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ABSTRACT 

 

 

Viruses are the cause of many infectious diseases such as the pandemic viruses: acquired 

immune deficiency syndrome (AIDS) and coronavirus disease 2019 (COVID-19). During 

the infection cycle, viruses invade host cells and trigger a series of virus-host interactions 

with different directionality. Some of these interactions disrupt host immune responses or 

promote the expression of viral proteins and exploitation of the host system thus are 

considered ‘pro-viral’. Some interactions display ‘pro-host’ traits, principally the immune 

response, to control or inhibit viral replication. Concomitant pro-viral and pro-host 

molecular interactions on the same host molecule suggests more complex virus-host 

conflicts and genetic signatures that are crucial to host immunity. In this work, machine-

learning-based prediction of virus-host interaction directionality was examined by using data 

from Human immunodeficiency virus type 1 (HIV-1) infection. Host immune responses to 

viral infections are mediated by interferons (IFNs) in the initial stage of the immune response 

to infection. IFNs induce the expression of many IFN-stimulated genes (ISGs), which make 

the host cell refractory to further infection. We propose that there are many features 

associated with the up-regulation of human genes in the context of IFN-α stimulation. They 

make ISGs predictable using machine-learning models. In order to overcome the 

interference of host immune responses for successful replication, viruses adopt multiple 

strategies to avoid being detected by cellular sensors in order to hijack the machinery of host 

transcription or translation. Here, the strategy of mimicry of host-like short linear motifs 

(SLiMs) by the virus was investigated by using the example of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). The integration of in silico experiments and 

analyses in this thesis demonstrates an interactive and intimate relationship between viruses 

and their hosts. Findings here contribute to the identification of host dependency and anti-

viral factors. They are of great importance not only to the ongoing COVID-19 pandemic but 

also to the understanding of future disease outbreaks. 
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CHAPTER ONE 

1. INTRODUCTION TO THE THESIS 

 

This thesis is presented in the format of self-contained chapters. The research presented in 

the third, fourth and fifth chapters form the main Results chapters with different rationales 

and independent results. Supplementary files for this work are available at the web server of 

HIVPRE (http://hivpre.cvr.gla.ac.uk/), ISGPRE (http://isgpre.cvr.gla.ac.uk/) and GitHub 

archive (https://github.com/HChai01/SARS-COV-2).  

1.1 Contributions 

This thesis makes the following key research contributions: 

(1) Novel perspective of virus-host interaction prediction by relating human proteins to pro-

viral or pro-host phenotypes; 

(2) Systematic analyses of hosts’ innate properties; 

(3) Novel feature selection schemes to optimise machine learning models in the context of 

virus-host interactions; 

(4) Web server for predicting human immunodeficiency virus type 1 (HIV-1) interacting 

proteins and their directionality: pro-viral versus pro-host; 

(5) Systematic analyses of innate properties related to the interferon response to virus 

infection; 

(6) Web server for predicting interferon-stimulated human genes; 

(7) Elucidation of the mimicry mechanism adopted by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). 

1.2 Publications and Authorship 

This thesis unifies and expands work in the following four publications: 
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§ Haiting Chai1, Quan Gu1, Joseph Hughes1 and David L. Robertson1. In silico prediction 

of HIV-1-host molecular interactions and their directionality. PLOS Computational 

Biology. 2022; 18(2): e1009720. https://doi.org/10.1371/journal.pcbi.1009720 PMID: 

35134057 

Author contributions: DLR, JH, QG and HC conceptualization; HC data curation; HC 

formal analysis; HC and DLR funding acquisition; HC investigation; DLR, JH, QG and HC 

methodology; DLR, JH and QG resources; HC software; DLR, JH and QG supervision; DLR, 

JH, QG and HC validation; HC visualization; HC writing-original draft; DLR, JH, QG and 

HC writing-review and editing; DLR project administration. 

§ Haiting Chai1, Quan Gu1, Joseph Hughes1 and David L. Robertson1. Defining the 

Characteristics of Interferon-alpha-stimulated Genes: Insight from Data Expression and 

Machine Learning. Under review.  

Author contributions: DLR, JH, QG and HC conceptualization; HC data curation; HC 

formal analysis; HC and DLR funding acquisition; HC investigation; DLR, JH, QG and HC 

methodology; DLR, JH and QG resources; HC software; DLR, JH and QG supervision; DLR, 

JH, QG and HC validation; HC visualization; HC writing-original draft; DLR, JH, QG and 

HC writing-review and editing; DLR and JH project administration. 

§ Haiting Chai1, Quan Gu1, Lukasz Kurgan2, Joseph Hughes1 and David L. Robertson1. 

SARS-CoV-2 mimicry of host protein interactions mediated via short linear motifs. To 

be submitted. 

Author contributions: DLR, JH, QG, LK and HC conceptualization; HC data curation; HC 

formal analysis; HC and DLR funding acquisition; HC investigation; DLR, JH, QG and HC 

methodology; DLR, JH and QG resources; DLR, JH and QG supervision; DLR, JH, QG and 

HC validation; HC visualization; HC writing-original draft; DLR, JH, QG, LK and HC 

writing-review and editing; DLR and JH project administration. 

§ Haiting Chai1, Joseph Hughes1 Quan Gu1 and David L. Robertson1. A review of 

supervised machine learning methods for predicting virus-host molecular interactions. 

In preparation. 

Author contributions: DLR, JH, QG and HC conceptualization; HC data curation; HC 

formal analysis; HC and DLR funding acquisition; HC investigation; DLR, JH, QG and HC 

methodology; DLR, JH and QG resources; DLR, JH and QG supervision; DLR, JH, QG and 
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HC validation; HC visualization; HC writing-original draft; DLR, JH, QG and HC writing-

review and editing; DLR and JH project administration. 

Affiliation: 1MRC-University of Glasgow Centre for Virus Research, Glasgow, United 

Kingdom; 2Department of Computer Science, Virginia Commonwealth University, 

Richmond, VA, USA. 

1.3 Thesis outline 

This first chapter provides an overview of the thesis organisation and contributions. The 

second chapter provides background information to the thesis with a focus on virus-host 

molecular interactions. It introduces the virus life cycle with a focus on the entry, replication 

and release stages. It gives a brief introduction on the interplay between viruses and their 

hosts including an introduction to the role of host innate immune responses and 

corresponding strategies viruses developed for antagonizing the immune response. This 

chapter also introduces the usage of machine-leaning in virus research with a particular focus 

on typical supervised learning algorithms used for classification. 

Chapter Three is a research section of the thesis. It investigates molecular 

interactions between HIV-1 and human host proteins. It elucidates that some features of 

HIV-1 interacting proteins (VIPs) make human proteins more likely to be targeted by HIV-

1 proteins. The results demonstrate that the direction of HIV-1-host molecular interactions 

is predictable due to different characteristics of pro-viral and pro-host human proteins. It 

proposes a machine learning framework developed for the prediction of putative VIPs and 

their directionality in HIV-1-host molecular interactions.  

Chapter Four is another research section. It provides detailed analyses to characterize 

interferon-α-stimulated human genes (ISG), which are potentially anti-viral to protect the 

host cells against viral infections. It summarizes factors that may enhance or suppress the 

stimulation of human genes with the presence of interferon-α (IFN-α). It illustrates that 

interferon-α-repressed human genes (IRGs), which are down-regulated in the IFN-α system, 

can have similar properties to ISGs. In this chapter, machine-learning approach is applied in 

the form of classification. 

Chapter Five is the last research section. It investigates the molecular interactions 

between SARS-CoV-2 and human host proteins. It proposes that SARS-CoV-2 mimics host-

like short linear motifs (SLiMs) from the human protein-protein interaction network to 
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facilitate its interaction affinity with host proteins. It elucidates the discovery and 

evolutionary conservation of 18 SLiMs mimicked by the envelope, nucleocapsid, open 

reading frame 7a (ORF7a), and non-structural protein 8 (NSP8).   

The final chapter summarises the main discoveries of this work. It discusses the 

limitations to the conducted research and solutions to overcome them. It also discusses some 

interesting ideas for future research. 

 

 



  

CHAPTER TWO 

2. INTRODUCTION TO VIRUS-HOST MOLECULAR 

INTERACTIONS 

 

2.1 Abstract 

Viruses, especially human-infecting viruses pose a serious threat to public health. To 

replicate and persist viruses make intimate relationships with their hosts exploiting host 

systems through virus-host molecular interactions. Investigating the interplay between virus 

and the human host contributes to a better understanding of the pathogenesis underlying viral 

infections and can contribute to the development of novel antiviral drugs or therapeutics. 

The development of DNA microarray, polymerase chain reaction (PCR), genome and 

transcriptome sequencing and assay technologies permits the creation of biological data for 

in silico analyses, which in turn facilitates in vivo and in vitro experiments. Machine learning 

provides an efficient methodology to decipher key factors embedded in complex biological 

data and its context. It also gives new insights for potential virus infections, which are of 

great importance, for example, to the ongoing Coronavirus disease 2019 (COVID-19) 

pandemic and future disease outbreaks. 

2.2 Viral infection and interplay with the host 

A virus is an infectious agent that replicates inside living cells. It can infiltrate every cell-

based life form in nature [1]. A recent report from UniProt [2] indicates a compilation of 

17,039 manually reviewed and more than 5,000,000 unreviewed viral proteins. Viruses can 

be catalogued into seven Baltimore classes based on the genetic materials present in their 

virions (Fig 2.1). They are known to infect almost all living organisms ranging from animals 

to microorganisms [3]. Due to a dependency on living entities, viruses have to rapidly exploit 

host systems for their replication and persistence. This promotes viruses to establish intimate 

molecular relationships with their hosts, a coevolutionary relationship that constantly shapes 

their genome through the need to maintain virus-host molecular interactions. [4]. 
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Fig 2.1 The Baltimore classification of virus. To produce mRNA for translation, virus 

genes in Group 1/2 are transcribed from DNA; those in Group 3/5 are transcribed from RNA; 

those in Group 4 act as mRNA themselves; those in Group 6 have the path of RNA-DNA-

mRNA; those in the last group have the path of DNA-RNA-DNA-mRNA. Figure is 

reproduced from ViralZone [5] under the Creative Commons licence 4.0. Abbreviations: 

dsDNA, double-stranded DNA; ssDNA, single-stranded DNA; dsRNA, double-stranded 

RNA; +ssRNA, positive sense single-stranded RNA; -ssRNA, negative sense single-

stranded RNA; ssRNA-RT, single-stranded RNA with a DNA intermediate; dsDNA-RT, 

double-stranded DNA with a RNA intermediate. 

2.2.1 Virus life cycle 

Despite differences between individual virus types, the life cycle of viruses generally 

contains three main stages including: (I) viral entry, (II) expression and replication, and (III) 

viral exit. Exemplified by retro-transcribing (RT) viruses, these stages can be further 

partitioned as: (1) attachment/binding to the surface of the host cell, (2) fusion of virions into 

the host cell, (3) reverse transcription to generate viral DNA, (4) integration of viral DNA 

into the host cell genome, (5) transcription of viral mRNA from the integrated pro-viral DNA, 

(6) translation of new viral proteins, (7) assembly of virions in preparation for the next round 

of infection, (8) budding through the host plasma membrane, and (9) extracellular release 

from the host cell [6,7] (Fig 2.2).  

Proteins

dsDNA ssDNA dsRNA +ssRNA -ssRNA ssRNA-RT dsDNA-RT

DNA viruses RNA viruses

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Retro-transcribing viruses
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Fig 2.2 The life cycle of retro-transcribing virus indicating the processes from its entry 

to release. Viral entry includes the first two steps, viral exit includes the last three steps, and 

the rest steps enable the replication of viral genome in the host cells. Figure is created via 

the BioRender (https://biorender.com/) under the Creative Commons licence 4.0. 

2.2.1.1 Viral entry 

Viruses are usually highly specific about the host cells they can infect. This cell tropism is 

determined in their entry stage, during which the virus particle encounters the host cell and 

binds to the host entry receptor with their membrane glycoproteins or sites on a viral capsid 

[8]. The virus particle is metastable to protect the viral genome from immunological 

recognition and to maximise the release of virions after fusion/endocytosis events [9]. 

Meanwhile, the host entry receptor also mediates the fusion (for enveloped viruses) or 

endocytosis (for non-enveloped viruses) events, which allow the virus to access the interior 

of the host cell for replication [6]. Table 2.1 lists examples of a number of host entry 

receptors exploited by human-infecting viruses. Their function in the host system, e.g., 

regulation or in a signalling pathway is subverted after virus binding, e.g., human 

immunodeficiency virus type 1 (HIV-1) downregulates expression of coreceptor C-C motif 

chemokine receptor 5 (CCR5) and C-X-C motif chemokine receptor 4 (CXCR4) [10]. In 

fact, there are more host molecules (attachment factors) recruited in the entry stage to 

enhance the affinity between viral particle and host entry receptor, exemplified by C-type 
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lectin domain family 4 member M (CLEC4M) for hepatitis C virus (HCV) [11], severe acute 

respiratory syndrome coronavirus (SARS-CoV) [12], Japanese encephalitis virus (JEV) [13], 

West Nile virus (WNV) [14], etc. While many viruses may only choose one specific receptor 

to invade the host cell, some viruses display a complex dependency of host entry factors in 

the entry stage. For example, CD4 is the primary host entry receptor of HIV-1. Molecular 

interaction between CD4 and envelope protein (env) of HIV-1 initiate conformational 

changes to promote further binding to CCR5 and CXCR4 [15]. 

Table 2.1 Host entry receptors for human-infecting viruses. 

Virus Class Receptor Ref. 
Adenovirus dsDNA CD80, CD86, CD46 [16] 
BK virus dsDNA Gangliosides GD1b/GT1b [17] 
EBV dsDNA HLA-DRB1, ITGB1 [18,19] 
HSV-1 dsDNA PVRL1, PVRL2, HVEM, ITGAV, ITGB6 [20,21] 
HSV-2 dsDNA PVRL1, PVRL2, HVEM [21,22] 
HCMV dsDNA ITGAV, ITGB3 [23] 
JCPyV dsDNA HTR2A [24] 
HPV dsDNA ITGA6 [25] 
PRV dsDNA PVR, PVRL1, PVRL2 [22,26] 
VZV dsDNA IDE [27] 
HHV-6 dsDNA CD46, TNFRSF4 [28,29] 
HHV-8 dsDNA ITGAV, ITGB3 [30] 
AAV ssDNA Heparan sulfate, RPSA [31,32] 
B19V ssDNA ITGA5, ITGB1 [33] 
Rotavirus dsRNA ITGA2, ITGB1 [34] 
MRV dsRNA JAM-A, ITGB1, NgR1 [35-37] 
Coxsackievirus +ssRNA ICAM-1, ITGAV, ITGB3, ITGB6, CAR [38-41] 
Dengue virus +ssRNA Tyro3, AXL, CLDN1, RPSA [42-44] 
Echovirus +ssRNA ITGA2, ITGB1, DAF,  [45,46] 
EV71 +ssRNA Sialic acids, SCARB2, SELPLG [47-49] 
HAV +ssRNA HAVCR1 [50] 
HCV +ssRNA LDLR, CLDN1, CD81, SCARB1 [51-53] 
HCoV-229E +ssRNA ANPEP [54] 
HCoV-OC43 +ssRNA Sialic acids [55] 
MERS-CoV +ssRNA DPP4 [56] 
SARS-CoV +ssRNA ACE2 [57] 
SARS-CoV-2 +ssRNA ACE2 [58] 
HPEV-1 +ssRNA ITGAV, ITGB3 [59] 
JEV +ssRNA DC-SIGN, LSECtin [13] 
HRV +ssRNA ICAM-1, LDLR, CDHR3 [60-62] 
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Norwalk virus +ssRNA HBGA [63] 
Poliovirus +ssRNA PVR [64] 
Rubella virus +ssRNA MOG [65] 
Sindbis virus +ssRNA RPSA [66] 
VEE +ssRNA RPSA [67] 
WNV +ssRNA ITGAV, ITGB3 [68] 
Zika virus +ssRNA Tyro3, AXL [69] 
EBOV -ssRNA HAVCR1, Typo3, AXL, NPC1,  [70-72] 
GTOV -ssRNA TFRC [73] 
HTNV -ssRNA ITGB3 [74] 
HeV -ssRNA EFNB2, EFNB3 [75] 
Influenza A -ssRNA CACNA1C, CD207, Sialic acids [76-78] 
Influenza B -ssRNA Sialic acids [79] 
Influenza C -ssRNA Sialic acids [80] 
hMPV -ssRNA ITGA5, ITGB3 [78] 
HPIV -ssRNA Sialic acids [81] 
JUNV -ssRNA TFRC [73] 
Lassa virus -ssRNA α-dystroglycan [82] 
LCMV -ssRNA α-dystroglycan, CLEC4G, Tyro3, AXL [82,83] 
MACV -ssRNA TFRC [84] 
Marburg virus -ssRNA HAVCR1 [72] 
MeV -ssRNA SLAMF1, PVRL4 [85,86] 
NiV -ssRNA EFNB2, EFNB3 [87,88] 
Rabies virus -ssRNA nAChR, NCAM1 [89] 
RVFV -ssRNA DC-SIGN [90] 
UUKV -ssRNA DC-SIGN [90] 
VSV -ssRNA LDLR [91] 
HIV-1 ssRNA-RT CD4, CCR5, CXCR4 [92] 

Abbreviations: dsDNA, double-stranded DNA; ssDNA, single-stranded DNA; dsRNA, double-stranded RNA; 

+ssRNA, positive sense single-stranded RNA; -ssRNA, negative sense single-stranded RNA; ssRNA-RT, 

single-stranded RNA with a DNA intermediate; EBV, Epstein-Barr virus; HSV-1, herpes simplex virus type 

1; HSV-2, herpes simplex virus type 2; HCMV, human cytomegalovirus; JCPyV, human JC polyomavirus; 

HPV, human papillomavirus; PRV, pseudorabies virus; VACV, vaccinia virus; HHV-6, human herpesvirus 6; 

HHV-8, human herpesvirus 8; VZV, Varicella-zoster virus; AAV, adeno-associated virus; B19V, human 

parvovirus B19; MRV, mammalian reovirus; EV71, enterovirus 71, HAV, hepatitis A virus; HCV, hepatitis C 

virus; HCoV-229E, human coronavirus 229E; HCoV-OC43, human coronavirus OC43; MERS-CoV, middle 

east respiratory syndrome coronavirus; SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-

CoV-2, severe acute respiratory syndrome coronavirus 2; HPEV-1, human parechovirus 1; JEV, Japanese 

encephalitis virus; HRV, human rhinovirus; VEE, Venezuelan equine encephalitis; WNV, West Nile virus; 

EBOV, Ebola virus; GTOV, Guanarito virus; HTNV, Hantaan virus; HeV, Hendra virus; hMPV, human 

metapneumovirus; HPIV, Human parainfluenza virus; JUNV, Junin virus; LCMV, lymphocytic 

choriomeningitis virus; MACV, Machupo virus; MeV, measles virus; NiV, Nipah virus; RVFV, Rift fever 
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valley virus; UUKV, Uukuniemi virus; VSV, vesicular stomatitis virus; HIV-1, human immunodeficiency 

virus type 1. 

2.2.1.2 Viral replication stage 

Replication is the key process in the virus life cycle required for persistence and the next 

round of infections. Viruses from different families usually adopt different strategies for 

replication but are still under the same constraint of using host translation machinery for the 

synthesis of viral proteins (Fig 2.3) [7]. Exemplified by HIV-1, its replication is initiated 

with the disintegration of capsid (encoded by gag). Its reverse transcriptase (encoded by pol) 

then transcribes the viral RNA into DNA (Step 3 in Fig 2.2). This procedure involves 

frequent recombination (combining of genetic material from different virus RNAs) and is 

usually error-prone (generating mutations) due to the lack of proofreading activity [93]. 

Consequently, it causes a rapid evolution of HIV-1 and may promote the emergency of new 

virus variants, for example, selection for drug resistance [94]. In the host nucleus, its 

integrase (encoded by pol) integrates the viral DNA into the host cell genome [95] (Step 4 

in Fig 2.2). Finally, multiple copies of new HIV-1 RNAs are generated by the host 

transcription machinery, some of which are translated into new HIV proteins (Step 5~6 in 

Fig 2.2).  

 
Fig 2.3 Illustration of the replication process for different viruses. The mRNA used for 

translation are transcribed from DNA in dsDNA/ssDNA viruses and from RNA in dsRNA/-
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ssRNA viruses. In ssRNA-RT viruses, they are produced through a path of RNA-DNA-

mRNA while in dsDNA-RT, they are produced through a path of DNA-RNA-DNA-mRNA. 

+ssRNA viruses use their mRNA for translation directly. Figure is reproduced from the 

KEGG MEDICUS [96] under the Creative Commons licence 4.0. Abbreviations: dsDNA, 

double-stranded DNA; ssDNA, single-stranded DNA; dsRNA, double-stranded RNA; 

+ssRNA, positive sense single-stranded RNA; -ssRNA, negative sense single-stranded RNA; 

ssRNA-RT, single-stranded RNA with a DNA intermediate; dsDNA-RT, double-stranded 

DNA with a RNA intermediate. 

2.2.1.3 Viral release stage 

Release is the last stage of the viral life cycle. After the production of new viral protein 

through host translation machinery (Step 6 in Fig 2.2), the assembly process integrates viral 

proteins and essential components to form virions at the host plasma membrane, internal 

membrane or in the cytoplasm [97] (Step 7 in Fig 2.2). Particles of non-enveloped viruses 

(e.g. human parvovirus B19) then can be released through the mode of cell lysis [98]. By 

contrast, enveloped viruses (e.g., HIV-1) use a different mode for the release. They acquire 

their external envelopes through the envelopment and budding process, during which the 

host membrane is gradually constricted until being severed to release the virus particle [97] 

(Step 8~9 in Fig 2.2). This process is mediated by some machineries such as endosomal 

sorting complex required for transport (ESCRT) [99]. However, successful release does not 

imply a mature status of the progeny virus. They still have to undergo many maturation steps 

to become an infectious virus for the next round of infections. Following the example given 

in Section 2.2.1.2, the assembly, envelopment and budding procedures produce immature 

HIV-1. Shortly after the release from the host cell surface, its protease (encoded by gag-pol) 

induces the proteolytic processing of Gag precursor to form a mature virion [100,101].  

2.2.2 Interplay between viruses and their hosts 

Viruses establish an intimate molecular-level exploitation of their hosts during their life 

cycles from entry to exit. Pro-viral molecular interactions between viruses and their host 

dependency factors (HDFs) permit their frequent exploitation of diverse regulation and 

signalling pathways in hosts [4]. However, when infection happens, the host immune system 

quickly responds and mounts the first defensive line to prevent viral invasion and to inhibit 

viral replication [102]. These initial immune responses are mediated by innate anti-viral 

cytokines secreted from host cells after the infection, which are known as interferons (IFNs) 
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[103]. IFN signals trigger the expression of IFN-stimulated genes (ISGs), which makes the 

host cell refractory to be further infected [104]. Viruses in turn have evolved complex 

strategies to antagonise host immune responses (Table 2.2). As exemplified in the Fig 2.4, 

toll-like receptor (TLR) signalling pathway can recognise virus-associated molecular 

patterns and activate cellular factors to regulate the expression of type I interferons (IFNs) 

[105]. Some of these factors such as nuclear factor kappa B subunit 1 (NFKB1, alias symbol: 

NF-kB) [106] and mitogen-activated protein kinase 1 (MAPK1, alias symbol: ERK) 

[107,108] are anti-viral and capable to perform pro-host molecular interactions with the virus. 

In KEGG database [96], HIV-1 was recorded to commandeer TLR signalling pathway by 

inflicting pro-viral inhibition effects on NFKB1 [109], RELA proto-oncogene (RELA, 

previous symbol: NFKB3) [110], MAPK1 [111], which furthers disrupt IFN signal 

transduction and host immune responses [112]. Interestingly, NFKB1, RELA and MAPK1 

are also anti-viral [106,107,113-116], which means their interaction with HIV-1 occurs in 

both directions and so can be characterised as ‘bidirectional’.  

Table 2.2 Some strategies used by viruses to escape from host immune response. 

Strategy Virus Ref. 

Hiding their viral genome to escape from IFN detection. Poxviruses [117] 

Avoiding binding to cellular sensors of viral infection. KSHV [118] 

Mimicking of host-like short linear motifs. HPV [119] 

Mimicking of host-like structural motifs. SARS-CoV-2 [120] 

Inactivating cellular factors involved in IFN signal transduction. HCMV [121] 

Regulating phosphorylation to disrupt IFN signaling. HIV-1 [122] 

Regulating ubiquitinylation that controls IFN induction Influenza B [123] 

Cleavage of factors essential for IFN responses. Dengue virus [124] 

Degradation of factors essential for IFN responses. Zika virus [125] 

Inhibiting host transcription of anti-viral genes. Adenovirus [126] 

Interfering RNA processing of anti-viral genes. VSV [127] 

Preventing synthesis of anti-viral genes. HCV [128] 

Sequestering IFNs for their receptors. EBOV [129] 

Abbreviations: IFN, interferon; KSHV, Kaposi's sarcoma-associated herpesvirus; HPV, human papillomavirus; 

SARS-CoV-2; HCMV, human cytomegalovirus; HIV-1, human immunodeficiency virus type 1; VSV, 

vesicular stomatitis virus; HCV, hepatitis C virus; EBOV, Ebola virus. 
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Fig 2.4 Example of viral hijacking of host cell machinery. Here, vpu, tat and nef of HIV-

1 (highlighted in red) commandeer TLR signalling pathway by indirectly inhibiting NF-kB 

and ERK during the infection. Figure is reproduced from the KEGG MEDICUS [96] under 

the Creative Commons licence 4.0. Abbreviations: HIV-1, human immunodeficiency virus 

type 1; TLR, toll-like receptor; NF-kB, nuclear factor kappa B subunit 1; ERK, mitogen-

activated protein kinase 1. 

 Reliable data about virus-host molecular interactions are crucial to precise 

understanding of the mechanisms underlying viral infection and associated pathogenesis. 

There are many in vitro methods to detect protein-protein interactions (PPIs) between viruses 

and their hosts, e.g., co-immunoprecipitation (co-IP) [130], and pull-down assays [131]. 

Exemplified by Co-IP, it is conducted based on the concept of immunoprecipitation (IP). It 

aims to enrich a protein complex consisting of one known antigen protein (bait, e.g., cloned 

viral protein) and unknown proteins (prey, e.g., suspected virus-interacting proteins) that are 

bound directly or indirectly to the bait [130]. After pulling out the protein complex with the 

immobilized antibody of ‘bait’ protein, the unknown ‘prey’ proteins can be identified with 

many technologies such as western blot [132]. Pull-down assay is analogous with co-IP in 

methodology but uses the ‘bait’ protein to purify any interacting proteins in the lysate [131]. 

Additionally, crosslinking bait and prey proteins with a covalent bond provides another 

effective solution to identify virus-host interactions especially when such interactions are 

transient [133]. The successful detection of PPIs contributes to the establishment of an 

integrative knowledgebase that can be used by computational approaches for the virus-host 
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research. Virus-PPI data can be retrieved from many databases including UniProt [2], IntAct 

[134], BioGRID [135],VirHostNet [136], VirusMentha [137], and viruses.STRING [138]. 

2.3 Application of supervised machine learning in virus research 

Machine learning (ML) researchers are developing better automatic algorithms to solve 

recognition, classification and prediction problems based on available data [139]. ML 

provides a high-throughput way to improve the understanding of biological activities and 

address specific tasks in virology [140]. Supervised learning is an important branch of 

machine learning. It uses known sample data to train models for a desired classification or 

prediction of new samples. Typically, these ‘known sample data’ contain two main parts: 

labels indicating real values corresponding to samples (for regression problems) or 

indicating classes (for classification problems), and feature vectors quantifying biological 

observations. The rapid development of DNA microarray [141], polymerase chain reaction 

(PCR) [142], RNA sequencing [143] and assay [130,131,133] technologies permits a diverse 

label source and sufficient feature profiles for supervised learning (Table 2.3).  

Table 2.3 Common sources for data curation. 

Source Description Ref. 
GenBank Database compiling publicly available DNA sequences. [144] 
Ensembl Database compiling genomic data for vertebrate species. [145] 
RefSeq Database compiling nucleotide sequences and their protein products. [146] 
UniProt Database compiling protein sequence and function information. [2] 
PDB Database compiling protein tertiary structures. [147] 
GISAID Database compiling virus-related genetic, clinical and epidemiological data.  [148] 
NCBI Virus Database compiling viral sequences. [149] 
KEGG Database integrating systems, genomic, chemical and health information. [96] 
Reactome Database compiling molecular details of cellular processes. [150] 
SIGNOR Database compiling the information of signaling network. [151] 
GTEx Project compiling tissue-specific gene expression and regulation data. [152] 
ELM Database compiling experimentally validated sequence motifs. [153] 
DisProt Database compiling	intrinsically disordered proteins. [154] 
SCOP Database classifying protein and domains. [155] 
Pfam Database classifying protein sequences into families and domains. [156] 
CDD Database compiling conserved domains. [157] 
3DID Database compiling domain-peptide and domain-domain interactions. [158] 
IntAct Database compiling molecular interactions. [134] 
BioGRID Database compiling biological interactions. [135] 
MINT Database compiling molecular interactions. [159] 
STRING Database compiling known and predicted associations between proteins. [160] 
HIPPIE Database compiling human PPIs. [161] 
viruses.STRING Database compiling virus-host PPIs. [138] 
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VirHostNet Database compiling virus-host PPIs. [136] 
VirusMentha Database compiling virus-host PPIs. [137] 

Abbreviations: PDB, RCSB protein data bank; SIGNOR, signalling networking open resource; GTEx, 

genotype-tissue expression; ELM, eukaryotic linear motif; SCOP, structural classification of proteins database; 

CDD, conserved domain database; 3DID, three-dimensional interacting domains; BioGRID, biological general 

repository for interaction datasets; HIPPIE, human integrated protein-protein interaction reference; PPI, 

protein-protein interaction. 

2.3.1 Supervised learning in regression problems 

In regression problems, supervised learning aims to find a fitting curve that best fits the given 

label-feature sets [162]. Since the outcome of a biological event (represented by the label) is 

usually dependent on more than one factor (quantified by the feature), the applications of 

simple regression models are limited in biological research [163]. Alternatively, multiple 

regression models are used, for example, in some recent research to predict the epidemic 

trend of coronavirus disease 2019 (COVID-19) [164,165]. A linear multiple regression can 

be formulated as: 

 𝑦"#(Χ) = 𝛽) + 𝛽+ × 𝑥.+ + 𝛽/ × 𝑥./ + ⋯+ 𝛽1 × 𝑥.1 (2.1) 

where 𝑦"#  is the predicted dependent variable (label) of sample Χ, 𝑛 is the dimension of the 

feature vector;  𝛽. is the slope coefficient for explanatory variable 𝑥. (feature), and 𝛽) is the 

vertical intercept. Its performance can be evaluated by the coefficient of determination, 

which is also known as R-squared (𝑅/) [166]. This criterion measures how strong the linear 

relationship is between the label and feature vectors:  

 𝑅/ = 1 −
∑ (𝑦. − 𝑦"#)/.

∑ (𝑦. − 𝑦"7)/.
 (2.2) 

where 𝑦. , 𝑦"7 , and 𝑦"#  are the real-value, mean value and predicted value of the dependent 

variable (label).   

2.3.2 Supervised learning in classification problems 

In classification problems, supervised learning aims to find the optimal decision boundary 

or surface that partitions the feature space into two or more parts. Unlike its usage in 

regression problems, here, supervised learning produces qualitative mapping indicating the 

class to which a testing example belongs to [167]. In a biological context, such mapping can 

be exemplified as protein sequence to, e.g. its intrinsic disorder status (binary classification) 
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[168], protein structure to function (multi-class classification) [169], etc. There are many 

learning algorithms designed to solve the classification problems in virus research (Table 

2.4) [170,171].  

Table 2.4 Examples of supervised learning algorithms used in virus research. 

Research focus Learning algorithms Ref. 
Predicting HIV-1-human interactions SVM, RF [172-174] 
Identifying SARS-CoV-2 infections SVM, RF, NN [175-179] 
Forecasting dengue epidemics SVM, DT, LR [180] 
Predicting EBOV-human interactions SVM, KNN, DT, NB [140] 
Predicting HCV-human interactions SVM [181] 
Predicting HPV-human interactions SVM [181] 
Predicting human adaptation of influenza A virus SVM, RF, DT, NN [182] 
Mapping the transmission risk of Zika virus RF, NN [183] 
Predicting human-infecting viruses SVM, RF, KNN, NB [3,184] 

Abbreviations: HIV-1, human immunodeficiency virus type 1; SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; EBOV, Ebola virus; HCV, hepatitis C virus; HPV, human papillomavirus; LR, 

logistic regression; NB, naïve Bayes; KNN, k-nearest neighbors; DT, decision tree; RF, random forest; NN, 

neural network; SVM, support vector machine. 

Logistic regression (LR) is the simplest learning algorithm to model the probability 

of an occurrence of a biological event such as phenotypes and diseases [185,186]. Its output 

can be formulated as: 

 𝑃(Χ) =
1

1 + 𝑒:(;<=;>×?>=;@×?@=⋯=;A×?A)
 (2.3) 

where 𝛽. is the slope coefficient for explanatory variable 𝑥. (feature), 𝑛 is the dimension of 

the feature vector, and 𝛽)is the vertical intercept.  

Similar to LR, Naïve Bayes (NB) algorithm is also probability-based. It considers 

the contribution of each feature to the biological event conditionally independent [187,188]. 

Its output can be formulated as: 

 𝑃(𝑐C|𝑥+, 𝑥/, … 𝑥1) =
𝑃G𝑥+H𝑐CI × 𝑃G𝑥/H𝑐CI × …× 𝑃(𝑥1|𝑐C) × 𝑃(𝑐C)

𝑃(𝑥+) × 𝑃(𝑥/) × …× 𝑃(𝑥1)
 (2.4) 

where 𝑐C is the 𝑗KL class of the given data and 𝑛 is the dimension of the feature vector.  

K-nearest neighbors (KNN) algorithm is designed based on the principle that similar 

samples belong to the same class (Fig 2.6) [189]. Discrete features in the input data are 

transformed by the algorithm into a multi-dimensional space, and then assigned different 
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contribution weights to their neighbors based on distance metrics such as Euclidean distance, 

Minkowski distance, and Mahalanobis distance [190,191]. Its output is determined by class 

labels of neighbors surrounding the testing sample: 

 𝑦"#(Χ) =
∑ 𝑦.?M∈OP

𝑘  (2.5) 

where 𝑦"#  and 𝑦. is the real-value and predicted value of the dependent variable (label), and 

𝑁S contains 𝑘 closest neighbors of sample Χ in the feature space. The 𝑘-value is crucial to 

the performance of a KNN classifier (Fig 2.5) but is usually determined empirically, e.g., 

chosen as the number close to the square root of the data size [192,193].   

 
Fig 2.5 Example of KNN classifier in a two-dimensional feature space. The tested sample 

(grey diamond) is classified as Class 1 when using a 𝑘-value of three and is classified as 

Class 2 when using a 𝑘-value of ten. Abbreviations: KNN, k-nearest neighbors. 

Decision tree (DT) [194] is a flowchart-like structure where each chance node 

represents an estimation on the feature and each leaf node determines the class of the data 

point. They can be used in multi-classification problems [195]. Entropy theory [196] 

contributes to the construction of a good DT model. The best split of DT is achieved by 

maximising the entropy gain [196]. DT usually performed well but lacks stability as even a 

slight change in the training data may alter the structure of the whole model. 

Random forest (RF) is a collection of multiple random DTs. RF algorithm is 

initialised by randomly selecting samples from the original data with replacement. It builds 
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several bootstrapped datasets with the same size as the original one. This procedure is known 

as bootstrapping [194]. A DT is then trained for each bootstrapped dataset independently 

with randomly selected features. These two random procedures make the algorithm less 

sensitive to the original training data. The final classification result is determined by the 

results of all DTs through a weighted mechanism such as majority voting [197]. 

Last but not the least, support vector machine (SVM) models are one of the most 

popular machine learning methods in use in many fields. It has been frequently used in virus 

research, e.g., to identify infection and predict virus-host molecular interactions (Table 2.1). 

It uses nonlinear kernel function (e.g., radial basis function and polynomial [198]) to 

transform the data that are non-linearly separable to high-dimensional space for better linear 

classification [199]. The main purpose of SVM modeling is to find a maximum-margin 

hyperplane to separate two classes in the feature space (Fig 2.6). Position and orientation of 

the hyperplane are determined by the surrounding data points (support vectors) (Fig 2.6) 

[200]. In the transformed high-dimension space for a binary classification problem, such 

maximum-margin hyperplane can be formulated as: 

 𝑊U ∙ Χ. − 𝑏 = 0 (2.6) 

where 𝑊 is the normal vector of the hyperplane, Χ. is the real vector representing features, 

and 𝑏 is the bias term. New data points are then classified into the positive or negative class 

based the output produced by the signum function of (𝑊U ∙ Χ. − 𝑏).  

 
Fig 2.6 Key rationale of SVM. Nonlinear kernel function 𝜙 maps the data from a low-

dimensional space (left) to a high-dimensional one (right). Red lines partition the two classes 

(black and white data points) in both spaces. Distance between two dotted lines is the 

Ø
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maximum margin between two classes. Figure is taken from Wikimedia Commons under 

the Creative Commons licence 4.0. Abbreviations: SVM, support vector machine. 

2.3.3 Evaluation for classification problems 

In the classification problem, samples in the dataset are required to differ from each other to 

an appropriate degree as similar or duplicated samples are expected to be well-identified 

when some of them are used to train the machine learning model. Sequence similarity or 

identity is widely used to control it in machine learning-based biological projects [201].  

There are two main evaluation procedures in classification problems. The first one is 

processed in the training stage through N-fold cross-validation [202]. Exemplified by five-

fold cross-validation, first, the training dataset is divided into five subsets. Each subset is 

then tested on the machine learning model generated from the rest four subsets. The overall 

performance of the machine learning method in the training stage is evaluated by combining 

the testing results on each subset. The second evaluation procedure is processed in the testing 

stage. Testing samples are usually required to be independent of the samples used for 

training. They can either be separated from the main dataset before the training stage or be 

collected from other related projects. 

In two-class classification problems, the testing samples are labelled either positive 

or negative by the machine learning model. It results in two successfully predicted outcomes 

including true positives (TP) and true negatives (TN). Incorrectly predicted positive and 

negative samples are called false negatives (FN) and false positives (FP), respectively. These 

four outcomes are used to assess the prediction performance of the aforementioned 

classifiers. Sensitivity, recall, or true positive rate (TPR) is used to assess the performance 

in predicting positive samples, which can be formulated as: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.7) 

Specificity, selectivity, or true negative rate (TPR) is used to assess the performance in 

predicting negative samples, which can be formulated as: 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (2.8) 

Precision is used to measure the quality of the predicted positives and in tension with the 

criterion of sensitivity/recall/TPR. It can be formulated as: 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.9) 

Accuracy, 𝐹+ score, and the Matthews correlation coefficient (MCC) provide comprehensive 

assessments for the prediction performance. They can be formulated as: 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃 (2.10) 

 𝐹+	𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  (2.11) 

 𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

o(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 (2.12) 

In addition, some other criteria such as the receiver operating characteristic (ROC) curve 

and precision-recall curve are also widely used in machine learning-related projects 

[201,203]. 

 



  

CHAPTER THREE 

3. PREDICTION OF HIV-1-HOST MOLECULAR 

INTERACTIONS  

 

3.1 Abstract 

Human immunodeficiency virus type 1 (HIV-1) continues to be a major cause of disease and 

premature death. As with any virus, HIV-1 exploits a host cell to replicate. Improving our 

understanding of these molecular interactions between virus and human host proteins is 

crucial for a mechanistic understanding of virus biology, infection and host antiviral 

activities. This knowledge will permit the identification of host molecules for targeting by 

drugs with potential antiviral properties. Here, we propose a data-driven approach for the 

analysis and prediction of HIV-1-host interacting proteins with a focus on the directionality 

of the interaction (host-dependency versus antiviral factors). Using support vector machine 

learning models and features encompassing genetic, proteomic and network properties, our 

results reveal some significant differences between virus interacting human proteins (VIPs) 

and non-virus interacting human proteins (non-VIPs). As assessed by comparison with the 

HIV-1 infection pathway data in the Reactome database (sensitivity > 90%, threshold = 0.5), 

these models have good generalization properties. We demonstrate that the direction of HIV-

1-host molecular interactions is also predictable due to different characteristics of 

‘forward’/pro-viral versus ‘backward’/pro-host proteins. Additionally, we infer the 

previously unknown direction of interaction between HIV-1 and 1351 human host proteins. 

A web server for performing predictions is available at http://hivpre.cvr.gla.ac.uk/. 

3.2 Introduction 

Human immunodeficiency virus type 1 (HIV-1) is the cause of acquired immunodeficiency 

syndrome (AIDS) and constitutes a major cause of human disease and associated 

comorbidities. Virus infection involves viral molecules exploiting the host cell in order to 

replicate. The engagement of the HIV-1 envelope glycoprotein and cell-surface receptors, 

CD4 and either the membrane-spanning C-C motif chemokine receptor 5 (CCR5) or C-X-C 
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motif chemokine receptor 4 (CXCR4), initiates virus attachment and entry into the cell [204-

206]. Virus molecules including the HIV-1 regulatory factors (tat and rev) and accessory 

proteins (vpr, vif, nef, and vpu) ensure viral persistence, replication, dissemination, and 

transmission by modulating the surface and intracellular environment of the infected cell 

[207-211]. The production of HIV-1 gag/pol polyproteins is essential for assembly, release 

and maturation of new virions [101]. Protein-protein interactions (PPIs) between virus and 

host molecules enable the virus to infect and exploit the host system so as to use specific cell 

sub-systems to replicate and persist despite the host immune response [101,204-206,209-

213]. Conversely, there are many human host proteins that function as antiviral factors and 

are part of the immune response capable of controlling virus numbers by counteracting the 

infection [214-216]. Improving our understanding of these HIV-1-host PPIs can provide 

insights into the molecular mechanisms underlying pathogenesis. Determining the nature of 

virus-host interactions [217] is thus of importance for the discovery of potential host 

inhibitors or targets [218] for antiviral therapeutics exemplified by the CCR5 antagonist 

maraviroc [219]. Intuitively, there are many more possible drug-targets in the host compared 

to HIV’s compact genome, which codes for relatively few proteins. To efficiently direct 

laboratory experiments and make use of rapidly accumulating data in the post-genomic era, 

the development of efficient in silico approaches has become an important area of research 

focus. 

Over the past few years, several computational studies on HIV-1 have characterised 

attributes of HIV-1 interacting human proteins based on various data, e.g., gene ontology 

(GO) annotations [220], interaction network profiles [221], disease pathways [222], and 

post-transcriptional modification profiles [223]. A hierarchical biclustering system was 

constructed by MacPherson et al [217] to designate HIV-1-host PPIs directionality, polarity, 

and control properties. This research demonstrated how VIPs can be grouped by related 

virus-associated perturbations that can be distinguished from non-VIPs. Curation of the 

extensive experimental literature has permitted an HIV-1-host PPI dataset to be compiled 

[220]. This can be used for the purpose of modeling and predictions via machine learning 

algorithms. For example, in [173] a random forest (RF) model was constructed by including 

35 features for the prediction of HIV-1-host interaction pairs. Further work integrated semi-

supervised learning, multi-task learning and neural networks [224]. Subsequently, 

biclustering-based approaches [225,226] were applied along with an association rule mining 

technique. Supervised machine learning methods [172,174] have also been implemented 

using the support vector machine (SVM) and datasets with different positive-to-negative 
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ratios. Based on the assumption that proteins with similar sequence or structural patterns 

tend to share common interaction partners, studies have also predicted possible HIV-1-host 

interaction pairs by integrating protein short linear motifs (SLiMs) or protein structure [227-

229].  

Owing to the contribution made by computational approaches [140,170,230,231], it 

is possible to obtain a list of potential VIPs with high confidence. However, there are still 

many improvements that can be made. First, the majority of the published methods [172-

174,224-229] are highly dependent on the type of interacting HIV-1 molecules. The defined 

non-VIPs could be false negatives relative to different HIV-1 proteins [232], for example, 

non-env-interacting protein cyclin T1 (CCNT1) interacts with HIV-1 during infection as it 

is targeted by gag and tat proteins [207,233,234]. Second, the nature of the molecular 

interaction is important for understanding pro-viral interactions versus host antiviral 

activities. Crudely this can be broken down to the ‘directionality’ of the interaction [217]: 

‘forward’/pro-viral versus ‘backward’/pro-host proteins; a prediction task addressed for the 

first time in this study. Additionally, there also exists a group of human host proteins having 

both pro-viral and pro-host properties, i.e., are ‘bidirectional’ in nature, for example, CD4 

[235,236]. Third, although the expansion of feature coverage provides a clearer picture for 

the classification problem, it also induces a series of problems such as feature redundancy 

[237] and overfitting [238-240].  

To address these points, we proposed a computational approach for the analysis and 

prediction of HIV-1-host molecular interactions (presented diagrammatically in Fig 3.1). 

Contrary to previous prediction-based studies [172-174,224-229], we introduced a broader 

definition for HIV-1 interacting proteins. Human proteins having interactions with one or 

multiple HIV-1 proteins were all referred to as VIPs. Non-VIPs represented those human 

proteins without any record of being directly involved in an HIV-1 interaction. We designed 

three procedures to maximise the set of non-VIPs and to reduce their chance of being false 

negatives. Three tags: ‘forward’ (pro-viral), ‘backward’ (pro-host) and ‘bidirectional’ (pro-

viral and pro-host) were assigned to VIPs to capture the direction of the virus-host interaction 

during the HIV-1 life cycle [217,241]. In total, we encoded 671 features based on the data 

retrieved from multiple databases [161,241-246] to characterise the human proteins at 

genetic, transcriptomic, proteomic and network levels. We also measured the contribution 

of individual features and different feature combinations. We constructed different feature 

sets via two feature selection schemes to generate prediction models on the training datasets 
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with SVM [200]. Performance on the testing datasets demonstrated good prediction quality 

and generalization capability of our VIP prediction models. A web server for HIV-1-host 

molecule prediction is available at http://hivpre.cvr.gla.ac.uk/.  

 
Fig 3.1 Diagrammatic representation of the project pipeline separated into three 

procedural layers. The components are from Wikimedia Commons under the Creative 

Commons licence 4.0. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, 

virus interacting human proteins; non-VIPs, non-virus interacting human proteins; HGNC, 

HUGO Gene Nomenclature Committee; HHID, the HIV-1 Human Interaction database; 

HIPPIE, the Human Integrated Protein-Protein Interaction rEference database; GOC, Gene 

Ontology Consortium. 

3.3 Methods 

3.3.1 Dataset curation 

We retrieved 16215 HIV-1-host PPI records from the HIV-1 Human Interaction Database 

(HHID) (https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions/) 

(ver. September 2017) [241], involving 7120 HIV-1-host interaction pairs and 3854 distinct 

VIPs (S3.1 Data). Protein sequences for the VIPs were collected from the NCBI’s RefSeq 

database (ver. GRCh38) [243]. To avoid over-representation of similar protein sequences in 

the dataset, we grouped them into 2881 clusters using the CD-HIT [247,248] with a threshold 

of 40% sequence similarity [247,248] and picked the longest sequence in each cluster as 

representative. This was to prevent producing feature vectors with high similarity, biasing 
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the prediction performance. These 2881 representative VIPs formed our positives in dataset 

S1 (Table 3.1). 

Following the methods of MacPherson et al. [217], we assigned the VIPs direction 

tags: ‘forward’, ‘backward’ or both/‘bidirectional’ (Fig 3.2). These directions are deduced 

from the outcome of HIV-1-host molecular interactions. Keywords describing the virus-to-

host interaction such as ‘regulates’, ‘modulates’ and ‘stimulates’ hint a ‘forward’ direction 

while some like ‘regulated by’, ‘modulated by’ and ‘stimulated by’ indicate a ‘backward’ 

direction. The VIPs obtained both ‘forward’ and ‘backward’ tags are reassigned a 

‘bidirectional’ tag. However, some HIV-1-host interactions were generally described 

without obvious preference indicating their directionality, for example, using keywords of 

‘interact with’ and ‘binds’. The VIPs with such interactions are classified as ‘undefined’ if 

they do not have a ‘bidirectional’ tag. Detailed designation about the interaction keywords 

are available online at https://doi.org/10.1371/journal.pcbi.1000863.s004.    

‘Forward’ VIPs (e.g., C-X-C motif chemokine ligand 10, CXCL10) are pro-viral 

proteins. These host molecules are targeted by HIV-1, so-called host-dependency factors 

[249], and have no recorded antiviral response to the infection during the virus life cycle 

[250]. ‘Backward’ VIPs (e.g., apolipoprotein L1, APOL1) are pro-host proteins, they are 

associated with control or inhibition of the viral infection [251]. ‘Bidirectional’ VIPs (e.g., 

CXCR4) are targeted by HIV-1 (forward direction) and can produce pro-host responses 

(backward direction) by influencing the same or different HIV-1 proteins during the viral 

infection. Some of these are potential therapeutic targets to inhibit virus replication by 

making host molecules unavailable to the virus [15,252]. Since the “direction” of some HIV-

1-host molecular interactions have not been clearly defined, these VIPs were not included in 

our analysis. Collectively, we obtained 188 (~6.5%) ‘backward’, 1007 (~35.0%) ‘forward’, 

335 ‘bidirectional’ (~11.6%), and 1351 (~46.9%) ‘undefined’ VIPs from dataset S1 to 

construct another three datasets, i.e., S2, S3 and S4 for direction-related predictions (Table 

3.1). 
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Fig 3.2 Representation of the characterisation of the types of virus interacting proteins 

(VIPs). VIPs were tagged as ‘forward’, ‘backward’ or ‘bidirectional’ based on the key words 

describing their interaction(s) with HIV-1 proteins [241] and directionality designated in 

MacPherson et al. (https://doi.org/10.1371/journal.pcbi.1000863.s004) [217]. The direction 

was classed as ‘undefined’ if this information is not available. The direction tag for each VIP 

is provided in S1 Data. Figure created using the BioRender (https://biorender.com/) under 

the Creative Commons licence 4.0. Abbreviations: HIV-1, human immunodeficiency virus 

type 1; VIP, HIV-1 interacting human protein; PPI, protein-protein interactions. 

We performed three procedures to improve the quality of the non-VIP dataset and 

reduce potential false negatives. First, we chose human proteins produced by the canonical 

transcript since these proteins expressed the main function of the gene [253]. Second, human 

proteins sharing more than 40% sequence similarity with any of the reported 3854 VIPs in 

HHID were excluded to prevent sequences similar to the known VIPs overly influencing the 

modelling and predictions. Third, we controlled for the sequence similarity of non-VIPs at 

a 40% level as we did for VIPs. This would prevent predictions being influenced by similar 

combinations of feature vectors. As a result, we obtained 7261 nonredundant non-VIPs to 

form the negatives in dataset S1 (Table 3.1).  

As we applied different criteria compared to others to classify our VIPs/non-VIP 

datasets, it was hard to make comparisons between our predictions and previous ones [172-

174,224-229].  We introduced two testing datasets consisting of VIPs with high experimental 

confidence from Reactome [150] and Gordon et al. [254] in order to assess the generalization 

capability of our machine learning models. A breakdown of the VIPs and non-VIPs used in 

this study is listed in Table 3.1 and more detailed information is provided in S3.2 Data. 
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Table 3.1 Breakdown of VIP and non-VIP datasets used. 

Dataseta Positives Negatives 
Main dataset S1 2881 VIPs 7261 non-VIPs 
 Training S1’ 2304 VIPs 2304 non-VIPs 
 Independent testing S1’’ 577 VIPs 4957 non-VIPs 
Main dataset S2 188 ‘Backward’ VIPs 1007 ‘Forward’ VIPs 
 Training S2’ 150 ‘Backward’ VIPs 150 ‘Forward’ VIPs 
 Independent testing S2’’ 38 ‘Backward’ VIPs 857 ‘Forward’ VIPs 
Reference dataset S3 335 ‘Bidirectional’ VIPs 
Blind testing dataset S4 1351 ‘Undefined’ VIPs 
Testing dataset S5 234 VIPs 
Testing dataset S6 356 VIPs 

aDataset S1 and S2 were constructed for the prediction of VIPs and their directionality in HIV-1-host PPIs. 

80% of positives and an equal number of negatives were randomly selected for training while the remaining 

20% of proteins were used for testing. Dataset S3 was constructed for prediction of ‘bidirectional’ VIPs while 

S4 was constructed for the prediction of putative ‘forward’, ‘backward’ or ‘bidirectional’ VIPs. Testing 

datasets S5 and S6 were retrieved from two resources with high experimental confidence: the HIV-1 infection 

pathway in the Reactome [150], https://reactome.org/PathwayBrowser/#/R-HSA-162906, and viral host-

dependency epistasis map linked to HIV function [254]. The lists of proteins sampled for training and 

independent testing are provided in S3.2 Data. Abbreviations: HIV-1, human immunodeficiency virus type 1; 

VIPs, HIV-1 interacting human proteins; non-VIPs, HIV-1 non-interacting human proteins. 

3.3.2 Feature generation 

In this study, we encoded 671 different features mainly from six online databases: Ensembl 

98 [244], RefSeq (ver. GRCh38) [243], TISSUES 2.0 [245], Human Integrated Protein-

Protein Interaction rEference database (HIPPIE) 2.2 [161], HHID (ver. September 2017) 

[241], and Gene Ontology Consortium (GOC) (ver. November 2019) [246]. Among them, 

537 features were used to distinguish VIPs from non-VIPs while 584 features were used to 

investigate the directionality of HIV-1-host molecular interactions (Table 3.2). Based on the 

data sources, our encoded features could be divided into four groups: (1) genome-based, (2) 

proteome-based, (3) annotation-based and (4) interaction profile-based features. Source code 

for generating features are available at: https://github.com/HChai01/HIVPRE. 

Table 3.2 Breakdown of encoded features. 

Task Catalogue No. of features Feature source 

Predicting VIP 

Genome-based 107 Genetic sequences and alignments 

Proteome-based 128 Protein sequences and predictors 

Annotation-based 292 GO mapping and tissue expression 

Interaction profile-based 10 Human PPIs 

Predicting the 

directionality 

Genome-based 107 Genetic sequences and alignments 

Proteome-based 164 Protein sequences and predictors 



PREDICTION OF HIV-1-HOST MOLECULAR INTERACTIONS 
	

36 

Annotation-based 292 GO mapping and tissue expression 

Interaction profile-based 21 Human PPIs and HIV-1-host PPIs 

Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, HIV-1 interacting human proteins; GO, 

gene ontology; PPI, protein-protein interaction. 

3.3.2.1 Genome-based sequence features 

We compiled 107 genome-based sequence features for each human protein which included 

alternative splicing, nucleotide composition, codon usage and a measure of evolutionary 

conservation. Information in the alternative splicing data was encoded into four features to 

represent the evolution of phenotypic complexity in human genes [255,256]: the number of 

transcripts, protein-coding transcripts or open reading frames (ORFs), exons and unit exon 

in transcripts (UET). Nucleotide composition represented the distribution of four basic 

nucleobases and their phosphodiester bonds-combinations, e.g., CpG, in the coding region 

of genetic sequences [257]. The usage of the existing 64 codons was calculated in each 

nucleotide sequence to reflect the balance between mutational biases and natural selection 

for translational optimization in different classes [258]. For evolutionary conservation, we 

collected the data from BioMart (ver. September 2019) [244] and calculated the number of 

paralogues, synonymous substitutions (ds), non-synonymous substitutions (dN) and the ratio 

of dN to dS within human paralogues and orthologues in four homininae genomes: 

chimpanzee, gorilla, orangutan and gibbon. These features were used to assess the selection 

on protein sequences and estimate mutational processes affecting the molecules [259]. 

3.3.2.2 Proteome-based sequence features 

We encoded 251 features from proteome-based sequence data for the prediction of VIPs and 

their directionality. Discrete sequence information was calculated as amino acid 

compositions, while linear information was analysed from the perspective of SLiMs and 

intrinsic disorder. We generated 37 types of amino acid composition based on the differences 

in individual amino acids or their physiochemical attributes [260]. Ambiguous or other types 

of amino acids, e.g., selenocysteine, pyrrolysine etc. were masked as ‘X’ and ignored in this 

study. We used the MERCI program [261] to detect conserved sequence patterns as a result 

of strong purifying selection [262], obtaining 206 SLiMs overrepresented in the group of 

VIPs and ‘backward’ VIPs (Pearson’s Chi-squared test, P<0.05). We chose to retain as many 

‘useful’ features as possible at this stage thus further correction procedure such as 

Benjamini-Hochberg correction was not applied to avoid type I error in multiple hypothesis 

testing [263,264]. The occurrence of these SLiMs was then split and encoded into 206 
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categorical features. Four features measuring the overall representation of VIP- or ‘backward’ 

VIP-enriched SLiMs were added as hedges against random error caused by data imbalance 

[265]. The disordered regions in human protein sequences were identified using the Espritz 

1.3 [266] and IUPred 2A [267] as such regions have been linked to VIPs [268]. 

3.3.2.3 Annotation-based features  

We encoded 292 annotation-based features with a binary system from the collected tissue 

and gene expression data. Among these, 66 features were generated by mapping the GO 

terms to the child term of three main GO root terms: molecular function (GO:0003674), 

cellular component (GO:0005575) and biological process (GO:0008150) [246]. They 

characterised the domain in which human proteins might be involved such as binding (child 

term of molecular function, GO:0005488), intracellular (child term of cellular component, 

GO:0005622) and metabolic process (child term of biological process, GO:0008152) when 

interacting or not interacting with HIV-1 molecules [220]. The remaining 226 features were 

encoded for 226 tissues based on the experimentally verified data in TISSUES [245]. They 

were used to reflect the association between tissue tropism and HIV-1 infections at the 

molecular level [269]. 

3.3.2.4 Interaction profile-based features 

Interaction profile-based features were generated from HIV-1-host PPIs [241] and the 

human interactome [161]. We used 11 features to represent the degree to which a confirmed 

VIP was central to the life cycle of HIV-1 [204-206]. Specifically, one feature was encoded 

to count the number of HIV-1 gene-products interacting with human host molecules and the 

remaining ten were binary-encoded to capture the interaction relationships between the host 

molecule and the corresponding HIV-1 gene-product, e.g. gag, tat or the antisense protein 

gene asp [270]. We retrieved 332,701 experimentally verified human-human PPIs with at 

least medium confidence (HIPPIE score > 0.63) involving 17,607 human proteins from 

HIPPIE [161] to pinpoint proteins with potential pathological or therapeutic relevance 

[271,272]. The NetworkAnalyzer [273] was used to calculate ten different network features: 

the average shortest distance, degree, neighbourhood connectivity, betweenness, stress, 

closeness, eccentricity, radiality, topological coefficient, and clustering coefficient. Human 

proteins not involved in the human-human PPI network were assigned zero values on all of 

the aforementioned network features. 
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3.3.3 Supervised machine learning and feature selection 

We applied a supervised machine learning method for the prediction tasks. We chose  the 

SVM with the radial basis function [200] as the core classifier after comparing it with k-

nearest neighbors (KNN), decision tree (DT) and random forest (RF) [170]. The SVM 

algorithm aims to find an appropriate hyperplane in the feature space for classifying the 

majority of positive and negative samples. It can tolerate the existence of some noisy or 

incorrect data but may be biased by different feature scales or imbalanced positive-to-

negative ratios as it was designed to calculate the margin of the data [274]. Additionally, 

although the SVM algorithm can map the current feature space to a higher dimensional one 

for better classification [200], it is a sub-optimal strategy for including too many features for 

modelling even if they are all instructive. This can result in overfitting of the machine 

learning model [239] leading to a loss of robustness [275]. To address these points, we first 

used an undersampling strategy [265] to randomly construct balanced training datasets (S3.2 

Data). Secondly, discrete features were normalised according to their majority distribution 

in order to share an equal range with categorical/binary features: 

 𝑁𝑜𝑟𝑚(𝑣) =

⎩
⎨

⎧
				1, 𝑣 > 𝑈𝐵(𝑣)
𝑣 − 𝐿𝐵(𝑣)

𝑈𝐵(𝑣) − 𝐿𝐵(𝑣)
				0, 𝑣 < 𝐿𝐵(𝑣)

, 𝐿𝐵(𝑣) < 𝑣 < 𝑈𝐵(𝑣) (3.1) 

where 𝐿𝐵(𝑣)  and 𝑈𝐵(𝑣)  are the lower and upper bound representing the 5th and 95th 

percentile within the target feature values. Next, we used a SVM-based forward selection 

scheme with the evaluation of area under the receiver operating characteristic curve (AUC) 

to optimise the feature set for the general case (Fig 3.3).  In this scheme, we first introduced 

the Fisher-Markov Selector [276] to measure the importance of individual features. The 

iteration of this scheme then started with the most important feature. The rest features were 

added one by one to the feature set in the following iterations based on their importance until 

the prediction model achieved its best AUC value. We assumed that the usage of better 

performing features are less likely to influence or damage the complementarity of features 

in the set, which is crucial to training and modelling [237]. This feature selection scheme 

produced two outcomes: the optimum feature set and the lowest number of features.  
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Fig 3.3 The pseudo-code of the feature selection Scheme 1. We chose the SVM [200] as 

the base machine learning classifier and the Fisher-Markov Selector [276] to calculate the 

importance of an individual feature. AUC was chosen as the prime criterion to evaluate the 

prediction performance on datasets with multiple labels. Abbreviations: SVM, support 

vector machine; AUC, area under the receiver operating characteristic curve. 

The complementarity of different features implies information synergies, which can 

be measured by calculating the change of system entropy after the introduction of additional 

features [196,237,277]. However, it is hard to discriminate if the combination of several 

random features can achieve better complementarity compared to using an equal number of 

well-performing features. The selection strategy requires reconsideration if the impact of 

feature synergy has overwhelmed the usage of ‘important’ features on the prediction 

performance. Here, we propose a second feature selection scheme by referring forward 

feature selection, backward feature elimination and exhaustive feature selection strategies 

[278]. Our second feature selection scheme took into account both feature importance and 

complementarity (Fig 3.4). As opposed to the first feature selection scheme (Fig 3.3), this 

scheme started with a set of features with good complementarity. It then contained two main 

branches: the first expands the coverage of features by introducing well-performing features, 

while the second reduces the dimension of the feature sets by removing badly-performing 

features. 

BEGIN 
Initialisation: Balanced dataset !" = {(&', )'"), . . , (&', ),"), (&-, ),.'" ), … , (&-, )-," )}, original feature set 
12 = (3', 3-, … , 32), machine learning classifier 4, feature evaluation algorithm 5, prediction evaluation 
criterion 6, loop pointer 7 = 2. 

(1) Evaluate the importance of individual feature 9 = 5(!:). 
(2) Create descending rank list based on the feature importance in 9, & = (3';, 3-;, … , 32; ). 
(3) Use the most important feature to create feature set 1' = 3';. 
(4) Update feature vector )<', dataset !' and evaluate the prediction, =' = 4(!'), >' = 6(='). 
While ? ≤ A: 
    (5) Update feature set to include one well-performed feature based on &, 1B = (3';, … , 3B;); 
    (6) Update feature vector )<B , dataset !B and evaluate the prediction, =B = 4(!B), >B = 6(=B); 

        (7) Calculate the improvement after including the new feature, CB = (>B − >BE')/>BE'; 
    (8) Update loop pointer 7 = 7 + 1. 
End 
Output: 1B achieving the best >B and 1B achieving the best CB. 

END 
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Fig 3.4 The pseudo-code of the feature selection Scheme 2. We used an SVM [200] as the 

base machine learning classifier and the Fisher-Markov Selector [276] to calculate the 

importance of an individual feature. AUC was chosen as the prime criterion to evaluate the 

prediction performance on datasets with multiple labels. Abbreviations: SVM, support 

vector machine; AUC, area under the receiver operating characteristic curve. 

3.3.4 Performance evaluation 

In order to assess the performance of different feature subsets, we adopted five-fold cross-

validation on training datasets (dataset S1’ and S2’), in which human proteins were randomly 

divided into five nearly equal parts and further generated five different testing (one portion) 

and training (the remaining four portions) sets. The overall quality of prediction models 

constructed from the feature subset was then evaluated based on the produced prediction 

scores via six criteria including sensitivity, specificity, accuracy, precision, Matthews 

Correlation Coefficient (MCC) [279] and AUC on the combination of five separate testing 

results. The evaluation of other independent testing datasets was also processed with the 

aforementioned six criteria except in the case of the reference dataset S3, testing dataset S5 

and S6, which only used sensitivity controlled by the threshold. 

BEGIN 
Initialisation: Feature sets with good complementarity !"# = (&', &), … , &+) , the rest feature list !" =
(&+-', &+-), … , &.), balanced dataset /" = {(1', 2'"), . . , (1', 24"), (1), 24-'" ), … , (1), 2)4" )}, machine learning 
classifier 6, feature evaluation algorithm 7, prediction evaluation criterion 8, loop pointer 9 = : = 1. 

(1) Evaluate the importance of individual feature < = 7(/=). 
(2) Create descending rank list for !" based on the feature importance in <, 1' = (&'#, &)#, … , &.>+# ). 
(3) Create ascending rank list for !"# based on the feature importance in <, 1) = (&'##, &)##, … , &+##). 
While ? ≤ A− C: 
    (4) Update feature set to include one well-performed features based on 1', !D = (&', … , &+, &'#, … , &D

#); 
    (5) Update feature vector 2ED , dataset /D and evaluate the prediction, FD = 6(/D), GD = 8(FD); 
    (6) Update loop pointer 9 = 9 + 1. 
End 
(7) Determine !D achieving the best GD. 
While I < C: 
    (8) Update feature set to remove one badly-performed feature based on 1), !K# = !D − (&'##, … , &K

##); 
    (9) Update feature vector 2E

K, dataset /K and evaluate the prediction, FK = 6L/KM, GK = 8LFKM; 
    (10) Update loop pointer : = : + 1. 
End 
Output: !K# achieving the best GK.  

END 
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3.4 Results 

3.4.1 HIV-1-host interaction pairs  

Compared with available benchmark datasets [173,174,224,225,228], our main dataset S1 

included more HIV-1-host PPI data than previous studies (Fig 3.5A). Initial statistical results 

on HIV-1-host interaction pairs indicated that the majority of HIV-1-host molecular 

interactions emerged during env-mediated membrane fusion [204-206] and tat-mediated 

transcellular transport [207,208,280]. In our main dataset S1, there were 996 (~35%) VIPs 

with interactions with multiple HIV-1 proteins. Some VIPs such as nuclear factor kappa B 

subunit 1 (NFKB1), interferon gamma (IFNG) and interferon beta 1 (IFNB1) are reported 

to interact with products produced by almost all HIV-1 genes [110,281-286]. We illustrate 

the preference of co-occurring HIV-1-host PPIs interfering or being induced by the same 

VIP in Fig 3.5B. This figure can be divided into ten clades according to the target HIV-1 

gene product. It reveals a picture of host targets shared among HIV-1 gene products of tat, 

env, gag, nef, gag-pol and vpr, and the interaction preference underlying HIV-1 invasion, 

replication and assembly [101,204,210]. Despite the rank ordered by the number of HIV-1-

host interacting pairs (Fig 3.5A), HIV-1 tat-interacting proteins gave higher interaction 

priority to vpr than gag-pol. On the other hand, tat was less involved in the interactions with 

HIV-1 gag-, nef- and gag-pol-interacting proteins than expected. HIV-1 env-interacting 

proteins showed a preference to interact with nef, which is also involved in the early stage 

of HIV-1 infection [210].  

Statistical results indicated an overlap of human host proteins targeted by env, tat 

and nef. ‘Forward’ VIPs targeted by HIV-1 gag-pol, vif, and rev were less likely to interact 

with other HIV-1 proteins. An estimated 61% of ‘forward’ VIPs targeted by vpu were also 

influenced by nef. After checking data with more detailed directionality information (S3.1 

Data), we found that ‘forward’ or ‘backward’ VIPs were generally associated with fewer 

interactions, while that of ‘bidirectional’ VIPs tended to be associated with higher numbers 

of interactions (Fig 3.6).  

Compared with other ‘forward’ VIPs, nef- or vpu-interacting ‘forward’ VIPs tended 

to be targeted by more HIV-1 proteins (Mann–Whitney U test: P=3.0E-35). Meanwhile, vpu-

interacting ‘backward’ VIPs were more frequently targeted by multiple HIV-1 proteins than 

other ‘backward’ VIPs (P=4.2E-05). Collectively, it is common to observe human host 

proteins interacting with multiple HIV-1 proteins [241]. 
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Fig 3.5 Comparison of HIV-1-host interaction datasets. (A) Comparison of data used in 

previous studies [173,174,224,225,228]. (B) illustration of the preference of co-occurring 

HIV-1-host interactions for VIPs (V in red) and ‘forward’ VIPs (F in blue). Abbreviations: 

HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 interacting human protein. 

 
Fig 3.6 The preference of co-occurring HIV-1-host interactions for different VIPs. 

Boxes in the plot represented the major distribution of values (from the first to the third 

quartile); outliers were added for values higher than two-fold of the third quartile; cross 

symbol marked the position of the average value including the outliers; upper and lower 
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whiskers showed the maximum and minimum values excluding the outliers. Abbreviations: 

HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 interacting human protein.  

3.4.2 Feature expression in the collected data 

In this study, we obtained 2881 nonredundant VIPs from 16215 HIV-1-host PPI records and 

7261 high-quality non-VIPs from the human proteome. Based on the outcome of HIV-1-

host PPIs [287], only 1530 (~53%) of VIPs showed clear direction: ‘forward’, ‘backward’, 

or ‘bidirectional’ (Fig 3.2). In total 671 features were collected from the genetic sequence, 

proteomic sequence, annotation, and interaction profile data. To investigate the predictive 

signals in these features, we analysed their properties in the different VIP and non-VIP 

datasets. 

3.4.2.1 Characterisation of features linked to ORFs, duplication rate and evolution 

conservation 

The alternative splicing allows individual genes to generate multiple messenger RNA 

(mRNA). It has been widely discovered in an estimated 95% of multi-exon human genes 

[288]. This posttranscriptional process contributes to transcript variation and can produce 

protein isoforms with related or distinct functions, thus it has been regarded as an important 

driver of the evolution of phenotypic complexity in human genes [255,256]. We found that 

approximately 88% of our collected human genes had more than one transcript but only 76% 

of them formed multiple ORFs after undergoing alternative splicing. Non-VIP genes were 

significantly enriched with small numbers of transcripts (<6, Pearson's Chi-squared test: 

P=9.1E-95) or protein-coding transcripts (<4, Pearson's Chi-squared test: P=1.2E-98) while 

VIP genes tended to have a large number of transcripts or protein-coding transcripts (Fig 

3.7). We found approximately 30% of non-VIP genes were non-polymorphic, but for VIPs, 

the ratio reduced to 12%. This provided a strong signal of inhibition for HIV-1 infection in 

the proteins of interest (Pearson’s Chi-squared test: P=2.8E-71). On the other hand, human 

proteins coding from genes with more ORFs were more likely to interact with HIV-1 (>=4, 

Mann–Whitney U test: P=1.1E-27) and the interacting direction tended to be ‘backward’ or 

‘bidirectional’ rather than ‘forward’ if the number of ORFs reached a very high level (Mann–

Whitney U test: P=0.056, 0.007, respectively). 
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Fig 3.7 Representation of features about alternative splicing. Insets in panels A and B 

represented the major distribution of expression values (from the first to the third quartile); 

outliers were defined by expression values higher than two-fold of the third quartile; cross 

symbol marked the position of average expression value including outliers; upper and lower 

whiskers showed the maximum and minimum expression values excluding outliers. 

Abbreviations: HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 interacting 

human protein; non-VIP, HIV-1 non-interacting human protein. 

 
Fig 3.8 A breakdown of paralogues for different human proteins. Abbreviations: HIV-

1, human immunodeficiency virus type 1; VIP, HIV-1 interacting human protein; non-VIP, 

HIV-1 non-interacting human protein. 

The duplication events of genes accumulate loss-of-function mutations 

(degeneration) within paralogues and hence promote the subfunctionalization of the 

ancestral genes [289,290]. The paralogue data within human species indicated that proteins 

encoded by singleton genes were less likely to interact with HIV-1 (Pearson's Chi-squared 

test: P=2.1E-16) (Fig 3.8). Furthermore, human proteins produced by genes with more 

duplications had a higher chance to be targeted by HIV-1 (Mann–Whitney U test: P=9.7E-
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4). These results suggested an association between less-degenerative mutations and HIV-1 

infections. The orthologue data (Fig 3.9) indicated that HIV-1 molecules were more likely 

to interact with human proteins encoded from conserved genes (measured by dN/dS ratios, 

Mann–Whitney U test: P=9.5E-7, 2.8E-10, 4.9E=6, 2.9E-6, respectively). Comparing with 

‘forward’ VIP genes, ‘backward’ VIPs were generally more conserved, which showed 

significant differences in the dN/dS ratio within human-gorilla, human-orangutan or human-

gibbon orthologues (Mann–Whitney U test: P=0.038, 0.004, 0.029, respectively).  

 
Fig 3.9 Representation of dN/dS ratio among human and four homininae genomes. 

Insets here represented the major distribution of expression values (from the first to the third 

quartile); outliers were defined by expression values higher than two-fold of the third 

quartile; cross symbol marked the position of average expression value including outliers; 

upper and lower whiskers showed the maximum and minimum expression values excluding 

outliers. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 

interacting human protein; non-VIP, HIV-1 non-interacting human protein; dN, non-

synonymous substitutions; dS, synonymous substitutions. 

In a nutshell, some evolution-related properties of human proteins influenced their 

interrelation with HIV-1. Large number of ORFs, high duplication rates and evolution 

conservation were found to have a positive influence on the human proteins, promoting HIV-

1-host PPIs. Extremes of these features, huge number of ORFs and singleton cases, for 

instance, provide clues for the inhibition or antiviral capabilities of genes in the presence of 

HIV-1. 

3.4.2.2 Characterisation of features in different sequence patterns 

From the collected data, we found obvious enrichment of adenine in VIP genes (Mann–

Whitney U test: P=1.9E-20) (Fig 3.10). The majority of adenine-related nucleobase groups 

are enriched in coding sequences (CDS) of VIP genes (Fig 3.10, Fig 3.11A). Alternatively, 

cytosine tended to be depleted in VIP genes (Mann–Whitney U test: P=1.3E-10) (Fig 3.10) 
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thus three cytosine-starting nucleobases groups, i.e., CpT, CpC and CpG, all showed 

significant depletion in the CDS of VIP genes (Fig 3.10, Fig 3.11A). Although thymine was 

slightly depleted in the CDS of human genes (Fig 3.10), it still made an important 

contribution in classifying VIPs and non-VIPs from the perspective of codon usage (Fig 

3.11C). Among the 28 VIP-preferred codons, 20 codons contained at least one thymine.  

 
Fig 3.10 Enrichment and depletion of nucleotides linked by phosphodiester bonds in 

the group of human proteins or VIPs. Abbreviations: HIV-1, human immunodeficiency 

virus type 1; VIPs, HIV-1 interacting human proteins; non-VIPs, HIV-1 non-interacting 

human proteins. 

Enrichment of adenine, depletion of cytosine, and differential codon usage 

preferences of VIP genes all influenced the distribution of amino acids in the protein 

sequence [291], which also contributed to the signal distinguishing VIPs from non-VIPs. As 

shown in Fig 3.11B, we found acidic or negatively charged amino acid: aspartic acid (D) 

and glutamic acid (E), amide amino acid: asparagine (N) and glutamine (Q) were all 

significantly enriched in VIPs. Hydrophilicity, polarity, or even the size of amino acids are 

presumably good features to identify VIPs (S3.3 Data). Differences between ‘backward’ 

and ‘forward’ VIPs were generally not obvious from the perspective of nucleotide 

compositions, codon usages, or amino acid compositions. However, differences between 

‘bidirectional’ and ‘forward’ VIPs were notable in 56% of nucleotide composition features, 

41% of codon usage features, and 51% of amino acid composition features. 
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Fig 3.11 The difference of (A) nucleobase groups linked with phosphodiester bonds, (B) 

amino acid compositions and (C) codon usages in different classes. Detailed data about 

the heat maps were provided in S3.3 Data. Abbreviations: HIV-1, human immunodeficiency 

virus type 1; VIP, HIV-1 interacting human protein; non-VIPs, HIV-1 non-interacting 

human protein. 

We obtained some enriched sequence patterns by using the the MERCI program 

[261]. We found that some sequence patterns were highly similar to each other, which might 

result from small deletions, insertions or mutations [261]. Therefore, we integrated these 

sequence patterns and obtained 206 SLiMs enriched in VIPs and ‘backward’ VIPs. Some 

top-ranked SLiMs are listed in Table 3.3. The dash symbol in a SLiM represented a position 

occupied by no or one random amino acid. The results showed that there were many specific 

SLiMs presenting in VIPs, but they were scarce in non-VIPs. Some elements in the SLiM 

were conserved and less influenced by random amino acid changes, which might be related 

to a contributing signal from their evolutionary history [292]. Alanine (A) was found at high 

frequency (74%) in VIP-SLiMs, followed by lysine (K) and glutamic acid (E) observed in 

60% and 55% of VIP-enriched SLiMs. Both K and E were significantly enriched in VIPs 

(Fig 3.11B), but aspartic acid (D) and isoleucine (I) seemed to be irrelevant to the conserved 

region even if they were highly enriched in VIP sequences (S3.3 Data). Differences in 

SLiMs were also observed between ‘backward’ and ‘forward’ VIPs. Amino acid A and 

leucine (L) seemed to be important to ‘backward’ VIPs as they were found in 51% and 55% 

of the enriched SLiMs (S3.3 Data). Additionally, we found notable differences in the overall 

abundance of SLiMs between the compared classes. We found 54 VIP-enriched SLiMs in 

the sequence of a VIP, namely plectin (PLEC) but the highest co-occurrence frequency of 

these SLiMs only reached 42 within the group of non-VIPs (found in the spen family 

transcriptional repressor, SPEN). Around 90% of VIPs contained at least one VIP-enriched 
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SLiM versus 82% of non-VIPs. The difference of cooccurrence status was also observed in 

‘backward’ VIP-enriched SLiMs. The cumulative frequency of ‘backward’ VIP-enriched 

SLiMs was 97.9% in ‘backward’ VIPs and reduced to 92.5% in ‘forward’ VIPs (Fig 3.12).  

Table 3.3 Top 20 enriched SLiMs in VIPs and ‘backward’ VIPs. 

 
aexpression differences of SLiMs were assessed through Pearson's Chi-squared tests on different classes; 

bexpression of amino acids in the sequence segments containing a target SLiM; for VIP-enriched SLiMs, the 

positive and negative segment sets were extracted from VIPs and non-VIPs, respectively; for ‘backward’-

enriched SLiMs, the positive and negative segment sets were extracted from ‘backward’ and ‘forward’ VIPs, 

respectively. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 interacting human 

protein; non-VIP, HIV-1 non-interacting human protein; SLiM, protein short linear motif. 

SLiM VIP/  
non-VIP  P-valuea Expressionb SLiM ‘Backward’/  

‘Forward’ VIP  P-value Expression 

AK-K-E 200/257 9.4E-14  P-E-R-V 25/37 4.7E-08  
AK-A-E 201/266 7.0E-13  L-D-T-R 27/50 1.5E-06  
E-AK-K 220/310 6.4E-12  L-R-I-G 20/33 6.8E-06  
EKE-K 221/315 1.3E-11  P-D-SS 25/50 1.5E-05  
EK-A-K 238/351 2.8E-11  D-K-Q-E 19/32 1.6E-05  
AA-K-K 184/249 3.1E-11  S-L-IS 22/41 1.7E-05  
D-Q-L-K 217/312 3.9E-11  G-SAA 21/39 2.6E-05  
D-L-K-D 241/359 4.5E-11  RS-G-S 21/39 2.6E-05  
A-D-D-E 204/288 4.6E-11  R-RS-L 23/46 3.5E-05  
K-K-E-P 240/359 6.9E-11  DFF 20/37 3.9E-05  
G-K-K-V 236/352 8.1E-11  F-H-M 20/37 3.9E-05  
K-G-K-G 239/358 8.4E-11  T-SL-T 21/41 5.6E-05  
E-MN 238/357 1.0E-10  KV-A-E 20/38 5.8E-05  
E-DL-K 240/363 1.6E-10  LG-I-S 21/42 8.1E-05  
A-K-V-K 217/320 2.3E-10  R-S-G-P 21/42 8.1E-05  
T-E-E-T 235/356 2.8E-10  G-LS-K 19/36 8.7E-05  
GD-M 235/357 3.5E-10  Q-K-P-L 22/46 1.1E-04  
G-K-K-G 229/346 4.1E-10  L-Y-L-E 23/50 1.3E-04  
G-G-T-T 236/360 4.3E-10  N-L-R-S 22/47 1.5E-04  
D-E-V-K 216/321 4.4E-10  Q-S-S-K 21/44 1.6E-04  
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Fig 3.12 Expression of (A) 85 VIP-enriched SLiMs in human proteins and (B) 121 

‘backward’ VIP-enriched SLiMs in ‘forward’ and ‘backward’ VIPs. Difference 

between these expressions are evaluated with Mann–Whitney U tests. Abbreviations: HIV-

1, human immunodeficiency virus type 1; VIPs, HIV-1 interacting human proteins; non-

VIPs, HIV-1 non-interacting human proteins; SLiMs, protein short linear motifs. 

Intrinsically disordered regions have a broad occurrence in proteins, allowing the 

same polypeptide to be involved in different PPIs [293]. Characterised by their biased amino 

acid composition and low sequence complexity, intrinsically disordered proteins lack the 

ability to fold spontaneously into stable secondary and well-packed tertiary structures. 

However, they still play an important role in many biological activities. Based on the result 

given by the IUPred [267], 92% of VIPs contained at least one disorder region while 89% 

of non-VIPs were disordered (Pearson's Chi-squared test: P=5.3E-5). Distributions of 

disorder regions were not distinguishable when comparing VIPs with non-VIPs (Fig 3.13) 

but were slightly different in VIPs with distinct directionality (Fig 3.14). We found that 

‘backward’ VIPs were less likely to form disorder regions close to the beginning or end of 

their sequences. Disorder regions were less frequent in the middle of ‘bidirectional’ VIP 

sequences and showed great depletion at the end of the VIP sequence (Fig 3.14A). The 

representation of some amino acids, e.g., serine (S), threonine (T) (Fig 3.14B), E, and K 

(Fig 3.14D), were biased by the directionality of HIV-1-host molecular interactions. We 

assumed the results of Espritz [266] might be more useful since they could link the 

information of VIP-enriched SLiMs and disorder expression in the ‘backward’ VIPs. Amino 

acids K and E are important to the pattern of VIP-enriched SLiMs (S3.3 Data), and they had 

a higher chance to be found in disordered regions in the sequence of ‘backward’ VIPs. 
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Fig 3.13 Disorder status in different human proteins. (A) and (B) showed the results 

calculated by IUPred [267] while (C) and (D) showed the results calculated by the Espritz 

[266]. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, HIV-1 

interacting human proteins; non-VIPs, HIV-1 non-interacting human proteins. 

 
Fig 3.14 Disorder status in different VIPs. (A) and (B) showed the results calculated by 

IUPred [267] while (C) and (D) showed the results calculated by Espritz [266]. 

Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, HIV-1 interacting 

human proteins. 
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Briefly, VIPs and non-VIPs showed some significant differences in their sequence 

patterns from the nucleobase composition to SLiMs. It gave an acceptable answer to explain 

the reason why some human host proteins could interact with multiple HIV-1 proteins. 

Meanwhile, pro-viral and pro-host signs of VIPs were also reflected by special sequence 

patterns and intrinsic disorder status in the protein sequence. 

3.4.2.3 Characterisation of features in annotation and network profiles 

The Gene Ontology is a resource of knowledge unifying the representation of gene and gene 

product attributes. It is reported to be one of the strongest indicators of interacting proteins 

[294]. Compared with the annotation profile of non-VIPs, we found some GO terms, e.g., 

cytokine-mediated signalling pathway (GO:0019221), protein binding (GO:0005515), and 

nucleoplasm (GO:0005654) were highly enriched in the GO profile of VIPs. In order to 

reduce the dependency of our knowledge models on the annotated GO profile, we mapped 

the collected GO terms through the derivation tree and catalogued them into 66 domains 

representing child terms of biological process, molecular function and cellular component 

(S3.3 Data). Based on these ‘new’ GO profiles, we found an estimated 90% of VIPs were 

involved in the cellular process while the ratio reduced to two-thirds in non-VIPs (Pearson's 

Chi-squared test: P=1.9E-123) (Fig 3.15). The difference of binding activities was also 

observed between VIPs and non-VIPs (P=1.9E-84) (Fig 3.16). This is not surprising since 

the majority of VIPs were placed in key positions with a high degree or betweenness 

centrality within the human interactome (S3.3 Data). Additionally, we also found some 

clues in the catalogued GO profiles, which might help for the classification of VIPs with 

different directionality. For instance, approximately 77% of ‘bidirectional’ VIPs could raise 

a response to stimulus but the percentage for ‘forward’ VIPs, ‘backward’ VIPs, and non-

VIPs only reached 47%, 29% and 20%, respectively (Fig 3.15, S3.3 Data). ‘Backward’ or 

‘bidirectional’ VIPs were more likely to be found in organelles as opposed to ‘forward’ VIPs 

and non-VIPs (P=7.3E-5, 1.6E-7, 2.0E-70, respectively) (Fig 3.17, S3.3 Data).  
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Fig 3.15 GO annotation status of different VIPs under the catalogue of biological 

process. Bolder lines indicate stronger relationship between human proteins and GO child 

terms. Red lines indicate a GO child term is related to more than 75% of human proteins. 

Detailed data about the GO involvement in different human proteins were provided in S3.3 

Data. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 interacting 

human protein; GO, gene ontology. 

 
Fig 3.16 GO annotation status of different VIPs under the catalogue of molecular 

function. Bolder lines indicate stronger relationship between human proteins and GO child 

terms. Red lines indicate a GO child term is related to more than 75% of human proteins. 
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Detailed data about the GO involvement in different human proteins were provided in S3.3 

Data. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 interacting 

human protein; GO, gene ontology. 

 
Fig 3.17 GO annotation status of different VIPs under the catalogue of cellular 

component. Bolder lines indicate stronger relationship between human proteins and GO 

child terms. Red lines indicate a GO child term is related to more than 80% of human 

proteins. Detailed data about the GO involvement in different human proteins were provided 

in S3.3 Data. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 

interacting human protein; GO, gene ontology. 
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Fig 3.18 Top 20 tissues preferred by VIPs and ‘backward’ VIPs. Detailed data about the 

top 20 tissue tropisms were provided in S3.3 Data. Abbreviations: HIV-1, human 

immunodeficiency virus type 1; VIP, HIV-1 interacting human protein. 

From the perspective of tissue tropisms, VIPs preferred heart- or hematopoietic 

system-related tissue. The most significant difference between VIP and non-VIP was found 

in their association with monocyte (nongranular phagocytic leukocyte) (Fig 3.18, S3.3 Data) 

(P=1.7E-137) [295]. The same differences were found in phagocyte that engulfs foreign 

material [296] and immature blood cells that develop in the bone marrow [297]. In the tissue 

group of antigen-presenting cells, CD4+ and CD8+ cells were favoured by VIPs, which 
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showed a strong relationship between a virus invading and the immune responses (P=5.1E-

131 and 5.8E-114, respectively) [298,299]. Compared with ‘forward’ VIPs, ‘backward’ 

VIPs were less involved in the hematopoietic system, but they were more expressed in brain-

related tissues, such as the brain stem and cerebral lobe (S3.3 Data). Cells originating from 

stem cells and differentiating in lymphoid tissues were favoured by ‘backward’ VIPs. The 

relationship between ‘backward’ VIPs and CD8+ cells were even more obvious, showing a 

clear relationship linking the virus invading and the host antiviral immune responses [300]. 

In summary, annotation profiles represented by the GO terms and tissue tropisms 

differentiated the biological environment between VIPs and non-VIPs. Some preferences of 

VIPs such as more involvement in cellular binding activities were also reflected in the human 

interactome. 

3.4.3 Performance of different feature sets in the training stage 

3.4.3.1 Models for predicting VIPs 

In this study, we encoded 537 features for the prediction of VIPs. According to the data 

source from which they were extracted, we divided these features into four categories: 

genome-based features, proteome-based features, annotation-based features and interaction 

profile-based features. We first tested the performance of features in different categories on 

the balanced training datasets and found that annotation-based features performed the best, 

achieving the highest AUC value at 0.8090 on dataset S1’ (Table 3.4). On the same dataset, 

the combination of interaction profile-based features produced some good predictions even 

if only 10 features were included. However, the performance of proteome-based features 

was poor on dataset S1’. By combining all encoded 537 features, we found the classifier 

could further produce a better performance (AUC=0.8324) than using features by categories 

(AUC=0.7118, 0.6641, 0.8090, 0.7487, respectively) (Table 3.4). We compared SVM with 

another three machine learning algorithms including KNN, DT and RF [170]. We used the 

square root of the size of the training samples as the k-value for the KNN algorithm [301]. 

We found this algorithm was biased to the positive class and did not achieve a better 

prediction performance than the SVM. The DT algorithm was designed with a feature 

selection scheme, which helped it better split the dataset for lower system entropy [196]. It 

used 278 out of 537 features and made the worst performance among the machine learning 

algorithms compared. We initialised the RF algorithm with 50 trees and repeated the 

modelling process ten times to balance its random processes on bootstrapping the dataset 



PREDICTION OF HIV-1-HOST MOLECULAR INTERACTIONS 
	

56 

and selection of features [302]. The prediction performance of the RF algorithm on S1’ was 

promising but did not surpass that of the SVM. These results suggested that the majority of 

features encoded for the prediction of VIPs were contributing to the signal, but the complete 

feature set was not optimal for reliable prediction since it included some poorly performing 

features.  

Table 3.4 The performance of different feature sets on the training datasets over five-

cross validations. 

Dataseta Algorithm Features Features 
number Thresholde Sensitivity Specificity Accuracy MCC AUC 

S1’ 

SVM Genetic 
sequences 107 0.51 0.613 0.700 0.656 0.314 0.7118 

SVM Proteomic 
sequences 128 0.51 0.595 0.649 0.622 0.244 0.6641 

SVM Annotations 292 0.57 0.663 0.806 0.735 0.475 0.8090 

SVM Interaction 
profiles 10 0.52 0.611 0.777 0.694 0.394 0.7487 

SVM Combination 537 0.56 0.690 0.817 0.754 0.512 0.8324 
KNNb Combination 537 0.35~0.39 0.766 0.633 0.699 0.402 0.7772 
DTc Partial 278 N/A 0.633 0.642 0.637 0.275 N/A 
RFd Random Random 0.44~0.52 0.733±0.035 0.752±0.030 0.742±0.004 0.486±0.009 0.8157±0.0031 
SVM Top-ranked 33 33 0.54 0.645 0.718 0.681 0.363 0.7468 
SVM Top-ranked 193 193 0.48 0.748 0.751 0.750 0.499 0.8261 
KNNb Optimum 441 0.43~0.48 0.689 0.720 0.705 0.410 0.7734 
SVM Optimum 441 0.52 0.727 0.787 0.757 0.514 0.8344 

S2’ 

SVM Genetic 
sequences 107 N/Af N/A N/A N/A N/A N/A 

SVM Proteomic 
sequences 164 0.40 0.860 0.633 0.747 0.507 0.8023 

SVM Annotations 292 0.46 0.767 0.520 0.643 0.296 0.6786 

SVM Interaction 
profiles 21 0.51 0.740 0.633 0.687 0.375 0.7108 

SVM Combination 584 0.46 0.807 0.553 0.680 0.372 0.7383 
KNNb Combination 584 0.50~0.54 0.400 0.833 0.617 0.259 0.6501 
DTc Partial 66 N/A 0.673 0.660 0.667 0.333 N/A 
RFd Random Random 0.38~0.58 0.706±0.134 0.710±0.167 0.708±0.030 0.432±0.045 0.7609±0.0270 
KNNb Optimum 129 0.27~0.36 0.487 0.873 0.680 0.390 0.7509 
SVM Optimum 129 0.44 0.853 0.680 0.767 0.542 0.8260 

aDataset S1’ and S2’ were balanced training datasets constructed via undersampling strategy [265] from 

dataset S1 and S2, respectively (Table 3.1). Compositions of these two datasets are provided in S3.2 Data. 
bk-value here was determined as the square root of the size of the training samples in the five-fold cross 

validation; cthe DT algorithm selected 278 and 66 features from the original feature sets for the two 

modelling tasks; dthe RF algorithm used 50 random grown trees and the modelling and validation 

procedures were repeated for 10 times;  ethreshold was set by maximizing the value of MCC; fmultiple 

N/A were given here as the prediction quality of the generated classifier was worse than a random guess. 

Abbreviations: SVM, support vector machine; KNN, k-nearest neighbors; DT, decision tree; RF, random 

forest; MCC, Matthews Correlation Coefficient; AUC, area under the receiver operating characteristic 

curve. 

In order to find a better feature subset for the prediction of VIPs, we first used the 

Fisher-Markov Selector [276] to calculate the importance of individual features (Fig 3.19A). 

The results demonstrated the importance of gene ontology (e.g., involvement in metabolic 

process, ranked the 24th) and tissue tropism features for prediction (e.g., expression in 
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monocyte, ranked the 1st), even if they were used individually. According to the importance 

score of individual features, we then used our first feature selection strategy (Fig 3.3) and 

five-cross validations to optimise the prediction model. Fig 3.19B shows that the classifier 

obtained the last obvious improvement in the prediction when the top 33 features are used. 

With a subset of 193 features, the improvement became limited. The optimum feature subset 

(n = 441) was composed of 105 genome-based features, 84 proteome-based features, 243 

annotation-based features and nine interaction profile-based features. In other words, after 

removing 96 badly performing features, the classifier became stronger and the risk of facing 

missing data or errors was also reduced simultaneously [303]. The distribution of prediction 

scores for VIPs and non-VIPs was negatively and positively skewed, with most values 

clustered around the right and left tails of the distribution, respectively (Fig 3.19C). 

Additionally, the classifier that used the top 193 features was also recommended for further 

reducing such risks and producing similar performance as the one using 441 features (Fig 

3.19C, Fig 3.20B). By contrast, the model using the top 33 features was not the most 

promising unless only gene ontology and tissue tropism data were available for making the 

prediction (Fig 3.20A).  

 

Fig 3.19 The performance of different features for the prediction of VIPs. (A) 

importance of different features. (B) change on AUC as the increase of ordered features. (C) 

the distribution of prediction scores (for VIPs and non-VIPs) generated by model using the 
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top 441 features. In (A) the importance of individual feature was recorded by averaging the 

results on the balanced training datasets generated by 10-round undersampling procedures 

[265] on dataset S1. The ranked list of the encoded 537 features is provided in S3.4 Data. 

Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, HIV-1 interacting 

human proteins; non-VIPs, HIV-1 non-interacting human proteins; AUC, area under the 

receiver operating characteristic curve. 

 
Fig 3.20 Prediction score generated by models using (A) top-33 and (B) top-193 features 

on dataset S1’ over five-fold cross-validation. Proteins obtained higher prediction scores 

are more likely to be VIPs. Abbreviations: HIV-1, human immunodeficiency virus type 1; 

VIPs, HIV-1 interacting human proteins; non-VIPs, HIV-1 non-interacting human proteins. 

3.4.3.2 Models for predicting the directionality in HIV-1-host PPIs 

We encoded 584 features for VIPs to predict their directionality in HIV-1-host molecular 

interactions. Predictions on the training dataset S2’ were different from those on dataset S1’. 

The performance of genome-based features was even worse than a random prediction (Table 

3.4). The combination of proteomic features produced a highly predictive model. The 

performance of annotation features was not as good as anticipated, and the combination of 

all features made the classifier even worse than only using proteomic features. This indicated 

a big difference between two prediction tasks highlighted in this study. After checking the 

importance of features with the Fisher-Markov Selector [276], we found the difference 

between the generated importance score was not obvious (Fig 3.21, S3.4 Data), which meant 

the contribution of individual features to the prediction model had not changed appreciably. 

The comparison results among different machine learning algorithms proved that the SVM 

classifier also worked on dataset S2’ (Table 3.4). These discoveries suggested that the 

complementarity of these 584 features was not as good as those used for predicting VIPs. 

There might be a large number of noisy features involved in the complete set. Considering 

this, our first feature selection strategy might not work on dataset S2’ (Fig 3.22A).  
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Fig 3.21 Importance of individual features for predicting ‘backward’ and ‘forward’ 

VIPs. The importance score of individual features is recorded by averaging the results on 

the balanced training datasets generated by ten-round undersampling procedures [265] on 

dataset S2. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, HIV-1 

interacting human proteins. 

Instead, we applied our second feature selection strategy to optimise the prediction 

model (Fig 3.4). We assumed that the proteomic features might be an ideal set with good 

complementarity for the initialization as they were better-performing than features in the 

other catalogues (Table 3.4). The performance of the classifier was enhanced, however, it 

started to decrease after adding four non-proteomic sequence features. Next, we removed 

badly-performing features in the proteomic sequence feature set. We identified an optimum 

model generated by 129 features (Fig 3.22B). In that feature subset, 36 amino acid 

composition features, 85 SLiM features, four intrinsic disorder features, two gene ontology 

feature, and two tissue tropism features were included (S3.4 Data). Compared with the 

model generated from the complete feature set, the model using 129 optimum features 

enhanced the performance by more than 10% from the perspective of the AUC (Table 3.4). 

Likewise, on the training dataset S2’, SVM was still superior to KNN, DT and RF algorithms. 

Additionally, the model generated from all proteomic features was also recommended as it 

only required the information from the protein sequence to make good predictions (Fig 3.23).  

Interestingly, testing on the reference dataset S3 suggested that ‘bidirectional’ VIPs 

were closer to ‘forward’ VIPs than to ‘backward’ VIPs (Fig 22D). ‘Forward’ VIPs might be 

‘responding’ to HIV-1 infection and target HIV-1, making them ‘bidirectional’ [304]. 

‘Backward’ VIPs were less likely to be targeted by HIV-1 so their chance of becoming 

‘bidirectional’ VIPs was relatively low. The recommended direction based on the prediction 

score generated by the model using 129 optimum features is provided in Table 3.5. We 
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could confidently label 60% of the generated VIPs based on the prediction scores as 

‘backward’, ‘forward’, or ‘bidirectional’. For prediction scores located in specific ranges, 

our confidence on the direction of HIV-1-host molecular interactions could reach as high as 

89%.  

 
Fig 3.22 The performance of different features for predicting ‘backward’ and ‘forward’ 

VIPs. (A) changes on AUC as the increase of ordered features. (B) changes on AUC as the 

decrease of ordered proteome-based features. (C) the count of prediction scores (for pro-

viral ‘forward’ VIPs and pro-host ’backward’ VIPs) generated by model using 129 optimum 

features. (D) the percentage of ‘forward’, ‘backward’ and ‘bidirectional’ VIPs within 

different regions of prediction scores (scale = 0.02) on the combined dataset of S2’ and S3. 

The recommended directionality of HIV-1-host molecular interactions are listed in Table 

3.5. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 interacting 

human protein; AUC, area under the receiver operating characteristic curve. 
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Fig 3.23 Prediction score generated by models using proteomic features on dataset S2’ 

over five-cross validation. Proteins obtained higher prediction scores are more likely to be 

‘backward’ VIPs. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, HIV-

1 interacting human proteins. 

Table 3.5 The recommended directionality of the prediction score for models using 129 

optimum featuresf. 

Score range 
Direction distribution 
‘backward’/’forward’/ 
’bidirectional’ 

Recommendation_1b,c Confidence_1a,d Recommendation_2 Confidence_2e 

[0.00-0.02) 0.00%/0.00%/0.00% 'Forward' N/A 'Bidirectional' High 
[0.02-0.04) 0.00%/0.00%/0.00% 'Forward' N/A 'Bidirectional' High 
[0.04-0.06) 0.00%/2.00%/2.09% 'Bidirectional'  51% 'Forward' 100.00% 
[0.06-0.08) 0.67%/2.67%/2.69% 'Bidirectional'  45% 'Forward' 88.93% 
[0.08-0.10) 0.00%/5.33%/1.49% 'Forward'  78% 'Bidirectional' 100.00% 
[0.10-0.12) 0.67%/2.67%/3.28% 'Bidirectional'  50% 'Forward' 89.92% 
[0.12-0.14) 0.00%/4.67%/2.69% 'Forward'  63% 'Bidirectional' 100.00% 
[0.14-0.16) 0.00%/4.00%/3.88% 'Forward'  51% 'Bidirectional' 100.00% 
[0.16-0.18) 0.67%/5.33%/2.09% 'Forward'  66% 'Bidirectional' 91.76% 
[0.18-0.20) 0.00%/1.33%/2.69% 'Bidirectional'  67% 'Forward' 100.00% 
[0.20-0.22) 0.00%/3.33%/3.28% 'Forward'  50% 'Bidirectional' 100.00% 
[0.22-0.24) 2.00%/4.00%/3.28% 'Forward'  43% 'Bidirectional' 78.46% 
[0.24-0.26) 0.67%/2.00%/1.49% 'Forward'  48% 'Bidirectional' 83.97% 
[0.26-0.28) 1.33%/5.33%/3.58% 'Forward'  52% 'Bidirectional' 86.99% 
[0.28-0.30) 0.00%/3.33%/2.69% 'Forward'  55% 'Bidirectional' 100.00% 
[0.30-0.32) 0.67%/4.67%/1.49% 'Forward'  68% 'Bidirectional' 90.23% 
[0.32-0.34) 1.33%/1.33%/3.28% 'Bidirectional'  55% 'Forward' 77.59% 
[0.34-0.36) 0.67%/3.33%/4.48% 'Bidirectional'  53% 'Forward' 92.14% 
[0.36-0.38) 0.67%/3.33%/2.69% 'Forward'  50% 'Bidirectional' 90.03% 
[0.38-0.40) 2.67%/3.33%/2.09% 'Forward'  41% 'Backward' 74.17% 
[0.40-0.42) 1.33%/2.67%/2.09% 'Forward'  44% 'Bidirectional' 78.10% 
[0.42-0.44) 1.33%/3.33%/1.79% 'Forward'  52% 'Bidirectional' 79.35% 
[0.44-0.46) 2.00%/1.33%/1.49% 'Backward'  41% 'Bidirectional' 72.37% 
[0.46-0.48) 2.67%/2.00%/2.09% 'Backward'  39% 'Bidirectional' 70.40% 
[0.48-0.50) 0.67%/1.33%/2.09% 'Bidirectional'  51% 'Forward' 83.70% 
[0.50-0.52) 2.67%/2.00%/2.99% 'Bidirectional'  39% 'Backward' 73.86% 
[0.52-0.54) 5.33%/1.33%/3.58% 'Backward'  52% 'Bidirectional' 86.99% 
[0.54-0.56) 3.33%/2.00%/2.09% 'Backward'  45% 'Bidirectional' 73.06% 
[0.56-0.58) 2.67%/2.00%/2.39% 'Backward'  38% 'Bidirectional' 71.65% 
[0.58-0.60) 1.33%/0.00%/2.69% 'Bidirectional'  67% 'Backward' 100.00% 
[0.60-0.62) 2.00%/4.00%/3.58% 'Forward'  42% 'Bidirectional' 79.13% 
[0.62-0.64) 2.67%/0.67%/1.79% 'Backward'  52% 'Bidirectional' 86.99% 
[0.64-0.66) 2.00%/2.00%/1.79% 'Backward'  35% 'Forward' 69.07% 
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[0.66-0.68) 6.67%/2.00%/2.99% 'Backward'  57% 'Bidirectional' 82.84% 
[0.68-0.70) 6.00%/0.00%/1.19% 'Backward'  83% 'Bidirectional' 100.00% 
[0.70-0.72) 1.33%/0.00%/0.60% 'Backward'  69% 'Bidirectional' 100.00% 
[0.72-0.74) 2.00%/1.33%/1.49% 'Backward'  41% 'Bidirectional' 72.37% 
[0.74-0.76) 2.00%/2.00%/0.60% 'Backward'  44% 'Forward' 87.01% 
[0.76-0.78) 2.67%/0.67%/2.99% 'Bidirectional'  47% 'Backward' 89.45% 
[0.78-0.80) 3.33%/0.00%/1.79% 'Backward'  65% 'Bidirectional' 100.00% 
[0.80-0.82) 2.00%/1.33%/0.90% 'Backward'  47% 'Forward' 78.82% 
[0.82-0.84) 3.33%/0.67%/1.19% 'Backward'  64% 'Bidirectional' 87.16% 
[0.84-0.86) 2.67%/0.67%/0.30% 'Backward'  73% 'Forward' 91.78% 
[0.86-0.88) 2.67%/1.33%/0.90% 'Backward'  54% 'Forward' 81.71% 
[0.88-0.90) 5.33%/0.67%/1.19% 'Backward'  74% 'Bidirectional' 90.73% 
[0.90-0.92) 3.33%/1.33%/0.90% 'Backward'  60% 'Forward' 83.90% 
[0.92-0.94) 4.67%/0.67%/0.90% 'Backward'  75% 'Bidirectional' 89.30% 
[0.94-0.96) 1.33%/0.67%/0.30% 'Backward'  58% 'Forward' 87.01% 
[0.96-0.98) 4.00%/0.00%/1.49% 'Backward'  73% 'Bidirectional' 100.00% 
[0.98-1.00] 4.67%/0.00%/0.60% 'Backward'  89% 'Bidirectional' 100.00% 

a: N/A is placed for the lack of reference proteins with predicted probability scores located within 

corresponding ranges; b: recommendation_1 is determined according to the dominant class scored within the 

corresponding range; c: in case the dominant class is not obvious, we recommend VIPs with prediction score 

no less than 0.5 to be ‘backward’ and those with prediction score less than 0.5 to be ‘forward’; d: confidence_1 

is calculated as the occurrence frequency of dominant class divided by that of all classes; e: confidence_2 is 

calculated as the occurrence frequency of the major two classes divided by that of all classes; we can’t provide 

the exact confidence we have when getting a prediction score lower than 0.04, but the tested HIV-1 interacting 

human protein are very likely to have a ‘forward’ or ‘bidirectional’ tag; f: rows are coloured as red when we 

have confidence_1 scored higher than 50%; texts in these rows are further bold when confidence_2 reaches 

100%. Abbreviations: HIV-1, human immunodeficiency virus type 1. 

3.4.4 Performance on the testing datasets 

In this study, we produced three models with the top-33, top-193 and top-441 features on 

the whole training dataset S1’ for the prediction of VIPs, namely PreVIP-33, PreVIP-193 

and PreVIP-441, respectively. Independent testing datasets prepared to assess the 

generalization capability of these three models was derived from our main dataset S1 

through an undersampling strategy [265]. They consist of a random set of 577 VIPs and 

4957 non-VIPs. The imbalance ratio of positives (VIPs) to negatives (non-VIPs) in this 

testing dataset was close to 1:8. PreVIP-33 could successfully predict 40.9% of VIPs and 

88.1% of non-VIPs under a threshold of 0.73. The corresponding AUC value of PreVIP-33 

was 0.7323. Under the same threshold, the sensitivity and specificity of PreVIP-193 

increased to 45.6% and 91.2%, respectively. The optimum threshold for PreVIP-193 was 

0.82, under which 34.7% of VIPs and more than 95% of non-VIPs were correctly predicted. 

Among the generated three models, PreVIP-441 achieved the best performance with an AUC 

valued 0.8079. It was close to the figure for PreVIP-193 and 10% higher than the figure for 

PreVIP-193 (Table 3.6). When attempting to successfully predict more than half of the VIPs, 

the ratios of false positives produced by PreVIP-441, PreVIP-193 and PreVIP-33 were 10%, 

11% and 19%, respectively.  
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As for predicting the direction of HIV-1-host molecular interactions, we generated 

two models with the optimal 129 features and the overall 164 proteomic sequence features 

on the whole training dataset S2’, namely PreDIR-129 and PreDIR-164. Independent testing 

dataset prepared to assess the generalization capability of these two models was derived from 

our main dataset S2 through the undersampling strategy [265]. They consist of a random 38 

VIPs and 857 non-VIPs. The imbalance ratio of positives (‘backward’ VIPs) to negatives 

(‘forward’ VIPs) in this testing dataset is close to 1:22. Compared with PreDIR-129, 

PreDIR-164 was generally a bit more powerful for achieving higher AUC, at 0.7110 (Table 

3.6). The optimum threshold for PreDIR-129 was 0.70, under which 47.4% of ‘backward’ 

VIPs and 87.3% of ‘forward’ VIPs were successfully predicted. By contrast, to successfully 

filter the same number of negatives, PreDIR-164 produced three more false negatives, which 

showed its drawback in recognising ‘forward’ VIPs. 

To further assess the quality of our prediction models, i.e., PreVIP-193 and PreVIP-

441, we introduced two testing datasets: S5, the HIV-1 infection pathway from Reactome 

[150] and S6, a viral host-dependency epistasis map linked to HIV-1 infection [254]. Fig 

3.24 illustrates that our prediction models performed well in recognising VIPs with 

experimental evidence. On testing dataset S5, PreVIP-441 could recognise 70.1% of VIPs 

under a threshold of 0.73. It was about 40% stronger than its expected performance (Table 

3.6). It was also capable of successfully predicting more than 90% of VIPs when using a 

threshold of 0.5. Under the same threshold, PreVIP-193 achieved a similar performance as 

PreVIP-441. The improvement under the threshold of 0.82 reached as high as 66% when 

compared with its expected sensitivity (34.7%). Thus, these results showed good 

generalization capabilities of our models on predicting VIPs involved in the host pathway 

hijacked during HIV-1 infections. Their performance on the testing dataset S6 was also 

promising with an estimated 20% improvement. The prediction results of PreVIP-193 and 

PreVIP-441 on testing datasets S5 and S6 are shown in S3.5 Data. 

Table 3.6 The performance of features with different catalogues on the testing datasets. 

Dataset Model 
Feature 
source Thresholda Sensitivity Specificity Accuracy Precision MCC AUC 

S1’’ 
PreVIP-33 Annotation 0.73 0.409 0.881 0.832 0.285 0.248 0.7323 
PreVIP-193 Multiple 0.82 0.347 0.959 0.895 0.495 0.359 0.8034 
PreVIP-441 Multiple 0.73 0.492 0.911 0.867 0.391 0.365 0.8079 

S2’’ 
PreDIR-164 

Proteomic 
sequence 0.53 0.658 0.762 0.758 0.109 0.194 0.7110 

PreDIR-129 Multiple 0.70 0.474 0.873 0.856 0.142 0.200 0.7057 

S5c 
PreVIP-193 Multiple 0.82 Sensitivity = 0.577 
PreVIP-193 Multiple 0.50 Sensitivity = 0.906 
PreVIP-441 Multiple 0.73 Sensitivity = 0.701 
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PreVIP-441 Multiple 0.50 Sensitivity = 0.910 

S6c 

PreVIP-193 Multiple 0.82 Sensitivity = 0.416 
PreVIP-193 Multiple 0.50 Sensitivity = 0.806 
PreVIP-441 Multiple 0.73 Sensitivity = 0.596 
PreVIP-441 Multiple 0.50 Sensitivity = 0.817 

athresholds on S1’’ and S2’’ were set by maximizing the value of MCC. On testing dataset S5 and S6, two 

thresholds, i.e., 0.82 and 0.73 were set according to the best performance of PreVIP-193 and PreVIP-

441 on testing dataset S1’’. In addition, a neutral threshold (0.5) was added for crude assessments. 
cprediction results on testing dataset S5 and S6 are provided in S3.5 Data. Abbreviations: MCC, 

Matthews Correlation Coefficient; AUC, area under the receiver operating characteristic curve; HIV-1, 

human immunodeficiency virus type 1; VIPs, HIV-1 interacting human proteins; PreVIP-33, machine 

learning model generated from training dataset S1’ with the top 33 features for the VIP prediction task; 

PreVIP-193, machine learning model generated from training dataset S1’ with the top 193 features for 

the VIP prediction task; PreVIP-441, machine learning model generated from training dataset S1’ with 

the optimum 441 features for the VIP prediction task; PreDIR-164, machine learning model generated 

from training dataset S2’ with 164 proteome-based features for the directionality prediction task; PreDIR-

129, machine learning model generated from training dataset S2’ with the optimum 129 features for the 

directionality prediction task. 

 
Fig 3.24 Cumulative distribution of prediction probabilities on testing datasets S5 and 

S6. Dataset S5 and S6 were retrieved from Reactome [150] and Gordon et al.’s study [254] 

for predicting VIPs. Composition of dataset S5 and S6 is provided in S3.2 Data. Prediction 

results on testing dataset S5 and S6 are provided in S3.5 Data. Abbreviations: VIPs, HIV-1 

interacting human proteins; PreVIP-193, machine learning model generated from training 

dataset S1’ with the top 193 features for the VIP prediction task; PreVIP-441, machine 
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learning model generated from training dataset S1’ with the optimum 441 features for the 

VIP prediction task. 

On the blind testing dataset S4, we used PreDIR-129 to predict the direction tag for 

1351 ‘undefined’ VIPs (Fig 3.2). According to known information about potential direction 

(S3.1 Data) and the recommendation stated in Table 3.5, 511, 540 and 300 ‘undefined’ VIPs 

were predicted as ‘backward’, ‘forward’ and ‘bidirectional’, respectively (S3.6 Data). 66 of 

the ‘undefined’ VIPs had high probability to be ‘backward’ and the literature shows 

connections to brain-related diseases such as Autosomal recessive mental retardation [305] 

and Huntington disease [306] (S3.7 Data). 63 of them were very likely to be ‘forward’ VIPs 

and were involved in some immune system pathways (S3.7 Data). 50 of them showed strong 

signals of being ‘bidirectional’. They might also be potential target of other viruses like 

human papillomavirus [307] and hepatitis virus [308] (S3.7 Data). 

3.5 Discussion 

In this study, we propose an in silico approach to investigate the HIV-1-host molecular 

interactions with a focus on the directionality of the virus-host interaction. We used the 

detailed curation of the biological nature of HIV-1-host interaction in HHID [241] to 

partition interactions as those required by the virus to manipulate the host molecular sub-

systems versus host responses to virus infection. Using this dataset, we designed a predictive 

system in which human proteins could be quickly evaluated for their potential to target host 

(a host-dependency factor), be targeted (e.g., the antiviral response), or both (bidirectional 

interactions). A web server is available at http://hivpre.cvr.gla.ac.uk/. It supports six 

different identifiers for over 80000 human peptides and is capable to produce 1000 

predictions in less than 15 seconds. 

In previous studies [172-174,224-229], VIPs were usually labeled based on their 

interacting HIV-1 status only. According to the data we retrieved from HHID [241], 1467 

out of 3854 human proteins, including some key receptors (e.g. CD4, CCR5), have 

interactions with protein products of different HIV-1 genes (S3.1 Data). Such multi-target 

issues can be accommodated after integrating the information of molecular interactions 

between human proteins and the HIV-1 group. Additionally, the published prediction-based 

papers [172-174,224,225,227-229] have not accounted for the direction of HIV-1-host 

molecular interaction. By contrast, our consideration of the interaction direction contributes 
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to a better understanding of the HIV-1-host interactions and the discovery of potential drug 

targets [309]. 

In experiments analysing evolution-related traits from the transcriptomic and 

genomics data (Section 3.4.2.1), we found HIV-1 were more likely to interact with human 

proteins encoded from genes with larger numbers of ORFs, duplication rates or evolutionary 

conservation. This seems reasonable as the evolutionary rates for duplicates is usually 

negatively correlated with the number of paralogues [310]. The accumulating exons and 

introns driven by conserved genes gave a higher chance for duplicate genes to have more 

ORFs, which were favoured by HIV-1 [311]. Additionally, we also observed the signal of 

host antiviral activities become stronger when the host genes showed huge number of ORFs, 

extremely high duplication rates, or evolutionary conservation. 

We discovered 85 VIP-enriched SLiMs and 121 ‘backward’ VIP-enriched SLiMs 

from the proteomic sequence data (Section 3.4.2.2). Human proteins containing sufficient 

SLiMs of interest usually consisted of a higher number of residues. This phenomenon was 

even more evident in non-VIPs. We hypothesise that there are some motifs in the sequence 

of VIPs, making them more likely to target or be the target of HIV-1. Human proteins with 

long sequences have a higher possibility to include some special sequence patterns than 

those with short sequences but it does not indicate a feasible way to pay more attention to 

macromolecule to detect potential VIPs or ‘backward’ VIPs. For example, there are over 

14000 residues in the sequence of a non-VIP, namely mucin 16 (MUC16), but only 17 VIP-

enriched SLiMs were observed. However, this signal needs to be treated with caution 

especially when large numbers of VIP-enriched and ‘backward’ VIP-enriched SLiMs are 

both detected in the same non-VIP sequence, e.g. midasin (MDN1) (n = 41 and 57). Such 

‘non-VIPs’ may potentially be false negatives if some of its SLiM-enriched regions are 

spatially exposed and attractive to HIV-1 [312]. 
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Fig 3.25 Tissue tropisms for different human proteins. Mann-Whitney U tests are applied 

to compare the number of expressed tissues in different classes. Abbreviations: HIV-1, 

human immunodeficiency virus type 1; VIPs, HIV-1 interacting human proteins; non-VIPs, 

HIV-1 non-interacting human proteins. 

We obtained 225 experimentally verified tissue entries from the TISSUES database 

[245] but found some overlaps on feature values due to the hierarchy of tissues (Section 

3.4.2.3). However, the annotation data of tissue tropisms were sufficient and such overlaps 

did not influence the efficacy of tissue tropisms in distinguishing VIPs from non-VIPs (Fig 

3.25). The later machine learning experiments also proved the practical effectiveness of 

considering these features individually or in combination (Fig 3.19A, Fig 3.21, Table 3.4).  

After finishing all prediction tasks, we assumed that some false negatives were still 

included in our dataset since we found some testing non-VIPs obtained very high prediction 

scores (S3.8 Data). Based on the testing result given by PreVIP-441 and PreVIP-193, 16 

labelled non-VIPs might actually interact with HIV-1 proteins. We found that adapter 

molecule crk (CRK), TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 (TAB1) 

and interleukin-1 receptor-associated kinase 4 (IRAK4) were involved in the pathway of 

HIV-1 infections in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [313] 

but were not included in HHID [241]. They provided further support for our machine 

learning approach. Some features of these human proteins also hinted at their possible roles 

as VIPs. For instance, alpha-synuclein (SNCA) had 16 ORFs, contained 15 VIP-enriched 

SLiMs within its 140-length proteomic sequence, expressed in many VIP-preferred tissues, 

and was highly connected with a degree of 168 in our constructed network [161]. As for the 
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prediction of the interaction directionality, some deductions in Table 3.5 might be 

ambiguous when being used individually but higher confidence could be obtained when 

combining the information about known directionality in S3.1 Data. For instance, elongin-

B (ELOB) got a prediction score of 0.14 from PreDIR-129 thus was initially recommended 

as ‘forward’ VIPs according to Table 3.5. However, since we found 18 records on molecular 

interactions between ELOB and HIV-1 proteins and some outcomes of the interactions 

showed clear direction of ‘backward’, ELOB is probably ‘bidirectional’ rather than only 

‘forward’ acting. 

In conclusion, reliably predicting HIV-1-host molecular interactions is a difficult 

task and we were only superficially using the information embedded in the molecules 

involved. Here, we have introduced the directionality of the interaction to the task and 

demonstrated that there is a predictive signal embedded in the different types of molecules. 

We believe that better training datasets and continued development of feature representation 

of molecules, for example, integrating protein structure, will lead to improved predictions in 

the near future.  

3.6 Summary 

Human immunodeficiency virus type 1 (HIV-1) is the cause of acquired immunodeficiency 

syndrome (AIDS), a disease with no effective cure despite decades of research. A better 

understanding of the molecular interactions between HIV-1 and human host proteins 

facilitates the discovery of potential host targets which may be of great importance for the 

development of antiviral drugs that go beyond mere control of infection. In this study, we 

elucidate some host-dependency and antiviral factors that may be helpful to distinguish virus 

interacting human proteins (VIPs) from non-virus interacting human proteins (non-VIPs). 

We also consider ‘directionality’ in the HIV-1-host protein-protein interactions, i.e., whether 

the interaction is in the interest of the virus or part of the anti-viral response. We designed a 

machine learning framework to generate models based on the known information and used 

them for the classification of VIPs and non-VIPs. Our predictions have the potential to 

provide refined sets of human host targets aiding in the discovery of novel HIV-1 

therapeutics. 

3.7 Supporting information 

S3.1 Data. The list of HIV-1 interacting proteins. 
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URL: http://hivpre.cvr.gla.ac.uk/data/VIP_3854.txt 

S3.2 Data. The list of proteins sampled for training and testing. 

URL: http://hivpre.cvr.gla.ac.uk/data/S2_Data.txt 

S3.3 Data. Statistical data supporting discoveries in Chapter Three. 

URL: http://hivpre.cvr.gla.ac.uk/data/S3_Data.xlsx 

S3.4 Data. The importance and usage of features in different machine learning models. 

URL: http://hivpre.cvr.gla.ac.uk/data/S4_Data.txt 

S3.5 Data. Prediction results on dataset S5 and S6. 

URL: http://hivpre.cvr.gla.ac.uk/data/S5_Data.txt 

S3.6 Data. Prediction results for VIPs with ‘undefined’ directions. 

URL: http://hivpre.cvr.gla.ac.uk/data/S6_Data.txt 

S3.7 Data. ‘Undefined’ VIPs with very high probabilities indicating their directionality 

in HIV-1-host molecular interactions. 

URL: http://hivpre.cvr.gla.ac.uk/data/S2_Table.xlsx 

S3.8 Data. Non-VIPs with high prediction scores (>0.95) generated by PreVIP-441 and 

PreVIP-193. 

URL: http://hivpre.cvr.gla.ac.uk/data/S3_Table.xlsx 

 



  

CHAPTER FOUR 

4. DEFINING FEATURES OF INTERFERON-ALPHA-

STIMULATED HUMAN GENES  

4.1 Abstract 

A virus-infected cell triggers a signalling cascade resulting in the secretion of interferons 

(IFNs). It in turn induces the up-regulation of IFN-stimulated genes (ISGs) that play an 

important role in the inhibition of the viral infection. We conducted detailed analyses on 

7443 features relating to evolutionary conservation, nucleotide composition, gene 

expression, amino acid composition, and network properties to elucidate factors associated 

with the stimulation of human genes in response to the typical IFN-α. We propose that ISGs 

are less evolutionary conserved than genes that are not significantly stimulated in IFN 

experiments (non-ISGs). ISGs show significant depletion of GC-content in the coding region 

of their canonical transcripts, which leads to differential representation in their nucleotide 

and amino acid compositions. ISG products tend to be implicated in key pathways of the 

human protein-protein interaction (PPI) network but are away from the hubs or bottlenecks. 

Interferon-repressed human genes (IRGs), which are down-regulated in the presence of IFNs, 

can have similar properties to ISGs. Meanwhile, we also propose a machine learning 

framework integrating the support vector machine (SVM) and feature selection algorithms. 

It achieves an area under the receiver operating characteristic curve (AUC) of 0.7455 for 

ISG prediction and demonstrates the similarity between ISGs triggered by type I and III 

IFNs. The model predicts several genes as potential ISGs that so far have shown no 

significant differential expression when stimulated with IFN in the cell/tissue types in the 

available databases. A webserver implementing our method is accessible at 

http://isgpre.cvr.gla.ac.uk/. 

4.2 Introduction 

Interferons (IFNs) are a family of cytokines originally defined for their capacity to interfere 

with viral replication. They are secreted from host cells after an infection by pathogens such 

as bacteria or viruses to trigger the innate immune response with the aim of inhibiting viral 

spread by ‘warning’ uninfected cells [105]. The response induced by IFNs is usually fast 
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and feedforward, especially to synthesize new IFNs, which guarantees a full response even 

if the initial activation is limited [314]. In humans, several IFNs have been discovered (e.g. 

IFN-α/β/ε/κ/ω/γ/λ [315-320]). IFN-α, IFN-β, IFN-ε, IFN-κ, IFN-ω are grouped into type I 

IFNs for signalling through the common IFN-α receptor (IFNAR) complex present on target 

cells [315-318] (Fig 4.1A). IFN-α comprises 13 subtypes in humans while the remaining 

type I IFNs are encoded by a specific gene [321]. IFN-λ targets IFN-λ receptor 1 

(IFNLR1)/interleukin-10 receptor 2 (IL-10R2) and was classified as type III IFN since its 

discovery in 2003 [320] (Fig 4.1C). Similar to type I IFNs, IFN-λ also exert antiviral 

properties but functions less intensely [103,322,323]. IFN-γ is classified as type II IFN and 

manifest its biological effects by interacting with IFN-γ receptor (IFNGR) [319] (Fig 4.1B). 

In contrast to type I and III IFNs, IFN-γ is also anti-pathogen, immunomodulatory, and 

proinflammatory but more focused on establishing cell immunity [103,315,319,324].  

All three types of IFNs are capable of activating the Janus kinase/signal transducer 

and activator of transcription (JAK-STAT) pathway and inducing the transcriptional up-

regulation of approximately 10% of human genes that prime cells for stronger pathogen 

detections and defenses [321,325,326]. Henceforth, these up-regulated human genes are 

referred to as IFN-stimulated genes (ISGs). They play an important role in the establishment 

of the cellular antiviral state, the inhibition of viral infection and the return to cellular 

homeostasis [315,321,325,327]. For example, the ectopic expression of heparinase (HPSE) 

can inhibit the attachment of multiple viruses [328,329]; interferon induced transmembrane 

proteins (IFITM) can impair the entry of multiple viruses and traffic viral particles to 

degradative lysosomes [330,331]; MX dynamin like GTPase proteins (MX) can effectively 

block early steps of multiple viral replication cycles [332]. Abnormality in the IFN-

signalling cascade, for example, the absence of signal transducer and activator of 

transcription 1 (STAT1) will lead to the failure of activating ISGs, making the host cell 

highly susceptible to virus infections [104].  
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Fig 4.1 Illustration of signalling cascade triggered by different IFNs. In (A), type I IFN 

signals through IFNAR, JAK1, TYK2, STAT, and IRF9 to form ISGF3, and then bind to 

ISRE to induce the expression of type I ISGs. In (B), type II IFN signals through IFNGR, 

JAK1 and JAK2 to form GAF and then bind to GAS to induce the expression of type II ISGs. 

In (C), type III IFN signals through IFNLR1, IL-10R2, JAK1, TYK2, STAT, and IRF9 to 

form ISGF3, and then bind to ISRE to induce the expression of type III ISGs. Figure created 

using the BioRender (https://biorender.com/) under the Creative Commons licence 4.0. 

Abbreviations: IFNs, interferons; IFNAR, IFN-α receptor; ISGs, interferon-stimulated (up-

regulated) human genes; JAK1, Janus kinase 1;; STAT, signal transducers and activators of 

transcription; ISGF3, IFN-stimulated gene factor 3 complex; ISRE, IFN-stimulated response 

elements; IFNGR, IFN-γ receptor; JAK2, Janus kinase 2; GAF, IFN-γ activation factor; 

GAS, gamma-activated sequence promoter elements. IFNLR1, IFN-λ receptor 1; IL-10R2, 

interleukin-10 receptor 2; TYK2, tyrosine kinase 2; IRF9, IFN-regulatory factor 9. 

Most research on ISGs has focused on elucidating the role of ISGs in antiviral 

activities or discovering new ISGs within or across species [315,321,325,330,333,334]. The 

identification of ISGs can be achieved via various approaches. Associating gene expression 

with suppression of viral infection is a good strategy to identify ISGs with obvious antiviral 

performance, exemplified by the influenza inhibitor, MX dynamin like GTPase 1 (MX1), 

and the human immunodeficiency virus 1 inhibitor, MX dynamin like GTPase 2 (MX2) 

[332]. CRISPR screening is a loss-of-function experimental approach to identify ISGs 

required for IFN-mediated inhibition to viruses. It enabled the discovery of tripartite motif 

containing 5 (TRIM5), MX2 and bone marrow stromal cell antigen 2 (BST2) [335]. 

Monitoring the ectopic expression of ISGs is another instrumental way to find some ISGs 

(e.g., interferon stimulated exonuclease gene 20 (ISG20) and ISG15 ubiquitin like modifier 
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(ISG15)) that are individually sufficient for viral suppression [336]. Using RNA-sequencing 

[143] and fold change-based criterion to measure whether a target human gene is induced 

by IFN signalling now has become a well-accepted idea [334,337,338]. In most cases, a gene 

is defined as IFN stimulated (up-regulated) when its expression value is more than doubled 

with the presence of IFNs (fold change > 2) [315,334,339]. There are also many online 

databases to support IFN- or ISG-related research. For example, the Interferome 

(http://www.interferome.org) provides an excellent resource by compiling in vivo and in 

vitro gene expression profiles in the context of IFN stimulation [334]. The Orthologous 

Clusters of Interferon-stimulated Genes (OCISG, http://isg.data.cvr.ac.uk) demonstrates an 

evolutionary comparative approach of genes differentially expressed in type I IFN system 

for ten different species [315].  

We notice that the same human gene may show differential response to different 

IFNs in different tissues or cells [334]. Despite some well-investigated ISGs, the majority 

of classified ISGs only have limited up-regulation following IFN stimulations [315,334]. It 

means that the difference between ISGs and those human genes not significantly up-

regulated in the presence of IFNs (non-ISGs) may not be obvious especially when being 

assessed more generally. It should also be noted that, within non-ISGs, there are a group of 

genes down-regulated during IFN stimulations. We refer to them as interferon-repressed 

human genes (IRGs) and they constitute another major part of the IFN regulation system 

[315,340]. Collectively, the complex nature of the IFN-stimulated system results in 

knowledge that is far from comprehensive. 

In this study, we characterise the properties of human genes stimulated by IFN-α. 

We propose that it is feasible to make ISG predictions on human genes with a model only 

compiled from the knowledge of IFN-α responses in human fibroblast cells. To achieve these 

ends, we first constructed a refined high-confidence dataset consisting of 620 ISGs and 874 

non-ISGs by cross-checking the genes across multiple databases including the OCISG [315], 

Interferome [334], and Reference Sequence (RefSeq) [243]. The analyses were conducted 

primarily on our refined data using genome- and proteome-based features that were likely 

to influence the expression of human genes in the presence of IFN-α. Then based on the 

calculated features, we designed a machine learning framework with an optimised feature 

selection strategy for the prediction of putative ISGs in different IFN systems. Finally, we 

also developed an online web server that implemented our machine learning method at 

http://isgpre.cvr.gla.ac.uk/. 
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4.3 Methods 

4.3.1 Dataset curation 

In this study, we retrieved 2054 ISGs (up-regulated), 12379 non-ISGs (down-regulated or 

not differentially expressed), and 3944 unlabelled human genes (expression-limited genes 

(ELGs) with less than one count per million reads mapping across the three biological 

replicates [341,342]) from the OCISG (http://isg.data.cvr.ac.uk/) [315]. Gene clusters in the 

OCISG were built through the Ensembl Compara [343], which provided a thorough account 

of gene orthology based on whole genomes available in the Ensembl 103 [244]. Labels of 

these human genes were defined based on the fold change and a false discovery rate (FDR) 

following IFN-α treatments in human fibroblast cells. We searched the collected 18377 

entries against the RefSeq database (https://www.ncbi.nlm.nih.gov/refseq/) (ver. GRCh38) 

[243] to decipher features based on appropriate transcripts (canonical) [344] coding for the 

main functional isoforms of these human genes. It produced 1315, 7304, and 2217 results 

for ISGs, non-ISGs and ELGs, respectively. These 10836 human genes were well-annotated 

by multiple online databases and were used as the background dataset S1 in the analyses.  

For the purpose of generating a set of human genes with high confidence of being 

up-regulated and non-up-regulated in response to the IFN-α, we searched the recompiled 

8619 human genes (ISGs or non-ISGs) against the Interferome 2.0 

(http://www.interferome.org/) [334]. We filtered out ISGs without high up-regulation 

(Log2(Fold Change) > 1.0) or with obvious down-regulation (Log2(Fold Change) < -1.0) in 

the presence of type I IFNs. This procedure guaranteed a refined ISGs dataset with strong 

levels of stimulation induced by any type I IFNs and reduced biases driven by IRGs for the 

analyses and predictions. We filtered out non-ISGs showing enhanced expression after type 

I IFN treatments (Log2(Fold Change) > 0). The exclusion of these non-ISGs could 

effectively reduce the risk of involving false negatives in analyses and producing false 

positives in predictions. As a result, the refined dataset S2 contains 620 ISGs and 874 non-

ISGs with relatively high confidence.  

The training procedure in the machine learning framework was conducted on the 

balanced dataset S2’. It consisted of 992 randomly selected ISGs and non-ISGs from dataset 

S2. The remaining human genes in S2 were used for independent testing. Additionally, we 

also constructed another six testing datasets for the purpose of review and assessment. 

Dataset S3 contained 695 ISGs with low confidence compared to those ISGs in dataset S2. 
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Some of them could be non-ISGs or even IRGs in the type I IFN system. Dataset S4 

contained 1006 IRGs from the human fibroblast cell experiments. Dataset S5, S6, and S7 

were constructed based on records for experiments in type I, II, and III IFN systems from 

the Interferome [334]. The criterion for an ISG in the latter three datasets was a high level 

of up-regulation (Log2(Fold Change) > 1.0) while that for non-ISGs was no up-regulation 

after IFN treatments (Log2(Fold Change) < 0). The last testing dataset S8 was derived from 

our background dataset S1, containing 2217 ELGs. A breakdown of the aforementioned 

eight datasets is shown in Table 4.1. Detailed information of the human genes used in this 

study is provided in S4.1 Data. 

Table 4.1  A breakdown of datasets used in this study. 

Dataset Brief description IFN system ISGs Non-ISGs ELGs 

S1 Well-annotated human genes IFN-α in fibroblast cells 1315 7304 2217 

S2 Refined dataset with high confidence IFN-α in fibroblast cells 620 874 0 

S2’ Training subset of S2 IFN-α in fibroblast cells 496 496 0 

S2’’ Testing subset of S2 IFN-α in fibroblast cells 124 378 0 

S3 ISGs with low confidence in S1 IFN-α in fibroblast cells 695 0 0 

S4 IRGs divided from S1 IFN-α in fibroblast cells 0 1006 0 

S5 ISGs from the Interferome [334] Type I IFNs in all cells 1259 872 0 

S6 ISGs from the Interferome [334] Type II IFN in all cells 2229 755 0 

S7 ISGs from the Interferome [334] Type III IFN in all cells 33 1683 0 

S8 ELGs divided from S1 IFN-α in fibroblast cells 0 0 2217 

Abbreviations: ISGs, interferon-stimulated (up-regulated) human genes; non-ISGs, human genes not 

significantly up-regulated by interferons; IRGs, interferon-repressed (down-regulated) human genes, ELGs, 

human genes with limited expression in interferon-α experiments.  

4.3.2 Generation of discrete features 

We encoded 397 discrete features from aspects of evolution, nucleotide composition, 

transcription, amino acid composition, and network preference. From the perspective of 

evolution, we used the number of transcripts, open reading frames (ORFs) and protein-

coding exons in the canonical transcripts to quantify the alternative splicing process. Genes 

with more transcripts and ORFs have higher alternative splicing diversity to produce proteins 

with similar or different biological functions [255,345,346]. Genes with more protein-coding 

exons in their canonical transcripts can produce more complex alternative splicing products 

[288]. Here, duplication and mutation features were measured by the number of within 

species paralogues and substitutions [347,348]. These data were collected from the BioMart 
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(ver. February 2021) [244] to assess the selection on protein sequences and mutational 

processes affecting the human genome [259].  

From the perspective of nucleotide composition, we calculated the percent of adenine, 

thymine, cytosine, guanine, and their four-category combinations in the coding region of the 

canonical transcript. The first category measured the proportion of two different nitrogenous 

bases out of the implied four bases, e.g., GC-content. The second category also focused on 

the combination of two nucleotides but added the impact of phosphodiester bonds along the 

5’ to 3’ direction, e.g., CpG-content [257]. The third category calculated the occurrence 

frequency of 4-mers, e.g., ‘CGCG’ composition to involve some positional resolution [349]. 

The last category considered the co-occurrence of some short linear motifs (SLims) in the 

complementary DNA (SLim_DNAs). From the perspective of transcription, we calculated 

the usage of 61 coding codons and three stop codons in the coding region of the canonical 

transcripts. Codon usage biases are observed when there are multiple codons available for 

coding one specific amino acid. They can affect the dynamics of translation thus regulate 

the efficiency of translation and even the folding of the proteins [258,350].  

From the perspective of amino acid composition, we calculated the percentage of 20 

standard amino acids and their combinations based on their physicochemical properties 

[351]. Patterns in the amino acid level are considered to have a direct impact on the 

establishment of biological functions or to reflect the result of strong purifying selection 

[153]. Based on the chemical properties of the side chain, we grouped amino acids into seven 

classes including aliphatic, aromatic, sulfur, hydroxyl, acidic, amide, and basic amino acids. 

We also grouped amino acids based on geometric volume, hydropathy, charge status, and 

polarity, but found some overlaps among these features. For instance, amino acids with basic 

side chains are all positively charged. Aromatic amino acids all have large geometric 

volumes (volume > 180 cubic angstroms). Likewise, we also considered the co-occurrence 

of some SLims at the protein level. These co-occurring SLims in the protein sequence 

(SLim_AAs) may relate to potential mechanisms regulating the expression of ISGs [352]. 

When trying to measure the network preference for the gene products, we 

constructed a human PPI network based on 332,698 experimentally verified interactions 

with at least medium confidence (HIPPIE score > 0.63) from HIPPIE 2.2 [161]. Nodes and 

edges of this network are provided at http://isgpre.cvr.gla.ac.uk/. Eight network-based 

features including the average shortest path, closeness, betweenness, stress, degree, 

neighbourhood connectivity, clustering coefficient, and topological coefficient were 
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calculated from this network. Isolated nodes or proteins were not included in our network 

and were assigned zero value for all these eight features. The shortest path measures the 

average length of the shortest path between a focused node and others in the network. 

Closeness of a node is defined as the reciprocal of the length of the average shortest path. 

Proteins with a low value of the shortest paths or closeness are close to the centre of the 

network. Betweenness reflects the degree of control that one node exerted over the 

interactions of other nodes in the network [353]. Stress of a node measures the number of 

shortest paths passing through it. Proteins with a high value of betweenness or stress are 

close to the bottleneck of the network. Degree of a node counts the number of edges linked 

to it while neighbourhood connectivity reflected the average degree of its neighbours. 

Proteins with high degree or neighbourhood connectivity are close to the hub of the network. 

They are considered to play an important role in the establishment of the stable structure of 

the human interactome [354]. Clustering and topological coefficient measure the possibility 

of a node to form clusters or topological structures with shared neighbours. The former 

coefficient can be used to identify the modular organisation of metabolic networks [355] 

while the latter one may be helpful to find out virus mimicry targets [356]. 

4.3.3 Generation of categorical features 

In this study, categorical features were used to check the occurrence of SLims in the genome 

and proteome. SLim_DNAs constructed in this study contained three to five random 

nucleotides, producing 708,540 alternative choices. SLim_DNAs with no restrictions on 

their first or last position were not taken into consideration as their patterns could be 

expressed in a more concise way. A SLim_DNA was picked out to encode a binary feature 

when its occurrence level in the coding region of the canonical ISG transcripts was 

significantly higher than that for non-ISGs (Pearson's chi-squared test: p < 0.05). SLim_AAs 

were constructed with three to four fixed amino acids separated by putative gaps. The gap 

could be occupied by at most one random amino acid, producing 1,312,000 alternative 

choices. Likewise, binary features were prepared for SLim_AAs showing significant 

enrichment in ISGs products than in non-ISG products (Pearson's chi-squared test: P < 0.05). 

Since there were lots of results rejecting the null-hypothesis, we adopted the Benjamini-

Hochberg correction procedure to avoid type I error [263]. Additionally, we also encoded 

two features to check the co-occurrence or absence of multiple SLim_DNAs and SLim_AAs. 

This co-occurrence status might be a better representation of functional sites composed of 
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short stretches of adjacent nucleobases or amino acids surrounding SLim_DNAs or 

SLim_AAs [153]. 

4.3.4 Assessment of associations between feature representation and IFN-
triggered stimulations 

We obtained 8619 human genes with expression data from the OCISG [315]. 4111 of them 

were annotated with a positive Log2(Fold Change) ranging from 0 to 12.6, which meant they 

were up-regulated after IFN-α treatments in human fibroblast cells. In order to associate the 

feature representation with IFN-induced stimulation (Log2(Fold Change) > 0), we first 

introduced a 0.1-length sliding-window to group human genes with similar expression in the 

IFN experiments. For instance, the first group contains 1116 human genes with a Log2(Fold 

Change) ranging from 0 to 0.1. Then the representation values of a focused feature 𝑓 are 

averaged within each group, denoted as 𝑉"7. Finally, Pearson’s correlation coefficient (PCC) 

was introduced for the measurement: 

𝑃𝐶𝐶(𝑓) =
1

𝑛 − 1z (
𝐿𝐹𝐶. − 𝑀)

𝑆𝐷)
) × (

𝑉"7 − 𝑀|
𝑆𝐷|

)
1

.}+
 (4.1) 

where 𝑛 is the number of divided parts that equals to 126 in this study; 𝐿𝐹𝐶. and 𝑉"7 are the 

average value of Log2(Fold Change) and feature representation in the 𝑖-th group; 𝑀) and 

𝑆𝐷) are the mean and standard deviation of Log2(Fold Change), which is set as 6.4 and 3.7 

respectively in this study; 𝑀| and 𝑆𝐷| are the mean and standard deviation of 126 𝑉~  that 

reflect the representation of the focused feature. To make fair comparisons among features 

with different scales, we normalised them based on the major value of their representations: 

𝑁𝑜𝑟𝑚(𝑓) =

⎩
⎨

⎧
				1, 𝑓 > 𝑈𝐵(𝑓)
𝑓 − 𝐿𝐵(𝑓)

𝑈𝐵(𝑓) − 𝐿𝐵(𝑓)
				0, 𝑓 < 𝐿𝐵(𝑓)

, 𝐿𝐵(𝑓) < 𝑓 < 𝑈𝐵(𝑓) (4.2) 

where 𝐿𝐵(𝑓) and 𝑈𝐵(𝑓) are the lower and upper bound representing the 5th and 95th 

percentile within representation values for the target feature. The representation of feature 

was considered to have a stronger positive/negative association with IFN-α-triggered 

stimulations if the PCC calculated from the normalised features was closer to 1.0/-1.0 and 

the p value calculated by the Student t-test was lower than 0.05. 
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4.3.5 Machine learning and optimisation 

We designed a machine learning framework for the prediction of ISGs. Firstly, all features 

were encoded and normalised based on their major representations (Equation 4.2). Then we 

used an under-sampling procedure [265] to generate a balanced dataset from dataset S2 for 

training and modelling. Support vector machine (SVM) with radial basis function (RBF) 

[200] was used as the basic classifier. It maps the normalised feature space to a higher 

dimension to generate a space plane to better classify the majority of positive and negative 

samples. Since there were usually lots of noisy data distributed in the feature space, it was 

necessary to remove disruptive features. This effectively reduced the dimensionality of the 

feature space and made it easier for the SVM model to generate a more appropriate 

classification plane that involved fewer false positives and false negatives. Here, we propose 

a subtractive iteration algorithm driven by the change of area under the receiver operating 

characteristic curve (AUC). It is close to a backward feature elimination strategy [357] but 

reserves non-disruptive features in each iteration (Fig 4.2). In each iteration, we traversed 

the features and removed those that do not improve the AUC of the prediction results. 

Theoretically, this algorithm can greatly optimise the feature space and remove all disruptive 

features after multiple iterations. In the testing procedure, we encoded the optimum features 

for testing samples and place them in the optimised feature space. Samples with longer 

distance to the optimised classification plane indicated a stronger signal of being ISGs or 

non-ISGs. They were more likely to get higher prediction scores (close to 0 or 1) from the 

SVM model. 

 
Fig 4.2 The pseudo-code of the AUC-driven subtractive iteration algorithm. 

Abbreviations: AUC, area under the receiver operating characteristic curve. 

BEGIN 
Initialisation: Balanced dataset !" = {(1, ()

"), . . (1, (,"), (0, (,.)
" )… (0, (0,

" )}, dimension of the feature 
vector 2", machine learning algorithm 3, number of disruptive feature 4" = 2", and iteration round 5 = 0. 

While 67 > 7 (9:;	=>?@A>=BC): 
    1) Use five-fold cross validation on dataset !D, prediction ED = 3(!D); 
    2) Evaluate the ED with the criterion of AUC; 
    3) Remove one feature from feature vector (D and generate a temporary dataset FD; 
    4) Use five-fold cross validation on dataset FD, prediction E′D = 3(FD); 
    5) Evaluate the E′D with the criterion of AUC; 
    6) Repeat 4) and 5) for the traversal of 2D features; 
    7) Traverse (D and remove H features helpful to improve AUC of E′D, 4D = H; 
    8) Update dataset !D.) = IJ1, ()

D.)K, . . J1, (,D.)K, J0, (,.)
D.) K… J0, (0,

D.)KL, 2D.) = 2D − H. 
End 
Output: dataset !DN) encoded by 2DN) features. 

END 
 
 
 



DEFINING FEATURES OF INTERFERON-ALPHA-STIMULATED HUMAN GENES 
	

80 

4.3.6 Performance evaluation 

In this study, the prediction results were evaluated with three threshold-dependent criteria 

including sensitivity (SN), specificity (SP), and Matthews correlation coefficient (MCC) 

[279] and two threshold-independent criteria: SN_n and AUC. SN and SP were used to 

assess the quality of the machine learning model in recognising ISGs and non-ISGs 

respectively while MCC provided a comprehensive evaluation for both positives and 

negatives. The number of ‘n’ in the SN_n criterion was determined based on the number of 

ISGs used for testing. It was used to measure the upper limit of the prediction model as well 

as to check the existence of important false positives close to the class of ISGs from the 

perspective of data expression. Finally, AUC was a widely used criterion to evaluate the 

prediction ability of a binary classifier system. The group of interest was almost 

unpredictable in a specific binary classifier system if the AUC of the classifier was close to 

0.5. 

4.4 Results 

4.4.1 Evolutionary characteristics of ISGs  

In this study, we constructed a dataset consisting of 620 ISGs and 874 non-ISGs (dataset S2) 

from 10836 well-annotated human genes (dataset S1). Human genes in dataset S2 were 

considered to have higher confidence based on their records in both the OCISG [315] and 

Interferome [334] databases. Human genes in both dataset S1 or S2 were evolutionarily 

unrelated as they were retrieved from the OCISG [315] that compiled clusters of orthologous 

genes based on whole-genome alignments. However, they might still have inherent 

characteristics that resulted in their different expressions in response to IFNs-α. Here, we 

explored features relating to alternative splicing [345], duplication [347] and mutation [348]. 

We used the number of ORFs and transcripts in a human gene to represent the diversity of 

alternative splicing for a human gene and use the number of protein-coding exons in the 

canonical transcript to reflect the complexity of the alternative splicing. By calculating the 

average number of ORFs with respect to different Log2(Fold Change) levels of expression 

(window size = 0.1) in the presence of IFN-α, we found that human genes with higher 

Log2(Fold Change) tended to have less ORFs (PCC = -0.287, Fig 4.3A). Although small 

number of ORFs seemed to be associated with obvious IFN-α up-regulation, it was not a 

necessary condition. Compared to the background human genes in dataset S1, we found that 

ISGs tended to have more ORFs, but these differences did not reach a statistical significance 
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(Mann-Whitney U test: p > 0.05). As for the latter two features related to the transcripts and 

protein-coding exons, similar negative relationships were observed when Log2(Fold Change) 

increased (Fig 4.3B & 5.3C). Particularly, as the lowest value of Log2(Fold Change) for 

human genes not differentially expressed only reached around -0.9. Points placed left to the 

boundary (x = -0.9) are all IRGs. They are generally placed below those non-ISGs with a 

Log2(Fold Change) around zero, suggesting the three features (number of ORFs, transcripts 

and exons) are all differentially represented in some IRGs compared to the remaining non-

ISGs. This distribution also indicates that some IRGs had similar feature patterns to ISGs, 

especially to those highly up-regulated in the presence of IFN-α (right part of the scatter 

plots in Fig 4.3).  

 
Fig 4.3 The average representation of features associated with IFN-α stimulations in 

human fibroblast cells. (A) The number of ORFs and (B) transcripts as measurements of 

the diversity of alternative splicing process. (C) The number of protein-coding exons in the 

canonical transcript as a measurement of the complexity of alternative splicing process. 

These three plots are drawn based on the expression data of 8619 human genes with valid 

fold change in the IFN-α experiments (S4.1 Data). ELGs are excluded as they had 

insufficient read coverage to determine a fold change in the experiments. Points in the scatter 

plot are located based on the average feature representation of genes with similar expression 

performance in experiments. Abbreviations: IFN, interferon; ORFs, open reading frames; 

ELGs, human genes with limited expression in IFN-α experiments. 

To determine whether ISGs tend to originate from duplications, we counted the 

number of within human paralogs of each gene (Fig 4.4A). The results showed that there 

were around 22% of singletons in our main dataset, whilst ISGs had 15% and non-ISGs had 

26%. The result of a Mann-Whitney U test [358] indicated that the number of paralogs was 
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significantly under-represented in ISGs compared to the background human genes in dataset 

S1 (M1 = 10.5, M2 = 11.5, p = 8.8E-03). We hypothesized that such a difference was mainly 

caused by the imbalanced distribution of singletons in ISGs and non-ISGs. The differences 

became smaller when singletons are excluded from the test (M1 = 12.4, M2 = 14.6, p > 0.05). 

Next, we used the number of non-synonymous substitutions per non-synonymous site (dN) 

and synonymous substitutions per synonymous site (dS) within human paralogues as a 

measurement of differences in mutational signatures between different classes [359]. As 

shown in Fig 4.4B, non-synonymous substitutions are more frequently observed in ISGs 

than in background human genes (M1 = 0.62, M2 = 0.55, p = 4.0E-03). On the other hand, 

ISGs also have a higher frequency of synonymous substitutions than background human 

genes (M1 = 37.7, M2 = 34.6, p = 1.1E-02) (Fig 4.4C) but the difference is not as obvious as 

for non-synonymous substitutions. In Fig 4.4D, the distribution of dN/dS ratios within 

human paralogues indicates that most human genes are constrained by natural selection but 

ISGs, in general, tend to be less conserved (M1 = 0.036, M2 = 0.045, p = 8.3E-03). When 

eliminating the influence of duplication events, ISGs are still less conserved than non-ISGs 

but the difference in the dN/dS ratio is not significant (M1 = 0.053, M2 = 0.031, p > 0.05). 

 
Fig 4.4 Differences in the evolutionary constraints of human genes. (A) Paralogues 

within Homo sapiens. (B) Non-synonymous substitutions within human paralogues. (C) 

Synonymous substitutions within human paralogues. (D) dN/dS ratios within human 

paralogues. Here, ISGs and non-ISGs are taken from dataset S2 while the background human 

genes are from dataset S1 (Table 4.1). Mann-Whitney U tests are applied to compare the 

feature distribution of different classes. Boxes in the plot represent the major distribution of 

values (from the first to the third quartile); outliers are added for values higher than two-fold 

of the third quartile; cross symbol marks the position of the average value including the 

outliers; upper and lower whiskers show the maximum and minimum values excluding the 

outliers. Abbreviations: ISGs, interferon-α-stimulated (up-regulated) genes; non-ISGs, 
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human genes not significantly up-regulated by interferon-α; dN, non-synonymous 

substitutions per non-synonymous site; dS, synonymous substitutions per synonymous site. 

4.4.2 Differences in the coding region of the canonical transcripts 

Compared to general profile features (e.g., number of ORFs), the sequences themselves 

provide more direct mapping to the protein function and structure [360]. Here, we encoded 

344 discrete features and 7026 categorical features from complementary DNA (cDNA) of 

the canonical transcript to explore features specific to ISGs. We divided the discrete features 

into four categories and compared their representations among three different groups of 

human genes: recompiled ISGs from dataset S2, recompiled non-ISGs from dataset S2, and 

the background human genes from dataset S1 (Fig 4.5). Firstly, guanine and cytosine were 

both more depleted in ISGs than non-ISGs, leading to an under-representation of GC-content 

in ISGs (Mann-Whitney U test: M1 = 52%, M2 = 55%, p = 2.3E-11). This attribute was 

antithetical to the GC-biased gene conversion (gBGC), making ISGs less stable with weak 

evolutionary conservation (Fig 4.4) [361]. Additionally, the under-representation of GC-

content also influenced the representation of other dinucleotide features. Among all 

dinucleotide depletions in ISGs, CpG composition was ranked the first followed by GpG 

and GpC composition (p = 2.9E-14, 4.9E-13 and 1.2E-10, respectively). In turn, adenine and 

thymine-related dinucleotide compositions, exemplified by ApT and TpA were more 

enriched in ISGs than non-ISGs (p = 8.0E-10 and 8.5E-10, respectively).  

Next, we compared the usage of 64 different codons in the third category as their 

frequencies influence transcription efficiency [350]. Differences between ISGs and 

background human genes were observed in codons for 11 amino acids including leucine (L), 

isoleucine (I), valine (V), serine (S), threonine (T), alanine (A), glutamine (Q), lysine (K), 

glutamic acid (E), arginine (R), and glycine (G). The most significant difference was 

observed in the usage of codon ‘AGA’. Among all arginine-targeted alternative codons, 

codon ‘AGA’ was usually favoured, and its usage reached an estimated 25% in ISGs, but 

reduced to 22% in the background human genes (p = 1.4E-05). It was even significantly 

lower in non-ISGs, at 18% (p = 1.9E-13). On the other hand, compared to background human 

genes, the codon ‘CAG’ coding for amino acid ‘Q’ was the most under-represented in ISGs. 

It was less favoured by ISGs than non-ISGs (M1 = 72%, M2 = 78%, p = 7.3E-13) although 

it dominated in coding patterns. As for the three stop codons, comparing with background 

human genes, the usage of the ochre stop codon (‘TAA’) was over-represented in ISGs (M1 

= 28%, M2 = 33%, p = 9.7E-03). In this category of codon usage, the features with different 



DEFINING FEATURES OF INTERFERON-ALPHA-STIMULATED HUMAN GENES 
	

84 

frequencies between ISGs and background human genes became more discriminating when 

comparing ISGs with non-ISGs. Significant differences in codon usages between ISGs and 

non-ISGs were widely observed except for methionine (M) and tryptophan (W). Hence, 

despite the limited differences of codon usages between ISGs and the background human 

genes, these features were useful for discriminating ISGs from non-ISGs.  

In the last category, we calculated the occurrence frequency of 256 nucleotide 4-

mers to add some positional resolution for finding and comparing interesting organisational 

structures [349]. Among the 256 4-mers, 46 were differentially represented between ISGs 

and background human genes (S4.2 Data). Most of these 4-mers were over-represented by 

ISGs except two with the pattern ‘TAAA’ and ‘CGCG’. Interestingly, the feature of ‘TAAA’ 

composition became a positive factor when comparing ISGs and non-ISGs (M1 = 4.1%, M2 

= 3.7%, p = 4.1E-06), suggesting it might be a good feature to discern potential or incorrectly 

labelled ISGs. We found six nucleotide 4-mers: ‘ACCC’, ‘AGTC’, ‘AGTG’, ‘TGCT’, 

‘GACC’, and ‘GTGC’ were over-represented in ISGs when compared to background human 

genes but they were not differentially represented when comparing ISGs with non-ISGs. 

These six features might be inherently biased for some reasons and were not powerful 

enough to distinguish ISGs from non-ISGs. In addition to the aforementioned 40 features 

(except 4-mer ‘ACCC’, ‘AGTC’, ‘AGTG’, ‘TGCT’, ‘GACC’, and ‘GTGC’) that were 

differentially represented in ISGs compared to background human genes, we found a further 

39 features nucleotide 4-mers differentially represented between ISGs and non-ISGs (S4.2 

Data).  

To check the effect of these aforementioned 343 features on the level of stimulation 

in the IFN system (Log2(Fold Change) > 0), we calculated the PCC for the normalised 

features (Equation 4.2) and found 106 features were positively related to the increase of 

fold change, and 34 features were suppressed when human gene were more up-regulated 

after IFN-α treatments (Student t-test: p < 0.05) (S4.3 Data). ApA composition showed the 

most obvious positive correlation with stimulation level (PCC = 0.464, p = 8.8E-06) while 

negative association between the representation of 4-mer ‘CGCG’ and IFN-α-induced up-

regulation was the most significant (PCC = -0.593, p = 3.2E-09). Human genes with higher 

up-regulation in the presence of IFN-α contained more codons ‘CAA’ rather than ‘CAG’ for 

coding amino acid ‘Q’. The depletion of GC-content, especially cytosine content, promotes 

the suppression of many nucleotide compositions in the cDNA, e.g. CpG composition. 
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Fig 4.5 Differences in the representation of discrete features encoded from coding 

regions of the canonical transcript. Mann-Whitney U tests were applied for hypothesis 

testing and the results are provided in the S4.2 Data. Here, ISGs and non-ISGs are taken 

from dataset S2 while the background human genes are from dataset S1 (Table 4.1). 

Abbreviations: ISGs, interferon-α-stimulated (up-regulated) human genes; non-ISGs, 

human genes not significantly up-regulated by interferon-α. 

To find conserved sequence patterns related to gene regulations [362], we checked 

the existence of 2940, 44100 and 661500 short linear nucleotide motifs (SLim_DNAs) 

consisting of three to five consecutive nucleobases in the group of ISGs and non-ISGs. By 

using a positive 5% difference in the occurrence frequency as cut-off threshold, we found 

7884 SLim_DNAs with a maximum difference in representation around 15%. After using 

Pearson's chi-squared tests and Benjamini-Hochberg correction to avoid type I error in 

multiple hypotheses [263], 7025 SLim_DNAs remained with an adjusted p-value lower than 

0.01 (S4.4 Data), hereon referred to as flagged SLim_DNAs. The differentially represented 

7025 SLim_DNAs were ranked according to the adjusted p-value. As shown in Fig 4.6A, 

dinucleotide ‘TpA’ dominates in the top 10, top 100, top 1000, and all differentially 

represented SLim_DNAs even if TpA representation is suppressed in the cDNA of genes’ 

canonical transcripts compared to other dinucleotides. Dinucleotide ‘ApT’ and ‘ApA’ are 

also frequently observed in the flagged SLim_DNAs but their occurrences do not show 

significant difference in the top 100 SLim_DNAs (Pearson's chi-squared test: p > 0.05). GC-
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related dinucleotides, e.g., ‘CpC’, ‘GpC’ and ‘GpG’ are rarely observed in the flagged 

SLim_DNAs especially in the top 10 or top 100. In view of these, we hypothesize that the 

differential representation of nucleotide compositions influences and reflects on the pattern 

of SLim_DNAs in ISGs. By checking the co-occurrence status of the flagged SLim_DNAs, 

we found that these sequence patterns had a cumulative effect in distinguishing ISGs from 

non-ISGs especially when the number of cooccurring SLim_DNAs reached around 5320 

(Pearson's chi-squared test: p = 7.9E-13, Fig 4.6B). There were eight (~1.3%) ISGs in the 

dataset S2 containing all the flagged 7025 SLim_DNAs. Their up-regulation after IFN 

treatment were generally low with a fold change fluctuating around 2.2. However, some of 

these eight genes such as desmoplakin (DSP) were clearly highly up-regulated in endothelial 

cells isolated from human umbilical cord veins after not only IFN-α treatments (fold change 

= 11.1) but also IFN-β treatments (fold change = 13.7). We also found some non-ISGs (e.g., 

hemicentin 1 (HMCN1)) and ELGs (e.g. tudor domain containing 6 (TDRD6)) containing 

the flagged SLim_DNAs, but their frequencies were lower than that in ISGs. Although there 

is an obvious imbalance between the number of ISGs and non-ISGs in the human genome 

[9-11], the curve for the background human genes in Fig 4.6B is still closer to that for ISGs 

rather than that for non-ISGs. It suggests that some genetic patterns are widely represented 

in the coding region of human genes, making them potentially up-regulated in the IFN-α 

system. 

 
Fig 4.6 The pattern of SLim_DNAs in the coding region of the canonical transcripts. 

(A) Influence of dinucleotide compositions on the flagged SLim_DNAs. (B) The co-

occurrence status of SLim_DNAs in different human genes. Ranks in (A) are generated 

based on the adjust p value given by Pearson's chi-squared tests after Benjamini-Hochberg 

correction procedure [264]. Detailed results of the hypothesis tests are provided in S4.4 Data. 

Here, ISGs and non-ISGs are taken from dataset S2 while the background human genes are 

from dataset S1 (Table 4.1). Abbreviations: ISGs, interferon-α-stimulated (up-regulated) 
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human genes; non-ISGs, human genes not significantly up-regulated by interferon-α; 

SLim_DNAs, short linear nucleotide motifs; cDNA, complementary DNA. 

4.4.3 Differences in the protein sequence 

We used the protein sequences generated by the canonical transcript to extract features at 

the proteomic level. In addition to the basic composition of 20 standard amino acids, we 

considered 17 additional features related to physicochemical (e.g., hydropathy and polarity) 

or geometric properties (e.g., volume) [363,364]. We found several amino acids that are 

either enriched or depleted in ISG products compared to background human proteins, which 

were produced by genes in dataset S1 (Fig 4.7). The differences were even more marked 

between protein products of ISGs and non-ISGs, highlighting some differences that were 

not observed when comparing ISG products to the background human proteins (e.g., 

isoleucine composition). The differences observed in the amino acid compositions were at 

least in part associated with the patterns previously observed in features encoded from 

genetic coding regions. For example, asparagine (N) showed significant over-representation 

in ISG products compared to non-ISG products or background human proteins (Mann-

Whitney U test: p = 2.8E-12 and 1.2E-03, respectively). This was expected as there are only 

two codons, i.e., ‘AAT’ and ‘AAC’ coding for amino acid ‘N’, and dinucleotide ‘ApA’ 

showed a remarkable enrichment in the coding region of ISGs. A similar explanation could 

be given for the relationship between the deficiency of GpG content and amino acid ‘G’. 

The translation of amino acid ‘K’ was also influenced by ApA composition but was not 

significant due to the mild representation of dinucleotide ‘ApG’ in the genetic coding region. 

Additionally, as previously mentioned, ISGs showed a significant depletion in the CpG 

content, and consequently, the amino acid ‘A’ and ‘R’ in ISG products were significantly 

under-represented. Cysteine (C) was not frequently observed in human proteins but still 

showed a relatively significant enrichment in ISG products (M1 = 2.3%, M2 = 2.5%, p = 

1.8E-03).  

When focusing on the composition of amino acids grouped by physicochemical or 

geometric properties, we found some features differentially represented between ISG 

products and background human proteins. The result showed that hydroxyl (amino acid ‘S’ 

and ‘T’), amide (amino acid ‘N’ and ‘Q’), or sulfur amino acids (amino acid ‘C’ and ‘M’) 

were more abundant in ISG products compared to the background human proteins (Mann-

Whitney U test: p = 0.04, 1.0E-03 and 0.02, respectively). Small amino acids (amino acid 

‘N’, ‘C’, ‘T’, aspartic acid (D) and proline (P), the volume ranges from 108.5 to 116.1 cubic 
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angstroms) were more frequently observed in ISG products than in background human 

proteins (M1 = 22.1%, M2 = 21.7%, p = 0.02). These differences became more marked when 

comparing the representation of these features between ISG and non-ISG products. For 

example, features relating to chemical properties of the side chain (e.g., aliphatic), charge 

status and geometric volume showed differences between proteins produced by ISGs and 

non-ISGs. Some features such as neutral amino acids that include amino acid ‘G’, ‘P’, ‘S’, 

‘T’, histidine (H) and tyrosine (Y) were not differentially represented between ISG and non-

ISG products, but they indicated obvious association with the change of IFN-α-triggered 

stimulations (PCC = -0.556, p = 4.1E-08) (S4.3 Data).  

 
Fig 4.7 Differences in the representation of discrete features encoded from protein 

sequences. Mann-Whitney U tests are applied for hypothesis testing and the results were 

provided in the S4.2 Data. Here, ISGs and non-ISGs are taken from dataset S2 while the 

background human genes are from dataset S1 (Table 4.1). Aliphatic group: amino acid ‘A’, 

‘G’, ‘I’, ‘L’, ‘P’ and ‘V’; aromatic/huge group: amino acid ‘F’, ‘W’ and ‘Y’ (volume > 180 
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cubic angstroms); sulfur group: amino acid ‘C’ and ‘M’; hydroxyl group: amino acid ‘S’ and 

‘T’; acidic/negative_charged group: amino acid ‘D’ and ‘E’; amide group: amino acid ‘N’ 

and ‘Q’; positive_charged group: amino acid ‘R’, ‘H’ and ‘K’; hydrophobic group: amino 

acid ‘A’, ‘C’, ‘I’, ‘L’, ‘M’, ‘F’, ‘V’, and ‘W’ that participates to the hydrophobic core of the 

structural domains [351]; neutral group: amino acid ‘G’, ‘H’, ‘P’, ‘S’, ‘T’ and ‘Y’; 

hydrophilic group: amino acid ‘R’, ‘N’, ‘D’, ‘Q’, ‘E’ and ‘K’; Tiny group: amino acid ‘G’, 

‘A’ and ‘S’ (volume < 90 cubic angstroms); small group: amino acid ‘N’, ‘D’, ‘C’, ‘P’ and 

‘T’ (volume ranged from 109 to 116 cubic angstroms); medium group: amino acid ‘Q’, ‘E’, 

‘H’ and ‘V’ (volume ranged within 138 to 153 cubic angstroms); large group: amino acid 

‘R’, ‘I’, ‘L’, ‘K’ and ‘M’ (volume ranged within 163 to 173 cubic angstroms); uncharged 

group: the remaining 15 amino acids except electrically charged ones; polar group: amino 

acid ‘R’, ‘H’, ‘K’, ‘D’, ‘E’, ‘N’, ‘Q’, ‘S’, ‘T’ and ‘Y’; nonpolar group: the remaining 10 

amino acids except polar ones. Abbreviations: ISG, interferon-α-stimulated (up-regulated) 

human genes; non-ISG, human genes not significantly up-regulated by interferon-α. 

We then searched the sequence of ISG products against that of non-ISG products to 

find conserved short linear amino acid motifs (SLim_AAs), which might have resulted from 

strong purifying selection [153]. As opposed to the analysis on the genetic sequence, we 

only obtained 19 enriched sequence patterns with a Pearson's chi-squared p value ranging 

from 1.5E-04 to 0.02 (Table 4.2). These SLim_AAs were greatly influenced by four polar 

amino acids: ‘K’, ‘N’, ‘E’ and ‘S’, and one nonpolar amino acid: ‘L’. Some of these 

SLim_AAs, for example, SLim ‘NVT’ and ‘S-N-E’, were clearly over-represented in ISG 

products compared to background human proteins and could be used as features to 

differentiate ISGs from background human genes. The third column in Table 4.2 indicates 

a number of patterns that are lacking in non-ISG products and hence may be the reason for 

the lack of up-regulation in the presence of IFN-α. Particularly, we noticed that SLim ‘KEN’ 

was a destruction motif that could be recognised or targeted by anaphase promoting complex 

(APC) for polyubiquitination and proteasome-mediated degradation [365,366]. Results 

shown in Fig 4.8A illustrate that the co-occurrence of differentially represented SLim_AAs 

has a cumulative effect in distinguishing ISGs from non-ISGs. This cumulative effect can 

be achieved with only two random SLim_AAs (Pearson's chi-squared test: p = 4.6E-10). The 

bias in the co-occurring SLim_AAs in the background human proteins towards a pattern 

similar to non-ISG products further proves the importance of these 19 SLim_AAs. However, 

their co-occurrence is not associated with the level of IFN-triggered stimulations (PCC = 

0.015, p > 0.05) (Fig 4.8B). 
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Regions that lack stable structures under normal physiological conditions within 

proteins are termed intrinsically disordered regions (IDRs). They play an important role in 

cell signalling [367]. Compared with ordered regions, IDRs are usually more accessible and 

have multiple binding motifs, which can potentially bind to multiple partners [293]. 

According to the results calculated by the IUPred [267], we found 6721, 10510, and 119071 

IDRs (IUpred score no less than 0.5) in proteins produced by ISGs, non-ISGs and 

background human genes respectively. We hypothesized that enriched SLims widely 

detected in IDRs might be important for human protein-protein interactions or potentially 

virus mimicry [356]. For instance, in ISG products, 29 out of 71 SLim ‘S-N-T’ were 

observed in IDRs (~40.8%), 14.9% higher than that in non-ISG products (Table 4.2). This 

difference reflected the importance of SLim ‘S-N-T’ for target specificity of IFN-α-induced 

PPIs [321] even if it was not statistically significant. By contrast, the conditional frequency 

of SLim ‘S-N-E’ discovered in IDRs of ISG and non-ISG products were almost the same, 

indicating that SLim ‘S-N-E’ might have an association with some inherent attributes of 

ISGs but was less likely to be involved in IFN-α-induced PPIs. SLim ‘KEN’ in IDRs also 

showed some interesting differences: in non-ISG products, 41.9% of SLim ‘KEN’ were 

observed in IDRs, 14.6% higher than that in ISG products, which provided an effective 

approach to distinguish ISGs from non-ISGs. When SLim ‘KEN’ is discovered in the 

ordered region of a protein sequence, statistically, the protein is more likely to be produced 

by an ISG, but this assumption is reversed if the SLim is located in an IDR (Pearson's chi-

squared tests: p = 0.03). Despite the relatively low conditional frequency of SLim ‘KEN’ in 

the IDRs of ISG products, these SLim_AAs in the IDR are more likely to be functionally 

active than those falling within ordered globular regions [368].  

Table 4.2 Representation of SLims in protein sequences and their IDRs. 

SLimsa 
Frequency in 
ISG/non-ISG 

productsb 

Bias based on the 
frequency in human 

proteins 
P valuec 

Conditional frequency in IDRs of 
ISG/non-ISG products/background 

human proteinsc,d 
P valuee 

S-N-E 15.2%/8.8% +47.6%/-14.2% 1.5E-04 39.4%/40.3%/33.4% 0.90 

ENE 15.0%/8.8% +20.9%/-29.0% 2.1E-04 37.6%/42.9%/40.9% 0.49 

S-N-T 11.5%/6.2% +21.9%/-34.2% 2.9E-04 40.8%/25.9%/27.3% 0.08 

SVI 15.2%/9.2% +37.6%/-16.9% 3.6E-04 18.1%/11.3%/15.2% 0.21 

L-NL 23.7%/16.4% +13.2%/-21.9% 4.0E-04 10.2%/11.9%/9.4% 0.65 

L-KL 30.8%/22.8% +18.0%/-12.8% 4.9E-04 12.6%/10.1%/8.7% 0.43 

NVT 13.7%/8.5% +52.1%/-6.1% 1.2E-03 18.8%/21.6%/15.4% 0.66 

ISS 20.5%/14.3% +20.7%/-15.7% 1.7E-03 29.9%/25.6%/23.8% 0.44 

LK-K 24.4%/17.7% +24.5%/-9.3% 1.8E-03 14.6%/20.6%/20.0% 0.16 

IK-E 14.2%/9.0% +34.2%/-14.5% 1.8E-03 26.1%/16.5%/25.8% 0.13 

EK-I 15.8%/10.4% +31.0%/-13.7% 2.0E-03 15.3%/20.9%/16.0% 0.32 
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K-E-S 16.9%/11.4% +21.9%/-17.7% 2.4E-03 36.2%/36.0%/39.2% 0.98 

LNS 17.7%/12.1% +21.2%/-17.1% 2.4E-03 20.0%/25.5%/20.5% 0.34 

KEN 16.0%/10.6% +33.5%/-11.0% 2.4E-03 27.3%/41.9%/34.8% 0.03 

L-N-L 22.6%/17.5% +14.3%/-11.4% 1.5E-02 10.7%/11.8%/9.5% 0.78 

K-E-L 25.8%/20.5% +25.7%/-0.3% 1.5E-02 18.8%/17.9%/18.7% 0.84 

KLL 27.1%/21.9% +9.9%/-11.4% 1.9E-02 11.3%/8.4%/9.9% 0.35 

LKE 29.8%/24.5% +18.2%/-3.0% 2.1E-02 19.5%/24.8%/20.1% 0.20 

LK-L 33.2%/27.7% +15.0%/-4.2% 2.1E-02 7.8%/12.4%/10.0% 0.11 

a: the dash symbol in SLims indicates one position occupied by a standard amino acid; b: here, ISGs and non-

ISGs are taken from dataset S2 while the background human genes use samples in dataset S1 (Table 4.1); c: 

p values in this column use Pearson's chi-squared tests to measure the difference of SLim occurrences in ISG 

and non-ISG products; d:  frequencies in this column are calculated based on a condition that corresponding 

SLims are observed in the protein sequence; e: p values in this column use Pearson's chi-squared tests to 

measure the difference of SLim occurrences in IDRs of ISG and non-ISG products. Abbreviations: SLims, 

short linear motifs; ISGs, interferon-α-stimulated (up-regulated) human genes; non-ISGs, human genes not 

significantly up-regulated by interferon-α; IDRs, intrinsically disordered regions. 

 
Fig 4.8 Representation of co-occurring SLim_AAs in our main dataset. (A) The co-

occurrence status of SLim_AAs in different classes. (B) Relationship between co-occurrence 

of the marked SLim_AAs and Log2(Fold Change) after IFN-α treatments. Here, ISGs and 

non-ISGs are taken from dataset S2 while the background human genes are from dataset S1 

(Table 4.1). Points in (B) are located based on the average feature representation of genes 

with similar expression performance in IFN-α experiments. Abbreviations: IFN, interferon; 

ISGs, interferon-α-stimulated human genes; non-ISGs, human genes not significantly up-

regulated by IFN-α; SLim_AAs, short linear amino acid motifs. 
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4.4.4 Differences in network profiles 

We constructed a network with 332,698 experimentally verified interactions among 17603 

human proteins (medium confidence, HIPPIE score > 0.63) from the HIPPIE 2.0 database 

[161]. 10169 out of 10836 human proteins from our background dataset S1 were included 

in it. Nodes and edges of this network can be downloaded from our webserver at 

http://isgpre.cvr.gla.ac.uk/. Based on this network, we calculated eight features including the 

average shortest path, closeness, betweenness, stress, degree, neighbourhood connectivity, 

clustering coefficient, and topological coefficient. As illustrated in Fig 4.9, ISG products 

tend to have higher values of betweenness and stress than background human proteins 

(Mann-Whitney U test: p = 0.01, and 0.03, respectively), which means they are more likely 

to locate at key paths connecting different nodes of the PPI network. Some ISG products 

with high values of betweenness and stress, e.g., tripartite motif containing 25 (TRIM25), 

can be considered as the shortcut or bottleneck of the network and play important roles in 

many PPIs including those related to the IFN-α-triggered immune activities [369,370]. 

However, the over-representation of betweenness does not mean ISG products are more 

likely to be or even be close to bottlenecks in the network compared to background human 

proteins. Some examples shown in Table 4.3 indicate that ISG products are less-connected 

by top-ranked bottlenecks and hubs in the network than non-ISGs or background human 

proteins. This conclusion is not influenced by hub/bottleneck protein’s performance in the 

IFN-α experiments. Comparing proteins produced by ISGs and non-ISGs, we found the 

former tends to have lower values of clustering coefficient and neighbourhood connectivity 

(Mann-Whitney U test: p = 0.04, and 7.9E-03, respectively). This discovery indicates that 

ISG products and the majority of their interacting proteins are less likely to be targeted by 

lots of proteins. It also supports the finding that ISG products are involved in many shortest 

paths for nodes but are away from hubs or bottlenecks in the network. To some extents, this 

location also increases the length of the average shortest paths through ISG products in the 

network.  

When investigating the association between IFN-induced gene stimulation and 

network attributes of gene products, we only found the feature of neighbourhood 

connectivity was under-represented as the level of differential expression in the presence of 

IFN increases (PCC = -0.392, p = 2.2E-04). This suggests that proteins produced by genes 

that are highly up-regulated in response to IFN-α are further away from hubs in the PPI 

networks.  
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Fig 4.9 Differential network preferences of proteins coded by different human genes. 

Mann-Whitney U tests are applied for hypothesis testing and the results were provided in 

the S4.2 Data. Here, ISGs and non-ISGs are taken from dataset S2 while the background 

human genes use samples in dataset S1 (Table 4.1). Abbreviations: ISGs, interferon-α-

stimulated (up-regulated) genes; non-ISGs, human genes not significantly up-regulated by 

interferon-α. 

Table 4.3 Interaction profiles of human proteins connecting top hubs/bottlenecks of the 

HIPPIE network. 

Human protein TRIM25 ELAVL1 ESR2 NTRK1 HNRNPL 

Gene class ISG IRG Not included in S1a 

Degree (hub rank) 2295 (2nd) 1787 (4th) 2500 (1st) 1976 (3rd) 1681 (5th) 

Betweenness (bottleneck rank) 0.067 (1st) 
0.048 

(4th) 

0.051 

(3rd) 

0.026 

(5th) 

0.052 

(2nd) 

Difference in interacting partners 

(ISG products versus non-ISG)b 

Depleted 

P = 0.01 
P > 0.05 

Depleted 

P = 1.1E-4 

Depleted 

P = 5.5E-3 
P > 0.05 

Difference in interacting partners 

(ISG products versus background 

human proteins)b 

P > 0.05 P > 0.05 
Depleted 

P = 8.1E-3 

Depleted 

P = 0.03 
P > 0.05 

a: ESR2 and NTRK1 are not included in dataset S1 as their expression data were not compiled in the OCISG, 

HNRNPL is not included in dataset S1 as its canonical isoform was uncertain when the dataset was constructed; 

b:differences here are measured via Pearson's chi-squared tests on human proteins interacting with the 

corresponding hub/bottleneck protein. Abbreviations: HIPPIE, Human Integrated Protein-Protein Interaction 

rEference database; TRIM25, tripartite motif containing 25; ELAVL1, embryonic lethal, abnormal vision like 
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RNA binding protein 1; ESR2, estrogen receptor 2; NTRK1, neurotrophic receptor tyrosine kinase 1; HNRNPL, 

heterogeneous nuclear ribonucleoprotein L; ISGs, interferon-α-stimulated (up-regulated) human genes; non-

ISGs, human genes not significantly stimulated by interferon-α. 

4.4.5 Features highly associated with the level of IFN stimulations 

In this study, we encoded a total of 397 discrete and 7046 categorical features covering the 

aspects of evolutionary conservation, nucleotide composition, transcription, amino acid 

composition, and network profiles. In order to find out some key factors that may enhance 

or suppress the stimulation of human genes in the IFN-α system, we compared the 

representation of discrete features of human genes with different but positive Log2(Fold 

Change). Two features on the co-occurrence of SLims were not taken into consideration here 

as they were more subjective than the other discrete features and were greatly influenced by 

the number of focused SLims. Upon the calculation of PCC and the result of hypothesis tests, 

we found 168 features highly associated with the level of IFN-α-triggered stimulations 

(Student t-tests: p < 0.05) (S4.3 Data). Among them, 118 features showed a positive 

correlation (Fig 4.10) while the remaining 50 features showed a negative correlation (Fig 

4.11) with the change of up-regulation in IFN-α experiments. Among these 168 features, the 

number of ORF, alternative splicing results, and exons in the canonical transcripts were 

encoded from characteristics of the gene. Average dN/dS and average dS within human 

paralogues were encoded based on the sequence alignment results from the Ensembl  [244]. 

140 and 22 features were encoded from the genetic sequence and proteomic sequence 

respectively. The last one, neighbourhood connectivity, was obtained from the network 

profile of a human interactome constructed based on experimentally verified data in the 

HIPPIE [161]. 

In the positive group, the feature of ‘large’ amino acid compositions that includes 

the composition of five amino acids with geometric volume ranged from 163 to 173 cubic 

angstroms was ranked the first for having the highest PCC at 0.593 (Student t-test: p = 2.8E-

09). This feature was not highlighted previously as it did not have a strong signal for 

discriminating ISGs from non-ISGs (Mann-Whitney U test: p > 0.05). Similar phenomena 

were found on 87 features (64 positive correlations and 23 negative correlations) such as 

AG-content, ApG content and previously mentioned neutral amino acid composition. The 

strongest negative correlation between feature representation and IFN-α-triggered 

stimulations was found on the feature of 4-mer ‘CGCG’ (PCC = -0.593, p = 3.2E-09). This 

feature also showed a differential distribution between ISGs and non-ISGs, thus provided 
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useful information to distinguish ISGs from non-ISGs. Similar phenomena were found on 

81 features (54 positive correlations and 27 negative correlations) such as previously 

mentioned GC-content, CpG content and the usage of codon ‘GCG’ coding for amino acid 

‘A’. Collectively, the biased effect on the basic composition of nucleotides influences the 

correlation between the representation of sequence-based features and IFN-α-triggered 

stimulations. Human genes that show over-representation in more features listed in Fig 4.10 

are expected to be more up-regulated after IFN-α treatments at least in human fibroblast cells. 

Meanwhile, the under-representation of features listed in Fig 4.11 also contributes to the 

level of up-regulation in the IFN-α experiments. 

 
Fig 4.10 118 features positively associated with higher up-regulation after IFN-α 

treatments in human fibroblast cells (Student t-tests: p < 0.05). Detailed results about 

PCC and hypothesis tests are provided in S4.3 Data. Abbreviations: IFN, interferon; PCC, 

Pearson’s correlation coefficient; dN, non-synonymous substitutions per non-synonymous 

site; dS synonymous substitutions per synonymous site. 
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Fig 4.11 50 features negatively associated with higher up-regulation after IFN-α 

treatments in human fibroblast cells (Student t-tests: p < 0.05). Detailed results about 

PCC and hypothesis tests are provided in S4.3 Data. Abbreviations: IFN, interferon; PCC, 

Pearson’s correlation coefficient; dS, synonymous substitutions per synonymous site. 

4.4.6 Difference in feature representation of interferon-repressed genes and 
genes with low levels of expression 

We grouped human genes into two classes based on their response to the IFN-α in human 

fibroblast cells. Genes significantly up-regulated in IFN-α experiments were included in the 

ISG class, while those that did not were put into the non-ISG class. However, there is also 

another group of human genes (IRGs) down-regulated in the presence of IFN-α. They were 

labelled as non-ISGs, but contain unique patterns that constitute an important aspect of the 

IFN response [315]. Some of these IRGs were not up-regulated in any known type I IFN 

systems, thus have been placed in a refined non-ISGs class for analyses and predictions. 

Additionally, there are a number of genes that have insufficient levels of expression in the 

experiments to determine a fold change. Here, we used the previously defined features to 
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compare ISG from dataset S2 with IRGs from dataset S4 and ELGs from dataset S8 (Table 

4.1). 

As shown in Fig 4.12, IRGs are differentially represented to a lower extent in the 

majority of nucleotide 4-mer compositions than ISGs, which indicates the deficiency of 

some nucleotide sequence patterns in the coding region of IRGs. Note that, many nucleotide 

4-mer composition features are more suppressed in ISGs than non-ISGs although the 

differences are small. The biased representation of these features in IRGs suggests that IRGs 

have characteristics similar to ISGs rather than non-ISGs. Additionally, there are a very 

limited number of features relating to evolutionary conservation, nucleotide compositions or 

codon usages showing obvious differences between ISGs and IRGs, but many of them are 

differentially represented when comparing ISGs with non-ISGs. Therefore, involving IRGs 

in the class of non-ISGs will increase the risk for machine learning models to produce more 

false positives. However, there are some informative features differentiating IRGs from 

ISGs. For example, comparing with ISGs, IRGs are more enriched in CpGs (Mann-Whitney 

U test: p = 5.6E-03), which is also mentioned in [371]. IRGs tend to have higher closeness 

centrality and neighbourhood connectivity than ISGs (Mann-Whitney U test: p = 0.04 and 

6.4E-06 respectively), suggesting IRGs are closer to the centre of the human PPI network 

and connected to key proteins with many interaction partners. Differences in some amino 

acid composition features between ISGs and IRGs can also be observed in Fig 4.12. 

Therefore, good predictability is still expected when using features extracted from proteins 

sequences. 

Collectively, Fig 4.12 illustrates 161 features showing significant differences (Mann-

Whitney U tests: p < 0.05) in the representation of ISGs and ELGs. An estimated 82% of 

these features were also differentially represented between ISGs and non-ISGs. 79% of these 

significant features displayed similar over-representation or under-representation in two 

comparisons, i.e., ISGs versus ELGs and ISGs versus non-ISGs. These ratios indicate that 

the majority of ELGs are less likely to be ISGs based on their feature profile as well as their 

low expression levels in cells induced with IFN-α. Network analyses showed that ELG 

products tended to have lower values of all calculated network features with the exception 

of topological coefficient than ISG products. It means that ELG products are less connected 

by other human proteins in the human PPI network. Particularly, their abnormal 

representation on the feature of average shortest paths indicating that some ELGs (e.g. 
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vascular cell adhesion molecule 1 (VCAM1) and ubiquitin D (UBD)) may still have high 

connectivity in the human PPI network. 

 
Fig 4.12 Differential expressions of discrete features between different genes and their 

coded proteins. Mann-Whitney U tests are applied for hypothesis testing and the results 

were provided in the S2 Data. Here, ISGs and non-ISGs are taken from dataset S2; IRGs 

and ELGs are taken from dataset S1 while the background human genes are from dataset S1 

(Table 4.1). Abbreviations: ISGs, interferon-α-stimulated (up-regulated) genes; IRGs, 

interferon-α-repressed (down-regulated) genes; non-ISGs, human genes not significantly 

up-regulated by interferon-α; ELGs, expression-limited human genes in IFN-α experiments. 

4.4.7 Implementation with machine learning framework 

In this study, we encoded 397 discrete and 7046 categorical features for the analyses. As an 

excess of features will greatly increase the dimension of feature spaces and complicate the 

classification task for SVM [200], we limited the number of SLim_DNAs to the top 100 

based on the adjusted p-value and we expected these to be sufficient to provide a picture of 

SLim patterns in the coding region of the canonical transcript. Accordingly, features 

measuring the co-occurrence status of multiple SLim_DNAs were recalculated based on the 
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selected 100 SLim_DNAs. To reduce the impact of noisy data toward classifications, we 

only used the refined ISGs and non-ISGs from dataset S2 in machine learning.  

Measured by SN, SP, MCC and AUC, the initial prediction results shown in Table 

4.4 indicate that proteome-based features, including those deciphered from protein 

sequences and the human interactome, perform much better than genome-based features 

presumably due to overfitting of the model [238]. Using discrete features that took the 

advantage of both genetic and proteomic aspects showed a good improvement in tests. The 

categorical features used in this study gave a binary statement for the occurrence of SLims 

in genetic and proteomic sequences but seemed not to perform well and disrupted the model 

when they were combined with discrete features. The results shown in the previous analyses 

also indicate that there are a considerable number of disruptive features hidden in the set 

(Fig 4.5, Fig 4.7, and Fig 4.9). The similar attributes of ISGs and IRGs (shown in Fig 4.12) 

led to lots of noisy data biasing the classifiers. This situation was not ameliorated and became 

more difficult when using other machine learning algorithms such as k-nearest neighbors 

(KNN), decision tree (DT), random forest (RF) (Table 4.4) [194,372]. As some genes 

respond to IFNs in a cell-specific manner [314], it is hard to produce predictions unless we 

detect key discriminating features, which are robust to the change of biological environment. 

Considering these drawbacks, we designed an AUC-driven subtractive iteration 

algorithm (ASI) (Fig 4.2) to remove as many disruptive features as possible (Fig 4.13A). 

Pre-processing using the ASI algorithm showed that there were at least 28% of features 

disrupting the prediction model. They included 34% of features on codon usages and 50% 

of SLim features, thus, explaining the poor performance of the model trained with 

categorical features (Table 4.4). However, the loss of some of the individual nucleotide 4-

mer feature seemed not to influence the performance of the classifier at this stage, but the 

similarities between IRGs and ISGs (Fig 4.12) particularly in these 4-mer features was a 

cause for concern when the model was used to predict new data especially unknown IRGs. 

When using the ASI algorithm, the number of disrupting features did not stabilise until the 

algorithm reached the 11-th iterations. The remaining 74 features constituted our optimum 

feature set for the prediction of ISGs (Table 4.5). Among them, 14 and 9 features displayed 

positive and negative correlations with the level of up-regulation in IFN-α experiments. 

During the procedure, the AUC kept increasing steadily and reached 0.7479 at the end. The 

MCC also showed an overall improvement although it fluctuated slightly during the last few 

iterations. By degressively ranking the score calculated by the prediction model, we found 
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68.1% of the 496 genes (equal to the number of ISGs in the training dataset) were 

successfully predicted as ISGs. Fig 4.13B illustrates the distribution of prediction scores 

generated by the ASI-optimised model for human genes with different expressions in IFN-

α experiments. Human genes with higher up-regulation in IFN-α experiments tend to obtain 

higher prediction score from our optimised machine learning model (PCC = 0.243, p = 4.2E-

10). However, there were also some ISGs incorrectly predicted by our model even though 

they were highly up-regulated, for example, basic leucine zipper ATF-like transcription 

factor 2 (BATF2, prediction score = 0.34). The model produced 33 ISGs with a prediction 

score higher than 0.8 but such figure for non-ISGs reduced to six, including one IRG 

(tripartite motif containing 59 (TRIM59)). The highest prediction score within non-ISGs was 

found on ubiquitin conjugating enzyme E2 R2 (UBE2R2, probability score = 0.88). It 

contains many features similar to ISGs but was not differentially expressed in the presence 

of IFN-α in human fibroblast cells [315]. The lowest prediction score within ISGs was found 

on cap methyltransferase 1 (CMTR1, probability score = 0.12) due to the weak signal from 

its features. For instance, CMTR1 protein does not contain any ISG-favoured SLim_AA 

listed in Table 4.2. The influence of IRGs on the prediction was reflected in the training 

dataset but was not significant. Compared with human genes not differentially expressed in 

the IFN-α experiments (non-ISGs but not IRGs), there were slightly more IRGs 

unsuccessfully classified when using a threshold of 0.549 (Pearson's chi-squared tests: M1 = 

27%, M2 = 24%, p > 0.05). 

Table 4.4 The performance of different feature combinations on the training dataset 

S2’ via five-fold cross validation. 

Method Features No. 
Threshold-dependent Threshold-independent 

Score range Thresholda SN SP MCC SN_496b AUC 

SVM Genetic 452 0.359~0.623 0.402 0.769 0.355 0.169 0.579 0.6058 

SVM Proteomic 66 0.261~0.730 0.560 0.425 0.778 0.218 0.605 0.6360 

SVM Discrete 397 0.305~0.760 0.529 0.595 0.665 0.261 0.621 0.6573 

SVM Categorical 121 0.368~0.605 0.487 0.653 0.504 0.159 0.573 0.5736 

SVM All 518 0.328~0.743 0.542 0.567 0.681 0.250 0.615 0.6509 

KNNc All 518 0.100~0.900 0.500~0.550 0.593 0.621 0.214 0.607±0.014  0.6305 

DT Partial 182d 0 or 1 N/A 0.546 0.548 0.095 0.546 N/A 

RFe Random Random 0.080~0.900 0.380~0.579 0.590±0.168	 0.617±0.183	 0.219±0.019	0.600±0.007	0.6413±0.0082	
SVM Optimum 74 0.098~0.918 0.549 0.623 0.750 0.376 0.681 0.7479 

a: this threshold is  provided by maximum the value of MCC; b: this sensitivity is measured among tested genes 

with the top 496 prediction probabilities; c: k-value here is set as the square root of the size of the training 

samples in five-fold cross validation, i.e., k = 20 [373]; d:182 out of the 518 features (S4.5 Data) are used for 

decisions during this modelling procedure as the rest ones are not helpful to better split the dataset for lower 

system entropy [196]; e: this random forest algorithm uses 50 random grown trees and the modelling and 
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validation procedures are repeated for 10 times. Abbreviations: SVM, support vector machine; KNN, k-

nearest neighbors; DT, decision tree; RF, random forest; SN, sensitivity; SP, specificity; MCC, Matthews 

correlation coefficient; AUC, area under the receiver operating characteristic curve. 

 
Fig 4.13 The optimisation on the machine learning model with the ASI algorithm. (A) 

shows the change of the prediction models based on the one generated with all 518 features 

(disruptive feature vector = 144, best MCC = 0.250, SN_496 = 0.615, and AUC = 0.6509). 

(B) shows the distribution of prediction scores generated by the ASI-optimised model for 

human genes with different expression levels in the IFN-α system. ISGs and non-ISGs 

shown in (B) are randomly selected with an undersampling strategy [265] on dataset S2. The 

list of gene names can be found in S4.1 Data. Abbreviations: SN, sensitivity; SN_496, 

sensitivity of predicted genes with the top 496 probability scores, MCC, Matthews 

correlation coefficient; AUC, area under the receiver operating characteristic curve; ASI, 

AUC-driven subtractive iteration algorithm; IFN, interferon, ISGs, interferons-α-stimulated 

(up-regulated) human genes; IRGs, interferon-α-repressed (down-regulated) human genes; 

non-ISGs, human genes not significantly up-regulated by IFN-α; UBE2R2, ubiquitin 

conjugating enzyme E2 R2; TRIM59, tripartite motif containing 59; CMTR1, cap 

methyltransferase 1; BATF2, basic leucine zipper ATF-like transcription factor 2. 

Table 4.5 The optimum 74 features contributing to the prediction of ISGs. 
Evolutionary features (2) 

Number of human paraloguesD, average dS within human paraloguesD-. 

Codon usage features (10) 

Codon usage: CTA (L)D+ Codon usage: ATT (I)D Codon usage: TAT (Y)D 

Codon usage: GCG (A)D- Codon usage: CAC (H)D- Codon usage: TGC (C)D 

Codon usage: CGT (R)D Codon usage: CGA (R)D Codon usage: CGG (R)D- 

Codon usage: AGA (R)D+   

Genetic composition features (40) 

DNA AC contentD Dinucleotide CpT compositionD DNA 4-mer CGCG compositionD- 

DNA 4-mer AATC compositionD+ DNA 4-mer TCGT compositionD DNA 4-mer GATG compositionD+ 
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DNA 4-mer AACA compositionD DNA 4-mer TGAG compositionD+ DNA 4-mer GACC compositionD 

DNA 4-mer ATAT compositionD DNA 4-mer TGTA compositionD DNA 4-mer GACG compositionD 

DNA 4-mer ATGT compositionD+ DNA 4-mer CACG compositionD DNA 4-mer GAGT compositionD+ 

DNA 4-mer ACAC compositionD DNA 4-mer CTCC compositionD DNA 4-mer GTAC compositionD 

DNA 4-mer ACTA compositionD DNA 4-mer CCAC compositionD DNA 4-mer GTGT compositionD 

DNA 4-mer ACTC compositionD DNA 4-mer CCTA compositionD DNA 4-mer GTGC compositionD 

DNA 4-mer ACCG compositionD DNA 4-mer CCTC compositionD+ DNA 4-mer GTGG compositionD 

DNA 4-mer TATG compositionD DNA 4-mer CCGT compositionD DNA 4-mer GCAA compositionD+ 

DNA 4-mer TTCT compositionD DNA 4-mer CGAG compositionD DNA 4-mer GCTC compositionD 

DNA 4-mer TTCG compositionD DNA 4-mer CGTG compositionD DNA 4-mer GCCT compositionD 

DNA 4-mer TTGA compositionD DNA 4-mer CGCA compositionD DNA 4-mer GGGG compositionD 

DNA 4-mer TCAT compositionD   

Proteomic composition features (9) 

Arginine compositionD, cysteine compositionD+, methionine compositionD; 

Basic amino acid composition (R/H/K)D+ Sulfur amino acid composition (C&M)D+ 

Hydroxyl amino acid composition (S&T)D- Small amino acid composition (N/D/C/P/T)D- 

Large amino acid composition (R/I/L/K/M)D+  

Uncharged amino acid composition (A/N/C/Q/G/I/L/M/F/P/S/T/W/Y/V)D- 

Features about human interactome network (3) 

Shortest pathsD+, betweennessD, neighborhood connectivityD-. 

Motif features (8) 

SLim_DNA ATA[AG][TG]C SLim_DNA TAT[AT]TC SLim_DNA T[AT]AAAC 

SLim_DNA [ATG]TGTAC SLim_AA S[A-Z]N[A-Z]EC SLim_AA ENEC 

SLim_AA SVIC Co-occurence of SLim_AAsD  

D: discrete features; C: categorical features; ‘+’ symbol means features are positively associated with the 

level of up-regulation in IFN-α experiments (p < 0.05); ‘-’ symbol means features are negatively associated 

with the level of up-regulation in IFN-α experiments (p < 0.05). Abbreviations: dS, synonymous substitutions 

per synonymous site; SLim_DNAs, short linear nucleotide motifs; SLim_AAs, short linear amino acid motifs. 

4.4.8 Review of different testing datasets 

In this study, we trained and optimised a SVM model from our training dataset S2’, and 

prepared seven testing datasets (dataset S2’’/S3/S4/S5/S6/S7/S8) to assess the generalisation 

capability of our model under different conditions (Table 4.1). The S2’’ testing dataset was 

a subset of dataset S2. The prediction performance on this testing dataset was close to that 

in the training stage with an AUC of 0.7455 (Fig 4.14A). The best MCC value (0.345) was 

achieved when setting the judgement threshold to 0.438, which meant that the prediction 

model was sensitive to signals related to ISGs. In this case, it performed predictions with 

high sensitivity but inevitably produced many false positives, especially within IRGs.  

In the S3 testing dataset, we used 695 ISGs with low confidence. The overall 

accuracy (equals to SN as there were no negatives) only reached 44.0% when using a 



DEFINING FEATURES OF INTERFERON-ALPHA-STIMULATED HUMAN GENES 
	

103 

judgement threshold of 0.549, about 0.18 lower than SN under the same threshold in the 

training dataset S2’ (Table 4.4). It is expected as some of their inherent attributes make them 

slightly up-regulated, silent or even repressed (e.g., become non-ISGs in other IFN systems) 

in response to some IFN-triggered signalling. On this testing dataset, our machine learning 

model produced 38 (5.5%) ISGs with a prediction score higher than 0.8. This number was 

also lower than that on the training dataset S2’. It further indicates the relatively low 

confidence for ISGs included in dataset S3. 

The S4 testing dataset was constructed to illustrate our hypothesis that there are some 

patterns shared among ISGs and IRGs at least in the IFN-α system in human fibroblast cells. 

On this testing dataset, the prediction accuracy (equals to SP as there were no positives) was 

60.2% under the judgement threshold of 0.549, about 0.15 lower than the SP under the same 

threshold in the training dataset S2’ (Table 4.4). Leucine rich repeat containing 2 (LRRC2), 

carbohydrate sulfotransferase 10 (CHST10) and eukaryotic translation elongation factor 1 

epsilon 1 (EEF1E1) showed strong signals of being ISGs (probability score > 0.9). In total, 

there were 56 (5.6%) IRGs being incorrectly predicted as ISGs with probability scores higher 

than 0.8. This high score was found in an estimated 8.1% of ISGs but was only observed in 

1.2% of human genes not differentially expressed in the IFN-α experiments (Fig 4.13B). 

These results indicate that there is a considerable number of IRGs incorrectly predicted as 

ISGs in the S4 testing dataset due to their close distance to the ISGs in the high-dimensional 

feature space. This may be the case for many other datasets including dataset S2’’, S5, S6, 

S7, and S8. It also supports our hypothesis about the shared patterns from the machine 

learning aspect and is consistent with the results shown in Fig 4.12. 

The next three testing datasets (S5, S6, and S7) were collected from the Interferome 

database [334] to test the applicability of the machine learning model across different IFN 

types. The ISGs in these testing datasets were all highly up-regulated (Log2(Fold Change) > 

1.0) in the corresponding IFN systems while all the non-ISGs were not up-regulated after 

corresponding IFN treatments (Log2(Fold Change) < 0). The results shown in Fig 4.14 

reveals that ISGs triggered by type I or III IFN signalling could still be predicted by our 

machine learning model, but the performance was limited to some extents (AUC = 0.6677 

and 0.6754 respectively). However, it was almost impossible to make normal predictions 

with the current feature space for human genes up-regulated by type II IFNs (AUC = 0.5532). 
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Fig 4.14 The performance of our optimised model on different datasets. (A) and (B) 

illustrate the AUC and best MCC. S2’ is the training dataset used in this study. It randomly 

includes 496 ISGs and an equal number of non-ISGs from dataset S2 that contains ISGs/non-

ISGs with high confidence (Table 4.1). Evaluation on this dataset in (A) is processed via 

five-fold cross validation. S2’’ is the testing dataset constructed with the remaining human 

genes in dataset S2. S5, S6, and S7 are collected from the Interferome database [334], 

including human genes with different responses to the type I, II and III IFNs, respectively. 

The label and usage of these human genes are provided in S4.1 Data. Abbreviations: MCC, 

Matthews correlation coefficient; AUC, area under the receiver operating characteristic 

curve; ISGs, interferon-stimulated (up-regulated) human genes; non-ISGs, human genes not 

significantly up-regulated by interferons. 

The S8 testing dataset consisted of 2217 human genes that were insufficiently 

expressed in IFN-α experiments in human fibroblast cells [315]. The results showed that 

there were around 41.2% ELGs being predicted as ISGs when using a judgement threshold 

of 0.549. This was approximately 0.21 lower than the SN under the same threshold in the 

training dataset S2’ (Table 4.4). It suggests that there are more non-ISGs than ISGs in this 

dataset, which is consistent with the results shown in Fig 4.12. Particularly, we found 10 

ELGs with prediction scores higher than 0.9: CD48 molecule, CD53 molecule, lipocalin 2 

(LCN2), uncoupling protein 1 (UCP1), coiled-coil domain containing 68 (CCDC68), 

potassium calcium-activated channel subfamily M regulatory beta subunit 2 (KCNMB2), 

potassium voltage-gated channel interacting protein 4 (KCNIP4), zinc finger HIT-type 

containing 3 (ZNHIT3), serpin family B member 4 (SERPINB4), and fibrinogen silencer 

binding protein (FSBP). By retrieving data from the Genotype-Tissue Expression project 
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[374], we found that the expression of these ELGs were generally limited with the exception 

of CD53 and ZNHIT3 (Fig 4.15). The expression data of CD53 were not included in the 

OCISG database [315] and were also limited in the Interferome database [334]. It only 

showed slight up-regulation after type I IFN treatments in blood, liver, and brain but there 

is currently no record of its expression level in the presence of IFN-α in human fibroblast 

cells. ZNHIT3 is another well-expressed gene lacking information in the OCISG. In the 

Interferome databases [334], we found that ZNHIT3 could be up-regulated after IFN 

treatments in some fibroblast cells on skin. As for the remaining eight ELGs, despite their 

limited expression in human fibroblast cells, their features suggest that they are very likely 

to be IFN-α-stimulated in a currently untested cell type. 

 
Fig 4.15 Expression of ELGs in different tissues. Expression data for ten ELGs are 

collected from the Genotype-Tissue Expression project (https://gtexportal.org/) [374]. The 
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tissues in red are not included in the Interferome database [334]. White boxes in the heatmap 

indicate that there is no data available for genes in the corresponding tissues. The overall 

expression level of these ten ELGs are reflected via human perspective photo retrieved from 

Expression Atlas (https://www.ebi.ac.uk/gxa) [375]. Abbreviations: ELGs, human genes 

with limited expression in interferon-α experiments; TPM, transcripts per million; BA, 

Brodmann area; EBV, Epstein-Barr virus; UCP1, uncoupling protein 1; LCN2, lipocalin 2; 

CCDC68, coiled-coil domain containing 68; KCNIP4, potassium voltage-gated channel 

interacting protein 4; KCNMB2, potassium calcium-activated channel subfamily M 

regulatory beta subunit 2; ZNHIT3, zinc finger HIT-type containing 3; SERPINB4, serpin 

family B member 4; FSBP, fibrinogen silencer binding protein. 

4.5 Discussion 

In this study, we investigated the characteristics that influence the expression of human 

genes in IFN-α experiments. We compared ISGs and non-ISGs through multiple procedures 

to guarantee strong signals for ISGs and to avoid cell-specific influences that resulted in the 

lack of ISGs expression in certain cell types [314]. Even some highly up-regulated ISGs can 

become down-regulated when the biological conditions change, exemplified by the 

performance of C-X-C motif chemokine ligand 10 (CXCL10) on liver biopsies after IFN-α 

treatment. This refinement is necessary as the representation of features between ISGs and 

the background human genes show that many non-ISGs especially IRGs have similar feature 

patterns to ISGs (Fig 4.4-5.9, Fig 4.12).  

Generally, ISGs are less evolutionarily conserved with more human paralogues than 

non-ISGs. They have specific nucleotide patterns exemplified by the depletion of GC-

content and have a unique codon usage preference in coding proteins. There are a number 

of SLim_DNAs widely observed in the cDNA of ISGs which are relatively rare in non-ISGs 

(S4.4 Data). Likewise, there are also many SLim_AAs highlighted in the sequences of ISG 

products that are absent or rare in non-ISGs (Table 4.2). In the human PPI network, ISG 

products tend to have higher betweenness than background human protein, indicating their 

more frequent interruption of the shortest path (geodesic distance) between different nodes. 

Abnormal expression or knockout of these proteins will increase the diameter of the network 

and may lead to some lethal consequences that are not tolerated in signalling pathways [376-

378]. These ISG specific patterns may be the result of the evolution of the innate immune 

system in vertebrates and could be adaptations to the cellular environment induced by 
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interferon following a pathogenic infection [379]. It is also possible that some of the 

particular SLim_DNAs and SLim_AAs may be important functionally as the cell changes 

from non-infected to infected. Experimental evidence will be necessary to investigate this. 

Some inherent properties of ISGs facilitate or elevate their expression after IFN-α 

treatments but may also be used by viruses to escape from IFN-α-mediated antiviral response 

[104]. For instance, the representation of dN showed a more significant difference than that 

of dS within human paralogues. We found that higher dN/dS ratio was positively correlated 

with gene up-regulation following IFN-α treatments. It means the gene is less conserved 

with more non-synonymous or nonsense mutations, which can often be associated to 

inherited diseases and cancer [380]. It will also facilitate the virus to interfere with IFN-α 

signalling through the JAK-STAT pathway and inactivate downstream cellular factors 

involved in IFN-α signal transductions [104]. We found arginine was under-represented in 

ISG products compared to non-ISG products. As arginine is essential for the normal 

proliferation and maturation of human T cells [381], such depletion in ISG products may 

leave a risk of inhibiting T‐cell function and potentially increased susceptibility to infections 

[382]. Furthermore, the special pattern of ISGs also promotes the representation of some 

features even if they are not well represented in nature, for example, the higher cysteine 

composition in ISGs. We hypothesize that it may be helpful to activate T-cell to regulate 

protein synthesis, proliferation and secretion of immunoregulatory cytokines [383,384]. 

There are also some features (e.g. methionine composition) not differentially represented 

between ISGs and non-ISGs but play important roles in IFN-α-mediated immune responses. 

There is evidence for the methionine content playing a role in the biosynthesis of S-

Adenosylmethionine (SAM), which can improve interferon signalling in cell culture 

[385,386]. 

As previously mentioned, there were similar patterns between the feature 

representation of ISGs and IRGs, which led to the unclear boundary for ISGs and non-ISGs 

in the feature space. We found significant differences on the representation of features on 

evolutionary conservation (Fig 4.4) between ISGs and non-ISGs, but they became non-

significant when comparing ISGs with IRGs. Similar phenomena were observed on many 

features deciphered from the canonical transcript, e.g., dinucleotide composition and codon 

usage features. We suggest that IRGs can be viewed as additional ISGs as they also regulate 

the activity of human genes in response to IFNs, only negatively. Furthermore, despite so 

many similarities between ISGs and IRGs, the separate classification of these genes is still 
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possible. 4-mer compositions can be considered as the key features as most of them are 

differentially represented between ISGs and IRGs (Fig 4.12). Using proteomic features can 

also help to differentiate ISGs from IRGs but is not as good as using 4-mer features. 

In the machine learning framework, we developed the ASI algorithm to remove 

disruptive features but kept features not influencing the prediction performance when being 

removed individually during iterations. Features might have synergistic effects thus the 

elimination of each feature left a different impact on the remaining ones even if these were 

individually useless for the improvement of the classifier. In this case, keeping as many 

useful features as possible seems to be a good option but will greatly increase the dimension 

of the feature space and increase the risk of overfitting [238]. By contrast, our ASI algorithm 

avoided such a risk and kept the synergistic effect of different features through iterations.  

In the prediction task, we found some previously labelled non-ISGs with very high 

prediction scores, suggesting that they had many inherent properties enabling them to be 

stimulated after IFN-α treatments. Some of them, for example, ubiquitin conjugating enzyme 

E2 R2 (UBE2R2) has been shown to be significantly up-regulated after IFN-α treatment 

[387]. The non-ISG label was assigned because the relevant expression data in the presence 

of IFN-α were not included in the OCISG [315] and Interferome databases [334]. We also 

found ten ELGs with very high prediction scores (> 0.9). Literature searches on these genes 

indicate that they are likely to be involved in the innate immune response [388,389]. Their 

responses may be limited to certain tissues or cell types for which there is limited expression 

data in the Interferome database [334]. For example, LCN2 has been shown to mediate an 

innate immune response to bacterial infections by sequestering iron [388] and is induced in 

the central nervous system of mice infected with West Nile virus encephalitis [390]. CD48 

was shown to increase in levels in the context of human IFN-α/β/γ stimulation [389]. 

Interestingly, CD48 is also the target of immune evasion by viruses [391] and has been 

captured in the genome of cytomegalovirus and undergone duplication [392]. Evidence for 

other ELGs is harder to assess, particularly those for which expression is absent in a range 

of tissues (e.g., UCP1 in Fig 4.15). UCP1 is a mitochondrial carrier protein expressed in 

brown adipose tissue (BAT) responsible for non-shivering thermogenesis [393]. It is 

possible that UCP1 is stimulated directly or indirectly by IFN-α in BAT, resulting in the 

defended elevation of body temperature in response to infection.  

We developed the machine learning model based on experimental data from human 

fibroblast cells stimulated by IFN-α. It can be generalised to type I or III IFN systems, 
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presumably because activations of type I and III ISGs are both controlled by ISRE [321] and 

aim to regulate host immune response [103,322,323]. However, our model cannot be used 

for predictions in the type II IFN system (AUC = 0.5532, best MCC = 0.083, Fig 4.14) 

because of the different control element and the different role in human immune activities 

[325]. 

In summary, our analyses highlight some key sequence-based features that are 

helpful to distinguish ISGs from non-ISGs or IRGs. Our machine learning model is able to 

produce a list of putative ISGs to support IFN-related research. As knowledge of ISG 

functions continue to be elucidated by experimentalists, the in silico approach applied here 

can in future be extended to classify the different functions of ISGs. 

4.6 Summary 

Interferons (IFNs) are signalling proteins secreted from host cells. IFN-triggered signalling 

activates the host immune system in response to intra-cellular infection. It results in the 

stimulation of many genes that have anti-pathogen roles in host defenses. Interferon-

stimulated genes (ISGs) have unique properties that make them different from those not 

significantly up-regulated in response to IFNs (non-ISGs). We find the down-regulated 

interferon-repressed genes (IRGs) have some shared properties with ISGs. This increases 

the difficulty of distinguishing ISGs from non-ISGs. The use of machine learning is a 

sensible strategy to provide high throughput classifications of putative ISGs to support 

investigation with in vivo or in vitro experiments. Machine learning can also be applied to 

human genes for which there are insufficient expression levels before and after IFN 

treatments in various experiments. We expect that our study will provide new insight into 

better understanding the inherent characteristics of human genes that are related to response 

in the presence of IFN-α.  

4.7 Supporting information 

S4.1 Data. Basic information about human genes used in this study. 

URL: http://isgpre.cvr.gla.ac.uk/data/S1.txt 

S4.2 Data. The result of Mann-Whitney U tests for discrete features. 

URL: http://isgpre.cvr.gla.ac.uk/data/S2_Data.txt 

S4.3 Data. Association between feature representations and IFN-α stimulations. 

URL: http://isgpre.cvr.gla.ac.uk/data/S3_Data.txt 
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S4.4 Data. The result of Pearson's chi-squared tests for sequence motifs. 

URL: http://isgpre.cvr.gla.ac.uk/data/S4_Data.txt 

S4.5 Data. Decision trees generated during five-cross validation on the training 

dataset S2'. 

URL: http://isgpre.cvr.gla.ac.uk/data/S5_Data.txt 

 



  

CHAPTER FIVE 

5. SARS-COV-2 MIMICRY MEDIATED VIA HOST-LIKE 

SHORT LINEAR MOTIFS 

 

5.1 Abstract 

The ongoing coronavirus disease 2019 (COVID-19) pandemic represents a major threat to 

the public health. A major challenge in computational biology is to predict virus-host 

interactions from viral genome sequence data alone. This study focuses on the mimicry 

machinery that helps the virus to exploit the host system by “mimicry” of host-like short 

linear motifs (SLiMs). We test the hypothesis that the mimicked SLiMs are present in human 

proteins able to interact with the targets of severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), i.e., the virus has converged on motifs that confer interaction capability with 

a specific host protein. Owing to functional constraints on the limits of the sequence 

divergence acting on these SLiMs, a convergent sequence similarity signal should be 

detectable in the virus genome. After screening SLiMs present in interactors of known 

SARS-CoV-2-host interacting proteins for disorder status, solvent exposure, subcellular 

localisation and lung expression, we obtain 18 high-confidence SLiMs mimicked by SARS-

CoV-2. These virus SLiMs are present in envelope, nucleocapsid, open reading frame 7a 

(ORF7a), and non-structural proteins 8 (NSP8). They are well conserved across the diversity 

of SARS-CoV-2 variants including in the latest variant of concern, Omicron. 

5.2 Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive stranded RNA 

virus [5,394] that has triggered the most devastating pandemic in recent decades [395]. The 

uncontrolled spread of SARS-CoV-2 outside China has already accounted for more than 270 

million infections worldwide (https://covid19.who.int/) and case numbers still show 

exponential growth due to the emerging SARS-CoV-2 variants of concern [396-405]. The 

SARS-CoV-2 genome encodes four structural proteins (spike, envelope, membrane and 

nucleocapsid), two polyproteins (open reading frame (ORF) 1a and 1b), and several 
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accessory proteins (ORF3a, ORF6, ORF7a, ORF8, ORF10, etc.) [406-409]. Upon cell entry, 

the polyproteins are auto-proteolytically cleaved into 16 non-structural proteins (NSPs) 

[410]. 

The infection cycle of SARS-CoV-2 begins when its spike protein is primed by 

transmembrane serine protease 2 (TMPRSS2) [58] and ends with the release of viral progeny 

from the host cell [410]. During the infection, SARS-CoV-2 has to avoid the host immune 

defense sufficiently to ensure its replication and persistence in the host cell. For example, its 

membrane, ORF3a, ORF6, ORF7a, NSP1, NSP3, NSP6, NSP7, NSP12-14 antagonize host 

immune responses by suppressing the interferon signalling pathway [411,412]. Molecular 

mimicry of host-like short linear motifs (SLiMs) is a strategy adopted by the virus to interact 

with host molecules, necessary for efficient exploitation of the host system [356,413].  

SLiMs are ubiquitous in human proteomes with more than 100,000 recorded 

instances [414]. They are predominantly detected in intrinsically disordered regions (IDRs) 

that lack stable tertiary structures [293,415,416]. They tend to have high binding affinities, 

be evolutionary plastic, i.e., tolerate high levels of sequence divergence while retaining 

function, and be ‘evolvable’ by being permissive to the addition of novel functionality by 

mediating novel interactions. This permits virus ‘mimicry’ of SLiMs by convergent 

evolution to commandeer the regulatory and signalling pathways of the host cell [4,153,417]. 

Additionally, their limited sequence length (usually less than ten amino acids) can lead to 

evolutionary degeneration of detectable sequence similarity (indicative of homology), where 

only physicochemical properties remain as evidence of shared function [4,417]. This simple 

mechanism of action is conducive not only to convergent evolution of SLiMs in human 

proteins without common evolutionary ancestry/homology, but also to convergent motifs in 

different viral species interacting with the same host proteins [418,419]. This convergent 

evolution can be readily achieved in viruses due to their high mutation rates [420,421].  

Although mimicry motifs are expected to be prevalent in viruses, only a small 

fraction of host-like SLiMs have been clearly characterised in viruses. For example, SLiM 

‘EHxY’ may be mimicked by virion protein 16 (VP16) of herpes simplex virus (HSV) to 

bind host cellular factor [422,423]. SLiM ‘TxV’ is orchestrated at the C terminus of human 

papillomaviruses (HPV) E6 to target PDZ-containing tumor suppressors for degradation 

[119]. SLiM ‘Nx[S/T]’ is utilised by envelope glycoproteins 1 (E1) of hepatitis C virus 

(HCV) upon partial deglycosylation with endoglycosidase H (Endo H) [424]. SLiM ‘PPxY’ 

are both mimicked by VP40 of Ebola virus (EBOV) and Marburg virus (MARV) to recruit 
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the host NEDD4 E3 ubiquitin protein ligase (NEDD4) for budding [425]. SLiM ‘IMxKN’ 

may be involved in the mimicry of influenza A NS1 protein to counter the activation of 

protein kinase [426]. SLiM ‘LYPxL’ and ‘LYPxxxLxxL’ are thought to be mimicked by the 

gag protein of human immunodeficiency virus type 1 (HIV-1) to target programmed cell 

death 6 interacting protein (PDCD6IP) [427,428].  

Evidence of a detectable mimicry strategy for SARS-CoV-2 is still lacking. Thus, 

investigating SARS-CoV-2 mimicry of host-like SLiMs in the same way as other viruses 

[356] use it to facilitate infection in the host [356], is of particular interest for a better 

understanding of virus-host interplay. Here, we propose a computational approach to 

systematically screen host-like SLiMs that are mimicked by SARS-CoV-2 in order to gain 

interaction affinity with its targets (Fig 5.1). While not important for their detection, we 

assume that the mimicked SLiMs are the result of convergent evolution but not the 

acquisition of host sequence [418]. Some human proteins are interactors of SARS-CoV-2-

host interacting proteins; thus, they are considered potentially mimicked human proteins 

(PMHPs). We hypothesise that a SLiM is unlikely to arise stochastically in multiple PMHPs 

that share a common virus target as their interaction partners within the human protein-

protein interaction (PPI) network. Its presence in multiple PMHPs would at least infer 

functionality and support the involvement of the SLiM in the virus mimicry especially when 

its enrichment in PMHPs reaches a significant level [429]. We also suggest that along with 

the location of the SLiM in IDRs, high solvent exposure, appropriate subcellular localisation, 

and expression in SARS-CoV-2-infected tissues are all important requirements to permit 

functionality of SLiMs and their potential for virus mimicry. By using the latter data mining 

strategies, we find evidence of 18 mimicking SLiMs in SARS-CoV-2 envelope, 

nucleocapsid, ORF7a, and NSP8. 
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Fig 5.1 Schematic of the principle and screening procedures used in this study. As 

shown in (B), to be identified as virus-mimicry, SLiMs needed to satisfy requirements about 

statistical enrichment, disorder, solvent exposure, subcellular localisation, and tissue 

expression. The example components in (A) are from BioRender (https://biorender.com/) 

and AlphaFold [430] predicted structures of RBMX (coloured in green), ZC3H18 (coloured 

in blue), and SLiM ‘NxxxSRxP’ (coloured in red) under the Creative Commons licence 4.0. 

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; PMHP, 

potentially mimicked human protein; SLiM, short linear motif; RBMX, RNA binding motif 

protein X-linked; ZC3H18, zinc finger CCCH-type containing 18. 

5.3 Methods 

5.3.1 SARS-CoV-2 baseline, variants and coronaviridae members 

We used SARS-CoV-2 sequence hCoV-19/USA/WA1/2020, accession MN985325 [431] 

(Pango lineage: A [432]), as the baseline sequence in this study. We retrieved the sequence 

of ten viral proteins of this isolate from NCBI Virus Variation Resource (ver. December 

2021) [149] and GISAID database (ver. December 2021) [148] (S5.1 Data). They include 

four structural proteins (spike, envelope, membrane, and nucleocapsid), five accessory 

proteins (ORF3a, ORF6, ORF7a, ORF8, and ORF10), and one polyprotein (ORF1ab) [408] 

that can be auto-proteolytically processed into 16 NSPs [410]. Data on NSP11 and other 

ORFs were not considered in this study due to insufficient evidence supporting them and 

unclear annotation in the accession MN985325 [148,149,410,433]. In addition to 

MN985325, we also introduced six human coronaviruses (HCoVs) [434] and ten SARS-

CoV-2 variants [432,435] to investigate the evolutionary conservation of potentially 

mimicked SLiMs (Table 5.1). Genome sequences of the aforementioned seven human 

coronaviruses and ten SARS-CoV-2 variants are provided in S5.2 Data. 

Table 5.1 Representative of human coronaviruses and SARS-CoV-2 variants. 
Coronavirus Subfamily Accession Length Ref. Variant Lineagea Accession Ref. 

HoV-229E Duvinacovirus NC_002645 27317 [436] Alpha B.1.1.7 MZ453433 [396,397,400,437] 

HCoV-NL63 Setracovirus NC_005831 27553 [438] Beta B.1.351 MZ202314 [399-401,437] 

HCoV-OC43 Embecovirus NC_006213 30741 [439] Gamma P.1 MZ169910 [397,400,401,437] 

HCoV-HKU1 Embecovirus NC_006577 29926 [440] Delta B.1.617.2 OL456172 [398,401,437] 

MERS-CoV Merbecovirus NC_019843 30119 [441] Eta B.1.525 OL601550 [400,401] 

SARS-CoV Sarbecovirus KY352407 29274 [442] Iota B.1.526 OL615111 [400] 

SARS-CoV-2 Sarbecovirus MN985325 29882 [431] Kappa B.1.617.1 MZ562746 [401,443] 

     Lambda C.37 OL622097 [402,444] 

     Mu B.1.621 OK349712 [403] 
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     Omicron B.1.1.529 OL672836 [404] 

a: lineages are defined though sequence alignment from the Pangolin project [432]. Abbreviations: SARS-

CoV, severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome 

coronavirus 2; HCoV, human coronavirus; MERS-CoV, middle east respiratory syndrome coronavirus. 

5.3.2 Interactions among SARS-CoV-2 and human proteins 

We retrieved 20376 human proteins from the Swiss-Prot section of UniProtKB  (ver. 

December 2021) [2]. We used AlphaFold to predict the tertiary structure of UniProt 

sequences with a length ranging from 16 to 2700 [430]. Consequently, we obtained 16,185 

human proteins with a predicted tertiary structure (S5.3 Data). They constitute our 

background dataset S1. Based on Gordon et al.’s affinity-purification–mass spectrometry 

analysis [407,445,446], we recompiled high-confident physical interactions among 22 

SARS-CoV-2 and 291 human proteins (S5.4 Data) as follows: information on NSP3 and 

NSP16 were not included in this study as their virus-host interactions were not available in 

Gordon et al. [407]; virus-host PPIs involving NSP11, NSP5 mutant, ORF3b, ORF7b, 

ORF9b, and ORF9c were removed as these viral proteins were not annotated in MN985325 

[148,149,410,433]. By retrieving experimentally verified human PPIs from HIPPIE 2.2 

(medium confidence, HIPPIE evidence score > 0.63) [161], we generated a network for 6727 

human proteins and 291 SARS-CoV-2 targets. In this study, we considered that these 6727 

human proteins are potentially mimicked by one or more SARS-CoV-2 proteins (Table 5.2).  

Table 5.2 A breakdown of SARS-CoV-2-host interactions and PMHPs obtained from 

human PPIs. 

Viral protein Virus-host PPIsa PMHPsb Viral protein Virus-host PPIsa PMHPsb 

Spike 2 19 NSP4 8 214 

Envelope 6 379 NSP5 1 337 

Membrane 30 1480 NSP6 4 63 

Nucleocapsid 15 2142 NSP7 32 1012 

ORF3a 8 182 NSP8 24 1446 

ORF6 3 295 NSP9 16 554 

ORF7a 2 93 NSP10 5 336 

ORF8 47 1157 NSP12 20 607 

ORF10 9 832 NSP13 40 1868 

NSP1 6 190 NSP14 3 214 

NSP2 7 373 NSP15 3 229 

a: 291 exogenous SARS-CoV-2-host interactions are provided in S5.4 Data; b: human interactors of the 291 

SARS-CoV-2 targets are listed in S5.5 Data. Abbreviations: SARS-CoV-2, severe acute respiratory syndrome 
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coronavirus 2; PMHPs, potentially mimicked human proteins; ORF, open reading frame; NSP, non-structural 

protein. 

5.3.3 Short linear motifs and their enrichment in PMHPs 

SLiMs can be detected in different proteins but still show the same specificity to mediate 

distinct cellular processes such as targeting the protein to specific subcellular compartments 

and acting as binding or recognition sites in multiple signalling pathways [153,429]. Viruses 

may mimic host-like SLiMs to mediate the interactions with human host proteins and then 

radically alter the regulatory processes of a cell [4,356]. These SLiMs are usually composed 

of less than ten amino acid residues, of which only two or three are important for the function 

[4,153,356]. In this study, their lengths were restricted between two and eight. They are 

formulated as: 

 

[𝑅+][𝑅/] 

[𝑅+][𝑟+][𝑅/] 

[𝑅+][𝑟+][𝑟/][𝑅/] 

… 

[𝑅+][𝑟+]… [𝑟�][𝑅/] 

(1) 

where, 𝑅1 and 𝑟1 indicate a defined residue and the position occupied by a residue that is 

either defined or uncertain. The number of alternatives increases exponentially when 

including more defined residues in the SLiM pattern. For simplicity, we ignored those 

patterns not detected in the SARS-CoV-2 sequence (MN985325) (S5.1 Data). Since SLiMs 

are usually associated with convergent evolution [417,418], we adopted Pearson's chi-

squared tests to assess the occurrence difference of SLiMs in the corresponding PMHPs 

(Table 5.2) and background dataset S1. SLiMs arose in less than five PMHPs were ignored. 

Benjamini-Hochberg correction procedure was applied to avoid type-I error [264]. The cut-

off threshold of adjusted p-value was set as 0.01 initially and then changed to 0.05 for the 

final estimation. These procedures were repeated for 22 SARS-CoV-2 proteins to discover 

SLiMs more likely to be mimicked by each SARS-CoV-2 protein. 

5.3.4 Filtering SLiMs 

There are many important requirements for SLiMs to become a functional module in the 

protein [429]. In this study, we applied four kinds of filters on the identified SLiMs:  disorder, 

solvent exposure, subcellular localisation, and tissue expression. Intrinsically disordered 

regions (IDRs) are important components of proteins. They generally lack bulky 

hydrophobic amino acids to form well-organized tertiary structures but can still facilitate 
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regulation and recruit diverse binding partners [447], which may be favoured by SARS-

CoV-2. In this study, IDRs of human and viral proteins were all estimated by ESpritz with 

short X-ray flavour [266]. It was developed based on bidirectional recursive neural networks.  

Exposure and solvent accessibility measures to what extent an amino acid is 

accessible to the solvent surrounding the protein. Here, we used AlphaFold [430] predicted 

tertiary structure to calculate the accessible surface area (ASA) of amino acids with PSAIA 

programme [448]. Position with higher ASA values were more exposed or less buried. We 

hypothesise that SLiMs involving deeply buried amino acid residues (ASA = 0 square 

Ångstroms) are less likely to be mimicked by any SARS-CoV-2 proteins.  

Subcellular localisation describes the cellular environment of proteins. This 

information can be used to improve reliability of virus mimicry mechanism. As SARS-CoV-

2 proteins are either cytoplasmic (spike, membrane, nucleocapsid, ORF3a/6/7a/8/10, and 

NSP2/4/8) or both nuclear and cytoplasmic (envelope and NSP1/5/6/7/9/10/12/13/14/15) 

[449], SLiMs from PMHPs that are located at the same subcellular localisation are more 

likely to be mimicked. Here, subcellular localisation of human proteins was retrieved from 

UniProt [2], Reactome [150], human protein atlas (HPA) [450] and Ensembl databases [244]. 

Tissue expression data indicates molecular phenotypes across a wide range of tissue 

types [152]. Measured by the transcript per million (TPM), the expression level of a gene in 

the specific tissue can be catalogued into four class: high (TPM > 1000), medium (TPM 

between 10 to 1000), low (TPM between 0.5 to 10) and limited (TPM < 0.5) [375]. It has 

been suggested that SARS-CoV-2 mainly infect basal, ciliated, club, AT2, and proliferative 

KRT7+ epithelial cells in the lung tissue [451]. In this study, we mainly focused on SARS-

CoV-2 mimicry that could take place in the lung tissue. Expression data in lung were 

retrieved from 578 sample tests in the Genotype-Tissue Expression (GTEx) project [152]. 

We hypotheses that genes with a medium TPM lower than 0.5 in lung are less likely to be 

involved in SARS-CoV-2 mimicry.  

5.4 Results 

5.4.1 PMHPs with high connectivity to the virus targets 

Some human proteins are highly connected in human PPI network. For example, among 

6727 PMHPs, estrogen receptor 2 (ESR2) was ranked first for interacting with the largest 

number of SARS-CoV-2 targets (n=100, S5.5 Data). Its high connectivity still remained 
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when only focusing on human proteins targeted by SARS-CoV-2 envelope (Fig 5.2A), NSP8, 

or NSP12 (n=4, 16 and 12 respectively). 

Exemplified by the PPI between SARS-CoV-2 spike protein and angiotensin 

converting enzyme 2 (ACE2) receptor [58], each viral protein has to target some specific 

human proteins to hijack and exploit the host system [407,410,452]. Mimicry mechanisms 

of different SARS-CoV-2 proteins need to be investigated individually due to the difference 

in their interacting targets (S5.4 Data). At this stage, we temporarily filtered out human 

proteins connected to less than 50% of the SARS-CoV-2 targets. With respect to human 

interactors shared among the targets of SARS-CoV-2 spike protein, ring finger protein 4 

(RNF4), hepatitis A virus cellular receptor 2 (HAVCR2), transmembrane protein with EGF 

like and two follistatin like domains 1 (TMEFF1), and claudin domain containing 1 

(CLDND1) were remarkable for connecting all spike-interacting proteins in the collected 

data (Fig 5.2B). Comparing with the cases for SARS-CoV-2 spike or envelope proteins, we 

found more human proteins that might be involved in the mimicry of SARS-CoV-2 

nucleocapsid phosphoprotein (Fig 5.2C). However, according to the endogenous human 

PPIs, no human protein was highly connected (n≥15) to the targets of SARS-CoV-2 

membrane protein. 

As for the accessory proteins of SARS-CoV-2, RNF4 and COP9 signalosome 

subunit 6 (COPS6) might be potential targets of ORF3a and ORF10 mimicry, respectively. 

Ubiquitin specific peptidase 7 (USP7) might be mimicked by ORF6. Seven human proteins 

were noteworthy for ORF7a mimicry. The potential of SARS-CoV-2 mimicry was also 

detected for NSPs with the exception of NSP3, NSP4, NSP5, NSP9, NSP11, NSP13, and 

NSP16. As a result, in addition to the virus targets, another 28 human proteins were screened 

as ‘hub’ proteins in corresponding sub-networks of human PPIs. Neurotrophic receptor 

tyrosine kinase 1 (NTRK1), ESR2, egl-9 family hypoxia inducible factor 3 (EGLN3), RNF4, 

elongation factor Tu GTP binding domain containing 2 (EFTUD2), small ubiquitin like 

modifier 2 (SUMO2), and interferon gamma inducible protein 16 (IFI16) required further 

investigation for their frequent appearance in the results of this analysis (Table 5.3). 
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Fig 5.2 Sub-networks highlighting human proteins potentially mimicked by some 

structural proteins of SARS-CoV-2. Plot (A) was delineated for human some host targets 

of SARS-CoV-2 spike proteins while plot (B) and (C) were created for those of SARS-CoV-

2 envelope protein and nucleocapsid phosphoprotein, respectively. Red, yellow and green 

blocks represent human proteins targeted by spike, envelope, and nucleocapsid proteins of 

SARS-CoV-2, respectively. Grey blocks represented human proteins interacting with 

50%~60% of specific virus targets while blue blocks indicate a more connected status 

(>60%). More detailed endogenous interactions between PMHPs and SARS-CoV-2 targets 

are provided in S5.5 Data. Abbreviations: SARS-CoV-2, severe acute respiratory syndrome 

coronavirus 2. 

Finally, at this stage, we detected 84 human proteins more connected to the targets 

of SARS-CoV-2 proteins (Table 5.3). They were ‘hub’ proteins of the corresponding human 

PPI sub-network and occurred in the majority of signalling pathways interfered or hijacked 

by the virus [429]. Mimicking patterns from these human proteins might enhance the affinity 

of multiple SARS-CoV-2-host PPIs and further facilitate their exploitation of the host system 

[356]. However, according to the current results, we still lacked convincing evidences to 

support the mimicry activity. It was also unclear how the putative mimicry was processed.  

Table 5.3 PMHPs highly connected to SARS-CoV-2 targets. 

Viral protein PMHP (No. of interactions with virus targets/No. of virus targets)a, c 

Spike RNF4b (2/2), HAVCR2 (2/2), TMEFF1 (2/2), CLDND1 (2/2) 

Envelope 
ESR2b (4/6), JUNb (3/6), LARP7b (3/6), CHD4 (3/6), ELAVL1b (3/6), EPB41L3 

(3/6), PIP4K2A (3/6), EPB41L5 (3/6) 

Nucleocapsid 

JUNb (13/15), NTRK1b (12/15), CUL3 (11/15), LARP7b (11/15), EFTUD2b 

(11/15), IFI16b (11/15), PCLAF (11/15), YBX1 (10/15), BRCA1 (10/15), RNF2 

(10/15), CAND1 (10/15), SIRT7 (10/15), GABARAPL2 (10/15), SUMO2b (9/15), 
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CHD3 (9/15), NPM1 (9/15), MEPCE (9/15), TARDBP (9/15), HEXIM1 (9/15), 

RRP1B (9/15), ESR1 (8/15), YWHAZ (8/15), HNRNPA1 (8/15), COPS5b (8/15), 

CUL1 (8/15), VCAM1 (8/15), ITGA4 (8/15), STAU1 (8/15), GABARAP (8/15) 

ORF3a RNF4b (5/8) 

ORF6 

USP7 (3/3), ESR2b (2/3), IFI16b (2/3), NXF1b (2/3), CUL7 (2/3), OBSL1 (2/3), 

CTNNB1 (2/3), CDC37 (2/3), FAF1 (2/3), EGLN3b (2/3), HNRNPUL1 (2/3), 

KPNB1 (2/3), NUP153 (2/3), NUMA1 (2/3), NUP107 (2/3), NKX2-1 (2/3), SEH1L 

(2/3), PTTG1 (2/3) 

ORF7a 
HSCB (2/2), SUMO2b (2/2), MYC (2/2), CD70 (2/2), RNF123 (2/2), SCN2B (2/2), 

PTP4A3 (2/2) 

ORF10 COPS6 (6/9), NEDD8 (5/9), UBE2M (5/9), COPS5b (5/9), ARIH1 (5/9) 

NSP1 

CHM (4/6), RAE1 (4/6), CIAO1 (4/6), MMS19 (4/6), STN1 (4/6), NTRK1b (3/6), 

EFTUD2b (3/6), RPA2 (3/6), SUMO2b (3/6), RPA1b (3/6), RNF31 (3/6), POLA2 

(3/6) 

NSP2 NTRK1b (4/7), XPO1 (4/7) 

NSP6 CFTR (2/4), NXF1b (2/4), RNF4b (2/4), CLN3 (2/4) 

NSP7 RNF4b (19/32) 
NSP8 ESR2b (16/24), EFTUD2b (12/24), IFI16b (12/24) 

NSP10 NTRK1b (3/5), TRIM25 (3/5), RPA1b (3/5), RPA3 (3/5) 

NSP12 ESR2b (12/20), EGLN3b (11/20) 

NSP14 EGLN3b (2/3), FBXO6 (2/3), TEPSIN (2/3) 

NSP15 ELAVL1b (2/3), HLA-B (2/3), CACYBP (2/3), UBE2D3 (2/3) 

a: detailed PPIs between PMHPs and virus targets are provided in S5.5 Data; b: bold PMHPs are highly 

connected to the targets of multiple SARS-CoV-2 proteins; c: number of virus targets are listed in Table 5.2. 

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; PMHP, potentially mimicked 

human protein; ORF, open reading frame; NSP, non-structural protein; PPI, protein-protein interactions. 

5.4.2 SLiMs significantly enriched in PMHPs 

SLiMs can be considered as protein functional modules that play an important role in 

numerous cellular processes such as post-translational modification [453] and protein-

protein interactions [454]. As a result of convergent evolution, they can be detected in 

different proteins and keep their specificity to interact with the target biomolecules [418,429].  

Here, by comparing with the background dataset S1, we initially discovered 7957 

distinct host-like SLiMs significantly enriched in PMHPs (adjusted P<0.01, S5.6 Data). 

Some of these SLiMs might not be relevant to SARS-CoV-2 mimicry but were less likely to 

be an incidental result of genetic coding. Amino acid compositions of PMHPs indicated an 

enrichment of acidic, negatively charged or hydrophilic residues (Fig 5.3). Such propensity 
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inevitably influenced the sequence pattern of SLiMs enriched in PMHPs. For example, we 

found that arginine (R) and lysine (K) were over-represented in PMHPs of SARS-CoV-2 

envelope. These biased amino acid compositions led to the R/K enrichment in the conserved 

positions of the corresponding SLiMs. Despite this, we also noticed the impact of disorder-

promoting amino acid residues on the enriched SLiMs (Fig 5.3). We found that some amino 

acid residues in the non-conserved or active positions of SLiMs were not placed randomly. 

Exemplified by SLiM ‘ENxxxxLD’, it was detected for 14 times in PMHPs of SARS-CoV-

2 ORF6 (Table 5.4). This motif contained four non-conserved positions. Its second and last 

non-conserved positions tended to be occupied by R. However, this pattern was not observed 

frequently enough to get a significant signal (Pearson's chi-squared test: P>0.05) warranting 

a more complex SLiM such as ‘ENxRxxLD’, ‘ENxxxRLD’ or ‘ENxRxRLD’.  

Table 5.4 shows 22 representative SLiMs and their representations in the 

corresponding SARS-CoV-2 proteins. Some SLiMs (e.g., ‘CxFQ’ and ‘AFVxF’) were not 

located in the IDR of the viral protein. The conserved part of these SLiMs were not globally 

enriched in disorder-promoting residues, i.e., proline (P), glutamic acid (E), serine (S), 

glutamine (Q), and K [415,416]. Additionally, viral sequence regions that contained these 

SLiMs were more enriched with order-promoting residues including cysteine (C), 

tryptophan (W), isoleucine (I), tyrosine (Y), phenylalanine (F), leucine (L), histidine (H), 

valine (V), asparagine (N), and methionine (M) [415,416]. Hence, these SLiMs were 

unlikely to be evolutionarily convergent in viral proteins, which in turn might not promote 

the virus invasion into the network of interacting host proteins [356]. In view of this, they 

were less likely to be mimicked. Since similar cases were widely observed when matching 

our detected SLiMs to the viral sequence, further screening was required to discern SLiMs 

truly involved in the mimicry machinery. 
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Fig 5.3 Over-representation of some amino acid residues in SLiMs enriched in PMHPs. 

The red and blue bar indicated the most and second most obvious bias of amino acid 

compositions in the SLiM set (left) when comparing with their representation in the 

background dataset S1 (right). Disorder-promoting residues (P, E, S, Q, K) are coloured in 

green. Abbreviations: SLiM, short linear motif; PMHP, potentially mimicked human protein; 

ORF, open reading frame; NSP, non-structural protein. 

Table 5.4 Representative SLiMs and their representation in SARS-CoV-2 proteins. 

 
a: ‘x’ indicated a less conserved position occupied by a class of or random amino acid residue; b: amino acid 

residues here were coloured according to the propensity to promote intrinsic disorder, i.e., red for disorder-

promoting residues (P, E, S, Q, K), blue for order-promoting residues (C, W, I, Y, F, L, H, V, N, M), and black 

for disorder-order neutral residues (alanine, glycine, aspartic acid, threonine, arginine) [415,416]; c: p-value 
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listed here was obtained via Pearson's chi-squared test and adjusted by Benjamini-Hochberg correction 

procedure to avoid type I error [264]. Abbreviations: SARS-CoV-2, severe acute respiratory syndrome 

coronavirus 2; ORF, open reading frame; NSP, non-structural protein; SLiM, short linear motif. 

5.4.3 Involvement of SLiMs in intrinsically disordered regions 

Intrinsically disordered regions are polypeptide segments that lack fixed or stable tertiary 

structures [455]. They are advantageous in binding to multiple partners [356] and can sustain 

their functionality in spite of harsh environmental conditions [456], thus become perfect 

targets for virus mimicry. As mentioned in the previous section, some SLiMs were not 

detected in the IDRs of the viral sequence. They were structured and might even be involved 

in some independent folding units (globular domains), which were usually conserved during 

evolution [356,457]. Recent research investigated the possibility of such structural mimicry 

for coronaviruses [120]. This goes against the rapid rewiring of virus interactions with the 

host molecules [356], thus is not the focus in this study. Here, we propose that SLiMs widely 

detected in the IDR of both human and viral sequence were more likely to be evolutionarily 

convergent [4]. Meanwhile, mimicry was more likely to have evolved in SLiMs of the virus 

to assist in specific virus-host molecular interactions.  

To address this, in this study, we utilised ESpritz [266] to discern ordered and 

disordered regions within human and SARS-CoV-2 proteins. Compared with other IDR 

predictors [168,458,459], results from ESpritz generally involved more positions with 

potential to be disordered (S5.1 Data). We found that the majority of our detected SLiMs 

were located within at least one IDR of the human protein. It enhanced the confidence for 

some SLiMs to have independent functions and to evolve convergently [4,418]. By contrast, 

only 2779 of our detected SLiMs (~35%) were observed in the IDRs of corresponding viral 

sequences while the rest 5050 SLiMs (~65%) were not. When including SLiMs observed in 

both the IDRs of PMHPs and the corresponding SARS-CoV-2 proteins, only 224 SLiMs 

with significant enrichment status were retained (adjusted P<0.01, S5.7 Data). Based on the 

calculated ASA [448], these SLiMs did not involve any completely buried amino acid 

residues (ASA = 0 square Ångstroms).  

Comparing with the background dataset S1, SLiM ‘NxxxSRxP’ was over-

represented in the IDRs of human proteins potentially mimicked by SARS-CoV-2 envelope 

protein (Pearson's chi-squared test: F1=1.3%, F2=0.4%, P=0.003). Enrichment of SLiM 

‘SGxxxGxS’ remained after adding disorder requirement in both PMHPs and SARS-CoV-

2 ORF7a (F1=7.5%, F2=2.8%, P=6.2E-03). SLiM ‘ATAxExxE’ was the only one remaining 
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after screening for SARS-CoV-2 NSP mimicry (F1=0.6%, F2=0.1%, adjusted P=5.4E-05), 

suggesting NSP8 mimicry. The observation of SLiM ‘NxxxSRxP’, ‘SGxxxGxS’ and 

‘ATAxExxE’ in IDRs of PMHPs and corresponding viral proteins is illustrated in Fig 5.4. 

The latter two SLiMs were observed multiple times even in a same human protein. We also 

noticed that non-conserved positions of these SLiMs showed a bias in amino acid 

compositions. For instance, the first non-conserved position of SLiM ‘SGxxxGxS’ tended 

to be glycine (G). However, such propensity was not mimicked by the corresponding SARS-

CoV-2 protein.  

The remaining 221 SLiMs were highly enriched with conserved amino acid residue 

‘S’ and ‘R’. They were all screened from the IDRs of human proteins potentially mimicked 

by SARS-CoV-2 nucleocapsid phosphoprotein (S5.7 Data). They were located in eight 

regions of the viral protein, including (1) P6~P13, (2) R32~R41, (3) R92~R97, (4) 

G175~S197, (5) S202~R209, (6) P364~A376, (7) D399~K405, and (8) S410~S416.  

 
 

Fig 5.4 Illustration of potentially mimicked SLiMs observed in the IDR of both human 

and SARS-CoV-2 proteins. Human protein ‘RBMX’, ‘GSK3A’ and ‘TUBB3’ were chosen 

as representatives to show the location of corresponding SLiMs in the protein. Protein 

structures used here were generated by AlphaFold [430]. ASAs of the defined positions in 
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the exemplified SLiMs were calculated by the PSAIA programme [448] and shown in the 

right box. Higher ASA indicated a more exposed status. Abbreviations: SARS-CoV-2, 

severe acute respiratory syndrome coronavirus 2; IDR, intrinsically disordered region; ASA, 

accessible surface area; ORF, open reading frame; RBMX, RNA binding motif protein X-

linked; GSK3A, glycogen synthase kinase 3 alpha; TUBB3, tubulin beta 3 class III. 

5.4.4 Mimicry in SARS-CoV-2 

Upon the aforementioned screening, we obtained three SLiMs for the mimicry of SARS-

CoV-2 envelope, ORF7a, and NSP8, and 221 SLiMs for nucleocapsid mimicry. PMHPs 

with SLiM ‘NxxxSRxP’ arose in the nucleus region of the cell [460-462], which satisfied 

the condition to encounter with SARS-CoV-2 envelope proteins [449]. Most of them were 

involved in RNA binding, mRNA splicing, and positive regulation of transcription (Table 

5.5, S5.8 Data). They shared SARS-CoV-2 envelope-targeting protein ‘ZC3H18’ as the 

interaction partner. These discoveries indicate that SARS-CoV-2 envelope may mimic SLiM 

‘NxxxSRxP’ from one or some human proteins when reaching the nucleus [449] and use 

this host-like SLiM to interact with ZC3H18 (Table 5.8).  

Table 5.5 Functionality of the ‘qualifying’ PMHPs of SARS-CoV-2 envelope protein. 

PMHP Expressiona Molecular functionb 
WDR33 18.05 RNA binding. 

BCLAF1 43.88 DNA binding; RNA binding; transcription coregulator activity. 

PRPF4B 41.52 
ATP binding; protein kinase activity; protein serine kinase activity; protein 

threonine kinase activity; RNA binding. 

RBMX 78.05 

chromatin binding; identical protein binding; mRNA binding; protein domain 

specific binding; RNA binding; RNA polymerase II cis-regulatory region 

sequence-specific DNA binding. 

RBMXL1 11.93 single-stranded RNA binding. 

a: these data are represented by the medium TPM in lung from the GTEx project [152]; b: the function profile 

were retrieved from UniProt [2] and GOC [246]. Abbreviations: SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; PMHP, potentially mimicked human protein; GTEx, Genotype-Tissue Expression; 

TPM, transcript per million; GOC, Gene Ontology Consortium; WDR33, WD repeat domain 33; BCLAF1, 

BCL2 associated transcription factor 1; PRPF4B, pre-mRNA processing factor 4B; RBMX, RNA binding 

motif protein X-linked; RBMXL1, RBMX like 1. 

The majority of PMHPs with SLiM ‘SGxxxGxS’ were involved in molecule binding 

and the regulation of many biological processes (Table 5.6, S5.8 Data). As the subcellular 

localisation of SWI/SNF-related, matrix-associated actin-dependent regulator of chromatin, 

subfamily a, containing DEAD/H box 1(SMARCAD1) did not match that of SARS-CoV-2 
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ORF7a in the infected host cell [449,463], it was less likely to be a true mimicking target. 

When ignoring SMARCAD1, the enrichment status of SLiM ‘SGxxxGxS’ in PMHPs was 

influenced but still at a significant level (Pearson's chi-squared test: F1=6.5%, F2=2.8%, 

P=0.03). The remaining PMHPs shared SARS-CoV-2 ORF7a-targeting protein ‘midasin 

AAA ATPase 1 (MDN1)’ as the interaction partner. These results suggest that SARS-CoV-

2 ORF7a mimicry may happen in the cytoplasm. SLiM ‘SGxxxGxS’ may be mimicked to 

promote virus-host interaction with MDN1 (Table 5.8). 

Table 5.6 Functionality of the ‘qualifying’ PMHPs of SARS-CoV-2 ORF7a. 

PMHP Expressiona Molecular functionb 

MAPT 1.27 

actin binding; apolipoprotein binding; chaperone binding; DNA binding; 
double-stranded DNA binding; dynactin binding; enzyme binding; histone-
dependent DNA binding; Hsp90 protein binding; identical protein binding; 
lipoprotein particle binding; microtubule binding; microtubule lateral binding; 
minor groove of adenine-thymine-rich DNA binding; phosphatidylinositol 
binding; phosphatidylinositol bisphosphate binding; protein kinase binding; 
protein-macromolecule adaptor activity; protein phosphatase 2A binding; RNA 
binding; sequence-specific DNA binding; SH3 domain binding; single-
stranded DNA binding. 

CHD3 68.23 

ATP binding; ATP hydrolysis activity; DNA binding; DNA helicase activity; 
double-stranded DNA helicase activity; helicase activity; nucleosome-
dependent ATPase activity; RNA binding; transcription cis-regulatory region 
binding; zinc ion binding. 

GSK3A 43.09 

ATP binding; protein kinase A catalytic subunit binding; protein 
serine/threonine kinase activity; protein serine kinase activity; protein 
threonine kinase activity; signaling receptor binding; tau protein binding; tau-
protein kinase activity. 

HNRNPD 135.4 
chromatin binding; histone deacetylase binding; minor groove of adenine-
thymine-rich DNA binding; mRNA 3'-UTR AU-rich region binding; RNA 
binding; telomeric DNA binding. 

VCP 165.6 

ADP binding; ATP binding; ATP hydrolysis activity; BAT3 complex binding; 
deubiquitinase activator activity; identical protein binding; K48-linked 
polyubiquitin modification-dependent protein binding; lipid binding; MHC 
class I protein binding; polyubiquitin modification-dependent protein binding; 
protein domain specific binding; protein phosphatase binding; RNA binding; 
ubiquitin-like protein ligase binding; ubiquitin protein ligase binding; 
ubiquitin-specific protease binding. 

SOX2 0.64 

DNA binding; DNA-binding transcription activator activity, RNA polymerase 
II-specific; DNA-binding transcription factor activity; DNA-binding 
transcription factor activity, RNA polymerase II-specific; miRNA binding; 
RNA polymerase II cis-regulatory region sequence-specific DNA binding; 
sequence-specific DNA binding; transcription cis-regulatory region binding. 

a: these data are represented by the medium TPM in lung from the GTEx project [152]; b: the function profile 

were retrieved from UniProt [2] and GOC [246]. Abbreviations: SARS-CoV-2, severe acute respiratory 
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syndrome coronavirus 2; PMHP, potentially mimicked human protein; ORF, open reading frame; GTEx, 

Genotype-Tissue Expression; TPM, transcript per million; GOC, Gene Ontology Consortium; MAPT, 

microtubule associated protein tau; CHD3, chromodomain helicase DNA binding protein 3; GSK3A, glycogen 

synthase kinase 3 alpha; HNRNPD, heterogeneous nuclear ribonucleoprotein D; VCP, valosin containing 

protein; SOX2, SRY-box transcription factor 2. 

We found that some PMHPs containing SLiM ‘ATAxExxE’ were associated with 

GTP/tubulin binding, structural cytoskeleton, mitotic cell cycle, or neuron migration (Table 

5.7, S5.8 Data). Biogenesis of ribosomes BRX1 (BRIX1) only occurred in nucleolus [464], 

from which it was less likely to be mimicked by NSP8 of SARS-CoV-2 [449]. Based on 578 

sample tests from the GTEx project [152], NLR family pyrin domain containing 5 (NLRP5) 

did not express in lung (TPM = 0). Ignoring the occurrence of SLiM ‘ATAxExxE’ in BRIX1 

and NLRP5 reduced the significance of SLiM enrichment in PMHPs (F1=0.4%, F2=0.1%, 

adjusted P=2.7E-03). Most of the rest PMHPs with SLiM ‘ATAxExxE’ shared SARS-CoV-

2 NSP8-targeting protein ‘La ribonucleoprotein 7 (LARP7)’, and ‘methylphosphate capping 

enzyme (MEPCE)’ as their interaction partners. An exception was found on nuclear mitotic 

apparatus protein 1 (NUMA1). It interacted with DEAD-box helicase 10 (DDX10) and 

nuclear receptor binding SET domain protein 2 (NSD2), which were targeted by SARS-

CoV-2 NSP8. These results suggest that SARS-CoV-2 NSP8 may mimic SLiM ‘ATAxExxE’ 

to interact with LARP7 and MEPCE (Table 5.8).  

Table 5.7 Functionality of the ‘qualifying’ PMHPs of SARS-CoV-2 NSP8. 

PMHP Expressiona Molecular functionb 

TUBB2B 1.28 
GTP binding; protein heterodimerization activity; structural constituent of 

cytoskeleton. 

TUBB3 1.76 
GTP binding; netrin receptor binding; peptide binding; structural constituent of 

cytoskeleton. 

TUBB2A 11.13 GTP binding; structural constituent of cytoskeleton. 

TUBB4B 255.4 
double-stranded RNA binding; GTP binding; MHC class I protein binding; 

structural constituent of cytoskeleton; unfolded protein binding. 

KPNA1 18.9 nuclear import signal receptor activity; nuclear localization sequence binding. 

NUMA1 67.16 

disordered domain specific binding; dynein complex binding; microtubule 

binding; microtubule minus-end binding; microtubule plus-end binding; 

phosphatidylinositol binding; protein-containing complex binding; protein C-

terminus binding; protein domain specific binding; structural molecule activity; 

tubulin binding. 

a: these data are represented by the medium TPM in lung from the GTEx project [152]; b: the function profile 

were retrieved from UniProt [2] and GOC [246]. Abbreviations: SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; PMHP, potentially mimicked human protein; NSP, non-structural protein; GTEx, 
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Genotype-Tissue Expression; TPM, transcript per million; GOC, Gene Ontology Consortium; TUBB2B, 

tubulin beta 2B class IIb; TUBB3, tubulin beta 3 class III; TUBB2A, tubulin beta 2A class IIa; TUBB4B, 

tubulin beta 4B class IVb; KPNA1, karyopherin subunit alpha 1; NUMA1, nuclear mitotic apparatus protein 

1. 

We obtained 221 SLiMs from 1121 PMHPs of SARS-CoV-2 nucleocapsid 

phosphoprotein. However, many of these PMHPs were not detected in the cytosol region 

based on the annotation data from UniProt [2], Reactome [150], HPA [450] or Ensembl 

databases [244]. Inconsistency of the subcellular localisation between PMHPs and SARS-

CoV-2 nucleocapsid phosphoprotein reduced the confidence of virus mimicry for these 

SLiMs. Additionally, expression data from the GTEx [152] showed that the expression level 

of some PMHPs was extremely limited (medium TPM<0.5) in the lung, which also indicated 

that they were less likely to be involved in the mimicry of SARS-CoV-2 nucleocapsid 

phosphoprotein. After ignoring the occurrence of SLiMs in these ‘inappropriate’ PMHPs, 

15 SLiMs remained. They had two distinct types of propensity in their amino acid 

compositions (SR-enriched and K-enriched) and were observed in two regions of SARS-

CoV-2 nucleocapsid phosphoprotein: S184~R195 and P368~K375. The first region was 

included in the ‘SR/RS’ domains, which might contribute to the unpacking of coronavirus 

RNA and its virion assembly [465]. Here we divided these 15 SLiMs into two groups, 

namely ‘SR-featured’ SLiMs and ‘PK-featured’ SLiMs. 45 PMHPs were found to have ‘SR-

featured’ SLiMs. Many of them were associated with DNA/RNA/ATP binding and RNA 

processing (S5.8 Data). The top-three virus targets shared among their PPI sub-networks 

were Smad nuclear interacting protein 1 (SNIP1), Mov10 RISC complex RNA helicase 

(MOV10), and G3BP stress granule assembly factor 1 (G3BP1) (Fig 5.5A). On the other 

hand, ‘PK-featured’ SLiMs arose in 25 PMHPs of SARS-CoV-2 nucleocapsid 

phosphoprotein. Many of them were involved in molecule binding, regulation of 

transcription, and innate immune response (S5.8 Data). Among them, MOV10, DExD-box 

helicase 21 (DDX21) and G3BP1 were more connected to the virus targets (Fig 5.5B). In 

view of all these, here, we propose our hypothesis of another virus mimicry: SARS-CoV-2 

nucleocapsid phosphoprotein may mimic 15 ‘SR-featured’ and ‘PK-featured’ SLiMs from 

human proteins and orchestrate their representation in its S184~R195 (SRSSSRSRNSSR) 

and P368~K375 (PKKDKKKK) regions so as to enhance its interaction affinity with SNIP1, 

MOV10, G3BP1, DDX21, etc (Table 5.8). 
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Fig 5.5 ‘High-confidence’ interactions among SARS-CoV-2 nucleocapsid 

phosphoprotein, its human targets, and PMHPs with (A) ‘SR-featured’ and (B) ‘PK-

featured’ SLiMs. Red label highlighted the top-three virus targets shared as the interaction 

partners of the corresponding PMHPs. Abbreviations: SARS-CoV-2, severe acute 

respiratory syndrome coronavirus 2; PMHP, potentially mimicked human protein; SNIP1, 

Smad nuclear interacting protein 1; MOV10, Mov10 RISC complex RNA helicase; G3BP1, 

G3BP stress granule assembly factor 1; DDX21, DExD-box helicase 21. 

Table 5.8 Host-like SLiMs mimicked by SARS-CoV-2 proteins. 

SLiMa Detected region in viral protein P-valueb Enhanced interaction affinityc 

NxxxSRxP Envelope: N64~P71 3.00E-03 ZC3H18 

SGxxxGxS ORF7a: S37~S44 6.20E-03 MDN1 

ATAxExxE NSP8: A16~E23 5.40E-05 LARP7, MEPCE 

SRSRxxSR Nucleocapsid: S184~R195 5.10E-03 SNIP1, MOV10, G3BP1 

SRxxSRSR Nucleocapsid: S184~R195 2.10E-02 SNIP1, MOV10, CSNK2A2 

SRSRxxxR Nucleocapsid: S184~R195 1.50E-02 SNIP1, MOV10, CSNK2A2 

RSxSRSR Nucleocapsid: S184~R195 2.10E-02 SNIP1, MOV10, CSNK2A2 

RSxxRSR Nucleocapsid: S184~R195 2.60E-02 SNIP1, MOV10, CSNK2A2 

SRxRxxSR Nucleocapsid: S184~R195 2.50E-02 SNIP1, MOV10, G3BP1 

SRxxSxSR Nucleocapsid: S184~R195 3.10E-02 SNIP1, MOV10, CSNK2A2 

SxSRxxSR Nucleocapsid: S184~R195 3.00E-02 SNIP1, MOV10, CSNK2A2 

SRSxSRSR Nucleocapsid: S184~R195 3.30E-02 SNIP1, CSNK2A2, MOV10 

PKxxKKxK Nucleocapsid: P368~K375 3.90E-02 DDX21, MOV10, G3BP1 
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SRSxxxSR Nucleocapsid: S184~R195 3.80E-02 SNIP1, MOV10, G3BP1 

PxKxKKxK Nucleocapsid: P368~K375 4.40E-02 MOV10, DDX21, LARP1 

SRSxSxSR Nucleocapsid: S184~R195 4.7E-02 SNIP1, MOV10, CSNK2A2 

SRSxxRSR Nucleocapsid: S184~R195 5.0E-02 SNIP1, CSNK2A2, MOV10 

RxxSRSR Nucleocapsid: S184~R195 4.8E-02 SNIP1, MOV10, G3BP1 

a: ‘x’ indicated a less conserved position occupied by a class of or random amino acid residue; b: p-value 

listed here was obtained via Pearson's chi-squared test and adjusted by Benjamini-Hochberg correction 

procedure to avoid type I error [264]; c: for putative SARS-CoV-2 nucleocapsid phosphoprotein mimicry, only 

the top three influenced virus targets were listed. Abbreviations: SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; SLiM, short linear motif; ZC3H18, zinc finger CCCH-type containing 18; MDN1, 

midasin AAA ATPase 1; LARP7, La ribonucleoprotein 7; MEPCE, methylphosphate capping enzyme; SNIP1, 

Smad nuclear interacting protein 1; MOV10, Mov10 RISC complex RNA helicase; G3BP1, G3BP stress 

granule assembly factor 1; CSNK2A2, casein kinase 2 alpha 2; DDX21, DExD-box helicase 21; LARP1, La 

ribonucleoprotein 1. 

5.4.5 Association between SLiMs and typical SARS-CoV-2 mutations 

SARS-CoV-2 mutations accumulate in its genome and can be spread during the pandemic 

[466]. A fraction of these mutations cause non-synonymous changes in the protein sequence, 

which may alter the infectivity, disease severity or interactions with host immunity [421,467]. 

After screening for intrinsic disorder, solvent exposure, subcellular localisation, and 

expression in the lung tissue, we obtained 18 SLiMs for the investigation of SARS-CoV-2 

mimicry (Table 5.8). These SLiMs were exposed to the frequent mutation of SARS-CoV-2 

but generally were conserved (Fig 5.6). SLiM ‘SxSRxxSR’ was even conserved across other 

human coronaviruses [434]. It was detected in S151~R158 (SQSRSQSR) of HoV-229E, 

S166~R173 (STSRQQSR) of HCoV-NL63, S195~R202 (SNSRPGSR) of HCoV-HKU1, 

S200~R207 (STSRTSSR) of HCoV-OC43, S177~R184 (SLSRNSSR) of MERS-CoV, and 

S187~R194 (SRSRGNSR) of SARS-CoV (Fig 5.7). ‘PK-featured’ SLiMs did not arise in 

HoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 due to the lack of proline/lysine-

dominant regions. Additionally, we found that all of the nucleocapsid-mimicked SLiMs 

were conserved in SARS-CoV, indicating similar evolutionary constraints in Sarbecovirus 

subfamily members [468].  

Since the screened SLiMs were only located in the envelope, nucleocapsid, ORF7a 

or NSP8 clades of SARS-CoV-2, mutations happened in spike, membrane, other accessory 

or non-structure proteins were ignored in the analyses. We noticed that envelope, ORF7a or 

NSP8 clades of SARS-CoV-2 were generally stable with limited non-synonymous mutations. 

Particularly, as beta variants of SARS-CoV-2 had ‘P71L’ mutation [399] in the envelope 
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protein, SLiM ‘NxxxSRxP’ was destroyed (Fig 5.4). In the nucleocapsid phosphoprotein of 

SARS-CoV-2 variants, all of the screened 15 SLiMs were not influenced by non-

synonymous substitutions.  

Together, the screened 18 SLiMs are generally conserved in different SARS-CoV-2 

variants. SLiM ‘SxSRxxSR’ is retained through purifying selection in human coronaviruses.  

 
Fig 5.6 Conservation of SLiMs in the human-infecting coronaviruses and SARS-CoV-

2 variants. The phylogenetic tree was generated based on the sequence alignment of 

representative coronavirus genomes (Table 5.1, S5.2 Data). Abbreviations: SARS-CoV, 

severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; HCoV, human coronavirus; MERS-CoV, middle east respiratory 

syndrome coronavirus; SLiM, short linear motif; ORF, open reading frame; NSP, non-

structural protein. 
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Fig 5.7 Alignment for nucleocapsid phosphoproteins in seven human coronaviruses. 

Red background highlighted regions containing conserved SLiMs within human 

coronaviruses. Asterisk symbol indicated positions with a single, fully conserved residue. 

Colon and period symbol indicated conservation between groups of strongly and weakly 

similar properties, respectively. Abbreviations: SARS-CoV, severe acute respiratory 

syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; 

HCoV, human coronavirus; MERS-CoV, middle east respiratory syndrome coronavirus. 

HCoV-229E|Nucleocapsid       ---------------------MATVKWADASEPQ-----RG----------------RQG 18
HCoV-NL63|Nucleocapsid       ---------------------MASVNWADDRAA------------------------RKK 15
HCoV-HKU1|Nucleocapsid1      MSYTPGHYAGSRSSSGNRSGILKKTSWADQSERNYQTFNRGRKTQPKFTVST--QPQGNT 58
HCoV-OC43|Nucleocapsid       MSFTPGKQSSSRASSGNRSGNG-ILKWADQSDQFRNVQTRGRRAQPKQTATSQQPSGGNV 59
MERS-CoV|Nucleocapsid        -------MA--------SPAAPRAVSFADNNDI----TNTNLSR----GRGRNPKPRAAP 37
SARS-CoV-2|Nucleocapsid      MS--DNGPQ--------NQRNAPRITFGGPSDSTGSNQNGERSG----ARSKQRRPQGLP 46
SARS-CoV|Nucleocapsid        MT--DNGQQ--------GPRNAPRITFGV-SDNFDNNQNGDRTG----ARPKHRRPQGPP 45
                                                      .:.                                

HCoV-229E|Nucleocapsid       RIPYSLYSPLLVDS-EQPWKVIPRNLVPINKKD-KNKLIGYWNVQKR--FRTRKGKRVDL 74
HCoV-NL63|Nucleocapsid       FPPPSFYMPLLVSSDKAPYRVIPRNLVPIGKGN-KDEQIGYWNVQER--WRMRRGQRVDL 72
HCoV-HKU1|Nucleocapsid1      IPHYSWFSGITQFQKGRDFKFSDGQGVPIAFGVPPSEAKGYWYRHSRRSFKTADGQQKQL 118
HCoV-OC43|Nucleocapsid       VPYYSWFSGITQFQKGKEFEFVEGQGVPIAPGVPATEAKGYWYRHNRRSFKTADGNQRQL 119
MERS-CoV|Nucleocapsid        NNTVSWYTGLTQHGK-VPLTFPPGQGVPLNANSTPAQNAGYWRRQDRK-INTGNG-IKQL 94
SARS-CoV-2|Nucleocapsid      NNTASWFTALTQHGK-EDLKFPRGQGVPINTNSSPDDQIGYYRRATRR-IRGGDGKMKDL 104
SARS-CoV|Nucleocapsid        NNTASWFTALTQHGK-ETLTFPRGQGVPINTNSGKDDQIGYYRRASRR-VRGGDGKMKEL 103
                                 * :  :          .   : **:       .  **:    *   .   *   :*

HCoV-229E|Nucleocapsid       SPKLHFYYLGTGPHKDAKFRERVEGVVWVAVDGAKTEPT-GYGVRRKNSEPEIPH-F--N 130
HCoV-NL63|Nucleocapsid       PPKVHFYYLGTGPHKDLKFRQRSDGVVWVAKEGAKTVNT-SLGNRKRNQKPLEPK-F--S 128
HCoV-HKU1|Nucleocapsid1      LPRWYFYYLGTGPYANASYGESLEGVFWVANHQADTSTPSDVSSRDPTTQEAIPTRFPPG 178
HCoV-OC43|Nucleocapsid       LPRWYFYYLGTGPHAKDQYGTDIDGVYWVASNQADVNTPADIVDRDPSSDEAIPTRFPPG 179
MERS-CoV|Nucleocapsid        APRWYFYYTGTGPEAALPFRAVKDGIVWVHEDGATDAPS-TFGTRNPNNDSAIVTQFAPG 153
SARS-CoV-2|Nucleocapsid      SPRWYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQLPQG 164
SARS-CoV|Nucleocapsid        SPRWYFYYLGTGPEAALPYGANKEGIVWVATEGALNTPKEHIGTRNPNNNAAIVLQLPQG 163
                              *: :*** ****     :    :*: **  . *          *    .      :  .

HCoV-229E|Nucleocapsid       QKLPNGVTVVEEPDSRA-----PSRSQSRSQSRGRGESKPQSRNPSSDRNHNSQDDIMKA 185
HCoV-NL63|Nucleocapsid       IALPPELSVVEFEDRSNNSSRASSRSSTRNNSRDSSRSTSRQQSRTRSDSNQSSSDLVAA 188
HCoV-HKU1|Nucleocapsid1      TILPQGYYVEGSGRSAS-NSR----PGSRSQSRGPNN---RSLSRSNSNFRHSD------ 224
HCoV-OC43|Nucleocapsid       TVLPQGYYIEGSGRSAP-NSR----STSRTSSRASSA---GSRSRANSGNRTPT------ 225
MERS-CoV|Nucleocapsid        TKLPKNFHIEGTGGNSQSSSRAS--SLSRNSSRSSSQ---GSRSGNSTRGTSPGPSGIGA 208
SARS-CoV-2|Nucleocapsid      TTLPKGFYAEGSRGGSQASSRSS--SRSRNSSRNSTP---GSSRGTSPARMA---GNGGD 216
SARS-CoV|Nucleocapsid        TSLPKGFYAEGSRGGSQTASRSS--SRSRGNSRNSTP---SSSRGSSPARNL---QAGGD 215
                               **                       :* .**        .                  

HCoV-229E|Nucleocapsid       VAAALKSLGFDKPQEKDKKSAKTGTPKPSRNQSPASSQTSAKSLARSQSSETKEQKHEMQ 245
HCoV-NL63|Nucleocapsid       VTLALKNLGFDNQSKSPSSS---GTSTPKKPNKPL-------------SQPRADKPSQLK 232
HCoV-HKU1|Nucleocapsid1      ---SIVKPDMADEIANL-VLAKLGKDS--KPQQVT----------K--QNAKEIRHKILT 266
HCoV-OC43|Nucleocapsid       ---SGVTPDMADQIASL-VLAKLGKDA-TKPQQVT----------K--HTAKEVRQKILN 268
MERS-CoV|Nucleocapsid        VGGDLLYLDLLNRLQAL-ESGKV--KQ-SQPKVIT----------K--KDAA----AAKN 248
SARS-CoV-2|Nucleocapsid      AALALLLLDRLNQLESK-MSGKG--QQ-QQGQTVT----------K--KSAA----EASK 256
SARS-CoV|Nucleocapsid        TALALLLLDRLNQLESK-VSGKT--QQ-QQPQVVT----------R--KSAS----EASK 255
                                     .  .                 : :                            

HCoV-229E|Nucleocapsid       KPRWKRQPNDDVTSNVTQCFGPRDLDH---NFGSAGVVANGVKAKGYPQFAELVPSTAAM 302
HCoV-NL63|Nucleocapsid       KPRWKRVPTRE--ENVIQCFGPRDFNH---NMGDSDLVQNGVDAKGFPQLAELIPNQAAL 287
HCoV-HKU1|Nucleocapsid1      KPRQKRTPNKH--CNVQQCFGKRGPSQ---NFGNAEMLKLGTNDPQFPILAELAPTPGAF 321
HCoV-OC43|Nucleocapsid       KPRQKRSPNKQ--CTVQQCFGKRGPNQ---NFGGGEMLKLGTSDPQFPILAELAPTAGAF 323
MERS-CoV|Nucleocapsid        KMRHKRTSTKS--FNMVQAFGLRGPGDLQGNFGDLQLNKLGTEDPRWPQIAELAPTASAF 306
SARS-CoV-2|Nucleocapsid      KPRQKRTATKA--YNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAF 314
SARS-CoV|Nucleocapsid        KPRQKRTATKQ--YNVTQAFGRRGPEQTQGNFGDQELIRLGTDYKNWPQIAQFAPSASAF 313
                             * * **  .     .: *.** *.  .   *:*.  :   *..   :* :*:: *. .*:

HCoV-229E|Nucleocapsid       LFDSHIVSKESG-----------NTVVLTFTTRVTVPKDHPHLGKFLEEL----NAFTRE 347
HCoV-NL63|Nucleocapsid       FFDSEVSTDEVG-----------DNVQITYTYKMLVAKDNKNLPKFIEQI----SAFTKP 332
HCoV-HKU1|Nucleocapsid1      FFGSKLDLVKRD---SEADSPVKDVFELHYSGSIRFDSTLPGFETIMKVLEENLNAYVNS 378
HCoV-OC43|Nucleocapsid       FFGSRLELAKVQNLSGNPDEPQKDVYELRYNGAIRFDSTLSGFETIMKVLNENLNAYQQQ 383
MERS-CoV|Nucleocapsid        MGMSQFKLTHQN-----NDDHGNPVYFLRYSGAIKLDPKNPNYNKWLELLEQNIDAYKTF 361
SARS-CoV-2|Nucleocapsid      FGMSRIGMEVTP-----------SGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTF 363
SARS-CoV|Nucleocapsid        FGMSRIGMEVTP-----------TGTWLTYHGAIKLDDKDPNFKDQVILLNKHIDAYKTF 362
                             :  *..                     : :   : .          :  :    .*:   

HCoV-229E|Nucleocapsid       MQQHPLLNPS----ALEFNP-----------------SQTS----PATAEPVRD---EVS 379
HCoV-NL63|Nucleocapsid       SSIKEMQSQS----SHVAQN---------------TVLNAS----IPESKPLAD---DDS 366
HCoV-HKU1|Nucleocapsid1      NQN---------TDSDSLSSKPQRKRGVKQLPEQFDSLNLSA----GTQHISNDFTPEDH 425
HCoV-OC43|Nucleocapsid       DG------------MMNMSPKPQRQRGHKNGQGENDNISVAVPKSRVQQNKSRELTAEDI 431
MERS-CoV|Nucleocapsid        PKKEKKQKAPKEESTDQMSEPPKEQRVQGSITQRTRTRP------SVQPGPMIDVNTD-- 413
SARS-CoV-2|Nucleocapsid      PPTEPKKDKKKKA--DETQALPQRQK----------KQQ------TVTLLPAADLDDFSK 405
SARS-CoV|Nucleocapsid        PPTEPKKDKKKKA--DEVQPLPQRQK----------KQP------TVTLLPAAELDDFSK 404
                                               .                                  :      

HCoV-229E|Nucleocapsid       IETDIIDEVN------- 389
HCoV-NL63|Nucleocapsid       AIIEIVNEVLH------ 377
HCoV-HKU1|Nucleocapsid1      SLLATLDDPYVEDSVA- 441
HCoV-OC43|Nucleocapsid       SLLKKMDEPYTEDTSEI 448
MERS-CoV|Nucleocapsid        ----------------- 413
SARS-CoV-2|Nucleocapsid      QLQQSMSSAD--STQA- 419
SARS-CoV|Nucleocapsid        QLQDSMNGAS--DSTQA 419
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5.5 Discussion 

In this study, we found 84 human proteins more connected to the targets of SARS-CoV-2 

proteins (Table 5.3). Putative mimicry on these human proteins might promote the affinity 

of multiple SARS-CoV-2-host PPIs. However, according to our final results shown in Table 

5.8, the majority of them were not involved in mimicry of SARS-CoV-2. Here, we provide 

a few assumptions to explain this conflict. First, we propose that the virus is trying to target 

highly connected ‘hub’ proteins rather than mimicking patterns from them. For instance, 

NTRK1 interacted with 91 targets of SARS-CoV-2 (HIPPIE evidence score > 0.63). It could 

also be implicated in interactions with the NSP3 of SARS-CoV [469], which shared 94% 

sequence similarity with SARS-CoV-2 NSP3 [452]. Therefore, NTRK1 was expected to be 

targeted or at least indirectly targeted by SARS-CoV-2 during the infection. Besides, we 

found that some of these 84 human proteins were not only ‘hub’ proteins of the 

corresponding sub-network but also kept their high connectivity even in the entire human 

PPI network. As the virus is always trying to target ‘hub’ proteins to affect more signalling 

pathways [4], they may have already been in the interacting list of SARS-CoV-2 but are 

well-protected by the current immune defense. This further suggests that SARS-CoV-2 

mimicry cannot be easily done by ignoring the host immune system. Successful mimicry 

may be achieved on ‘less-protected’ human proteins (Table 5.8, S5.7 Data). And in turn, 

the virus disguises itself as a ‘less-protected’ human protein with the mimicked SLiMs to 

hijack host proteins and circumvent immune responses [4,104]. Third, innate properties 

especially anti-viral properties of some human proteins make them less likely to become the 

targets of SARS-CoV-2 for interacting or mimicry. Exemplified by tripartite motif 

containing 25 (TRIM25), although its mediated ubiquitination of RIG-I can be inhibited by 

SARS-CoV nucleocapsid phosphoprotein, no evidence has been shown to prove its ‘pro-

viral’ role during SARS-CoV-2 infections [470].  

We identified 18 SLiMs involved in the mimicry of SARS-CoV-2 envelope, 

nucleocapsid, ORF7a and NSP8 (Table 5.8). However, the number of original SLiMs for 

mimicry was as many as 7957. Despite the requirements on appropriate disorder status, 

solvent exposure, subcellular localisation, and lung expression, many SLiMs were still 

removed as their presences in the current dataset were not significant enough to infer 

functionality. However, this does not mean that they are irrelevant to the mimicry of SARS-

CoV-2. In fact, we removed human proteins in the computer-annotated TrEMBL section of 

UniProtKB [2] and those with less than 16 or more than 2700 amino acid residues to 
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guarantee the quality of retrieved entries. After using more data, the enrichment status of the 

removed SLiMs may change and even become significant and  indicate another instance of 

convergent evolution [418]. Additionally, although mimicries of other SARS-CoV-2 

proteins have not been identified in this study, they may still exist and be activated along 

with ongoing mutations in SARS-CoV-2 genome [421]. Benefiting from the rapid 

development of SARS-CoV-2 research, now it is possible to include more virus-host PPI 

data for a deeper investigation. For example, coronavirus disease 2019 (COVID-19) section 

of UniProtKB (https://covid-19.uniprot.org/) has reported more than 200 SARS-CoV-2-host 

PPIs, many of which have not been included in our data. The introduction of these virus-

host PPIs will alter sub-networks related to different SARS-CoV-2 proteins and may produce 

new mimicking stories with new evidence. Additionally, variant-related mimicries may also 

be characterised after adding new PPI data between human proteins and SARS-CoV-2 

variants.  

We propose that the purpose of virus mimicry is to enhance the interaction affinity 

with its human host targets (Fig 5.1). There is another theory indicating that SARS-CoV-2 

may mimic host-like SLiMs to ‘set up’ human proteins following its infection [471] and 

inadvertently instigate harmful autoimmune disorders and dysfunctions in the respiratory 

system [472]. Investigation of this mimicry theory requires expression data before and after 

the infection of SARS-CoV-2, thus it is hard to elucidate here. According to the current 

experiments, ‘PK-featured’ SLiMs were found in 25 ‘qualifying’ PMHPs (Fig 5.5). Among 

them, seven were involved in the host anti-viral activities such as defense response to virus 

(GO:0051607) and innate immune response (GO:0045087) (S5.8 Data). As it goes against 

the original intention of the virus to escape from host immune defense, we suspect that this 

mimicry is to ‘set up’ human proteins for its infection in the next round. Despite ‘PK-

featured’ SLiMs, the remaining SLiMs listed in Table 5.8 were found in PMHPs almost 

irrelevant to host immune or anti-viral activities (S5.8 Data), except for splicing factor 

proline and glutamine rich (SFPQ). Then, based on the aforementioned second mimicry 

theory, SARS-CoV-2 nucleocapsid phosphoprotein may mimic SLiM ‘SRxRxxSR’ from 

SFPQ to instigate autoimmune pathologies [472].  

Finally, it is unclear if the mimicry strategy is also processed by other SARS-CoV-2 

proteins. More research is needed to elucidate virus mimicry underlying the rapid 

exploitation of the host system especially in the context of ongoing pandemic or future 
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outbreaks. It is also interesting to develop a SLiM-based backward approach to predict 

human proteins at risk of being targeted by SARS-CoV-2 or its variants. 

5.6 Summary 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing 

coronavirus disease 2019 (COVID-19) pandemic. It orchestrates mimicry strategies of using 

host-like short linear motifs (SLiMs) to assist in SARS-CoV-2-host interactions. 

Investigation on this mimicry machinery is crucial to better understanding how virus exploits 

the host system for its replication and persistence. In this study, we discern 18 SLiMs that 

may be mimicked by the envelope, nucleocapsid, open reading frame 7a (ORF7a), and non-

structural proteins 8 (NSP8) of SARS-CoV-2. They are considered be to the result of 

convergent evolution and generally conserved across SARS-CoV-2 variants. Discoveries of 

this study contribute to the development of sequence-based approaches for predicting virus-

host interactions. 

5.7 Supporting information 

S5.1 Data. SARS-CoV-2 sequences and their intrinsic disorder status. 

URL: https://github.com/HChai01/SARS-COV-2/blob/main/Data/MN985325.txt 

S5.2 Data. Genome sequence of seven human coronaviruses and ten SARS-CoV-2 

variants. 

URL: https://github.com/HChai01/SARS-COV-2/blob/main/Data/Virus_Genome.txt 

S5.3 Data. Sequences of human proteins in the background dataset S1. 

URL: https://github.com/HChai01/SARS-COV-2/blob/main/Data/Background.txt 

S5.4 Data. 291 SARS-CoV-2-host PPIs compiled in this study. 

URL: https://github.com/HChai01/SARS-COV-2/blob/main/Data/Virus-host-PPIs.csv 

S5.5 Data. Endogenous interaction status involving 291 SARS-CoV-2 targets. 

URL: https://github.com/HChai01/SARS-COV-2/blob/main/Data/PMHPs.csv 

S5.6 Data. SLiMs highly enriched in human proteins potentially mimicked by different 

SARS-CoV-2 proteins. 

URL: https://github.com/HChai01/SARS-COV-2/blob/main/Data/Enriched_SLiMs.txt 

S5.7 Data. Representation of SLiMs screened for intrinsic disorder. 

URL: https://github.com/HChai01/SARS-COV-2/blob/main/Data/SLiM_224.csv 

S5.8 Data. Functionality of the ‘qualifying’ PMHPs. 
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URL: https://github.com/HChai01/SARS-COV-2/blob/main/Data/Function_PMHPs.csv 

 



  

CHAPTER VI 

6. FINAL DISCUSSION 

 

Distinct from wet-lab-based virus research, this work explores understanding of virus-host 

molecular interactions from in silico data mining and machine learning perspectives. Three 

Results chapters were presented: about the infection of human immunodeficiency virus type 

1 (HIV-1), the immune response of interferon-α (IFN-α), and the mimicry strategy of severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, they display an 

interactive and intimate relationship between viruses and their hosts. 

As stated in Chapter 1.1, this work makes seven main contributions to virus research. 

In the HIV-1 research topic (Chapter 3), we propose a novel perspective of virus-host 

interaction prediction by relating human proteins to pro-viral or pro-host phenotypes. We 

found that the roles of most human host proteins in HIV-1 infections can be compiled [217]. 

Some of them are rapidly implicated in interaction with multiple HIV-1 proteins (e.g., env, 

gag, and tat) [241] (Fig 3.5). Their inactivation or dysfunction permits HIV-1 to hijack the 

host regulation and signaling pathway more effectively [109]. This indicates a ‘pro-viral’ 

interaction. In some cases, host proteins antagonize the infection by controlling or inhibiting 

the expression HIV-1 genes [473]. This indicates a ‘pro-host’ interaction. A ‘bidirectional’ 

role was identified when multiple types of interaction are occurring, i.e., a host molecule 

was involved in both pro-viral and pro-host interactions with HIV-1. Investigation on the 

directionality of virus-host interactions provides a novel insight for HIV-1 infection and 

human host immune responses. Predicting this directionality complexity of virus host 

molecular interactions, as done here for the first time, represents a new challenge for 

machine learning projects. It also has the potential to contribute to the discovery of novel 

anti-viral therapeutic. In the same research, we conduct systematic analyses on hosts’ innate 

immunity properties. We propose that host innate properties can influence the interaction 

affinity with HIV-1. For example, we found that higher numbers of protein-coding 

transcripts (ORFs), duplication rates, and evolutionary conservation correlate with HIV-1-

host protein-protein interactions (PPIs). Extremes of these features (e.g., huge number of 

ORFs and singleton cases), hint at clues for the inhibition of antiviral possibilities in the 
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presence of HIV-1. Identification of these features in host molecules contributes to a better 

understanding explaining why they are implicated during the infection.  

In the second research topic (Chapter 4), we further extend the feature scope to 

better characterise genes’ interferon response. We propose that interferon-α-stimulated 

human genes (ISGs) are less evolutionary conserved than genes that are not significantly 

stimulated after IFN-α treatments (non-ISGs). These ISGs show significant depletion of GC-

content in the coding region of their canonical transcripts, which leads to differential 

representation in their nucleotide and amino acid compositions. We found that ISG products 

are more implicated in key pathways of the human protein-protein interaction (PPI) network 

but tend not to be hubs or bottlenecks. These discoveries explain the  differential expression 

of ISG in IFN-α experiments (e.g., highly-up-regulated, slightly-up-regulated, down-

regulated, etc) [315]. Meanwhile, the differential features representation between ISGs and 

non-ISGs (Fig 4.4-4.9) contributes to their predictability with machine learning models. 

These discoveries constitute a major milestone in the development of high-throughput 

identification of ISGs, which in turn will provide a clear picture of host immune activities in 

response to viral infection. Additionally, based on the representation of multiple features 

(Fig 4.12), we found ISGs and interform-repressed genes (IRGs) are more similar to each 

other than ISGs to non-ISGs. It is thus worth investigating the interferon-regulated genes 

and their predictability in the future. 

In the third research topic (Chapter 5), we elucidate the mimicry mechanism 

adopted by SARS-CoV-2. We test whether the SARS-CoV-2 envelope may mimic host-like 

short linear motif (SLiM) ‘NxxxSRxP’ from one or some human proteins when reaching the 

nucleus [449] and use this host-like SLiM to interact with zinc finger CCCH-type containing 

18 (ZC3H18) (Table 5.8). SLiM ‘SGxxxGxS’ may be mimicked in the cytoplasm to 

promote virus-host interaction with midasin AAA ATPase 1 (MDN1) (Table 5.8). SARS-

CoV-2 non-structural protein 8 (NSP8) may mimic SLiM ‘ATAxExxE’ to interact with La 

ribonucleoprotein 7 (LARP7) and methylphosphate capping enzyme (MEPCE) (Table 5.8). 

SARS-CoV-2 nucleocapsid phosphoprotein may mimic 15 ‘SR-featured’ and ‘PK-featured’ 

SLiMs from human proteins and orchestrate their representation in its S184~R195 

(SRSSSRSRNSSR) and P368~K375 (PKKDKKKK) regions so as to enhance its interaction 

affinity with Smad nuclear interacting protein 1 (SNIP1), Mov10 RISC complex RNA 

helicase (MOV10), G3BP stress granule assembly factor 1 (G3BP1), DExD-box helicase 21 

(DDX21), etc (Table 5.8). Interesting, these mimicked SLiMs are well conserved across the 
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diversity of SARS-CoV-2 variants, which further enhance the confidence of SARS-CoV-2 

mimicry from the evolution perspective [4,418,419]. These discoveries contribute to a better 

understanding of molecular interactions between SARS-CoV-2 and human hosts. They also 

contribute to the development of a sequence-based approach for predicting virus-host 

interactions. 

There are many restrictions that limit the scope of this work. The main restrictions 

are caused by insufficient data or annotations. Some important genes/proteins involved in 

host immune system or virus-host interactions, for example, host entry receptors (Table 2.1) 

are a key focus of biomedical research thus tend to be well-annotated. However, some 

genes/proteins especially those limitedly expressed in host cells are not well-investigated. 

This is particularly obvious in how few extensive virus-host data sets there are. The 

obsolescence of data is another severe risk in machine learning. For instance, we notice that 

many terms under the catalogue of cellular component are obsoleted by the Gene Ontology 

Consortium (GOC) [246], which means the performance of classifiers trained with those 

data will be influenced. There is also a need to integrate different types of experimental data 

to better capture the dynamic nature of the host system and how viruses interact and exploit 

the host system. For example, although we retrieved many high-confidence SARS-CoV-2-

host molecular interaction data from [407], they are still an insufficient representation of 

infection. In fact, we found many clues about the SARS-CoV-2 mimicry (S5.6 Data), but 

only a very limited fraction of them is significant enough to infer the functionality from the 

statistical perspective. Although in the end we discovery some mimicry strategies used by 

the SARS-CoV-2 envelope, nucleocapsid, ORF7a, and NSP8, no evidence is shown to prove 

that mimicry is not performed by other SARS-CoV-2 proteins such as spike glycoprotein. 

Additionally, the variation-related mimicry machinery has not been discovered as well. Such 

work is not possible without the support of novel molecular interaction data between SARS-

CoV-2 variants [421] and human host proteins. 

The aforementioned restrictions also give some ideas to conduct new research from 

a different angle. For example, if we do not have sufficient SARS-CoV-2 molecular data to 

support a thorough investigation, it may be interesting to predict putative SARS-CoV-2-

interacting proteins with the mimicked SLiMs (Table 5.8). In the future, we will conduct a 

systematic identification of virus-interacting proteins. The directionality of other virus-host 

molecular interactions will also be investigated. 
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In conclusion, this work utilises data mining and machine learning technologies to 

identify factors that influence the molecular interactions between viruses and their hosts. 

These factors can be hosts’ innate properties, expression of anti-viral ISGs, achievement of 

virus mimicry strategies, etc. We hope the findings of this work will be used someday in the 

future for the development of anti-viral therapeutics. 
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