-
gramming (Smalltalk). They identified that students took different paths in learning the new
language. The common finding across all the students was that their previous programming
experience helped them understand familiar programming constructs such as loops, branches,
and iteration. The more experienced students struggled less with the new language’s syntax
than relative novices. The relative novices found their prior knowledge of procedural program-
ming was inadequate to help them understand common concepts in the object-oriented language.

CHAPTER 2. LITERATURE REVIEW 15

Table 2.1: A summary table of empirical work on transitioning between text-based languages

The study Language Transi-
tion

Population size Challenges identifies

Walker and Schach
[12]

Pascal to Ada 6 students Previous language inter-
ference (students fre-
quently used familiar con-
structs of prior language
and ignored new language
features)

Nelson et al. [11] Procedural PL
to object-orieted
Smalltalk

19 students
(novices and
experienced)

Previous procedural
programming experience
(helped some students’ to
understand 00 program-
ming, gain confidence,
interfered with OO
learning)

Santos et al. [39] Racket to Java 53 students Previous language inter-
ference (students strug-
gled with Java concepts
that work differently)

Shrestha and col-
leagues [40]

Different program-
ming languages

16 experienced
programmers

Previous language inter-
ference (old habits of pro-
gramming, little/no map-
ping of concepts to previ-
ous languages)

They abandoned making connections to prior knowledge resulting in their progress being much
slower than experienced students. The experienced students were more interested in identifying
similarities and differences between prior knowledge and new knowledge to help them make
informed decisions when solving problems.

A recent study by Santos et al. [39] reported on observations in teaching object-oriented
programming in Java to 53 students who previously learned functional programming in Racket
the previous semester. They reported that students struggled with Java concepts that do not work
the same way in Racket, such as string concatenation, type systems, and if-statements.

Prior work on language transitions has also addressed transition challenges specific to expe-
rienced programmers. Shrestha and colleagues [40] conducted an empirical study of 450 stack
overflow questions addressing different programming languages. They found that 61% of the
450 posts contained incorrect assumptions about the new language, and only 39% had correct
assumptions. The authors reported that programmers related syntax and concepts of the new
language with their previous language, which was helpful but often caused interference when
differences exist between languages.

CHAPTER 2. LITERATURE REVIEW 16

Summary of transition challenges in text-based programming languages

Table 2.1 summarises the empirical work on transitioning between text-based programming
languages. In Summary, the researchers reported that prior language knowledge affected the
learning of second and subsequent languages positively and negatively. Students were reported
to experience previous programming language interference, such as continuing old habits and
making mistakes with new language concepts that worked differently and having difficulty map-
ping concepts of prior languages and new languages. The prior work significantly advanced our
knowledge of the transition between text-based programming languages. However, it does not
use a unified model or theory to account for the programming language transition results that
are beginning to appear. Each paper focuses on a specific transition challenge without produc-
ing a theory that explains the transfer process. A unified cognitive model of the programming
language transfer will help educators better understand the success and failure of transfer in the
classroom.

The next section explains transfer theories specific to learning second and subsequent pro-
gramming languages.

2.2 Theoretical Research on PL Transfer

The researchers who theorized or defined the inner mechanisms of programming language trans-
fer have focused on experienced programmers solving programming problems in a new lan-
guage. These researchers broadly adopted a problem-solving approach to study transfer to sec-
ond or subsequent programming languages. These researchers described language transfer and
explained why and how it happens.

Scholtz and Wiedenbeck dominated the studies on programming language transfer in the
90s [19, 20, 22, 23]. Their first study [19] was qualitative and observed five highly experienced
programmers with Pascal/C knowledge learning the Icon language. These programmers reported
having developed around 55 programs in their known languages. For four hours, the program-
mers had to solve a text-processing problem in the new Icon language. The findings were that
40% of the transfer problems dealt with syntax and semantics, but it did not take long before the
programmers resolved them. These findings on experienced programmers struggling less with
syntax concur with some of the above studies presented in Section 2.1.2 [11]. The most difficulty
reported was with planning algorithms in a new language. These studies revealed that program-
mers transfer plan knowledge from previous languages, which usually fails when implemented
in the new language. For example, participants used a character-at-a-time Pascal approach to
reverse a string, not the built-in Icon REVERSE function. It resulted in programmers building
highly inefficient programs that did not utilize the new language’s features (Icon).

In their subsequent study, Scholtz and Wiedenbeck [22] were interested in exploring experi-
enced programmers’ behavior in solving problems in a new language. They developed a model

CHAPTER 2. LITERATURE REVIEW 17

of planning in a new language derived from an empirical study of experienced Pascal program-
mers solving programming problems in a new Icon language; see Figure 2.1. In the model, in
the early stages of learning a new programming language, experienced programmers use a top-
down and depth-first approach to solve a problem and change their plans repeatedly when they
reach implementation as they become familiar with a new language construct. Their model is in
two parts. In the first part (labeled figure 6 on the left-hand side of Figure 2.1), the programmer
starts by implementing a strategic plan and then decomposes the problem into sub-problems.
The programmer then creates a tactical plan to work with each sub-problem. The programmer
then formulates an implementation plan. The second part begins with the programmer imple-
menting the plan through coding. Their knowledge of syntax and constructs of the new language
is necessary at this phase. The programmer then tests the code; if it fails, they revise the imple-
mentation plan again. The frequent changing of plans results in delays in solving the problem.
However, where the plans from prior languages are similar to the new language, plan transfer
helps them solve the problems in the new language. It fits with the observations of plan transfer
made by their later studies [18, 20]. However, in investigating novice programmers, Scholtz et
al. [23] reported that novice programmers tend to use a bottom-up approach in solving problems
in a new language that is different from the prior language.

Other researchers also reported the transfer of plan knowledge from previous languages to
new languages as reported in the above studies. For example, Wu and Anderson [21] reported
positive transfer of plans between LISP and PROLOG and between LISP and PASCAL. The
findings were based on three experiments with experienced programmers: the first two on trans-
fer between LISP and PROLOG, and the third on transfer between LISP and PASCAL. They
reported that programmers use the familiar algorithms in the first language to cut down the
planning in the second similar language, reducing the number of revisions needed to finalize
the plan. Overall, they concluded that the three languages that shared commonalities played an
advantage. Syntactic interference was reported to be minor for these programmers.

Armstrong and Hardgrave [9] developed a mind-shift learning theory based on conceptual
knowledge transfer in the context of professional programmers transitioning from non-OO to
OO software development; see Figure 2.2. Their theory was derived from the categories of
mind-shift in cognitive sciences research [48]. The model proposes three types of transfer that
engage the programmer in cognitive processing as they transition to a new language. Concepts
may be perceived as novel (i.e., not familiar to the learner), changed (i.e., similar to a known
concept but a different meaning in the new context), or carryover (i.e., known concept with a
similar meaning in the new context).

They evaluated this model with an empirical study that focused on concept knowledge of
81 object-oriented software developers. They were given a multiple-choice test of program-
ming concepts definitions. The findings indicate that software developers had higher knowledge

CHAPTER 2. LITERATURE REVIEW 18

Figure 2.1: Model of plan transfer for Icon by Scholtz and Wiedenbeck taken from from [22]

CHAPTER 2. LITERATURE REVIEW 19

Figure 2.2: Mind-shift Learning Theory by Armstrong and Hardgrave taken from [9]

scores on the OO concepts they perceived as novel or carryover compared to those they per-
ceived as changed.

Summary of Theoretical Research on Transfer between PLs

The previous Section 2.1.2 focused on explaining transition challenges experienced by students
without focusing on theory or explaining the mechanisms involved in the learning process dur-
ing transition. The just reviewed studies provide insights into the programmers’ learning pro-
cess when initially shifting to a new programming language/paradigm mindset. They report plan
transfer from prior languages to new languages, which may be positive or negative. Additionally,
Armstrong and Hardgrave [9] developed a theory that explains that experienced programmers
encounter carryover, changed, and novel concepts, which affects the learning of a new program-
ming language paradigm.

One common and underlying limitation of prior work on transfer theories is that it mainly
focused on experienced programmers. Armstrong’s work focused on how experienced program-
mers transfer conceptual knowledge at a high-level (e.g., programmers asked the meaning of the
concept polymorphism). On the other hand, Scholtz’s work focused on problem-solving skills
transfer. Rather than making the programming language comprehension their starting point,
these researchers are centrally concerned with how programmers write programs in a new lan-
guage. But learning programming languages is more than problem-solving and plans; it is also
about understanding the underlying programming constructs used to write programs and how
they behave when executed. In addition, prior work gives little attention to the theories and
cognitive processes involved when relative novices move on from their first or second language,
often only with limited knowledge of plans [23, 24], compared to an experienced program-
mer. When learning to program, the novice programmers tend to focus more on the syntax
of a programming language [3] which is tied to their understanding of programming language
constructs [4]. Understanding how programming constructs work or execute in the known lan-
guage is a skill that can be transferred to the new language, especially if the languages share

CHAPTER 2. LITERATURE REVIEW 20

similar syntax and semantics. Therefore, as a starting point, this thesis aims to fill this gap by
investigating how relative novices transfer their programming language knowledge of syntax
and semantics to a new programming language during code comprehension.

The following section will present researchers’ work that focuses on general transfer theories
followed by research on code comprehension models.

2.3 Learning Transfer

Learning transfer is defined as the ability to extend what has been learned in one context to
new contexts [41]. Early theoretical work on the transfer of learning emphasized the similarity
between conditions of learning and conditions of transfer [42]. As one of the early researchers on
transfer, Thorndike [43, 44] emphasized that new learning is facilitated by previous knowledge
only to the extent that the new learning task contains elements identical to those in the previous
task. Their theory suggests that training for transfer depends on the degree to which the stimuli
and responses in training are identical to those in the transfer situation. Other researchers explain
this type of transfer as near transfer, which means the transfer of closely related contexts and
performances [45]. Perkins and Salomon [45] further explain a transfer to different learning
contexts (far transfer).

Perkins and Salomon [46] propose that transfer occurs by way of two different mechanisms,
namely: low-road transfer and high-road transfer. Low-road transfer occurs by automatically
triggering well-learned behavior in a new context (e.g., car to truck driving skills). Low-road
transfer often occurs unintentionally or implicitly and can involve personality traits, habitual
behavior patterns, response tendencies, cognitive strategies and styles, expectations, and belief
systems. High-road transfer occurs by explicit conscious formulation of abstraction in one situa-
tion that allows making a connection to another, e.g., a person deliberately searching for relevant
knowledge already acquired. An example of such transfer would be a transfer of strategy, e.g.,
using a Calculus technique to solve a Physics problem. Some studies have found no transfer of
students’ cognitive abilities who had received programming instruction to other contexts. For
example, Pea and Kurland [47] reported that students who received programming practice in
LOGO had no transfer to activities such as planning or goal evaluation outside of a program-
ming context.

Transfer can also have positive and negative effects, e.g., positive transfer is when learning
in one context enhances learning in another context, and negative transfer is when learning in
one context undermines learning in another context [42, 45].

Prior work has also extended the concept of learning transfer by considering analogies. Ana-
logical transfer is the act of applying knowledge from one context to another based on shared
relations [207]. Gentner [209] proposes Structure Mapping as a theory of analogical transfer
which suggests that humans transfer by establishing structural alignment between two situations

CHAPTER 2. LITERATURE REVIEW 21

and then projecting inferences. Gentner [209] proposes that achieving structural alignment is
concerned with abstraction, contrast, and inference-projection learning. Abstraction learning
can occur when alignment results in a common symbol system that can be used in the future.
Contrast learning can occur when there are alignment differences, where differences that reside
in the same role in two symbol systems are pointed out. Inference-projection involves when one
member of the two relations is more complete in its structure than the other.

A recent study by Kao et al. [207] discussed analogical transfer in the context of program-
ming languages. They propose two strategies to promote comparison and improve analogical
transfer during learning based on prior work. The first one is concerned with using strategies
that use comparison, such as presenting two or more problems simultaneously. The other way to
compare can be by using analogical comparisons for supporting generalization to instances with
a common structure and providing contrasting examples to point out where there is a similarity
in surface structure but there is a difference in underlying structures. The second one is using
perceptual cues as a scaffold for understanding abstract concepts. For example, common sur-
face feature analogies can be used as a starting point for learning to support students in engaging
in deeper, structural comparisons later. Kotovsky and Gentner [208] used this strategy. Their
research discovered that 4-year-olds could recognize higher-order relational matches only when
lower-order commonalities supported them. Another way to use perceptual cues is by present-
ing problems simultaneously and using surface cues to illustrate corresponding parts between
them [207].

In addition to the these studies that promote transfer, Bransford and colleagues [42] explain
the factors that encourage initial learning in fostering transfer. These include, among others: the
degree of mastery of the initial subject, understanding versus memorization, the time it takes to
learn, motivation to learn, and context.

The learning transfer research gives insights into how previous knowledge can help or hinder
the understanding of new information. Additionally this research gives insights into strategies
that can be used to promote transfer in learning. The next section starts by reviewing research
on code comprehension to understand how programmers read code.

2.4 Program Comprehension

The researchers on program comprehension are interested in how the mind’s processing mecha-
nisms deal with reading a program written using some programming language. They are differ-
ent from the previous researchers mainly concerned with the mechanisms of using a program-
ming language to write a meaningful program. This thesis primarily focuses on relative novices’
code comprehension for several reasons. Prior work has reported that understanding of the pro-
gramming language (e.g., syntax, semantics/notional machine, concepts) for relative novices is
still very fragile [3, 49–52]. Perkins and Martin, define fragile knowledge as "knowledge that is

CHAPTER 2. LITERATURE REVIEW 22

partial, hard to access, and often misused" [156]. When relative novices start writing programs
or engaging in problem-solving activities too early, it may delay their development of viable
mental models of program execution. Furthermore, a recent study by Salac et al. [53] reported
that writing programs is not necessarily a perfect reflection of the ability to understand code in
novice programmers. In this section, program comprehension models are reviewed.

Early work on program comprehension was by Pennington [24]; they propose that a pro-
grammer has text-structure knowledge and plan knowledge. Text-structure knowledge in pro-
gram comprehension models is knowledge of the grammar and syntax of the program [55].
According to Pennington, text-structure knowledge is the program text/syntax which consists
of control-flow constructs such as sequence, iteration, and conditionals. They propose that the
programmer starts reading the syntax, which provides surface clues during comprehension. The
programmer then chunks statements into groups which then combine into higher-order group-
ings. The plan knowledge is concerned with the programmers’ understanding of patterns of
program instructions to accomplish functions/goals such as summing, hashing, and counting.
Comprehension starts with the programmer recognizing and activating a familiar program plan
by matching the input text to existing plan knowledge. To understand the role of programming
knowledge in program comprehension, they investigated eighty professional programmers com-
prehending short computer programs and reported that syntax knowledge forms the basis of
programmers’ mental representation in understanding a program as compared to plan knowl-
edge.

Shneiderman and Mayer [3] propose that when a programmer is reading code, they use their
already existing syntactic knowledge to construct an internal semantic structure to represent the
program. In their model, the programmer has a multi-leveled knowledge cognitive structure.
This knowledge consists of structured semantic knowledge and syntax knowledge. Syntactic
knowledge is concerned with the programming language, while semantic knowledge involves
programming concepts with one or many syntactic representations. The structured semantic
knowledge can be at multiple levels. For example, a lower level entails how a construct operates,
while a higher level entails how a program functions. During reading, the programmer uses a
chunking process to assimilate the code; that is, the programmer starts with recognizing the
function of a group of statements and then combines these chunks to form larger chunks until
the entire program is comprehended. Their studies that formed the basis of the model compared
the comprehension of FORTRAN arithmetic and logical IF-statements with two groups. The
groups involved 24 first-term programming students (novices) and 24 advanced programmers
(experts). The results showed that novice programmers struggled with the greater syntactic
complexity of the arithmetic program as compared to experts.

Lastly, Schulte [54] proposed an educational model of program comprehension, which, un-
like the previous models, focuses on program understanding by novices, aimed at supporting
research and practice of teaching and learning to program. The Block Model is organized as

CHAPTER 2. LITERATURE REVIEW 23

a table consisting of three columns and four rows. The rows consist of four levels starting in
sequential order from atoms, blocks, relations, and the macrostructure. The columns have two
main dimensions; structure and function. The structure dimension consists of the text surface
(syntax) and the program execution. At the same time, the function dimension is concerned with
the intended function/goals of the program. Each cell represents the level of the programmer’s
comprehension of a program. During comprehension, the programmer starts with reading the
syntax. The process moves from bottom to top in the table. The process starts with reading
from words (Atoms) to blocks, then moves to inferences about the relations between blocks to
recognizing the program’s overall structure and purpose. The comprehension process is pre-
sented as bottom-up yet chaotic and flexible. Understanding of the program is influenced by the
programmer’s prior knowledge of the program text/syntax.

These program comprehension models explain the cognitive processes involved in the pro-
grammer's reading and understanding of a program [3, 24, 54, 55]. These models have common
elements of the cognition: Knowledge structures and Assimilation processes. These models
view the programmer as having two categories of static programming knowledge which ac-
cording to Pennington are the Text-structure knowledge and Plan knowledge. These categories
are presented with different names in these models. For example, Shneiderman [56] refers to
the text-structure knowledge as the syntactic structure while Schulte [54] describes this knowl-
edge as the structure. Shneiderman refers to the plan knowledge as the semantic (higher level)
knowledge while Schulte calls it as the function knowledge.

The process of program comprehension by the reviewed comprehension models mostly
draws from the natural languages text comprehension model by Kintsch [179] which describes
comprehension involving chunking the text into segments that correspond to schema categories
so that labels for segments will constitute the macrostructure for the text. The program compre-
hension models describe program comprehension as starting with identifying the building blocks
of program units in the surface structure of the program and deriving their local purposes. These
units then act as items that combine into higher-order program units, with higher-level functions
attached to units at this level. This process continues until the highest level is a single unit with
an identifiable function.

These models explain how programmers understand program code. However, they refer pri-
marily to comprehension in the case of one language, with little attention given to how program-
mers understand a program in a new language. These models also emphasize the importance of
prior knowledge in comprehending syntax. Research on program comprehension models also
shows that novices tend to struggle more with programming language syntax, reflecting how
limited their prior knowledge is to programming language concepts and plans.

In this thesis, the interest is on comprehension mechanisms in the case of learning a second
language, given that the programmer has already acquired syntax, semantics, and plan knowl-
edge in their first language. Unlike prior work, which focused on the programmer’s plan knowl-

CHAPTER 2. LITERATURE REVIEW 24

edge when writing code and how it transfers to a new language, the focus of this thesis is on the
programmer’s syntax and the semantic knowledge when reading code and how it transfers to a
new language. The code comprehension models [24, 54, 57, 180] have drawn from natural lan-
guages text comprehension models. Programming languages and natural languages are similar,
but humans design programming languages to communicate a set of instructions to the machine.
The similarities are in that they both are a means of communication and have syntax and seman-
tics [58]. Syntax is a set of rules that guide language users on how to combine words, characters,
and phrases, while semantics refers to the meaning of words. Section 2.5.2 elaborates more on
the similarities between natural languages and programming languages. Because of the similar-
ities, this thesis looks at natural language transfer to understand programming language transfer.
Therefore, making it a starting point.

2.5 Transfer in Natural Languages

The research in learning a second natural language (L2) strongly emphasizes the role of the
first language (L1) in learning other new languages [25, 28, 59–61]. This research has reported
that language learners initially learn their second language meaning through meaning already
established in their first languages via lexical/word associations between the two languages, and
is now discussed.

Jiang proposed a validated psycholinguistic model of vocabulary acquisition in second lan-
guage learning that focuses on how the L2 mental lexicon evolves for a second language learner
[25, 26]. For every language a person knows, they have a mental lexicon that captures the word
structure, pronunciation, syntax, and meaning for each word they have learned [62]. According
to Levelt, a person’s mental lexicon is a repository of declarative knowledge about the words
of their language [63]. That is, it deals with how the person stores, processes, and retrieves the
words in their language. In the model, a lexical entry in the lexicon has two components, taken
from Levelt’s work on speech production [63]. The first component is the lemma, which deals
with the syntax and semantics of a word. The lexeme is the second component concerned with
the morphology and phonological-orthographic aspects of a word [63]; see Figure 2.3. These
components are explained as follows:

• The lexeme:

– Phonological-Orthographic: This component means that the language speaker can
pronounce the word [64]. It deals with the lexical entry’s composition in terms of
phonological segments (its accent structure and pronunciation) [63]. Orthography is
concerned with the spelling of the word [25]. The pronunciation is represented by
different combinations of letters when written down. For example, in the English

CHAPTER 2. LITERATURE REVIEW 25

Figure 2.3: The internal structure of the lexical entry adapted from Levelt, 1989 [63])

language, the lexical entry of the word love is spelled as love and pronounced as
Luv.

– Morphology: Morphology means that the language speaker knows how to add and
subtract parts of the word to make new words [64]. The component deals with words,
their internal structure, and how they are formed [65]. Some examples of word forms
for the lexical entry love may include third-person singular present tense loves
and past-tense loved.

• The Lemma:

– Syntax: This component means the language speaker can use the word in a sen-
tence. Syntax involves the sentence structure or the order of words in a sentence.
It includes a set of syntactic properties , which firstly includes the lexical entry (e.g
the word love which is a verb (doing word)), the syntactic arguments it can take
(subject (person or thing doing the action) and an object (what is acted on), and
other properties [63]. For example, in the English language, the lexical entry for
the verb love, may require a subject and an object in the following grammatical
pattern or order where the argument subject comes first, the verb second, and the
object third. An example of the sentence is The girl loves food. In other
languages, this sentencing order may be different, for example, the Arabic order
would be VSO (verb-subject-object).

– Semantics: Semantics is the meaning that is taken from words, sentences and phrases.
For example, meaning can be derived from the sentence "The girl loves food"
because it is syntactically correct in the English language, however, if it was struc-
tured as "food girl the loves" it would have no meaning.

According to Jiang, the two lexical entry components are highly integrated such that acti-

CHAPTER 2. LITERATURE REVIEW 26

vation of one component results in automatic simultaneous activation of the other components.
A learner can simultaneously extract the semantic, syntactic, phonological, and orthographic in-
formation upon recognizing a word. As has also been reported in word recognition experiments
where phonological information is automatically activated in visual word recognition tasks [66].

Jiang proposes that second language adult learners already have a well-established mental
lexicon in their L1, which they learned as children. It means that second language learners learn
L2 words in the presence of extensive existing conceptual and semantic information in the L1
lexicon. When a new L2 word has little conceptual or semantic development during second
language learning, the strong existing L1 lexicon becomes actively involved in L2 learning.
Because of typical second language learning methods, learners rely on this already existing
information in understanding L2. Jiang’s model of vocabulary acquisition is based on a notion
of semantic transfer and consists of three stages, described below in Figure 2.4:

1. Stage 1 (Lexical Association Stage): A lexical association between Language 2 (L2) word
and its Language 1 (L1) translation happens when an L2 lexical entry (e.g., a word) is
introduced to the learner. The L2 word has a pointer (reference) that directs attention to
the L1 translation equivalent (1a.). The learner understands the L2 word meaning based
on the existing semantic information in their L1 lexicon. In recognizing the L2 word, the
learner activates the L1 translation and uses its semantic, syntactic, and morphological
information for comprehension (1b. and 1c.). At this point, there is a weak, or no, direct
link between the L2 word and the concept. The L1 syntactic and semantic meaning is
transferred from L1 to L2 (1d.).

2. Stage 2 (Lemma Mediation Stage): The transferred semantic and syntactic information
links the L2 word and the concepts; hence the learner does not need to rely much on the
L1 translation (2a. and 2b.). At this point, the L2 words are linked to the conceptual
representation both directly through the L1 lemmas (syntax and semantics) and lexical
association with their L1 translation. When the learner keeps getting exposed to contextu-
alized L2 words, it helps them develop L2-specific meanings/semantics in the knowledge
structure such that the L2 lemma contains both L1 and L2 specifications.

3. Stage 3 (Full Integration Stage): Finally, at this point, there are strong links between L2
words and concepts such that L2-specific information dominates the knowledge structure
with a very weak dependency on L1.

In the model, when the second language learner is introduced to a new L2 word, their at-
tention is focused on the formal features of the word, i.e., spelling and pronunciation. Little
semantic, syntactic, and morphological information is created and established at this point. The
learner may be introduced to the L2 word by a pointer that draws their attention to the transla-
tion of that word in L1. So basically, the pointer connects L1 and L2 words. For example, when
an English (L1) native speaker is learning Setswana (L2), they may get introduced to the word

CHAPTER 2. LITERATURE REVIEW 27

Figure 2.4: Jiang’s model of second language acquisition drawn from [26]

CHAPTER 2. LITERATURE REVIEW 28

siana and a pointer (it could be a reference to L2 by a teacher/textbook) that draws their atten-
tion to its English translation run. The Setswana learner then activates the semantic, syntactic,
and morphological information from their mental lexicon about the English word run to assist
them in comprehension of the Setswana word. They know the word in English (L1) and know
run can be used as a verb to mean moving at a speed faster than a walk. They know how to
use it in an L1 sentence, e.g., The boy ran. At this point, the Setswana learner understands
siana through the mental lexicon of their L1 word run.

Continued exposure to L2 words and their meanings will eventually form strong links be-
tween L2 words and their concepts, weakening the reliance on L1. However, this is not always
the case that all learners can reach this final stage. This could be because once the lexicon space
is occupied by the L1 lemma information (syntax and semantics), it may be a challenge for the
L2 lemma information to occupy the lexicon space, or else they do not spend enough time using
L2 for this switch to occur. For example, while some words in L1 and L2 have an exact match
on meaning, they represent exactly the same concept. Other L1/L2 pairs are close in meaning
but not identical. In such a case, lexical association and L1 lemma mediation can lead to lexical
errors when an L2 word and its L1 translation do not match in semantic representation [25]. For
example, a native Arabic learner of a second language (English) using the English words long
and tall interchangeably because both their translation in Arabic is tawil [67]. That is, the
Arabic learner might learn that "long" and "tall" both map to the Arabic word "tawil." They will
then happily say "I am a long person" in English because of the dual concepts for the word in
Arabic, resolved in use by context. There are multiple such dualities in English; of course, when
one says "I hammered the nail into the wood," they know by context which concept/meaning of
nail to use-the metal one, not the one at the end of the finger.

Jiang’s model provides useful insights into the process of second language learning which
may also be applicable to programming languages. The contributions that are relevant from this
model are as follows:

1. The conceptual and lexicon mental representations: There is a clear separation be-
tween the conceptual knowledge about the word and the lexical (syntax and semantics)
knowledge in L1 and L2. Each language has its own lexicon yet they both share the same
conceptual level.

2. Reliance on L1: L2 learners develop concepts/semantics associated with words in L1.
That is, L2 learners heavily rely on their L1 lexical knowledge in order to comprehend the
second language words.

3. Semantic transfer: Semantic knowledge about an L2 word is transferred from the asso-
ciated L1 lexicon. The concept onto which the L2 word is mapped is an L1 concept.

The limitation with Jiang’s model is that it is not specific on how a lexical entry forms
connections/lexical associations between L1 and L2 in Stage one. For example, is it based

CHAPTER 2. LITERATURE REVIEW 29

on the similarity of words in L1 and L2? The model also does not represent some aspects of
transfer in the mental lexicon, e.g., negative and positive transfer/near and far transfer from
cognitive science theories as discussed in the previous Section 2.2. In other words, the model
does not cater to the different storage patterns of possible connections within the lexicon of a
language user. For instance, if the L1 and L2 words look similar like table and mean the same
thing in both French and English, how are they represented in the Mental Lexicon. It seems that
the L1 and L2 translation equivalents would share very close conceptual, semantic, and lexical
forms. Would each language then have a separate mental lexicon connected at concept level like
in Stage three of Jiang’s model or, are they intertwined?

In addition, the model has been validated by semantic judgment tasks measured by reaction
time. These tasks are where participants are requested to judge whether or not the L1/L2 word
pairs are related in meaning. These experiments have not paid much attention to comprehension
activities, especially the language syntax. Therefore it becomes a challenge to account for how
transfer occurs at the syntax level. Language comprehension demands much more than just
identifying individual words [68]. It involves language learners knowing how a combination of
words and symbols operate together to provide meaning.

Ringbom’s research on cross-linguistic similarities helps explain natural language transfer
through the lens of language comprehension. Unlike Jiang’s model of vocabulary acquisition
that highlights the developmental sequences of the L2 lexicon, Ringbom’s research pays atten-
tion to the comprehension processes/mechanisms relating to performance during L2 learning.
According to Ringbom, transfer in comprehension is influenced by cross-linguistic similarities
and the perceptions between L2 input and existing L1-based lexicon knowledge [28]. Cross-
linguistic similarities can be defined as the lexical (phonological, morphological, syntactic, se-
mantic) similarities amongst languages [69]. Jiang’s model does not explain how cross-linguistic
similarity influences the arrangement of the mental lexicon in the mind of a language learner.
However, in the early stages of L2 learning, language form (phonology, orthographic, morphol-
ogy, and syntax) plays a role in the arrangement of the mental lexicon [28].

In psycho-linguistics, words that are similar and share translation equivalents are called cog-
nates. These are words with similar forms and meanings in two languages. Full scale cross-
linguistic similarity of both form and meaning is not common and it occurs only in closely
related languages that are mutually comprehensible like Norwegian and Swedish [202] which
both stem from Germanic languages [203]. In second language learning, a language that shows
similarities with the already known language will be easier to learn in comparison to differ-
ent languages. Ringbom proposes that comprehension of L2 can start with learners perceiving
cross-linguistic similarities with L1 followed by the assumption of the associated semantic or
functional similarity. While most perceived similarities will facilitate learning, there are also in-
stances where similarity can lead to errors [28,70]. Ringbom describes three similarity relations
in second language learning:

CHAPTER 2. LITERATURE REVIEW 30

1. Similarity Relation: This means that a form or pattern in the L2 is perceived as function-
ally similar to a form or pattern in the L1, e.g., cognate words in two languages that share
form and meaning like mine in English and mein in German. This results in positive
transfer.

2. Contrast Relation: This means that a form or pattern in the L2 is perceived differing from
L1 form, though there is an underlying similarity between them. For example, the French
word copier with a suffix ending of er which has the same meaning of the English
word to copy with a suffix ending of y. This may mean the native English speaker
may recognise the French word is related to the concept of copy in English but may have
challenges using the correct suffix of the French word. This can lead to both positive and
negative transfer. The similarity in these words may be because the French word has been
adopted into English, due to the long history close geographic proximity of speakers.

3. Zero Relation: This means that a form or pattern in L2 appears to have little or no per-
ceptible relation to L1 or any other language the learner knows. For example, this occurs
when learning a language which looks different from L1. Native English speakers may
have trouble learning languages like Zulu. E.g. Love Zulu translation is Uthando.

Ringbom’s research provides insights into the mechanisms involved in second language
learning and adds to what is already known about L2 lexicon development in Jiang’s theory
of second language acquisition. More importantly, Ringbom’s descriptions of similarity rela-
tions are related to theories of learning transfer in cognitive sciences described in Section 2.2
about positive, negative, and no transfer of learning. The contributions that stand out from this
work are as follows:

1. The role of lexical similarity in L1 and L2: Similarity plays a crucial role in making
lexical associations between L1 and L2. This is in line with Thordike’s theory of identical
elements which describes how transfer depends on the level of similarity between what is
being learnt and what is known [44].

2. The three different types of cross-linguistic similarities: These are similarity, contrast
and zero relation between L1 and L2 and their consequences in comprehending L2.

2.5.1 Second Language Learning and Cognitive Approaches

In the previous sections, Jiang’s theory of second language acquisition was presented and is
concerned with the representation and the development of the L2 mental lexicon. Ringbom’s
similarity relations, on the other hand, is concerned with how second language learners access
the L1 mental lexicon and the mechanisms they employ during second language learning.

Usually, the study of language is the area of linguistics and the study of mental processes
is the area of psychology [64]. Discussing both disciplines can help understand how the mind

CHAPTER 2. LITERATURE REVIEW 31

works and learn new information, which will also be informative in understanding second lan-
guage learning theories. In this section, therefore, some of the work of cognitive theorists is
reviewed.

The first cognitive model also adopted in second language learning research is Anderson’s
ACT* model. The ACT* model is related to the processing and the development of cogni-
tive skills over time, just like Jiang’s theory is concerned with the development of linguistic
knowledge. Anderson proposes two stages in the development of cognitive skills, a Declarative
stage concerned with the facts/concepts about the skill domain and a Procedural stage in which
the domain knowledge is incorporated into procedures for performing the skill [71–73]. Both
Declarative and Procedural knowledge is in long-term memory. Procedural knowledge devel-
ops from Declarative knowledge and requires awareness in the early stages. For example, when
learning to ride a bike, the learner’s mind is initially engaged in a conscious effort to understand
the facts about the riding skill (pedalling, steering, balancing, and coordination). At this point,
it does not mean they know how to ride a bike well. With practice and repetition, the learner
learns how to perform the pedalling and steering movements while keeping balance and coor-
dination. Eventually, the skill is activated unconsciously, without them having to think about it.
According to Anderson, this transition from the Declarative phase to the Procedural phase is in
3 stages [64, 72, 73]:

1. The cognitive stage: The leaner learns the description of the procedure

2. The associative stage: The learner works out a method to perform the skill

3. The autonomous stage: The skill becomes more rapid and automatic

In applying the model to second language learning, the Declarative stage would consist of
the learner’s knowledge about the linguistic form (e.g., phonology, morphology, and syntax).
Procedural knowledge is about being able to use a particular linguistic form to understand or
produce language implicitly. For example, at an initial stage of learning a new L2 English word,
’Party’, Arab native speakers will have to be conscious about the way that the sounds are
pronounced. For example, Arabic does not have words with sound "p" and they may want to
use /b/ sound instead. The learners will need to be conscious of this and may verbalize the
task. Eventually, however, the sound produced will become automatic and will not need to be
thought about [64].

Another cognitive model that has been applied to the study of memory and learning is the
Connectionism [182, 183]. The Connectionism model uses the analogy of a mind as being
like a computer having neural networks that have links between the nodes [72]. In relation
to language comprehension on the lexical level, the model proposes that there are connections
between words within chunks with the assumption that concepts and the associative network are
common to both languages (L1 and L2) [64]. For example, the concept of animal is assumed

CHAPTER 2. LITERATURE REVIEW 32

to exist in both English and Setswana language. The idea that concepts are shared between
languages is also adopted by Jiang and Levelt’s models [25,63] discussed in the previous section.
The Connectionism model describes that language input is initially processed at a phoneme level
and connections are formed between the nodes at this level. These continue to be connected
at the phrase and syntax levels. Through continued exposure and repetition of the linguistic
patterns, these established connections between nodes are strengthened [64, 73]. The second
language learner may be better than the first language learner because they already have an
established lexicon from their first language experience hence might be able to process the L2
input and recognise the recurring patterns at initial stages.

The last theory is of identical elements by Thorndike that emphasizes that when a new learn-
ing task contains elements that are identical to those in the previous task, learning becomes
easier [43, 44]. Their theory suggests that learning for transfer depends on the degree to which
the stimuli and responses in the learning task are identical. For example, in the second lan-
guage context, learners of Afrikaans whose first language is Dutch have an advantage with their
Dutch background compared to students without a Dutch background. This is because Dutch
and Afrikaans share a lot of identical linguistic elements, which facilitates learning. This theory
is related to Ringbom’s similarity relations in cross-linguistic similarities, which proposes that
similarities in L1 and L2 can facilitate learning when L1 and L2 share similar functionality.

In summary, cognitive processes related to second language learning and comprehension
were presented. It is evident that the natural language theories presented in this thesis are drawn
from cognitive psychology. This involves cognitive skill development (related to Jiang’s the-
ory) and processing mechanisms (related to Ringbom’s similarity relations) in second language
acquisition. As shown in natural-language theories, the theories of connectionism and Piaget’s
identical elements emphasize the importance of existing language knowledge in learning new
languages. While the ACT* model demonstrates that, with repetition and practice, the L2 knowl-
edge may be strengthened and atomized.

Going back to the natural language theories specific to how people learn linguistic knowl-
edge in second languages, it seems clear that when learners learn their second language, the
semantic transfer will / is likely to occur. Ringbom’s research suggests that cross-linguistic
similarities can play a big part in the processing mechanisms of learners making lexical links
between L1 and L2 during code comprehension in Jiang’s model. In addition, Ringbom has
explained the three types of similarities between L1 and L2 that learners encounter. Of course,
these natural language theories cannot be adopted as they are for programming language learn-
ing. To contextualize these theories in programming languages, it is essential to know why this
thesis wishes to draw from natural language theories in the first place when exploring program-
ming language transfer. This is explained in the next section.

CHAPTER 2. LITERATURE REVIEW 33

2.5.2 The context of Programming Languages

In natural languages, there is a theory of universal grammar by Noam Chomsky that proposes
that all human beings under normal conditions develop language with certain properties in-
nately. In universal grammar, the language consists of a lexicon and a set of rules [72]. A
sentence rule in English can be ’Sentence → Subject Verb Object’ which can be
applied correctly as ’Dog eats food’. The common notation used by computer scientists
to represent grammar is called Backus-Naur form (BNF), and it describes the syntax (rules)
of programming languages used in computing. An assignment rule can be <assignment

statement> ::= <variable> = <expression> which can be applied in Python as
’number=2’. Unlike natural languages, programming languages are designed to be used by
programmers to write meaningful programs with instructions that can later be interpreted into
the machine language. Both languages are used to communicate among people, although pro-
grammers are usually supposed to read, understand, and modify existing programs written by
other programmers.

Like natural languages, many programming languages share common structural and lexical
similarities because earlier programming language concepts and grammar have influenced the
design of each new programming language. Programming languages have a lexicon. The lex-
eme component is a string of characters that is the lowest syntactic unit in the programming
language, e.g., the tokens, keywords, operators, and identifiers. However, unlike natural lan-
guages, programming languages do not necessarily currently focus on phonology because they
are not spoken. The medium for communication in programming languages is mainly text.
Lastly, morphology may not be very relevant to programming languages as their grammar is
precise, fixed with formal meaning defined according to the grammar specifications, and does
not change depending on context. Based on these reasons, the lexeme component defined in
Jiang’s theory is not so crucial for this research now.

Like natural languages in the lemma component, syntax and semantics are applicable to
programming languages. The syntax of a programming language describes how to combine
strings of characters to produce a valid program. The semantics of a programming language
describes what syntactically valid programs mean. Hence, this thesis will focus on the syntax
and semantics of the mental lexicon to explore the transfer phenomenon.

In summary, there are a lot of similarities between natural languages and programming lan-
guages [184] and therefore programming language research can draw on theories of natural
language transfer to explore the transfer in programming languages. However, given that there
are still many differences between the two, natural language theories cannot be applicable as
they are to programming languages. For example, if people learn their native language (L1) in-
nately as children, how would transfer occur in programming languages, given that people learn
their first programming language at later stages in their lives? Could transfer be depending on
the PL1 prior knowledge or it happens bi-directionally due to fragile PL1 lexicon knowledge?

CHAPTER 2. LITERATURE REVIEW 34

This thesis aims to explore these questions as a starting point.
The overall goal of this thesis is to understand how relative novice programmers transfer

knowledge from their first PL to the second PL during code comprehension. Given the seman-
tic transfer principles in natural languages, it becomes compelling to hypothesize that seman-
tic transfer based on syntax similarities plays a role in relative novices’ conceptual transfer in
comprehending new programming languages. In order to test this hypothesis in programming
languages, an exploratory study is reviewed in the next chapter to gain in-depth knowledge of
novice language transfer and how it relates to the hypothesis.

The second part of the thesis statement hypothesizes that the implementation of deliberate
semantic transfer interventions during relative novices’ second language learning can lead to
improved conceptual transfer and understanding in learning a second programming language.
Based on this part of the hypothesis, the literature survey is extended by investigating existing
pedagogical approaches in both programming languages and natural languages that may inform
the interventions on programming language transfer.

2.6 Pedagogical Approaches in PL Transfer

Here research on pedagogical approaches to address the transition issues is reviewed. These
approaches mainly design tools that have dual interfaces representing visual and text-based
languages to help learners form analogies at the text surface (syntax) as they learn new lan-
guages [8, 10, 74, 178]. For example, Kölling et al. [178] designed a frame-based programming
environment that combines features of block-based and text-based programming to help stu-
dents transition in a sequence of programming systems from blocks to text. The frame-based
environment is implemented in Stride, which is integrated into the Greenfoot development envi-
ronment. They propose that the tool will help novice programmers beginning from the age of 14
with the difficulties of transitioning to text-based languages since it combines many of the bene-
ficial aspects of block-based and text-based systems into a single interface. The benefits include
reducing the need to memorize and type syntax and tackling issues with poor error messages
which students face when transitioning to text-based languages.

Homer and Noble [74] investigated students using Tiled Grace programming environment
with textual and visual/block representation of code. The code is visualized as tiles that are
manipulated by drag-and-drop. A tile represents a single syntactic unit in the program, such
as variable assignment. One of the aims of Tile Grace is to help students make connections
of analogous concepts as they transition from one language to the other by demonstrating the
exact parallel between the two languages. They investigated 33 university students as they en-
gaged with Tiled Grace. They reported that 76% of the students enjoyed using the programming
environment and reported that students found the mapping between tile and text helpful and
appreciated the ability to switch between the two.

CHAPTER 2. LITERATURE REVIEW 35

Weintrop and Wilensky [8] on the other hand used a quasi-experimental design to investigate
90 high school students writing code in a hybrid interface of Pencil.cc over the first five weeks
of an Introduction to Programming course. The hybrid interface of Pencil.cc gives students the
ability to drag and drop commands into a program. For example, when a student drags a block
onto the text canvas, the block turns into the textual equivalent and is inserted into the program
in a syntactically valid way. They reported that the hybrid interface has the ease of composition
of the block-based modality, which made it easy for students to quickly add commands to the
program by dragging blocks into the text area to verify syntax. As students did that, they could
see the syntax errors because they were not restricted on how and where commands could be
added. As a result, the hybrid environment allowed students to experience both the blocks and
text environments fully.

Dann et al. [10] studied learners transitioning from Alice 3 to Java. Alice 3 was designed to
enable learners to switch to the equivalent Java code on the same screen. This Alice 3 to Java
approach is designed to enable students and instructors to transfer concepts learned in the con-
text of Alice animations to programming in Java. They developed a pedagogy that integrates the
Alice 3 problem-solving strategy with the bridging and hugging teaching technique by Perkins.
The bridging approach aims to bridge students’ existing knowledge to a new context [45] while
the hugging technique creates learning experiences that are similar to the future learning situ-
ations [45]. The experimental group used the Alice 3 hybrid approach before transitioning to
Java, while the control group did not. They collected historical data from the Java final score
exams for both groups for comparison purposes. They concluded that the experimental group’s
overall scores improved compared to the Control group because of the explicit transfer tech-
niques, supported by Alice 3’s ability to transfer code directly to Java.

Tabet et al. [205] also conducted a study that used the bridging and hugging teaching tech-
nique by Perkins [45]. The study investigated students transitioning from Alice (learned in grade
7) to Python they learned in grade 8. They compared students taking Python in eighth grade who
had minimal Alice background (group A) with those who had extensive background knowledge
in Alice programming (group B). In grade 7, students were taught Alice using the hugging
technique, while in grade 8, they were taught Python using the bridging technique. It meant
that students were taught by comparing programming concepts in both Alice and Python. The
quantitative results revealed that in the final Python assessment, group B outperformed group
A. Furthermore, they discovered that comparing similar examples of concepts in both Alice
and Python helped students transfer knowledge of concepts better. Another recent study con-
firmed that the bridging and hugging transfer techniques were beneficial for students when they
investigated transfer from the block-based programming language, MakeCode for micro:bit to
text-based Python programming language on six grade students [206].

The just reviewed pedagogical approaches give great insights into the effectiveness of us-
ing transfer interventions such as bridging and hugging [45] when teaching students a second

CHAPTER 2. LITERATURE REVIEW 36

programming language.
Most of the reviewed studies also show promising evidence of the effectiveness of using

hybrid programming environments in helping students transfer from blocks to text. However,
most of these approaches, except for [205], focus on using designed programming environments
that assist learners in transitioning and do not explain the teacher’s role in helping students
transition. Careful focus on pedagogy and design is required to help students transition across
notations [5].

2.7 Summary of Literature Review

This chapter reviewed prior work that underpins and informs the body of work presented in
this thesis. The four main discussion points from prior work were transition and transfer in
programming languages context, program comprehension models, transfer in natural language
contexts, and, lastly, the pedagogical approaches in programming languages.

Firstly, this chapter reviewed prior work on students transitioning between programming
languages. It was reported that relative novice programmers experience challenges when transi-
tioning to new programming languages. However, this research did not use a unified theory to
account for the programming language transition challenges.

The researchers who theorized programming language transfer have mainly paid attention to
experienced programmers writing programs in a new language. This research reported that ex-
perienced programmers experience transfer of plan knowledge when writing programs in a new
language which may or may not be beneficial for them. However, this work gives little attention
to how novice programmers transfer knowledge to second and subsequent programming lan-
guages, often only with limited knowledge of plans. Relative novice programmers focus more
on the syntax of a programming language which is tied to their comprehension of programming
language concepts. The code comprehension models reviewed in this chapter explain the cogni-
tive processes involved in the programmer’s reading and understanding of a program. However,
they do not cater to comprehending code in a new programming language.

This thesis, therefore, reviews and draws from second language acquisition models to un-
derstand programming language transfer. The second language acquisition models discussed in
this chapter revealed that L2 learners heavily rely on L1 lexical knowledge to comprehend L2
words. It means they experience semantic knowledge transfer from L1 to L2. Furthermore, this
research reported on the role of lexical similarity in learners making associations between L1
and L2.

The last part of the literature reviewed the pedagogical approaches in programming language
transfer. These interventions show promising results of using hybrid programming environments
to help learners transition between blocks and text-based languages. However, they do not
explain the role of the teacher in assisting students in transitioning.

CHAPTER 2. LITERATURE REVIEW 37

The prior work has given significant contributions and insights into the language transfer
research and has informed what still needs to be addressed in this area. Given the identified gaps
in prior work, the goal of this thesis is to investigate how relative novice programmers transfer
knowledge to their second and subsequent programming languages during code comprehension.
Drawing from the literature, the major claims of this thesis are as follows: Semantic transfer
based on syntax similarities plays a role in relative novices’ conceptual transfer between
programming languages; the implementation of deliberate semantic transfer interventions
during relative novices’ second language learning can lead to improved conceptual trans-
fer and understanding in learning a second programming language. To support this thesis
statement, the following research questions are asked:

• RQ1: How are principles of semantic transfer in natural languages applicable to patterns
of transfer in the context of relative novices PL transferring from first to subsequent PLs?

• RQ2: How do relative-novices transfer their programming language conceptual knowl-
edge to a new programming language during code comprehension?

• RQ3: How do teachers experience PL transfer for relative novices in the classroom?

• RQ4: How can transfer teaching interventions based on our understanding of semantic
transfer improve second PL learning?

In order to answer these research questions, this thesis explores novice programmers’ language
transfer, teachers’ transfer practices, design a model of programming language transfer, validate
the model, and design and test a pedagogy for language transfer. The following chapter presents
the methodological choices used to answer the research questions for this study.

Chapter 3

Methodology

This chapter describes the mixed methods research methodology used to investigate relative
novices’ semantic transfer in programming languages and the role of implementing transfer
interventions in fostering conceptual transfer in programming languages. A mixed-method re-
search methodology was used to explore the semantic transfer phenomenon, build and validate
a model of programming language transfer and finally develop and evaluate a programming
language transfer pedagogy. This chapter discusses the methodology and the research process
of this thesis. The chapter starts by explaining the research design and the rationale and as-
sumptions underpinning it. Next, the issues of validity and reliability are discussed, followed
by the ethical considerations of the research. It should be noted that this thesis is organized in
a sequence of different studies developmentally building on to each other. Therefore, they each
have their unique data collection and data analysis methods which will be not be discussed here
but instead in the separate study sections.

3.1 The Research Design

To answer the research questions, the mixed methods design, which is a combination of qual-
itative and quantitative research in the same research [75] is used. This thesis used the mixed
methods design to capitalize on the strengths of both qualitative and quantitative approaches and
for its ability to address the research questions in-depth and breadth [76].

Creswell and Clark [75] recommend three core mixed methods designs that provide a frame-
work for research studies which are the convergent design, the explanatory sequential design,
and the exploratory sequential design. The Convergent design is when the researcher uses results
from both quantitative and qualitative data analysis to understand the phenomenon and validate
one set of findings with the other. The Exploratory Sequential Design is presented in 3 stages
that start with collection and analysis of qualitative data followed by the development phase of
interpreting the qualitative data into a theoretical model and finally testing the model quantita-
tively. The Explanatory Sequential Design starts with the collection and analysis of quantitative

38

CHAPTER 3. METHODOLOGY 39

data followed by the qualitative data collection to explain the quantitative results in depth.
For this thesis, two core mixed methods, the Exploratory sequential design, and the Con-

vergent design, are combined. This thesis starts by using an Exploratory Sequential Design to
answer RQ1 and RQ2. This design was chosen because there is no guiding framework/model
of programming language transfer for relative novice programmers during code comprehension;
hence, the research aim was to develop a substantively relevant model for novice programmers.
The research starts with an exploratory qualitative study to understand how novice program-
mers transfer knowledge between programming languages. A Model of Programming Language
Transfer (MPLT) is developed based on the exploratory qualitative study results, and quantita-
tive studies to validate the model hypothesis are conducted. In the third phase, RQ3 and RQ4 are
answered by first exploring teachers’ experiences with transfer interventions and then develop-
ing a transfer intervention/pedagogy based on what is learned from the model validation results.
Then finally, the intervention is examined using both quantitative and qualitative results. This
thesis made use of the exploratory (phase 1 to phase 2) and convergent (phase 3) core designs as
elaborated in Figure 3.1.

3.2 Issues of Validity and Reliability

Reliability and validity are concerned with evaluating the quality of the research. It is done by
evaluating the method, technique, or test measures used and the consistency and accuracy of the
measure. The discussion about the validity and reliability of this research will be discussed in
two parts of quantitative studies and qualitative studies.

3.2.1 Quantitative Studies

Each experiment’s sample size was considered to ensure the validity and reliability of the results.
Delice [79] proposes that sample sizes of more than 30 are suitable for quantitative methods.
The participants in this thesis met the conditions of sample size 30 or more. Furthermore, the
students who participated in the study met all the transfer study requirements. The requirements
of the students who participated were restricted to students who are transitioning to a second
programming language and had an average of 1 year of programming experience.

The other issues concerning validity and reliability in research are the instruments used to
collect the data. The instruments were reviewed by other researchers, knowledgeable teachers,
and PL experts to ensure content validity and deemed reasonable. Lastly, appropriate statistical
measures and techniques to answer the research questions were chosen by ensuring the normality
of data before choosing the suitable statistical method.

CHAPTER 3. METHODOLOGY 40

Figure 3.1: The adopted mixed methods design for this thesis. This design uses the Exploratory
Sequential and Convergent design [75]. The studies were conducted for a period of 3 years.

CHAPTER 3. METHODOLOGY 41

3.2.2 Qualitative Studies

Qualitative research usually focuses on designing systematic strategies to ensure the trustwor-
thiness of the results [78]. This thesis started with the study using qualitative methods because
there is currently no guiding model of programming language transfer for novice programmers
during code comprehension to guide data collection through quantitative methods. The process
of analyzing the qualitative data was documented to ensure the validity of the results as advised
in [78]. Furthermore, the researcher acknowledges that their viewpoints could be biased, affect-
ing how the findings are interpreted. Other researchers were involved in the data coding process
to reduce biases and increase the results’ reliability. After creating themes, the researcher en-
sured that everyone involved arrived at similar or comparable findings. The chapters that entail
these actual thesis experiments will elaborate more on how these issues were tackled.

3.3 Ethical Considerations

Ethical Considerations is one of the most integral aspects of research. It is important because this
research involves interaction with human participants (i.e., students and teachers). The range of
interactions in this research include; in-depth interviews, focus groups, surveys, quizzes and,
even observing behavior. Following the guidelines of ethical consideration set for comput-
ing science research, formal permission was requested to conduct all the studies involved in
this thesis from the Ethical Committee of the School of Computing Science before data collec-
tion. Once the Ethics Committee approved the studies (see approval letters in Appendix G), the
next step was to collect data. Participants were provided with sufficient information to decide
their participation. Before data collection, participants were assured that their identity (such as
name/Identity number/address) was anonymous. The participants were given a research identity
number that does not have their identifying information. They were also told that their participa-
tion was voluntary. They were informed they could withdraw before, during, or after this study.
Participants were also given information sheets that explained the experiment’s aims, objectives,
and procedures. They signed a ’consent form’ (see Appendix A) when they opted to be partici-
pants. Their data was only included in the study if they volunteered to participate by signing a
consent form.

An ethical issue that may arise is when students may feel that if they do not permit the use
of their data for research, this will reflect poorly on them and negatively impact their grade in
the course because of the influence of power relationship with their lecturer. The lecturer did
not know which students participated in the quiz because their personal information was not
included in the surveys/quiz.

CHAPTER 3. METHODOLOGY 42

3.4 Summary of the Methodology

This chapter presented the methodology of this study and the rationale for using a mixed-method
approach, followed by a discussion of validity, reliability, and ethical considerations. Since this
thesis is built up sequentially with separate studies that depend on each other to answer the the-
sis research questions, the research tools, data collection, and data analysis will be discussed
in detail separately. The first three studies in Chapter 4, Chapter 5 and Chapter 6 follow an
Exploratory Study Design as shown in Figure 3.1. The first study explores semantic transfer
in programming languages, and the second study designs a model for programming language
transfer. The third study quantitatively investigates conceptual and semantic transfer in program-
ming languages using the model. The last three studies in Chapter 7, Chapter 8 and Chapter 9
follow a Convergent study design as shown in Figure 3.1. The study presented in Chapter 7
explores teachers’ experiences with the transfer, the Chapter 8 study explores transfer interven-
tions, and the last study in Chapter 9 designs and investigates a pedagogy for programming
language transfer. The next six chapters will elaborate on these studies and how they fit into the
chosen research design.

Chapter 4

Exploratory Study on Semantic Transfer

[Aspects of this study have appeared in [29]]

This chapter presents the first phase of the Exploratory sequential design explained in the pre-
vious chapter. In this research phase, qualitative data is first collected and analyzed, and themes
are used to drive the development of the programming language transfer model in phase two. For
this thesis, a qualitative exploratory case study approach was used to get an initial understand-
ing of how semantic transfer in natural languages applies to semantic transfer in programming
language[5]. Jiang’s work [26] on second natural language acquisition, presented in Section 2.5,
claims that when learners learn their second natural language, the semantic transfer will occur.
It means that second language learners initially base the meaning of the second language words
on their first language translations. On the other hand, Ringbom’s book on Cross-linguistic Sim-
ilarity in Foreign Language Learning [28] has given insights that cross-linguistic similarity at
the lexical level can be one of the ways that learners can make links between first and second
languages [25].

Both natural language and programming language research are first considered as guidance
in this thesis because of the similarity of the structure of these languages, both based on syntax
and semantic rules. As already explained in Chapter 3, this thesis uses an exploratory sequential
design to answer RQ1. This design starts by using qualitative methods because there is currently
no guiding model of programming language transfer for relative novice programmers during
code comprehension to guide collecting data through quantitative methods. Although some
researchers may argue that deriving from existing literature and theories in qualitative studies
may restrict the scope of the data, other researchers argue that this method may help organize
the data and offer an initial way to explain causal relationships between the concepts [88, 89].
The analysis section will explain the analysis approach details used for this study.

This thesis hypothesizes that semantic transfer based on syntax similarities plays a role in
relative novices’ conceptual transfer between programming languages. This chapter presents an
in-depth exploratory study to test this hypothesis in programming languages to explore if se-

43

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 44

mantic transfer in natural languages is applicable in programming languages (RQ1). The study
is an in-depth case study of five undergraduate students transitioning from procedural Python to
OO Java. It is the first study conducted for this thesis and aims to provide the initial understand-
ing of PL transfer processes of relative novices, specifically during code comprehension. The
study asks the participants to read and explain their understanding of Python and Java programs.
These explanations are analyzed through the lens of the contributions of key papers drawn from
both programming language [9] and natural language [26, 28] transfer domains.

The thesis statement consists of two parts: transfer mechanisms and transfer interventions.
To support the first part of the thesis statement "Semantic transfer based on syntax similarities
plays a role in relative novices’ conceptual transfer between programming languages;". this
study aims to answer Research Question 1:

• How are principles of semantic transfer in natural languages applicable to patterns of
transfer in the context of relative novices PL transferring from first to subsequent PLs?

The following sections thus present the methods and research design involved, participants’
description, and the study context. Following this, a detailed account is provided of the data
analysis procedures. Finally, the results of this study are presented, analyzed, and interpreted.

4.1 Participants

As a starting point, semantic transfer in programming languages was investigated to address
RQ1. Because data collection is a crucial step in research, it was essential to make sound
judgments when selecting the method of data collection and participants involved in the study
[90]. Purposive sampling was used to understand semantic transfer in students learning new
programming languages, which is a standard method used in qualitative studies [91]. According
to Alkassim and Tran [90], Purposive Sampling is the deliberate choice of participants who
possess specific characteristics that will better be able to assist in understanding the phenomenon
being studied. It was, therefore, appropriate to engage participants’ in transitioning to a new
programming language in this study. Thus, the study used purposive sampling of five students
with no Java experience who enrolled in a second-year university Introduction to Java class.
The Java programming course ran for 11 weeks.

The course had three one-hour lectures and a two-hour lab each week. These participants
are referred to as P1-P5. Four of the participants (P1-P4) had studied only Alice and non-OO
or procedural Python in their first year, referred to as novices hereafter; one participant, P5,
was an experienced programmer with six years of Python, C, and C++ experience. Their age
ranged from 18 to 24 years, with three females and three males. The students were recruited
by advertising for participation in the study from their Java classroom. Initially, eight students

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 45

responded; however, three withdrew from the study due to other commitments. Thus, the fi-
nal number of participants was five second-year undergraduate students. Before the study, the
participants were assessed on their knowledge of the Python programming language; see List-
ing A.2 in Appendix A. All the participants performed similarly and got the correct answer
of the Python program output. Researching a small sample size is based on conducting dense
observation and intensive analysis of qualitative data and changes in each student’s program-
ming language transfer mechanisms across several trials. It should also be noted that this study
was not aiming to give statistical analysis but explore how the transfer works within a small
population.

4.2 Procedure

This section presents the data collection approach. The data was collected by conducting indi-
vidual 1-hour sessions with the students over ten weeks. The meetings were conducted outside
class-time in the School of Computing Science meeting room in the University of Glasgow. In-
dividual sessions were chosen instead of focus groups because they allow for the collection of
detailed data by getting a single participant to talk freely and to express detailed beliefs and
feelings about their transition to a new language experience [92]. Focus groups were not chosen
because some participants may not participate freely and honestly because they feel intimidated
by others; hence this might be a threat to validity [93].

The students in the study had learned procedural Python 3.0 and were transitioning to object-
oriented Java 13. Although they were taught Java 13, they were not taught some of the language
features; for example, they were taught the Java for-loop instead of the foreach loop
during the time of the study. Therefore, what they had learned influenced the concepts covered
in the code comprehension quizzes.

Data collection methods for this study included:

• Think-aloud protocols: Participants were asked to carry out code comprehension exer-
cises in Python and Java using think-aloud techniques. According to Charters [94], using
the think-aloud method is one of the most effective ways to assess higher-level thinking
processes that involve working memory and evaluating individual differences in perform-
ing the same task. Therefore, this method was appropriate for assessing participants’
transfer mental processes in learning new languages. Details of the interviews are in Ap-
pendix A.

• Questionnaire: Participants were given a questionnaire to note their confidence levels
with the concepts/constructs currently being studied as they progressed with their learning.
Details of the questions are in Appendix A.

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 46

A micro-genetic method was used [95] to study the knowledge transfer and development
in learning a second programming language. This method was used to assess the progress in
understanding cognitive developmental change mechanisms over time. It is a method well used
in computer science research [96]. It involves:

• observations of individual students throughout the period of the change,

• a high density of observations relative to the rate of change within that period, and

• intensive trial-by-trial analyses intended to infer the processes that gave rise to the change.

Using this method meant that all participants’ discussions were recorded and transcribed in
each meeting. The transcriptions then directed the study activities, with each fortnightly group
of interviews being informed by analysis of the previous interviews; these will be presented as
sessions. In this study, Sessions 1-4 are presented as shown in Table 4.1. Session five is excluded
as it does not address RQ1 but focused on helping students to correct their Java understanding
as the study was coming to an end. The sessions are explained as follows:

• At the beginning of the first session, the participants were given the information sheet
that explained a summary of the research project and its aims. It also had information
about the duration of the project. If there were any questions the participants had, they
were clarified. After reading the information sheet, the participants were required to fill
out the consent form. This consent form was for them to give consent before they partici-
pated in the research. The issues of voluntary participation, anonymity, and confidentiality
were explained to the participants. The demographics about their age and programming
language experience were collected after.

Participants were requested to complete a Python program comprehension task in the
next activity; see Listing A.2. It was to understand their actual level of development and
conceptual knowledge in their known programming language. Participants were given a
5-minute distraction puzzle to reduce the carryover effects of the Python quiz to the next
activity of the Java quiz. Participants were then asked to complete a Java quiz to explore
semantic transfer in programming languages; see Listing 4.1. Participants were asked to
talk through as they executed the Java code line by line.

The concepts covered in both the quizzes included variables and assignments, functions,
parameters and arguments and if-statements. In the Java programs, the additional concepts
of class and objects were included.

• At the second session of the study, students were presented with five multiple-choice
code comprehension questions of matching Python and Java program snippets that they
had already covered in the classroom; see Figure 4.1. The process involved identifying
common concepts (e.g., composite types, if-statements, e.t.c) shared by the two languages

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 47

Table 4.1: The Design of the exploratory study showing all the four sessions conducted for a
period of four months

Sessions Weeks into
learning Java

Procedure Deductive themes/codes based
on existing literature

Session 1 Week 0 Consent form, survey on experi-
ence, Python baseline test, Java
guess quiz

Explore semantic transfer in pro-
gramming languages [25, 26]

Session 2 Week 2 Five mapping multiple-choice
questions on Python and Java.
Confidence level survey.

Explore how semantic transfer
occurs after learning Java con-
cepts, explore what happens dur-
ing negative transfer [9, 25, 26,
28, 45]

Session 3 Week 4 The for-loop code talk-through
in Python and Java. Confidence
level survey.

Explore the semantic transfer
and negative transfer [9, 25, 26,
28, 45]

Session 4 Week 6 The Python dictionaries and Java
objects talk-through. Confi-
dence level survey.

Explore zero relation or novel
concepts between languages and
transfer interventions . [9, 28]

under study. The next step was to categorize the common concepts based on the similarity
of syntax between the two languages. The language tokens that may stimulate transfer
were chosen guided by the first session findings; in the first session, participants based
their similarity on lexical tokens such as (print, if-else, brackets, and operators). Examples
of concepts included were constrained by how the languages were taught in the classroom.
For example, the foreach loop in Java was not used to match it to the Python for

loop because the students had not learned it. Students were also given a Likert-scale
survey on their confidence level with each learning concept.

• In the third session, the experiment involved students talking-through (discussing and ex-
plaining) how a for-loop in Python and Java works. Participants were also given a confi-
dence survey.

• The last session explored how students view similar concepts represented syntactically
differently in two languages. The session started by asking students to explain their expe-
rience of learning Java objects. Students were then given programs on Python dictionaries
and the Java objects and asked to talk through their understanding of these programs.
The exercise explored how to help students bridge their conceptual knowledge of these
concepts. In addition, the students were given a survey to record their confidence levels.

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 48

Listing 4.1: Java Program used in session 1
1 p u b l i c c l a s s R e c t a n g l e {
2 i n t l e n g t h =3;
3 i n t wid th =4;
4 p u b l i c s t a t i c vo id main (S t r i n g a r g s []) {
5 R e c t a n g l e r1 =new R e c t a n g l e () ;
6 r1 . i n s e r t (1 2 , 4) ;
7 }
8 p u b l i c i n t i n s e r t (i n t l , i n t w) {
9 i n t r e s u l t = l *w;

10 i f (l > w)
11 System . o u t . p r i n t l n (" The answer i s " + l *w) ;
12 e l s e
13 System . o u t . p r i n t l n (" no r e s u l t ") ;
14 re turn r e s u l t ;
15 }
16 }

4.3 Analysis

Thematic analysis was chosen to identify recurring patterns of students learning a new language
from their audio recordings and writings. Thematic analysis is commonly used in qualitative
research to identify, analyze and report patterns in the data [88]. The themes were created using a
hybrid inductive and deductive thematic analysis approach. This process merged the data-driven
themes, and the themes derived from natural language and programming language literature
[9,25,26,28]. The hybrid approach allows deductively exploring the concept of semantic transfer
while also allowing for themes to emerge directly from the data using inductive coding.

Thematic analysis was chosen because it can be used for analysis in small or large data
sets [97]. Therefore, it is suited to analyze the data from five participants in this study. The data
analysis procedures for this hybrid approach followed the guidelines proposed by Fereday and
Cochrane [98] and these include:

• Stage 1: Developing the Code manual

• Stage 2: Testing the reliability of the codes

• Stage 3: Summarising data and identifying initial themes

• Stage 4: Applying template of codes and additional coding

• Stage 5: Connecting codes and identifying themes

• Stage 6: Corroborating and legitimating code themes

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 49

In Stage 1, the kinds of transfer that occur when students read code in a new language
were explored. Guided by prior work in natural languages [25, 28], the codes that involved the
transfer of knowledge from a previously known programming language were observed. The
codes developed include:

• Students making explicit reference to the previous language: This is derived from the idea
of semantic transfer theory [25, 26] (e.g., When explaining Java, a participant mentions
that Python also uses this...).

• Making assumptions and conjectures: This is derived from the idea of semantic transfer
theory [25, 26] (e.g., A participant uses words like ’I assume it means this’)

• Certainty: This is derived from the idea of Ringbom and Armstrong’s work [9, 28] (e.g.,
A participant says ’Java works this way’)

• Uncertainty: This is derived from the idea of Ringbom and Armstrong’s work [9,28] (e.g.,
A participant says ’I’m not entirely sure’)

• Making similarity relations: This is derived from the idea of Ringbom and Armstrong’s
work [9, 28] (e.g., A participant says ’Java uses brackets like Python’)

In Stage 2, the reliability of the codes was tested by presenting them to the researcher’s
supervisor for comments and suggestions. The supervisor and the researcher agreed with the
initial codes. Where there were disagreements, they were reconciled.

Stage 3 involved the process of reading, listening, and summarizing the raw data from inter-
views and written answers. This process was iterative.

In Stage 4, the codes developed were then matched with the results of the analyzed data.
The initial codes guided the analysis of the data. Additional deductive codes were applied when
the data produced new patterns.

In Stage 5, the themes and patterns in the data were being discovered. Differences in the
four novices and the experienced programmer emerged, yet they also shared similarities.

In the final Stage 6, the themes identified from codes were clustered to describe the meaning
that underpinned the phenomenon of programming language transfer for relative novices. There
were iterations of the data analysis process before making any conclusions. The main themes
guided the final discussion and paved a way to create a model suitable for programming language
transfer.

The results are presented in detail per session, and each session contains a particular student/s
case study similar to other student cases in that session. This kind of results analysis has been
used in other computer science qualitative research [99, 100].

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 50

4.3.1 Session 1

Initially, in week 0, participants'were assessed on comprehension of a Java program, to which
they had had not seen or learned yet. This program was a guess quiz, which means that the
participants were required to predict the output without any knowledge of Java. A simple pro-
gram to calculate the area of a rectangle (Listing 4.1) was chosen because it includes common
constructs shared by Python and Java such as variable declarations, parameter passing, subpro-
grams, calls, and if-statements. Some constructs were not familiar, such as classes and objects.
Participants were asked to talk through as they carried out the program comprehension task and
then give the program output. Participants had already learned these concepts the previous year
in their Python course except for objects and classes.

Presenting all the students’ recordings of interviews would have been a challenge. Therefore,
representative cases of participants (P1, P2, and P5) are presented. These cases were chosen be-
cause they were representative (not necessarily identical) of the group of participants as a whole.
That is, they capture the variation in results. Some of the participants were more vocal and ex-
plained in detail their mental processes. Other participants were not so expressive. However,
the differences between the novices (P1-P4) and their level of expertise were not significant.
Participants shared many themes and specific characteristics in the data.

Session 1 Results

This section presents the analyzed data using the initial codes described in the previous section
as a guide. The examples given for students quotes are from Table 4.2.

Referring to the first language: With no prior exposure to Java, the participants were seen
to explicitly refer to their previous language to understand Java; see Table 4.2. P1 and P2
were explicitly matching Java syntax to known Python syntax in order to understand the Java
semantics [26]. For example, in their explanations of how the Java program works, P1 explains
Line 4: "It looks a bit like a Python function" while P2 says: "I can relate it to Python". P6
(the most experienced one), on the other hand, referred to several languages that seem similar
to Java. For example, in explaining Line 4: "I’m assuming since we have square brackets here
it’s an array-like C++". P5 also refereed to multiple languages in interpreting Line 10-13 (The
If-statement): "looks similar to several languages, C, C++, Python".

Conjectures and Assumptions: Participants were seen to be making assumptions or conjec-
tures in explaining the Java code. For example, in explaining Line 4, P2 said: "Maybe it’s a
name of a function" while P5, in explaining Line 2, said: "I would assume this is a declaration
and an assignment".

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 51

Table 4.2: Session 1, analyzed students data of comprehension of a Java program in Listing 4.1
(guess activity)

Participant P1 (male) P2 (female) P5 (male)
Experience one year experience- Only

Python prior knowledge
one year experience- Only
Python prior knowledge

six years experience- Python
and C++ and other prior knowl-
edge

Line 1 "I don’t quite know about line
1, it could look like a func-
tion maybe the function is called
rectangle or it’s the name of the
program. It’s something I have
not seen before."

"Hmm, it looks completely
new. Hmm, I’m not entirely
sure what line 1 is trying to spec-
ify."

I did do C++ too and I am fa-
miliar with O-O. I assume this
will be a class you declare for an
objects called rectangle.

Line 2 Looks like its assigning value to
variable and saying that the vari-
able is an integer, so its saying
length is an integer with a value
3

It’s the initial variable length set
to 3 I guess. It looks similar to
Python

I would assume this is a decla-
ration and an assignment. We
are declaring a variable called
length which is of type integer
and we are assigning it the value
of 3.

Line 4 looks a bit like a Python func-
tion, there are brackets that
seems to be a parameter.The
name of the function is main.
looks like its specifying a string
argument. I have never seen
public, static and main.

It says this public whatever.
Maybe it’s a name of a func-
tion because it has something
in brackets. And maybe inside
the brackets it’s the parameters
which are string. I can relate it
to Python. It’s just that there are
so many words I’m not used to.

We are essentially here having
a function called main. Im as-
suming it takes strings as argu-
ments. I’m assuming since we
have square brackets here its
an arrays like C++. Im assum-
ing void means it doesn’t return
a value. I know static from
C++.

Line 5 I’m not entirely sure, looks like
its calling a rectangle because of
the brackets which Python uses
when calling a function, but I’m
not sure from where.

It looks like the name rectangle
is something that they call. But I
don’t know. I mean if you have a
rectangle and have empty brack-
ets that will always be for me be
calling a function without pass-
ing parameters in it. Its similar
to Python

We are declaring a variable r1
which is of type rectangle which
is the entire class, we are assign-
ing to it an object of type rectan-
gle. .

Line 6 Looks like its related to line
5. Like here,insert(12,4), maybe
that’s how you put arguments in
a function.

We have had commands similar
to this in Python. Maybe put
something in a list maybe in po-
sition 12 and 4. I’m not sure.

This r1 we constructed earlier,
we are calling the insert method
with two parameters (12 and 4).

Line 8 It looks like another function,
ehh , called insert with what
seems to be integer parameters
l and w, looks like a tiny bit
of Python. It says it has to re-
turn an integer [unsure48 in the
voice]. I have never used pub-
lic before.

It looks like calling a function
and putting in values. I think l

and w are the parameters. Its
similar to Python.

It’s the public method called in-
sert which we called earlier and
it returns and integer .

Line 9 The result is going to be an inte-
ger and multiplies l*w, similar
to Python.

It calculates something l and w
the result is l*w and the result
is integer.

This could be similar to many
languages like C, C++, Python
without int.

Line 10-13 It is an if-else conditional com-
paring if l is greater than w. Line
11 prints because it has the word
print and prints the answer is
l*w, if its false it goes to line 13
and prints no result.

It says if parameter l is big-
ger than w it should print out
the answer is l*w. its an if-
conditional similar to Python.
I don’t now what system.out
means but print is familiar.

We have an if-statement with
an expression that evaluates to
true or false inside the brack-
ets. println looks similar
to a number of languages, C,
C++, python. ‘The answer is’ is
a string and l*w is an integer. .

Line 14 It returns whatever result is The variable result is returned
which is an integer

We are returning the value of re-
sult which is l*w .

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 52

Similarity Relations: Participants made similarity relations by comparing Java and previous
languages based upon shared syntax similarities. Both P1 and P2 associated the brackets in
Line 4 to a Python function. For example, P1 said: looks a bit like a Python function, there
are brackets that seem to be a parameter. At the same time, P2 said: "it’s the initial variable
length set to 3 I guess. It looks similar to Python". P5 also explained how Java looked similar
to previous languages by saying: "print in println looks similar to several languages, C, C++,
Python".

Certainty: Sometimes the participants did not make explicit references or similar to the previ-
ous languages. In this case, they just interpreted the Java code with certainty, like they genuinely
have no doubt. For example, all of them were showing confidence in how ’return’ works in line
14, with P2 saying :"The variable result is returned which is an integer". Line 6 also explained
Line 6 by saying "This r1 we constructed earlier, we are calling the insert method with two
parameters 12 and 4".

Uncertainty: In some instances, participants expressed uncertainty/doubt in explaining the
Java code. For example, in explaining line 1 ’Public class Rectangle’, P1 said: "I don’t quite
know about line 1" while P2 said: "Hmm,it looks completely new ".

Session 1 Discussion

The participants (P1-P5) made explicit references to their prior language, especially Python
when explaining the Java code. P5, however, even though they knew Python, made most of their
connections to C or C++. It is probably because Java is a statically-typed language like C/C++,
and they have a lot of syntax similarities. In addition, C++ and Java are both object-oriented
languages. This demonstrates that participants made connections between the languages and
used the previous language to understand the new language, which they had not learned yet.

Participants made the connections by syntax mappings of Python and Java, or C/C++ and
Java, in alignment with Ringbom’s cross-linguistic similarities research [28] and subsequent
semantic transfer in line with Jiang’s semantic transfer theory [26]. It may mean that they inter-
preted the Java program based on their previous semantic knowledge. Take the interpretation of
a Java method, for example. Participants mentioned that they noticed brackets and parameters,
making mappings from a language structural/syntax domain onto a semantic and conceptual do-
main in their mental models. By this means, lines 2-4 and 8-14 were well enough matched to
Python concepts of variables, function declarations, and calls, if statements, return statements,
and output statements. This was also the case for the other students. All the students but one
(P2) gave the correct output (The answer is 48) for the code. As they explained the program,
student (P2) said:"I think it will print no result, I mean I do not understand lines 4-7, if you take l
to be length and w to be width, 3 is not bigger than 4, although I am not sure if it is being passed

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 53

anywhere." What can be seen in (P2)'s think-aloud is that they ignored the lines of code that they
could not match to Python, such as the Java main method and objects, and decided to explain
the lines of code they could match, resulting in a wrong answer. This shows that perceptions of
similarity between languages can vary amongst students [28].

If the participants could not make the match to Python, as in lines 1 and 5, then the syntax
or construct was glossed over and perceived as Novel [9]. However, these lines of code were
peripheral to how the overall program worked, hence the correct answers on the output. The
more experienced student (P5) understood all lines and kept making analogies to either Python
or C++.

This session presents the results of reading code in Java, new to five of the participants who
have not learned yet. The themes emerging from these findings are that, during code compre-
hension, conceptual and semantic transfer occurs from PL1 to PL2 as proposed by Jiang’s
model of second language acquisition. More importantly, the second theme is that the similar-
ities in syntax facilitated students in transferring the meanings/semantics and concepts to
PL2 as proposed by Ringbom in cross-linguistic similarities. The following section explores the
phenomenon of syntax mapping and semantic transfer further and observes any changes in the
strategy students use after they have learned Java (a new language).

4.3.2 Session 2

In this session, students’ development of learning a new programming language is explored
after two weeks (6 hours) of learning Java in the classroom and attending two 2-hour labs.
Changes in the strategy the students use when learning Java were observed too. The exercises
include mapping code snippets of Python and Java programs. The students were asked to answer
four multiple-choice questions; they had to pick the Java code matching the Python code. The
exercise given is shown in Figure 4.1. By this time, participants were taught the Java concepts
of variables, arrays, for-loops, and if-statements which they also learned in Python.

Session 2 Results

Most of the participants made correct mappings of the program execution outputs between the
Python program and the corresponding Java program for concepts in questions 1 (arrays/lists)
and 2 (if-statements) as seen in Table 4.3. However, students showed confusion in the mappings
of questions 3 (for-loop) and 4 (static versus dynamic), especially question 3. For this mapping
exercise, students were asked to fill in open-ended responses to their thoughts and rationale for
their chosen answer. Unfortunately, only P2 filled in the responses. P2 got the Q4 mapping
wrong, they mapped the Python program to Java version (a), and this is the rationale they gave:

• "In Python, because you do not have to specify the type, printing out a would print ’Hello.’

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 54

Figure 4.1: Mapping multiple-choice questions on Python and Java presented to participants for
the Session 2 activity.

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 55

Table 4.3: Scores of answers participants gave for the Session 2 mappings activity in Figure 4.1

Participant Q1(arrays) Q2(if-statement) Q3 (for-loop) Q4(static/dynamic)
P1 Correct Correct Wrong Correct
P2 Correct Correct Wrong Wrong
P3 Correct Correct Wrong Correct
P4 Correct Correct Wrong Wrong
P5 Wrong Correct Correct Correct

If you need to assign the value a to a String, you need to write String a="Hello".
This is why I said answer (a) is correct. I am not sure what will actually be printed out
when the Java code runs-probably "Hello" as well as in Python."

Student P4 also did the same wrong mapping (option (a)) while the rest of the students mapped
it correctly to (option (c)). P2 also got the result for question 3 wrong, and this is their thoughts
of why they chose option (a) for this mapping:

• "In code b, the fragment i++ is missing in a Java loop, you need this to show that the
value i should increase"

The rest of the other three students gave the same wrong mapping of the option (a) just like P2
except for P5, who gave the correct mapping of the option (c).

Session 2 Discussion

In Session 2, just like in Session 1, participants are still referring to their prior language (Python)
to perform the mappings of Python and Java. P2’s explanation of re-assigning different types to
variables (Q4) demonstrates this. P2 showed they made syntax mappings between Python and
Java and assumed that because syntax differences are so small, the semantics are also similar.
Note that P2 has the correct Python execution model for the variable reassignment, but carries
the correct Python variable reassignment model across to the Java code showing that they base
their interpretation on syntax similarities between Python and Java. The only difference they
see is that Java specifies the type and Python does not therefore, both programs have the same
meaning. This interpretation is evidence of semantic transfer [26]. This may mean that Python
knowledge assists participants in their understanding of Java semantics in the early stages of
learning Java. However, since Python semantic knowledge cannot completely reflect the seman-
tic properties of some Java concepts, it may potentially lead to errors. In this question, variable
a in Java is statically typed. That means this variable is initially declared to have a specific data
type, and any value assigned to it during its lifetime must always have that type. Since Python
is dynamically typed, variable a may be assigned a value of one type and then later re-assigned
a value of a different type. Participant P4 also made the same mistake as P2 on this question.
In addition to the two themes in Session 1, Session 2 presents two additional interesting themes

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 56

of negative semantic transfer due to syntax similarity between PL1 and PL2 and positive
semantic transfer due to syntax similarity between PL1 and PL2 [9, 42, 45].

Another interesting finding is that the four participants (all novices) failed to map Python
for-loop question to the Java for-loop. All of them mapped it to option (a). The following
subsection explores the students’ talk-through as they execute the for-loop in both languages to
understand better why participants made the wrong mapping.

4.3.3 Session 3

Session 3 was carried out in week 4 of participants learning Java. Participants, by this time,
had learned the new concepts of objects, classes, and encapsulation, not encountered in Python.
The session aimed to further investigate the participants'comprehension of the for-loop in both
languages as they showed misconceptions of this concept in Session 2. Students were asked to
talk through their understanding of the for-loop execution of each language; the programs used
are in question 3 in Figure 4.1, using Java option (a).

Session 3 Results

The results of two novices (P2 and P3) and an experienced programmer (P5) are in Table 4.4.
These results show that participant P5 (more experienced) had the correct explanation and men-
tal representation of how the Python and Java for-loop both work. P2 and P3, although they
had the correct mental model for Python, they did not have the correct mental model of the
Java for-loop. The participants not in the table, P1 and P4 had misconceptions in how to exe-
cute the previous language (Python) for-loop, P1 gave a wrong explanation that the range(5)
generates a sequence of numbers starting from 1, not 0 as it should be the case. P4 terminated
both the Python and Java loop at the end of the fourth iteration (when i=10). Both P1 and P4
already have misconceptions in understanding their first language and carried them forward to
the second language, even though it is also possible that P4 might have carried the their correct
understanding from Java to Python instead.

Session 3 Discussion

Participants P2 and P3 demonstrated a correct understanding of the execution of the Python for-
loop. These participants then appear to have transferred the same semantic knowledge of the
Python for-loop to explain the Java loop, resulting in the wrong Java output because Python and
Java loops execute differently. In question 4 (Python version) in Figure 4.1, the range function
returns a sequence of numbers from 0 to 4, with the loop variable taking on one of these numbers
on each iteration. The loop will not terminate until all list elements have been processed, despite
changing the iterating variable in the inner if statement. In Java, the for-loop variable retains
its value across executions of the loop body, retaining any updates made in the loop’s body.

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 57

Table 4.4: Session 3 activity: The students’ talk-through in explaining the Java for-loop in
Figure 4.1 (Question 4, Option a).

Participant P3 (female) P2 (female) P5 (male)
Experience one year experience- Only

Python prior knowledge
one year experience- Only
Python prior knowledge

six years experience- Python and C++ and
other prior knowledge

Python Answer 0,1,2,10,4 0,1,2,10,4 0,1,2,10,4
Python Explanation "First iteration we have i=0 and

then it i incremented to 1 and
then i is not 3, then it prints 1,
then it is incremented to 2 and
then i is not 3, then it prints 2,
then i=3, then i changes to 10,
because i is not 3 then it print
4..

"The loop is supposed to
loop 5 times. The first time
i=0,1,2,3,4 The first time
it should print 0, then 1, then 2,
the fourth iteration i=10 so it
should print 10. If i is 10 now,
does it still go back to 4 now"

"Especially range in Python is called a gener-
ator, it behaves as an iterable, basically what
happens is. Essentially at each iteration of the
loop it will get numbers 0 to 5 (5 excluded).
So this is basically equivalent to 0,1,2,3,4.
Now my understanding of this, it’s generally
bad practice to modify the loop counter. So at
first i will be 0, then i is not 3 then we will
print 0, i then will be set to 1, i is not 3 then
it prints 1, then i is set to 2, its not 3 then
it prints 2, then you get to i=3, i=3 is true
so i will be set to 10, then next I assume it
prints 4 because of how the generator works
so we get 0,1,2,10,4. We return 4 because i
returns the next element in the generator/iter-
able irrespective of what you did to the loop
variable."

Java Answer 0,1,2,10,4 0,1,2,10,4 0,1,2,10
Java Explanation "The initial i value is 0, it will

be 0,1,2,3,4 again. i is incre-
mented by 1, so i is not equal
to 3 it prints out 1, i is not 3,
then it prints out 2, and then i is
3, it becomes 10, it prints out 10
[pause], then next it prints out 4
[does it though?] so it’s the end
of the for-loop, you stop here".

"The Java one is a loop now, it
will loop 5 times as well, i will
be from 0 to 4. First loop it will
print 0, then 1,2 and then 10 the
next one may be 4 too."

"So in C, to my understanding. For-loop will
be an equivalent to the while loop, so basi-
cally you have i=0 then while i<5 you do the
inner block then the last instruction will be
i++. So initially we set this to 0, which runs
the inner block until i is less than 5. At the
beginning i is set to 0, so it checks if i is 3,
its not then we printout 0, then we increment
i by 1. We go to the beginning of the loop
and then we check if i<5, its now set to i,
then inner block, i is not 3 so we print 1, then
i is incremented by 1, now i is 2, we check
if 2<5, the loop body will still run, then we
printout 2, then i is incremented by 1 and the
next iteration i will be 3, so 3<5, so the loop
body will still run, i is 3, so i is now set to 10
so we print 10 here, so i is incremented by 1.
Because 11>5 we terminate the loop."

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 58

Hence the Java program exit out of the loop at the start of the fifth iteration. It appears that the
participants ignored the conditional statement (i<5) in the for-loop that should be evaluated to
true for the body of the for loop to be executed, or they did not appreciate that the update to i
would carry errors outside the loop body.

Interesting thoughts from P2 were that: " When I learned the for-loop, I was very confused at
first because I had to add i++, but I feel it’s very similar to Python ." This participant assumed
that because the syntax differences are so minor, the semantics are similar. It is evident that
participants, even though it is their week 4 of learning Java, still refer to Python to understand
Java, just like in Sessions 1 and 2. The similarity of some keywords like ’for’ make them
make connections between the two languages and subsequent semantic transfer. These results
support Jiang’s model of second language acquisition based on semantic transfer [25]. The
results also show that semantic transfer depends on the similarities between the languages. P5,
however, understood the different forms of the for-loop well in each language, associating the
Java for-loop with the identical (C++) syntax.

The results also showed that sometimes students carried misconceptions from Python (P1)
or vice versa from Java (P4). It appears P4 transferred the Java semantic knowledge to Python
by exiting the loop at the start of the fifth iteration for both languages. At this level, the the
plausible explanation for this finding that was not derived from the natural language theories
is that learners may transfer semantic knowledge bi-bidirectionally from PL1 to PL2 and
vice versa. This may depend on where their level of learning the second language is. The other
plausible explanation is that novice programmers have fragile knowledge of the programming
language semantics in their PL1.

4.3.4 Session 4

When reviewing the students’ confidence levels using a Likert scale score (level 0 being the
least confident and level 5 being the most confident) with different concepts in week 6, most
were very uncertain about objects as seen in Figure 4.2 and Table 4.5. This session, therefore,
explores what students understood about objects. As well as students’ understanding of ob-
jects, this session explores what transfer intervention can help them comprehend objects better.
The concept closest to objects from their knowledge of non-OO Python is Python dictionaries.
Python dictionaries and Java objects are both data structures/user-defined types although objects
are more abstract [101] [58]. Having observed in the previous sessions that students transfer
by syntax matching, they were given a Java objects program mapped to Python dictionaries and
associated functions. Participants were asked to identify similarities and differences between
the two programs and write down the program outputs.

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 59

Figure 4.2: Session 3 and 4 participants’ self-rated confidence levels on Java constructs

Session 4 Results

The session started with asking participants to talk through their understanding of objects since
they were in week 6 of taking Java lessons. Their responses are shown in Table 4.5. All four
novices showed that they struggled with the concept, expressing that it is complex and confusing
to grasp. P5, who was more experienced, said that they understood objects well and still com-
pared them to C++ at this point. Interestingly, none of the four novices referred back to their
Python knowledge to explain objects this time around.

The participants in this study had not learned object-oriented Python in their previous class.
That means they had not learned the Python objects and classes before learning Java. How-
ever, they had learned data structures such as lists and Python dictionaries, and learned Python
functions. Therefore, the closest concepts to objects the participants knew of were the Python
dictionaries. Objects and dictionaries both represent a data structure; the difference is that, un-
like the dictionary, the implementation details of a Java object can be encapsulated. In order to
explore the transfer intervention, Java objects program (see Listing 4.3) were mapped with the
Python dictionaries program (see Listing 4.2). The Python program has a function (p) that re-
turns dictionary values (name and age). Variable instances me and you are assigned returned
dictionary values when the function is being called. These dictionary values can be manipulated
with the getName and incAge methods. Similarly the Java program has a class person that

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 60

Table 4.5: Session 4: The breakthroughs, challenges with learning objects talk-through with
participants on week 6 of learning Java

Participant P1 (male) P2 (female) P3 (female) P4 (male) P5 (male)
Experience one year

experience- Only
Python prior
knowledge

one year
experience- Only
Python prior
knowledge

one year
experience- Only
Python prior
knowledge

one year
experience- Only
Python prior
knowledge

six years
experience- Python
and C++ and other
prior knowledge

Confidence
about ob-
jects

The whole concept
of object is still
difficult to under-
stand. Can I like
to create an ob-
ject within another
piece of code?

"Well, I thought
an object is
actually an in-
terface or class
..what!...what!
[she exclaims].
So I think its the
most confusing
part. I’m still not
a 100 percent sure
what they are. I
mean our lecturer
mentions objects
sometimes but I
still don’t get it,
I might have to
go over our notes
again."

"It was a very con-
fusing concept to
grasp. Like the
objects have simi-
lar knowledge with
the words in En-
glish. There are
different ways to in-
terpret the word so
I got confused. But
in Java I wonder if
it could mean like
variable"

"I still don’t com-
pletely understand
how you set them
up and that kind of
staff. I still don’t
understand how it
works, the package
the methods and
everything. I get
that you can use it
for different things
in the app and it
can pass on values
but I’m not a 100%
sure on it."

"I have no confu-
sions with objects
because I did them
in c++"

defines name and age. It has object instances n1 and n2 with defined specific values of name
and age as well as methods getName and incAge that manipulate these values. Two lecturers
who taught programming courses at the University of Glasgow confirmed the equivalence of the
Python and Java programs. One of these lecturers was not involved in the program.

Participants were presented with the Python and Java program in Listing 4.2 and Listing 4.3
respectively. They were asked to talk through the programs and discuss what they saw as similar
or different. P2 said:

• "An object is created in Java and then you create fields for the object in line 16 and 17
and those fields are similar to the entries in the dictionary for the Python in line 8 and 9.
I see methods where fields are accessed in both programs for each person that is created
..mhh.. which has the name and the age, for example in the Java getName access the
name field and in Python it gets name key for the dictionary."

P4 also said:

• "They both have 2 persons n1 and n2 (objects) similar to me and you (dictionaries). Each
person has two fields name and age and increases age by 1. They have methods for each
data and accessed differently"

while the most experienced student (P5) said:

• "In terms of functionality they are very similar. They have a data structure that has an int
and string that get manipulated by functions"

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 61

Listing 4.2: Python Dictionary Program given to students in Session 4
1
2 def p (n , a) :
3 re turn { ’ name ’ : n , ’ age ’ : a }
4 def getName (o b j) :
5 re turn o b j [’ name ’]
6 def incAge (o b j) :
7 a = o b j [" age "]+1
8 re turn a
9 me=p (" Jo sep h " , 51)

10 you=p (" Vic " , 35)
11 p r i n t (" your name i s : " , getName (me) , " , your age i s : " ,
12 incAge (me))
13 p r i n t (" your name i s : " , getName (you) , " , your age i s : " ,
14 incAge (you))

The participants recognized some similarities between Python dictionaries/functions and
Java objects as both having attributes and subprograms getName that manipulate them. They
associated dictionary variables me and you with object variables n1 and n2. Python dictionar-
ies and Java objects share similarities in that they are both data structures, and the difference is
that objects have a more abstract or hidden representation [102] while a Python dictionary has a
concrete representation.

Participants were asked to discuss their understanding of objects again after making the
comparisons. P2 said:

• "It makes sense now. When I create an object, it doesn’t show me the data structure or
how it will be saved. Having a dictionary helped me visualize it because dictionaries are
actually what I understand because, in a dictionary, you will know there will be a field
called Joseph and a field called 51."

Like P2, other participants seemed to change their views about objects after the Python
dictionary and Java object comparisons, for example, "When you say the word object, it seems
like it’s this abstract thing. I think now I see an object as an advanced way to store data and give
you options to pass it around like lists and dictionaries with techniques to manipulate the data.
it’s a lot simpler to understand objects than what you kinda like think at first." (P4). While P3
said "I felt that an object is this abstract thing. But relating it to dictionaries makes more sense.
I think objects are an advanced way of storing data and manipulating it with methods".

Session 4 Discussion

It was interesting to note that all the novices (P1-P4) had difficulty understanding objects in
week 6 of learning Java. As they were asked about objects and their confidence levels, they

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 62

Listing 4.3: Java Program given to students in Session 4
1
2 p u b l i c c l a s s p e r s o n {
3 p u b l i c S t r i n g name ;
4 p u b l i c i n t age ;
5 p u b l i c p e r s o n (S t r i n g n , i n t a) {
6 t h i s . name=n ;
7 t h i s . age=a ;
8 }
9 p u b l i c S t r i n g getName () {

10 re turn name ;
11 }
12 p u b l i c i n t incAge () {
13 i n t a=age +1;
14 re turn a ;
15 }
16 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
17 p e r s o n n1=new p e r s o n (" Jo se ph " , 5 1) ;
18 p e r s o n n2=new p e r s o n (" Vic " , 3 5) ;
19 System . o u t . p r i n t l n (" Your name i s : "+n1 . getName () +
20 " Age : " +n1 . incAge ()) ;
21 System . o u t . p r i n t l n (" Your name i s : "+n2 . getName () +
22 " Age : " +n2 . incAge ()) ;
23 }
24 }

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 63

did not map or refer their understanding of objects to their Python knowledge, as was always
the case in the previous sessions when they explained other concepts. An additional theme that
was not covered in the last sessions was discovered. It was the difficulty of transfer with abstract
concepts. Unlike previous sessions, participants could not make similarity relations/assumptions
or even refer to their previous language to understand objects. The student misconceptions about
objects are also well-documented [103, 104]. Understanding the difference between class and
object seemed to be a challenge for novices.

The interventions were designed so that the Java and Python programs looked similar in
Listing 4.2 and Listing 4.3 even though the syntax differed significantly. Hence they were able
to transfer their existing semantics of data structures and functions across to Java, supporting
Jiang’s Semantic-transfer model [25]. This session suggests that it is harder for participants
to carry out a conceptual and semantic transfer when similar concepts do not look the same.
Mind-shift theory [9] was used to categorize the object concept as initially perceived as a Novel
concept by participants. However, they later realized there were carryover concepts from their
first language within the concept of an object expressed in a totally new syntax. The theme
emerging from this session’s findings is that there is no semantic transfer when the syntax
looks different for the same concept. The other plausible explanation of the findings that is
emerging as a theme is that explicit teaching by comparing PL1 and PL2 may help students
to activate transfer.

4.4 Summary of Discussion

In answering the research question 1:

• How are principles of semantic transfer in natural languages applicable to patterns of
transfer in the context of relative novices PL transferring from first to subsequent PLs?

The summary of the overall findings are presented as follows:

• Once the students identified similarities at the syntax level between the languages, the se-
mantic and conceptual transfer occurred, and the learning process was positive, as shown
in Session 1 and 2. These include concepts such as variables, conditional statements,
methods, and parameter passing.

• During the initial learning stages, participants mainly relied on their syntactic match-
ing/similarities between the languages and subsequent semantic transfer. This affected
Carryover and Changed concepts as described by Armstrong [9] in Chapter 2. However,
this matching meant that their mappings were wrong for Changed concepts, for example,
Sessions 2 and 3. They showed they were transferring their Python semantic knowledge
to (incorrectly) understand the Java concepts, e.g., the P1 and P3 examples in Session

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 64

Table 4.6: The overall themes derived from the Exploratory study

Clustered themes from Study 1 (deductive and inductive) Main Emergent themes
1) Conceptual and semantic transfer occurs from PL1 to PL2

2) Conceptual and semantic transfer can occur bi-bidirectionally
from PL1 to PL2 and vice versa form PL2 to PL1

One plausible explanation of these findings is
that relative novices may have one mental rep-
resentation of the same concept in two lan-
guages if the syntax looks similar

3) The similarities in syntax facilitated students in connecting the
meanings/semantics and concepts of the PL2

4) Positive semantic transfer due to syntax similarity between
PL1 and PL2

5) Negative semantic transfer due to syntax similarity between
PL1 and PL2

6) There is no semantic transfer when the syntax looks different
for the same concept

These findings suggest that similarity plays a
crucial role in transfer between PL1 and PL2

7) Relative novices have fragile knowledge of the programming
language concepts and semantics in their PL1

These findings suggest that sometimes mis-
conceptions are transferred from PL1 to PL2

8) Explicit teaching by comparing PL1 and PL2, may play a role
in helping students to transfer to PL2

These findings suggest that most often trans-
fer happens implicitly

2. These results show that when syntax matching and corresponding semantic transfer
take place for a Changed concept, they negatively impact the learning process of the new
language.

• Initially, participants could not map the object concept to their existing knowledge struc-
tures because the syntax of this concept was at too high a level, not resembling any known
syntax in procedural Python. The lack of syntax matching resulted in no semantic trans-
fer, making their learning of these concepts less progressive. Participants were assisted
through interventions to help them recognize that objects are not as novel as they thought
and related to a concrete user-defined data type, implemented in Python using dictionaries
and functions, as shown in Session 4. Introducing Python object-orientation first before
teaching Java objects might have also improved the result. This was not practical in the
current experiments due to constraints of the already running curriculum, but it would be
good to explore in the future.

The overall themes derived from Study 1 are presented in Table 4.6. These themes capture
a common, recurring pattern across a dataset from all four sessions. The clustered themes were
derived from each session dataset, while the main emergent themes were derived from further
clustering the themes to describe the meanings that underpinned the themes.

CHAPTER 4. EXPLORATORY STUDY ON SEMANTIC TRANSFER 65

In summary, the results from the analysis revealed that semantic transfer did take place, in
line with Jiang's model of semantic transfer for natural languages. The transfer is based on the
matching/similarities of syntax [9,28]. The principal factor influencing the success of the trans-
fer was whether the matched syntax had the same semantic and conceptual meaning or not in
the new language as in the old language, following on from Ringbom’s cross-linguistic similar-
ities [28] and Armstrong [9] 's Mindshift notions of Carryover, Changed and Novel concepts. In
addition to the themes deduced from natural language theories, there were other plausible expla-
nations from the findings that resulted in new themes emerging. These are as follows: relative
novices may have one mental representation of the same concept in two languages when the
syntax looks similar, the transfer may not only occur at the semantic level but may also occur at
a conceptual level, the transfer may happen bi-directionally (PL1 to PL2 and from PL2 to PL1)
as learning progresses, lastly, relative novices may have fragile knowledge of both concepts and
semantics in PL1.

In the following study, a model of programming language transfer suitable for relative
novices and guided by the exploratory study results and prior work on both natural and pro-
gramming language is developed. In addition, the model derives from cognitive sciences.

Chapter 5

The Model of Programming Language
Transfer

[Aspects of this study have appeared in [30]]

In this chapter, existing models of code comprehension [3, 24, 54], semantic transfer [26],
cross-linguistic similarities [28] and cognitive sciences [182, 183] are merged and refined into a
single developmental model of PL transfer, building on our earlier findings in Study 1. Study
1 findings revealed that semantic transfer did take place, in line with Jiang’s model of seman-
tic transfer from natural languages based on syntax similarities (derived from Ringbom’s cross
linguistics) between PL1 and PL2. Additional findings from the exploratory study are also
presented and how they help build up the model to suit the context of relative novice program-
mers learning a new language. The chapter will start with the presentation of the Model of
Programming Language Transfer (MPLT) and its components, and then the second subsection
will explain the hypothesis of what happens when relative novices learn a second programming
language.

5.1 Knowledge Structures in the MPLT

The programmer’s knowledge structures are derived from code comprehension and natural lan-
guage models. In code comprehension models, the programmer is represented to have both
syntactic and semantic knowledge [3, 24, 54]. In these models, the programmer also has plan
knowledge. However, plan knowledge is not the focus of this study, as explained in Chapter 2.
In natural language models [25, 105], the language learner has a mental lexicon that comprises
of semantic, syntactic, phonological, and orthographic knowledge. In programming languages,
the phonological and orthographic knowledge will not be included in representing programming
language knowledge, as explained in Chapter 2.

It is against this background that the MPLT is proposed to have three levels of knowledge:

66

CHAPTER 5. THE MODEL OF PROGRAMMING LANGUAGE TRANSFER 67

concepts, semantics, and syntax, with a clear separation of concepts and semantics which is
not the case for the mentioned code comprehension models. Recognizing the separation of
conceptual and semantic knowledge means that when the programmer learns a second PL, they
may have two representations of semantics specific to each language for a single construct. For
example, the programmer who knows both Python and Java knows the for-loop concept shared
by both Python and Java language, that is, a loop that repeats a fixed number of times. However,
this concept has an iterator-based semantics in Python, while in Java, the semantics is index-
based.

As proposed in Jiang’s [25] second language acquisition model, which derives from Levelt’s
model [105], the mental representation of languages in a language learner is represented hier-
archically. Also, the hierarchical knowledge structures are derived from the cognitive models
of the Connectionist approach [106, 107, 182, 183]. Connectionist models represent the men-
tal model structures as neural networks, where nodes are represented as neurons connecting to
other nodes. The connections of knowledge nodes are based on prior knowledge/experience.
Deriving from both natural languages and cognitive science, the programmer's knowledge is
proposed to be built of a network of nodes that are connected hierarchically at different levels
(syntax, semantics, and concepts), as shown in Figure 5.1.

• The Syntax Level: The programmer has knowledge of the syntax of a known program-
ming language. For example, a variable declaration and initialisation in Java could be: int
mark =4;.

• The Semantic Level: The semantics provide meaning to a well-formed syntax. This level
is concerned with specific ‘implementations’ of the higher level concepts. For example,
variable mark is being declared as an integer and initialized to 4.

• The Concept Level: This level contains the underlying concepts of programming lan-
guages known by the programmer. For example, Variable declaration.

The MPLT proposed that when a programmer is learning their first programming language
(PL1), links between the nodes are developed, as shown on the left side of Figure 5.1. A path
running from the Conceptual Level down to the Syntax Level represents; a concept, the concept
semantics or implementation in the first language, and the concept representation in the syntax
of that language. The prior knowledge box shows that when a programming language learner
knows just one language, there is no branching across the semantic or syntax levels - because
they have knowledge of just one semantics and syntax for a given concept. At the Conceptual
level, a tree structure may emerge, given that a concept may have sub-concepts. For example,
the concept of data type has the sub-concepts of primitive data types (e.g., int) and composite
data types (e.g., dictionaries) (as captured in (a) and (b) in Figure 5.1, in the prior knowledge
box). A concept presented as in (c) in the diagram could be, for example, a print instruction
from a function - in a single language, there is usually only one form of this concept.

CHAPTER 5. THE MODEL OF PROGRAMMING LANGUAGE TRANSFER 68

Figure 5.1: Model of PL transfer (MPLT)

CHAPTER 5. THE MODEL OF PROGRAMMING LANGUAGE TRANSFER 69

When the PL learner learns the second programming language (PL2), more interesting
knowledge structures are developed. Completely new concepts may be introduced, not shown
in the diagram but would appear as a new’ tree’ at the conceptual level. Concepts (d), (e), and
(f) all represent important but different kinds of ideal relationships between the concepts found
in the two languages in a programmer’s mental representation. Jiang’s model does not cater to
the different storage patterns of possible connections within the lexicon of a second language
learner. In the MPLT, different storage patterns and relationships as proposed by Ringbom’s
cross-linguistic similarity relations [28] and Armstrong’s concept categories [9] are proposed.
These patterns were also confirmed to exist in the themes derived from Study 1, as shown in
Table 4.6. The following concept categories represent these relationships:

• True carryover construct (TCC): is a construct with similar syntax and same underlying
semantics in PL1 and PL2, this is represented by the (TCC) concept branch in Figure 9.1.
For example, a while loop in Python and Java.

• False carryover construct(FCC): is a construct with similar syntax but different semantics
in PL1 and PL2, this is represented by the (FCC) concept branch in Figure 9.1. For
example an integer division in Python 3 and Java.

• Abstract true carryover construct(ATCC): is a construct with different syntax but same
semantics in PL1 and PL2, this is represented by the (ATCC) concept branch in Figure 9.1.
Examples are constructs whose implementation details are hidden such as data abstraction
(objects) [58] in Java which at a low level are data structures like Python dictionaries.

5.2 Predictions of what actually happens during Learning
PL2

The learning process is derived from the theories explained in Section 2. Jiang’s model of se-
mantic transfer [25,26], Ringbom’s cross-linguistic similarity relations [28], Armstrong’s mind-
shift theory [9] and cognitive sciences [45]. In addition, the learning process is derived from
Study 1 findings. All the above models and Study 1 themes are merged and refined to suit the
programming language transfer context. Study 1 findings showed that Relative novices have
one mental representation of the same concept in two languages if the syntax looks similar. This
means that the representation of TCC and FCC concepts should be similar. Even though Study
1 findings revealed that in some small instances transfer occurred from PL2 to PL1 (Theme 2;
see Table 4.6), the transfer from PL1 to PL2 (Theme 1; see Table 4.6) is much stronger hence
the hypothesis will be based on transfer happening from PL1 to PL2.

Therefore, based on the themes (Themes 4,5 and 6) derived from Study 1 in Table 4.6. I
suggest that at the initial stages of learning PL2, programmers will engage in learning three

CHAPTER 5. THE MODEL OF PROGRAMMING LANGUAGE TRANSFER 70

Figure 5.2: MPLT showing constructs categories a learner encounters during the learning pro-
cess, and the consequences

CHAPTER 5. THE MODEL OF PROGRAMMING LANGUAGE TRANSFER 71

categories of concepts, TCC, FCC and ATCC. These three categories are shown in Box A on
Figure 5.2. The crucial point is that each of these categorised constructs can be perceived or
actual. The Box B of Figure 5.2 predicts the learning process when students encounter these
constructs during learning a new language.

1. If a learner encounters a TCC, they will perceive it as a TCC because of syntax match,
hence semantic transfer will be appropriately effected from PL1 to PL2 and the learning
will be positively impacted. This is represented in Box B, in the TCC column of the
diagram. See how, even with two languages, the diagram is a straight line from concept to
matched semantics to matched syntax.

2. If a learner encounters a FCC, they will perceive it as a TCC because of syntax match,
hence semantic transfer will be inappropriately effected from PL1 to PL2 and the learning
will be negatively impacted. This is represented in the central column of Box B in the FCC
part of the diagram, which does not match the correct learning in Box A.

3. If a learner encounters an ATCC, they will perceive it as novel since there is little or no
syntax match, hence there will be little or no semantic transfer . This is represented in the
right column of Box B in the ATCC part of the diagram, which does not match the correct
learning in Box A.

It should be noted that the MPLT hypothesis does not cater to the PL1 misconceptions that
students may already have and transfer to their learning of PL2; therefore, Theme (7) in Table 4.6
is not represented. For example, if a learner’s incoming knowledge of a PL1 if-statement
is wrong, they may transfer the misconception of PL1 to PL2, which they will get wrong in
both PL1 and PL2. The MPLT, however, proposes that if students learn PL2 correctly, it may
strengthen their understanding of concepts as represented in Figure 5.2 in Box A. Theme 8
’Explicit teaching by comparing PL1 and PL2, helps students to transfer to PL2’ is addressed
in Chapters 8 and 9, which address second programming language transfer interventions.

Different possible scenarios can be represented in the MPLT. For example, a concept with
similar syntax but different semantics and different conceptual roots, or a concept with different
syntax and different semantics. It would be interesting for future studies to see how such differ-
ent scenarios may affect the students’ learning of PL2. However, for this study, the focus was
on the three scenarios presented and adopted from Ringbom’s similarity relations [28].

5.3 Summary

In this chapter, the qualitative (exploratory) findings from Chapter 4, together with theories
from natural languages, programming languages, and cognitive sciences, were used to develop
the MPLT to understand transfer in PLs. In the model, a relative novice programmer already has

CHAPTER 5. THE MODEL OF PROGRAMMING LANGUAGE TRANSFER 72

knowledge of concepts, semantics, and syntax in PL1. The MPLT proposes that in the initial
stages of learning PL2, a relative novice programmer will engage in learning three categories of
concepts, TCCs, FCCs, or ATCCs; during the transition to PL2, they automatically transfer their
semantic knowledge between PLs based on syntax matching, which may be positive or negative
for their learning. The next chapter presents the quantitative studies that validate the model.

Chapter 6

Validation of the Model

[Aspects of this study have appeared in [30]]

The first research question in this thesis was to explore transfer and investigate how the prin-
ciples of semantic transfer in natural languages applied to patterns of transfer in the context of
relative novices transferring from first to subsequent PLs. The first study in this thesis, pre-
sented in Chapter 4, explored how novice programmers transfer knowledge between program-
ming languages. The results showed that semantic transfer occurred while learning a second
programming language based on syntax similarities.

Chapter 5, presented the development of a Model of Programming Language Transfer (MPLT)
based on the first exploratory study results, natural and programming language theories, and cog-
nitive theories. In the model, a relative novice programmer already has knowledge of concepts,
semantics, and syntax in PL1. When the learner reads PL2 programs in the early stages of learn-
ing PL2, the semantic transfer occurs from PL1 to PL2 based on the syntax similarities between
PL1 and PL2. While perceived syntax similarities may be helpful in understanding PL2 (TCC),
they can also be harmful (FCC), and sometimes there is no transfer at all (ATCC).

This chapter concerns the validation of the MPLT. To do that, four studies (referred here as
Study 2a, Study 2b, Study 2c, and Study 2d) that assessed students’ comprehension of programs
were designed as follows:

• It was important to give students a comprehension quiz in PL1 on concepts they learned
to get the baseline of their existing conceptual and semantic knowledge.

• Students were also given a code-comprehension quiz in PL2 to assess the transfer process
between PL1 and PL2. The PL2 quizzes were given in two sets of studies:

1. The first set of studies (Study 2a and Study 2b) assess semantic transfer from pro-
cedural Python to object-oriented Java before the Java programming language in-
struction. These studies were designed to investigate the automatic/implicit transfer
mechanisms based on the MPLT hypothesis.

73

CHAPTER 6. VALIDATION OF THE MODEL 74

2. The second set of studies (Study 2c and Study 2d) assess semantic transfer between
procedural Python (version 3.0) and object-oriented Java (version 13) after Java
programming language instruction. These studies are designed to investigate the
transfer effects on students when they are taught the second PL, but without the
teacher using specific transfer pedagogies to help them transfer. Furthermore, these
studies will help investigate if transfer challenges persist even after PL2 instruction.
In short, does typical PL2 teaching overcome/correct any incorrect transfers made
implicitly by students and detected in the first point above? It should be noted that
the curriculum restricted the concepts used in the study. For example, a Java for
loop was used instead of a foreach loop because the students had not learned
the foreach loop during the time of the study.

In order to investigate transfer using these kinds of code comprehension-based quizzes, it
is necessary to analyze PL1 and PL2 to find common concepts. The second step would be to
develop code snippets representing PL1 and PL2 for the same concept categorized into TCC,
FCC, and ATCC. Lastly, it is necessary to find ways of administering these code comprehension
exercises in PL1 and PL2 with the code snippets across the three categories of TCC, FCC, and
ATCC.

This chapter begins with the proposed hypotheses that validate the model, followed by a
section that describes the methods used to develop the transfer test instrument suitable for code-
comprehension-based tests. The section involves the selection and analysis of common con-
cepts, the process of designing code snippets, and the mappings of these code snippets into
TCC, FCC, and ATCC between PL1 and PL2. The next section of this chapter describes the
development of transfer quizzes. This section describes how the quizzes were designed from
the code snippets and the way these quizzes were administered across the three categories FCC,
TCC, and ATCC. The rest of the chapter describes the participants, data collection, data analysis,
and study results. The last section of the chapter concludes with a discussion.

6.1 Hypotheses

The hypotheses for this study are developed based on the learning process by the MPLT. It is
hypothesized that when students are assessed using code comprehension quizzes in PL1 and
PL2, there will be differences in the understanding of concepts in PL2 as compared to PL1. The
difference is measured by the score of individual concepts in a given quiz in each study in the
three construct categories outlined by the model (TCC, FCC, ATCC). Thus the hypotheses for
this study are as follows:

• Hypothesis 1: There will be no significant difference in the score for concepts involving
TCC between PL1 and PL2.

CHAPTER 6. VALIDATION OF THE MODEL 75

• Hypothesis 2: There will be a significant difference in the score for concepts involving
FCC between PL1 and PL2 such that PL2 score will be less than PL1 score.

• Hypothesis 3: There will be significant difference in the score for concepts involving
ATCC between PL1 and PL2 such that PL2 score will be less than PL1 score.

6.2 Instrument

In order to explore the transfer between two languages using the MPLT, compatible testing
instruments are considered a necessity. There are currently no validated instruments to measure
PL transfer. Therefore, the focus of this section describes the development of the instrument and
the rationale behind it.

Well-designed test instruments developed for their intended purpose have the potential to
provide significant benefits to students and educators [108]. In order to ensure the quality
and validity of the instrument, careful procedures were followed in its design. Some books
in Education and Psychology have provided guidelines for developing valid tests. In computing
education, Tew et al. [109, 110] proposed a validated language-independent assessment instru-
ment (FCS1) for programming constructs for university students studying introductory CS1 pro-
grams. A Second CS1 Assessment (SCS1) was also developed as an isomorphic version of the
FCS1 [86]. Other computing education researchers have also developed validated instruments
for assessing the learning of computational concepts and constructs in different programming
environments [111, 112]. However, the developed instruments do not cater for assessments that
assess the transfer of knowledge between programming languages. Therefore, for this thesis, a
custom PL transfer instrument for Python and Java was developed.

The approach followed in designing the instrument to validate the model is as follows:

1. Identification of the purpose for the instrument

2. Identification of common concepts in PL1 and PL2 for the instrument

3. Development of the code snippets for the PL concepts

4. Classification of common concepts between PL1 and PL2 into TCC, FCC and ATCC

5. Verification of categorisations

6. Development of the transfer quiz

1. Identification of the purpose for the instrument: The MPLT was developed based on how
relative novice programmers read/comprehend PL2. To validate the model using comprehension-
based quizzes, it was necessary to create an instrument that determines competency in under-

CHAPTER 6. VALIDATION OF THE MODEL 76

standing PL concepts relative to transfer and the MPLT. The development of such an instrument
can be used as a guideline for research on other PL transfer contexts.

3. Identification of common concepts in PL1 and PL2 for the instrument: According to
Sethi, [113], the origins of programming languages lie in the machines which have common con-
cepts such as Data, Arithmetic operations, Assignments, and Control flow. High-level languages
such as Python and Java were designed to allow programmers to write instructions in a language
easier to understand than low-level machine language. Some common concepts underlie most
of these high-level languages and may be represented syntactically in various ways.

The students in this study were transitioning from Python 3.0 to Java 15. This step, there-
fore, aimed to identify common concepts shared by the two languages under study (Python and
Java). PL2 concepts that the students had not learned yet during the time of the study were not
included in the instrument (e.g., Inheritance and Polymorphism in Java). Therefore, the existing
curriculum restricted the choice of concepts during that time. For example, students had been
introduced to Python functions in their first programming course and were now introduced to
Java and object orientation, having not explicitly been exposed to object orientation in Python.
Therefore a decision was taken to test whether students could benefit from conceptual transfer
from Python functions to Java methods. Java methods are similar to Python functions, being
a sequence of steps that can be referenced from elsewhere in a program. However, Java meth-
ods are scoped by their parent class, either as an instance of static methods, whereas Python
functions are scoped by their parent modules. In addition, students had not yet learned some
of the new features of the Java 13 version. The final list of common concepts between the two
languages was as follows:

• Variables and Identifiers (Variable declaration and Assignments, Dynamic (Python) /
Static typing (Java))

• Primitive Types (Types (e.g. Int, Boolean, Float) and Type conversions)

• Operators (Arithmetic and Logical operators)

• Control Structures (If-statements, For-loops, While-loop, Scoping)

• Functions/Methods (Parameters, Arguments and Return values, calls, Scoping).

• Non-primitive types (Lists, Arrays, Dictionaries (Python), Objects (Java))

3. Development of the code snippets for the PL concepts: Programming languages provide
language constructs for organising computations [113]. These constructs are composed of lex-
ical tokens and form the basic building blocks of programs that are syntactically allowable in a
programming language. An example of a construct for a Control structure concept is the While

CHAPTER 6. VALIDATION OF THE MODEL 77

Loop. Programs can be built with one or more constructs; for example, when the program is
longer, it will need more constructs and use some constructs repeatedly. In order to assess PL
transfer for relative novices, it was best to select short code snippets that represent the lowest
basic level of a PL concept identified in the previous step. The rationale for this was to reduce
the number of difficulties the students might encounter that are unrelated to transfer. It should
be noted that even with this approach, some of these basic constructs may encompass other
constructs to be syntactically correct. For example, the syntax of the While loop consists of a
Boolean expression and a block of code. The explanation for the semantics of a While loop
is that when the Boolean expression is evaluated to true, then the block of code in the loop is
executed. This continues until the Boolean expression is evaluated to false. The code snippets
selected will be presented in the next step.

4. Classification of common concepts between PL1 and PL2 into TCC, FCC and ATCC
The code snippets identified in the previous step were categorized into TCC, FCC, and ATCC
as follows:

• Identification of similarities in Syntax : The initial step was to categorize the common
concepts based on the similarity of Syntax between PL1 and PL2. The language tokens
that may stimulate transfer were chosen guided by the first exploratory study findings.
In this exploratory study, participants based their similarity between Python and Java on
lexical tokens such as keywords (for, if-else, while), literals (int, Boolean, String), oper-
ators (+, -, /, *) and separators (, (, ;). Identifier names did not seem to affect the transfer
process.

Secondly, it was important to get the PL grammar/notation similarity. This is because
even if the tokens are similar, sometimes the order of lexical tokens can be different be-
tween languages, affecting how students understand them. The Syntax of a programming
language is usually specified using some context-free grammar that specifies the syntax
rules of a language e.g., BNF [114]. For example, the rules of simple addition in Python
and Java are <addition> = <number>+<number>. In the exploratory study,
participants also based their similarities on pattern recognition.

• Identification of similarities in Semantics:

The semantics of a programming language describes the meanings of syntactically valid
programs or the processes a computer follows when executing a program in that language.
As noted in the MPLT design, these come between concepts and syntax. The paired
code snippets were compiled/executed in each language to ensure that the two languages
share/do not share the same meaning for a given concept. In this scenario, the similarities
in the meaning of a program represented in two languages were taken as the output it
produces, rather than the formally-defined semantics embodied in the execution process

CHAPTER 6. VALIDATION OF THE MODEL 78

that generated the output. The limitation with this method is that the syntax in different
languages may give the same output for certain examples, even though their semantics
are quite different. This thesis, therefore, aims to provide the opportunity to discuss such
differences in the classroom and give a deeper understanding of the underlying machine
model.

It should be noted that there was no standard measure of similarity in the classification of
common concepts.

5: Verification of categorisations: Academics well-versed in programming language design
and the Python and Java lecturers from the two universities (Glasgow and Norway) reviewed the
categorizations to provide content validity evidence and ensure that all constructs are mapped
well. The initial categorizations were done by the researcher. The researcher then shared the
categorizations with the supervisor for verification. After that, the categorizations were shared
with two other lecturers who taught Java and Python. There were discussions between the re-
searcher, the supervisor, and lecturers to verify the categorizations. Furthermore, some concepts
in the categorizations were tested in pilot Study 1.

Each concept was categorized as belonging to FCC, TCC, or ATCC. The code snippets
in both languages were made to look similar to simplify the explanation of the categorized
examples, e.g., the identifier names and literal values were similar. The identifier names and
literal values were not necessarily the same in the actual quizzes, as can be seen in the actual
quiz (Java and Python questions) in Appendix B.

Figure 6.1 shows the example of a While loop concept, which was categorized as a TCC
concept. Figure 6.2 is the Type coercion FCC concept categorised as FCC. An example of the
Data Structure concepts is in Figure 6.3. This concept is categorized as ATCC.

The categorization process described here can be used as a guideline, but it is not rigid or a
clear black and white process. The similarity of the two languages was based on the researcher’s
perceptions with confirmation from PL experts and lecturers. The degree of perceived similarity
can differ from learner to learner and from teacher to teacher, based on several factors, such
as the degree of exposure to other languages and the depth of knowledge of programming con-
structs. As noted early, the similarity determined by the researchers was reviewed by knowl-
edgeable teachers and PL experts and deemed reasonable. Automated natural language tools
exist, and while not used here, are described in further work.

6. Transfer Quiz Development: Given that the MPLT was developed based on relative novice
programmers comprehending code in PL2, choosing a code comprehension-based quiz seemed

CHAPTER 6. VALIDATION OF THE MODEL 79

Figure 6.1: Example of the while loop concept in the TCC category

Figure 6.2: Example of the type coercion concept in the FCC category

Figure 6.3: Example of the data structure concept in the ATCC category

CHAPTER 6. VALIDATION OF THE MODEL 80

Figure 6.4: A sample TCC question on a While-loop construct which was given as a Java guess
quiz before students were given the Java instruction

Figure 6.5: A screenshot of a sample TCC question on a While-loop construct which was given
as a Python quiz

to be justified. Each quiz consisted of tracing questions in which the participants predicted the
execution of the code. These questions were chosen to determine the participants’ knowledge
more effectively, rather than using multiple-choice questions, where students are liable to guess.

To assess different kinds of semantic transfer, the questions in each quiz were categorized
into three equal sets of TCC, FCC, and ATCC constructs. Each quiz consisted of one-third of
the questions allocated to each model category. For example, each category (TCC, FCC, and
ATCC) was allocated four questions in a quiz with a total of 12 questions. The four questions in
each category were based on different constructs. The identifier names and literal values were
different in the two languages, to reduce stimulating transfer.

An example of a TCC question in both Java and Python for a While-loop construct before
students were given the Java instruction is shown in Figure 6.4 and Figure 6.5 respectively.

An example of a FCC question in both Java and Python for a Type-checking construct after
students were given the Java instruction is shown in Figure 6.6 and Figure 6.7 respectively.

CHAPTER 6. VALIDATION OF THE MODEL 81

Figure 6.6: A screenshot of a sample FCC question on a Type-checking construct which was
given after students were given the Java instruction

Figure 6.7: A screenshot of a sample FCC question on a Type-checking construct which was
given as a Python quiz

An example of an ATCC question in both Java and Python for a object-update construct after
students were given the Java instruction is shown in Figure 6.8 and Figure 6.9 respectively.

6.3 Participants

This section summarizes the participants involved in the studies that validated the model. It was
appropriate to recruit participants transitioning from their first programming language to their
second programming language to validate the MPLT’s hypothesis and investigate how relative
novices transfer knowledge to second programming languages. Therefore, the studies were
conducted at the University of Glasgow in the Computing Science department. This univer-
sity exposes students to different programming languages during their CS studies. The studies
followed the order of students’ enrollment at varying levels of their introductory CS courses.
Therefore, the studies that included undergraduate students were conducted in their second year
Java (PL2) course after they learned one year of Python (PL1) in the previous year. The study
that included postgraduate students was conducted in their second semester of learning Python
(PL2) after learning Java (PL1) in the first semester.

The study was advertised through emails and again in their first lesson of PL2 to recruit
participants. All students were allowed to participate voluntarily and told that participation

CHAPTER 6. VALIDATION OF THE MODEL 82

Figure 6.8: A screenshot of a sample ATCC question on an Object-aliasing construct which was
given after students were given the Java instruction

Figure 6.9: A screenshot of a sample ATCC question on an Object-aliasing construct which was
given as a Python quiz

CHAPTER 6. VALIDATION OF THE MODEL 83

Table 6.1: Participants in the four studies that validate the MPLT

Study Participants Participants/one
language/no PL2
exposure

Age
range

Year of study Year of
study

Language
transition

Study 2a 84 46 18-23 Undergraduate
(yr 2)

2020 Python to
Java

Study 2b 241 101 18-23 Undergraduate
(yr 2)

2021 Python to
Java

Study 2c 120 70 18-23 Undergraduate
(yr 2)

2019 Python to
Java

Study 2d 50 33 23-37 Msc (yr1) 2020 Java to
Python

would not affect their grades in the course. Students were also encouraged to use anonymous
self-created identity names in the assessments. Participants received consent forms to participate
in the study.

Participants were given a demographic survey to get their prior programming language ex-
perience. The research focus of the study was to find only participants with only one program-
ming language knowledge; however, in a normal classroom setting of introductory programming
courses, it is a challenge to find participants with only one programming language. Some par-
ticipants reported that they know multiple languages, including some already exposed to Java
programming language. Therefore, to increase the internal validity and strengthen the research
design, the data that will be presented will be for homogeneous undergraduate participants who
had no PL2 (Java) exposure and also had an average of one year of programming experience.
The postgraduate participants had an average of six months of programming experience in PL1.
The participants summary for each study is presented in Table 6.1.

6.4 Data Collection Procedures

The study consisted of two stages of studies. The first studies (Study 2a and 2b) were conducted
at the first session of the Java programming language course before the students were given the
Java instruction. The students were given an online code-comprehension guess quiz in Java. The
students were then given a Python code-comprehension quiz covering similar questions. Both
the quizzes consisted of a total of nine questions which consisted of three questions per concept
category (TCC, FCC, and ATCC), Appendix B.

The second set of studies was conducted at week 3 (Study 2c) and week 6 (Study 2d) of
students learning the second programming language; The students were given handouts of code-
comprehension quizzes in both Java and Python. Study 2c had a total of 12 questions consisting
of four questions per category, while Study 2d had 18 questions comprised of six questions per
category, see Appendix B.

CHAPTER 6. VALIDATION OF THE MODEL 84

The quizzes took 20-25 minutes to complete for all four studies. All participants could finish
the quizzes before or on the given allocated time without reporting any difficulty in completing
the studies. Participants were given both the Python and Java quizzes on the same constructs
during each study. To establish the baseline of participants’ conceptual and semantic knowledge
that they have already acquired from the first year, they were given a PL1 quiz. The least known
language/ the second programming language was administered first, then after 10 minutes, the
PL1 (most known language) was administered. It was to reduce the chances of stimulating
transfer from Python to Java.

6.5 Data Analysis

This section reviews the processes followed at the data analysis stage. To validate the MPLT
hypothesis, the quizzes were designed by mapping concept categories (TCC, FCC, ATCC) be-
tween the languages (Python and Java) as described in Section 6.2. This design helps find the
participants’ performance of different concept categories between the two languages based on
the independent variables (TCC, FCC, and ATCC). This comparison in performance will give
us a clearer picture of how transfer occurs when relative novices learn a second PL.

The results were recorded in an Excel document with ’0’ allocated for an incorrect answer
and ’1’ allocated for a correct answer for each question. For example, a quiz with a total of 12
questions meant that each participant could be awarded a maximum of 12 marks.

The quantitative analyses for all the four studies in this chapter were conducted in an in-
tegrated development environment for R (RStudio 1.4.1103, 2009-2021). The mean score in
each category was calculated, which helped analyze a more accurate score for conceptual un-
derstanding and semantic transfer between the two languages. To validate the hypotheses, the
results of the Python and Java tests were compared. When comparing the significance in the
score between the assessments, the Wilcoxon signed-rank test was used instead of a paired-
sample t-test because the dependent variable (scores) was not normally distributed. The normal
distribution was checked using the Shapiro–Wilk test. The Wilcoxon signed-rank test is a non-
parametric test used to compare paired samples. These tests are appropriate for measuring the
within-participant score results. To determine whether the statistical tests in these studies are
significant or not, the usual consensus adopted by computer science education research [115]
was followed. Thus, any p-value below .05 was considered statistically significant. The effect
size was calculated too. A recommendation from Cohen’s classification of effect sizes which is
small (d = 0.2), medium (d = 0.5), and large (d � 0.8) was used.

CHAPTER 6. VALIDATION OF THE MODEL 85

6.6 Results of Transfer Before learning Java

This section presents the results of the first set of studies as outlined at the start of the chapter
that evaluates semantic transfer on participants’ first encounter with the second programming
language before they were given the PL2 instruction. The primary goal of these studies was to
assess the possible automatic or implicit semantic transfer when students have not yet learned
the second programming language to extend the understanding of transfer between programming
languages. The MPLT proposes that semantic transfer occurs due to syntax similarities between
programming languages. The participants were asked to guess the Java programming language
(PL2), which they had not learned before, to assess if their guess would match the MPLT’s
hypothesis. This section includes an analysis of a within-participant study that compares transfer
between the three transfer categories of the MPLT. The section concludes with a discussion of
the transfer findings presented. The two studies were conducted in the same Java course with
students enrolled in two different years.

6.6.1 Study 2a Results

In this section, the findings from the Python quiz and the Java guess quiz given to 46 participants
who had just completed their first year learning programming via Python and were now enrolled
in the second year Java programming course in the year 2020 are presented.

The findings presented in this section include comparing the MPLT’s TCC, FCC, and ATCC
scores of the Python quiz and the Java quiz. The results showing the mean score grouped by
concept category are presented in Figure 6.10.

A Wilcoxon signed-rank test using paired-samples indicated that there was a significant dif-
ference in performance as represented by the score data between the Python quiz and the Java
quiz for the FCC (p <0.001), ATCC (p <0.001) and TCC (p<0.001). In general, participants
performed much better in Java in TCC (2.08, out of 3) than in FCC (0.14, out of 3) and ATCC
(0.58, out of 3). The mean score for FCC in Python was 2.41 while in Java it dropped signif-
icantly to 0.14. A similar result was seen in the ATCC which showed a large significant drop
in mean score from Python (2.15) to Java (0.58). Each category comprised of questions on dif-
ferent constructs, as a result, a Wilcoxon signed-rank test was computed for each construct for
further analysis (See Table 6.2). The results showed that there were significant differences with
medium-large effect size between all the constructs except for the TCC constructs, the While
loop construct and the String concatenation.

Participants performed significantly better in the Python quiz than in the Java quiz in all
the FCC constructs variable reassignment, block scoping, and equality. For example, in the
variable reassignment construct, only 9% of the participants got it correct in Java while 91% of
the participants got it correct in Python. Participants also performed significantly better in the

CHAPTER 6. VALIDATION OF THE MODEL 86

Figure 6.10: Study 2a Participants’ mean score grouped by concept category and programming
language: N=46

Table 6.2: Mean score, p-value and effect size of individual concepts tested in Study 2a Guess
quiz: N=46

Category Construct Python Java Wilcoxon P-Value Effect-size
TCC String concatenation 0.95 0.84 0.07 0.32
TCC While loop 0.78 0.65 0.09 0.30
TCC Functions/methods 0.93 0.57 <0.001 0.72
FCC String equality 0.86 0.04 <0.001 1.12
FCC Block Scoping 0.63 0.01 <0.001 0.96
FCC Variable Reassignment (static/dynamic) 0.91 0.09 <0.001 1.12
ATCC Object update 0.81 0.19 <0.001 0.96
ATCC Object retrieval 0.82 0.30 <0.001 0.85
ATCC Object aliasing 0.51 0.07 <0.001 0.74

CHAPTER 6. VALIDATION OF THE MODEL 87

Figure 6.11: Study 2b Participants mean score grouped by concept category and programming
language: N=101

Python quiz than in the Java quiz in all the ATCC constructs.

6.6.2 Study 2b Results

In this section, a replica of Study 2a is presented. The findings from the Python quiz and the
Java guess quiz given to 101 participants transitioning from procedural Python to object-oriented
Java in 2021 are presented. The aim is to determine if the replicated study can achieve the same
or similar results as in Study 2a. This will give greater validity to the findings of implicit transfer
and can mean that it is more likely that these results can be generalized to the larger population.

The findings presented included a comparison between the TCC, FCC, and ATCC scores of
the Python quiz and the Java quiz, just like in Study 2a. This was to investigate how syntax sim-
ilarities between Python and Java and subsequent semantic transfer assisted the participants in
their first encounter with the Java (PL2) language. The results showing the mean score grouped
by concept category are presented in Figure 6.11.

A Wilcoxon signed-rank test using paired-samples indicated that there was a significant

CHAPTER 6. VALIDATION OF THE MODEL 88

Table 6.3: Mean score, p-value and effect size of individual concepts tested in Study 2b Guess
quiz: N=101

Category Construct Python Java Wilcoxon P-Value Effect-size
TCC String concatenation 0.94 0.87 0.02 0.41
TCC While loop 0.83 0.62 <0.001 0.73
TCC Functions/methods 0.91 0.64 <0.001 0.88
FCC String equality 0.83 0.08 <0.001 1.57
FCC Block Scoping 0.54 0.02 <0.001 1.33
FCC Variable Reassignment (static/dynamic) 0.94 0.15 <0.001 1.60
ATCC Object update 0.75 0.27 <0.001 1.20
ATCC Object retrieval 0.79 0.38 <0.001 1.01
ATCC Object aliasing 0.59 0.33 <0.001 0.90

difference in performance as represented by the score data between the Python quiz and the Java
quiz for the FCC (p <0.001), ATCC (p <0.001) and TCC (p<0.001). The results revealed that
participants performed much better in Java in TCC (2.14, out of a total of 3) than in FCC (0.25)
and ATCC (0.71). Similarly to Study 2a, the mean score for FCC in Python (2.32) dropped
significantly to 0.25 in Java. A similar result was seen in the ATCC which showed a large
significant drop in mean score from Python (1.86) to Java (0.71).

A Wilcoxon signed-rank test was computed for each construct in the quiz for further analysis
(see Table 6.3). The results showed that there were significant differences between all the con-
structs between Java and Python scores with most constructs showing a large effect size except
for the TCC (While loop and String Concatenation).

6.7 Results of Transfer After beginning to Learn Java

This thesis claims that semantic transfer based on syntax similarities plays a role in relative
novices’ conceptual transfer between programming languages; the implementation of deliberate
semantic transfer interventions during relative novices’ second language learning can lead to
improved conceptual transfer and understanding in learning a second programming language.
The previous studies have already shown initial evidence of the first part of this claim. The
purpose of the second set of studies (Study 2c and 2d) in this section is twofold. The first aim is
to provide further evidence of semantic transfer proposed in the MPLT hypothesis in the context
of the early stages of participants learning the second programming language. The second aim
was to investigate the transfer process when the teacher does not use transfer strategies in the
classroom.

Study 2c investigated 70 relative novice programmers (undergraduate students) transition-
ing from procedural Python to object-oriented Java, while Study 2d investigated 33 relative
novice programmers (postgraduate students) transferring from object-oriented Java to procedu-
ral Python. At this point of the studies, the participants had learned three weeks of Java (PL2)

CHAPTER 6. VALIDATION OF THE MODEL 89

Table 6.4: Mean score, p-value and effect size of individual concepts tested in Study 2c: N=70

Category Construct Python Java Wilcoxon P-Value Effect-size
TCC String concatenation 0.99 0.96 0.424 0.14
TCC Operator precedence 0.86 0.84 0.766 0.05
TCC While loop 0.91 0.86 0.266 0.20
TCC Functions/methods 0.84 0.71 0.069 0.40
FCC Array equality 0.94 0.11 <0.001 1.34
FCC String coercion 0.83 0.14 <0.001 1.17
FCC String multiply 0.90 0.47 <0.001 0.82
FCC Int division 0.73 0.54 0.024 0.41
ATCC Object retrieval 1.00 0.59 <0.001 0.95
ATCC Object update 0.63 0.59 0.298 0.04
ATCC Object assignment 0.93 0.58 <0.001 0.85
ATCC Object aliasing 0.63 0.11 <0.001 1

and six weeks of Python (PL2), respectively. The assessments allocated to the participants con-
sisted of two code comprehension quizzes (Java and Python) categorized by MPLT concepts
categories TCC, FCC, and ATCC.

6.7.1 Study 2c Results

This study aimed to determine if it can achieve similar results as in Study 2a and 2b and explore
how semantic transfer persisted or changed as students started learning the PL2.

In analyzing the results of Study 2c, a comparison was made between the TCC, FCC, and
ATCC scores of the Python quiz and the Java quiz. The aim was to test if semantic transfer from
the known Python language affects the learning of Java positively or negatively by comparing
the scores in these categories as predicted by the model. Figure 6.12 shows the findings of
grouping participant mean scores of correct answers (out of a total of 4) by concept category
and language from the two quizzes (Java and Python).

A Wilcoxon signed-rank test using paired samples was adopted for the analysis of the effects
of transfer in the TCC, FCC, and ATCC categories. The results indicated that the difference was
significant in performance as shown by the scores between the Python and the Java quiz for
the FCC (p <0.001), ATCC (p <0.001) and TCC (p= 0.018). As expected, in accordance with
the MPLT hypothesis, participants performed much better in Java in TCC (3.37, out of 4) than
on FCC (1.27) and ATCC (1.89). The mean score for the Python FCC concepts was 3.40 but
dropped significantly to 1.27 in Java, as shown in Figure 6.12. The mean score for the Python
ATCC concepts also dropped from 3.21 to 1.89 in Java. These findings are similar to Study 2a
and Study 2b when participants were guessing the Java quiz.

It was interesting to further investigate how the participants performed in each construct
pair (TCC, FCC, and ATCC). Therefore a Wilcoxon signed-rank test was computed for each
construct (see Table 6.4).

CHAPTER 6. VALIDATION OF THE MODEL 90

Figure 6.12: Mean scores of individual concepts tested in Study 2c when participants in week 3
of learning Java (PL2): N=70

CHAPTER 6. VALIDATION OF THE MODEL 91

As expected and proposed by the MPLT hypothesis, there was no significant difference in all
the four individual TCC constructs between Python and Java quiz score, while loop (p=0.266),
functions/methods (p=.069), operator precedence (p=.766), and string concatenation (p= .424).
The effect size for all TCC constructs was also small.

Also, as expected, there was a significant difference in all the four individual FCC constructs
between Python and Java quiz score FCC constructs. The scores of each construct reduced sig-
nificantly in Java as compared to Python, integer division (p=.024), array equality (p<0.001),
string multiplication (p<0.001) and string coercion (p<0.001). This implies that most partic-
ipants performed poorly in Java (PL2) when the Java and Python syntax was similar, but the
semantics were different. Three (Array equality, String coercion and String multiply) of the four
FCC constructs showed a large effect size.

As expected, there was also a significant difference between the score of Python and Java
constructs on ATCC concepts, objects aliasing (p<0.001), objects retrival (p<0.001), and objects
assignment (p<0.001). These constructs also had a large effect size. There was no significant
difference between the scores for the object update (p=.298) however.

The results of the analysis taken as a whole are consistent with the MPLT semantic trans-
fer hypothesis. The participants’ learning of TCC concepts was affected positively when they
learned Java and negatively when they learned the FCC and ATCC concepts. These results
seem to follow the same pattern as the results in Study 2a and 2b, but in this study, participants
performed better in the functions/methods TCC concept. This is probably because unlike in
previous studies, this time the participants had learned the concept in Java.

6.7.2 Study 2d Results

The previous studies revealed some fundamental issues of semantic transfer on relative novices
transferring from Python to Java. In this section, the bidirectional transfer with 33 post-graduate
students who have knowledge of Java (PL1) and are at their sixth week of learning Python
(PL2) was investigated. This will give deeper insights into the claims that this MPLT hypothesis
makes.

To examine the MPLT hypothesis, the TCC, FCC, and ATCC scores of the Python quiz
(PL2) and the Java quiz (PL1) were compared. The results revealed participants scored higher
in Python (PL2) in the TCC (5.33, out of 6) than on FCC (3.12) and ATCC (3.84), as presented
in Figure 6.13. These findings corroborate with Study 2a, 2b, and 2c.

A mean score of the individual constructs tested was calculated as shown in Table 6.5 to gain
deeper insights into the results. Just like in Study 2a, 2b and 2c, there was no significant differ-
ence in all six TCC scores between the two tests as predicted in hypothesis 1. The effect size for
all the TCC constructs was also small. The p-value for each of them was, operator precedence
(p=1), functions/methods and parameters (p=.233), If-conditional (p=1), functions/methods and
scope (p=.789), while loop (p=.223) and string concatenation (p= 1).

CHAPTER 6. VALIDATION OF THE MODEL 92

Figure 6.13: Mean scores of individual concepts tested in Study 2d of participants in week 6 of
learning Python (PL2): N=33

CHAPTER 6. VALIDATION OF THE MODEL 93

Table 6.5: Mean score, p-value and effect size of individual concepts tested in Study 2d: N=33

Category Construct Java Python Wilcoxon P-Value Effect-size
TCC If Condition 1.00 0.99 1 0
TCC String concatenation 1.00 0.97 1 0
TCC Operator precedence 0.96 0.94 1 0
TCC Functions/methods parameters 0.88 0.79 0.233 0.22
TCC Functions/methods scope 0.79 0.76 0.789 0.04
TCC While loop 0.76 0.88 0.223 0.22
FCC For loop 0.91 0.15 <0.001 0.91
FCC Int division 0.85 0.60 0.063 0.34
FCC String coercion 0.67 0.09 <0.001 0.75
FCC String multiply 0.39 0.69 0.008 0.48
FCC Array equality 0.33 0.67 0.013 0.46
FCC Type checking 0.33 0.90 <0.001 0.72
ATCC Object retrieval 0.97 0.97 1 0
ATCC Object update 0.97 0.97 1 0
ATCC Object aliasing 0.53 0.27 0.023 0.41
ATCC List retrival 0.58 0.73 0.145 0.26
ATCC List update 0.56 0.73 0.145 0.26
ATCC List aliasing 0.21 0.18 0.80 0.05

As expected and just like in the previous studies, there were significant differences in five of
the FCC constructs scores between the two languages, type checking (p<.001), string coercion
(p<.001), array equality (p=.013), string multiplication (p=.008) and for loop (p<.001) with
medium to large effect size. However there was no significant difference in the FCC int division
construct (p=.063). Interesting new trends emerged for the results, unlike in the previous studies
of Python to Java transfer, the participants transferring from Java to Python had mixed results
in the score of Java (PL1) and Python (PL2): for some instances as expected Java (PL1) score
was higher than Python (PL2) score (e.g. String coercion) while for other cases unexpectedly
Python score was higher than Java score (e.g. Type checking).

Unexpectedly again, subjects performed almost the same in Java and Python in the ATCC
constructs with no significant difference in all constructs except for object aliasing (p=.023).
The effect size for all the ATCC constructs was also small. The results revealed mixed patterns,
with students scoring more in Python (PL2) than Java (PL1) (e.g. list update while in other
instances they scored more in Java (e.g. object aliasing) than in Python. In these constructs, it
appears students transferred better from Java to Python than from Python to Java.

6.8 Discussion

This chapter presented four studies aimed at validating the MPLT by assessing students’ com-
prehension of programs in PL1 and PL2. The first set of studies (study 2a and 2b) evaluated the
transfer from procedural Python to object-oriented Java before students were given Java (PL2)

CHAPTER 6. VALIDATION OF THE MODEL 94

instruction. The second set of studies (study 2c and 2d) evaluated transfer after students had
been given PL2 instruction. In this latter set of studies, Study 2c investigated transfer from pro-
cedural Python to object-oriented Java while Study 2d investigated bi-directional transfer from
object-oriented Java to procedural Python. The section presents the discussions of the results
through the MPLT lens. Furthermore, additional emergent findings of relative-novice transfer
are discussed.

Positive Effects of Semantic Transfer on TCC

Hypothesis 1 proposes no significant difference in the score for concepts involving TCC between
PL1 and PL2. According to the MPLT, the rationale is that if a learner encounters a TCC while
learning PL2, the semantic transfer will occur from PL1 to PL2 because of syntax matching,
resulting in a positive impact on learning PL2. The findings revealed that all the four studies
took the same direction in confirming this hypothesis with minor differences on the two sets of
the study (before and after instruction). In all the studies, participants performed with higher
scores in the TCC concepts as compared to the FCC and ATCC concepts. The participants were
referring to their PL1 to understand PL2 as they also did in Study 1 (exploratory study), which
positively impacted learning.

Before learning Java, participants in the first set of studies had no prior exposure to Java;
therefore, they had no previous knowledge of Java syntax, semantics, and concepts. Even with-
out the knowledge of Java, semantic transfer based on syntax similarities yielded positive results
in Java for participants on the TCC concepts. Participants in the second set of studies performed
even better than participants in the first set in these concepts by showing no significant difference
in all the TCC constructs in both Python and Java. These results show that the positive learning
effect on the TCC concepts in the early stages of learning PL2 happens rapidly.

The degree of perceived similarity between PL1 and PL2 may vary in different constructs,
therefore, affecting learning PL2 on these constructs differently, yet still positively. For exam-
ple, for all the four studies, participants performed equally similar (no significant difference
in the scores) in both Python and Java in the While loop. Participants glossed over the minor
differences and made connections with syntactic elements (e.g., while, =, print,+) and the pat-
tern/notation of the two languages. It could be because, in addition to the token similarities
between the languages, there is no difference in the pattern/notation of constructing a While
loop in Python and Java as explained in Section 6.2. These positive effects of semantic transfer
were also seen in the String Concatenation construct for all studies except for Study 2a.

However, participants performed with lower scores on the functions/methods TCC construct
as compared to other TCC constructs. It meant that syntax/pattern similarity played a role in
assisting semantic transfer. The reason for the participants performing lower in this construct is
that there are fewer token similarities in (functions/methods as compared to the other constructs.
Java methods can confuse some students because they have the declaration of parameter and

CHAPTER 6. VALIDATION OF THE MODEL 95

method return types, unlike Python. These findings show that the more similar the constructs,
the easier to effect semantic transfer between the two languages. Also, another important point
is that categorization of constructs can vary according to how the researcher/teacher perceives it.
For example, the functions/methods could have been categorized as a TCC; however, maybe stu-
dents perceived it differently. It brings in the dimension of student variations when recognizing
similarities [28].

Other transfer studies in computing education have reported the benefits of language similar-
ities when learners learn new languages [19,22,23]. For example, Scholtz and Wiedenbeck [19]
reported that learners of the Icon language benefited from syntax matching of looping constructs
that have similar syntax and semantics in Pascal.

Negative Effects of the Semantic Transfer on FCC

Hypothesis 2 proposes that there will be a significant difference in the score for concepts involv-
ing FCC between PL1 and PL2. According to the MPLT, if a learner encounters an FCC while
learning PL2, the semantic transfer will occur from PL1 to PL2 because of syntax matching, re-
sulting in a negative impact on learning PL2. This hypothesis was confirmed in all four studies
in this chapter. Participants performed worse in the FCC construct than other constructs (TCC
and ATCC). Unlike in TCC, there was no difference in performance on the FCC construct before
and after the Java instruction. This means that the negative semantic transfer can be persistent
even after students are given the instruction in PL2.

There was a significant difference in the score of the FCC construct in Python and Java
for each individual FCC construct in all four studies, as predicted in hypothesis 2. In studies
2a, 2b, and 2c that covered transfer from procedural Python to object-oriented Java, partici-
pants performed poorly in all the FCC constructs in Java compared to Python. For example, in
the Variable reassignment construct, participants showed they made syntax mappings between
Python and Java and assumed that because syntax differences are so minor, the semantics are
also similar. In Study 2a, participants had the correct Python execution model for the variable
reassignment with 91% of them getting it right. Still, most of them (67%) carried the correct
Python variable reassignment model across to the Java code showing that they base their inter-
pretation on syntax similarities between Python and Java and then semantic transfer. It was also
the case in Study 2b, with 94% of the participants getting the construct correct in Python and
only 14% getting it right in Java. This shows that the concept carryover had inappropriately
occurred, rather than just being unable to answer the question. In Java, a variable is initially
declared to have a specific data type, and any value assigned to it during its lifetime must always
have that type. Since Python is dynamically typed, a variable may be reassigned to a value of a
different type.

In all the four studies, participants struggled with the equality (==) FCC construct. For
example, in Study 2c, participants performed significantly better in the Python (94% correct)

CHAPTER 6. VALIDATION OF THE MODEL 96

than Java (11% correct) on this concept with (77%) of them having negative semantic transfer
and giving an answer that corresponded to their Python answer. Learning was also impacted
negatively on the string coercion concept in Java. Most of the participants transferred their
semantic understanding of the Python concept and (76%) of them responded incorrectly that this
Java statement will produce a Type error:System.out.println("Friday is no:" +

1). These participants gave the same response in Python (83%): print ("Friday is

no:" + 1), in this case, they were correct. Unlike Python, the Java compiler can implicitly
convert an integer value to a string. This provides compelling evidence of negative semantic
transfer from Python to Java.

The difference in performance can be attributed to semantic differences between Python and
Java on concepts that look similar. The participants perceived them as TCCs hence transferred
their Python understanding of these constructs to Java. As described in the MPLT in Chapter 5,
learners mostly have one semantic model of the FCC in two languages even if the semantics of
that concept is different. The MPLT predicts that at the early stages of learning PL2, learners
struggle with holding two semantic representations of the same concept in two languages. This
means that their learning is affected negatively by these concepts. Just like in the TCC findings,
these results show evidence of implicit semantic transfer, which means that, without explicit in-
struction, the transfer mostly happens automatically and unconsciously when the syntax between
the two languages looks similar before or after having learned the PL2.

Overall, students did not benefit from mapping similarities between Python and Java when
learning their second programming language in the FCC concepts. The negative effects of
semantic transfer have also been reported in prior work in computer science education. For
example, Walker et al. [12] evidenced negative semantic transfer of Pascal (PL1) statement,
writeln, to a similar (but not semantically equivalent) Ada (PL2) statement Put Line.
Weintrop and Wilensky [17] also reported errors in students’ programs such as wrong relational
operators (e.g., ==), undefined variables, and incompatible type errors when students transi-
tioned from block-based languages to Java. In addition, other researchers in natural languages
have reported the persistence of semantic transfer as observed in this thesis [26]. Schmitt also
reported that semantic development could be a slow and unsuccessful process when learners
learn new languages [116]. Schmitt’s findings also found the persistence of negative semantic
transfer even after students had learned the concepts in PL2.

Minimal/no Transfer on ATCC

Hypothesis 3 proposes that there will be a significant difference in the score for concepts in-
volving ATCC between PL1 and PL2. According to the MPLT, if a learner encounters an ATCC
while learning PL2, the semantic transfer will not occur from PL1 to PL2 because the syntax
between the two languages looks different. Three studies of the transfer from procedural Python
to object-oriented Java confirm this hypothesis. In these studies, the participants performed sim-

CHAPTER 6. VALIDATION OF THE MODEL 97

ilarly in the ATCC constructs before and after the Java instruction. This is evidence that when
the syntax of the two languages looks different for the same concept, participants fail to implic-
itly transfer semantic knowledge from PL1 to PL2 on a concept they already know. Participants
were unaware they were already familiar with these concepts in their PL1.

For example, there was a lack of semantic transfer from Python to Java on the object aliasing
concept. Participants performed significantly better in Python (63% correct) than Java (11%
correct). However, this was still a challenging concept for them in Python [117] as shown
by 37% of the participants still struggling with this concept in Python. However, the 63%
of students who knew this concept in Python still failed to transfer this knowledge to Java.
The students who failed the Java objects aliasing gave the answer of copy semantics instead
of reference semantics, however, both Python and Java use reference semantics in composite
data structures [58] like objects. Failure to transfer this knowledge in the context of Scheme to
Java was also reported in Fisler at al. [117]. The similarity in objects and dictionaries is that
both of them represent a data structure, the difference is that unlike dictionaries, Java objects
implementation details are hidden [114]. The implementation details can be hidden, although
the learner is usually both the creator and user of a class and its objects and so may know,
in principle, that it is a data structure with fields, like a record or dictionary entries. These
findings showed that relative-novices have two mental representations of the same concept in
two languages if the syntax looks different as proposed in the model.

The results in Study 2d (transitioning from object-oriented Java to Python) were, however,
different from the other studies in that students performed almost the same in Java and Python in
the ATCC constructs. This could be because students found the Python programming language
easier to understand in these concepts when transitioning. This finding opens avenues for further
research.

Bi-directional Semantic Transfer

Other emerging findings in Study 2d that assessed transfer from object-oriented Java to proce-
dural Python revealed that the semantic transfer could happen in both directions. It means that
semantic transfer can occur from PL1 to PL2 and vice-versa from PL2 to PL1.

For example, Participants performed significantly better (67% correct) in the Java string
coercion versus the Python (1% correct). This is attributed to negative semantic transfer from
Java (PL1) to Python (PL2). On the other hand, most students performed better in Python (67%)
than Java (33%) in the Array equality. Other natural language transfer studies have also reported
Bi-directional transfer shown in this example [118–120].

The results from Study 2d can be attributed to several reasons: students’ prior knowledge on
the construct may have been very fragile hence changing easily (these participants had only four
months of learning Java (PL1)), the FCC construct may be more intuitive in Python than Java,
or the students were taught the construct in the Python language first before the Java language.

CHAPTER 6. VALIDATION OF THE MODEL 98

Another factor that may influence transfer is the level of study for the participants, e.g., these
participants were in their sixth week of learning the second language, which could mean they end
up knowing it more than the first language. But these findings are still crucial to the validation
of the MPLT hypothesis. As the model proposes, students in this study still held one semantic
model of the two languages; they struggled with having two semantic representations of a single
concept as elaborated in the model of PL Figure 5.2, Box A. These findings corroborate the
previous three studies.

6.9 Summary of Discussion

The findings from this chapter are important for studying transfer in second programming lan-
guage learning. First, they provide compelling evidence of semantic transfer between program-
ming languages as stated in the thesis statement and the MPLT. The results from these various
studies replicated the similar semantic transfer effects with different types of participants across
different time periods. The replication effect proves that semantic transfer is common among
relative novice programmers. The findings demonstrate the usefulness of the MPLT adopted
in this study as an objective and reliable means of examining transfer in second programming
language learning in the context of Python and Java.

In analyzing all the studies included in this chapter, we find that:

• The TCC concepts were found to be the easiest to learn when transiting from PL1 to PL2,
as confirmed in hypothesis 1. These findings are attributed to the syntax and semantic
similarities PL1 and PL2 share. It was also revealed that even before the students learn
PL2, they can implicitly make good guesses of the behavior of PL2 because they recognize
similarities in the syntax. The degree of similarity plays a role in transfer, e.g., the more
similar the syntax is between PL1 and PL2, the easier it is for semantic transfer to occur.
Educators can use this implicit transfer to help them effectively teach second programming
languages.

• FCC is the most challenging concept to learn in PL2 in all the four studies presented
in this chapter. The reason for this challenge could be because semantic transfer affects
learning negatively. The students transfer semantic knowledge between PL1 and PL2 due
to syntax similarities, but it becomes a problem when the PL2 semantics work differently
from PL2. Semantic transfer can occur from PL1 to PL2 and bidirectionally from PL2
to PL1. The findings confirm the MPLT where it shows that relative novices hold one
mental representation of the same concept in two languages that behaves differently in
each. The negative semantic transfer starts when students guess PL2 before learning it
and persist even after they have learned PL2. In teaching PL2, the educators can point out
the differences between PL1 and PL2 and take this as an opportunity to teach students a

CHAPTER 6. VALIDATION OF THE MODEL 99

deeper understanding of programming concepts, and this is explored in Chapter 9.

• Lastly, the results revealed minimal/no semantic transfer on ATCC concepts between PL1
and PL2. It has been shown that this is more challenging for students transitioning from
procedural Python to object-oriented Java (Study 2a, 2b, and 2c), as also confirmed by
other studies [9, 11], than for students transitioning from object-oriented Java to Python
(Study 2d). It could be because object-oriented languages like Java can already be a chal-
lenge for students as compare to Python language because of their abstract representation.
Other challenges in abstract conceptual learning has been confirmed in psychology re-
search by Gentner [87] and natural language research [28]. For ATCC concepts, second
language educators can point out the corresponding concept representations in PL1 and
map them to PL2.

These findings show that the model can be used to guide teachers of PL2. The significance
of the findings also is that students may have fragile knowledge of PL1 semantics and concepts
before they even start transferring to PL2; therefore, instructors can use PL2 learning as an
opportunity to deepen conceptual understanding. Lastly, educational programming language
designers need to consider the role of language similarities in learning.

Chapter 7

Teachers’ Experiences on Transfer

[Aspects of this study have appeared in [121].]

The claim of this thesis is twofold, as reflected in the thesis statement. The first claim is
that semantic transfer based on syntax similarities plays a role in relative novices’ conceptual
transfer between programming languages. The first preliminary study of this thesis, presented in
Chapter 4, confirmed this claim qualitatively and revealed that indeed semantic transfer did take
place based on syntax similarities when relative-novice programmers learn a second program-
ming language. In order to investigate the semantic transfer notion further and quantitatively, a
model (MPLT) suitable for programming language transfer based on the first preliminary study
findings was developed in Chapter 5. The model was validated in Chapter 6 with four exper-
iments investigating relative-novice programmers transferring between procedural Python and
object-oriented Java. The results highlighted that semantic transfer automatically occurs be-
tween PL1 and PL2 based on syntax similarities, which can result in positive transfer (TCC),
negative transfer (FCC), or no transfer (ATCC). The findings revealed other problematic issues
such as that students have fragile knowledge of PL1 and also that as a result of the fragile knowl-
edge, the bi-directional transfer can occur between PL1 and PL2.

Given these challenges of PL transfer, the second part of the thesis statement proposes that
the implementation of deliberate semantic transfer interventions during relative novices’ sec-
ond language learning can lead to improved conceptual transfer and understanding in learning
a second programming language. In order to explore this claim, a preliminary step is to ex-
plore PL transfer from the school teacher’s perspective at the secondary school level. There are
three main reasons for making teachers at the secondary school level the starting point of this
investigation. Firstly, all the previous experiments in this thesis explored PL transfer from the
context of university students. Therefore, further exploring the transfer phenomenon from the
teacher’s perspective could bring deeper insights into the transfer process as both students and
teachers are the key players in the process of learning. Such research can help bring the student
learning experiences and teacher teaching experiences closer together. Secondly, the previous

100

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 101

experiments focused on transfer at the university level; therefore, the school level research may
help confirm if students also experience the reported transfer challenges proposed by the MPLT
at the school level. Lastly, exploring the teachers’ perspective of transfer strategies can help
identify specific needs for teacher education when transitioning students to new programming
languages. Specifically, the findings from the teachers can highlight the ways the MPLT can
be used to improve transfer by investigating and implementing teaching strategies aligned with
the Model’s predictions (TCC, FCC, and ATCC) that will enhance second language learning
outcomes.

Therefore, this chapter presents a study that investigates high-school teachers’ current prac-
tices and attitudes towards second language learning and the teachers’ awareness of the trans-
fer issues from their classroom experiences. This chapter begins with presenting the research
questions, followed by a section that describes the participants. The next section describes the
interview protocol used to guide the researcher in conducting the interviews with teachers. The
sections that follow describe the data collection and analysis process. These include the descrip-
tions of the procedures of collecting, measuring, and analyzing the data. The rest of the chapter
describes the results categorized by each research question. The last section of the chapter con-
cludes with a discussion.

7.1 Research Questions

The purpose of this chapter is to answer the high-level RQ3c: How do school teachers typically
approach PL transfer for relative novices in the classroom? In order to answer this overarching
research question, the following specific research questions are formulated. They will serve as a
systematic guide for the data collection, analysis, and discussion of the findings in this chapter.

It is important to gather data to help shape potential transfer teaching strategies on second
programming language learning as a starting point. The transfer strategy a teacher adopts to
teaching a second language in the classroom will be influenced by their belief in the value and
purpose of teaching that second language, which therefore leads to the first research question:

• (RQ3a) Why do school teachers teach a second programming language?

It is also important to find out whether school students experience the same transfer challenges
proposed by the MPLT when learning their second programming language as do university
students. Hence the second research question for this chapter:

• (RQ3b) Do school teachers notice any transfer problems/benefits when teaching a second
or subsequent PLs?

Finally, it is crucial to investigate the current transfer intervention methods that teachers use
to teach for transfer and determine if these interventions cater to the positive, negative, and lack

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 102

of transfer issues associated with the transfer as proposed by the MPLT. If the findings show the
teachers’ uncertainty about transfer intervention, it will be a motivation for this research to de-
sign transfer intervention programs aligned with the MPLT that can lead to improved conceptual
transfer and understanding in a second PL learning. Hence the final research questions:

• (RQ3c) What are the views of computing school teachers on using transfer strategies?

• (RQ3d) What types of transfer strategies do computing school teachers use?

7.2 Participants and Context

As already mentioned in the introduction of this chapter, the research presented here aims to
explore transfer between programming languages from the teacher’s perspective. In order to
achieve this, computing teachers at the school level (K12) were suitable for this research be-
cause, unlike university teachers, school-level teachers are frequently interacting with students
and engaged with their programming exercises [122] hence they can be able to identify transfer
issues more effectively. Furthermore, university teaching has a highly individual nature [123],
while at the school level, the curriculum is shared, which can help in making the teachers’ ob-
servations more homogeneous. Purposive sampling [90, 91] was used to select the teachers.
This is because to understand their experiences and views about the transfer, it was best to se-
lect teachers who teach second or subsequent programming languages at the secondary school
level (K12). Twenty-three K12 computing in-service teachers from different schools in two
European countries (Scotland and The Netherlands) participated in the study. The reason for
choosing teachers from different schools and countries is to give better-quality evidence, and
greater validity to the findings [124]. Participation in the study was voluntary, and the teachers
were assured of confidentiality and anonymity of responses before agreeing to participate.

The teachers were recruited in different ways. Teachers who are usually interested in CS
research in Scotland were contacted through emails. In the Netherlands, teachers were contacted
through an advertisement in the weekly newsletter of i&i1: an association of Computer Science
teachers in primary and secondary schools in the Netherlands. In addition, social media platform
(Twitter) was used to contact the teachers.

A summary of the teachers’ demographics and teaching-related information is presented in
Table 7.1. All the teachers teach at public secondary schools; however, two teachers also teach
in the final year of primary school. Their Computing teaching experience ranges from 5 years
to 35 years, and they teach students with ages ranging from 11 years to 18 years. There are
differences in the Scottish and The Netherlands Computing curricula. In the Netherlands, there
is no national curriculum. The existing curriculum is more flexible, and the responsibility of
the content and delivery method lies with the teacher. However, teachers are given guidelines

1"https://ieni.org/"

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 103

on what to teach in digital literacy and Computer Science subjects. These guidelines are split
into different domains. Students do not have mandatory exams when following these domains
throughout their school years. In Scotland, teachers follow a national CS curriculum where
students in the first two years of secondary school (S1 and S2) usually have a 50-minute (more
or less) Computing subject lesson per week. At this stage, there is no mandatory exam. The CS
subjects become optional in the third year of secondary school (S3). Students who pursue the
CS subjects at this stage are required to take between two to four 50-minute lessons per week in
addition to getting mandatory examinations.

The teachers’ names are presented here as research IDs: participants T1-T23 to ensure
anonymity.

7.3 Interview Protocol

In order to explore the teachers’ views and experiences in teaching a second or subsequent pro-
gramming language, interviews were chosen as a means of inquiry. Interviews are primarily
done in qualitative research and occur when researchers ask one or more participants general
questions and record their answers. Structured interviews involve prepared sheets with a set of
prepared closed-ended questions resulting in responses that are easy to analyze [125]. Unstruc-
tured interviews do not use any set of predefined questions. The interviewer asks open-ended
questions based on a research phenomenon under study and uses prompts or probes that re-
mind the interviewee about topics to discuss [126]. The unstructured interviews can produce
deep insights by providing valuable data regarding the phenomenon under study [125]. In or-
der to investigate teachers’ views and experiences on PL transfer, semi-structured interviews
were used. The reason for choosing semi-structured interviews is because it is a combination
of both structured and unstructured interviewing, and it offers both of their advantages. The
semi-structured interviews consisted of initial scripted questions, which were supplemented by
follow-up questions, probes, and comments where needed.

A ’prompt sheet’ was developed for the semi-structured interviews based on the research
questions; see Appendix C. The sheet was developed to guide and initiate the conversations
with the teachers. RQ3a was designed to get the teachers’ motivations to teach a second pro-
gramming language; therefore, the prompting question for this discussion was "Why do you
teach a second and subsequent programming language?" As an example of a follow-up to this
question, teachers were asked to justify their choice of programming languages and the learning
outcomes they were pursuing when teaching them. These questions allowed for the teachers to
discuss and think deeply about their motivations for multiple languages in the classrooms. At
this point, the questions do not draw attention to any particular aspect of the transfer. These ques-
tions give insights into understanding what the teachers value in teaching multiple programming
languages. As a result, their answers provide insights into their choice of a transfer strategy.

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 104

Table 7.1: Details over the participating teachers. Teacher’s code reflects the order of their
interview, where T1 is the first interviewed and T23 is the last interviewed.

Code Gender Country Teaching
experi-
ence

Programming languages
taught

T1 Male Scotland 21 years Scratch, Blocky and micro:bit
block editor,HTML, Python

T2 Male Scotland 10 years Scratch, Scratch and mi-
cro:bit block editor,HTML,
Python, PHP

T3 Male Scotland 18 years Scratch, HTML, Python, PHP
T4 Female Netherlands 5 years Python, HTML/CSS

JavaScript, C#
T5 Male Netherlands 5 years HTML, Scratch, Javascript
T6 Male Netherlands 5 years Processing (Java), Arduino,

Web (PHP), Python
T7 Male Netherlands 11 years HTML, Python, Java
T8 Female Scotland 15 years Blocky, Scratch and HTML,

Python and SQL, Python,
HTML/CSS Javascript,
MySQL and PHP

T9 Female Scotland 30 years Blocky, Scratch, Python
T10 Male Scotland 35 years Blocky, Scratch, Java, HTML
T11 Male Scotland 16 years Blocky, Scratch ,Javascript

and VB, Javascript
T12 Female Scotland 19 years Scratch, micro:bit block edi-

tor, Turtle Python, Python
T13 Male Netherlands 35 years HTML, JavaScript, PHP,

Python
T14 Male Scotland 24 years Scratch(S1), HTML/CSS

SQL, VB, Javascript, PHP
MySQL

T15 Male Scotland 15 years Scratch, Python
T16 Male Scotland 23 years Truebasic, Scratch,VB,

Python, Java
T17 Female Netherlands 14 years HTML/CSS, Flowcharts

Flowgarithm, Python
T18 Male Netherlands 3 years Python, Database SQL,

JavaScript
T19 Male Netherlands 14 years Scratch, Python
T20 Male Netherlands 5 years HTML/CSS, JavaScript,

AJAX and JSON, PHP
MySQL, Python

T21 Male Netherlands 32 years Python, PHP

T22 Female Scotland 23 years Micro:bit block editor, Scratch, Python,
Javascript SQL HTML/CSS, PHP

T23 Male Scotland 15 years Scratch, Python

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 105

To answer RQ3b, teachers were asked the leading question, "Do you experience any trans-
fer benefits or problems in the classroom when teaching second/subsequent programming lan-
guages?". Teachers were then asked follow-up questions to get in-depth knowledge about their
experiences, e.g., which caused problems. These questions were asked to find out whether
school students experience the same transfer challenges proposed by the MPLT and prior re-
search on PL transfer.

RQ3c was designed to get the teachers’ views on transfer strategies. Teachers were asked
about the perceived impact of previously taught languages on students learning the second/-
subsequent programming language and if they thought it was beneficial to implement transfer
strategies. Finally, to answer RQ3d on teachers’ transfer strategies, teachers were asked the fol-
lowing leading question, "What measures or techniques do you currently use to help students
transfer knowledge from first programming language to second programming language (if any)?
". Some follow-up questions included asking them specifically how they referred to the first or
previous programming language(s) during second language instruction. The answers to these
questions would help inform this transfer research. For example, if the teachers use transfer
strategies, that would give insights into how they can be adopted. However, if the teachers are
not using transfer strategies, that would be a motivation for this research to develop a guide for
teachers of transfer strategies based on the MPLT.

7.4 Data Collection

As mentioned in the previous section, semi-structured interviews were used to collect open-
ended data on teachers’ thoughts and beliefs about the transfer and teaching of second and
subsequent programming languages. Participants for this study were from Scotland and The
Netherlands, as mentioned in the Participants’ section. Therefore, the data collection involved
five researchers, two from Scotland and three from The Netherlands. Each researcher followed
consistent steps in conducting interviews as advised in the literature in conducting interviews
during qualitative research [75, 127].

The interviews were conducted through the Universities (Scotland/Netherlands) video plat-
form, Zoom. They began by introducing the research to the teachers. It involved providing a
clear summary of the purpose of conducting the research on programming language transfer.
At this point, the teachers were requested to give consent to record the videos and assured of
confidentiality and anonymity in any published reports. The second step involved asking a more
general question about their demographics and experiences in teaching. The next step was to
guide the teachers by asking them the research questions, as outlined in the previous section.
After each question, there was a set of follow-up questions and probes to gain in-depth knowl-
edge into their experiences and views. Towards the end of the interview, the interviewer alerted
the teacher in order to wrap up the discussion. Each teacher interview was an average of 50

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 106

minutes. All interviews were recorded, transcribed, and then coded.

7.5 Data Analysis

Thematic analysis [77] was used to analyze and interpret themes within the data. Thematic
analysis, as described by Braun and Clarke [128], is a method for systematically identifying,
organizing, and offering insight into patterns of meaning (themes) across a data set. This method
was chosen because it offers high levels of flexibility and simplicity in analyzing qualitative
data [129]. Guidelines of analysis of this data were adopted from Braun and Clarke [128].
These guidelines include:

1. Familiarizing Yourself With the Data: All the interviews were stored in a password-
protected shareable drive accessible to all the researchers. Each researcher was allocated
one of the four research questions to code. At this stage, the researchers familiarised them-
selves with the data. It involved listening and re-listening to the interviews, transcribing
them, and writing down notes relevant to the allocated research question.

2. Generating Initial Codes: The transcribed data was imported into Excel for detailed
coding analysis. Each researcher coded at least one of the four research questions. The
researcher then discussed the initial codes with one other researcher, and conflicts were
discussed and resolved. This stage ended when the data was fully coded.

3. Searching for Themes: At this stage, themes were generated from the coded data. It
involved reviewing the coded data to identify areas of similarity and overlap between
codes. Small themes that shared unifying features were merged, and larger themes were
collapsed using an iterative process.

4. Reviewing Potential Themes:

This phase involved a recursive process whereby the developing themes were reviewed in
relation to the coded data and the entire data set. In this process, themes that described
the core issues of each research question were identified. The aim was to have at least
three major themes per research question, potentially with sub-themes. The discussions
between the first and second coders were about the precise grouping of themes and sub-
themes.

5. Defining and Naming Themes: Finally, all the researchers discussed the themes. It was
important to confirm if the themes have a clear focus and purpose. It was also necessary
to ensure that the themes aligned with each research question. Lastly, it was essential to
check if the themes provided a coherent overall story about the data.

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 107

Table 7.2: Reasons teachers provide for teaching multiple languages

Category Number of teachers
Start with a simple language 13

- Simple language provides engagement 8
- Simple language avoids errors 5
- Simple language builds confidence 4
- Simple language supports focus on concepts 3

Different languages have different benefits 10
- Knowing different languages gives a different perspective 6
- Different languages have different applications 4

Part of the curriculum 7

6. Producing the Report: The purpose of this stage was to write a coherent report about the
identified themes based on the analysis. Details of this report will be presented in the next
section (Results).

7.6 Results

Findings from the interview data relating to the 23 teachers’ views and experiences teaching
second and subsequent PLs are presented in this section. The identified themes will be presented
in four subsections corresponding to each research question. These subsections are shown in the
following order; reasons for teaching multiple languages, problems/benefits of teaching multiple
languages, teachers’ views on transfer strategies, and finally, types of transfer strategies teachers
use.

7.6.1 RQ3a: Reasons for Multiple Languages

The findings presented in this subsection are the reasons high-school teachers provide for teach-
ing multiple languages. Table 7.2 shows three main themes derived from the interview data;
starting with a simple language (13 teachers), different languages have different impacts on
students (10 teachers), and languages are part of the curriculum (7 teachers).

Start with simple language

The biggest motivation for teaching multiple languages given by the teachers is that at the early
stages of learning CS, teachers want to start with a simple language (such as block-based lan-
guage) and then progress to a more formal/text-based language (such as Python). According to
the teachers, a simple language means a visual or block-based programming language that lets
students create programs by manipulating program elements graphically using drag and drop,
e.g., Scratch. Teachers expressed that simple languages may have limitations, hence the need for
a second or third language. The following four sub-themes were derived from this overarching
theme:

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 108

Simple language provides engagement Eight teachers expressed that starting with a sim-
ple language helps students to engage with programming quickly. For example, T8 said that
"Scratch is easier because it uses blocks and students can throw in something quickly" and T1
states that "We start with a simple language, so we do not scare them."

Simple language avoids errors Helping students avoid syntax errors is another motivation
teachers have for starting with simple languages. For example, teacher T9 states "We start with
Scratch to eliminate syntax errors".

Simple language builds confidence Four teachers revealed that a simple language increases
students’ self-confidence in programming. For example, teacher T16 explained that they "start
with blocks to avoid frustration". This reason seems to be justified because, as presented in Sec-
tion 2, programming language syntax can be a barrier in learning to program for most relative-
novice students.

Simple language supports focus on concepts Finally, a few teachers (3) believe that simpler
languages allow students to focus on programming concepts rather than on syntactic issues. For
example, T17 states "We use Executable flowcharts because they help to explain the three basic
concepts: sequence, selection, and iteration. We then “dress it up” with a textual programming
language".

Different languages have different benefits

The second main theme derived from the interview data given by ten teachers is that students
benefit from being taught different languages. For example, T20 explained that they teach dif-
ferent languages to achieve different goals e.g. starting with HTML/CSS to show students code
is everywhere. Two sub-themes were derived from this main category as follows:

Knowing different languages gives a different perspective Some teachers (6) under this cat-
egory believed that students’ knowledge of multiple languages can give them a better perspective
and view on understanding different programming languages. For example, T21 believed that
students can learn a new language quicker if they have been exposed to other languages.

Different languages have different applications Other teachers (4) believed that different
programming languages have different applications that can show students the broadness of var-
ious languages. For example, T6 said "Different programming languages help to teach different
parts of programming. For example, C++ is difficult but helps to teach hardware".

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 109

Table 7.3: Benefits and problems highlighted by teachers of teaching multiple languages

Benefit Category Number of teachers
Positive effect on understanding programming concepts in PL2 15

- Transfer the understanding of basic programming concepts from one language to another 11
- Students make the connection/link to the previous language 7
- Happens only under specific conditions 2

Positive effect on cognitive abilities 7
- Transfer of problem solving skills and abstract thinking 4
- Broadening students perspectives 3

Problem Category
Negative effect of semantic transfer 10
Negative effect of syntax transfer 8

- Context switching is difficult and takes time 5
- Mixing syntactic elements from two languages 5

Students make no connection to/with previous language 4
Students demotivated or less confident to learn a new language 3

- Students making generalizations on lack of ability based on a bad previous experience 3
- Stuck in one language that they know 1

Part of the curriculum or materials

Lastly, as can be seen in the responses, seven teachers revealed that they teach multiple pro-
gramming languages because it is a requirement from the curriculum.

7.6.2 RQ3b: Problems/benefits of Teaching Multiple Languages

The findings presented in this subsection are the problems and benefits of teaching second and
subsequent languages. The data was coded and categorised by what the teachers explained re-
garding their experiences. They shared experiences that varied greatly from both the benefits
and problems of teaching multiple languages. For example, one teacher may experience both
benefits and problems of transfer. These were grouped into common themes that came from
all the teachers’ experiences and are presented in Table 7.3. Table 7.3 is divided into two main
categories of benefits and problems. In the category of benefits, there are two main themes; pos-
itive effects on understanding programming concepts in PL2 (15 teachers), and positive effects
on cognitive abilities (7 teachers). In the category of the problems, there are four main themes,
namely; negative effect of semantic transfer (10 teachers), the negative effect of syntax transfer
(8 teachers), students make no connection to/with previous language (4 teachers), and students
demotivated or less confident to learn a new language (3 teachers).

Benefits observed when moving to another programming language

The benefits that teachers observe when teaching second or subsequent PLs are the advantages
that students have of knowing more than one language.

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 110

Positive effect on understanding programming concepts in PL2 The biggest benefit of hav-
ing knowledge of other languages, highlighted by 15 different teachers is that it helps students
understand programming concepts in PL2. This overarching theme is divided into three sub-
themes. Firstly, teachers report that students transfer the understanding of basic programming
concepts between programming languages. For example, T9 highlights that students "automati-
cally transfer the concept of the if-statements and repeat statements from Scratch" while T4 said
that "students understand how they can use if-statements in VB because they have learned that
in Scratch, it happens quite naturally".

Secondly, teachers believe that students make connections to previous languages, and that
helps them understand PL2. For example, T4 highlights that sometimes students say “you
would do this in Python like this or that, but in C# I do it differently now”. Some teachers said
that by students making connections to prior languages, they learn PL2 more quickly, as T6 said
it: "concept repetition, [and then] you have the basis of learning another language quickly".
Lastly, a few teachers believe that for any benefit to carry over to PL2, there should be good
instructions, peer discussion among the pupils, and focus on code comprehension questions, as
highlighted by T15.

Positive effect on cognitive abilities Teachers report that knowledge of multiple languages
helps students to develop reasoning or thinking skills in programming. First, teachers believe
that students’ knowledge of PL1 helps them transfer the problem-solving skills and higher-level
thinking from PL1 to PL2. T7 expressed that "students learn that when they have a problem they
need to split it into parts and then they can solve those small parts one by one. By doing multiple
programming languages students would see that the way of thinking remains the same". T19 also
said that "Learning multiple languages helps more in the thinking process, higher-level thinking
over what programming languages do". Second, some teachers believe that learning multiple
languages broadens students’ perspectives on programming languages and their applications.
For example, according to T20 "Knowing multiple languages allows the student to do different
things", and "students then know that a specific programming language is not sacred", according
to T18.

Problems observed when moving to another programming language

Teachers reported that while students benefit from the knowledge of other languages, there are
problems that come with transfer from PL1 to PL2.

Negative effect of semantic transfer This main theme is concerned with the negative se-
mantic transfer from a previous language to a new programming language. For example, T17
says "with Structurizr you had to put an ’and’ instead of a ’+’ in Python to concatenate
strings". Another example is when students transition between strictly and less strictly typed

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 111

programming languages. T10 explained that when students switch to Java from Python, param-
eter passing is a challenge because Python does not explicitly ask you to declare your data types
while Java does.

This negative transfer can also be from previous Mathematics knowledge. For example, T1
expressed that "the = symbol is a problem, they transfer the math equal".

Negative effect of syntax transfer Eight teachers reported syntax transfer challenges when
students learn second/subsequent languages. Two sub-themes emerged from this main theme.
First, students’ context switching between programming languages is a challenge as context
switching can take time. T1 believes that students struggle with syntax more than concepts
while T2 says that a new language throws a barrier with syntax. The second sub-theme is
concerned with the problems that arise from students mixing syntactic elements between the
two languages. For example, T21 mentions that " students write PHP sometimes in the python
style: colon instead of, or mixed with, parenthesis for loops".

Students make no connection to previous language Four teachers reported that transfer is
often unsuccessful as students fail to transfer their understanding of the same concept from
their previous language to a new language. It is when students transition from a block-based
programming environment to other programming languages. For example, T8 explained that:
" I think they have transfer problems from Scratch, I think it is because they are given a block
in Scratch and they do not think what’s inside the blocks so they just pull them in, they do not
notice it’s a repeat block which is the same as a for-loop in Python".

Students demotivated or less confident to learn a new language The last main theme is
that students’ motivation to learn a new programming language is negatively affected (three
teachers). The students’ negative first encounter with programming using the first programming
language affects their motivation to learn a new language. For example, T23 said that "When
pupils go onto a second language but are not confident in the concepts and structures that appear
in both, it can make them less confident". One teacher (T19) reported that, "Sometimes students
do not want to switch languages and remain stuck in their first language. It usually happens
when students feel their knowledge of the first language is better hence they may look down on
the second language".

7.6.3 RQ3c: Views on the use of Transfer Strategies

Three main themes emerged from the answers that teachers gave on their views on the use of
transfer strategies. Table 7.4 presents a summary of these views.

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 112

Table 7.4: Views on transfer strategies

Category Number of teachers
Do not believe they have to implement transfer strate-
gies

12

-There is not enough time to implement transfer strategies 4
-Mapping prior language to new language is difficult 2
-Assume students transfer implicitly 2
-Implementing transfer strategies confuses students 2
-Implementing transfer strategies puts students off 2

Believe that knowledge of more than one language helps
in transfer

9

Do not think students have strong comprehension of the
first language for any benefits to carry over to a new
language

4

Do not believe they have to implement transfer strategies

The majority of the teachers (12) do not believe that implementing transfer strategies in the
classroom is necessary. Their reasons are divided into five sub-themes follows:

There is not enough time to implement transfer strategies Four teachers believe that they
do not have enough time to implement transfer strategies in the classroom. For example, one
teacher said that "It takes an awful lot of time to teach for transfer and use it as an opportunity
for learning. It takes time to unpack the concepts students are learning but there is no time"
(T10).

Implementing transfer strategies confuses students Two teachers believed that transfer strate-
gies will confuse students because it might become complicated when students learn new lan-
guages. For example, If I introduce the deeper semantics of a language, it’s too early, I lose too
many, we don’t want it to get overly complicated (T2).

Mapping prior language to new language is difficult Some teachers expressed that they face
challenges when trying to map prior languages and new languages. For example, T1 expressed
that, "Its difficult to convert a game environment from Scratch to Python".

Assume students transfer implicitly therefore no need for transfer strategies Two teach-
ers do not believe that students need assistance to transfer knowledge. These teachers believe
students automatically transfer knowledge from one programming language to the next. For
example, one teacher said "I believe transfer happens quite naturally for students from Scratch
to VB" (T11).

Implementing transfer strategies puts students off Lastly, two teachers believe that transfer
strategies might demotivate students to learn a new language. For example, T8 expressed that,

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 113

Table 7.5: Types of transfer strategies

Category Number of teachers
Referring to PL1

- Explicitly referring to PL1 6
- Comparing code in different programming languages and discussing similarities 5

Favoring transition
- Putting the emphasis on concepts 8
- Using visual representations 4
- Using dedicated activities 3

Preparing for transfer
- Referring to everyday life 3

"We don’t teach for transfer, we don’t go that far. I am always worried about putting them off".

Believe transfer strategies are important and knowledge of more than one language helps
foster transfer

The second main theme presented by nine teachers is that when students have knowledge of an-
other programming language it can help them with the ability to transfer conceptual knowledge
from one language to the other. For example, one teacher said, There are analogies between
languages, but students do not see that for themselves, someone needs to tell them. With more
concepts and analogies, students can learn a new language faster. Students become more re-
silient to new materials/products because they have seen something similar, which helps more
in the thinking process, higher-level thinking over what programming languages do (T19).

Do not think students have strong comprehension of the first language for any benefits of
conceptual knowledge to carry over to a new language

Lastly, four teachers believe that students have fragile conceptual knowledge in the first language
and, as a result, they do not have conceptual knowledge to transfer to a new language. These
teachers expressed that it is important to teach students programming language concepts more
effectively in their first language. T23 expressed that, I think the biggest risk is not teaching
the first language in a comprehensive way, especially Scratch when it is sometimes seen as an
“introduction” rather than a learning tool. T3 also has a similar view and states that, "We then
don’t teach the constructs of the first language, but rather the game environment".

7.6.4 RQ3d: Types of Transfer Strategies

Table 7.5 presents a summary of the transfer strategies teachers use when teaching a second or
subsequent languages. Only nine teachers out of the 23 interviewed teachers intentionally use
transfer strategies.

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 114

Referring to the first programming language

The first main theme of transfer strategies that teachers use is referring to the first programming
language when teaching the second one. This theme contains the two sub-themes:

Explicitly referring to the first programming language Six teachers refer to the previous
programming language when teaching a second or subsequent language. For example, one
teacher expressed that I just repeat the concept briefly, but not too deep in the new language and
indicate what differences and similarities are with the previous language (T20).

Comparing code in different programming languages and discussing similarities Five
teachers show different versions of one concept in the previous language and the new language.
Teachers do this by presenting both languages at the same time and doing a translation process
from one language to the other (e.g. block to text, text to text, flowcharts to text). One teacher
said: "For most concepts I introduce through the course I map them to the Scratch ones to show
how they work in both languages" (T13). T15 also expressed that "I show a JavaScript program
on the whiteboard and together with students and transform it to PHP". Another teacher said to
ask students questions such as "How would you do it in C#/Unity?"

Favoring transition

This theme consists of three sub-themes of instructional strategies that promote the transition
from a first programming language to a second one.

Putting the emphasis on concepts Most teachers (8) favoring transition strategies put the em-
phasis on concepts when teaching a second or subsequent programming language. For example,
naming and abstracting concepts when introducing a new programming language to remind stu-
dents of these concepts in the first language. One teacher said "We teach concepts that we have
taught before, but we flag what they looked like in the first language when we introduce them in
the second language" (T22).

Using visual representations Four teachers use visual representation by starting with using
visuals like flowcharts to abstract the concept and make it more generic even when it is presented
in the second programming language. For example, T19 said: "I teach them the logic flow in
flowcharts first and when I move to Python I keep showing the flowcharts in one charts".

Using dedicated activities Lastly, three teachers use dedicated transfer activities such as al-
lowing students to solve an assignment in the language they prefer. Some teachers give similar
assignments in PL1 and PL2 so that students can not struggle with understanding the problem.

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 115

This gives the students a chance to only focus on the new syntax of a new language. Some teach-
ers use programming language development environments that allow the students to switch from
blocks to text and back (T11). Some teachers allow students to use both languages at the same
time and be aware of differences and similarities between the two languages.

Preparing for transfer

Three teachers prepare for transfer by referring to everyday life examples such as asking students
to look at websites they are familiar to familiarise themselves with code. One teacher compared
objects properties in an object-oriented class to the fields of an element in the software student
know (T13).

7.7 Discussion

The previous section presents the results on the views and experiences of 23 secondary school
Computing teachers on teaching second and subsequent programming languages in the class-
room. This section presents the discussions of the results as reflections of the research questions.

7.7.1 RQ3a: Reasons for Multiple Languages

The transfer strategy a teacher adopts is likely to be influenced by their belief in the value and
purpose of teaching that second language. The results reveal that some teachers teach second
and subsequent programming languages because they are required to do so by the curriculum.
The teachers who believe there is value in second language learning mostly associate this benefit
with increasing students’ engagement and excitement in programming. These teachers start with
teaching students a simple language in the early stages of learning programming before they
transition them to the second programming language that is more formal or text-based. These
are reasonable points considering the syntax challenges relative-novices face when learning new
languages [4,130]. These kinds of teachers usually teach students how to explore programming
through games without emphasizing giving students conceptual knowledge.

7.7.2 RQ3b: Problems/benefits of Teaching Multiple Languages

Teachers revealed that school-level students experience transfer problems just like university
students. Most of these challenges have been reported in prior programming language transfer
research and the MPLT. Teachers reported that students experience positive effects of under-
standing PL2 concepts (TCC), negative effects of semantic transfer (FCC), and fail to connect
common concepts between PL1 and PL2 (ATCC). The failure to connect common concepts usu-
ally occurs when they learn abstract concepts in a new language [29,34,132]. Other issues such

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 116

as syntax problems have been reported in prior work, which investigated near novices problem-
solving in new languages [16, 17, 19]. Other positive issues such as transfer of problem-solving
skills have been reported in [19, 20, 22], and they are also attributed to language similarities.

The persistent problems of transfer as reported in schools and universities give motivation
for this research to design transfer intervention strategies for teaching second programming lan-
guages.

7.7.3 RQ3c: Views on the use of Transfer Strategies

The value in second language learning expressed by teachers in answering RQ3a has shaped
their views on transfer strategies in second language learning. Because most teachers do not
see the value of conceptual development of second language learning, most teachers also do
not believe that implementing transfer strategies in the classroom is helpful in second language
learning.

The problems/benefits of teaching multiple languages (RQ3b) results and the teachers’ views
of transfer strategies (RQ3c) results were compared. Nine teachers who do not believe they have
to implement transfer strategies also reported their students experiencing both benefits and chal-
lenges in transferring to another language in the classroom. However, their most concern with
implementing transfer strategies was that there was not enough time to do such interventions.
Also, these teachers reported the challenges they perceived might occur when teaching for trans-
fer which included their concern in putting off the students’ interest in learning a new language
as well as believing that students have fragile knowledge in PL1, which cannot be transferred
to PL2. However, the experiments that validate the MPLT, presented in the previous chapter,
have revealed that in most cases, even with fragile knowledge, students automatically transfer
semantic and conceptual knowledge from PL1 to PL2 based on syntax similarities to most basic
PL concepts. If teachers do not implement transfer strategies, it may impact the learning of the
second language negatively, as shown in RQ3b results and as confirmed in prior work [10, 33].

Some teachers (39%), however, believe in the value of transfer strategies and their poten-
tial to deepen conceptual understanding. As a result, these teachers try to implement transfer
strategies in the classroom as shall be presented next (RQ3d).

7.7.4 RQ3d: Types of Transfer Strategies

Teachers mostly adopt transfer strategies that refer back to the first programming language by
showing different versions of the same code in the PL1 and PL2 or giving the same assignment
in two different languages. These strategies of bridging have been reported to be beneficial in
prior work [10,17,45,178,205,206]. Although these are commendable efforts, only 39% of the
teachers use transfer strategies, and some of these transfer strategies seem rushed and informally
implemented. For example, teachers say I repeat the concept briefly, but not too deeply and I flag

CHAPTER 7. TEACHERS’ EXPERIENCES ON TRANSFER 117

concepts. Furthermore, most of the transfer strategies they use do not cater to the different types
of transfer reported in the MPLT (TCC, FCC, and ATCC). These findings give a motivation for
this research to design transfer intervention programs aligned with MPLT that can guide teachers
and also lead to improved conceptual transfer and understanding in a second PL learning.

7.8 Summary of Discussion

The summary of the research findings of the 23 in-service teachers include that:

• Most teachers start teaching programming using a simple programming language, there-
fore, creating an opportunity for transfer and deepening of conceptual knowledge once
learners encounter their second language.

• Teachers report both benefits and problems of transfer from PL1 to PL2. Furthermore,
school students experience the same transfer problems as university students.

• Some teachers do not believe they have to implement transfer strategies hence they do not
use second language learning as an opportunity to help the students understand concepts
better.

• Some teachers adopt transfer strategies that are known in computing literature. This will-
ingness can be used as an opportunity for researchers to work with these teachers to de-
velop, implement and evaluate a pedagogy where transfer interventions tackle specific
student transfer problems (e.g. concepts, syntax, and semantics).

These study findings open up opportunities for further research to be conducted in this thesis
to explore transfer interventions aligned with how students transfer knowledge as proposed by
the MPLT. These interventions will be presented in the next chapters.

Chapter 8

Exploring Explicit Interventions on
Transfer

[Aspects of this study have appeared in [33].]

Chapter 7 highlighted that teaching students multiple programming languages is a common
practice in schools as it is in universities. The common rationale for teaching multiple languages
given by teachers is to engage students by starting with simple programming languages at the
early stages of learning programming and then transitioning the students to more formal pro-
gramming languages. The teachers highlighted that the transition process is not as straightfor-
ward. Students sometimes face both positive and negative transfer effects between the program-
ming languages as hypothesized by the MPLT. Despite recognizing the lack of transfer (ATCC)
or the negative effects (FCC), most teachers do not implement transfer strategies in their class-
rooms when teaching a second or subsequent programming language. The few teachers who
adopted transfer interventions relied on their practical knowledge shaped by experience rather
than drawing on a theory/model of how students transfer knowledge from one programming
language to the other.

The MPLT presented in Chapter 5 was designed to explain how students transfer semantic
and conceptual knowledge between programming languages, therefore, can assist teachers to
better account for the failure or success of transfer in the classroom. Chapter 6, which vali-
dated the MPLT, highlighted that before and after learning PL2, learners automatically transfer
semantics from PL1 to PL2 based on similarities between PL1 and PL2. The negative effects
(FCC) or the lack of transfer (ATCC) can remain persistent if the teacher does not implement
explicit strategies of transfer interventions. These empirical studies also provided evidence that
some students have fragile knowledge of both PL1 and PL2. They hold only one mental repre-
sentation of constructs that look similar in both programming languages even though they have
different semantics.

The second part of the thesis statement proposes that the implementation of deliberate se-

118

CHAPTER 8. EXPLORING EXPLICIT INTERVENTIONS ON TRANSFER 119

mantic transfer interventions during relative novices’ second language learning can lead to
improved conceptual transfer and understanding in learning a second programming language.
The initial exploratory transfer interventions implemented on students transitioning from pro-
cedural Python to object-oriented Java presented in Study 1, in Chapter 4 seemed to give the
initial support to this claim. However, they were implemented on a small sample size of just five
students. Therefore, this chapter focuses on investigating this claim quantitatively by design-
ing transfer interventions that draw on the MPLT of how students transfer knowledge between
programming languages. The transfer interventions in this chapter are based on the MPLT be-
cause it provides a basis to understand, make predictions and analyze how students transfer. As
a starting point, this chapter focuses on exploring transfer interventions that are based on the
TCC and FCC concepts only. This is because the experiment was conducted in a real classroom
which meant that there was restricted time to implement transfer strategies aligned with all the
MPLT construct categories. Given this reason, the FCCs were chosen as a starting point because
the previous chapters revealed that they are the most problematic constructs that affect learning
of PL2. The TCCs were selected as they were reported to be the least troublesome; therefore,
implementing their transfer strategy would not consume time.

The transfer interventions adopted in this study were student-focused. The student-centered
approach was chosen because it involves active learning that allows students to reflect in their
learning [52,137] as well as work collaboratively to facilitate their learning [137]. Furthermore,
the transfer interventions were based on code comprehension activities for the following reasons.
Firstly, they were chosen because the MPLT was developed based on code comprehension.
Secondly, they allow students to focus on the programming language concepts and semantics
and develop viable mental models of program execution, before going ahead and attempting to
use the concepts in problem solving.

The chapter begins with the research questions followed by the participants’ details. The sec-
tion that follows describes the instrument used and the rational for using it. The data collection
is presented next. This section includes the process of gathering and measuring data on transfer
interventions, that helps to answer the research questions. The rest of the chapter describes the
data analysis and results of the experiment. The chapter concludes with a discussion.

8.1 Research Questions

The previous study presented in Chapter 7, gave insights into the transfer challenges teachers
face in the classroom and also revealed that despite these challenges, the majority of teachers
interviewed do not implement transfer strategies in the classroom. In order to build transfer
interventions that can guide teachers and can help improve second language learning in the
classroom, this thesis poses the following over-arching RQ4: How can transfer teaching inter-
ventions based on our understanding of semantic transfer improve second PL learning? In order

CHAPTER 8. EXPLORING EXPLICIT INTERVENTIONS ON TRANSFER 120

to answer this overarching research question, the following specific research questions are for-
mulated. They will serve as a systematic guide for the data collection, analysis, and discussion
of the findings in this chapter.

The empirical studies that validated the MPLT revealed that the TCC constructs were the
easiest to learn when transiting from PL1 to PL2 due to positive semantic transfer based on the
syntax and semantics similarity between PL1 and PL2. Therefore it is essential to investigate
how teachers can use transfer interventions to use this implicit transfer to help them effectively
teach second programming languages. To investigate this, the following RQ is asked:

• (RQ4a): Can students’ learning of True Carryover Concepts (TCC) be improved by student-
centred transfer interventions?

The previous studies also revealed that the FCC constructs were the hardest to learn when tran-
siting from PL1 to PL2 due to negative semantic transfer. Therefore it is important to investigate
how teachers can use explicit transfer interventions to help students avoid negative semantic
transfer as well as deepen conceptual understanding. To investigate this, the following RQ is
asked:

• (RQ4b): Can students’ learning of False Carryover Concepts (FCC) be improved by
student-centred transfer interventions?

With these research questions in mind, the next section elaborates the design of the study by
explaining the methods and procedures used to collect and analyze data.

8.2 The Research Design

A between-subject study design was adopted in order to investigate how the transfer teaching in-
terventions based on the MPLT can improve second PL learning. In a between-subjects design,
every participant experiences only one experimental condition, and group differences between
participants in various conditions are compared [138]. Participants in this study were allocated
randomly into either the Intervention group or the Control group. The reason for random allo-
cation was to prevent selection bias so that any difference in the outcome can be explained only
by the transfer interventions. Both groups were homogeneous, as described in detail in the next
section.

To summarize the design, the Intervention group received transfer interventions that allowed
them to carry out student-centered code-comprehension tasks in Python (PL1) and Java (PL2).
The details of this intervention will be explained in the following sections. The Control group
did not receive the transfer interventions.

The benefit of choosing a between-subject design is that it increases internal validity by re-
ducing the carryover effect in within-participant designs [139]. The carryover refers to any lin-

CHAPTER 8. EXPLORING EXPLICIT INTERVENTIONS ON TRANSFER 121

gering effects of a previous study condition that may affect a current study condition. Between-
subject study designs are also beneficial because they do not require long periods, which makes
them suitable for this research context that was carried out in a restricted classroom environ-
ment. However, the disadvantage of this design may arise when a cohort is split and exposed
only half to a potentially beneficial intervention. This was mitigated by offering the Control
group the same intervention after the experiment.

8.3 Participants and Context

In order to investigate the transfer interventions and answer the proposed research questions, the
study consisted of participants who had just completed their first semester having learned object-
oriented Python and now enrolled in object-oriented Java in their second semester. Unlike the
previous studies that were conducted at the University of Glasgow, this study was conducted in
Norway, at the University of Oslo. There are two main reasons for conducting the transfer in-
terventions research at this University. Firstly, the lecture teaching both these courses requested
guidance from the researcher on how to transfer the students successfully to a second program-
ming language. Secondly, the study allows validating the MPLT in a different context, therefore
providing evidence of generalizability across the conditions. The University enrolls students
in the Introduction to object-oriented programming using Python in the first semester. Most of
these students progress to object-oriented programming using Java in their second semester.

A total of 230 students participated in this study. The data was collected only from stu-
dents who completed the quiz, had less than one year of programming experience, and only had
knowledge of one programming language. It was done to reduce the noise and enhance the data
analysis as much as possible. Therefore, the actual number of participants whose results were
considered for analysis was reduced to 97 students. The chosen participants had an average of
five months of programming experience using the Python programming language. Their age
range was 18 to 24 years. They were recruited through emails and during the lecture period.
They were informed that the tests were voluntary and could exit at any point of the study.

The study was a between-subject design. Therefore, 50 participants were randomly assigned
to the Intervention group and 47 participants to the Control group. The Intervention and Control
groups were given a Java pre-quiz in the second week of learning Java (PL2) on the TCC and
FCC constructs in order to ensure that the groups were homogeneous with similar proficiency
levels in programming knowledge. The results revealed no significant differences in their TCC
scores (P-value = 0.71) and FCC scores (P-value = 0.74) as seen in Table 8.1.

CHAPTER 8. EXPLORING EXPLICIT INTERVENTIONS ON TRANSFER 122

Figure 8.1: A screenshot of the sample Java question in the quiz given to the students after the
interventions

8.4 Instrument

The research instrument used to obtain, measure, and analyze data from the participants was a
Java code comprehension quiz that covers only the TCC and FCC constructs. The details about
designing this instrument are already elaborated in Section 6.2. There are ten questions in the
quiz consisting of five questions per construct category (TCC and FCC). It covers concepts that
the participants were taught in both the first semester of the Python programming course and
the second semester of the Java programming course. The quiz included the following concepts:
types, expressions, operators, control structures, and functions. An example of a FCC question
in the Java quiz for a for-loop construct is shown in Figure 8.1.

8.5 Data Collection Procedures

In the first week of the Java course, students attend two lectures, each having a duration of
90 minutes. After the lectures, students attend a 90-minute seminar/tutorial led by a Teaching
Assistant (TA). Participants were randomly allocated to the seminar groups, and the groups were
divided into the Control and the Intervention groups. The Control group had 50 participants,
while the Intervention group had 47 participants. The data collection lasted for the duration of
the seminar session (90 minutes) for both groups. It was divided into three stages, the pre-quiz,
the interventions, and the post-quiz. The details of these three stages are as follows:

8.5.1 Pre-quiz

At the beginning of the first week of seminars, the Intervention group and the Control group
were given a Java code-comprehension quiz that lasted for a duration of 20 minutes. The quiz
covered the programming concepts in Chapter 6. The participants were taught these concepts
in their first two lectures of the Java lesson. The rationale for the pre-quiz was to establish
the baseline of participants’ conceptual knowledge at this stage. An online platform for data

CHAPTER 8. EXPLORING EXPLICIT INTERVENTIONS ON TRANSFER 123

collection, Mentimeter, was used to anonymously collect both the pre-quiz and post-quiz data.

8.5.2 The Transfer Intervention (Student Centered Approach)

The transfer interventions were not given to the Control group. This group followed the usual
seminar activities that the lecturer designed. These included the students solving problems using
the Java programming languages. The solutions required the students to use the same concepts
and constructs in Appendix 8. These were also covered in the pre-quiz and were also given to
the Intervention group. The TA facilitated the activities for this session.

The Intervention group received the transfer interventions that were student-focused. The
student-centered approach involves active learning that allows students to reflect in their learn-
ing [52, 137]. This active learning approach is also used elsewhere in computer science ed-
ucation research. For example, Parson’s puzzles allow students to solve code comprehension
programming puzzles and sort them in order [52]. By engaging in code comprehension activi-
ties, students get the opportunity to understand the programming language semantics rather than
focusing on syntax errors when they try to write code. The student-centered approach can also
involve collaborative learning, which allows students to work together to facilitate their learn-
ing [137]. In this study, collaborative learning was adopted by the Think Pair Share teaching
strategy that helps promote students’ teamwork and critical thinking skills [137, 140].

The intervention activity was as follows: At the beginning of the seminars, the tutors took 10
minutes to make the students aware of the transfer between programming languages based on
syntax similarities. They explained how this transfer might be positive or negative by showing
students examples of such scenarios. The students were then handed out a sheet that consisted
of Java code-comprehension activities as shown in Figure 8.2. They were encouraged to work
in pairs for 40 minutes. Their task was to map the Java constructs to their equivalent Python
constructs. Specifically, the students were given instructions to identify semantic similarities and
differences between Java and Python and explain their choice. The students were encouraged
to do their investigations using the computer (either the programming language compilers or
the internet). The tutors were moving around the seminar session and were available for any
students’ questions or clarifications.

8.5.3 Post-quiz

At the end of the seminar activities, students from both groups were given a post-quiz that took
an average of 20 minutes. The Java code comprehension quiz covered concepts in Section 9.5,
see Appendix D.

CHAPTER 8. EXPLORING EXPLICIT INTERVENTIONS ON TRANSFER 124

Figure 8.2: A screenshot of an activity sheet given to students in the 90 minutes seminar activi-
ties for Intervention group at the University of Oslo. Students were asked to compare Java and
Python semantics.

Table 8.1: Pre-quiz comparisons: Mean scores grouped by concept category

Category Intervention group Control group P-Value
TCC 3.78 3.77 0.71
FCC 1.40 1.40 0.74

8.6 Data Analysis

The data for both pre-quiz and post-quiz was downloaded into a spreadsheet from Mentime-
ter.com. IP addresses and timestamps were removed from the dataset. A score of 0 was allocated
for an incorrect answer, and a score of 1 was allocated for a correct answer on each question.
For this study, each participant could receive a maximum of 10 scores per quiz.

The data analyses steps described in Section 6.2 in Chapter 6 will be followed in this chapter
as well. The only difference was that this study used the non-parametric Mann-Whitney U test
to compare the Control and Intervention groups’ scores for both pre-quiz and post-quiz.

8.7 Results

The research questions of this study aim to evaluate if students’ learning of TCC and FCC can
be improved by transfer awareness-raising interventions. This section, therefore, presents the
results and analysis to answer this research question.

Table 8.2: Post-quiz comparisons: Mean scores grouped by concept category

Category Intervention group Control group P-Value
TCC 4.22 3.98 0.164
FCC 3.1 1.53 <0.001

CHAPTER 8. EXPLORING EXPLICIT INTERVENTIONS ON TRANSFER 125

Table 8.3: Post-quiz mean comparisons between the Control group and the Intervention groups
using the Mann-Whitney U test.

Category Construct Intervention group Control group P-Value Effect-size
TCC String concatenation 1.00 0.98 0.32 0
TCC While loop 0.86 0.84 0.75 0
TCC Methods 0.51 0.35 0.12 0.24
TCC Array addition 0.92 0.94 0.72 0.05
TCC Operator precedence 0.98 0.98 0.98 0
FCC String coercion 0.49 0.02 <0.001 0.81
FCC For-loop-scope 0.55 0.04 <0.001 0.87
FCC Typing (static vs dynamic) 0.59 0.45 0.16 0.19
FCC Array equality 0.75 0.85 0.08 0.31
FCC Integer division 0.96 0.19 <0.001 1.0

In analyzing the pre-quiz using the Mann-Whitney U test comparisons, it was revealed that
there were no significant differences between the Control group and the Intervention group in
the FCC and TCC constructs; see Table 8.1. These results show that the two groups were ho-
mogeneous in their Java programming language knowledge, therefore, were comparable at the
beginning of the experiment. It should be noted that as predicted in the MPLT hypothesis in
Section 6.5, both groups performed with higher scores in the TCC (Intervention=3.78, Con-
trol=3.77) as compared to the FCC. This provides further validation for the MPLT.

Table 8.2 shows the findings of grouping participants’ post-quiz mean scores by concept cat-
egory. The results show that the Intervention group (mean score=3.1) outperformed the Control
group (mean score=1.53) in the FCC constructs with a significant difference (P-value=<0.001).

A Mann-Whitney U test was computed for each construct for further analysis as shown in
Table 8.3. Consequently, to explore whether the difference between the means scores for each
construct is significant, a Mann-Whitney U test was conducted, which indicates no difference
with a small effect size between the groups in all the five TCC constructs, String concatenation
(p=0.32), While loop (p=0.75), Methods (p=0.12), Array addition (p=0.72), Operator prece-
dence (p=0.98).

However for the FCC concepts, the results revealed that the Intervention group significantly
outperformed the Control group with a large effect size in three of the five FCC concepts, integer
division (<0.001), For-loop and Scoping (<0.001), and the String coercion (<0.001).

The results revealed that students benefited more from the FCC interventions as compared to
the TCC interventions. Nonetheless, students still performed better in the TCC concepts before
and after the intervention. The next section discusses these findings and implications.

8.8 Discussion

The previous section reported on the results that answer the following research questions:

CHAPTER 8. EXPLORING EXPLICIT INTERVENTIONS ON TRANSFER 126

• (RQ4a): Can students’ learning of True Carryover Concepts (TCC) be improved by student-
centered transfer interventions?

• (RQ4b): Can students’ learning of False Carryover Concepts (FCC) be improved by
student-centered transfer interventions?

In answering RQ4a, the results of this study revealed that the student-centered transfer inter-
ventions did not improve participants’ learning of TCC concepts. However, the findings revealed
that the Intervention and Control group participants still performed better in these concepts than
the FCC concepts. These findings do not imply that the TCC concepts are easier than the FCC
concepts. However, they show the effect of semantic transfer based on syntax similarities. Ac-
cording to the MPLT hypothesis, if a learner encounters a TCC while learning PL2, the semantic
transfer will occur from PL1 to PL2 because of syntax matching, resulting in a positive impact
on learning PL2. This shows that semantic transfer that resulted in positive learning of Java
occurred early, as reflected in the pre-quiz results, resulting in ceiling effects. It resulted in not
much room for improving performance in these constructs in the post-quiz. This means that
the participants in this study benefited from their knowledge of Python (PL1) constructs which
helped them learn Java constructs effectively in the first week of learning Java. A high propor-
tion of the participants in the study had high scores in the TCC concepts because of positive
transfer. These results show the positive learning effect of the TCC concepts in the early stages
of learning PL2 happens rapidly due to implicit learning. This may mean that in these concepts,
interventions are not necessary. However, participants from both groups still struggled with un-
derstanding the Java methods in week 1 of learning the Java language, although the Intervention
group performed slightly better than the Control group. This could mean that the methods may
not be perceived as a TCC concept, as categorized by the researcher. There are significant syntax
differences between Python functions and Java methods. For example, Java methods have return
types and type declarations that Python does not explicitly have. Students have been reported to
struggle with understanding Java methods in other studies [4, 141].

The Intervention group and the Control group performed equivalently poorly in the FCC
concepts in the pre-quiz even after the constructs semantics were taught in class. According
to the MPLT, semantic transfer affected learning negatively because the students transferred se-
mantic knowledge from Python to Java due to syntax similarities, however it became a problem
because Java behavior is different from Python in these constructs. In answering RQ4b, the
results revealed that the Intervention group benefited significantly more in the FCC concepts
than the Control group in most FCC concepts in the post-quiz. This could mean that as the
students discussed code comprehension questions of Java and Python mappings they managed
to help each other learn and reflect [52, 137] on the similarities and differences in behaviour of
the two languages. Engaging in making comparisons and connections to prior knowledge helps
students organise their conceptual knowledge structure [133], and understand concepts and se-

CHAPTER 8. EXPLORING EXPLICIT INTERVENTIONS ON TRANSFER 127

mantics better [142]. Other studies have used this type of learning in other transfer pedagogies
like bridging and hugging [10, 45, 84, 85].

These findings also show the importance of explicit instruction in programming language
transfer which gave the Intervention group the opportunity to become conscious about the pro-
gramming language syntax and semantics [45, 143]. The activities that the Control group were
engaged in, in this first week were problem-solving activities in the new Java language this does
not give them the chance to focus and understand the semantics and concepts of the new lan-
guage as they may struggle with syntax errors of the new language as this early stage [49–51,53].
This could mean students do not get the opportunity to engage deeply with the new language
as their cognitive capacity is focused on problem-solving not understanding the meanings of
constructs.

Overall, the findings in this study with regards to semantic transfer corroborate with Chap-
ter 6 findings where the students were at a different university country and taught by different
lecturers. This increases the validity of the MPLT. The results revealed that the transfer inter-
ventions are not helpful on the TCC concepts as the students learn them implicitly without much
assistance. The results have also shown the potential value of explicit interventions in teaching
students second and subsequent PL concepts in the FCC category. Although the Intervention
group benefited from student-focused interventions in the FCC, they still performed lower in
these concepts than the control group. This might imply that more vigorous interventions are
necessary for these concepts. The next section, therefore, explores transfer interventions further.

Chapter 9

The Pedagogy for Transfer

[Aspects of this study have appeared in [144].]

Chapter 4 and Chapter 6 have confirmed that semantic transfer based on syntax similarities
plays a crucial part in relative novices transferring between PLs as proposed by the first main
claim of this thesis. The transfer can be positive, negative or there may be a lack of transfer
as proposed in the MPLT in Chapter 5. The subsequent Chapter 7, revealed that despite stu-
dents facing transition difficulties between PLs, most of the interviewed teachers do not pay
attention to implementing transfer interventions in the classrooms. The second main claim of
this thesis is that the implementation of deliberate semantic transfer interventions during relative
novices’ second language learning can lead to improved conceptual transfer and understanding
in learning a second programming language. To assist teachers and encourage them to use trans-
fer interventions, in Chapter 8, this thesis explored how explicit transfer interventions can help
improve the learning of the TCC and FCC concepts. The results suggest that if pedagogy for sec-
ond language learning is adjusted in alignment with the MPLT, learning of second programming
languages can improve, especially for the FCC concepts. However, no pedagogy integrated with
the larger learning design of a transfer course has yet been developed.

This chapter, therefore, proposes an integrated pedagogy that is aligned to all the three cat-
egories of the MPLT (TCC, FCC, and ATCC) that will improve conceptual transfer and under-
standing. The MPLT draws from both the cognitive and linguistic theories; hence this integrated
pedagogy uses Implicit, Explicit, and Bridging interventions, which are also adopted in cog-
nitive and linguistic disciplines [45, 185]. The previous study mildly implemented the transfer
intervention for only 90 minutes in a seminar session. This study, however, embeds the transfer
interventions in an integrated pedagogy of second language learning. It allows for the interven-
tions to be used to improve PL conceptual understanding and not only correct misconceptions.
Furthermore, these interventions are teacher-focused because the teacher is mostly more knowl-
edgeable about programming languages and concepts. Therefore, they can guide students on
relevant focus areas to deepen their conceptual understanding. Also, the teacher can follow an

128

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 129

integrated pedagogy in a controlled and orderly manner, ensuring that students do not miss out
on important details about the transfer.

This chapter begins with the research questions followed by the design of the pedagogy.
The design of the pedagogy section involves the pedagogical approaches (Implicit, Explicit,
and Bridging) adopted and how each of them can be implemented in alignment with the three
categories of the MPLT. The section that follows is the instrument used which is adopted from
Chapter 6. The data collection follows next and includes the process of gathering and measuring
data on implementing the pedagogy. The data was collected quantitatively and qualitatively.
The rest of the chapter describes the data analysis and results of the experiment. The chapter
concludes with a discussion.

9.1 Research Questions

The overarching Research Question 4 of this thesis is: How can transfer teaching interventions
based on our understanding of semantic transfer improve second PL learning?

According to the MPLT, when students learn PL2, there is positive semantic transfer when
they learn TCC constructs, negative semantic transfer when they learn FCC constructs, and
no/minimal transfer when they learn ATCC constructs. Therefore, it is important to investigate
how implementing a pedagogy aligned with theory on how students transfer as proposed by
the MPLT will help them effectively learn second programming languages and improve their
conceptual understanding. To investigate this, the following specific RQ is asked:

• (RQ4c): Can students’ learning of TCC, FCC and ATCC be improved with an explicit
transfer pedagogy?

Obtaining the students’ and teacher’s feedback regarding the pedagogy can give insights into
what works and does not work, therefore helpful to improving the pedagogy. In addition, if the
teacher’s feedback is mostly positive, this can encourage other teachers to reflect and improve
on their own teaching of second languages by adopting the pedagogy. Therefore, the next two
RQs are as follows:

• (RQ4d): What are students’ views on learning the PL concepts through the transfer peda-
gogy?

• (RQ4e): What are the teacher’s views on teaching using the transfer pedagogy?

The next section elaborates the design of the pedagogy and how it aligns to the MPLT.

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 130

9.2 The Development of the Transfer Pedagogy

This section describes the process of developing the Transfer Pedagogy that fosters conceptual
transfer and understanding. It starts with a description of the pedagogical approaches used and
then presents the framework of the Transfer Pedagogy.

9.2.1 The Pedagogic Approaches used for the Interventions

Pedagogy is a method that is used to promote learning, and it includes techniques, learning
activities, and strategies that provide the environment where learning may take place [115].

In a traditional classroom, the teachers usually teach by giving students information and
exercises with an assumption that they will receive and revise their mental models and store
the new learning in a coherent framework [115, 145]. As elaborated in the previous section,
this assumption can be wrong when learners learn second programming languages because their
understanding may remain partially, or they may incorrectly carry over learning from the first
language. In this section, this thesis describes specific pedagogic practices within programming
languages and natural languages.

Constructivist Instruction

Constructivism has had significant influence in the teaching of programming in computer sci-
ence. It is a theory of learning that suggests that learners actively construct new understand-
ings and knowledge, integrating these with their background knowledge [186]. Constructivist
instruction is based on the belief that learning occurs as learners are actively involved in a
process of meaning and knowledge construction as opposed to passively absorbing it from
textbooks and lectures [50, 187]. It involves classroom activities such as higher-level prob-
lem solving, critical analysis, enquiry-based learning and collaborative learning. The teaching
practices that have successfully adopted this method in programming courses include students
live-coding and problem solving during class [188, 189]. This approach can also be used in
code-comprehension activities [197]. The only challenge that may arise with this approach
is when constructivist learning problem solving activities precede explicit teaching strategies
and teachers incorrectly assume that students have sufficient prior knowledge to generate new
learning constructively [146]. If relative novices start writing programs or engaging in problem
solving activities too early it may delay their development of viable mental models of program
execution, given that their understanding of the programming language (e.g syntax, semantic-
s/notional machine, concepts) is still very fragile [3, 49–52]. Furthermore, it has been reported
that without explicit instruction, the fragile knowledge of the first language negatively impacts
their learning of the subsequent programming languages [29, 30].

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 131

Implicit Instruction

Implicit learning is a method of learning that may be passive/unconscious [195], as compared
to active construction of knowledge. The implicit learning process can happen naturally and
intuitively for learners without much consciousness. It then means that the learner usually
learns without metalinguistic awareness. Early work on implicit learning was from cognitive
sciences [191,192]. It has now become popular in second language learning [193,194]. Implicit
instruction is a method that allows learners to deduce grammar rules without necessarily being
aware [185]. Therefore, they internalize the underlying grammar rule without the teacher draw-
ing their attention to it. This instruction makes use of the learners’ implicit learning process.
The teacher allows the learners to create their own conceptual structures and assimilate new
information upon presenting the learning material to them.

The implicit instruction can be applied when learners are taught the TCC concepts during
PL2 learning. This is because the similarities in PL1 and PL2 can help the learners learn PL2
implicitly due to the positive effects of semantic transfer. For example, a student’s prior knowl-
edge of a Python if-statement may effortlessly help them learn the Java if-statement because it
looks and works the same way in both languages.

Explicit Instruction

Unlike implicit instruction, explicit instruction is a method of teaching that usually focuses
on developing the learners’ metalinguistic awareness [185]. The learners are conscious of the
learning of the language, its semantics, and concepts. This instruction can be done inductively
by assisting the learners in making discoveries about the language grammar rule [185]. It can
also be done deductively by giving the learners descriptions, and examples of the grammar
rule during teaching [185]. In this teaching method, the teachers also provide learners with
metalinguistic corrective feedback of the target language when they encounter errors during
teaching.

There are various teaching activities a teacher can adopt, such as scaffolding, and corrective
feedback, activating learners’ prior knowledge, and making lesson objectives that target building
on this prior knowledge [185, 196]. This method is suitable for teaching the FCC concepts
because negative semantic transfer from PL1 may cause misconceptions in PL2. Applying these
activities may help learners restructure and correct their mental models to accommodate PL2.

The Bridging Technique

The Bridging intervention proposed by Perkins and colleagues [45] is a form of explicit instruc-
tion that assists the learners to transfer semantic/conceptual knowledge that they failed to transfer
implicitly. The Bridging intervention encourages the making of abstract conceptual associations
between the initial learning, and its target domain [45]. In this intervention, the teacher uses

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 132

Figure 9.1: Transfer Pedagogy Framework aligning to the MPLT categories

scaffolding to break up new concepts and build on students’ prior conceptual knowledge to ease
their learning. Analogies that connect the learner’s initial and target conceptual knowledge are
used to help foster transfer. These interventions are appropriate for teaching the ATCC concepts
because the students usually fail to connect these concepts to their prior language knowledge
because of failure to notice syntax similarities between PL1 and PL2.

9.2.2 The Pedagogy for Second Programming Language Learning

The pedagogy for second programming language learning that promotes conceptual transfer and
understanding is presented in this subsection as shown in Figure 9.1. The activities involved in
the transfer pedagogy are presented from the perspective of the different MPLT concept cate-
gories, TCC, FCC, ATCC, in alignment with the pedagogical approaches in Section 9.2.1. The
first (prediction) and the second (Feedback) steps are carried out at the initial learning of PL2
and engage the students explicitly on second language learning issues. The third step is the
intervention step and varies depending on the MPLT concept categories being taught. Students
then actively reflect on the concepts they have learned in the final step.

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 133

The description of the transfer intervention activities in Figure 9.1 is as follows:

1. Prediction: The teacher initially creates and categorizes some code-comprehension ques-
tions according to the Model’s TCC, FCC, and ATCC concepts in the form of a quiz; see
Appendix B. At the beginning of the PL2 lesson, the students are given the code compre-
hension task of the quiz in PL1 and PL2. There are two reasons for giving the students
a code comprehension quiz in both languages. The first reason for the comprehension
task in PL1 is to understand the students’ prior knowledge. This activity is important to
create a learning objective/activity to build on their prior knowledge. The second reason
for the prediction task/guess quiz in PL2 (before students learn PL2) is to understand their
implicit transfer of knowledge and their initial thoughts on PL2. Engaging students in
guess quizzes (before learning) activate consciousness and is also reported to be benefi-
cial to students [163, 164] it gives them room to fail hence providing the opportunity for
corrective feedback in PL2.

2. Feedback: Students are given the quiz results on how they performed in PL1 and PL2.
This feedback is given to improve their consciousness and awareness of the transfer mech-
anisms when learning PL2. Furthermore, students are given explanations about their per-
formance and meaningful examples. Interventions vary per concept category and are car-
ried out as follows depending on the results of the quiz:

• TCC-Implicit: The implicit learning of PL2 based on syntax and semantic similar-
ities between PL1 and PL2 usually makes the students successful at the prediction
stage in the TCC concept category. Therefore the suitable instruction for the TCC
concepts is Implicit instruction. The teacher takes advantage of the implicit learning
and just teaches students PL2 concepts without referring to PL1. Students are then
immediately given problem-solving exercises. The teacher does not need to provide
corrective feedback because students’ learning is usually positive and not affected
by the negative semantic transfer. However, the teacher can still reactively give cor-
rective feedback if students experience errors in problem-solving in a new language.
Some minimal explicit instruction can also be applied at this stage, where necessary.

• FCC-Explicit (Compare and Correct): Students are usually unsuccessful in pre-
dicting the FCC concept category because of negative semantic transfer. Therefore,
explicit instruction is the best transfer intervention for this concept. The teacher
gives students corrective feedback on their errors and refers back to the first lan-
guage. This is done by comparison exercises/examples between PL1 and PL2. These
exercises/examples allow the teacher to explain deeper programming concepts. The
teacher makes students aware and conscious of the PL2 language elements (syntax,

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 134

semantics, and concepts) before giving them problem-solving activities. Students’
group/pair discussions are also encouraged.

• ATCC-Bridging (Compare and Connect): Students are usually unsuccessful in
predicting the ATCC concept because of failure to transfer from PL1 to PL2 due to
different syntax between PL1 and PL2. Therefore, it is suitable to use the Bridging
technique for the transfer intervention in this concept. The activities include using
analogies to help connect common concepts between PL1 and PL2 hence fostering
transfer. The teacher does explicit interventions by linking programming concepts in
PL1 and PL2 and using examples of these same concepts in both languages to assist
the students. Students are given more examples in different contexts after the initial
bridging activity. The teacher allows the students to ask questions for clarifications
during the intervention.

3. Reflection: At this last stage, students reflect on their learning. This reflection also allows
them to identify what caused their success or failure to transfer well and what needs to
change. The activities around reflection may include discussions (groups or pairs), indi-
vidual reflections, or even journal entries.

This pedagogical framework can be flexible and adopted to suit the teacher’s lesson plans.
Teachers can follow the pedagogy by moving back and forth between the pedagogy parts. For
example, prediction quizzes can be given in chunks at different stages of the lesson, or reflections
can be done throughout the lesson.

9.3 Participants

In order to investigate the transfer pedagogy and answer the research questions on the effective-
ness of transfer interventions on second programming language learning, the study consisted of
participants who had just completed their first year of procedural Python and were now regis-
tered for the object-oriented Java in their second year at The University of Glasgow. The study
was a between-subject study design, therefore involving the Control group and the Intervention
group. The Control group involved 120 participants who were registered for the object-oriented
Java course in the year 2019, and the Intervention group involved 84 participants who had reg-
istered for the same course in the year 2020. Just like in the previous chapters, to reduce noise,
the only data included for analysis was for participants with only one programming language
knowledge (Python), less than one year of programming experience, and had no knowledge of
the Java programming language. It reduced the number of Control group participants to 30 and
the intervention group to 32.

The reason for getting participants from different academic years is because the study was
carried out in a real-life classroom hence it was a challenge to carry out controlled experiments

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 135

Table 9.1: A Python baseline assessment analysis using Mann-Whitney U test comparison:
Mean scores (out of total 4) grouped by MPLT concept category.

Concept Category Intervention group Control group P-Value
TCC 3.50 3.53 0.822
FCC 3.37 3.09 0.107
ATCC 2.83 3.06 0.542

that involve dividing a cohort and exposing only half to a potentially beneficial intervention.
To ensure that the two groups are homogeneous, they were given a Python baseline pre-quiz
that covered the same concepts as aligned with the MPLT concept categories (TCC, FCC, and
ATCC). An analysis using Mann-Whitney U test comparisons revealed that there were no signif-
icant differences in the scores between the groups with regards to their proficiency in the Python
language; see Table 9.1. Furthermore, the same lecturer delivered the course for both groups.
The groups were also at the same level of study (year 2) and had the same age range (18-23
years).

The threat to the validity of this study is that the delivery of the lectures was different. In
the year 2020, the course was delivered online because of the Covid-19 pandemic. Research
has, however, reported that there is no significant difference in the students’ scores between
online and face-to-face instruction [198,199]. Also, even though the delivery of instruction was
different, the course covered the same learning material. Participants were assured that their
participation in the study is anonymous and voluntary and that taking part in the transfer quizzes
does not affect their grades. Before the study, participants had to sign a consent form.

9.4 The Research Design

The study adopted a between-subject study design to investigate how transfer pedagogy will
improve second PL learning. The participants from both groups were offered the Java course
for two and a half weeks, which totaled five one-hour lectures. In addition to the lectures,
participants were offered a 2-hour lab session for Java programming exercises each week. For
the two and a half weeks, the course covered concepts on identifiers, primitive and non-primitive
types, composite types (arrays and objects and classes), scope, loops, methods. The concepts
were introduced in the same order from Lessons 1-5 for both groups. There were also live coding
sessions for both groups.

9.4.1 The Control Group Course Delivery

The Control group attended the Java course face-to-face and did not use transfer interven-
tions. The Java lecturer did not teach referring back to the Python language, which the students
already know. The course did not adopt the Explicit and Bridging transfer interventions pro-

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 136

Figure 9.2: A screenshot with an example of an FCC concept variable declaration in Lesson 2
as it was taught in the control group (2019) without explicitly comparing with Python

posed in the transfer pedagogy. For example, when the lecturer introduced variables and dec-
larations to students, they did not compare Java as a statically typed language and Python as a
dynamically typed language, see Figure 9.2.

9.4.2 The Intervention Group Course Delivery

The Intervention group attended the Java course online and were taught following the transfer
pedagogy in Section 9.2. The pedagogy was embedded into the Java course as follows:

Prediction

At the prediction phase (Lesson 1), participants were given code-comprehension quizzes in
Python and Java. They were given the Python quiz to get their baseline knowledge. The Java
guess quiz was given to make students actively think about the PL semantics and engage with
prior knowledge. The guess quiz was also given to investigate the students’ implicit transfer
from Python based on syntax similarities, as proposed in the MPLT.

Feedback

In Lesson 2, participants were given group feedback in the form of a bar graph showing how
they performed in the Java quiz as compared to the Python quiz. As expected in the MPLT,
participants performed better on TCC than the FCC and the ATCC, see Chapter 6 for similar
results in guess quizzes and explanation. The lecturer made students aware of how the transfer
from Python to Java happened, including explaining both negative and positive transfer. Some

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 137

Figure 9.3: Lesson 2 notes and live coding screenshot of FCC concept: The explicit instruction
of dynamic vs static concept during a live coding session in class

of the concepts covered in the quiz were explicitly taught in this lesson, referring back to prior
Python language. The rest of the concepts were introduced in subsequent Java lessons.

FCC-Explicit (Compare and correct)

The Explicit instruction using the compare and correct interventions was adopted whenever
the FCC concepts were taught in any of the five lessons. Figure 9.3 shows how the FCC con-
cept of dynamic (Python) versus static (Java) was introduced to students in-class notes and live
coding sessions. The lecturer started by making students aware that they incorrectly guessed
this concept in the guess quiz. The lecturer made explicit comparisons of the Python and Java
construct and corrected students’ misconceptions that were caused by negative semantic trans-
fer, see Figure 9.3. The lecturer also engaged students with live-coding activities in the same
concept using the two languages to explicitly show when the code will compile or when it will
give errors in each language. This allowed for students to review their conceptual knowledge
and restructure it hence deepening conceptual understanding.

ATCC-Bridging (Compare and connect)

The Bridging technique using compare and connect was adopted when the lecturer introduced
objects in Lessons 4 and 5. An analogy for Java objects used was Python dictionaries, because
dictionaries and objects have similar underlying semantics even though the syntax looks differ-
ent. A dictionary is a value with identity and has a collection of name/value pairs that can be
updated just like Java objects have a value with an identity that has attributes/fields that can be
updated. The difference is that the Java objects and classes are abstract types with hidden im-
plementation details. A Java object has methods defined in the class definition. While these are
not part of a dictionary, a Python user-defined data type can be created using a dictionary and
associated functions. Figure 9.4 shows how the bridging intervention was implemented during
a live coding session. Students were given more Java objects examples after the intervention.

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 138

Figure 9.4: Lesson 5 screenshot: The bridging intervention technique the lecturer used for
Python dictionaries and Java objects during live coding session in class

Figure 9.5: Sample screenshot for the post test question-FCC category

Reflection

At the end of the interventions students were given open-ended surveys to write their experiences
and reflect on their learning.

9.5 Instrument

Python and Java code comprehension quizzes that cover the TCC, FCC, and ATCC constructs
were given to the participants to obtain, measure, and analyze data, see Appendix E. The de-
tails about designing this instrument are already elaborated in Section 6.2. An example of the
categorised concepts for the quizzes is in Figure 9.6. Each quiz consisted of twelve questions
for this study consisting of four questions per construct category (TCC, FCC, and ATCC). Both
quizzes covered concepts that the participants were taught in both the Python and Java course.
These include expressions, operators, scoping, control structures (indefinite and definite loops),
functions, and data structure. An example of a FCC question in the Java quiz for a for-loop
construct is shown in Figure 9.5.

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 139

Figure 9.6: An example of a FCC concept of array equality in Java and Python

Figure 9.7: Week 3 sample Java quiz on array equality
.

9.6 Data Collection

The Control and the Intervention group were given a code-comprehension quiz in Python at the
beginning of the course to assess their baseline knowledge; see Appendix E. They were also
given a code-comprehension quiz in the Java language in the third week of learning Java to
investigate the effect of the pedagogy on their conceptual and semantic knowledge of PL2. The
Python and the Java quiz took 20-25 minutes to complete. All participants were able to finish
the quizzes before or on the given allocated time without reporting any difficulty.

.

Participants in the intervention group were given a Likert scale survey and open-ended ques-
tions to report on their experiences of being taught using the pedagogy. In addition, a few
participants who volunteered were interviewed to gain in-depth knowledge of their experiences.
The questions are described in Section 9.8.2. The lecturer was also interviewed for one hour to
get their experiences with using the pedagogy.

9.7 Data Analysis

The quantitative data and qualitative data was analysed as follows:

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 140

9.7.1 Quantitative Analysis

The quantitative data analyses followed the steps outlined in Section 6.5. An Excel spreadsheet
was used to record scores. A score of 0 was given for an incorrect answer, and a score of 1 was
given for a correct answer for each of the individual constructs. That meant that the maximum
scores a participant could get were 12, with each concept category (TCC, FCC, and ATCC)
containing four questions. The mean score in each category was calculated using the R package.
The non-parametric Mann-Whitney U test was used to compare the significant difference in the
scores between the tests because the data was not normally distributed. The generally accepted
p=.05 was regarded as the cut-off point; therefore, statistical significance that is accepted is
when p-value is less than or equal to .05 [115]. P-values alone do not indicate the extent of
the difference (if any exist) therefore the effect size was calculated. A recommendation from
Cohen’s classification of effect sizes which is small (d = 0.2), medium (d = 0.5), and large (d �
0.8) was used.

9.7.2 Qualitative Analysis

The qualitative data analyses using thematic analysis followed the steps outlined in Chapter 7. In
this approach, the researcher closely examined the interview and survey data to identify common
themes, ideas, and patterns of meaning that came up repeatedly. The researcher then discussed
the initial codes with the researcher’s supervisor, and conflicts were discussed and resolved.
The initial codes were generated inductively, which were then merged and collapsed into related
themes through an iterative process.

9.8 Results

9.8.1 Week 3 Java Quiz Results Comparisons

The data was analysed using a Mann-Whitney U test comparison and the results revealed signifi-
cant differences in the Java mean score grouped by concept categories between the groups on the
FCC and ATCC scores. There were no significant differences in the TCC score; see Table 9.2.

A Mann-Whitney U test was computed for each construct in the quiz for further analysis
as shown in Table 9.3. The results revealed that there was no significant difference between
the groups in each of the TCC constructs. This may be because of the ceiling effects. The
participants had scored high in the TCC concepts leaving not much room for performance to
improve in these constructs.

Overall the Intervention group performed better than the Control group on FCC constructs
with a significant positive difference on three concepts: string coercion (p <0.001), array equal-
ity (p <0.001), and string multiplication (p=0.013). The effect size for the string coercion and

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 141

Table 9.2: A Java post-quiz analysis using Mann-Whitney U test comparison: Mean scores (out
of total 4) grouped by concept category

Category Control group (2019) Mean Intervention group (2020)
Mean

P-Value

TCC 3.47 3.55 0.525
FCC 1.1 2.75 0.001
ATCC 1.7 2.41 0.020

Table 9.3: Mean scores and effect size of individual constructs tested in Control and Intervention
groups in Week 3

Categ Construct Control-
2019
(n=30)
Mean

Interven-
2020 (n=32)
Mean

P-
Value

Effect
size

TCC String concatenation 0.90 1.00 0.149 0.26
TCC Operator precedence 0.87 0.91 0.765 0.05
TCC While loop 0.80 0.78 1.00 0
TCC Functions 0.90 0.86 0.538 0.11
FCC Array equality 0.13 0.66 <0.001 0.68
FCC String coercion 0.13 0.78 <0.001 0.75
FCC String multiply 0.37 0.69 0.013 0.45
FCC Int division 0.47 0.63 0.208 0.23
ATCC Object retrieval 0.55 0.77 0.017 0.43
ATCC Object update 0.55 0.64 0.291 0.19
ATCC Object assignment 0.53 0.64 0.202 0.23
ATCC Object aliasing 0.07 0.36 0.009 0.47

the array equality was medium. The Intervention group also performed significantly better than
the Control group on ATCC constructs on two concepts: objects aliasing (p=0.009) and objects
retrieval (p=0.017).

9.8.2 Students’ Feedback

Students in the intervention group were asked to answer the following questions on a 5 point
Likert Scale: "Was it helpful when the teacher showed you the differences between the lan-
guages". Out of the 32 responses, 44% of the students strongly agreed to this statement, and
41% reported to agree. Only 3% reported to disagree; see Table 9.4. The students were also
asked: "Was it helpful when the teacher showed you the similarities between the languages";
25% of the students strongly agreed to this statement, and 53% reported to agree.Students were
lastly asked: "Was it helpful when the teacher showed the connection between Python dictionar-
ies and Java objects"; 9% of the students strongly agreed to this statement, and 38% reported to
agree while the majority (50%) were undecided.

Students were asked the following open-ended question to get in-depth knowledge of their

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 142

Table 9.4: Week 3: Intervention group (2020) feedback on the transfer interventions per concept
category on a Likert Scale, n=32.

Category FCC interventions
helpful

TCC interventions
helpful

ATCC interven-
tions helpful

Strongly Agree 44% 25% 9%
Agree 41% 53% 38%
Undecided 12% 16% 50%
Disagree 3% 6% 3%
Strongly Disagree 0% 0% 0%
Total 100% 100% 100%

given answers in Table 9.4: "Share any thoughts you might have on your learning experiences
of the programming concepts covered in this survey during the past two weeks. e.g., You can
further explain in more detail why you chose the level of agreements in the above questions".
Twenty-five students out of the thirty-two answered this open-ended survey. They are repre-
sented as student 001-student 025. The analysed results using thematic analysis method pro-
duced the following themes:

The teaching method was helpful: Most of the students (22 out of 25, 88%) reported that
the transfer interventions were helpful. Their answers were further divided into the following
sub-themes:

1. Helped me understand concepts better: Five students reported that the interventions as-
sisted them in understanding the programming concepts better. For example, student 013
explained about their experience of learning the block scoping concept "If you create a
variable inside a Java for-loop that only exists inside a for-loop. I was introduced to
scoping in my Python course but I did not really have a strong grasp of it. The Java lec-
turer wrote sample code and common pitfalls using the Java-Python survey examples and
showing global variables and local ones which made it easier to avoid mistakes." This stu-
dent went on to explain their experience with learning referencing concept "We did not get
exposure to the concept of referencing in Python, we heard about it but did not see much
of it in practice [.......]. The Java lecturer showed us how to use .equals() when it comes
to comparing objects not ==. In the String the way Java references is not like Python,
in Java it checks if the addresses are equal while in Python it checks the values." Student
003 also mentioned that "I had no idea what static and dynamic typed languages meant
before starting the Java course. I learnt that Python is dynamic while Java is static".

2. Helped me recognise the difference between the two languages: Nine students ex-
pressed that it helped them understand both languages better. For example, student 006
expressed that " It helped me recognize the differences between Python and Java and
hopefully be competent in both of them." and student 017 mentioned that "In Python you
don’t have to declare the type of a variable, I thought in Java I could just say a="abc" but

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 143

in Java I have to be specific and say String a="abc."

3. Helped me aware of the habits not to continue in the new language: Four students
described that the transfer interventions helped them avoid negative transfer from their
Python knowledge to Java knowledge. For example, student 032 mentioned that "I think
it’s more useful to point out the differences since Python is something most of us are al-
ready familiar with and often use this experience as a "fallback" when we are not sure
about how something works. Therefore, it is more useful to know when this will not pro-
duce the expected results rather than when it will." while student 003 said "If I am coding
in the lab and it does not work, I go back to the slides and realize the lecturer warned me."

4. Helped me connect to my prior knowledge: Four students expressed that it helped them to
connect to their Python knowledge. Student 001 said "By doing comparisons it helped me
understand as I had previously done Python" while student 007 said "It was very helpful
to use a language we learned last year to help us in transitioning from Python to Java and
it’s definitely better than starting a programming language from scratch:)" Student 017
also said "The quiz at the beginning was quite interesting to see how well I still remember
Python and how well I think Java would look like."

The teaching method was not helpful: Three students reported that they did not find the
teaching method helpful. Their answers were divided into sub-themes as follows:

1. It makes learning harder: One student felt that the ATCC interventions made their learn-
ing harder, saying "I feel Java objects and classes are a bit hard to understand because
we never worked with objects and classes with Python, so trying to compare them to dic-
tionaries actually makes the learning process a bit harder"(student 014).

2. It was confusing: Two students felt that the lecturer using two languages to teach confused
them. For example, student 009 said "It gets more confusing when two languages are
taught at the same time."

9.8.3 Lecturer’s Feedback

At the end of the interventions, a one-hour semi-structured interview was given to the lecturer to
get insights into their experience of adopting the pedagogy. The following lead questions were
asked to the lecturer: "Why did you agree to take part in modifying your pedagogy?", "Do you
believe the new teaching is beneficial or not?" and "Did you experience any challenges?" This
interview was just for one person, and the highlights of the narrative are as follows:

I was not aware of transfer challenges in the classroom: "The 2019 pre-quiz showed that
the students were affected by False Carryover concepts in Java, I was initially not aware they
will have misconceptions but it was clear they did, so I thought let me explicitly explain these
concepts instead of hoping they will figure it out at some point".

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 144

I enjoyed using the pedagogy: The lecturer reported that they enjoyed using some parts of
the transfer interventions and they found them beneficial. Their response is as follows:

1. The prediction stage was helpful: "I liked that I gave out a Python quiz and a Java
prediction quiz/survey at the beginning of the course. I would advise other lecturers to
know what prior knowledge students are bringing into the class, rather than assume you
actually know how they performed"

2. The feedback stage was helpful: "I liked that I was giving the students the feedback to
show them how they transferred knowledge from Python to Java. I enjoyed explaining the
concepts based on this quiz survey results."

3. The compare and correct stage was helpful and provided opportunity to deepen con-

ceptual understanding: "I explained to them basing on their Python performance and
explaining why they got things wrong in Java. I hope they get over the confusions about
how the languages behave differently sooner. That way it helps us to start learning deeper
concepts of Java and avoid them getting stuck. I also think that explaining that a different
language does it in a different way kind of gets the students to understand the underlying
model/ways of concepts a bit more. For example, showing how variables are expressed
differently in both languages may help you understand them more clearly."

I had challenges adopting the pedagogy
The lecturer also reported that they faced some challenges because they lacked proficiency

in PL1 (Python). the lecturer also reported the students’ lack of participation. Their response is
as follows:

1. I had limited knowledge of Python:"One of the challenges was not knowing Python
enough to explain it in a way that it makes sense. I probably could have done a bet-
ter job in this intervention. I tried to do a live-coding example of Python in class and
failed miserably. I had to learn Python and understand how it works before doing this
pedagogy."

2. I had challenges implementing the compare and connect stage: "I had challenges with
ATCC interventions, I tried to connect Java objects to dictionaries when I introduced
objects. I was a bit skeptical because I was not sure if they mean the same thing. I don’t
really know much about dictionaries."

3. I had challenges with a diverse group of students: I made sure I gave examples of the
two languages during class using live coding, however, often those quickly spun off in the
wrong directions, which did not follow the transfer plan for the lectures due to experienced
students getting curious and asking questions about code. Inexperienced students were shy
to participate.

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 145

9.9 Discussion

This chapter answers the following specific research questions:

• (RQ4c): Can students’ learning of TCC, FCC and ATCC be improved by the transfer
pedagogy?

• (RQ4d): What are students’ views on learning the PL concepts through the transfer peda-
gogy?

• (RQ4e): What are the teacher’s views on teaching using the transfer pedagogy?

The discussions of this research will be presented as a reflection to each research question:

RQ4c: Effect of the pedagogy on learning of the TCC, FCC and ATCC

Just like in the previous chapter, the results of this study revealed that the implicit instruction
based on the transfer pedagogy did not improve participants’ learning of TCC concepts. How-
ever, as expected (from Chapter 4 and Chapter 6) the participants still performed better in these
concepts than other concepts because they were assisted by implicitly mapping syntax and se-
mantics of their prior knowledge (Python) and new knowledge (Java) concepts resulting in sub-
sequent positive semantic transfer. It, therefore, suggests that these concepts can be implicitly
taught as proposed in the pedagogy. Teachers do not need to put much focus on explaining and
making comparisons in the TCC concepts as the implicit learning mechanisms automatically
assist in the learning of these concepts.

The results of this study reveal that the explicit [185] and bridging [45] transfer interventions
were mostly effective when transitioning students from procedural Python to object-oriented
Java for most concepts in the FCC and ATCC concepts. The rationale for this outcome is in the
activities implemented during these transfer interventions (e.g., corrective feedback and analo-
gies). They raised the students’ consciousness and awareness of the nature of the programming
languages (concepts, semantics, syntax), therefore, assisting them in modifying and correcting
their existing conceptual knowledge as proposed by the MPLT [30] and other cognitive stud-
ies [45, 185]. Students, however, did not significantly improve in their learning of the FCC
(integer division) concept. The rationale for this may have to do with students intuitively trans-
ferring their mathematical knowledge of this concept, which works like Python. This implies
that more intense transfer interventions may be beneficial for this concept or other concepts
similar.

RQ4d: Students’ views on learning the concepts through the transfer pedagogy

The results revealed that most students found the transfer interventions that make the PL1 and
PL2 comparisons most beneficial. This may mean that these interventions raised the students’

CHAPTER 9. THE PEDAGOGY FOR TRANSFER 146

awareness and consciousness when learning PL2. In other words, their metalinguistic ability
was engaged [185] during the interventions. These results also imply that the students learn
better from their own failed attempts and corrective feedback. A few students (3) reported that
it was challenging for them when the teacher used two languages. The possible explanation for
this could be that some experienced students were interrupting the interventions because of their
curiosity in learning the second language. However, interventions that cater to both experts and
novice programmers should be further researched.

Half of the participants had neutral feelings about the ATCC concepts experience. While
47% of them found the ATCC interventions helpful. This could be because the lecturer showed
a lack of confidence in teaching the ATCC concepts using bridging techniques, especially on
Python dictionaries. The lecturer’s beliefs and motivations of teaching concepts may affect how
the students learn a concept [200]. Another possible explanation could be that the bridging
interventions and analogy interventions may be a challenge for students [39, 147, 148]. Such
interventions may need careful step-by-step scaffolding activities that connect abstract concepts
by showing structural similarities, as shown in Chapter 4. Despite these challenges, the effec-
tiveness of the ATCC concepts is promising.

The students also reported the benefit of a deeper conceptual understanding of some pro-
gramming language concepts. Making comparisons of multiple conceptions has been reported
to deepen conceptual understanding in other studies [142]. Further studies on how teaching
second languages can deepen conceptual understanding should be investigated.

RQ4e: Teacher views on teaching using the pedagogy

The lecturer expressed the benefits and the challenges they experienced when using the peda-
gogy. They reported that getting students’ prior language knowledge was beneficial for teaching
the second programming language. They also reported that they used transfer interventions to
assist the students in learning deeper programming language concepts. Despite the excitement
for adopting the pedagogy, the lecture faced some challenges too. The main challenge was the
lack of PL1 knowledge. This may have affected their confidence when they had to implement
the bridging techniques. This may explain why the students may have been neutral about this
intervention. The other challenge the lecturer had was teaching a class with mixed backgrounds.
This is already explained in the previous subsection. Possibly, the experienced students intim-
idated the relative novice programmers by asking advanced programming language concepts
during the interventions. These interruptions may have affected some students for whom this
pedagogy is designed, affecting their learning process.

The next chapter summarises the thesis findings into a discussion and relates them to prior
research, generalise the findings, point out important contributions, implications, and limita-
tions.

Chapter 10

Discussion and Conclusion

Prior research has reported that novice programmers experience transition challenges when mov-
ing to new programming languages. Existing research that explains the process of programming
language transfer has been conducted on experienced programmers writing programs in a new
programming language, giving little attention to how relative novices move from their first or
second programming language. To contribute to the existing research on transfer, this thesis in-
vestigates how a relative novice programmer’s knowledge of concepts in their first PL transfers
when learning a second PL. Understanding how relative novice programmers transfer knowl-
edge between programming languages can help account for the success and failure of transfer
during second language learning.

Drawing from second natural language acquisition theories, this thesis aims to investigate
if semantic transfer based on syntax similarities plays a role in relative novices’ conceptual
transfer between programming languages. Furthermore, the thesis examines how the transfer
interventions in second programming language learning can improve conceptual transfer and
understanding. The thesis adopts a mixed-methods design [75] that is conducted in four main
stages. The first stage is an exploratory qualitative study to investigate how relative novice
programmers transfer knowledge from PL1 to PL2 deductively using natural language theories.
Secondly, a Model of Programming Language Transfer (MPLT) based on the preliminary study
is developed. Thirdly, the MPLT is validated quantitatively with four experiments. Lastly,
transfer interventions and pedagogy for transfer are developed and investigated.

This chapter elaborates on and evaluates the summary of the research findings thoroughly
and coherently and discusses the thesis contributions. The chapter begins by presenting the
research questions and the experiments that were designed to answer them. Next, the essential
findings and the interpretation of results guided by the four high-level research questions are
presented. This also includes discussions on how these findings relate to previous studies on PL
transfer. These will be followed by a discussion on the thesis contribution to CSE knowledge,
the implications, and limitations. Lastly, the conclusions and areas for future research will be
presented.

147

CHAPTER 10. DISCUSSION AND CONCLUSION 148

Table 10.1: A summary table of the a total of nine experiments conducted to answer the research
questions. These experiments are presented in Chapter 5-9.

Experiment Chapter Methods Research Question
Exploratory Study of Semantic transfer 4 Qualitative RQ1
Designing Model of Programming Language
Transfer (MPLT)

5 Model design RQ1

Validating MPLT 6 Quantitative RQ2
Teachers’ views on Transfer 7 Qualitative RQ3
Explicit Interventions using a student-centred
Approach

8 Quantitative RQ4

Pedagogy for Transfer 9 Qualitative and Quantitative RQ4

10.1 Research Questions and Key Findings

This section discusses the research questions and a summary of the research findings. The
detailed discussions are already presented in each individual chapter. These findings will be
presented at a high-level and in a coherent manner here.

The thesis statement is that Semantic transfer based on syntax similarities plays a role
in relative novices’ conceptual transfer between programming languages; the implementa-
tion of deliberate semantic transfer interventions during relative novices’ second language
learning can lead to improved conceptual transfer and understanding in learning a second
programming language.

This thesis has four high level research questions. Table 10.1 provides a summary of the nine
experiments conducted to investigate these research questions. The first set of research questions
(RQ1 and RQ2) aim to examine the first part of the thesis statement "semantic transfer based on
syntax similarities plays a role in relative novices’ conceptual transfer between programming
languages".

The first research question is aimed at understanding how semantic transfer in natural lan-
guages is relevant in PL transfer.

• RQ1: How are principles of semantic transfer in natural languages applicable to
patterns of transfer in the context of relative novices transferring from first to sub-
sequent PLs?

An exploratory qualitative study with five second-year undergraduate students transitioning
from procedural Python to object-oriented Java was conducted over ten weeks to answer RQ1.
The findings in Chapter 4 suggest that semantic transfer did take place, in line with Jiang's model
of second language acquisition based on the notion of semantic transfer [25, 26]. The perceived
similarities between PL1 and PL2 appeared to catalyze semantic transfer as suggested by Ring-
bom’s cross-linguistic similarity relations [28]. Therefore, if the syntax and semantics of PL1
and PL2 were similar, this accelerated the learning of PL2. However, PL2 learning was affected

CHAPTER 10. DISCUSSION AND CONCLUSION 149

negatively if syntax was similar but semantics different. The findings also revealed that stu-
dents struggled to connect common concepts that look syntactically different between PL1 and
PL2. The results also suggest that inappropriate transfer issues remain persistent without explicit
instruction. Negative transfer or interference from the first programming language (Python) re-
mained persistent, as observed in week 4 of students transitioning to Java. Furthermore, the
students’ struggle with connecting common and abstract concepts that are represented differ-
ently between the two languages remained persistent, as seen with these students’ experiences
halfway through learning Java.

Two other transfer issues inductively emerged from this first study findings. Firstly, the
transfer does not only occur at the semantic level but can also occur at a conceptual level during
code comprehension. That is, these students started by recognizing similarities in the syntax
between PL1 and PL2 and then subsequently transferring the semantic (behavior) and conceptual
(concept name) knowledge from PL1. Secondly, the transfer can happen bi-directionally (PL1
to PL2 and from PL2 to PL1) as learning progresses, showing students’ fragile knowledge of
PL1 and PL2 concepts.

The qualitative study yielded results that led to the development of a Model of Programming
Language Transfer tailor-made for relative-novices transfer in programming languages. This
model is used to investigate transfer in programming languages quantitatively. Therefore the
second research question is:

• RQ2): Do relative-novices transfer their programming language conceptual and se-
mantic knowledge to a new programming language during code comprehension ac-
cording to the MPLT?

RQ2 is answered through validating the MPLT hypotheses as follows:

1. If a learner encounters a True Carryover Construct (TCC), they will perceive it as a TCC
because of syntax match, hence semantic transfer will be appropriately effected from PL1
to PL2 and the learning will be positively impacted.

2. If a learner encounters a False Carryover Construct (FCC), they will perceive it as a TCC
because of syntax match, hence semantic transfer will be inappropriately effected from
PL1 to PL2 and the learning will be negatively impacted.

3. If a learner encounters an Abstract True Carryover Construct (ATCC), they will perceive
it as novel since there is little or no syntax match, hence there will be little or no semantic
transfer from PL1 to PL2.

Four experiments on transfer between procedural Python and object-oriented Java were con-
ducted, see Chapter 6. The first two experiments assessed semantic transfer from procedural
Python to object-oriented Java before the students learned the Java programming language. The

CHAPTER 10. DISCUSSION AND CONCLUSION 150

third experiment evaluated semantic transfer from procedural Python to object-oriented Java af-
ter the Java programming language instruction. The last experiment assessed semantic transfer
from object-oriented Java to procedural Python after the Java programming language instruc-
tion.

The results show that students encounter three types of semantic transfer based on syntax
similarities between PL1 and PL2 as proposed by the MPLT’s three construct categories (TCC,
FCC, and ATCC). Furthermore, the results show that students who have learned PL2 and those
who have not yet learned PL2 have similar transfer patterns as proposed by the MPLT’s hy-
potheses, suggesting that the transfer process happens automatically and unconsciously without
explicit instruction. This automatic transfer becomes beneficial when students learn the TCC
concepts in PL2. Therefore, as the four studies reveal, the similarity between the two languages
can catalyze positive semantic transfer; hence, understanding these concepts becomes faster and
easier. These results support the MPLT in Chapter 5 which suggests that students have one men-
tal representation of these concepts in both PL1 and PL2; therefore, the assumption is that if
students know a TCC concept well in PL1, they will also automatically know it well in PL2.

The data in all four experiments suggest that the FCC is the most challenging concept to learn
in PL2 when students transition from Python to Java. The similarity between the two languages
can catalyze negative semantic transfer between PL1 and PL2. In this case, constructs may have
similar syntax, but the semantics work differently in PL1 and PL2; hence the automatic semantic
transfer triggered upon recognition of similar syntax deceives the students into thinking that the
semantics/behavior between the two languages is also the same. The findings support the MPLT
hypothesis and show that students hold one mental representation of PL1 and PL2 even when
the semantics have changed. This was evidenced in the results when the students indicated that
they could transfer knowledge from PL1 to PL2 and bidirectionally from PL2 to PL1. This
transfer depended on which language they feel they are more confident within understanding
the concept.

Lastly, the results suggest minimal/no semantic transfer on ATCC concepts between PL1 and
PL2. Students struggled with understanding ATCC concepts semantics in PL2 because of their
unrecognised representation even though they already know them in PL1. Furthermore, if the
teacher did not help the students connect common concepts represented differently in PL1 and
PL2, the students formed two different mental models of the same concept, as was evidenced in
the qualitative study in Chapter 4.

Despite these promising results, it is crucial to note that the categorizations of the three con-
structs (TCC, FCC, and ATCC) depend on how the researcher perceives similarities between
PL1 and PL2; therefore, this might be different for how the students perceive the similari-
ties. Nonetheless, the overall results of the four experiments provided convincing evidence
that students from different CS classes, years of study, and different programming language
backgrounds followed similar patterns of learning PL2 as predicted by the MPLT hypothesis.

CHAPTER 10. DISCUSSION AND CONCLUSION 151

Therefore, the findings show how similarity between programming languages and subsequent
semantic transfer plays a significant role in learning new programming languages.

The few researchers who address transfer in programming languages have mainly focused
on experienced programmers problem-solving. The studies that validated the MPLT are based
on code comprehension activities of PL1 and PL2 by relative novice programmers. This does
not mean that similar transfer problems will not be prevalent in code production. Scholtz and
Wiedenbeck [19,20,22] discovered that when experienced programmers solve problems in new
languages, they transfer similar/familiar known algorithms in their previous languages to new
languages. They repeatedly change their plans to suit the new language constructs when the
languages behave differently, which results in delays in problem-solving. Using familiar algo-
rithms is only helpful to experienced programmers when the two languages are similar, that is,
the algorithms can be expressed in the new language as reported in [21].

This thesis is the first attempt at addressing transfer from a code comprehension perspective.
Transfer in comprehension is mainly concerned with how a learner perceives syntax similari-
ties between PL1 and PL2 during code comprehension. This type of transfer makes it easier
to assess the relative strength of the positive versus the negative effects of transfer [70] in pro-
gramming semantics and concepts as proposed in the MPLT. Furthermore, this research brings
insights into how relative-novice programmers transfer their understanding of conceptual/se-
mantic knowledge as they learn new languages considering that they usually struggle with the
surface details/syntax [130] of a programming language as compared to experienced program-
mers [3].

The first set of research questions’ findings supported the thesis claim that semantic transfer
based on syntax similarities plays a role in relative novices’ conceptual transfer between pro-
gramming languages. The second set of research questions (RQ3 and RQ4) aims to examine
the second part of the thesis statement "the implementation of deliberate semantic transfer in-
terventions during relative novices’ second language learning can lead to improved conceptual
transfer and understanding in learning a second programming language."

RQ3 aims at investigating transfer from a teacher’s perspective. The teachers can give in-
sights into whether high-school students experience the same semantic transfer issues as iden-
tified by the MPLT given that this model was developed from observations from university
students. If that is the case, the teacher findings can provide insights into whether they adopt
transfer strategies that cater to matters associated with the transfer. If the teachers don’t use
transfer strategies, it is a motivation for this thesis to design transfer strategies that can be im-
plemented in second language learning. Hence the following research question:

• RQ3: How do teachers typically approach PL transfer for relative novices in the
classroom?

A qualitative study was conducted with 23 K12 teachers in the Netherlands and Scotland to an-
swer this research question. The results revealed that most teachers first introduce students to

CHAPTER 10. DISCUSSION AND CONCLUSION 152

simpler visual languages (e.g., Scratch) when they teach them programming. They believe this
allows the students to have more confidence and engage in programming. Weintrop’s research
findings have supported this rationale [112] that reported that students had higher levels of con-
fidence, enjoyment, and interest when using isomorphic blocks-based, text-based, and hybrid
blocks/text tools. Other researchers in agreement with these findings are [150, 151] while other
studies found that starting with simpler languages reduces students’ syntax errors [130].

The findings in this thesis revealed that when teachers transition students from simpler lan-
guages to more formal languages like Java/Python, they experience both benefits and problems
of transfer from PL1 to PL2. These include positive semantic transfer, negative semantic trans-
fer, and lack of transfer as proposed by the MPLT. These findings suggest that transfer issues are
a big problem for both k12 and university students.

Despite the reported transfer challenges, most interviewed teachers did not believe they had
to implement transfer strategies in the classroom. They gave reasons such as they do not think
students have a strong understanding of concepts in the first language to transfer to a new lan-
guage. It shows that when teachers teach first programming languages, they do not focus on
developing students’ conceptual knowledge but rather on engaging students to use the first pro-
gramming language to create games and be comfortable using programming languages. How-
ever, this kind of teaching may defeat one of the most important educational goals, which is the
transfer of learning and the incremental development and deepening of understanding. Transfer
of learning allows students to use previously acquired knowledge and skills in new learning.
This transfer is also essential in learning new programming languages since programming lan-
guages share similar underlying concepts. The results of this study also indicate that teachers
usually think that transfer occurs naturally to learners, but in reality, without explicit instruction,
learners struggle with transferring knowledge from one context to the other [149].

The findings, however, also reveal that some teachers use transfer strategies in the class-
room when teaching second programming languages, although some of them use them simplis-
tically and spontaneously. These teachers believe that multiple programming languages help
develop students’ conceptual knowledge and cognitive skills. Some teachers use well-known
transfer strategies such as bridging and explicit instructions analogies to help students build new
knowledge through activating previous languages and helping students connect similar concepts
between previous languages and new languages.

Although the CS curriculum guidelines recommend more than one programming languages,
there is not much research on the teacher’s perspective on how students transfer to new lan-
guages, hence this study is filling in this gap. Understanding how relative novices transfer se-
mantic and conceptual knowledge and how teachers approach transfer in the classroom can help
account for the success and failure of PL transfer in the second PL classroom. The last question,
therefore, considers how such an understanding could help in building transfer interventions that
can help improve second language learning in the classroom.

CHAPTER 10. DISCUSSION AND CONCLUSION 153

• RQ4: How can transfer teaching interventions based on our understanding of se-
mantic transfer improve second PL learning?

The thesis presented two quantitative intervention experiments in Norway and Scotland to
answer this research question. In Norway, the study implemented transfer interventions with
first-year undergraduate students transitioning from object-oriented Python to object-oriented
Java. In Scotland, a more embedded pedagogy with three interventions catering for each MPLT
category (TCC, FCC, and ATCC) was implemented on second-year undergraduate students tran-
sitioning from procedural Python to object-oriented Java.

The results from the two studies revealed that when students are learning TCCs, both im-
plicit and explicit interventions are not very beneficial. Students in the Control group performed
similarly to the transfer Intervention groups in both studies in these categories. The interpreta-
tion of these results supports the proposal by the MPLT. According to the MPLT, relative novice
programmers hold one mental representation (similar conceptual, semantic and syntactic rep-
resentation) of the TCC concepts in PL1 and PL2. PL2 is acquired automatically by matching
similar syntax of PL1 and PL2 followed by subsequent semantic transfer. It, therefore, means
that when students know a concept in PL1, they will also know it through implicit learning in
PL2. In this case, the findings from these studies confirm that teachers can use this implicit
learning of the TCC and use implicit teaching methods [185] to teach TCCs in PL2. Students
are expected to learn the PL2 semantics and concepts in implicit teaching unconsciously. Teach-
ers do not need to make the students consciously focus on the PL2 form and explain and make
comparisons of PL1 and PL2 in the TCC concepts. Implicit learning mechanisms automatically
assist in learning these concepts. The pedagogy, however, does not address the TCC misconcep-
tions that students already have in PL1; therefore, should consider careful steps in addressing
these.

The results showed that the explicit interventions were considerably more effective on the
FCC categories than other MPLT categories. Students in the Intervention group outperformed
those in the Control group in both studies after explicit instruction. Furthermore, the results
suggest that explicit student-focused or instructor-focused interventions are beneficial to stu-
dents’ learning of the FCC concepts. The lecturer helped the students become conscious of the
PL2 differences during explicit instruction by providing explicit descriptions of the underlying
semantics and concepts to be learned in PL2. It could imply that the students’ meta-cognition
abilities were engaged in the learning process when explicit instruction was applied. Meta-
cognition can be defined as thinking about thinking [83]. It is becoming a common topic in
computing education research [152]. Some studies have reported the benefits of meta-cognition
scaffolding. For example, they discovered that students can misinterpret a problem statement
and form an incorrect mental model of the problem which they may find difficult to correct.
After meta-cognition scaffolding, students then experience significantly fewer errors that are re-
lated to the formation of an incorrect mental model when working on programming problems

CHAPTER 10. DISCUSSION AND CONCLUSION 154

after meta-cognition scaffolding [153].
Furthermore, some students who used the instructor-led interventions also reported a deeper

conceptual understanding of programming language concepts after the interventions. This could
be because the lecturer helped students learn by comparing PL1 and PL2 and giving students
feedback on their misconceptions caused by the transfer. Recent CSE research by Margulieux
and colleagues [142] proposed that multiple conceptions develop better conceptual knowledge
when the students are guided to compare the multiple conceptions of a concept during instruction
(in this case, comparing PL1 and PL2). The explicit instructions also assisted the students to
modify and correct their existing conceptual knowledge as proposed by the MPLT [30] and other
cognitive studies [45, 185].

Lastly, the results revealed that the students in the Intervention group scored higher marks
in all the ATCC concepts. Still, only half of the ATCC concepts scores differed significantly
between the Control and Intervention groups. It implies that the bridging [45] transfer interven-
tions were most helpful in helping students connect concepts between PL1 and PL2. However,
they were not the easiest to implement in the classroom for both the lecturer and the students.
There are several possible explanations for this result. The lecturer was not confident in connect-
ing PL1 and PL2 because they had limited PL1 knowledge. This could mean that this affected
students’ learning of these concepts. Prior research reported that the teacher’s self-efficacy has
an impact on students’ behavior, learning, and achievement [154, 155, 190]. Therefore, these
results imply that for second programming language teachers to help their students transition
effectively, they should have knowledge of PL1 and PL2.

Furthermore, the challenge in implementing the bridging interventions for abstract concepts
is also reported in prior computing education research [39, 147, 148]. For example, Dann et
al. [10] used bridging techniques to help students transition from Alice to Java. This was done
by allowing students to view equivalent Java code with greater syntax details on the same screen
in both Alice and Java. The results showed improvement in the overall scores of the Intervention
group as compared to the Control group. The ATCC interventions need careful step-by-step
scaffolding activities that also show structural similarities in connecting abstract concepts [149],
such as in the ones implemented in the exploratory study in Chapter 4 .

10.2 Emerging Findings and Contributions to the Larger Field
of CSE Research

The previous section presented the summary findings from the four research questions of this
thesis. This section discusses the broader findings that emerged and extended beyond the re-
search questions. It discusses these findings relating to the larger field of research. The research
on transfer was conducted over three years with different teachers and student cohorts at differ-
ent universities and countries. Some findings emerged related to the broader previous and future

CHAPTER 10. DISCUSSION AND CONCLUSION 155

CSE research. This section focuses on contributions of this thesis on three important topics
of CSEd: Relative Novices’ Fragile Knowledge, improving conceptual understanding through
multiple conceptions theory , and contributions to modern CS curriculum.

10.2.1 Relative Novices’ Fragile Knowledge

This work gives insights into how fragile knowledge affects the mental models of novice pro-
grammers when they transfer to new programming languages. According to Perkins and Martin,
fragile knowledge is "knowledge that is partial, hard to access, and often misused" [156]. Stu-
dents’ fragile knowledge has been reported in other computing education research that agrees
that relative novices have delay in the development of viable mental models of program exe-
cution [3, 49–52]. Perkins and Martin [156] describe four types of fragile knowledge of basic
programming language commands as follows: Partial knowledge, Inert knowledge, Misplaced
knowledge and Conglomerated knowledge. In this section, three types (Partial, Inert, and Mis-
placed) of the fragile knowledge will be discussed in relation to how they relate to this thesis
findings on how students transfer between programming languages and how this understanding
can advance the knowledge about fragile knowledge in computer science education.

Perkins and Martin describe Partial knowledge as the type of fragile knowledge that the
student has not been able to retain or has never learned [156]. This thesis discovered that students
have Partial knowledge of programming language concepts in their PL1 that was not very firm
and that can be easily changed when they transitioned to PL2. It was mainly observed in the
studies in Chapter 6, when students were transitioning from Java (PL1) to Python (PL2). The
findings revealed that students seemed to have a bi-directional transfer in the FCC categories.
They transferred their knowledge of Java to Python and Python to Java in different concepts.
Regardless of where the transfer came from, students held one mental representation (concepts,
semantics and syntax) of the two languages even when the semantics had changed, but the syntax
was similar; see the MPLT in Chapter 5.

When the transfer happens from PL2 to PL1, this could imply that the students were not
able to retain this knowledge in their PL1, or it could mean that they learned it properly first
in PL2. For example, in experiment 4 in Chapter 6, participants had the correct Python (PL2)
execution model for the variable reassignment, with 91% of them getting it right. Still, most of
them carried the suitable Python variable reassignment model across to the Java code showing
that they base their interpretation on syntax similarities between Python and Java. It could imply
that the students never learned properly about static typing and variable declaration in their Java
language (PL1) in such a way that they could retain the knowledge. It made their knowledge
susceptible to change when they learned PL2.

When students know two programming languages, their understanding of programming lan-
guage concepts is heavily based on the language that they understand better. They effect seman-
tic and conceptual transfer to the language they partially know based on syntax similarities. In

CHAPTER 10. DISCUSSION AND CONCLUSION 156

Chapter 9, some students also expressed that they were learning or getting exposed to some con-
cepts in their PL2 and they did not have a firm grasp of them in PL1; for example, one student
said "We did not get exposure to the concept of referencing in Python (PL1), we heard about it
but did not see much of it in practice until we learned Java (PL2)". It should be noted that these
are the concepts that the students had covered in their PL1 though.

The thesis also contributes by showing that fragile knowledge in the first programming lan-
guage may be caused by the teacher not being explicit about concepts when teaching the first
programming language. Most teachers interviewed in this research revealed that when they
teach PL1, they focus on students’ engagement and enjoyment rather than teaching them deep
fundamental programming language concepts.

Perkins and Martin describe Inert knowledge as the knowledge that the student has but fails
to retrieve [156]. Belmont and colleagues describe this knowledge as the knowledge that has
been acquired in one context but fails to bridge to another context or application [157]. In
the context of programming languages, an example of inert knowledge would be when a student
cannot solve a programming problem, but the teacher gives them a hint, they solve it successfully
which shows that initially they failed to access the already existing knowledge [156].

This type of knowledge is evidenced in this thesis when students learn the ATCC concepts
in PL2. A great example is the students’ failure to transfer their knowledge of object aliasing
from Python (PL1) to Java (PL2), see Experiment 3 in Chapter 6. The 63% students who knew
the concept of aliasing in the context of Python dictionaries failed to transfer that knowledge
in Java object aliasing. It was because the syntax of Java objects and Python dictionaries look
different such that the students cannot connect the two concepts as similar concepts. This thesis
contributes significantly by showing how inert knowledge inter-plays with transfer in learning
new programming languages. It shows the role that similarity between PL1 and PL2 plays in
transferring otherwise inert knowledge.

Usually, teachers expect students to transfer knowledge from one context to the other natu-
rally [149,158]. This view was also expressed by teachers interviewed in this thesis in Chapter 7,
where they expressed that they expect students to transfer quite naturally to new languages. This
kind of thinking can be true for the TCC concepts. However, usually, for abstract concepts, the
transfer may not be easy, as has been demonstrated in the ATCC category in this research.

To deal with this issue of inert knowledge, the thesis proposed a pedagogy that uses bridging
techniques to help students transfer this type of knowledge in the ATCC category. When using
this strategy in the exploratory study, students were seen to have Aha! moments as they retrieved
their inert knowledge about data structures in PL2. An example is after the researcher gave
students a hint to access their already existing knowledge by associating Python dictionaries to
Java objects, one student said "When you say the word object, it seems like it’s this abstract
thing. I think now I see an object as an advanced way to store data and give you options to pass
it around like lists and dictionaries with techniques to manipulate the data". It shows that the

CHAPTER 10. DISCUSSION AND CONCLUSION 157

student managed to access the knowledge that was initially not accessible to help them to help
them comprehend a the Java language.

Misplaced knowledge is the kind of knowledge about commands that may be applicable in
other contexts, but the students use it in lines of code it doesn’t belong [156]. In the context
of this thesis findings, this occurs when students are learning FCC concepts in PL2. Students
were reported to know certain concepts in PL1 but inappropriately transferred the semantics
of these concepts to PL2. No research focuses on how negative transfer occurs during code
comprehension in programming languages. The assumption is that it’s a trivial problem in pro-
gramming languages as most CS instruction focuses on computational thinking and problem-
solving. Instructors fail to understand that the persistence of negative semantic transfer exposes
the students’ fragile knowledge of programming language concepts and semantics. This thesis
highlights some of the causes of misplaced knowledge in programming languages. Firstly, stu-
dents automatically transfer semantic knowledge from PL1 to PL2 based on syntax similarities.
Secondly, when they learn PL2 and the instructor is not explicit about the changed behavior of a
concept, students’ misplaced knowledge remains persistent. This thesis contributes by showing
how explicit interventions that refer back to PL1 are beneficial to help students correct their
mental models and deepen conceptual understanding.

Overall, what can be said about the implications of the discovery about the interplay between
fragile knowledge and semantic transfer in learning new programming languages? As already
mentioned, the traditional CS classroom emphasizes early computational thinking and problem-
solving exercises with an assumption that students have sufficient prior semantic and conceptual
knowledge to generate new learning constructively [115,145,146]. This approach can lead a stu-
dent to believe that the most important achievement in a first programming course is to problem
solve; hence they use trial and error methods to get the program working [159]. Furthermore,
teachers and students may think that passing problem-solving assessments signify that the stu-
dents have acquired sufficient conceptual knowledge. The research, however, has shown that
even though students can build programs, they do not understand them sufficiently [53].

Furthermore, other researchers [159] have argued that writing programs too early in teaching
programming languages may delay students’ development of viable mental models of program
execution, given that their understanding of the programming language (e.g., syntax, seman-
tics/notional machine, concepts) is still very fragile [3, 49–52]. This argument supports the
thesis findings on the challenges students face when transferring to second programming lan-
guages. First the thesis has explicitly demonstrated that upon completion of their PL1 course,
students still have fragile knowledge. The students’ fragile knowledge results in it being mis-
placed (FCC), not used (ATCC), and susceptible to change as they transfer to new languages.
This thesis offers contributions by showing how different kinds of transfer interventions can
assist in resolving various types of fragile knowledge in a novice programmer. Furthermore, it
shows how second language learning can be an opportunity to fix fragile knowledge and deepen

CHAPTER 10. DISCUSSION AND CONCLUSION 158

conceptual understanding as shall be explained next.

10.2.2 Deepening Conceptual Understanding through Second Language
Learning

The previous section has looked into how CS students have fragile knowledge of programming
language concepts. This section follows on to discuss how second language learning can be
used as an opportunity to build and deepen students’ conceptual knowledge.

Conceptual knowledge can be explained as the understanding of the principles and rela-
tionships that underlie a domain [160, 161] or knowing why [162]. In the context of program-
ming languages, Margulieux and co-authors describe an example of conceptual understanding
as [142] "understanding why different data types are used and how to use them appropriately
to solve a problem". Conceptual knowledge can be referred to as deep learning and can result
in better retention and transfer of knowledge [142]. Margulieux and colleagues [142] proposed
a theory of multiple conceptions that describes that learners develop better conceptual knowl-
edge by comparing multiple conceptions of a concept during instruction. Guided by the liter-
ature, they propose five teaching design principles for creating activities that guide students to
compare multiple conceptions and develop conceptual knowledge. These are vicarious failure,
self-explanation, inductive reasoning, conceptual growth and conceptual change. Some of these
principles will be discussed in relation to how they relate to this thesis’s findings and contribu-
tions.

• Vicarious failure: Vicarious failure deals with exposing students to common non-correct
conceptions so that they can be helped to form correct conceptions and help them restruc-
ture their conceptual network correctly. This method has been proven to improve students’
conceptual understanding [163]. This principle was applied in this thesis in the pedagogy
for transfer, see Chapter 9. The implementation of the principle was at the first stage of
the pedagogy, the predictive stage. Students were given guess quizzes in Java (PL2) even
before learning the Java language. It resulted in them producing failed attempts at the Java
code comprehension activities of the FCC and the ATCC constructs due to the negative
transfer and lack of transfer, respectively. Some studies have empirical evidence to show
that engaging students on tasks they have not yet learned first (e.g. guess quiz in this con-
text) can be beneficial [163, 164]. Usually, students fail, just like in this guess quiz. Then
this provides an opportunity for instruction to provide corrective feedback, which becomes
beneficial for the students’ conceptual learning. After the intervention, the results suggest
that students learn better from their own failed attempts or solutions as one student said in
Chapter 9, "I think it’s more useful to point out the differences since Python is something
most of us are already familiar with and often use this experience as a "fallback" when
we are not sure about how something works. Therefore, it is more useful to know when

CHAPTER 10. DISCUSSION AND CONCLUSION 159

this will not produce the expected results rather than when it will". This means that vicar-
ious failure is a principle useful for second language learning and it is well suited in the
pedagogy for transfer and its effort to improve conceptual understanding.

• Self-explanation: This principle concerns learners being presented with multiple exam-
ples that allow them to compare and reason about the key concepts and reconcile the
difference between them. This technique then helps the students to develop their con-
ceptual knowledge’s mental connections. This thesis shows how this principle applies to
learning a second programming language. The principle was used throughout the peda-
gogy of transfer specifically in two interventions. The students were given both the Python
and Java equivalent code fragments during the interventions for FCC and ATCC. The first
FCC interventions included explicit transfer interventions of compare and correct. Giv-
ing students these interventions can help them correct their misplaced fragile knowledge.
It means that the students were given an intervention to correct their mental models that
are caused by the negative semantic transfer. It was done by comparing Python and Java
and being given corrective feedback—in this study, comparing and correcting allowed stu-
dents to hold two mental representations of the semantics in two languages for the same
concept. This research contributes by showing that this principle, if applied in pedagogy,
it helps the students to restructure the mental model. For example, one student said "In
Python, you do not have to declare the type of a variable, I thought in Java I could just
say a="abc" but in Java, I have to be specific and say String a="abc". It suggests that
initially, the students viewed PL1 and PL2 behaving the same way, and later, after correc-
tive feedback, the student now has two different semantic representations for the concept
of declaration in their mental model.

The second intervention that adopted this principle included Bridging transfer interven-
tions of compare and connect on the ATCC concepts. The Bridging transfer techniques
are very similar to the analogical transfer interventions [45, 142, 165]. Giving students
analogies can help them transfer the inert knowledge that has failed to transfer. During
the Bridging techniques for this study, students were given Python dictionaries and Java
objects and shown that they have the similar underlying meaning of a data structure even
if they are represented with very different syntax in two languages. This approach helped
the students have a deeper conceptual understanding of data structures. For example, in
the exploratory study, one student initially said "I think objects its the most confusing
part. I’m still not a 100 percent sure what they are". After the Bridging technique, the
student appears to restructure their conceptual mental model and connect it to their exist-
ing knowledge of data structures. Their thought pattern changed, and they said "I think
now I see an object as an advanced way to store data and give you options to pass it
around like lists and dictionaries with techniques to manipulate the data". This interven-
tion seems to have been more successfully implemented in a small exploratory study with

CHAPTER 10. DISCUSSION AND CONCLUSION 160

five students in Chapter 4 as compared to a large size study in Chapter 9. It could be that
Bridging techniques for a larger classroom size were a challenge. Also, the lecturer was
not competent in one of the languages to make it a fully successful intervention. However,
the results indicate that Bridging techniques can be used in second language learning to
deepen conceptual understanding.

• Conceptual growth: This principle is concerned with deepening students’ conceptual
knowledge by explicitly identifying gaps in their knowledge. Margulieux and colleagues
suggest that this can be done by interventions that include testing, giving students exam-
ples they can not yet explain to show their knowledge limitations. This principle was
adopted in the pedagogy for transfer by giving students pre-quiz in both languages at
the beginning on the PL2 lesson to identify missing or gaps in their existing knowledge.
Where, gaps were identified, the pedagogy adopted Explicit (for FCC) and Bridging (for
ATCC) techniques to help fill the gaps of missing knowledge or incomplete knowledge as
proposed by Perkins and Martin. This approach improved the students’ conceptual un-
derstanding as one student said in the intervention study in Chapter 9, " I was introduced
to scoping in my Python course but I did not really have a strong grasp of it. The Java
lecturer wrote sample code and common pitfalls using the Java-Python survey examples
and showing global variables and local ones which made it easier to avoid mistakes."

• Conceptual change: The last principle from Margulieux and colleagues that is applicable
in this thesis is the Conceptual change principle. They propose that identifying miscon-
ceptions from prior knowledge can help in conceptual change. It can tackle the problem
of students’ fragile knowledge (misplaced knowledge). In the context of this research, as
already explained in previous points, the pedagogy for transfer adopted compare and cor-
rect techniques when students encountered FCC in the new language. The findings from
the studies in Chapter 4, Chapter 8, and Chapter 9 showed that this approach was effective
at prompting conceptual change for students who initially were affected by the negative
semantic transfer.

This section presented arguments about how second language learning can deepen or im-
prove conceptual understanding. This was done using Margulieux and colleagues’ principles of
multiple conceptions theory, which proposes that students develop better conceptual knowledge
when guided to compare multiple conceptions of a concept during instruction. The thesis con-
tributed to understanding the use of second programming language learning to improve concep-
tual understanding. Furthermore, the pedagogy for transfer offers intervention strategies aligned
with the MPLT and shows the effectiveness of adopting the principles of multiple conceptions.
Three chapters in this thesis empirically validated the interventions.

.

CHAPTER 10. DISCUSSION AND CONCLUSION 161

10.2.3 Multiple Programming Languages in the Curriculum

This section shows how the thesis contributes to the modern CS curriculum. The professional
societies in computing (ACM and IEEE-Computer Society) have provided guidelines for under-
graduate CS programs for the past decades, starting with the curriculum developed in 1968 [80].
The early 1968 curriculum had appeared to have more focus on the understanding of program-
ming languages (e.g., implementation, language design, etc.) [166] as compared to computa-
tional thinking and algorithms. As the evolution of programming languages progressed and
found its way into the curriculum [1], there was a need to create space for new languages
and paradigms in the curriculum [131]. The 1978 curriculum introduced the CS1 (Computer
Programming 1) and CS2 (Computer Programming 2), with the aims of CS2 building on the
students’ knowledge in CS1. The curriculum designers proposed that it may be necessary to
introduce students to a second programming language [167]. Furthermore, the curriculum em-
phasized students acquiring knowledge of problem-solving or algorithm development and pro-
gramming languages knowledge. The subsequent CS curriculum guidelines for CS undergrad
followed a similar pattern [81] with the 2013 curriculum guideline acknowledging the use of dif-
ferent paradigms in the university curriculum (object-oriented programming, others functional
programming, others platform-based development). These guidelines are flexible, and any uni-
versity can customize them to what works best for them.

The modern CS curricula guidelines result in CS students rapidly and constantly switch-
ing between different programming languages in their education. At the University level, the
programming language courses have sequences such as CS0-CS1-CS2. CS0 is the introduc-
tory course with no programming language background knowledge, while CS1 and CS2 are
the first and second required courses in the sequence, respectively. After completing CS0, stu-
dents are usually later on required to take CS1 or/and CS2, which mainly teach programming
with different object-oriented languages like Java and C++. [168]. Some CS0s use visual pro-
gramming language while some use text-based languages to transition students to CS1 and later
to CS0 [169–171]. The curriculum at primary and secondary schools (K12) also follows this
approach of teaching different programming languages, for example, in the UK [172].

As much as different programming languages introduced in the curriculum look different,
oftentimes the underlying principles are the same, and the difference is usually the superficial
syntax [5, 173]. For example, the approach of procedural languages may differ from object-
oriented languages, or the approach for logic programming may differ from functional program-
ming languages; however, seeing the underlying similarity between them may be helpful [173]
to educators and students. The early comparative languages courses, were introduced in CS to
find common ground between programming languages and the underlying principles [173]. Al-
though teaching comparative languages could have had the right reasons for deepening concep-
tual understanding in mind [131, 173], there is no empirical evidence to show that the approach
was successful.

CHAPTER 10. DISCUSSION AND CONCLUSION 162

Here, the focus of the discussion is shifted back into this thesis and how it can be situated in
this big broad topic. As already discussed in the previous section, the introduction of multiple
programming languages in the curriculum can be seen as an opportunity to deepen the students’
conceptual knowledge. The current curriculum offers the opportunity to gradually teach pro-
gramming concepts using different programming languages, hence provides several advantages.
First, unlike in the early comparative programming languages, where students were taught two
or more languages simultaneously, the modern curricula allow for the gradual introduction of
programming languages. For example, one programming language can be taught (CS0/1) for
at least a semester before shifting to the following programming language (CS2) for another
semester. This gradual introduction allows teachers to adopt different transfer strategies per
course. This thesis has revealed that students have fragile knowledge of the first programming
language; this is evidenced in a lot of prior work. The thesis has shown that this fragile knowl-
edge affects successful transfer to a second programming language. Therefore, it would be
beneficial for first programming language teachers to start thinking about ways to help students
gain the conceptual understanding that can be helpful for transfer.

Secondly, this thesis has revealed different types of knowledge affected by transfer that the
students bring into the second programming language course. Therefore, second language teach-
ers can build on this prior knowledge and correct students’ negative transfer as well as improve
conceptual understanding. It contributes to CSE by developing a pedagogical guideline for
teaching second programming languages that the teachers can adopt for their classrooms.

Overall, the thesis brings the educators and the CSE community to shift the focus back to the
important knowledge structures of underlying programming language concepts that they should
build on the students. The focus should be less on debating which programming languages/-
paradigms are better than others. The issues raised here are discussed further in the Implications
section.

10.2.4 MPLT in other Programming Languages Contexts

This research developed a MPLT that has been validated in the context of relative novice pro-
grammers transferring from Python to Java and bidirectionally from Java to Python. Although
Python and Java programming languages have some differences, they are closely related as im-
perative languages and share similar syntax, semantic and conceptual features hence they may
share a lot of TCC and FCC and less ATCC.

In the transition from a block-based programming language, like Scratch, to a text-based
language, like Python, the two languages share core underlying computational concepts if one
looks past the blocks. The Scratch IDE comes with a library of pre-built sprites, which may ap-
pear as a library in another language like Python (e.g., a Python Turtle library). The MPLT has
been used in different PL contexts, like in a recent study by Espinal et al. [210] which used the
MPLT to analyze their studies of transfer between block-based PL and text-based PL and from

CHAPTER 10. DISCUSSION AND CONCLUSION 163

Spanish block-based PL to English text-based PL. They concluded that transfer from Make-
code (block-based) to Scratch (block-based) occurred mainly as TCC. They also concluded that
transfer from a Spanish translation of Makecode to an English Python programming language
was ATCC. Interestingly, as programming languages like Scratch are being translated into other
languages (e.g., Norwegian), further exploration of transfer using the MPLT becomes an area of
interest.

Evidence of support for the MPLT has also been reported in prior work discussed in Chapter
2. For example, Santos et al. [39] reported experiences with their students transitioning from
Java to Racket. Students struggled with Java concepts that do not work the same way (e.g.,
string concatenation, type systems), which may be FCCs, and struggled with concepts that look
different (e.g., Racket struct to Java class), which may be ATCCs.

Exploring the MPLT in programming language paradigms that are very different may present
opportunities to explore different scenarios that are currently not in the MPLT, as explained
in section 5.2. For example, these languages may have concepts that have similar syntax but
different semantics and different conceptual roots or concepts with different syntax and differ-
ent semantics. The current research is limited to Python and Java as imperative programming
languages. However, functional languages like Haskell may present the unknown in terms of
conceptual transfer and may require further research.

It should be noted that the MPLT was studied in the context of relative novice programmers
who only knew one programming language before learning a second one. Therefore the results
of this thesis cannot be generalizable to the whole population of people learning new program-
ming languages from different knowledge backgrounds and experiences. This opens room for
further research to explore the MPLT in other contexts of the student population.

The next section discusses the implications and the future work.

10.3 Implications and Future Work

This thesis developed and validated the first theoretical model (MPLT) about relative novices’
transfer based on code comprehension which has implications to CSE community. Secondly,
this thesis developed the first pedagogical guideline of second programming language learn-
ing based on this theory (MPLT) which had pedagogical implications to the CSE community.
Lastly, the thesis explored teachers and their experiences in second language learning which can
have pedagogical implications too. This section presents specific recommendations to teachers,
researchers, and curriculum designers in CSE.

Implications for Teaching

It is recommended that the programming language teachers should always consider their stu-
dents’ prior programming language knowledge and design classroom activities that engage their

CHAPTER 10. DISCUSSION AND CONCLUSION 164

initial understanding to help them evolve their conceptual knowledge as they learn new pro-
gramming languages. The thesis provides guidelines that can help teachers develop assessments
that aim at collecting students’ prior knowledge in PL1 using the MPLT three categories, see
Chapter 6. The PL2 guess quizzes that have matching concepts as the PL1 assessments are also
necessary to implement the pedagogy of transfer. The recommendations to second programming
language teachers based on the MPLT and the pedagogy are as follows:

• The studies that validated the MPLT have revealed that TCC is the most straightforward
and easy concept to transfer as reported in Chapter 4, Chapter 8 and Chapter 9. It is
because they have similar syntax and semantics; hence syntax matching and semantic
transfer positively affect the students’ learning in a new language. The teachers can take
advantage of the knowledge students already have on these concepts to accelerate teaching
a PL2. In other words, the teachers can use the implicit methods of teaching a second
language in this category, as students are helped by their implicit learning to automatically
learn this concept in the second programming language.

• The studies in this thesis revealed that the FCC concepts are the most difficult concepts to
transfer between programming languages because they have similar syntax and different
semantics; hence, semantic transfer negatively affects the learning of these concepts. The
FCC usually leads the students to have misplaced knowledge used in the wrong contexts
in both languages, primarily PL2. Teachers are encouraged to use explicit interventions
of transfer that compare the two programming languages and correct student’s miscon-
ceptions caused by the negative semantic transfer. Teachers should explain to the students
that the languages behave differently; they also need to explain why this is the case. Giv-
ing further explanations helps students understand concepts better and restructure their
mental models. An example of such an intervention can be when a teacher explains the
concepts of a for-loop in Java vs. Python. In comparing these concepts, the teacher can
teach deeper concepts such as iterator-based vs. index-based for-loops, deepening stu-
dents’ conceptual understanding. Enough practice exercises must be given to ensure that
both concepts are deeply embedded. The work has also shown that these interventions
are successful in both student-centered and teacher-centered approaches. However, the
teacher-centered approaches seem to help deepen conceptual understanding better. These
interventions are supported by the principles of multiple conceptions as well.

• ATCC was also reported to be more challenging for students shifting from PL1 to PL2.
This lack of transfer caused by the lack of similarities between PL1 and PL2 on the same
concepts leads to inert knowledge. In the context of this thesis, students experience dif-
ficulties when they move from a concrete representation (e.g., Python dictionaries) to an
abstract representation (e.g., Java objects). To assist semantic and conceptual transfer in
these categories, instructors can adopt Bridging techniques that use compare and connect

CHAPTER 10. DISCUSSION AND CONCLUSION 165

and show students how common concepts that are represented differently have similar
underlying semantics. These strategies require the teacher to have a deeper conceptual
understanding of concepts. They were reported to be the most challenging to implement
by the lecturer who used them. Therefore, careful scaffolding from abstract to concrete
representation must be carefully designed. These interventions are supported by the prin-
ciples of multiple conceptions as well.

Implications to Curriculum Design

The modern CS curriculum encourages more than one programming language for universities
and high schools. The aims of any curricula should be to facilitate transfer and learning pro-
gression and development of conceptual understanding. The introductory to programming lan-
guages sequences such as (CS0-CS1-CS2) should be used as an opportunity to deepen students’
conceptual knowledge. As revealed in the teacher interviews, some teachers teach multiple pro-
gramming languages to follow what the curriculum recommends. It means that teachers will
aim to implement whatever is included in the curriculum. This suggests that the CS curricu-
lum designers should use these thesis findings and transfer pedagogical guidelines as guidance
to design teaching material that promotes transfer as students transition between programming
languages. This thesis has also revealed that if the second language teacher does not teach the
first programming language course, they may struggle with transfer interventions because of a
lack of knowledge. The teachers don’t necessarily have to teach the first programming course
(using PL1), but they need to know the first programming language and possibly how it was
taught. Therefore, teachers should participate in a professional development program on pro-
gramming languages and transfer interventions that cover the value of teaching multiple PLs
to develop conceptual knowledge, the benefits and challenges of second language learning, and
teaching techniques for transfer.

Implications to Research

This research has opened several avenues for further research in computing education. The the-
sis has shown that initial investigations into the MPLT and transfer pedagogy can help improve
second language learning. First, the PL designers, educators, and researchers have to explore
categorizing other programming languages and paradigms into the MPLT categories of TCC,
FCC, and ATCC. Such research outcomes can help guide educators who teach different pro-
gramming languages. Secondly, the pedagogy for transfer has not been explored using other
programming language contexts. Also, it has not been studied in the context of high schools,
which generally would need interventions to transfer block-based to text-based languages. Fur-
thermore, research can be carried out on how students with a broader range of experiences such
as age, from different disciplines, and multiple PL knowledge learn subsequent programming
languages. In-depth experiments for these suggestions above would be a valuable next step.

CHAPTER 10. DISCUSSION AND CONCLUSION 166

Furthermore, further research on using second language learning to deepen conceptual under-
standing would be useful. Researchers can carry out future work on transfer with teachers who
already consider transfer strategies essential and see the benefit of teaching second programming
languages. Suppose the recommended research outcomes prove to be a success. In that case, the
findings can be used to design the CS curriculum that already includes multiple programming
languages and can also underpin broader teacher professional development programs on trans-
fer. Analyzing insights and views collected from researchers is also an important step toward
improving second and subsequent programming language teaching.

10.4 Study Limitations

This thesis provides valuable insights into the process of programming language transfer for
relative novices. It also gives insights into the effectiveness of transfer interventions tailor-made
for types of transfer as proposed by the MPLT. Although it reports on promising results, it has
limitations in the context of the claims made. This section reviews the limitations and discusses
how they can be addressed in the future.

The first limitation concerns categorisations of the MPLT (TCC, FCC and ATCC). These
categorisations depend on perceptions of language similarities by the researcher and may not
always generalise to how students perceive similarities. There is currently no formal way to
measure similarity in PLs hence follow-up studies should try to provide a formal similarity
metrics that can form as a guideline for such categorisations. Furthermore, the categorisations
were limited to two programming languages (Python and Java) and did not address all known
programming language concepts. Further research on how these categorisations is applicable to
other programming language contexts would be very beneficial for this research.

The second limitation was that the research was carried out for the first few weeks of a second
programming language course. Therefore, this made it difficult to assess the long-term effects
of transfer. All the transfer interventions for this study were carried out in real-life classrooms.
Real-life classrooms come with several restrictions on the researcher on how many times they
can be allowed inside the same classroom to collect data. Therefore, to have as much minimal
disturbance as possible on the regular running of the course, this research was limited to only
the first few weeks of students learning the second programming language course. There were
no long-term transfer assessments in this research. Therefore, this question remains open and
needs to be included in further study.

The third limitation was that the lecturer did not fully enact the intended transfer pedagogy.
It, again, is because of the limitations that come with real-life classroom experiments: First, the
lecturer may have considered the experiences of their students in their course; hence, they choose
only elements they are confident with from the intended pedagogy. Second, the diverse students
also caused a disturbance and distracted the class during some transfer interventions. Last, The

CHAPTER 10. DISCUSSION AND CONCLUSION 167

teacher had limited knowledge of the students’ first programming language, which may have
negatively affected how she adapted the pedagogy, especially for the Bridging interventions.
Future research should consider how this pedagogy can be adapted to suit a diverse group of
students with different PL backgrounds. Future work should develop and train teachers on
programming languages and transfer interventions.

The fourth limitation of the research was that the teachers who participated in the study were
the teachers who were mostly very experienced and who were already interested in CS research.
It means that the teacher’s transfer experiences in the classroom may not give a clear picture
of diverse teachers, e.g., those with limited experience. Future studies would consider a more
varied representation of teachers.

10.5 Conclusions

The claim of this thesis is twofold, as reflected in the thesis statement. The first claim is that
semantic transfer based on syntax similarities plays a role in relative novices’ conceptual trans-
fer between programming languages. The second claim of the thesis statement proposes that
the implementation of deliberate semantic transfer interventions during relative novices’ sec-
ond language learning can lead to improved conceptual transfer and understanding in learning
a second programming language.

This thesis explores this claim by investigating how students transfer between programming
languages (Python and Java) during code comprehension for a period of three years that involved
nine experiments. This work is the first that designed a Model of Programming Language Trans-
fer for relative novice programmers that is based on code comprehension. Through validating
the model, the thesis concludes that similarities between programming languages play a sig-
nificant role in semantic and conceptual transfer between programming languages. This thesis
also shows how the MPLT was used to shape the design of a transfer pedagogy in the class-
room. It revealed how the transfer interventions proposed by the pedagogy of transfer can lead
to improved conceptual transfer and understanding.

This thesis, therefore, contributes to the understanding of relative novices’ transfer mecha-
nisms and offers a systematic approach or guideline to investigate programming language trans-
fer for relative novices that can be adopted in different programming languages. Furthermore, it
offers a pedagogical guideline of how to teach a second programming language to improve
the transfer and understanding of programming language concepts. The discoveries in this
work have come at the right time where it can provide the much-needed solution to the cur-
rent dilemma of teaching of multiple programming languages in schools. Furthermore, teaching
and learning models have become more important as CS moves from university-industry teach-
ing to mainstream. The mainstream model means that CS education caters for more teachers
and learners of different abilities.

Bibliography

[1] Mark Guzdial and Benedict du Boulay. The history of computing education research. The
Cambridge handbook of computing education research, 2019:11–39, 2019.

[2] Amjad Altadmri and Neil Brown. 37 Million Compilations: Investigating Novice Pro-
gramming Mistakes in Large-Scale Student Data. SIGCSE 2015 - Proceedings of the 46th
ACM Technical Symposium on Computer Science Education, pages 522–527, 2015.

[3] Ben Shneiderman and Richard Mayer. Syntactic/semantic interactions in programmer
behavior: A model and experimental results. International Journal of Computer & Infor-
mation Sciences, 8(3):219–238, 1979.

[4] Andreas Stefik and Susanna Siebert. An empirical investigation into programming lan-
guage syntax. ACM Transactions on Computing Education (TOCE), 13(4):19, 2013.

[5] Shriram Krishnamurthi and Kathi Fisler. Programming paradigms and beyond. The Cam-
bridge Handbook of Computing Education Research, 37, 2019.

[6] Mark Guzdial. Teaching two programming languages in the first cs course. On the
Internet at https://cacm. acm. org/blogs/blog-cacm/228006-teaching-two-programming-
languages-in-the-first-cs-course/fulltext (visited August 2019), 2018.

[7] Michael Kölling, Neil CC Brown, and Amjad Altadmri. Frame-based editing: Easing the
transition from blocks to text-based programming. In Proceedings of the Workshop in
Primary and Secondary Computing Education, pages 29–38. ACM, 2015.

[8] David Weintrop and Uri Wilensky. How block-based, text-based, and hybrid block/-
text modalities shape novice programming practices. International Journal of Child-
Computer Interaction, 17:83–92, 2018.

[9] Deborah J Armstrong and Bill C Hardgrave. Understanding mindshift learning: the tran-
sition to object-oriented development. MIS Quarterly, pages 453–474, 2007.

[10] Wanda Dann, Dennis Cosgrove, Don Slater, Dave Culyba, and Steve Cooper. Mediated
transfer: Alice 3 to java. In SIGCSE, volume 12, pages 141–146. Citeseer, 2012.

168

BIBLIOGRAPHY 169

[11] H James Nelson, Gretchen Irwin, and David E Monarchi. Journeys up the mountain:
Different paths to learning object-oriented programming. Accounting, Management and
Information Technologies, 7(2):53–85, 1997.

[12] Karen P Walker and Stephen R Schach. Obstacles to learning a second programming
language: An empirical study. Computer Science Education, 7(1):1–20, 1996.

[13] Johannes Holvitie, Teemu Rajala, Riku Haavisto, Erkki Kaila, Mikko-Jussi Laakso, and
Tapio Salakoski. Breaking the programming language barrier: Using program visual-
izations to transfer programming knowledge in one programming language to another.
In 2012 IEEE 12th International Conference on Advanced Learning Technologies, pages
116–120. IEEE, 2012.

[14] Vikki Fix and Susan Wiedenbeck. An intelligent tool to aid students in learning second
and subsequent programming languages. Computers & Education, 27(2):71–83, 1996.

[15] Divna Krpan, Saša Mladenović, and Goran Zaharija. Mediated transfer from visual to
high-level programming language. In 2017 40th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), pages 800–
805. IEEE, 2017.

[16] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. From scratch to “real”
programming. ACM Transactions on Computing Education (TOCE), 14(4):25, 2015.

[17] David Weintrop and Uri Wilensky. Transitioning from introductory block-based and text-
based environments to professional programming languages in high school computer sci-
ence classrooms. Computers & Education, 142:103646, 2019.

[18] Jean Scholtz and Susan Wiedenbeck. Adaptation of programming plans in transfer be-
tween programming languages: a developmental approach. Empirical studies of pro-
grammers: Sixth workshop, 233, 1996.

[19] Jean Scholtz and Susan Wiedenbeck. Learning second and subsequent programming
languages: A problem of transfer. International Journal of Human-Computer Interaction,
2(1):51–72, 1990.

[20] Jean Scholtz and Susan Wiedenbeck. Using unfamiliar programming languages: the
effects on expertise. Interacting with Computers, 5(1):13–30, 1993.

[21] Quanfeng Wu and John R Anderson. Problem-solving transfer among programming lan-
guages. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA ARTIFI-
CIAL INTELLIGENCE AND PSYCHOLOGY . . . , 1990.

BIBLIOGRAPHY 170

[22] Jean Scholtz and Susan Wiedenbeck. Learning a new programming language: a model of
the planning process. In Proceedings of the Twenty-Fourth Annual Hawaii International
Conference on System Sciences, volume 2, pages 3–12. IEEE, 1991.

[23] Jean Scholtz and Susan Wiedenbeck. An analysis of novice programmers learning a
second language. In PPIG (1), page 9, 1992.

[24] Nancy Pennington. Stimulus structures and mental representations in expert comprehen-
sion of computer programs. Cognitive psychology, 19(3):295–341, 1987.

[25] Nan Jiang. Lexical representation and development in a second language. Applied lin-
guistics, 21(1):47–77, 2000.

[26] Nan Jiang. Semantic transfer and its implications for vocabulary teaching in a second
language. The modern language journal, 88(3):416–432, 2004.

[27] Nan Jiang. Form–meaning mapping in vocabulary acquisition in a second language.
Studies in Second Language Acquisition, 24(4):617–637, 2002.

[28] Håkan Ringbom. Cross-linguistic similarity in foreign language learning, volume 21.
Multilingual Matters, 2007.

[29] Ethel Tshukudu and Quintin Cutts. Semantic transfer in programming languages: Ex-
ploratory study of relative novices. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education, pages 307–313, 2020.

[30] Ethel Tshukudu and Quintin Cutts. Understanding conceptual transfer for students learn-
ing new programming languages. In Proceedings of the 2020 ACM Conference on Inter-
national Computing Education Research, pages 227–237, 2020.

[31] Ethel Tshukudu and Quintin Cutts. Understanding conceptual transfer in second and sub-
sequent programming languages. In Cambridge Computing Education Research Sympo-
sium, page 18.

[32] Ethel Tshukudu. Towards a model of conceptual transfer for students learning new pro-
gramming languages. In Proceedings of the 2019 ACM Conference on International
Computing Education Research, pages 355–356, 2019.

[33] Ethel Tshukudu and Siri Annethe Moe Jensen. The role of explicit instruction on students
learning their second programming language. In United Kingdom & Ireland Computing
Education Research conference., pages 10–16, 2020.

[34] Kris Powers, Stacey Ecott, and Leanne M Hirshfield. Through the looking glass: teaching
cs0 with alice. In SIGCSE, volume 7, pages 213–217. Citeseer, 2007.

BIBLIOGRAPHY 171

[35] David Weintrop and Uri Wilensky. Using commutative assessments to compare concep-
tual understanding in blocks-based and text-based programs. In ICER, volume 15, pages
101–110, 2015.

[36] David Weintrop and Nathan Holbert. From blocks to text and back: Programming patterns
in a dual-modality environment. In Proceedings of the 2017 ACM SIGCSE technical
symposium on computer science education, pages 633–638, 2017.

[37] David Weintrop and Uri Wilensky. Comparing block-based and text-based programming
in high school computer science classrooms. ACM Transactions on Computing Education
(TOCE), 18(1):1–25, 2017.

[38] Luke Moors, Andrew Luxton-Reilly, and Paul Denny. Transitioning from block-based to
text-based programming languages. In 2018 International Conference on Learning and
Teaching in Computing and Engineering (LaTICE), pages 57–64. IEEE, 2018.

[39] Igor Moreno Santos, Matthias Hauswirth, and Nathaniel Nystrom. Experiences in bridg-
ing from functional to object-oriented programming. In Proceedings of the 2019 ACM
SIGPLAN Symposium on SPLASH-E, pages 36–40, 2019.

[40] Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. Here we go again: why is
it difficult for developers to learn another programming language? In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), pages 691–701. IEEE,
2020.

[41] James P Byrnes. Cognitive development and learning in instructional contexts. Allyn &
Bacon, 2001.

[42] Bransford, J., Brown, A. & Cocking, R. How people learn: Brain, mind, experience, and
school.. (National Academy Press,1999)

[43] Robert S Woodworth and EL Thorndike. The influence of improvement in one mental
function upon the efficiency of other functions.(i). Psychological review, 8(3):247, 1901.

[44] Edward L Thorndike and Robert S Woodworth. The influence of improvement in one
mental function upon the efficiency of other functions. ii. the estimation of magnitudes.
Psychological Review, 8(4):384, 1901.

[45] David N Perkins, Gavriel Salomon, et al. Transfer of learning. International encyclopedia
of education, 2:6452–6457, 1992.

[46] Gavriel Salomon and David N Perkins. Rocky roads to transfer: Rethinking mechanism
of a neglected phenomenon. Educational psychologist, 24(2):113–142, 1989.

BIBLIOGRAPHY 172

[47] Roy D Pea and D Midian Kurland. On the cognitive effects of learning computer pro-
gramming. New ideas in psychology, 2(2):137–168, 1984.

[48] Meryl Reis Louis and Robert I Sutton. Switching cognitive gears: From habits of mind
to active thinking. Human relations, 44(1):55–76, 1991.

[49] Mordechai Ben-Ari. Constructivism in computer science education. Journal of Comput-
ers in Mathematics and Science Teaching, 20(1):45–73, 2001.

[50] Mordechai Ben-Ari. Constructivism in computer science education. Acm sigcse bulletin,
30(1):257–261, 1998.

[51] Benedict Du Boulay. Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1):57–73, 1986.

[52] Dale Parsons and Patricia Haden. Parson’s programming puzzles: a fun and effective
learning tool for first programming courses. In Proceedings of the 8th Australasian Con-
ference on Computing Education-Volume 52, pages 157–163, 2006.

[53] Jean Salac and Diana Franklin. If they build it, will they understand it? exploring the
relationship between student code and performance. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education, pages 473–
479, 2020.

[54] Carsten Schulte. Block model: an educational model of program comprehension as a tool
for a scholarly approach to teaching. In Proceedings of the Fourth international Workshop
on Computing Education Research, pages 149–160. ACM, 2008.

[55] Anneliese Von Mayrhauser and A Marie Vans. Program comprehension during software
maintenance and evolution. Computer, 28(8):44–55, 1995.

[56] Ben Shneiderman. Exploratory experiments in programmer behavior. International Jour-
nal of Computer & Information Sciences, 5(2):123–143, 1976.

[57] Elliot Soloway, Beth Adelson, and Kate Ehrlich. Knowledge and processes in the com-
prehension of computer programs. The nature of expertise, 129:152, 1988.

[58] David A Watt. Programming language design concepts. John Wiley & Sons, 2004.

[59] Aneta Pavlenko. 6. Conceptual Representation in the Bilingual Lexicon and Second Lan-
guage Vocabulary Learning. Multilingual Matters, 2009.

[60] Aneta Pavlenko. The bilingual mental lexicon: Interdisciplinary approaches, volume 70.
Multilingual Matters, 2009.

BIBLIOGRAPHY 173

[61] Scott Jarvis. 5. Lexical Transfer. Multilingual Matters, 2009.

[62] Zhang Ying. The representation of bilingual mental lexicon and english vocabulary ac-
quisition. English Language Teaching, 10(12):24–27, 2017.

[63] Willem JM Levelt. Speaking: From intention to articulation, volume 1. MIT press, 1993.

[64] Mick Randall. Memory, psychology and second language learning, volume 19. John
Benjamins Publishing, 2007.

[65] Mark Aronoff and Kirsten Fudeman. What is morphology?, volume 8. John Wiley &
Sons, 2011.

[66] Charles A Perfetti, Laura C Bell, and Suzanne M Delaney. Automatic (prelexical) pho-
netic activation in silent word reading: Evidence from backward masking. Journal of
Memory and Language, 27(1):59–70, 1988.

[67] Muhammad Raji Zughoul. Lexical choice: Towards writing problematic word lists. In-
ternational Review of Applied Linguistics, 29(1):45–60, 1991.

[68] Anne Castles, Kathleen Rastle, and Kate Nation. Ending the reading wars: Reading
acquisition from novice to expert. Psychological Science in the Public Interest, 19(1):5–
51, 2018.

[69] Agnieszka Otwinowska. Cognate vocabulary in language acquisition and use. Multilin-
gual Matters, 2015.

[70] Håkan Ringbom. On l1 transfer in l2 comprehension and l2 production. Language learn-
ing, 42(1):85–112, 1992.

[71] John R Anderson. Acquisition of cognitive skill. Psychological review, 89(4):369, 1982.

[72] R Mitchell and F Myles. Second language learning theories (2nd edn), London: Arnold,
2004.

[73] Rosamond Mitchell, Florence Myles, and Emma Marsden. Second language learning
theories. Routledge, 2019.

[74] Michael Homer and James Noble. Combining tiled and textual views of code. In 2014
Second IEEE Working Conference on Software Visualization, pages 1–10. IEEE, 2014.

[75] John W Creswell and Vicki L Plano Clark. Designing and conducting mixed methods
research. Sage publications, 2017.

[76] R Burke Johnson, Anthony J Onwuegbuzie, and Lisa A Turner. Toward a definition of
mixed methods research. Journal of mixed methods research, 1(2):112–133, 2007.

BIBLIOGRAPHY 174

[77] Victoria Clarke, Virginia Braun, and Nikki Hayfield. Thematic analysis. Qualitative
psychology: A practical guide to research methods, pages 222–248, 2015.

[78] Helen Noble and Joanna Smith. Issues of validity and reliability in qualitative research.
Evidence-based nursing, 18(2):34–35, 2015.

[79] Ali Delice. The sampling issues in quantitative research. Educational Sciences: Theory
and Practice, 10(4):2001–2018, 2010.

[80] Mehran Sahami, Steve Roach, Ernesto Cuadros-Vargas, and Richard LeBlanc. Acm/ieee-
cs computer science curriculum 2013: reviewing the ironman report. In Proceeding of
the 44th ACM technical symposium on Computer science education, pages 13–14, 2013.

[81] Strawman Draft. Computer science curricula 2013. ACM and IEEE Computer Society,
Incorporated: New York, NY, USA, 2013.

[82] Rod Ellis. 1. implicit and explicit learning, knowledge and instruction. In Implicit and
explicit knowledge in second language learning, testing and teaching, pages 3–26. Mul-
tilingual Matters, 2009.

[83] Jennifer A Livingston. Metacognition: An overview. 2003.

[84] Anne McKeough, Judy Lee Lupart, and Anthony Marini. Teaching for transfer: Fostering
generalization in learning. Routledge, 2013.

[85] John D Bransford, Ann L Brown, Rodney R Cocking, et al. How people learn, volume 11.
Washington, DC: National academy press, 2000.

[86] Miranda C Parker, Mark Guzdial, and Shelly Engleman. Replication, validation, and use
of a language independent cs1 knowledge assessment. In Proceedings of the 2016 ACM
conference on international computing education research, pages 93–101, 2016.

[87] Dedre Gentner. The development of relational category knowledge. In Building object
categories in developmental time, pages 263–294. Psychology Press, 2005.

[88] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology. Qualitative
research in psychology, 3(2):77–101, 2006.

[89] Antony Bryant and Kathy Charmaz. The SAGE handbook of current developments in
grounded theory. Sage, 2019.

[90] Ilker Etikan, Sulaiman Abubakar Musa, and Rukayya Sunusi Alkassim. Comparison
of convenience sampling and purposive sampling. American journal of theoretical and
applied statistics, 5(1):1–4, 2016.

BIBLIOGRAPHY 175

[91] Justus J Randolph, George Julnes, Erkki Sutinen, and Steve Lehman. A methodologi-
cal review of computer science education research. Journal of Information Technology
Education: Research, 7(1):135–162, 2008.

[92] David Stokes and Richard Bergin. Methodology or “methodolatry”? an evaluation of fo-
cus groups and depth interviews. Qualitative market research: An international Journal,
2006.

[93] Paul Gill, Kate Stewart, Elizabeth Treasure, and Barbara Chadwick. Methods of data
collection in qualitative research: interviews and focus groups. British dental journal,
204(6):291–295, 2008.

[94] Elizabeth Charters. The use of think-aloud methods in qualitative research an introduction
to think-aloud methods. Brock Education Journal, 12(2), 2003.

[95] Robert S Siegler and Kevin Crowley. The microgenetic method: A direct means for
studying cognitive development. American psychologist, 46(6):606, 1991.

[96] Donna Teague and Raymond Lister. Longitudinal think aloud study of a novice program-
mer. In Proceedings of the Sixteenth Australasian Computing Education Conference-
Volume 148, pages 41–50. Australian Computer Society, Inc., 2014.

[97] Victoria Clarke and Virginia Braun. Teaching thematic analysis: Overcoming challenges
and developing strategies for effective learning. The psychologist, 26(2), 2013.

[98] Jennifer Fereday and Eimear Muir-Cochrane. Demonstrating rigor using thematic analy-
sis: A hybrid approach of inductive and deductive coding and theme development. Inter-
national journal of qualitative methods, 5(1):80–92, 2006.

[99] Kristin A Searle and Yasmin B Kafai. Boys’ needlework: Understanding gendered and
indigenous perspectives on computing and crafting with electronic textiles. In ICER,
pages 31–39, 2015.

[100] Colleen M Lewis. The importance of students’ attention to program state: a case study
of debugging behavior. In Proceedings of the ninth annual international conference on
International computing education research, pages 127–134. ACM, 2012.

[101] William R Cook. On understanding data abstraction, revisited. In ACM SIGPLAN No-
tices, volume 44, pages 557–572. ACM, 2009.

[102] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Abstraction mech-
anisms in clu. Communications of the ACM, 20(8):564–576, 1977.

BIBLIOGRAPHY 176

[103] Anna Eckerdal and Michael Thuné. Novice java programmers’ conceptions of object and
class, and variation theory. In ACM SIGCSE Bulletin, volume 37, pages 89–93. ACM,
2005.

[104] Juha Sorva. Misconceptions and the beginner programmer. Computer Science Education:
Perspectives on Teaching and Learning in School, page 171, 2018.

[105] Willem JM Levelt, Ardi Roelofs, and Antje S Meyer. A theory of lexical access in speech
production. Behavioral and brain sciences, 22(1):1–38, 1999.

[106] Steven Davis. Connectionism: Theory and practice. Number 3. Oxford University Press
on Demand, 1992.

[107] Joachim Diederich. Knowledge-intensive recruitment learning. International Computer
Science Institute Berkeley, CA, 1988.

[108] American Educational Research Association et al. Standards for educational and psy-
chological testing. American Educational Research Association, 2018.

[109] Allison Elliott Tew and Mark Guzdial. Developing a validated assessment of fundamental
cs1 concepts. In Proceedings of the 41st ACM technical symposium on Computer science
education, pages 97–101, 2010.

[110] Allison Elliott Tew and Mark Guzdial. The fcs1: a language independent assessment
of cs1 knowledge. In Proceedings of the 42nd ACM technical symposium on Computer
science education, pages 111–116, 2011.

[111] Shuchi Grover, Stephen Cooper, and Roy Pea. Assessing computational learning in k-12.
In Proceedings of the 2014 conference on Innovation & technology in computer science
education, pages 57–62, 2014.

[112] David Weintrop. Modality matters: Understanding the effects of programming language
representation in high school computer science classrooms. PhD thesis, Northwestern
University, 2016.

[113] Ravi Sethi. Programming languages concepts and constructs. Addison Wesley Longman
Publishing Co., Inc., 1996.

[114] Ravi Sethi. Programming languages: concepts and constructs. Addison-Wesley Long-
man Publishing Co., Inc., 1989.

[115] Sally A Fincher and Anthony V Robins. The Cambridge handbook of computing educa-
tion research. Cambridge University Press, 2019.

BIBLIOGRAPHY 177

[116] Norbert Schmitt. Tracking the incremental acquisition of second language vocabulary: A
longitudinal study. Language learning, 48(2):281–317, 1998.

[117] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. Assessing and teaching
scope, mutation, and aliasing in upper-level undergraduates. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education, pages 213–218.
ACM, 2017.

[118] Tamar Degani, Anat Prior, and Natasha Tokowicz. Bidirectional transfer: The effect of
sharing a translation. Journal of Cognitive Psychology, 23(1):18–28, 2011.

[119] Joel E Dworin. Insights into biliteracy development: Toward a bidirectional theory of
bilingual pedagogy. Journal of Hispanic Higher Education, 2(2):171–186, 2003.

[120] Aneta Pavlenko and Scott Jarvis. Bidirectional transfer. Applied linguistics, 23(2):190–
214, 2002.

[121] Ethel Tshukudu, Quintin Cutts, Olivier Goletti, Alaaeddin Swidan, and Felienne Her-
mans. Teachers’ views and experiences on teaching second and subsequent programming
languages. In Proceedings of the 17th ACM Conference on International Computing Ed-
ucation Research, pages 294–305, 2021.

[122] Bert Zwaneveld, Jacob Perrenet, and Roel Bloo. Discussion of methods for threshold
research and an application in computer science. In Threshold concepts in practice, pages
269–284. Brill Sense, 2016.

[123] Nino Pataraia, Isobel Falconer, Anoush Margaryan, Allison Littlejohn, and Sally Fincher.
Who do you talk to about your teaching?’networking activities among university teachers.
Frontline Learning Research, 2(2):4–14, 2014.

[124] Daniel I Lee, Gwendolyn Gardiner, Erica Baranski, International Situations Project, and
David C Funder. Situational experience around the world: A replication and extension in
62 countries. Journal of personality, 88(6):1091–1110, 2020.

[125] Judith Bell and Stephen Waters. EBOOK: DOING YOUR RESEARCH PROJECT: A
GUIDE FOR FIRST-TIME RESEARCHERS. McGraw-Hill Education (UK), 2018.

[126] Yan Zhang and Barbara M Wildemuth. Unstructured interviews. Applications of social
research methods to questions in information and library science, pages 222–231, 2009.

[127] Jane Ritchie, Jane Lewis, Carol McNaughton Nicholls, Rachel Ormston, et al. Qualitative
research practice: A guide for social science students and researchers. sage, 2013.

[128] Virginia Braun and Victoria Clarke. Thematic analysis. 2012.

BIBLIOGRAPHY 178

[129] Mostafa Javadi, Koroush Zarea, et al. Understanding thematic analysis and its pitfall.
Demo, 1(1):33–39, 2016.

[130] Felienne Hermans. Hedy: A gradual language for programming education. In Proceed-
ings of the 2020 ACM Conference on International Computing Education Research, pages
259–270, 2020.

[131] KN King. The evolution of the programming languages course. In Proceedings of the
twenty-third SIGCSE technical symposium on Computer science education, pages 213–
219, 1992.

[132] Dale Parsons and Patricia Haden. Programming osmosis: Knowledge transfer from im-
perative to visual programming environments. In Procedings of The Twentieth Annual
NACCQ Conference, pages 209–215, 2007.

[133] Julie Stern, Krista Ferraro, and Juliet Mohnkern. Tools for teaching conceptual under-
standing, secondary: Designing lessons and assessments for deep learning. Corwin
Press, 2017.

[134] Julie Stern, Krista Ferraro, Kayla Duncan, and Trevor Aleo. Learning That Transfers:
Designing Curriculum for a Changing World. Corwin Press, 2021.

[135] Nour Tabet, Huda Gedawy, Hanan Alshikhabobakr, and Saquib Razak. From alice to
python. introducing text-based programming in middle schools. In Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science Education,
pages 124–129, 2016.

[136] Monika Mladenović, Žana Žanko, and Andrina Granić. Mediated transfer: From text
to blocks and back. International Journal of Child-Computer Interaction, page 100279,
2021.

[137] Katrina Falkner and Judy Sheard. 15 pedagogic approaches. The Cambridge Handbook
of Computing Education Research, page 445, 2019.

[138] Gary Charness, Uri Gneezy, and Michael A Kuhn. Experimental methods: Between-
subject and within-subject design. Journal of economic behavior & organization,
81(1):1–8, 2012.

[139] PC Price, RS Jhangiani, IA Chiang, DC Leighton, and C Cuttler. Research methods in
psychology (3rd american edition). Washington: PressBooksPublications, 2017.

[140] Mahmoud Kaddoura. Think pair share: A teaching learning strategy to enhance students’
critical thinking. Educational Research Quarterly, 36(4):3–24, 2013.

BIBLIOGRAPHY 179

[141] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. Identifying and
correcting java programming errors for introductory computer science students. ACM
SIGCSE Bulletin, 35(1):153–156, 2003.

[142] Lauren Margulieux, Paul Denny, Kathryn Cunningham, Michael Deutsch, and Ben-
jamin R Shapiro. When wrong is right: The instructional power of multiple conceptions.
In Proceedings of the 17th ACM Conference on International Computing Education Re-
search, pages 184–197, 2021.

[143] Nick C Ellis. Memory for language. na, 2001.

[144] Ethel Tshukudu, Quintin Cutts, and Mary Ellen Foster. Evaluating a pedagogy for im-
proving conceptual transfer and understanding in a second programming language learn-
ing context. In 21st Koli Calling International Conference on Computing Education Re-
search, pages 1–10, 2021.

[145] Kevin M Oliver. Methods for developing constructivist learning on the web. Educational
technology, 40(6):5–18, 2000.

[146] Ken Rowe. Effective teaching practices for students with and without learning difficulties:
Constructivism as a legitimate theory of learning and of teaching? Student Learning
Processes, page 10, 2006.

[147] Keith J Holyoak and Kyunghee Koh. Surface and structural similarity in analogical trans-
fer. Memory & cognition, 15(4):332–340, 1987.

[148] Mary L Gick and Keith J Holyoak. The cognitive basis of knowledge transfer. In Transfer
of learning, pages 9–46. Elsevier, 1987.

[149] Anthony V Robins, Lauren E Margulieux, and Briana B Morrison. Cognitive sciences
for computing education. Handbook of Computing Education Research, pages 231–275,
2019.

[150] Wallace Feurzeig and George Lukas. Logo—a programming language for teaching math-
ematics. Educational Technology, 12(3):39–46, 1972.

[151] Varvara Garneli, Michail N Giannakos, and Konstantinos Chorianopoulos. Computing
education in k-12 schools: A review of the literature. In 2015 IEEE Global Engineering
Education Conference (EDUCON), pages 543–551. IEEE, 2015.

[152] James Prather, Brett A Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and Lauren
Margulieux. What do we think we think we are doing? metacognition and self-regulation
in programming. In Proceedings of the 2020 ACM Conference on International Comput-
ing Education Research, pages 2–13, 2020.

BIBLIOGRAPHY 180

[153] Paul Denny, James Prather, Brett A Becker, Zachary Albrecht, Dastyni Loksa, and Ray-
mond Pettit. A closer look at metacognitive scaffolding: Solving test cases before pro-
gramming. In Proceedings of the 19th Koli Calling International Conference on Comput-
ing Education Research, pages 1–10, 2019.

[154] Goudarz Alibakhshi, Fariborz Nikdel, and Akram Labbafi. Exploring the consequences of
teachers’ self-efficacy: a case of teachers of english as a foreign language. Asian-Pacific
Journal of Second and Foreign Language Education, 5(1):1–19, 2020.

[155] Muhammad Gulistan, Athar Hussain, et al. Relationship between mathematics teachers’
self efficacy and students’ academic achievement at secondary level. Bulletin of Educa-
tion and Research, 39(3):171–182, 2017.

[156] David Perkins and Fay Martin. Fragile knowledge and neglected strategies in novice
programmers. ir85-22. 1985.

[157] John M Belmont, Earl C Butterfield, Ralph P Ferretti, et al. To secure transfer of train-
ing instruct self-management skills. How and how much can intelligence be increased,
147:154, 1982.

[158] Mark Guzdial. Learner-centered design of computing education: Research on computing
for everyone. Synthesis Lectures on Human-Centered Informatics, 8(6):1–165, 2015.

[159] Quintin Cutts, Matthew Barr, Mireilla Bikanga Ada, Peter Donaldson, Steve Draper, Jack
Parkinson, Jeremy Singer, and Lovisa Sundin. Experience report: Thinkathon–countering
an" i got it working" mentality with pencil-and-paper exercises. In Proceedings of the
2019 ACM Conference on Innovation and Technology in Computer Science Education,
pages 203–209, 2019.

[160] SK Johnson. Conceptual and procedural knowledge in mathematics: An introductory
analysis. Conceptual and procedural knowledge: The case of mathematics, 91(1):175–
189, 2005.

[161] Camilla Gilmore and Lucy Cragg. The role of executive function skills in the develop-
ment of children’s mathematical competencies. In Heterogeneity of function in numerical
cognition, pages 263–286. Elsevier, 2018.

[162] Arthur J Baroody. The development of adaptive expertise and flexibility: The integration
of conceptual and procedural knowledge. The development of arithmetic concepts and
skills: Constructive adaptive expertise, pages 1–33, 2003.

[163] Manu Kapur. Examining productive failure, productive success, unproductive failure, and
unproductive success in learning. Educational Psychologist, 51(2):289–299, 2016.

BIBLIOGRAPHY 181

[164] Manu Kapur and Charles K Kinzer. Productive failure in cscl groups. International
Journal of Computer-Supported Collaborative Learning, 4(1):21–46, 2009.

[165] Mary L Gick and Keith J Holyoak. Schema induction and analogical transfer. Cognitive
psychology, 15(1):1–38, 1983.

[166] William F Atchison, Samuel D Conte, John W Hamblen, Thomas E Hull, Thomas A
Keenan, William B Kehl, Edward J McCluskey, Silvio O Navarro, Werner C Rheinboldt,
Earl J Schweppe, et al. Curriculum 68: Recommendations for academic programs in
computer science: a report of the acm curriculum committee on computer science. Com-
munications of the ACM, 11(3):151–197, 1968.

[167] Richard H Austing, Bruce H Barnes, Della T Bonnette, Gerald L Engel, and Gordon
Stokes. Curriculum’78: recommendations for the undergraduate program in computer
science—a report of the acm curriculum committee on computer science. Communica-
tions of the ACM, 22(3):147–166, 1979.

[168] Stephen Davies, Jennifer A Polack-Wahl, and Karen Anewalt. A snapshot of current
practices in teaching the introductory programming sequence. In Proceedings of the 42nd
ACM technical symposium on Computer science education, pages 625–630, 2011.

[169] Ursula Wolz, Henry H Leitner, David J Malan, and John Maloney. Starting with scratch
in cs 1. In Proceedings of the 40th ACM technical symposium on Computer science
education, pages 2–3, 2009.

[170] David J Malan and Henry H Leitner. Scratch for budding computer scientists. ACM
Sigcse Bulletin, 39(1):223–227, 2007.

[171] Cindy Marling and David Juedes. Cs0 for computer science majors at ohio university.
In Proceedings of the 47th ACM Technical Symposium on Computing Science Education,
pages 138–143, 2016.

[172] Neil CC Brown, Sue Sentance, Tom Crick, and Simon Humphreys. Restart: The resur-
gence of computer science in uk schools. ACM Transactions on Computing Education
(TOCE), 14(2):1–22, 2014.

[173] LB Wilson and RG Clark. Comparative programming languages addison-wesley. Read-
ing Mass, 1988.

[174] Jeffrey Bonar and Elliot Soloway. Preprogramming knowledge: A major source of mis-
conceptions in novice programmers. Human–Computer Interaction, 1(2):133–161, 1985.

[175] Roy D Pea. Language-independent conceptual “bugs” in novice programming. Journal
of educational computing research, 2(1):25–36, 1986.

BIBLIOGRAPHY 182

[176] Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in intro-
ductory programming: A literature review. ACM Transactions on Computing Education
(TOCE), 18(1):1–24, 2017.

[177] Dimitrios Doukakis, Maria Grigoriadou, and Grammatiki Tsaganou. Understanding the
programming variable concept with animated interactive analogies. In Proceedings of
the The 8th Hellenic European Research on Computer Mathematics & Its Applications
Conference (HERCMA’07), 2007.

[178] Michael Kölling, Neil CC Brown, and Amjad Altadmri. Frame-based editing: Easing the
transition from blocks to text-based programming. In Proceedings of the Workshop in
Primary and Secondary Computing Education, pages 29–38. ACM, 2015.

[179] Kintsch, Walter and Van Dijk, Teun A. Toward a model of text comprehension and
production. In Psychological review. American Psychological Association, 85(5):363,
1978.

[180] Schulte, Carsten and Clear, Tony and Taherkhani, Ahmad and Busjahn, Teresa and Pater-
son, James H An introduction to program comprehension for computer science educators
In Proceedings of the 2010 ITiCSE working group reports, pages 65–86, 2010.

[181] Prat, Chantel S and Madhyastha, Tara M and Mottarella, Malayka J and Kuo, Chu-Hsuan.
Relating natural language aptitude to individual differences in learning programming lan-
guages. Scientific reports, Nature Publishing Group, 10(1):1–10, 2020.

[182] Fodor, Jerry A and Pylyshyn, Zenon W. Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1-2):3–71, 1988

[183] Rumelhart, D. The architecture of mind: A connectionist approach. Mind Readings. pp.
207-238 (1998)

[184] Prat, C., Madhyastha, T., Mottarella, M. & Kuo, C. Relating natural language aptitude
to individual differences in learning programming languages. Scientific Reports. 10, 1-10
(2020)

[185] Ellis, R. Implicit and explicit learning, knowledge and instruction. Implicit And Explicit
Knowledge In Second Language Learning, Testing And Teaching. 42 pp. 3-25 (2009)

[186] Yilmaz, K. Constructivism: Its theoretical underpinnings, variations, and implications for
classroom instruction. Educational Horizons. 86, 161-172 (2008)

[187] Kim, J. The effects of a constructivist teaching approach on student academic achieve-
ment, self-concept, and learning strategies. Asia Pacific Education Review. 6, 7-19 (2005)

BIBLIOGRAPHY 183

[188] Ebert, M. & Ring, M. A presentation framework for programming in programing lectures.
2016 IEEE Global Engineering Education Conference (EDUCON). pp. 369-374 (2016)

[189] Kurtz, B., Fenwick, J., Tashakkori, R., Esmail, A. & Tate, S. Active learning during
lecture using tablets. Proceedings Of The 45th ACM Technical Symposium On Computer
Science Education. pp. 121-126 (2014)

[190] Rich, P., Larsen, R. & Mason, S. Measuring teacher beliefs about coding and computa-
tional thinking. Journal Of Research On Technology In Education. pp. 1-21 (2020)

[191] Reber, A. Implicit learning of artificial grammars. Journal Of Verbal Learning And Verbal
Behavior. 6, 855-863 (1967)

[192] Reber, A. Transfer of syntactic structure in synthetic languages.. Journal Of Experimental
Psychology. 81, 115 (1969)

[193] Leung, J. & Williams, J. Prior linguistic knowledge influences implicit language learning.
Proceedings Of The Annual Meeting Of The Cognitive Science Society. 35 (2013)

[194] Spada, N. & Tomita, Y. Interactions between type of instruction and type of language
feature: A meta-analysis. Language Learning. 60, 263-308 (2010)

[195] Qvortrup, A., Wiberg, M., Christensen, G. & Hansbøl, M. On the definition of learning.
(University Press of Southern Denmark,2016)

[196] Talley, P. & Hui-Ling, T. Implicit and explicit teaching of English speaking in the EFL
classroom. International Journal Of Humanities And Social Science. 4, 38-45 (2014)

[197] Exton, C. Constructivism and program comprehension strategies. Proceedings 10th In-
ternational Workshop On Program Comprehension. pp. 281-284 (2002)

[198] Neuhauser, C. Learning style and effectiveness of online and face-to-face instruction. The
American Journal Of Distance Education. 16, 99-113 (2002)

[199] McCutcheon, K., Lohan, M., Traynor, M. & Martin, D. A systematic review evaluating
the impact of online or blended learning vs. face-to-face learning of clinical skills in
undergraduate nurse education. Journal Of Advanced Nursing. 71, 255-270 (2015)

[200] Ryan, R. & Deci, E. Intrinsic and extrinsic motivation from a self-
determination theory perspective: Definitions, theory, practices, and future
directions. Contemporary Educational Psychology. 61 pp. 101860 (2020,4),
https://linkinghub.elsevier.com/retrieve/pii/S0361476X20300254, 00000

[201] Kroeger, P. Analyzing grammar: An introduction. (Cambridge University Press,2005)

BIBLIOGRAPHY 184

[202] Ringbom, H. Actual, perceived and assumed cross-linguistic similarities in foreign lan-
guage learning. AFinLAn Vuosikirja. (2007)

[203] Gooskens, C. The North Germanic Dialect Continuum. The Cambridge Handbook Of
Germanic Linguistics. pp. 761-782 (2020)

[204] Baker, C. The effects of the Norman conquest on the English language. Tenor Of Our
Times. 5, 41 (2016)

[205] Tabet, N., Gedawy, H., Alshikhabobakr, H. & Razak, S. From alice to python. Introducing
text-based programming in middle schools. Proceedings Of The 2016 ACM Conference
On Innovation And Technology In Computer Science Education. pp. 124-129 (2016)

[206] Mladenović, M., Žanko, Ž. & Granić, A. Mediated transfer: From text to blocks and back.
International Journal Of Child-Computer Interaction. 29 pp. 100279 (2021)

[207] Kao, Y., Matlen, B. & Weintrop, D. From One Language to the Next: Applications of
Analogical Transfer for Programming Education. ACM Transactions On Computing Ed-
ucation (TOCE). (2022)

[208] Kotovsky, L. & Gentner, D. Comparison and categorization in the development of rela-
tional similarity. Child Development. 67, 2797-2822 (1996)

[209] Gentner, D. Bootstrapping the mind: Analogical processes and symbol systems. Cogni-
tive Science. 34, 752-775 (2010)

[210] Espinal, A., Vieira, C. & Guerrero-Bequis, V. Student ability and difficulties with transfer
from a block-based programming language into other programming languages: a case
study in Colombia. Computer Science Education. pp. 1-33 (2022,6)

Appendix A

Chapter 4: Exploratory Study Materials

This appendix includes the instruments that were used in Chapter 4 (The exploratory study).
It includes the quizzes, surveys and consent form administered to the students. The quizzes
include both the Python and the Java version of code comprehension questions.

The following interview scripts were used as a guidance in interviewing the participants:

A.0.1 Week 0 interview activities: Before Java

Python Program Interview Questions: The following are further Questions if the student’s
explanation is not enough to deduce their comprehension of the program

• From you understanding of the Python programming language, talk me through, what you
see in this whole program

• What do you think this line of code does?

• What do you think this whole program prints after execution?

Java Program Interview Questions:

• I obviously do not expect you to know everything in this java code as I assume you have
not been educated on it yet. I know you have experience of python (and maybe other
programming languages). Looking at this java code take me through what you are seeing?

• Does it look completely new to you or if it’s more or less something you already know
from python or elsewhere, if so what?

• What do you think this line of code does?

• What do you think this whole program prints after execution?

185

APPENDIX A. CHAPTER 4: EXPLORATORY STUDY MATERIALS 186

Listing A.1: Python Program used in session 1
t o t a l = 0 ;

def sum (arg1 , arg2 , a rg3) :
t o t a l = a rg1 + a rg 2 ;

i f a rg1 > a rg3 :
p r i n t " T o t a l i s e q u a l t o : " , t o t a l +1

e l i f a rg1 < a rg3 :
p r i n t " T o t a l i s e q u a l t o : " , t o t a l −1

re turn t o t a l ;

x=10
y=20
z =30
sum (x , y , z) ;
p r i n t " T o t a l i s e q u a l t o : " , t o t a l

Listing A.2: Java Program used in session 1
p u b l i c c l a s s R e c t a n g l e

i n t l e n g t h =3;
i n t wid th =4;
p u b l i c s t a t i c vo id main (S t r i n g a r g s []) {

R e c t a n g l e r1 =new R e c t a n g l e () ;
r1 . i n s e r t (1 2 , 4) ;

}
p u b l i c i n t i n s e r t (i n t l , i n t w) {

i n t r e s u l t = l *w;
i f (l > w)

System . o u t . p r i n t l n (" The answer i s " + l *w) ;
e l s e

System . o u t . p r i n t l n (" no r e s u l t ") ;
re turn r e s u l t ;

}
}

A.0.2 Week 2 interview activities: After two weeks of Java

The purpose of this question is to observe how the students map their knowledge of the Python
code to Java code comprehension on Carryover and Changed Concepts: Do they use Semantic
mapping or Syntax mapping or both.

• Q1) You have been given a python code on the left side of the Table, write down the results
when it executes. Identify the similar code that has the same logic statement and result on

APPENDIX A. CHAPTER 4: EXPLORATORY STUDY MATERIALS 187

the Java code given on the right side of the table.

Figure A.1: program 1 mapping

Figure A.2: program 2 mapping

Figure A.3: program 3 mapping

APPENDIX A. CHAPTER 4: EXPLORATORY STUDY MATERIALS 188

Figure A.4: program 4 mapping

Figure A.5: program 5 mapping

Figure A.6: program 6 mapping

A.0.3 Week 4 interview activities: After four weeks of Java

• Please indicate and explain your experiences (how easy or difficult) it was for you to
learn each concept by circling the number that indicates the level of learning difficulty.
(Variables, Conditional Statements Iteration, Arrays, Methods, Objects, Classes and En-
capsulation)

• How confident are you in your understanding of each of the Java Programming Constructs
in Table a? You can uses a scale of 1-5; 1 being the least Confident and 5 being the most
Confident

• Execute the below Python and Java code line by line, talking me through what is happen-
ing as each line is executed.

APPENDIX A. CHAPTER 4: EXPLORATORY STUDY MATERIALS 189

Listing A.3: Python Program used in session 3
f o r i in range (5) :

i f i ==3:
i = 10

p r i n t (i)

Listing A.4: Java Program used in session 3
f o r (i n t i =0 ; i <5 ; i + + ;)
{

i f (i ==3)
{
i =10;
}

System . o u t . p r i n t (i) ;
}

A.0.4 Week 6 interview activities: After six weeks of Java

• You are in your sixth week of learning Java Programming; what is your experience now
with learning the following Java programming constructs (Variables, Conditional State-
ments, Iteration, Arrays, Methods, Objects, Classes, Encapsulation, Inheritance, Poly-
morphism)? You can share about your confusions, blocks, breakthroughs e.t.c

• How confident are you in your understanding of each of the Java Programming Constructs
in Table a? You can uses a scale of 1-5; 1 being the least Confident and 5 being the most
Confident

• The purpose of this exercise is to trigger student’s prior knowledge in Python Dictionaries
that they can use to map to Java objects. Students will find similarities between Python
dictionaries and java objects and observe if it can help in their understanding of Java
Objects:

APPENDIX A. CHAPTER 4: EXPLORATORY STUDY MATERIALS 190

Listing A.5: Python Program used in session 4 (week 6)
d e f p (n , a) :

re turn { ’ name ’ : n , ’ age ’ : a }

d e f getName (o b j) :
re turn o b j [’ name ’]

d e f incAge (o b j) :
a = o b j [" age "]+1
re turn a

me=p (" Jo se ph " , 51)
you=p (" Vic " , 35)

p r i n t (" your name i s : " , getName (me) , " , your age i s : " , incAge (me))
p r i n t (" your name i s : " , getName (you) , " , your age i s : " , incAge (you))

APPENDIX A. CHAPTER 4: EXPLORATORY STUDY MATERIALS 191

Listing A.6: Java Program used in session 4 (week 6)
p u b l i c c l a s s p e r s o n {

p u b l i c S t r i n g name ;
p u b l i c i n t age ;

p u b l i c p e r s o n (S t r i n g n , i n t a)
{

t h i s . name=n ;
t h i s . age=a ;

}
p u b l i c S t r i n g getName ()
{
re turn name ;
}

p u b l i c i n t incAge ()
{

i n t a=age +1;
re turn a ;

}

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s)
{

p e r s o n n1=new p e r s o n (" Jo se ph " , 5 1) ;
p e r s o n n2=new p e r s o n (" Vic " , 3 5) ;

System . o u t . p r i n t l n (" Your name i s : " + n1 . getName () + " Age : " +n1 . incAge ()) ;
System . o u t . p r i n t l n (" Your name i s : " + n2 . getName () + " Age : " +n2 . incAge ()) ;

}
}

APPENDIX A. CHAPTER 4: EXPLORATORY STUDY MATERIALS 192

Figure A.7: Consent Form for the first exploratory study

Appendix B

Chapter 6: Validation of the MPLT Study
Materials

This appendix includes the instruments that were used in Chapter 6. The appendix starts with
the construct categorisations instrument that is explained in Section 6.2 in Chapter 6. Then it
is followed by the consent form and the quizzes as they were presented to the students. The
quizzes include both the Python and the Java version of code comprehension questions.

193

Categorisation of Java and Python constructs according to MPLT (TCC, FCC and ATCC)

Control Structures
Construct Construct

Category
Python Java

While loop TCC Syntax
i = 0;
while (i < 3):
 a=1
 print(a)
 i+=1

int i = 0;
while (i < 3) {
 int a=1;
 System.out.println(a);
 i++;
}

Semantics 1
1
1

1
1
1

If statement TCC Syntax a=1;
b=2;
if (a>b):
 print("hello")
else:
 print("bye")

int a=1;
int b=2;
if (a>b){
 System.out.println("hello");}
else{
 System.out.println("bye");}

Semantics bye bye

For loop TCC Syntax
for i in range(2):
 print ("hello")

for (int i=0; i<2; i++){
 System.out.println("hello");
}

Semantics hello
hello

hello
hello

For loop FCC Syntax for i in range(2):
 print ("hello")
 i=3

for (int i=0; i<2; i++){
 System.out.println("hello");
 i=3;
}

Semantics hello
hello

hello

For loop
Scope

FCC Syntax
for i in range(2):
 a=2
print (a)

for (int i=0; i<2; i++){
 int b=2;
}
 System.out.println(b);

Semantics 2 error can’t find b

While loop
Scope

FCC Syntax i = 0;
while (i < 2):
 a=1
 print(a)
 i+=1
print(a)

int i = 0;
while (i < 2) {
 int a=1;
 i++;
}
System.out.println(a);

Semantics 1
1
1

error can’t find symbol a

Functions (Scope, arguments and parameters, function calls)

Functions TCC Syntax def cap(z,y):
 pa=z+y
 zap()
 return pa

def zap():
 pa=3
 print(pa)

print (cap(7,3))

public class MyClass {

 public static int gen(int g, int s)
 {

int a=g+s;
cen();
return a;

 }
 public static void cen()
 {
 int a=3;
 System.out.println(a);
 }
 public static void main(String[] args)
 {

System.out.println(gen(7,3));
}

}
Semantics 3

10
3
10

Data Types and Type Checking (Static vs Dynamic)

Primitive data
types

FCC Syntax a=1
a=10.5
print (a)

int a=1;
a=10.5;
System.out.println (a);

Semantics 10.5 error, incompatible types

FCC Syntax a=1
a=2
print (a)

int a=1;
int a=2;
print (a)

Semantics 2 variable a already defined

TCC Syntax a=1
a=2
print (a)

int a=1;
a=2;
print (a)

Semantics 2 2

Data Types and Copy and Reference Semantics

Copy
semantics for
primitive
types in Java
and Python
reference
semantics
(e.g., it creates
a new ‘a’
variable)

TCC Syntax a=1
b=a
a=2
print (b)

int a=1;
int b=a;
a=2;
System.out.println (b);

Semantics 1 1

Reference
semantics for
composite
types

ATCC Syntax cars = ['Toyota']
cars2=cars
cars.append("Mercedes")
print(cars2)

import java.util.ArrayList;
public class Main {

public static void main(String[]
args)

{
ArrayList<String> cars = new

ArrayList<String>();
cars.add("Toyota");
ArrayList<String> cars2=cars;
cars2.add("Mercedes");
System.out.println(cars2);

}}

Semantics [Toyota, Mercedes] [Toyota, Mercedes]

Expressions and operators

Equality of
composite
data types

FCC Syntax e = [1, 2, 3]
f = [1, 2, 3]

print(e==f)

int[] e = {1, 2, 3};
int[] f = {1, 2, 3};

System.out.println(e==f)

Semantics True False

Array addition TCC Syntax e = [1, 2, 3]
f = [1, 2, 3]
print(e[0]+e[2])

int[] e = {1, 2, 3};
int[] f = {1, 2, 3};

System.out.println(e[0]+e[2]);

Semantics 4 4

String
concatenation

TCC Syntax print("hello" + "ss") System.out.println("hello" + "ss");

Semantics helloss helloss

String
coercion

FCC Syntax print("hello" + 1) System.out.println("hello" + 1)

Semantics TypeError: can only concatenate str
(not "int") to str

hello1

Integer
division

FCC Syntax print(3/2) System.out.println (3/2)

Semantics 1.5 1

String
multiplication

FCC Syntax print("hello"*2); System.out.println("hello"*2);

Semantics hello hello error

Operator
precedence

TCC Syntax print(3*(1+2)); System.out.println(3*(1+2));

Semantics 9 9

Objects
aliasing

ATCC Syntax n1 = {'name':'Joseph', 'age': 51}
n2=n1
n1['age']= n1['age']+1
print(n2['age'])
print(n1['age'])

public class Robot {
String name;
int age;

public Robot(String n, int w)
{
this.name=n;
this.age=w; }

public void agga() {
age=age+1;
}

public static void main(String []args)
{
Robot n1=new Robot("Joseph", 51);
Robot n2=n1;
n1.agga();
System.out.println (n1.age+ ""
+n2.age);}}

Semantics 52
52

52
52

APPENDIX B. CHAPTER 6: VALIDATION OF THE MPLT STUDY MATERIALS 197

Figure B.1: Consent form for the experiments that validated the model

Java Questions

I would like to understand your initial expectations about how Java works. For each question, please give your
first guess what the code does.

What will be the output of this Java program fragment?

int a;
a=1;
a=10.5;
System.out.println (a);

What will be the output of this Java program fragment?

for (int i=0; i<2; i++)
{
 String var="Hello";
 System.out.println(var);
}
System.out.println(var);

What will be the output of this Java program fragment?

int i=0;
while (i<2){
 System.out.println(i);
 i++;
}

What will be the output of this Java program fragment?

String a=new String ("lab");
String b=new String ("lab");
System.out.println(a==b);

What will be the output of this Java program fragment?

public class Main{
public static int gen(int g, int s) {
int a=g*2;
return a;
}

public static void main(String[] args) {
System.out.println(gen(7,3));
}
}

What will be the output of this Java program fragment?

public class Robot {
 String label;
 int num;

public Robot(String n, int w){
 this.label=n;
 this.num=w;
}

public void agga(){
 num=num+2;
 System.out.println(num);
}

public static void main(String []args){
 Robot n1=new Robot("Nori", 51);
 Robot n2=new Robot("Alen", 22);
 System.out.println(n1.num);
 n2=n1;
 n1.agga();
 System.out.println(n2.num);
}
}

What will be the output of the following Java program fragments?

System.out.println("hello" + "there");
System.out.println(5/2);
System.out.println("run" * 2);
System.out.println("exec" + 3);

Python Questions

I would also like to understand what you know about Python. Again, please give your initial guess as to what
each code fragment will do.

What will be the output of this Python program fragment?

x=0
while x<2:
 print("word")
 x+=1

What will be the output of this Python program fragment?

gap=3
gap="bye"
print(gap)

What will be the output of this Python program fragment?

for i in range(0,2):
 a="uk"
 print (a)
print (a)

What will be the output of this Python program fragment?

a="class"
b="class"
print(a==b)

What will be the output of this Python program fragment?

def cap(z,y):
 pa=z*y
 return pa
print (cap(3,4))

What will be the output of this Python program fragment? *

x = {'name':'Joseph', 'age': 51}
y = {'name':'Vic', 'age': 35}
print(x['age'])
y=x
x['age']=x['age']+1
print(x['age'])
print(y['age'])

What will be the output of the following Python program fragments? *

print("Good" + "morning")
print(5/2)
print("Good" * 3)
print("Good" + str(3))

Internet Technology
Programming concepts Quiz (Python and Java)

Prepared by Ethel Tshukudu
Email:
Centre for Computer Science Education
University of Glasgow

1. Write down precisely what would be printed when each of the following Python code snippets is
executed. You may assume the code immediately below, to declare variables, has been executed.

a="Java"
b="Python"
c=5
d=2
x1=[9,4,1]
x2=[9,4,1]

Code snippet Your answer here:
print(x1==x2) True
print(x2[0]+x2[2]) 10
print(a + b) JavaPython
print (a*2) JavaJava
print (b+c) error
print (c/d) 2.5
print (d*(c+d)) 14

2. What will be the output of the following Python program fragments?

Program Fragment Your answer here:
a.

a=1

a= "jump"
 print (a)

jump

b.
 Sc1 = ["Axe"]

Sc2 = Sc1
Sc1.append("Wood")
print(Sc1)
 print(Sc2)

[‘Axe’, ‘Wood’]

[‘Axe’, ‘Wood’]

c. for i in range(2):

 print ("pen")
 i=3

pen

pen

a. for i in range(2):
a=2

print (a)

2

b.
 i = 0

while (i < 2):
a="post"
print(a)
i+=1

Post

post

Internet Technology
Programming concepts Quiz (Python and Java)

Prepared by Ethel Tshukudu
Email:
Centre for Computer Science Education
University of Glasgow

c.
def pin(e,f):

ga=e+f
api()
return ga

def api():
ga=3
print(ga)

print (pin(3,3))

3

6

d.
class Student:

def __init__(self, name, mark):
self._name = name
self._mark = mark

def update(self):
self._mark += 1
print(self._mark)

f1 = Student("James", 59)
f1.update()

60

e.
n1 = {'name':'Joseph', 'age': 51}
n2 = {'name':'Vic', 'age': 35}
n1=n2
n2['age']=36

print(n2['age'])
print(n1['age'])

36

36

f.
a=1;
b=2;
if (a>b):

print("hello")
else:

print("bye")

bye

Internet Technology
Programming concepts Quiz (Python and Java)

Prepared by Ethel Tshukudu
Email:
Centre for Computer Science Education
University of Glasgow

1. Write down precisely what would be printed when each of the following Java code snippets is
executed. You may assume the code immediately below, to declare variables, has been executed.

String a="public";
String b="void";
int c=5;
int d=2;
int[] x1={3,2,1};
int[] x2={3,2,1};

Code snippet Your answer here:
System.out.println (x1==x2); False
System.out.println (x2[0]+x2[2]); 4
System.out.println (a + b); publicvoid
System.out.println (a*2); error
System.out.println (b+c); Void5
System.out.println (c/d); 2
System.out.println (d*(c+d)); 14

2. What will be the output of the following Java program fragments?

Program Fragment Your answer here:
a. int a=1;

String a=”hello”;
System.out.println(a);

error

b. for (int i=0; i<2; i++){
 System.out.println("hello");
 i=3;}

hello

c. public static void main(String[] args){

for (int i=0; i<2; i++){

int b=2;}

System.out.println(b);}

error

d.
int i = 0;
while (i < 3) {
 int a=1;
 System.out.println(a);
 i++;}

1

1

1

e.
 int a=4;

int b=6;

if (a>b){

System.out.println("axe");}

else{

System.out.println("wood");}

wood

Internet Technology
Programming concepts Quiz (Python and Java)

Prepared by Ethel Tshukudu
Email:
Centre for Computer Science Education
University of Glasgow

f. public class Main {
 public static int gen(int g, int s)
 {

int a=g+s;
cen();
return a;

 }
 public static void cen()
 {
 int a=2;
 System.out.println(a);
 }
 public static void main(String[] args)
 {

System.out.println(gen(4,3));
 }}

2

7

g. public class Robot {

 String name;

 int age;

public Robot(String n, int w)

{ this.name=n;

this.age=w;

}

public void agga()

{ age=age+1;

 System.out.println(age);

}

public static void main(String []args)

{

Robot n1=new Robot("Joseph", 51);

n1.agga();
 }}

52

h.
import java.util.ArrayList;
public class Main {
 public static void main(String[] args)
 {
 ArrayList<String> cars = new
 ArrayList<String>();
 cars.add("Audi");
 ArrayList<String> cars2=cars;
 cars2.add("Corolla");
 System.out.println(cars);
 System.out.println(cars2);
 } }

[Audi, Corolla]

[Audi, Corolla]

Internet Technology
Programming concepts Quiz (Python and Java)

Prepared by Ethel Tshukudu
Email:
Centre for Computer Science Education
University of Glasgow

Appendix C

Chapter 7 Appendix: Teachers and their
Experiences Study Materials

This appendix includes the instruments that were used in Chapter 7 (Teachers’ views on trans-
fer). The appendix presents the details of the interview script used to interview the teachers.

206

Teacher’s views on teaching second and subsequent programming Languages

This study investigates teacher’s perspectives on programming language transfer, especially in

their own experiences when teaching second and subsequent programming languages in the

classroom. These findings can be used to propose teaching methods that help teachers interpret

and improve their own classroom practices when teaching second/subsequent programming

languages.23 years

Background questions:

• How many years of experience do you have teaching programming?

• What are your educational qualifications?

• What is the school level of students being taught (secondary/K12 or university)?

• How many programming languages do you teach? Which one is the current one?

Questions on transfer and teaching methods

Why do you teach a second/subsequent programming language course?

Do you teach both the first and second/subsequent programming language introduced to
students? (Please list them in order of first to current)

What are the course outcomes? What knowledge do you wish your students would have
acquired at the end of their first and second programming course? e.g. (programming
language comprehension, problem solving, Code writing, Code debugging, programming
concepts knowledge)

• If you want the course outcomes to be all of the above examples, you can arrange them
by order of preference.

Take me through your teaching methods of both first and second programming language
(where applicable)? E.g.

• Do you start teaching problem solving/ algorithms first then introduce the language later
or vice versa

• lab activities focus on code comprehension/ problem solving

• discussions
• feedback
• homework (e.t.c)

What are your views on programming language transfer as students move to their
second/subsequent programming languages? E.g.

• Do you think there are benefits of the first programming language knowledge when
students learn the second/subsequent programming language?

• Do you experience any transfer problems in the classroom when teaching
second/subsequent programming languages?

What measures or techniques do you currently use to help students transfer knowledge
from first programming language to second programming language (if any)? E.g

• Do you usually teach the second programming language concepts from scratch assuming
students don’t know much from their first programming language?

• Do you see connections between programming concepts between the two languages you
teach? Do you think students see them?

• Do teach students the second programming language referring back to the first language
they learnt to make connections? If so how? If not why?

• Do you have any other strategies you use in the classroom when teaching a second
programming language to connect students to their prior knowledge?

Appendix D

Chapter 8 Appendix: Exploring Transfer
Interventions Study Materials

This appendix includes the instruments that were used in Chapter 8 (Exploring the transfer in-
terventions). The appendix starts with the the transfer interventions activities in the classroom
and then the quizzes. The quizzes include both the Python and the Java version of code compre-
hension questions.

209

Java
Pre Quiz

1. Write down precisely what would be printed when each of the following Java code

snippets is executed. If you think that any expression would result in an error, explain
clearly the cause of the error.

You may assume the code immediately below, to declare variables, has been
executed.

 int a = 3;
 String b = "fi";
 double c = 10.2;

int[] e = {1, 2, 3};
int[] f = {1, 2, 3};

a. System.out.println(e==f);

b. System.out.println(e[0]+e[2]);

c. System.out.println(a + b);

d. System.out.println(b + b);

e. System.out.println(a/2);

f. int sum = a + c;
 System.out.println(sum);

g. System.out.println(a*(a+2));

2.
a. What is the output when this for-loop program fragments are executed?

for (int i=0; i<2; i++){
 System.out.println(“ola”);
 i=3;}

 b. for (int i=0; i<2; i++){
 int a=3;}
 System.out.println(a);

3. What will be the value of sum when the following code fragment is executed?

int sum =
0;
int i =
0; while
(i < 3)
{

sum = sum + i;
 i++;

}
System.out.println(sum);

4. What will be the output when the following code fragment is executed?

public class HelloWorld
{
 public static int map(int g, String s)
 {

 int a=g+2;
 can();
 return a;

 }

 public static void can()
 {

 int a=3;
 System.out.println(a);

 }
 public static void main(String []args){

 System.out.println (map (7,"hello"));}
}

Java
Post Quiz

1. Write down precisely what would be printed when each of the following Java code

snippets is executed. If you think that any expression would result in an error, explain
clearly the cause of the error.

You may assume the code immediately below, to declare variables, has been
executed.

String[] x = {"ab", "cd", "ef"};
String[] y = x;

h. System.out.println(x==y);

i. System.out.println(y[1]+y[2]);

j. int a;
 a=1;
 a=10.5;
 System.out.println (a);

k. System.out.println(“hello” + str(3));

l. System.out.println(“1” + “1”);

m. System.out.println(5/2*1);

n. System.out.println(3-(1+2));

2.
a. What is the output when this for-loop program fragments are executed?

for (int i=0; i<2; i++){
 System.out.println(“hello”);
 i=3;}

 b. for (int i=0; i<=3; i++)
 {
 int a=2;
 int b=4;
 System.out.println(a);
 }
 System.out.println(a+b);

3. What will be the value of sum when the following code fragment is executed?

int i =
0; while
(i < 2)
{
System.out.println("sum");

 i++;
}

4. What will be the output when the following code fragment is executed?

public class flo {
 public static int x=10;
 public static int rate(int p, int q)
 {

 int z=p+x;
 return z;

 }

 public static int flow(int p)
 {

 int deli=p*2;
 int prime=rate(p, deli);
 return prime;

 }
public static void main(String []args){
System.out.println(flow(2));
}}

Answer sheet for transfer interventions

Java Answer Python Answer Does the Java code
snippet mean the same as
the Python code? Why?

int a = 3;
String b = "fi";
double c = 10.2;
int[] e = {1, 2, 3};
int[] f = {1, 2, 3};

a = 3
b = "fi";
c = 10.2;
e = [1, 2, 3]
f = [1, 2, 3]

System.out.println(e==f); False print(e==f)
System.out.println(e[0]+e[2]); 4 print(e[0]+e[2])
System.out.println(a + b); 3fi print(a + b)
System.out.println(b + b); fifi print(b + b)
System.out.println(a/2); 1 print(a/2)
int sum = a + c;
System.out.println(sum);

error sum = a + c
print(sum)

System.out.println(a*(a+2));
15

print(a*(a+2))

Java Answer Python Answer Do they execute the same
or different? Why?

for (int i=0; i<2; i++){
System.out.println(“ola”);
 i=3;
}

ola for i in
range(2):

 print

("ola")

 i=3

for (int i=0; i<2; i++){
 int a=2;}

System.out.println(a);

}

error for i in
range(2):
 a=2

print (a)

Java Answer Python Answer Do they execute the same
or different? Why?

int sum = 0;
int i = 0;
while (i < 3){
 sum = sum + i;
 i++;
}
System.out.println(sum);

3 total=0
i = 0
while (i < 3):
 total +=i
 i+=1
print(total)

Java Answer Python Answer Do they execute the same or
different? Why?

public class HelloWorld
{
public static void main(String
[]args){
 System.out.println
 (map (7,"hello"));
 }

 public static int map(int g,
String s)
 {
 int a=g+2;
 can();
 return a;
 }

 public static void can()
 {
 int a=3;
 System.out.println(a);
 }

}

3 9
def cap(z,y):

 pa=z+2

 zap()

 return pa

def zap():

 pa=3

 print(pa)

print(cap(7,"hello"))

Appendix E

Chapter 9 Appendix: Pedagogy for
Transfer Study Materials

This appendix includes the instruments that were used in Chapter 9 (The transfer pedagogy).
The appendix the quizzes. The quizzes include both the Python and the Java version of code
comprehension questions.

215

Java Questions

I would like to understand your initial expectations about how Java works. For each question, please give your
first guess what the code does.

What will be the output of this Java program fragment?

int a;
a=1;
a=10.5;
System.out.println (a);

What will be the output of this Java program fragment?

for (int i=0; i<2; i++)
{
 String var="Hello";
 System.out.println(var);
}
System.out.println(var);

What will be the output of this Java program fragment?

int i=0;
while (i<2){
 System.out.println(i);
 i++;
}

What will be the output of this Java program fragment?

String a=new String ("lab");
String b=new String ("lab");
System.out.println(a==b);

What will be the output of this Java program fragment?

public class Main{
public static int gen(int g, int s) {
int a=g*2;
return a;
}

public static void main(String[] args) {
System.out.println(gen(7,3));
}
}

What will be the output of this Java program fragment?

public class Robot {
 String label;
 int num;

public Robot(String n, int w){
 this.label=n;
 this.num=w;
}

public void agga(){
 num=num+2;
 System.out.println(num);
}

public static void main(String []args){
 Robot n1=new Robot("Nori", 51);
 Robot n2=new Robot("Alen", 22);
 System.out.println(n1.num);
 n2=n1;
 n1.agga();
 System.out.println(n2.num);
}
}

What will be the output of the following Java program fragments?

System.out.println("hello" + "there");
System.out.println(5/2);
System.out.println("run" * 2);
System.out.println("exec" + 3);

Python Questions

I would also like to understand what you know about Python. Again, please give your initial guess as to what
each code fragment will do.

What will be the output of this Python program fragment?

x=0
while x<2:
 print("word")
 x+=1

What will be the output of this Python program fragment?

gap=3
gap="bye"
print(gap)

What will be the output of this Python program fragment?

for i in range(0,2):
 a="uk"
 print (a)
print (a)

What will be the output of this Python program fragment?

a="class"
b="class"
print(a==b)

What will be the output of this Python program fragment?

def cap(z,y):
 pa=z*y
 return pa
print (cap(3,4))

What will be the output of this Python program fragment? *

x = {'name':'Joseph', 'age': 51}
y = {'name':'Vic', 'age': 35}
print(x['age'])
y=x
x['age']=x['age']+1
print(x['age'])
print(y['age'])

What will be the output of the following Python program fragments? *

print("Good" + "morning")
print(5/2)
print("Good" * 3)
print("Good" + str(3))

Appendix F

Chapter 9: Ethics Documents

This appendix includes the Ethics application documents used for the experiments in this thesis.

219

APPENDIX F. CHAPTER 9: ETHICS DOCUMENTS 220

Ethical approval for:

Application Number: 300210041

Project Title: Understanding conceptual transfer in students learning new programming
languages

Lead Researcher: Professor Quintin Cutts

This is to confirm that the College of Science and Engineering Ethics Committee has reviewed the
above application and approved it. Please keep this letter for your records.

Please note that if your proposal involves face-to-face research, approval to carry out this research
is only granted when one of the following two conditions has been met:

(a) You have performed a risk assessment of your research protocol in your research facility, had it
approved by your Head of School / Director of Institute, and received permission to proceed with
this specific research project, or

(b) The University has generally lifted its social distancing restrictions on face-to-face interaction,
including research.

If any of the above is true, or if your research collects data in a format that does not require
social contact (e.g., online research), you may begin data collection now. Approval for this
project lasts for 6 months from the date you are allowed to proceed with data collection.

Also please download and read the Collated Comments associated with your proposal. This
document contains all the reviews of your application and can be found below the approval letter on
the Research Ethics System. These reviews may contain useful suggestions and observations about
your research protocol for improving it. Good luck with your research.

Sincerely,

Dr hristo

Dr Christoph Scheepers
Ethics Officer
College of Science and Engineering
University of Glasgow

Dr. Christoph Scheepers
Senior Lecturer

School of Psychology
University of Glasgow

62 Hillhead Street
Glasgow G12 8QB

Tel.: +44 141 330 3606
Christoph.Scheepers@glasgow.ac.uk

Glasgow, October 11, 2021

Figure F.1: Ethics approval

APPENDIX F. CHAPTER 9: ETHICS DOCUMENTS 221

Ethical approval for:

Application Number: 300200021

Project Title: Understanding Conceptual Transfer for students learning new programming
languages

Lead Researcher: Professor Quintin Cutts

This is to confirm that the College of Science and Engineering Ethics Committee has reviewed the
above application and approved it. Please download the approval letter from the Research Ethics
System for your records.

Please note that if your proposal involves face-to-face research, approval to carry out this research
is only granted when one of the following two conditions has been met:

(a) You have a performed a risk assessment of your research protocol in your research facility, had it
approved by your Head of School / Director of Institute, and received permission to proceed with
this specific research project, or

(b) The University has generally lifted its social distancing restrictions on face-to-face interaction,
including research.

If any of the above is true, or if your research collects data in a format that does not require
social contact (e.g., online research), you may begin data collection now. Approval for this
project lasts for 6 months from the date you are allowed to proceed with data collection.

Also please download and read the Collated Comments associated your application. This document
contains all the reviews of your application and can be found below your approval letter on the
Research Ethics System. These reviews may contain useful suggestions and observations about
your research protocol for strengthening it. Good luck with your research.

Sincerely,

Dr Christoph Scheepers
Ethics Officer
College of Science and Engineering
University of Glasgow

Dr. Christoph Scheepers
Senior Lecturer

School of Psychology
University of Glasgow

62 Hillhead Street
Glasgow G12 8QB

Tel.: +44 141 330 3606
Christoph.Scheepers@glasgow.ac.uk

Glasgow, October 9, 2020

Figure F.2: Ethics approval

	Thesis Cover Sheet
	2022tshukuduphd_sig id rem

