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Abstract

Robotic systems have enjoyed significant adoption in industrial and field applications

in structured environments, where clear specifications of the task and observations are

available. Deploying robots in unstructured and dynamic environments remains a

challenge, being addressed through emerging advances in machine learning. The key

open issues in this area include the difficulty of achieving coverage of all factors of

variation in the domain of interest, satisfying safety constraints, etc. One tool that has

played a crucial role in addressing these issues is simulation - which is used to generate

data, and sometimes as a world representation within the decision-making loop.

When physical simulation modules are used in this way, a number of computational

problems arise. Firstly, a suitable simulation representation and fidelity is required

for the specific task of interest. Secondly, we need to perform parameter inference of

physical variables being used in the simulation models. Thirdly, there is the need for

data assimilation, which must be achieved in real-time if the resulting model is to be

used within the online decision-making loop. These are the motivating problems for

this thesis.

In the first section of the thesis, we tackle the inference problem with respect to

a fluid simulation model, where a sensorised UAV performs path planning with the

objective of acquiring data including gas concentration/identity and IMU-based wind

estimation readings. The task for the UAV is to localise the source of a gas leak, while

accommodating the subsequent dispersion of the gas in windy conditions. We present

a formulation of this problem that allows us to perform online and real-time active

inference efficiently through problem-specific simplifications.

In the second section of the thesis, we explore the problem of robot motion planning

when the true state is not fully observable, and actions influence how much of the

state is subsequently observed. This is motivated by the practical problem of a robot

performing suction in the surgical automation setting. The objective is the efficient

removal of liquid while respecting a safety constraint - to not touch the underlying

tissue if possible. If the problem were represented in full generality, as one of planning

under uncertainty and hidden state, it could be hard to find computationally efficient

solutions. Once again, we make problem-specific simplifications. Crucially, instead of

reasoning in general about fluid flows and arbitrary surfaces, we exploit the observations

that the decision can be informed by the contour tree skeleton of the volume, and the

configurations in which the fluid would come to rest if unperturbed. This allows us
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to address the problem as one of iterative shortest path computation, whose costs are

informed by a model estimating the shape of the underlying surface.

In the third and final section of the thesis, we propose a model for real-time parameter

estimation directly from raw pixel observations. Through the use of a Variational

Recurrent Neural Network model, where the latent space is further structured by

penalising for fit to data from a physical simulation, we devise an efficient online

inference scheme. This is first shown in the context of a representative dynamic

manipulation task for a robot. This task involves reasoning about a bouncing ball that it

must catch – using as input the raw video from an environment-mounted camera and

accommodating noise and variations in the object and environmental conditions. We

then show that the same architecture lends itself to solving inference problems involving

more complex dynamics, by applying this to measurement inversion of ultrafast X-Ray

scattering data to infer molecular geometry.
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Chapter 1

Introduction

1.1 Preface

Robotic systems have seen rapid development in the last few decades, driven by parallel

progress in algorithms and modelling, hardware design, computational improvements,

software developments tools, and practices. Those developments have led to broad

deployment in different industrial environments, where precise specifications of the

required tasks are available, such as assembly lines and car factories. However, few

autonomous commercial systems are deployed in cases where reasoning about uncer-

tainty in the surrounding environment is required. Many challenges are present such

as acquiring necessary training data that captures the full complexity of the observed

phenomena, deployment in a safe manner, and coming up with approaches for fast and

accurate inference of parameters of interest from diverse sensory signals - fig.1.1.

There is an ever-growing interest in deploying robotic systems in environments

where the underlying dynamics of the environment may not be fully known. Imposing

physically grounded bias is vital for learning effectively in order to achieve generalisa-

tion with respect to task variability. It is critical autonomous robots can identify their

surroundings, plan and act in them. Applications range from everyday interactions,

where a robot should have a notion of different objects and their properties, to hazardous

situations such as gas leakages, where reasoning about gases and wind is required,

to medical domains, where among other things, one must manipulate liquids. Those

problems share the common property that it might be hard to acquire diverse real-world

data to learn robust policies. On the other hand, recent advances in computer graphics

have made it possible to simulate many of the above-mentioned tasks [141]. It would

be beneficial to have robotic systems able to learn in simulation to be then able to adapt
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2 Chapter 1. Introduction

to the real world.

Figure 1.1: Manipulation of objects. Robots deployed in the real world need robust

policies to deal with various complexities - visual observations, safety constraints, and

objects with different physical properties. (Figure adapted with images from [211, 230, 2,

1])

Even the seemingly simplest of tasks often require reasoning about the dynamics

of the environment and associated physical properties - see fig.1.2. Let us take as an

example pick-n-place - a problem explored for at least a few decades [216]. While

one can imagine a solution for trivial cases of simple rigid objects such as cubes, the

problem can quickly become infeasible when considering all possible object variations.

What if you need to grab and move a glass full of water, a Jenga block, a banana? Even

a ’simple’ pick-n-place task requires reasoning over grasping regions, arm movement

speed, and strength of the grasp. While it is possible to come up with self-resetting

environments that can make it possible to acquire real-world data [232], it is often

challenging to do so due to safety reasons, a vast diversity of real-world objects, etc.

At the same time, in different areas such as NLP, it has been observed that models can

learn and do substantially improve with more and more data, with no clear ceiling of

how much data can be absorbed [34]. The complexity of acquiring diverse sensory

readings from a robotic system, coupled with the data hunger of modern machine

learning methods, has led to the natural alternative of using simulations [171].

Coming up with suitable representation models of real-world phenomena is a big

challenge of its own. While different physical aspects of our world, such as rigid objects,

light, fluids, soft materials, etc., can be simulated, most of those approaches tend to be
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approximate. As such, there is often a discrepancy between the actual observed data

and the simulation model used. Even if such a discrepancy is limited or addressed [32],

one must still infer the state of the simulation from some indirect measurements from

the real world. This inference is not only hard but sometimes even ill-posed as multiple

different observations can correspond to the same underlying setup (e.g., trying to infer

volume from a single image).

Figure 1.2: Illustration of the main questions researched within this thesis. This

thesis studies the use of computational models for system identification and control in

uncertain environments, including (i) the use of suitable complexity of simulation models,

and specific sampling strategies, (ii) addressing system identification from complex

sensory observations and (iii) planning under uncertainty and online inference.

1.1.1 Simulations as a Data Source

Simulation is the imitation of the operation of a real-world process or system over

time [18]. A plethora of simulation models have been proposed and used by different

communities, modelling different aspects of our world - from the dynamics of unob-

served to the human eye phenomena like molecular dynamics to different aspects of

any real-world scene such as in animated movies and games. To create seemingly

complete representations, often multi-stage pipelines are used. For example, in a typical

animation movie those are modeling and setup; animation; VFX, lighting and rendering;

compositing.

Within the robotics community, tradionally some of the phenomena of interest

include: multi-joint dynamics with contacts [219, 48], motion planning and inverse

kinematics [209]. For a robotics system to be able to fully deal with the uncertainty

of our surrounding world, it should be able to also reason about the dynamics of the

environment - fluids [204], soft objects [141], different light conditions [173], and

others. Simulation pipelines often requires a lot of computational resources (animation
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movies) or produces approximate results when used in online settings (games). Within

the robotics community, there is often the need for simulations to be fast and accurate -

as such they are often constrained within specific dynamics.

When deciding on suitable simulation representations, it is essential to consider

the task’s requirements and source of uncertainty - whether variations in the task of

interest come from appearance or dynamics. It is also often not trivial to decide on the

simulation fidelity needed. Rendering a high fidelity image with multiple sources of

light and multiple objects with different textures can take many hours, which might be

infeasible when many images or even videos are needed.

Computational requirements are essential, even for generating a static dataset,

depending on the ratio of data needed and processing time. They often become critical

if the simulation is to be used online as part of the optimization process. There are strict

time requirements for how fast the simulation must be, as multiple simulation calls are

often required as part of online control.

1.1.2 Simulation-Based Inference and Planning

Having a defined simulation model, we need to align it to the observed data, or ’invert’

the data to estimate necessary parameters of interest. It is often hypothesized that

people perform a similar alignment process by using approximate mental models of

their surrounding world - as demonstrated in different experiments in the past few

decades [200, 201, 23], e.g., are the two rotated objects the same; are the stacked tower

of blocks going to fall as in fig.1.3.

Similar methodology has been explored and applied to many practical problems

under different names - most notably system identification and Simulation-Based

Inference (SBI). System identification is the process of identifying the governing

equations and/or their parameters through sensory readings. It is a mature field, with the

main two approaches focusing on linear time-invariant systems (LTI) and prediction-

error approaches [134].

With the recent success of large-scale methods, SBI has seen increased interest in

various fields such as biology, chemistry, and physics [49]. Two broad sets of methods

are used - inference via sampling and comparing with observed data or amortizing

the process by learning a model with simulated data traces. The most well-known

standard approach is Approximate Bayesian Computation (ABC). In its simplest form,

it is sampling simulation parameters θ (uniformly) and comparing the simulated data
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(a) Mental simulation models (b) Aligning a simulation to observations

Figure 1.3: Intuitive physics models in robotics. (a) It has been repeatedly hypothe-

sized that we use a mental simulation model to perform inference and future prediction

[200, 201, 23] (b) This work explores methods for simulation alignment between the real

observed world F and an internal simulation model F̃θ

trace with the actual observed data - if the two traces are sufficiently close, the sample

is accepted. The main drawback of ABC is slow convergence whenever the parameters

of interest have high dimensions and/or the simulator is computationally expensive.

Alternative methods have been proposed around the ideas of sampling around previous

high likely points (Markov Chain Monte Carlo) or exploiting existing knowledge of the

unknown probability density by sampling from a known distribution suspected to have

a similar shape (Importance Sampling).

Regardless of the sampling techniques used, often for computationally expensive

simulations and requirements for online inference, directly using the simulation is

infeasible. Amortization of the inference process is a more well-suited approach, as

computationally expensive steps do not need to be repeated at test time. Different

approaches again exist, focusing on amortizing different parts of the inference process,

such as the likelihood or the posterior. The development of different generative Neural

Networks (NN), such as Variational Autoencoder (VAE), has only amplified the interest

in the topic due to the general ability of NN models to handle high dimensional data

and resolve time dependencies.

SBI is closely related to the topic of uncertainty propagation and optimization [169].

SBI can be rephrased as inverse Uncertainty Quantification (UQ) of the parameters

of interest [49]. From a planning perspective, an important question is uncertainty
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propagation, as robot actions are optimised for a given cost function. Those can often

be solved again by sampling or by estimating a bound directly[73].

Robotics has some unique challenges, governed by the requirements for acting in a

real environment. The inference process must proceed in real-time while accounting

for the potential variability in the observations. There are almost always strict safety

requirements for the executed actions, which must be incorporated into the synthesized

control strategies. If we take the example of a pick-n-place - a glass full of liquid, a

Jenga block, a banana - depending on the type of object, we might want to take different

approaches and address complexities in physics, planning, and observations used.

To move a glass full of liquid, we must maintain suitable grasping regions without

dropping the glass. Moreover, as we start moving the glass, we need to be careful of the

robot arm acceleration to avoid sloshing - for example, gradually accelerating and then

decelerating as we approach the target location. This process requires reasoning over

the liquid’s viscosity and other physical properties, which then determines the dynamics

throughout the execution of the trajectory. As such, we can complete the task as quickly

as possible while not spilling any liquid.

If we want to remove a Jenga block, we need to reason over the probability of the

tower falling as we remove individual blocks. Often robot movements are imprecise. As

the block of choice is removed, re-planning might be needed to correct the movement

of the arm. To be playing optimally, another aspect to consider is other agents’ behavior,

accuracy, and internal model of selecting a block. A robot must deal with all this

associated uncertainty and re-plan based on the current estimation of the environment.

Visual cues are crucial in real-world interactions to infer different physical properties

such as density and elasticity. Grasping different objects like a banana or a stone

requires knowledge of the force that needs to be applied - weak as not to destroy it,

but strong enough not to drop it [72]. While this can be determined iteratively as the

manipulation proceeds, it should be inferred directly from sensory observations for

safety and efficiency reasons.

Those examples illustrate just some of the challenges associated with robotics sys-

tems acting in the real world. While SBI is a promising approach, different complexities

need to be addressed, such as calibration with a computationally expensive simulator,

planning from limited observations with safety constraints and, dealing with complex

sensory inputs such as images. Notably, the inference and planning must often proceed

online, as the robotic system interacts in the environment.
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1.2 Problem Statement

This research is concerned with the problem of online learning in robotic systems based

on an internal model of the underlying physics. The problem is to design techniques that

exploit the available knowledge about the observed process by performing an online

identification of the dynamics of the environment while completing the specified task.

More specifically, we focus on tasks with complex dynamics, uncertain environments, or

rich sensory observations, where it is crucial that the task is completed within a limited

time. The core problem is that of aligning an existing model of physical interactions to

the acquired observations - see fig.1.4.

Figure 1.4: Projects overview. We propose different experimental setups with increasing

complexities - (left) gas localization with a UAV using fluid simulation (center) autonomous

suction of fluids for medical applications (right) modelling of dynamics parameters from

video.

We are concerned with the question of incorporating known physics knowledge

as a bias for various robotics tasks. In a typical robotics platform, we have access to

different sensory inputs such as images, depth sensors, etc., which can be unified as a

function F , which can sample the real world. Within this work, we assume to have an

approximate model of the environment and respectively function F̃θ, which can sample

this approximate model (e.g., implemented as a computer graphics engine). We are

interested in minimizing the mismatch between the observations from F and F̃θ, and

subsequently, use the optimal found parameters θ∗ for planning.

The contribution of this work is the design and evaluation of simulation alignment

methods of different robotics problems with varying physical, planning, and observa-

tional complexity, with the explicit goal of system identification and corresponding

optimal planning. We study three different main areas, motivated by their varying

complexities - see fig.1.5. First, we look into the problem of online gas localization by

using fluid simulation as a model (high physical complexity). Secondly, we look into the

problem of autonomous suction of liquids from partial observations of an unknown sur-
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face (high planning complexity). Finally, we look into estimating physically meaningful

parameters, such as restitution, from videos (high observational complexity).

1.3 Thesis Overview

This thesis explores the question of simulation alignment to tackle uncertain and

dynamic environments by optimizing a distance metric between observed data and

the model of interest. More specifically, we look into addressing the beforementioned

complexities by adapting simulation based inference approaches. In the first part of

the thesis, we look into problems with high degree of complexity in the underlying

simulation model or planning procedure. To address those challenges, we study the

use of reduced simulation representation and efficient sampling strategies for online

inference. In the second part of the thesis, we focus on problems with rich sensory

observations such as videos or other dense time series of sensory readings. We study

methods for amortizing the inference process by learning an inverse model from data

traces.

Figure 1.5: Simulation alignment challenges. Challenges associated with using a

simulation as a model: (Left) Observational complexity - the type of sensory input used

for alignment, varying from direct point measurements to unstructured input such as

videos; (Middle) Physics complexity - the expressiveness of the simulation from rigid

bodies to fluids; (Right) Planning complexity - estimating an optimal action based on the

inference of the physical parameters.
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1.3.1 Active Localization of Gas Leaks using Fluid Simulation

Simulation Alignment with Computationally Expensive Simulator

In this project, we are interested in performing system identification from direct mea-

surements such as gas readings with a computationally expensive simulator. We study

this in the context of localizing an open field gas leakage with a Unmanned Aerial

Vehicle (UAV) by employing a fluid simulation as a model. Within the above-defined

complexities, this problem is characterized by high physical complexity (fluid simu-

lation with variable wind, gas dispersion, etc.), low observational complexity (direct

gas concentration readings from a sensor and wind estimations from the UAV) and low

planning complexity (go to the predicted source of the leakage). The UAV can sample

the world for gas concentration g and wind speed and direction estimates w for a given

location s and timestep t:

g,w = F(s, t) (1.1)

We can also sample for gas measurements using a simulator for a defined location of

the leakage l, where W̃ = {w} is the spatio-temporal wind field and θ is any remaining

parameters of the simulation (e.g., gas dispersion, simulation timestep, etc.):

g̃ = F̃(s, t, l|θ,W̃ ) (1.2)

We can compare the actual readings g with the simulated readings g̃ to find the

optimal placement of the gas source l∗, where d is a distance metric (e.g. MSE).

l∗ = ∑d(g, g̃) (1.3)

Within this work, we exploit the fact that the optimization can be performed by

comparing the shifted simulated readings of a bigger simulation with the acquired

readings, rather than running multiple simulations with different locations of the source:

F̃(l +∆l,s, t|θ,W̃ ) = F̃(l,s+∆l, t|θ,W̃ ) (1.4)

The two sampling procedures are equivalent for spatially constant wind (but varying

temporally); however, the second is much computationally cheaper. The inference

speed is a critical requirement that allows performing this optimization online onboard

of the UAV.
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1.3.2 RoboSuction: Safe and Efficient Suction under Partial Obser-

vations

Safe Planning under Partial Observations with Reduced Simulation Representa-

tion

In this project, we are interested in performing system identification with challenging

planning due to the ever-changing belief over the state of the phenomena. In practical

terms, we study the problem of medical suction, where we need to clean all present

liquid as quickly as possible while maintaining a distance from the surface underneath.

The complexity comes from precisely this safety constraint while re-estimating the

underlying surface and dynamics as suction is performed.

We have a robotic system able to go to a certain position s at a timestep t, which

then after suction reveals partial observations of the uncovered surface l.

l = F(s, t) (1.5)

Within this work, we propose an estimation of the surface h̃, additionally describing

some of the volume information.

h̃ = G(l) (1.6)

The main contribution then becomes of coming up with a method F̂ , that given the

surface estimation, and a safety threshold ε, estimates an optimal action a∗ that would

result is cleaning the remaining liquid in the shortest amount possible.

a∗ = F̂(h̃,ε) (1.7)

1.3.3 Vid2Param: Modelling of Dynamics Parameters from Video

Simulation Alignment from Unstructured Sensory Input

In this project, we are interested in performing system identification of different physical

parameters from unstructured observations such as video. Similar to the previous

projects, we have a function able to acquire real-world readings at timestep t, albeit

this time we assume no excitation. However, the resulting observations I have complex

structure (rich, dense measurements such as images).

I = F(t) (1.8)

Similarly, a simulation parameterized by θ can be used to generate simulated readings:
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Ĩ = F̃(t,θ) (1.9)

The core problem we address is that of estimating θ, based on the difference between

the simulated Ĩ and observed I images.

θ
∗ = ∑d(I, Ĩ) (1.10)

The main contribution of this work is a model that can estimate encode information h

from a sequence of simulated readings Ĩ, and based on that infer parameters of interest

θ.

θ,ht = F̂(Ĩt ,ht−1) (1.11)

1.4 Major Contributions

The first part of this thesis looks into sampling based approaches and reduced simulation

representations for solving inverse problems in robotics. The second part of the thesis

looks into amortizing the inference process by learning an inverse mapping directly.

• An online algorithm for efficient sampling of a fluid simulation model for gas

localization with a UAV. Under the assumption that wind is spatially constant

(but temporally varying), running multiple simulations with varying locations

of the gas leakage is equivalent to running a four times bigger simulation with

the source in the center and taking shifted readings. The computational speed up

from the latter allows the algorithm to be run online onboard of a UAV.

• An algorithm for sampling contour trees and GPs for a safe path for liquid clearn-

ing under partial observations. Under the assumption of stationarity of liquids

and smooth underlying surface, the simulation can be reducted to a countour tree.

The reduced fluids representation, combined with a surface and safety bound

estimation, allows for planning for efficient cleaning of the remaining liquid,

while avoiding hitting the surface.

• A NN model for learning inverse mappings of rich sensory inputs to parameters

of interests. Amortizing the inference allows for online identification of physical

parameters, while achieving better accuracy than traditional methods. By explic-

itly factoring in information from previous timesteps into the learning process,
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the methods allows for accurate inversion in challanging domains such as robot

control and molecular dynamics.



Chapter 2

Background

This thesis explores the question of using simulations as models to solve robotics tasks

in dynamic and uncertain environments. This can proceed by using the simulation

online as part of the control loop or as data for a learned model.

The renewed interest in learning-based methods is due to a combination of scaling

up datasets [54], and adapting NN models to alternative forms of computation such as

GPUs, while refining the structure and the training the process to address the challenges

of large and complex datasets [120]. Those trends have impacted robotics research

as a whole, although due to unique challenges in the field, it is less clear how and

if learning-based methods should be used compared to traditional approaches. A

significant challenge is acquiring real-world data to address the diversity of potential

observations while the system is deployed safely. Using simulation has emerged as a

natural alternative, albeit such methodology brings its own set of challenges [235].

A very general simulation model can be defined of the form:

xt = f (xt−1,ut−1|θ) (2.1)

, where the simulation is defined as a function f , with state xt , actions ut and simulation

parameters θ. This chapter starts by providing a broad overview of simulation models f

(Sec.2.1) used for simulating robot and environment dynamics. Traditional simulators

are covered, where the equations of motion are analytically defined. The section finishes

with a discussion on learnable simulation models, where dynamics are learned from

collected data traces of the phenomena. The second section of this chapter (Sec.2.2),

looks into alignment of the specific parameters of the simulation θ with respect to real-

world observations xt . The section starts with some of the challenges of this alignment

process, and then proceeds into discussion about potential solutions such as simulation

13
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based inference and system identification. In the final section of this chapter (Sec.2.3),

different methods for planning and control ut are covered. This section starts with

discussion over traditional approaches, and finishes with topics of particular interest to

this thesis such as active acquisition of data and model-based apporaches.

This chapter aims to give a broad overview, while later chapters include an in-depth

summary of specific advances within the targeted application areas.

2.1 Simulation Models

This section starts by briefly covering simulation models used for describing robotics

dynamics. In particular interest to this thesis, the section continues with overview of

models used for object and fluid dynamics. This includes both traditional methods

developed by the computer graphics community, but also novel ways of learning

simulation models from raw data. Importantly, the section aims to analyse tradeoffs

between different approaches in the context of coming up with suitable representations

that can subsequently be used for simulation alignment and control.

2.1.1 Robot Dynamics

Simulators have long been used within the robotics field to safely test the effect of

potential actions before running them on a real robot. Before even the simplest robot

movement, a reference trajectory must be computed to be passed down on the respective

controller for execution [63]. This necessity for testing in simulation and the wide range

of different robotic systems have led to the development of standardized communication

protocols between different hardware components [181], motion planning frameworks

[209], robot simulators [117], including handling contacts [219].

Beyond testing and verification of the validity of specific actions, simulators can also

enable new capabilities such as real-time position based controllers, by implementing

a fast enough inverse kinematics solvers [57]. Finally, they can additionally allow for

learning in a safe, scalable way, while accounting for mismatch with the real system

with techniques such as domain randomization [171]. While initial simulators were

primarily focused on the kinematics of the respective robotics platform, as new emerging

deployment scenarios are becoming of interest, new simulators are being proposed

integrating not only object dynamics, but also realistic renderings [47].
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(a) Particle-based simulation

(b) Simulating different robotic systems and interactions

Figure 2.1: Simulating robot and object dynamics. Simulators can provide an efficient

way of testing actions, gathering data, and learning policies. [141] [143]

2.1.2 Object and Fluid Dynamics

Simulating the robot’s dynamics or only part of the problem - if the has to interact

with the world, we have to model that. Many formulations have been proposed to

address different aspects of the dynamics of rigid objects, soft bodies, and fluids of our

surrounding world, as seen in fig.2.1. Rigid bodies simulation deals with the particular

case where objects are assumed to experience zero deformation under applied forces.

The movement of a particular object, when forces are applied, needs to be estimated,
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together with the more computationally expensive process of estimating contacts to

avoid inter-penetration [19]. Traditional force-based methods enforce constraints where

constraints and external forces are integrated between objects to avoid penetration [20].

However, this becomes challenging in situations with ever-changing constraints between

different objects, such as highly dynamic environments with many interactions. Later, a

more explicit model of impulse-based dynamics was proposed, where no constraints

are imposed, but all internal and external forces are integrated to model contacts, and

penetration [149]. While this can be less physically correct, it overcomes the challenges

of working on acceleration level when estimating multi-body interactions. To further

address some of the stability issues of those approaches, position-based dynamics were

proposed, where updates are performed in the position space while estimating different

constraints and updating the positions based on them [155].

Fluids are usually represented by partial differential equations in the form of the

Navier-Stokes equations. The different components of the equations can be solved with

Eulerian methods, where the simulation of fluids is described with several spatially

fixed points, or Lagrangian, where the movement of its particles describes the fluids. By

modifying the Eulerian framework with additional parameters, it is possible to simulate

different phenomena [161] such as gases [204], melting objects [39], objects made out

of sand [240], etc. Simplified models can be used in some instances when the exact

dynamics of liquid are not critical, but it matters how the liquid moves in between

connected components. In analyzing flood risk over terrains, a flow graph describing

the connected terrains and their heights, together with a rain distribution function, can

be sufficient [137].

Real-world scenes are a combination of objects with different physical properties

and behaviors. Position-based dynamics have allowed approximate but computationally

stable simulation of rigid and soft objects, together with fluids under a common frame-

work . This has led to impressive unified simulation capabilities of already mentioned

phenomena, of melting and sand objects, gases, rigid objects, clothes, tearing, and many

others. Modern implementations are computationally efficient to run in real-time [141],

even on modest hardware. However, their approximate nature needs to be addressed if

they are to be used as models for control.
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2.1.3 Learnable Physics Engines

Traditional simulators have predefined procedures of how the state space evolves,

defined by the specific implementation. This is often limiting, as seldom can any

simulation capture the full complexity of the surrounding world. There is often a tradeoff

between simulation fidelity and speed of execution, with accurate simulation taking

a long time to compute. Finally, as part of modern end-to-end learning architectures,

it is desirable that physics engines are fully differentiable. A recent line of work

looks at whether a simulator can be learned from raw sensory data. Examples of this

include learning general-purpose modular object-centric [22, 40] and particle-centric

[154] physics engines. Those methods have the benefits of being general learnable

models, in principle able to learn any interaction. The main challenge in developing

learnable simulators is getting enough training data in terms of quantity (enough training

examples) and the quality and granularity (segmenting different objects from a scene

and recording their trajectories). Usually, this line of work is benchmarked by applying

it to the existing physics simulator as we can gain access to ground truth and evaluate

the performance.

Using similar architectures to learn a physics simulator from scratch is possible,

but this is often impractical due to the amount of data needed, while knowledge of

physics laws and dynamics is ignored. As such, it might be helpful to learn the

residual part of the dynamics on top of an analytical solution. In the presence of high

accuracy tracker systems, the residual learning can proceed directly from trajectory

segments such as [6] by integrating [22]. Self-resetting robotics environments are often

one of the requirements, even when relatively limited data is needed. By carefully

integrating physics engine, robotics data gathering, and NN perception modules can lead

to impressive performance in challenging tasks such as precise throwing of randomly

shaped objects, while accounting for aerodynamics [232] as seen in fig.2.2. It is

also essential to verify proposed approaches on a variety of error metrics, such as by

integrating ’Violation of Expectations’ and different concepts such as object persistence

[175].

In addition to learning general-purpose simulators, a more constrained learning

problem is one of bucketing of real-world pictures into a few physics scenarios [153],

learning the dynamics of billiards [71] and parameterized fluid simulation [114, 197].

However, the problems mentioned above still hold even within those settings. A new

line of work aims to explore models capable of learning dynamics [237] as well as
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(a) Policy learnt in simulation via domain randomization using object tracker

(b) Using extensive real world data collection with self-resetting environments

(c) Combining simulations and real data

Figure 2.2: Learning policies from real and simulated data. Policies can be learnt

from simulated, real data or both; by using precise trackers or directly from vision

data.[171] [230] [7] [232]

to infer the structure of the world [67] from vision data in an end-to-end fashion. A

tangentially related question is learning from micro-data, where one approach can be

learning in simulation and fine-tuning on a few real observations. Meta-learning is

one approach for achieving that [69, 68, 90], by optimizing over a family of tasks for

faster convergence of the learning algorithm as new tasks are introduced. Using vision

for data gathering for the methods as mentioned earlier is challenging, partly solved

by introducing skip connections to help with object persistence as the robotics arm is

moving around the scene [62] and using autoencoders for generating more real-world

like training data [158].

2.2 Simulation Alignment

This section covers related work to the central question of this thesis, aligning the

parameters of a simulation model to the acquired sensory readings. The section begins

with a list of sources of error during simulation alignment and potential approaches
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for addressing those errors. Major part of this section is dedicated to simulation-based

inference approaches, which are subsequently adapted within the work of this thesis.

Finally, the closely related fields of system indentification and uncertainty quantification

are discussed.

2.2.1 Challenges

Once we have a physics simulator (traditional or learnable one), a complimentary

question is how we can use it to perform inference and action selection. There are often

many challenges as one has to account as seen in fig.2.3 for all the issues associated

with the alignment between the real world and the simulated environment [113]:

Figure 2.3: Challenges in simulation alignment. This thesis focuses on parameter

estimation θ, and studies methods for efficient alignment when dealing with computa-

tionally expensive f or rich sensory observations x.

• Parameter estimation and uncertainty - select the parameters for the simulator

model that generalizes and are accurate with respect to the scene in real world
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• Model mismatch - account for the mismatch between the simulator and the real

world, once the simulator has been calibrated

• Residual variability - uncertainty arising from stochasticity of the simulation or

unobserved hidden parameters

• Parametric variability - uncertainty from unspecified/uncontrolled known parame-

ters

• Observation error - inaccuracies in the observed sensory data

• Code uncertainty - even though the implementation of the simulation will gen-

erally, be known, there are still uncertainty or inaccuracies associated with it

(similar to ’black box’ argument about NN, where we know all the weights, but

cannot provide reasoning about its output)

Some of the traditional approaches people have used before to address some of

those issues include [113]:

• Interpolation - inferring the values of unobserved parameters combinations, based

on already observed ones

• Uncertainty analysis - study the distribution of the output of the simulation, given

the distributions of the individual parameters

• Sensitivity analysis - study the induced error of the output of the simulation, as a

certain parameter change

• Calibration - estimation of parameters, via ad hoc search or Bayesian Optimization

(BO)

Traditional approaches can give some intuition about the performance of the simula-

tor, but it is clear that this is not enough to address all the challenges associated with

using a simulator as/to learn a model.

2.2.2 People Reason using Noisy Simulator

People can learn and reason about the complex dynamics associated with the everyday

world. We can predict movements (e.g., while playing tennis) and estimate physical

properties (e.g., applying the necessary force while lifting an object). People learn
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this while growing up by exploring and interacting with the world. However, it is

unclear how this learning process happens and how we perform inference given our

observations. One observation is the high correlation between our predictions and a

noisy Newtonian probabilistic simulation [23] in different tasks - predicting a movement

of billiards balls [79], estimating whether a tower of cubes is going to fall [23] and

reasoning about liquids [21]. Interestingly, our predictions are rarely physically precise,

suggesting that we use approximate models to make predictions of our surrounding

dynamics, continuously updated as we observe.

2.2.3 Simulation-based Inference

Using a simulator as a model and optimizing its hyperparameters is one of the common

approaches to incorporate physics knowledge about the world, especially when exper-

imental data is not or hardly available. Simulation-based inference is an established

field in natural sciences, where complex simulations have been developed to address

different phenomena [49] as in fig.2.4. The inference process is one of refining a prior

distribution of some parameters of interest as some observations are acquired. If we

have observations x and parameters of interest θ, then we are interested in computing

the posterior p(θ | x).

p(θ | x) =
p(x | θ)p(θ)

p(x)
=

p(x | θ)p(θ)∫
p(x | θ)p(θ)dθ

(2.2)

The challenge is that the data evidence p(x) is often intractable - not available in closed

form, or taking exponential time to compute [29].

Traditional methods are centered around sampling procedures, where the posterior

is refined as more samples from the simulator are drawn. In the simplest form, this can

be implemented as a rejection Approximate Bayesian Computation (rejection-ABC).

Parameter θ is sampled (e.g., uniformly), forming simulated observation xsim. If a

simulated data xsim is within the error margin ε to the observed data xobs according to a

distance metric ρ, the parameter θ is retained for the posterior distribution p(θ|x).

ρ(xsim,xobs)≤ ε (2.3)

This method usually suffers from a very low acceptance ratio, especially in high

dimensional data or small values of ρ. At the same time, if a sample is accepted, this

does not influence subsequent drawn samples - even though the accepted sample signals

a potential high-density probability area of the accepted parameter. Precisely this issue
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Figure 2.4: Simulation-based inference methods. SBI is a widely used technique in

many fields, such as molecular dynamics, protein folding, etc. Two broad methods exist -

techniques for sampling the simulator directly (top row) or amortizing the inference pro-

cess (bottom row). This thesis explores both of those methodologies - sampling reduced

simulation representations and learning direct inverse mappings from observations to

parameters of interest - and their applicability in different robotics settings. Figure taken

from [49].

is addressed by different Markov chain Monte Carlo (MCMC) methods by constructing

a Markov Chain that has the same equilibrium distribution (after discarding the initial

burn-in samples) as the desired one [145]. MCMC is well suited for cases of static,

computationally expensive datasets to acquire, where the computational cost of MCMC

itself may not be the primary concern.

Alternatively, a family of approximate densities Q, e.g., Gaussian, can be intro-

duced, where the parameters of the approximate distribution are optimized to match the

posterior [29], using methods known as variational inference.

q∗(θ) = argmin
q(θ)∈Q

KL(q(θ)∥p(θ | x)) (2.4)

Replacing the sampling process of one of optimization can be beneficial, especially

for larger datasets, where respective optimization methods can be leveraged. In their
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standard form, both MCMC are VI are not sequential algorithms, meaning that as new

data comes on the inference process must be recomputed.

Alternatively, a surrogate model can be learned, which is then alternatively used for

inference, amortizing the process.

q∗(θ | x) = argmin
q(θ|x)∈Q

KL(q(θ | x)∥p(θ | x)) (2.5)

Different choices of models of q are possible, but most notably neural networks

have been recently used [115], as a way to perform inference from high dimensional

and complex data.

SBI is widely used across different application areas, such as analyzing TNT explo-

sions [87], where a detailed simulator is used to calibrate to data from real explosions,

Jet-in-crossflow simulations [184] or efficiently monitoring of environmental conditions

in data centers [105]. From a robotics perspective, this can be applied to different manip-

ulation tasks and inferring shapes and properties of objects [238] or jointly optimizing

camera intrinsics and physical parameters from videos [100]. Those developments have

shown that approximate simulators can enable the synthesis of complex behaviors such

as pouring, that would have been hard to achieve through conventional means [135].

This draws on earlier observations from human psychophysics, e.g., [21], that people

seem to be able to reason about the flow of liquids in situations where the available

data is necessarily sparse. Of course, aligning a simulator is also a central method in

model-based control, including learning a robot controller [118]. The authors show

that it is possible to jointly optimize over system identification (finding a mathematical

model of a dynamic system) and parameters estimation (optimizing the parameters of

the found model).

The parallel development of deep NN and their successful vision application have

led to the natural unification of the two approaches [229, 228]. Most of the practical NN

based real-world applications have so far been based on supervised learning by using

a collected dataset. Apart from the computation power and model architectures, a big

challenge has been collecting labeled data. In [229], the authors argue that in addition

to matching a real-world scene to a simulator (sliding object over an inclined surface),

this could lead to estimating different physical properties of the objects, such as friction,

mass, etc. This in turn could be used for training data for learning vision models being

able to predict physics properties of objects, just based on how they look - arguably an

intuition we develop as people as we grow up. Following this line of work, it has also
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been shown that simulators can be used as part of a learnable vision model (in limited

tabletop scenarios) [228]. A perception module extracts information about the objects

from images, fed into physics and then graphics engine. Finally, the likelihood between

sim and real is calculated in the image space rather than using extracted trajectories.

Alternatively, it is also possible to estimate physical parameters of interest from videos

unsupervised by introducing the physical equations themselves as a bottleneck in a fully

differentiable autoencoder model [101].

2.2.4 System Identification

System identification is another popular field closely related to the question of simulation

alignment. The field has seen two significant avenues of exploration [134], building

linear state-space models from impulse signals [88] and later on focusing on prediction

error methods [16], which are closely related to maximum likelihood methods and

statistical inference [14]. While an established field, both avenues have seen continued

interest in identifying the governing equations of a nonlinear system [35, 30] and

parameter inference from a given model [49]. The core problems and avenues outlined

in [15] remain relevant today - the class of systems, the input signals, and the criterion -

and are a research topic within this thesis.

2.2.5 Uncertainty Quantification

UQ is the process of quantitative characterization of the degree of precision with which

a quantity is measured [223]. The goal of UQ is to produce a measure of confidence

for model predictions - a capability needed in critical scenarios such as autonomous

vehicles and the medical domain, where actions can have serious consequences. Even

beyond, whenever a robotic system is in the loop of people, robust UQ is crucial. Un-

certainty is often classified into aleatoric, or uncertainty associated with the data itself;

and epistemic, uncertainty associated with the model [111]. Aleatoric uncertainty is

irreducible, as it is associated with the variations of multiple runs of the same experi-

ment, where epistemic uncertainty can be improved with better modelling and/or data.

Models such as Gaussian Processes (GP) are known for their principled treatment of

uncertainty, as they can incorporate well-defined bias via their kernel functions, provide

uncertainty estimate as part of their prediction, and can model both aleatoric and epis-

temic uncertainty (e.g., by horizontal/vertical lengthscale parameters for epistemic, and

noise parameter for aleatoric in the squared exponential kernel). Alternatively, Bayesian
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NN can also provide uncertainty estimates with many implementations proposed [3] -

with dropout and model ensembles being the predominant techniques for obtaining UQ

from NN [61].

2.3 Planning and Control

This section covers methods for synthesis of control strategies of robotic systems.

Motivated by the scope of the thesis, model-based approaches and active acquisition of

data are discussed. As an alternative to using simulation as a model, the section finishes

with a short overview of model-free approaches and automatic data collections with a

robotic systems.

2.3.1 Manipulation Techniques

Within robotics, the taxonomy of manipulation techniques consists of Newtonian robots,

Aristotelian robots, and Empirical robots [146]. Newtonian robots model actions using

Newton’s laws, Aristotelian by assuming things move only when pushed, and Empirical

using collected observations. Based on the complications in classical mechanics (kine-

matics → statics → dynamics), we can define a hierarchy of manipulation techniques.

Kinetic manipulation deals with action/s derived from kinematics, e.g., moving end-

effector to a specific place. Static/Quasistatic manipulation also considers the placement

of objects and any physics properties (excluding inertial or any other dynamics), e.g.,

putting an object on a table or straightening a deck of cards by squeezing it. Finally,

dynamic manipulation considers the whole physics scene, including any dynamics

associated with it, e.g., sliding an object over an inclined surface or pouring liquids.

2.3.2 Motion Planning

Even if we assume movements and sensory data with no noise, planning motion

for a defined task is still challenging. This has primarily been defined using two

methods, often combining them [41]. One way is to define prior knowledge over

the policy structure (e.g., movement primitives), policy parameters (e.g., learned from

demonstrations), and dynamics (e.g., learned from a simulator). This allows for reducing

the complexity of the search problem. An alternative option is to create a surrogate

model of the reward (e.g., BO) or dynamics (e.g., model-based policy search), and query

the model instead as in fig.2.6. End-to-end differentiable simulators (e.g. learned as a
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NN module or constructed explicitly) can alternatively be used to synthesize control

strategies efficiently as in fig.2.5 .

(a) Control from particle representations

(b) Control from images using fully differentiable engine and renderer

Figure 2.5: Control using learnable physics engines. Fully differentiable physics

engines allow for efficient control strategies. [130] [157]

Aligning a simulator allows for a more efficient policy search by optimizing using

the simulation rather than the real world. The main question becomes how one can

guarantee that the simulator’s policy will be successful once transferred to the real

robot. One approach is to align a simulator and learn a policy by repeating a three

steps process until the policy is learned [239]. First, the robot executes the current

policy, and the data of the execution is recorded. Second, this data is used to run a

simulation and update its hyperparameters. Finally, the updated simulator is used to

learn a new policy. The process is repeated until convergence. Alternatively, the whole

policy can be learned in a simulator and transferred to the real robot. One approach

is to gather extensive simulated data. e.g., by using domain randomization [218, 176].

Alternatively, the complete model of the environment and the robot can be specified,

e.g., learning to push a puck [170]. The development of this line of work has enabled

making progress in challenging robotics tasks such as manipulating fluids [135], cloths

[147], deformable objects [147].

An line of work aims so solve the problem of using RL with simulations and BO for

more efficient training [144]. [220] defines a framework based on logic and geometric

constraints able to constrain the world to allow for more efficient planning of multistep

tasks. Extending this line of work, in [221] they demonstrated in simulation planning
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of complex robotics reasoning tasks (e.g., use a stick, to get a long stick, to pull a ball

that you want to grab).

A simulation models is almost never a perfect model of the phenomena of interest

- as such there is a Sim2Real gap between the expressiveness of the model and the

real environment. As such even if the optimization process of aligning the simulation

converges, the mismatch may still be too big for a downstream task. Apart from

carefully considering the model selection process, residual learning has been a proposed

solution to this problem, by learning an additive model of the remaining dynamics,

uncaptured by the analytical simulation model [232].

2.3.3 Classical Control

Two broad methods exist for control - open-loop controllers and closed-loop controllers.

Open-loop control acts regardless of the output of the controlled system, while in closed-

loop control, the control actions are adapted to a given objective function, conditioned

on an observation. Probably the most widely used controllers are the Proportional-

Integral-Derivative (PID) controllers, minimizing the three respective error signal terms

between the observed and reference signal. Although this type of control does not

guarantee optimality and works on a single input-output, it is widely applicable as

it does not require knowledge of the underlying controlled system. If the observed

system is known to be linear with Gaussian noise, then an alternative formulation as

linear-quadratic-Gaussian (LQG) problem is often used. Under the separation principle,

this problem has an optimal solution of system identification problem using a Kalman

filter, from the control problem, by using Linear-Quadratic-Regulator (LQR). In the

more general case of nonlinear system, the generalized method of Model predictive

control (MPC), where the solution is computed over some fixed time window. The

first action from the compute action sequence is executed, after which the process is

repeated.

2.3.4 Active and Adaptive Acquisition of Data

Active acquisition of data is often defined as a trade-off between exploration and

exploitation by formulating the problem as one of regression from sparse measurements.

Representative examples of this approach include [203], which uses Gaussian process

mixtures, and [132]. Kalman filter based estimation algorithms also work similarly [28].

To incorporate physics knowledge within this framework, the kernel of the Gaussian
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Processes (or similar method) is refined to account for different effects indirectly, e.g.,

incorporating wind information [185, 162].

Another aspect of active sensing is the method for collecting samples to maximise a

notion of information gain. While the underlying exploration-exploitation trade-offs

can be posed formally in decision-theoretic terms, most practical techniques tend to be

myopic in their operation. GP [124, 167] and the Kernel DM+V/W algorithm [162]

address this question. One could also formulate this as the optimal design of sequential

experiments [93]. However, this requires access to analytically defined dynamics

models, which may be hard to construct for the specific scenario at hand.

GP are praised as a model able to define uncertainty (by taking multiple samples

of the constructed GP), bias (by specifying the kernel function) and learning (by

optimizing for the hyperparameters of the kernel). However, a common criticism is

the computational complexity of the model as a function of the data. This is being

addressed by optimising the inference procedure [86]. Alternatively, work is focused

on combining NN with GP [77, 78, 127] and particle filters [103] to allow for more

expressive and scalable models. It would be interesting to see whether those recent

algorithmic developments could be helpful in designing a better exploration framework

for manipulation tasks, e.g., performing actions to better gain information about the

shape of an unknown object.

2.3.5 Model-free, End-to-end Approaches

Figure 2.6: Learning from micro-data. Addressing learning from a handful of trials by

modelling of the dynamics, policy, and cost function. Figure taken from [41]
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A different approach to using a simulation in the optimization/mapping is to have

a model-free approach and learn from data [5]. In this work, the forward and inverse

kinematics are parameterized by a NN. The model is learned directly from images for

the manipulation task of displacing objects. This was achieved by performing a total of

400 hours of training on a real system. The advantage of such methods is that the model

is trained end-to-end by just using raw data. However, it is not clear how such work can

scale and generalize to unseen objects and configurations. Work in this area benefits

from careful experimental setup, as even challenging tasks such as playing billiards can

be solved by tracking and simple model matching [76].

Deep learning nevertheless could provide benefits, both in terms of the complexity

of the learned manipulation models, but also the arguably simpler model, requiring

just a lot of data. As such, an interesting question is how can data collection using

real robots be better automated. An example of such an approach is demonstrated

[230], where a dataset of rigid bodies with different shapes pushed in different ways

on top of different surfaces is presented. The pushing objects have marked holes easily

identifiable by a vision system, which allows the robot arm to move the objects in their

initial position, allowing for an unsupervised way of resetting the scene and efficient

data collection. In a follow-up paper, it is demonstrated that such a dataset can be used

to learn a probabilistic model for pushing objects [24].

2.4 Online Simulation-based Inference for Motion Plan-

ning

Robots need models of their environments, so they can plan and interact with them.

The identification and subsequent planning must almost always proceed online as to be

able to deal with the different dynamic situations. The online nature of the problem is

precisely what makes it challenging.

Within this chapter, different simulations used for modeling different dynamics of

the environment (Sec.2.1) were discussed. Subsequently, this thesis explores varying

complexity of the simulation models - used from rigid bodies (Chapter 5) to fluids

(Chapter 3) and molecular dynamics (Chapter 5). The core problem motivating the work

in this thesis is simulation alignment, discussed in details in Sec.2.2. Simulation-based

inference is the main technique used within this work, adapted to the specific needs

and challenges of the robotics domain - sampling reduced simulation representations
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Figure 2.7: Simulations based on their complexities. Based on the complexities

defined in fig.1.5, we define three different projects within the thesis, addressing different

complexities. Note that there is often some correlation between the three axis of

complexities - they are neither fully ortogonal or parallel. Within this thesis we focus on

three different projects, focusing in turn of challenges associated with each complexity.

(Chapter 3 and 4) and learning inverse relations (Chapter 5). The reason for performing

simulation alignment, is for the subsequent task of control for a given goal. Control

strategies and the use of simulators within the control loop were covered in Sec. 2.3.

This thesis adapts both myopic strategies (Chapter 3), but also long-term planning

(Chapter 5), while also incorporating uncertainty (Chapter 4).

The contribution of the thesis can be summarized as methods for online simulation-
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based inference - sampling reduced simulation representations or directly learning an

inverse mapping between observations to parameters of interest. This thesis explores

three projects, motivated by different challenges in the observations, physics and

planning as seen in fig.2.7. Each of those complexities is studied in the following

order: Chapter 3 studies simulation alignment with a computationally expensive fluid

simulation for the task of gas localization (green in fig.2.7); Chapter 4 studies safe

planning under uncertainty for the task of medical suction (red in fig.2.7); Chapter

5 studies simulation alignment from complex observations such as videos or x-ray

scattering signal (orange in fig.2.7).





Chapter 3

Active Localization of Gas Leaks using

Fluid Simulation

A key constraint in performing simulation-based inference is the computational cost of

the simulation model itself. Often the inference proceeds by repeatedly sampling the

model to identify the best parameter from a given prior. That cost can be reduced be

lowering the number of simulation calls and/or the cost of the simulation run itself - for

example by exploiting domain specific assumptions. This chapter looks at one approach

for simulation-based inference, where the process can be reduced to just one simulation

call.

In addition to simulated data, real observations are required for the inference process.

Various sensors can be mounted on robotics systems to acquire measurements in spatio-

temporal fields. Locating features within these fields and reconstruction (mapping) of

the dense fields can be challenging in resource-constrained situations. In such cases, a

model of the underlying complex dynamics can be exploited to discover informative

paths within the field.

Within this chapter we look into the example problem of localization of the source of

a gas leak from a small number of measurements. We use a fluid simulator as a model, to

guide inference for the location of a gas leak. We perform localization via minimization

of the discrepancy between observed measurements and gas concentrations predicted

by the simulator. Our method is able to account for dynamically varying parameters of

wind flow (e.g., direction and strength), and its effects on the observed distribution of

gas. We develop algorithms for off-line inference as well as for on-line path discovery

via active sensing. We demonstrate the efficiency, accuracy and versatility of our

algorithm using experiments with a physical robot conducted in outdoor environments.

33
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We deploy an unmanned air vehicle (UAV) mounted with a CO2 sensor to automatically

seek out a gas cylinder emitting CO2 via a nozzle. We evaluate the accuracy of our

algorithm by measuring the error in the inferred location of the nozzle, based on which

we show that our proposed approach is competitive with respect to state of the art

baselines.

Contributions In this chapter, we:

1. formulate gas leak localization as model-based inference using a fluid simulator

as the model,

2. develop a practical optimization algorithm based on a single simulation per

iteration,

3. develop an online algorithm that locates gas leaks using active sensing,

4. demonstrate that our algorithm results in acceptable localization error in real

experiments.

3.1 Introduction

We address the problem of using a robot-mounted sensor to actively search for features

of a spatially extended field, e.g., source of a leaking gas, or to map such a field from

point measurements. This is useful in numerous applications, such as disaster response

[156], scientific data collection in difficult and inaccessible environments [174] and

urban emissions mapping [82].

From a robotics perspective, the core problem is that of synthesizing paths with

respect to an objective such as quality of reconstruction of the underlying spatial field,

or the accuracy of localization of a spatio-temporal event (e.g., source of a gas leak).

Traditional approaches for solving such problems include 3D surface reconstruction

algorithms [56] and regression models such as Gaussian process [104].

What makes the practical problem challenging, and many of the traditional methods

harder to apply, are resource constraints and lack of control over the experimental

domain. When the sensor is mounted on an Unmanned Aerial Vehicle (UAV) and

flown around from a more distant launch location, the number of samples that may be

collected is limited (typically due to power constraints, but also due to other issues such

as contamination risks). Moreover, the true underlying phenomena are typically varying,

such as when the field is created by dispersion under wind flows and one must reason
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Figure 3.1: Gas-leak localization We place a gas cylinder releasing CO2, via a nozzle,

and measure gas concentrations, wind speeds and wind directions using a UAV. Our

goal is to estimate the location of the nozzle from these point measurements. The UAV,

which is equipped with sensors and on-board processors (CPU and GPU), flies on a

fixed 2D plane 4m above the ground. We develop two algorithms for localization. Our

offline algorithm (left) compares measurements, taken along a predefined path, with a

fluid simulation (that considers measured wind). Our online algorithm (right) discovers

a path to the source of the leak by repeatedly performing simulation and comparison

steps on-board the UAV, and flying to the most likely location of the source given the

measurements.

about this (e.g., to locate the true source location despite wind). Lastly, the overall task

is made difficult by the inability to obtain detailed ground truth to evaluate models - if

the objective were to be defined as reconstruction of a spatial or temporal field, then we

may not have a detailed description of the true underlying field. Some recent works that

are noteworthy in this area, and shown to be successful in experimental settings include,

e.g., [203] which presents a method based on Gaussian process regression, and [162]

which proposes another kernel based approximation model. The latter also accounts for

the directionality of wind flows, by interpolating from past data with a modified kernel.

In most such work, the treatment of wind as a cause of variation, and associated search

strategies for actively locating environmental features (e.g., pinpointing the source

location of a leak before wind flow disperses it) is either heuristic or considers wind to

be constant over time (in which case reasoning about the flow may not be necessary).

In this chapter, we propose the use of a fluid simulation as the model of the underly-

ing phenomenon which allows us to directly address these causes of variation. We pose

the problem of estimating the location of an environmental feature (e.g., source) as that

of optimizing the fit between a fluid simulation model and the point-wise measurements

of the resulting scalar field. This is a process of calibrating the simulation model, which

we show can be done online as measurements arrive (indeed, in a way that can be
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implemented on resource constrained hardware within a standard commercial grade

UAV) and used to drive search processes based on information-gain criteria.

The optimization problem can be solved in a number of ways. For the problem of

estimating a spatially extended field given a sequence of measurements, one approach is

to use BO, treating the true objective function implied by the environment as a random

function with a Gaussian process prior. We develop an alternative approach, which

exploits the shift-invariance of the phenomenon, that performs a larger simulation once

at the beginning and poses location estimation as the problem of determining the optimal

translation of a smaller field of interest. The use of the simulation model also allows us

to address the active search version of this problem, where the sampling locations are

determined online (and on-board), by iteratively computing a likelihood for the source

location and flying to the point which maximizes this quantity. This proposed approach,

which we call One-shot Grid Search (OGS), is efficient and requires relatively low

computational resources for similar localization accuracy.

3.2 Related work and contributions

Robots used as sensing platforms Early work around autonomous sensing of physical

phenomena involved ground-based mobile robots [185, 132, 203]. More recently, with

the emergence of reasonably robust Unmanned Aerial Vehicle (UAV) platforms, often

referred to as drones, they are being used as sensing platforms with benefits in terms of

speed, manoeuvrability and ability to deal with hostile terrains, unobstructed by objects

on the ground [? 98]. UAVs bring their own challenges, such as reduced on-board

power and the difficulty of finding sensors that fit within the form factor. Sensing

technology has also continued to develop, e.g., making it possible to use spectrometers

on UAVs [52]. We conduct experiments with a commercial off-the-shelf CO2 sensor,

but note that the computational methods presented here are sensor agnostic, assuming

only that the sensor obtains point measurements from a scalar field.

Using simulations as models Models provide numerous advantages in machine

learning [27], enabling inferences from limited data, and in planning [81], enabling

counter-factual reasoning [31] and guided search. However, defining the structure of

models in a way that leads to efficient inference while maintaining fidelity to complex

arrangements of physical causes tends to be non-trivial.

The phenomena we consider in this chapter involve gas flows. There is a long

tradition of modelling such flows, including efficient computational methods aimed
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at graphics and animation applications [206]. The development of efficient solvers is

also driven in the engineering community by the need to simulate phenomena such as

fluid-structure interaction, yielding fast and approximate solvers through position-based

dynamics methods [140, 141]. Simulation frameworks have also been developed aimed

specifically at easing the development and testing of GDM and GSL algorithms [150].

Development of advanced simulation tools has led to new milestones in learning

challenging robotics tasks. In [135], the authors show that approximate simulators

can enable the synthesis of complex behaviours such as pouring, that would have

been hard to achieve through conventional means. This draws on earlier observations

from human psychophysics, e.g., [21], that people seem to be able to reason about

the flow of liquids in situations where the available data is necessarily sparse. These

papers are situated within the broader topic of ‘intuitive physics’, which refers to

the ways in which cognitive models of real-world physical phenomena seem to only

require relatively simple representations of the true underlying phenomenon [23, 40]. In

restricted settings, such representations have also been used for efficient neural network

based model learning [5, 71] and calibration [229]. Such ideas have been explored

within the problem of odour localization, by devising naive fluid models and search

algorithms [119]; pre-computing dispersion maps using computational fluid dynamics

and probabilistically weighting them at test time [191]; updating Gaussian analytical

model using evolutionary strategies [131]; using matrix of static sensors [150] but so far

haven’t been scaled to realistic outdoor environments, where usually limited samples

are available.

In this chapter, we utilise a reasonably accurate simulation of the phenomenon [205]

but exploit simplifications inherent to the problem, such as that the dispersion process

can be modelled on the 2-d plane 1 along which the point measurements are also being

taken. Moreover, the process of dispersion is shift invariant [50], so that a single large

simulation can be performed online, from which the flow patterns for different locations

can be easily computed.

Active and adaptive measurements Specific problems such as the localization of

gas sources have been approached using a variety of different algorithmic means. Bio-

inspired approaches have been proposed devising heuristics to follow the wind gradient

towards the source [214, 98]. In practice, such heuristics depend on the presence of

specific environmental conditions, including constant wind speeds across the field of
1We observe that our approach is invariant to some degree of (small) noise, i.e., the situation of

plain fields and gently rolling hills. Many realistic applications are indeed sited in such terrain, e.g., a
petroleum refinery in the periphery of which one might wish to perform emissions monitoring.
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interest and the UAV being placed within the path of the gas. The source localization

estimation has also been addressed using Bayesian methods, using particle filters in

outdoor environment [164, 128]; Infotaxis which aim to maximize information gain

by reducing the entropy [225]. Gaussian Markov random fields have also been used

to address the problem of obstacles in indoor scenarios [151]. Another approach is to

formulate the problem as one of regression from sparse measurements. Representative

examples of this approach include [203], who use Gaussian process mixtures, and [132].

Kalman filter based estimation algorithms also work similarly [28]. A weakness of these

methods has been that they do not explicitly consider the structure of the phenomenon

in terms of a source and dispersion through wind flows, although refinements of the

above procedures do indirectly account for these effects, e.g., [185, 162, 10].

Another aspect of active sensing is the method for collecting samples so as to

maximise a notion of information gain. While the underlying exploration-exploitation

tradeoffs can be posed formally in decision theoretic terms, most practical techniques

tend to be myopic in their operation. Gaussian processes [124, 167] and the Kernel

DM+V/W algorithm [162] address this question. One could also formulate this as opti-

mal design of sequential experiments [93]. However, this requires access to analytically

defined dynamics models which may be hard to construct for the specific scenario at

hand. Notably, source term estimation was recently addressed with Bayesian estimation

implemented using sequential Monte Carlo [96]. By using parameterized Gaussian

plume dispersion model recursive Bayesian updates can be performed accounting for

uncertainty in wind, dispersion, etc. This was additionally implemented on a UAV

[97], performing outdoor localization of gas leaks using predefined flying pattern and

ground station for performing computations. We formulate active sensing with a fluid

simulation in the loop and devise an efficient algorithm for simulation alignment.

3.3 One-shot fluid simulation for localization of gas

leaks

We localize the source of a leaking gas based on a discrete set of measurements of gas

concentrations, wind speed and wind direction. We make the following assumptions:

1) there is a single source of gas within the domain of interest; 2) the ground plane is

relatively flat; 3) gas and wind measurements are made on a plane parallel to the ground,

and above the source of leakage; 4) wind flow is time-varying but spatially constant
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Figure 3.2: Overview We locate the source of the leak by comparing the output of our

physically-based model, g̃i, with measurements at corresponding locations gi. Rather

than running multiple simulations with different values of l, we run one larger (4×
domain) simulation and read multiple values from appropriate relative locations. We

assume that w̃ is only a function of time (spatially invariant), and so simulation output is

spatially shift-invariant. Although the simulation output is a 3D gas concentration field,

we visualize the spatial distribution (blurry red splats) at a slice in time.

within the domain (i.e., obstacle-free domain, not large enough for local variation to be

significant).

Problem formulation We define a spatio-temporal domain S×T over which fields

of interest, such as gas concentration and wind flow, are defined. Without loss of

generalization, we define S ≡ [0,1]× [0,1] and T ≡ [0,1]. We use a UAV to measure

gas concentrations g : S×T → R and wind (speed and 2D direction) w : S×T → R2

over this field. The sequence of measurement points are si ∈ S and ti ∈ T . We abbreviate

measurements g(si, ti) and w(si, ti) as gi and wi respectively (abbreviated in a shorter

form in eq.1.1). These measurements are dependent on the location of the source of

the gas l ∈ S and hidden parameters θ, such as properties of the gas, which we assume

remain fixed throughout an experiment.

We infer the most likely location of the source using a 2D Eulerian fluid simulator

as our model. The simulator can be seen as a mapping from l to an approximate gas

concentration field given the hidden parameters θ and a dense wind field. We rewrite

this as a mapping from leak locations and spatio-temporal sites to gas concentrations

g̃ : S × S × T → R, given θ and w̃. Here w̃ : T → R2 is the spatially constant but

temporally dense wind field reconstructed from sparse spartio-temporal measurements

w taken by the UAV. The gas concentration predicted by the model at si and ti (where



40 Chapter 3. Active Localization of Gas Leaks using Fluid Simulation

measurements were taken) are abbreviated as g̃i ≡ g̃(l,si, ti|θ, w̃) (note the slight change

in notation with regards to eq.1.2, where g̃i is marked as F̃). Our goal is to find a

location l∗ where measurements agree best with model predictions, i.e.,

l∗ ≡ argmin
l∈S

k

∑
i=0

d(gi, g̃i) =

argmin
l∈S

k

∑
i=0

d (g(si, ti), g̃(l,si, ti|θ, w̃)) (3.1)

where d(., .) is an appropriate distance metric and k is the number of measurements

taken by the UAV. fig. 3.2a summarises our notation.

One-shot Grid Search (OGS) The optimization in Eq. 3.1 can be performed naı̈vely

by computing the objective function for many values of l, obtained by densely sampling

S using a regular grid of m× n samples, and selecting the location l∗ that yields the

minimum value. This approach would be inefficient since it requires mn simulations to

be performed. Our key observation is that the model is shift invariant if the parameters

(θ and w̃) are spatially stationary. Concentrations g̃ produced by mn simulations with

different source locations are identical up to a translation:

g̃(l +∆l,si, ti|θ, w̃) = g̃(l,si +∆l, ti|θ, w̃)

∀ (l +∆l) ∈ S, (si +∆l) ∈ S. (3.2)

fig. 3.2b illustrates the central idea. In addition, if we use an Eulerian simulator, a single

run of the simulator g̃ with a source located at l∗0 can be evaluated at several (si +∆l, ti)

cheaply. Rather than repeating the simulation with different values of l∗k , we run the

simulator once with l∗0 ≡ (0,0) and read several values of the gas concentration field

Mi j ≡ g̃(l∗0 ,si +∆l j, ti, |θ, w̃), j = 1, · · · ,mn. We construct the entire k×mn matrix M
using only one simulation. Each column of M contains g̃i corresponding to a source

location. We solve the optimization problem in Eq. 3.1 by identifying p as follows:

l∗ = ∆lp where p = argmin
j∈{1,··· ,mn}

k

∑
i=0

d
(
gi,Mi j

)
. (3.3)

Since this OGS approach requires the shifted source (and samples) to be within the

domain, we run the simulation on a larger domain S ≡ [−1,1]× [−1,1], always place

the source at the origin and adjust the relative locations read appropriately (see fig. 3.2b).

Thus, rather than running mn simulations, we run one simulation with four times as

many Eulerian grid cells. We define q as the vector of distances of each column of M to

gi and use this to derive the likelihood for different source locations on a grid.
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Wind estimation The above formulated approach relies on having access to wind

estimates w. In order to acquire such measurements on a UAV, we use the pitch, yaw and

rotation provided by the IMU which through a series of transformations can estimate

the current wind [162, 163]. The rationale is that the wind speed and direction are

directly related (through the transformation implied by a flight dynamics model) to the

control signal that must be applied within the UAV, when hovering in place. Depending

on the direction of the wind, the UAV will lean in a different way; the stronger the wind,

the more it will lean. Using this approach the direction of the wind can be directly

estimated, however the inclination angle of the UAV with respect to the ground has to

be calibrated with respect to the strength of the wind speed. For calibration we use an

off-the-shelf wind simulator provided with the commercial UAV we use. More precise

ways of generating the reference wind fields, e.g., in a wind tunnel, could also be used

[162]. Importantly, we show that our proposed method is robust to imprecise wind

speed measurements.

Fluid simulator Another requirement for our method is having access to a simulator

oracle g̃. There are many ways to express a physical model of fluids, but we opt to use

a stable Navier-Stokes solver due to its efficiency and ease of implementation [205].

The solver is realized by dividing the space into voxels and iteratively updating the

velocity and density. The differential equation for solving for the density is linear with

respect to the density term and thus easier to solve. For solving for the velocity a

semi-Lagrangian technique is used, producing stable result like the density solver2. The

simulator depends on different parameters - we assume that we have prior knowledge of

the diffusion properties of the gas, accurate wind direction and approximate wind speed

can be estimated as described above, and we normalize the gas readings to be invariant

of the quantity of gas released. The rest of the parameters, number of cells (fidelity of

the simulation), number of wind locations, simulation timestep, solver iterations, tend

to be a trade-off between the accuracy and speed of the simulation.

3.4 Experiments

In this section, we aim to verify our main hypothesis - that using fluid simulation as a

model during online gas localization task with a UAV leads to lower error compared

to traditional approaches. For the purpose we devise a set of experiments, with the

2An online demo of the simulator and its behaviour can be found at https://gas-drone-
simulation.neocities.org

https://gas-drone-simulation.neocities.org
https://gas-drone-simulation.neocities.org
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main matric of localization error of the prediction versus the actual localization of the

leakage. First, we perform a series of offline experiments, by collecting data with a UAV
3 flying at predefined waypoints. We compare our method to existing gas localization

and mapping baselines found in literature. We then benchmark our optimization method

against standard approaches for solving the proposed simulation alignment problem.

Finally, we conduct sensitivity analysis of the different hyperparameters of the fluid

simulation used.

Secondly, we carry out a set of online experiments, dynamically selecting new

waypoints as part of the optimization procedure. We use readings from a noisy simulator

as data to evaluate the performance of our method against other approaches. Finally, we

perform active sensing experiments on a UAV using our algorithm.

3.4.1 Offline algorithm

In order to evaluate the proposed approach we conducted a total of 13 flights. Each

flight, taking approximately 10 minutes, visits 16 waypoints. We use a DJI M100 UAV,

integrated with a TX2 for data logging and processing and CozIR-A CO2 sensor. As

a gas source we use a compressed CO2 cylinder. The UAV flies at a constant height

of 4 m, covering an area of 80 m × 45 m, with the bottle being placed at an unknown

location somewhere within that area (see fig. 3.1). As we do not have access to the

ground truth gas distribution, we evaluate our algorithm using localization error – the

distance between the location of the maximum gas concentration and the true location

of the cylinder (determined through GPS measurement).

Comparison with related work In the first set of experiments, we compare our

algorithm against standard approaches from the literature, such as one using Gaussian

Process regression [203] with a Radial Basis Function kernel, variance 15 and length-

scale 7, as well as the TD Kernel DM+V/W algorithm [185], with cell size 0.2, kernel

size 10, evaluation radius 10, time scale 1 and wind scale 0.001 (we perform grid search

to find optimal parameters for the baselines). The collected air samples are used to fit a

2-d concentration map, with DM+V/W additionally using wind samples for reshaping

the kernel function and scaling the readings based on the timestep taken. As previous

approaches do not explicitly model the source location, we use the peak of the posterior

as a proxy for this quantity [162]. We compare this against the computed l∗ from OGS

(Sim-Likelihood). For the simulation parameters, we use gas release 25, simulation

3We do not model the turbulent effect of the propellers - using a smoke flare, we visually inspected
the effect of the propellers and found that it has little impact on the larger scale gas dynamics.
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fidelity 1/1 and diffusion 1e−4 (see fig. 3.5). We show examples of the posterior mean

(GP and DM+VW) and likelihood of the source of the gas (ours), together with the

overall error between the methods in fig. 3.3.
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Figure 3.3: Predictions (a) Posterior mean/variance of gas concentrations obtained

using state of the art methods (column 1 [203] and column 2 [185]) against the likelihood

computed using our method (column 3). Rows represent results of different experiments.

The source location was the same for the first two experiments, but environmental

conditions (wind) were different. (b) Overall error across all experiments.

BO vs one-shot grid search A standard approach to solving the optimization

problem in Eq. 3.1 would be to treat the objective function as a random function with

a Gaussian process (GP) prior over it. Then, based on each measurement, the prior

could be updated to form a posterior distribution over the objective function. Based on

this posterior, an acquisition function can be constructed to determine the next sample

location. We perform experiments using this approach, in order to then compare the

results against our proposed optimization procedure. We start with a GP prior using the

Matern52 kernel, sampling from it twice to obtain a first (random) estimate l∗0 . Then, we

estimate d(gi, g̃(l∗0 ,si, ti|θ, w̃)) and use it to update the posterior (which only contains two

samples). Based on this posterior, and using an acquisition function (Lower Confidence

Bound, with alpha parameters 0.5, 1, 2 and 3, Expected Maximization or Maximum

Probability of Improvement), we determine the next sampled source location l∗1 . We

then continue sampling for new leak locations, as prescribed by the corresponding

acquisition function. For each of these locations, we run simulations and update the GP

posterior. We evaluate these results from BO against the corresponding values for OGS,
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measuring running times and precision for the two optimization methods over a limited

number of location samples l as shown in fig. 3.4.
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Figure 3.4: One-shot grid search (OGS) vs Bayesian Optimization (BO) (a) Compute

time Speed up in the computational time for different resolution of the simulations. (b)

Localization error We use all the experimental data collected from Sec. 3.4.1 to evaluate

the localization error of different acquisition functions of BO with OGS.

Sensitivity to inaccuracy in parameters In order to determine the robustness of our

approach to errors in the setup of the simulations, we perform a sensitivity analysis. We

analyze the effect of different parameters on localization error by artificially perturbing

the underlying values. We study the effects of inaccuracies in the quantity of gas

released, diffusion coefficient, wind speed, wind direction and simulation grid resolution.

We start with default values for the parameters (see caption of fig. 3.5), and then assess

localization error when each parameter is individually modified to one of six different

values. The resulting errors and the perturbed values of each parameter are shown in

fig. 3.5.

3.4.2 Online algorithm

Noisy simulation We use sparse noisy readings taken every 20 seconds from a simu-

lator (80×80 cells) with an arbitrary location for the gas source. We assume that the

hyperparameters of the simulation are known and that wind flow is spatially constant,

and we add up to 10% multiplicative noise to the simulated readings. We experiment

with multiple start locations, both on and off the path of the gas as shown in fig. 3.6.

We use the following parameters - gas release:20, diffusion:6e−4, wind speed:25 (sim-

ulator metric), wind direction:π±π/2 (primarily coming from the right, but uniformly

changing its direction every 30 seconds).
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Figure 3.5: Sensitivity and effect of the hyperparameters (a) Sensitivity Mean and

variance localization error for all offline experiments for different parameters’ variations.

We start with the default parameters (gas release:50, diffusion:0.0001, wind speed:1x,

wind direction:0, simulation fidelity:1 cell/1m2) and individually vary each of them. (b)

Effect Visualization of different values of the hyperparameters in a 160×160 cell simu-

lation. We use the wind flow from one of the experiments from Sec. 3.4.1 to drive the

simulation, hence some of the observed dynamics.
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Figure 3.6: Active sensing using synthetic data (a) Noisy simulator We use noisy

readings from our model to evaluate the proposed approach – the source is placed

in the middle-right, with the wind blowing East-West. (b) Path discovery Successive

locations suggested during the discovery of one path are shown with red circles along

with initialization locations (yellow circles). (c) Different initialization The convergence

of the algorithm is illustrated for eight different starting locations.
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Comparison with related work Using the noisy simulator, we also evaluate the

convergence rate of different algorithms as shown in fig.3.7. We perform three sets

of experiments - no wind in the simulation, constant wind and variable wind. An

acquisition function is used for each of the algorithms to select each consecutive

measurement point. For GP and DM+V/W we use Lower Confidence Bound with alpha

parameter 3 and for our approach we use the suggested likely region. In addition to the

baseline regression approaches, we also generate example trajectories for different wind

conditions using Infotaxis with parametric plume model and parameters as in [225] as

shown in fig. 3.8.
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Figure 3.7: Convergence of active sensing Convergence rate of different algorithms

for different wind conditions - no wind (a), constant wind (b) and variable wind (c). In the

experiments a noisy simulator was used.

Real experiments We perform three real-world active sensing experiments with

the setup described in Sec. 3.4.1 (Supplementary material). The domain is 40m×40m,

and we use 1 grid cell per 4 m2 in simulation. We perform optimization using OGS,

for which the simulation and comparison calculations are performed within an on-

board processor. After each taken reading (gas and wind), the UAV updates its beliefs

about the likelihood of the source, saves the current state of the optimization and flies

to the suggested by the optimization most likely source location l∗- repeating until

the optimization procedure converges to the same location. In our experiments, we

had strong winds from the Southwesterly direction in the first two experiments and

weak varying winds in the third experiment. The estimated likelihood and waypoints
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discovered, are shown in fig. 3.9.
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Figure 3.8: Trajectories Generated trajectories for the proposed approach and ‘Infotaxis’

with parametric plume model[225]. Odour detections with gas flow (for Infotaxis) and

discovered waypoints with source likelihood map (for ours) are shown.

3.5 Interpretation of results and discussion

More accurate than state-of-the-art. In practice, alternate methods based on Gaussian

process regression and the DM+V/W algorithm provide similar results. DM+V/W

performs somewhat better, as it includes reshaping of the smoothing kernel based on

wind information. As we show in fig. 3.3, these methods often predict the highest

mean to be away from the true location, caused by the wind moving the released gas.

Although DM+V/W indirectly accounts for those effects via wind kernel reshaping

and time scaling, convergence is slower. By using wind measurements in simulation,

we are able to capture these dynamics, allowing our proposed approach to achieve

lower localization error (< 20m) than GP (45m) and DM+V/W (< 40m). Likewise, our

approach achieved better performance than with standard BO approaches to compute the

minimum (35m). Using fluid simulation yields a higher computational cost compared

to traditional approaches. However, we show that our algorithm is fast (up to 20× faster

than BO) and can be implemented within a commercial on-board computer.

Fidelity and sensitivity. Our algorithm is robust to inaccurate parameters as seen

in fig. 3.5. The extent of released gas did not have any impact on localization, as

both simulated and real-world readings are normalized. However, it is sensitive to

the diffusion coefficient (green curve) used in simulation, as well as to errors in wind

estimation. We found that we can tolerate 2× inaccuracy in wind speed and an offset of

π/12 in direction from the calibrated mappings. We use a standard approach [162, 163]
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Figure 3.9: Active sensing by UAV The waypoints visited by the UAV. The fluid simulator

and OGS are executed at each step, as described in the text. We initialize the algorithm

with two predefined waypoints (yellow circles), after which the UAV automatically seeks

the source using our online algorithm for active sensing. Our algorithm converges in 5, 7

and 4 iterations, in those examples.



3.6. Conclusion 49

to estimate wind, which lies within the required tolerances. We observed, curiously,

that a grid resolution of 1 cell per 16m2 yields best results.

Active sensing. Our exploitation strategy consistently locates the source using very

few samples, to similar accuracy as the offline algorithm. At each step, we update our

uncertainty regarding possible locations. As with approaches that utilize gradient-search,

we are able to follow the path of wind and gas readings. In contrast to those methods,

we can also locate the source if we are not on the path of the gas. Importantly, we find

that variable wind tends to be informative leading to faster convergence, unlike in the

case of competing methods where this is a limiting factor. As we normalize the readings,

we indirectly account for different rates of gas release. Thus even when on the path of

the gas flow, the algorithm explores the neighbourhood of the path. Similarly, when not

on the path of the gas, suggested locations by the algorithm sometimes oscillate before

convergence. Having a stronger prior over the rate of gas release could further speed up

this optimization process.

Source of error, limitations and future work. Although our method improves on

state of the art in gas localization, the error is still about 15m. We identify two potential

sources for this residual error. Firstly, our model is based on 2D space S while gas

diffusion in the real world happens in 3 dimensions. Thus, even though our algorithm

finds the highest density of the gas on the plane of flight, it may not be exactly above the

nozzle releasing the gas. A second source of error is that we model the wind as spatially

invariant, which is a coarse approximation for increasingly larger domains. It would be

beneficial to extend this work by using simulations supporting obstacles and multiple

sources [150]. This will require development of extensions of our method that are able

to encapsulate the variability of the more complex simulations from limited samples,

while preserving fast inference at run-time. An interesting avenue of research would be

the inclusion of multiple UAVs within the localization process, e.g. by decoupling the

here presented approach and the optimization problem of optimal trajectories for the

individual drones.

3.6 Conclusion

This chapter looks at sampling approach for simulation-based inference - exploting

domain specific knowledge to reduce the simulation calls needed to just one. This is

explored within the example task of gas localization of a gas leakage with a UAV.

We formulate gas-leak localization as an optimization problem, minimizing the
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discrepancy between simulated gas flow and point-wise measurements of leaking gas.

We propose a practical optimization algorithm that can be used offline as well as online

for active sensing. We evaluate our algorithm by implementing it on a UAV equipped

with sensors to detect CO2. Our algorithm is able to cope with dynamically varying

wind, and efficiently localizes the source of leaks even if the UAV is not initialized

on the path of the gas. We show through experiments that our proposed approach

outperforms baselines from the literature in its ability to minimize localization error.

This chapter focuses on one way of improving the speed of a sampling procedure -

decreasing the number of samples. This can be done by domain specific assumptions,

but also systematic analysis of the importance of different factors of variation, simulation

fidelity requirements, alterantive sampling procedures, etc. The next chapter further

develops the idea of efficient sampling for simulation-based inference by additionally

also incorporating reduced simulation representation.



Chapter 4

RoboSuction: Safe and Efficient

Suction under Partial Observations

In the previous chapter, we demonstrated how we can use fluid simulation as a model for

the practical task of gas localization with a UAV. We exploit experimentally observed

properties of outdoor wind dynamics - much stronger spatial over temporal speed and

direction correlation over small fields and time windows. Focusing only on temporal

wind variation can significantly simplify the parameter inference process to a single

simulation call for all possible source locations. We use a simple myopic strategy of

selecting the position with the highest likelihood of location of the source.

This chapter takes a fundamentally similar approach to exploiting problem-specific

experimental observations to use fluid simulation as a model. The problem of interest is

suction of liquid over an unknown surface with a robotic arm. Assuming that there is

no active source of leakage, the simulation model can be constructed as one of contour

tree with piecewise approximation functions for the height-volume levels. We use this

approximation together with a model estimating the surface to optimize over the entirety

of the trajectory.

4.1 Introduction

Manipulation of fluids by robotics platforms is desirable in many practical applica-

tions but challenging due to different challenges associated with acquiring data and

developing appropriate representations. This is further complicated in uncontrolled

environments, due to the associated uncertainty - both because of different safety and

dynamics contraints that can be present, but also for planning optimal actions. While

51



52 Chapter 4. RoboSuction: Safe and Efficient Suction under Partial Observations

certain scenarios can be addressed, where the state and phenomena can be efficiently

represented, it is often unclear how to perform planning of non-linear phenomena and

limited observations.

Safe autonomous suction is desirable for various medical applications, such as

cleaning up excess blood during open surgery. Different safety constraints are present

and must be respected, such as not touching the underlying surface. Moreover, planning

can be challenging due to liquid dynamics and occlusions, making it difficult to estimate

the unknown surface. Some prior over the type can often be assumed, but inference of

the exact surface is needed for safe and efficient cleaning of the remaining liquid.

Videos of liquid manipulation often contain rich information about the observed

phenomena. However, it is challenging to acquire a representation of interest due to the

challenges of obtaining ground truth data on real robotics platforms - accidental spillage,

resetting the environment when acquiring data, etc. Simulating fluids is challenging

in its regard, especially when coupled with rigid and soft objects. Challenges include

the computational cost of the simulations and the approximate nature of the computed

solution, both for appearance and dynamics.

This chapter proposes modelling the fluid phenomena as a contour tree with piece-

wise height-volume approximation functions. To address the partial observations, we

model the underlying surface as a GP. This reduced representation and model of the

surface allows for formulating the problem as one of shortest path computation. Time

to clean individual nodes of the tree can be estimated by uncertainty propagation from

the GP surface model. Those individual costs can then be optimised as a set of standard

Travelling Salesman Problem (TSP).

4.2 Related work

4.2.1 Robot manipulating liquids

Manipulation of fluids by robotic systems has been of particular interest, with recent

developments in modelling fluids with particle-based simulations [193], incorporating

differentiable fluid dynamics within neural networks [198], and visual detection of

liquids [192, 183, 194]. The majority of research has been dedicated to solving the

pouring tasks by calibrating with a particle-based simulation by pouring [136] or stirring

[84]; combining visual features within RL [58] and MPC frameworks [196, 195]; or

purely control approaches [112, 36]. In addition to pouring, the question of minimizing
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Figure 4.1: Experimental setup. We are interested in cleaning up liquid over unknown

surfaces while avoiding contact in the shortest time possible. The robot has access to

measurements only from the top, the transparent case is constructed to visualize the

predictions as experiments are unrolled.

sloshing while handling liquids has also been explored [152]. While particle-based

simulations have seen increased recent interest, more compact representations of fluid

dynamics are possible, such as based on reeb graphs [138], that allow for more efficient

computation where this is needed [43, 212, 137]. In this work, we explore the question

of safe robot suction of fluids under limited observations, which has been of interest in

the domain of robot surgery.

4.2.2 Planning under uncertainty

Planning methods include heuristics, creating objects shadows, computing complete

policies, Monte Carlo methods, different approximations techniques, and provably safe

methods [17, 73, 122]. A common way to reason about uncertainty is to use Gaussian

Processes (GPs), where arbitrarily strong prior over the observed phenomena can be

enforced by using an appropriate kernel and its parameters. As uncertainty estimates are
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readily available within a GP, they have widely been used within control and planning

frameworks [178, 177]. Moreover, safety has also been viewed in problems where a GP

is used as a likelihood function with safety constraints that must be satisfied [210, 37]

and its applicability to problems like quadrotors control [26]. While using GP for

nonstationary processes can be challenging [233], different approximations have been

proposed to reduce the computational time [106] [107]. By abstracting details, planning

can often be solved as a travelling salesman problem (TSP) [165] [217]. In this work

we use GP to model the underlying uncertainty, which with the addition of contour trees

with volume information as a simulation model, can pose the problem of one of a TSP.

4.2.3 Robot surgery and suction

Robotic-assisted systems have been developed to enable and enhance surgeons’ ca-

pabilities to perform complex surgeries [80, 213, 55]. With the wider deployment of

robotics platforms in the operating theaters, recent work has explored whether different

procedures can be automated, including cutting while distinguishing between normal

and benign tissue by solving a proxy task of peeling a grapefruit [208]. The first and

critical requirement for such systems in safety for the patient [95]. Even for more

straightforward tasks such as removing overflowing blood during open surgery, it is

essential not to damage exposed organs and tissue. The two main complexities that

need to be addressed are the dynamics associated with the fluids and sources of leakage;

the uncertainty coming from limited observations. Medical suction has recently been

explored, with most of the work focusing on detecting where the fluid is and partially

accounting for the dynamics by tracking the flow [186, 94]. In this work, we explore

the complementary question of safety, particularly how we can execute safe actions

while planning for optimal trajectories based on the current observations.

4.3 Problem Formulation

We consider the problem of cleaning liquid over unknown height function f : S → R,

where without loss of generality S ≡ [0,1]. We start by describing eq.1.5, where some

details are omitted, in more details. We have observations over the liquid level densely

sampled over the domain S at each time point t, which we mark as lt : S → R, where at

t0 that liquid level is constant over the entire domain S. As suction is performed, part of

the underlying surface is unveiled, such that lt ≈ f for some part of the domain S, and



4.4. Methodology 55

access to a limited number of noisy measurements are available yi = f (xi)+ ε , where

xi ∈ S. We are interested in cleaning all the liquid, such that lT ≈ f over the entirety of

the domain S, in the shortest time T possible, while maintaining a safe distance d from

the surface f .

We make the following assumptions:

1) The function has the same smoothness properties throughout its domain

2) An initial safe action is performed, exposing some noisy measurements

3) There is no leakage of liquid within the surface

4.4 Methodology

A naive solution is to use a no-model reactive approach, such as cleaning each cluster

of liquid one by one by maintaining the center position of the nearest cluster. However,

this has no safety guarantees for avoiding contact with the underlying surface. Different

myopic strategies can be used, such as moving to nearby places to the current position

of a defined safe region. Efficiently cleaning the liquid requires reasoning over the

entirety of the trajectory is needed. Under the above presented assumptions, mainly

the stationarity of the fluid and smooth underlying surface, this can be posed as a TSP

between the surface’s local minima. However, when safety constraints are present one

needs to reason over distribution of potential surfaces and the safety bound evolution

as actions are taken. In the following subsections, we describe how we can estimate

the surface and define a safe region, and formulate the search problem a set of TSP

while taking safety into account. We first describe how eq.1.6 can be implemented, with

Sec.4.4.1 describing surface estimation and the safety bound and Sec.4.4.2 describing

the reduced simulation representation and incorporating volume information. Finally,

we describe eq.1.7 - how based on this representation an optimal action can be computed

- in Sec.4.4.3. An overview of the proposed approach can be seen in fig.4.2.

4.4.1 Surface estimation and safety bound

We model the surface as a Gaussian Processes f̃ (·) ∼ GP(µ(·),kθ(·, ·)),with a mean

function µ : S → R and kernel function kθ : S× S → R . Different choices of kernel

kθ are possible, such as the Squared Exponential (SE), which parameters θ can be

optimised with standard methods such as Bayesian Optimization. Around each point

x ∈ S standard confidence bound can be computed
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hsa f e(·) := µ(·)+ασ(·)+β (4.1)

, where α is set based on the required safety threshold with an optional noise buffer

β. This defines the safety region where suction can be performed safely. A schematic

overview of the surface estimation and safety bound can be seen in fig.4.2, a).

(a) Surface estimation and safety bound from

observed points

(b) Contour tree with volume information from

the surface estimation

(c) Trajectories for the individual components of

the graph

(d) Best trajectory from the

individual components

Figure 4.2: Overview of the method. We are interested in cleaning all safely reachable

liquid in the shortest time possible. (a) Given the current uncovered surface points and

the current liquid level, we fit a GP, compute a safety bound, and (b) construct a contour

tree with volume information for the different segments. (c) Next, we individually compute

the time required to clean the different segments by progressively selecting the point

with the highest suction rate and updating the safety bound. (d) Finally, we solve a TSP

problem with the individual segments and the distance between them. The goal position

is executed, and then the process is repeated.
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4.4.2 Approximate suction model

We construct a contour tree T = ⟨N,E⟩ based on the local extrema of the estimate of the

surface (e.g., µ(·)), as an efficient representation of the current estimate of the underlying

function, as seen in fig.4.2, b). Each node has the form n= {xmin,xmax,ymin,ymax, l,v,r,P, f f orw, finv},

where l is the current liquid height, v is the current volume, r is the rate of suction,

P= {px, py},xmin,xmax ∈ S , and for each px, py: xmin < px < xmax;ymin < py < ymax;py =

µ(px). Additionally, we construct a piecewise function:

f f orw(py) =
∫

−µ(px)d px,µ(px)< py (4.2)

approximating the relation liquid height to volume underneath, and the piecewise

function finv = f−1
f orw for the vise versa. Given the above defined approximation, we

define an update function:

vt+1, lt+1 = f (px, py,vt , lt) (4.3)

, defined as following:

f (px, py,v, l) =


v, l py > l

v− r, finv(v− r) v− f f orw(py)> r

v− f f orw(py), finv(v− f f orw(py)) v− f f orw(py)≤ r

 (4.4)

This allows for an efficient simulation of the suction phenomena, by using the tree

for selecting the appropriate note for suction and the piecewise functions for computing

the new liquid levels after a given action. Additionally, we construct a function for the

current observations:

g(P, l) =
{

{px,py} px, py ∈ P, py ≤ l
}

(4.5)

Within the next section, we unify and simplify the notation to Pt+1, lt+1,vt+1 =

F(px, py,Pt , lt), that encapsulates the contour tree creation, with the node construction,

how nodes are update and how the current point observations are constructed - all

defined above. We note lt as the complete liquid level over all nodes, Pt as points

densely sampled from µ(·) and Pt+1as the observed points from the updated liquid level

lt+1. Within the next subsection we adopt this notation.
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4.4.3 Planning under uncertainty

Planning over the entirety of the trajectory is challenging, as one needs to reason

about the probability of each possible surface given the current observations. This is

further complicated when planning with safety constraints, as the probability need to be

updated at each timestep, as to update the safe region and potential actions. The safety

bound hsa f e defines the safe actions space, where suction can be performmed with low

probability of approaching the underlying surface. We discretize this space, by only

considering the actions at the local minimas of this safety bound. Alternatively, the

complete trajectory for cleaning all liquid can be considered, by propagating uncertainty

from the contour tree and GP as following:

1) Select action px, py from hsa f e

2) Progress the model Pt+1, lt+1,vt+1 = F(px, py,Pt , lt)

3) Recompute hsa f e

Even if we take a single surface estimation at each planning step (e.g., the mean of

the GP), and we have just 2 possible actions at each steps (e.g., local minima of hsa f e),

there are still 2n possible trajectories, where n is the number of steps. Alternatively, the

optimization problem can be split as following:

1) Estimate the time needed to clean each individual node - e.g., always taking the

next quickest action.

2) Estimate the time needed to traverse each node - once time is estimated for each

individual node, we solve a set of standard TSPs (as the start point for cleaning a node

may vary) for traversing the nodes in order.

The described procedure can be seen in fig.4.2, c) and d).

Finally, we physically take the first action of the thus estimated trajectory with the

robot arm, and replan based on the new observations.

4.5 Experiments

We perform a set of simulated experiments with procedurally generated surfaces. As a

simulation model we use the described procedure in subsec.4.4.2. Within all experiments

we assume the surface to be with the same smoothness properties throughout its domain,

e.g., generated by a Gaussian Processes with a stationary squared exponential kernel,

but don’t assume to know its properties, e.g., horizontal and vertical lengthscale. Finally,

to verify the applicability of the proposed method we perform an experiment on a
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plasticine phantom. To evaluate different approaches we use two different metrics,

distance to surface (safety) and time to clean all liquid (performance).

(a) Horizontal lengthscale 0.08,

vertical lengthscale 0.02

(b) Horizontal lengthscale 0.08,

vertical lengthscale 0.04

(c) Horizontal lengthscale 0.08,

vertical lengthscale 0.06

(d) Horizontal lengthscale 0.04,

vertical lengthscale 0.02

(e) Horizontal lengthscale 0.04,

vertical lengthscale 0.04

(f) Horizontal lengthscale 0.04,

vertical lengthscale 0.06

Figure 4.3: GP surfaces. The surfaces used for the experiments were generated from a

Gaussian Process with a squared exponential kernel and varying hyperparameters.

4.5.1 Datasets

Two simulated datasets are generated. In the first, different surfaces are sampled from a

GP with different hyperparameters. In the second, the GPs are additionally conditioned

such that the surface have specific properties, e.g. certain number of initially visible

peaks.

4.5.1.1 Vanilla GP surfaces

We generate a set of surfaces by sampling a Gaussian Process with a squared exponential

kernel and different hyperparameters. We constrain the generated samples with fixed

start and end points of the same height, with all other surface points below that height.

The fixed points were implemented by fitting the GP model through them, the height

constraint was implemented by rejecting any samples that don’t meet this requirement.
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We use the following hyperparameters: horizontal lenghtscale: [0.08,0.04] and vertical

lengthscale: [0.6,0.3,0.2]. We generate a total of 50 surfaces per each type of parameter

combination, so a total of 2x3x50 = 300 surfaces. The thus generated GP surface

samples can be seen in fig. 4.3.

Figure 4.4: Time to clean all liquid - GP surfaces - surfaces which are just samples

from a GP with different hyperparameters

4.5.1.2 Custom surfaces

To further quantify the performance of different methods, we generate a second dataset

with more structured features. We vary the number of exploratory ’peaks’ that appear

after the initial predefined action. We additionally constrain all the surfaces to have a

single considerably deeper well, compared to all the others. Both of those constraints

were similarly implemented, by fitting the GP samples through a set of defined points

and rejecting samples not fullfuling the given requirements. The final set of param-

eters are vertical lengthscale: 0.2 throughout all experiments, horizontal lenghtscale:

[0.08,0.04], number of exploratory peaks: [0,1,2,3] and number of deep wells: 1 for

all experiments. Again we generate 50 surfaces per all combination of conditions for a

total of 1x2x4x1x50 = 400. A set of the generated surfaces can be seen in fig.4.5.
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(a) ”Smooth”, 1 deep well,

1 exploratory peak

(b) ”Smooth”, 1 deep well,

2 exploratory peaks

(c) ”Smooth”, 1 deep well,

4 exploratory peaks

(d) ”Noisy”, 1 deep well,

1 exploratory peak

(e) ”Noisy”, 1 deep well,

2 exploratory peaks

(f) ”Noisy”, 1 deep well,

4 exploratory peaks

Figure 4.5: Custom surfaces.

4.5.2 Baselines

We employ three set of baselines. As a lower bound of time needed to clean all liquid

we compute a shortest path between all the local minima of each surface (Oracle).

We implement no model baseline that select the next action by tracking the center

of the closest liquid ’pond’ - as each ’pond’ is cleared, the closest nearby is further

selected (Naive). Finally, we implement a myopic baseline combining subsec.4.4.2 and

subsec.4.4.2, but without the full planning described in subsec.4.4.3 (GP+Tree). In the

full proposed solution, we include the proposed planning procedure (GP+Tree+TSP).

4.5.3 Avoiding contact

By design the Oracle baseline maintains a distance from the surface as the surface is

known. We observe that that the Naive baseline in general has minimum impact with

the surface, but as seen in fig.4.7 and fig.4.8 this cannot be guaranteed at all times, e.g.

a peak appearing right in the middle of the currently cleaned pond of liquid. Both the

myopic (GP+Tree) and the full version (GP+Tree+TSP) of the here proposed method

are able to maintain a desired distance from the surface, as the surface is explictily

modeled and estimated based on the observed points and smoothness assumption.
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Figure 4.6: Time to clean single well surfaces. Time to clean surfaces with single

’deep’ well, with variable smoothness (the higher the H parameter, the smoother the

surface) and different number of initial exploratory points (PA) variable smoothness;

variable initial exploratory peaks

(fig.4.7,fig.4.8).

4.5.4 Time to clean all liquid

We note that the Oracle baseline is the fastest, lower bound, method across all experi-

ments. In the first set of experiments, with surfaces generated as GP samples, we the

proposed full solution (GP+Tree+TSP) outperforms both the myopic formulation and

Naive baseline as seen in Fig.4.4 - the proposed solution is on average 4.3% faster than

both myopic and naive baseline. In the second set of experiments, where we generate

surfaces with single deep well and varying initial observed points and smoothness of

the surface, we observe more varying results as seen in Fig.4.6. First of all, in one set of

experiments our method performes the worst - in the case of no initial peak observations

(PA: 0) and very smooth surface (H: 0.08). This goes to illustrate that if we have a

relatively short experiment (the high smoothness of the surface), coupled with very
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Figure 4.7: GP surface samples distances.

limited initial observations (no initial observed peaks), often simple myopic approaches

might be better suited. As the initial observations are increased (H: 0.08, PA:1-3), we

note that the proposed method approaches the performance of the Oracle baseline and

the gap from other baselines increases - −1.4%, 12%, 15% and 15% (vs myopic);

−7%, 11%, 12% and 7% (vs naive). For more complex surface (reduced smoothness
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H:0.04), the main benefit of the proposed method is the overall smooth trajectory, that

outperform the safe myopic approach and are on par or outperform the naive baseline,

with the added benefit of safety. Expectedly for those more complicated surfaces, the

gap with the Oracle baseline also increases. Overall for the complete set of experiments

with dataset the proposed approach is 5.8% (vs naive) and 5.3% (vs myopic) faster.

4.5.5 Robot experiments

Finally, we perform robotics experiments, to compare the myopic and full version of

our model. We construct a transparent enclosure using glass and plastic. Inside it we

shape a smooth surface with plasticine as seen in Fig.4.1. We fill the phantom with juice

and use a medical suction device attached to a gripper to clean all the liquid. Before

starting the experiment the end position of the suction device and initial observed points

are calibrated and normalized, so the predicted goal positions of the model can be

directly used. Throughout the experiments, we assume that we see only the uncovered

points above the liquid level for predictions (e.g., color segmented, top down view),

while the transparent enclosure serves as a visualization of the surface underneath. For

computational and safety reasons we precompute the entire execution trajectory for the

experiment in advance by iteratively uncovering the parts of the real image that would

have been cleaned by the robot. Finally, we execute the generated trajectories on the

robot, with results which can be seen in Fig.4.9.

4.6 Results and Conclusions

In this chapter, we presented a safe long-term planning approach for cleaning liquid from

partial observations. For the purpose we propose a reduced simulation representation

based on contour trees with the inclusion of volume information, in addition to a

modelling the surface as a GP to address the safety constraint of not hitting the surface.

Safety in medical suction. We demonstrate that we can maintain a safe distance

from the surface by computing a standard confidence bound of the GP. We perform

a set of experiments over different types of simulated surfaces, and demonstrate that

naive approaches do indeed violate this constraint, while both of our formulations are

able to avoid contact. Within our experiments we use uniformly smooth surfaces - an

interesting future line of research would be whether similar methodology can be applied

to more heterogenous and realistically looking surfaces by using non-stationary kernels
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Figure 4.8: Custom surface samples distances.
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Figure 4.9: Robotics experiments. Comparison between the proposed approach and

myopic strategy. The proposed method optimizes over the entirety of the trajectory,

resulting in behavious such as leaving the deepest well to be cleaned last.

[168].

Long-term planning with changing state. A central question we address is how

we can generate a trajectory that considers the entirety of the remaining liquid. We

demonstrate that the proposed model outpeforms naive and myopic approaches solving

the task. To further study the limitations of our model, we evaluate on a set of simulated

surfaces with specific features such as number of observed peaks, a single deeper

well, variable smoothness, etc. We show that given at least one exploratory peak, our

method outpeforms other approaches, by generating overall smoother trajectories and

optimizing for leaving the deepest well to be cleaned latest.

Constraints and future work. We perform a robotics experiment where we

model a phantom with a plasticine to show the applicability of our method in real

settings. It would be of interest to extend the proposed methodology to more realistically

looking medical phantoms and the associated challenges of complex surfaces and visual

observations. Furthermore, within our work we assume no active source of liquid,

which again would be of interest as a future extension.



Chapter 5

Vid2Param: Modelling of Dynamics

Parameters from Video

In the previous two chapters, we developed methods for efficient sampling of hand-

crafted reduced simulation representations with the task of parameter inference and long

term planning. In this chapter, we develop a method for learning the inverse mapping

between sensory readings to parameters of interest directly. We apply our method

for parameters inference from video and it’s applicability for robot control, as well as

inversion of ultrafast x-ray scattering data 1.

In this chapter, we focus on tasks with high observational complexity such as videos

as other high dimensional, temporal data. Videos provide a rich source of information,

but it is generally hard to extract dynamical parameters of interest. Inferring those

parameters from a video stream would be beneficial for physical reasoning. Robots

performing tasks in dynamic environments would benefit greatly from understanding the

underlying environment motion, in order to make future predictions and to synthesize

effective control policies that use this inductive bias. Online physical reasoning is

therefore a fundamental requirement for robust autonomous agents. When the dynamics

involves multiple modes (due to contacts or interactions between objects) and sensing

must proceed directly from a rich sensory stream such as video, then traditional methods

for system identification may not be well suited. We propose an approach wherein fast

parameter estimation can be achieved directly from video. We integrate a physically

based dynamics model with a recurrent variational autoencoder, by introducing an

additional loss to enforce desired constraints. The model, which we call Vid2Param, can

1Sec. 5.4.2 is joint work with N. Zotev and A. Kirrander, who had major contributions in providing
the data, describing the experimental setup, and establishing the used metrics. The contribution of this
thesis is applying the proposed methodology to the inversion problem.

67
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be trained entirely in simulation, in an end-to-end manner with domain randomization,

to perform online system identification, and make probabilistic forward predictions of

parameters of interest. This enables the resulting model to encode parameters such as

position, velocity, restitution, air drag and other physical properties of the system. We

illustrate the utility of this in physical experiments wherein a PR2 robot with a velocity

constrained arm must intercept an unknown bouncing ball with partly occluded vision,

by estimating the physical parameters of this ball directly from the video trace after the

ball is released (subsec.5.4.1).

The proposed model can work with different types of temporal data, beyond videos.

To further emphasise the ability of the proposed method to scale to complex dynamics

and observations, we perform experiments on inversion of ultrafast X-ray scattering

detector images. We compare against traditional baseline methods used in literature.

We show that incorporating previous dynamics information leads to better inversion,

partly mitigating the incomplete information in a single detector image (subsec.5.4.2).

5.1 Introduction

There is an ever growing need to perform robotic tasks in partially known environments.

Reasoning about observed dynamics using ubiquitous sensors such as video is therefore

highly desirable for practical robotics. Traditionally, the complexity of this reasoning has

been avoided by investing in fast actuators [74] [159] and using very accurate sensing

[109]. In emerging field applications of robotics, the reliance on such infrastructure may

need to be decreased [85], while the complexity of tasks and environment uncertainty

has increased [65]. As such, there is a need for better physical scene understanding

from low-cost sensors and the ability to make forward predictions of the scene, so as to

enable planning and control.

Recent advances have enabled video prediction conditioned on observations [126]

and reasoning about complex physical phenomena [215]. Video streams provide a rich

source of information, but it is often challenging to acquire the compressed structured

representations of interests. Techniques for system identification, originally developed

for process control domains, are aimed at this problem [133]. There are a number

of different approaches to estimating parameters [102], and sometimes even model

structure [129], from observed data.

Acquiring reduced representations of the environment and performing system identi-

fication have historically been disjointly solved, despite the rich contextual information
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images often contain. This may lead to slower inference or even failure of the optimiza-

tion should the state space model reduction be inaccurate. Yet, solving the problem

jointly brings a set of practical challenges. First, it is difficult to acquire the necessary

training data to cover the possible variations of the task of interest and generalize to

unseen data. Secondly, a model needs to learn to perform probabilistic inference of

parameters of interest and generation from a sequence of images, and capture long-term

dependencies. From a practical robotics perspective, the model needs to be sufficiently

fast to be able to perform system identification on-the-fly, while performing inference

directly from images.

In this chapter, we focus on the case where a robot must perform robust system

identification online, directly from a rich sensory stream such as video (including the

implicit tasks of detecting and tracking objects). We pose the problem as learning an

end-to-end model, where we regress from videos directly to parameters of interest.

Furthermore, we structure the learned model so as to be able to make probabilistic

future predictions in the latent space, to enable appropriate action selection. This allows

for interacting in relatively unknown environments when system identification must be

performed on-the-fly for the successful completion of a task.

Figure 5.1: Overview and experimental setup. We are interested in reasoning about

the dynamics in an environment, by using a single video stream as a sensory input.

To demonstrate the utility of our approach, we use a slowly actuated robotics arm to

perform a ’stopping a bouncing ball’ experiment, where the physical properties of the

ball or height of the table are not known a priori and occlusions are present. Our model

is able to perform online inference of the parameters of interests and generate plausible

future trajectories.

We present a model that enforces physical conformity between videos and dynamical



70 Chapter 5. Vid2Param: Modelling of Dynamics Parameters from Video

parameters of interests. We integrate an analytic simulator with a recurrent latent model

[46] by introducing an additional loss term for encoder-decoder mapping from a given

sensory input (vision) to physical parameters and states (position, velocity, restitution

factor, gravity, etc. in a parametric description of a physics-based model). We show that

such a model can be trained with suitable domain randomization [218] in simulation

and deployed in a real physical system. This model, which we call Vid2Param, allows

for forward predictions envisioning possible future trajectories based on uncertainty in

the estimate of the physical parameters. We demonstrate that such a model can indeed

perform accurate system identification directly from videos by demonstrating that we

achieve similar levels of performance as traditional system identification methods,

which have access to ground truth starting trajectories. We perform experiments on

simulated and real recorded videos of a bouncing ball with different physical properties.

To illustrate the utility of this capability, we demonstrate this model on the task of

intercepting a bouncing ball with a relatively slow moving robot arm and standard

visual sensing.

5.2 Related Work

5.2.1 System Identification

System identification (SysID) is concerned with the problem of determining the structure

and parameters of a dynamical system, for subsequent use in controller design. The best

developed versions of system identification methods focus on the case of linear time-

invariant (LTI) systems, although almost all of these methods have also been extended

to the case of nonlinear and hybrid dynamical systems. With these more complex model

structures, the computational complexity of identification can be relatively high even for

moderately sized data sets. Examples of system identification procedures that could be

applied to our problem domain, including the additional step of reducing model order,

include the Eigen system realization algorithm [108] and Balanced POD (BPOD) [188]

(which theoretically obtain the same reduced models [139]), and the use of feedforward

neural networks [44]. BPOD can be viewed as an approximation to another popular

method, Balanced truncation (BT) [190], which scales to larger systems.

Another way to approach the problem of identification is frequency domain de-

composition [33]. Recent approaches in this vein include DMD [121] and Sindy [35],

which allow for data driven, model-free system identification and can scale to high-
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dimensional data. When performing SysID directly from a rich sensory stream like

video, it is not always clear what the optimal reduced representation should be [4]. We

exploit the fact that a physics based model of objects can provide useful regularisation

to an otherwise ill-posed identification problem.

5.2.2 Simulation alignment

When a parametric system model is available, simulation alignment can be performed

to identify the parameters of the system. A standard approach is to perform least

squares minimization or maximum likelihood estimation, for instance computing best

fit parameters to align simulator traces to observed data [229]. When simulation calls are

expensive, a prior over the parameter space can be enforced, e.g., Gaussian Processes,

and Bayesian Optimization can be used [187] [182] [136] [12]. Our approach is closely

related to [234] as we use supervision during the training phase of our model, and then

use this learned approximation at test time. We also employ domain randomization

while training our model [171] and our work follows a similar line of reasoning to that

of [42], which aims to align a simulator to real world observations as the model is being

trained. We focus on the problem of aligning a model to online observations at test time,

for predictive purposes.

5.2.3 Learnable Physics Engines

There has been increasing interest in learnable physics engines - for example learning

complex factorization (at the object or particle level) from data [154] [22], using particle

based networks for fluid dynamics [197] and in robotics [51]. By representing the

problem in terms of a set of learnable components (graph representing objects/particle

and relations, Navier Stokes equations, linear complementary problem for the above

mentioned tasks) a physics engine can be learned from raw data. Similar approaches

have been shown to scale to video data [227]. We explore the complementary problem

of system identification (with an analytical or learned simulator), and propose a direct

optimization approach by learning an inverse probabilistic physics engine. This builds

upon ideas presented in [229], where an analytical simulator is used with traditional

system identification approaches. Closely related work is presented in [180], where

surface properties are learned using Physics and Visual Inference Modules.

A related question to learning interactions between objects is that of learning a state

space system to represent these. This has been explored for individual objects [110]



72 Chapter 5. Vid2Param: Modelling of Dynamics Parameters from Video

[70], by using Kalman and Bayes filters for learning. State models and predictions have

recently been explored in the context of videos involving multiple objects [92] through

the use of Spatial Transformer Networks [99] and decompositional structures for the

dynamics, as well as integrating the differential equations directly into a network [101].

Neural network based approaches have been explored wide range of complex

physical phenomena such as simulating molecular dynamics [222, 199] as well as

inverse problems in challenging physics domains such as reservoir simulations [160],

light scattering by nanoparticles [172], deblending galaxy images [123] and fluid flow

prediction [64] and many more [38].

5.2.4 Variational Autoencoder

VAE [115] have been extensively applied to image and video generation [66] [92].

Recently, VAE have been used in reinforcement learning to improve generalization by

learning a master policy from a set of similar MDPs [9]. Closely related work is that

of [7] where Variational RNNs are used to learn ‘residual physics’ [231] [202]. The

addition of loss terms to the reconstruction and KL error terms have also been proposed,

allowing for enforcement of multiple desired constraints [91] [8]. We extend this line

of work, by demonstrating that such constraints can be applied in a recurrent model to

satisfy physics properties.

5.3 Vid2Param for online system identification from videos

Problem formulation Given a set of sensory observations x1:t−1, we are interested

in predicting future observations xt using a low-dimensional dynamics representation

p(zt |z1:t−1).

p(xt |x1:t−1) =
∫

p(xt |zt) p(zt |z1:t−1) p(z1:t−1|x1:t−1)dz

=
∫

p
(
xt |z′t ,θt

)
p
(
z′t ,θt |z′1:t−1,θ1:t−1

)
p
(
z′1:t−1,θ1:t−1|x1:t−1

)
dz

(5.1)

Here, we decompose the latent space z = [z′,θ] into the physical dynamics parameters

of interest, θ, and a remaining z′ term, used for image reconstruction and to capture

potentially un-modelled effects. We illustrate how this model can be learned in an

end-to-end fashion from videos, and how we can use the predictions in the latent space

for model predictive control.
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Figure 5.2: Technical details and notation. We propose an end-to-end model for

performing system identification directly from rich sensory input, such as video. We

based our model on a Variational Recurrent Neural Network (VRNN) [46]. To encode the

physical properties of interests we propose an additional Gaussian negative log likelihood

loss between the parameters of interest and part of the latent space. The inference and

generation overview of the model (left) and the training procedure at each frame (right)

can be seen in the figure. The presented figure describes the training pipeline. During

online inference only the encoder network and RNN are used for estimating different

parameters; or prior network and RNN for future trajectory generation.
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Variational Recurrent Neural Networks We implement the inference process

above using a modified recurrent VAE (VRNN) [46]. A VRNN consists of an RNN

encoding the dynamics of the sequence, and a VAE conditioned on those dynamics, by

including the hidden state of the RNN at each step. As shown in fig.5.2, the variational

auto encoder ϕenc
τ (τ denotes the trainable parameters of the neural network) takes in

a latent representation of the input ϕx
τ(xt), in addition to the hidden state of an RNN,

ht−1. The encoder network then produces the mean and variance components, µenc,t and

σenc,t respectively, of a multivariate Gaussian distribution, q, that are also conditioned

on ht−1, thereby capturing information about the dynamics of the sequence until t:

q(zt |x≤t ,z<t) = N
(
µenc,t ,diag

(
σ

2
enc,t

))
,

where µenc,t ,σenc,t = ϕ
enc
τ (ϕx

τ (xt) ,ht−1)
(5.2)

Similarly, the generative component of the VAE is also expanded by including the

hidden state ht−1:

p(xt |z≤t ,x<t) = N
(
µdec,t ,diag

(
σ

2
dec,t

))
,

where µdec,t ,σdec,t = ϕ
dec
τ (ϕz

τ (zt) ,ht−1)
(5.3)

This means that the prior is no longer a standard normal distribution N (0,1) as in

the case of a vanilla VAE, but is specified by a network conditioned on the hidden state

ht−1:
p(zt |x<t ,z<t) = N

(
µprior,t ,diag

(
σ

2
prior,t

))
,

where µprior,t ,σprior,t = ϕ
prior
τ (ht−1)

(5.4)

Finally, the RNN updates its hidden state ht with a transition function fψ (with

parameters ψ) by taking in a latent representation of the input ϕx
τ(xt) a sample from

ϕz
τ(zt), and the previous hidden state ht−1:

ht = fψ (ϕ
x
τ (xt) ,ϕ

z
τ (zt) ,ht−1) (5.5)

VAEs are trained by maximizing an evidence lower bound [115]. Given the VRNN

modifications, the overall loss, including a Kullback-Leibler (KL) divergence and

reconstruction loss term, becomes:

Eq(z≤T |x≤T )

[ T

∑
t=1

log p(xt |z≤t ,x<t)−

KL(q(zt |x≤t ,z<t)∥p(zt |x<t ,z<t))
]
.

(5.6)

In summary, the VRNN is a modified VAE that makes use of a learned low-dimensional

dynamics model to make sequential predictions. However, the VRNN provides no
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guarantees that the latent representation is meaningful, and as a result is unsuited for

use in control or for system identification.

Vid2Param We propose combining the encoder-decoder factorization with dy-

namics modelling in the latent space z, conditioned on parameters of interest, θ. We

introduce an additional loss to the standard VRNN to encourage encoding of physically

meaningful parameters, by including a Gaussian negative log likelihood [166] loss

between part of the latent space z and the physical parameters θ we are interested in

(e.g., gravity, restitution, position, etc., in the case of a bouncing ball). The loss terms

are scaled with non-negative numbers α, β and γ and we let Nθ represent the size of the

parameter vector.

Eq(z≤T |x≤T )

[ T

∑
t=1

(
α log p(xt |z≤t ,x<t)−

βKL(q(zt |x≤t ,z<t)∥p(zt |x<t ,z<t))+

γ

Nθ

∑
i=1

(1
2

ln(2π)+
1
2

ln
(
(σi

enc,t)
2)+ (θi

t −µi
enc,t)

2

2(σi
enc,t)

2

))] (5.7)

Given trained networks, we can now perform probabilistic inference of physical

parameters from sensory data such as a sequence of images using the factored portion

of the latent space directly.

P(θi
t |x≤t) = N (µi

enc,t ,σ
i
enc,t) (5.8)

Additionally, we can sample plausible future extrinsic properties (eg. positions) by

recursively updating the model predictions to generate future states.

P(θi
t |x<t ,θ<t) = N (µi

prior,t ,σ
i
prior,t) (5.9)

As a final modification, we exclude xt from the recurrent step, since all necessary

information is already present in zt . This speeds up the prediction in the latent space,

as x does not need to be reconstructed and fed back into the network at every step. As

such we can make recursive future predictions entirely in the latent space,

ht = fψ (ϕ
z
τ (zt) ,ht−1) . (5.10)

To summarise, the contributions of this chapter include:

1. Extension of the VRNN model with a loss term to encode dynamical properties.
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2. Enabling faster future predictions in the latent space, along with uncertainty

quantification through the identified parameters.

3. Evaluation of speed and accuracy of identification, against alternate approaches

to system identification

4. Demonstration on a physical robotic system, in a task requiring interception of a

bouncing ball whose specific physical parameters are unknown a priori, requiring

online identification from the video stream.

5.4 Experiments

To evaluate the performance of the proposed method, we perform two set of experiments.

In the first set of experiments we evaluate how well we can infer physical parameters of

interest from videos (subsec.5.4.1). To demonstrate the utility of the approach we use

the trained model for the task of stopping an unknown bouncing ball. In the second set

of experiments, we evaluate how well the model scales on more complex observations

and physics, such as inversion of ultrafast X-ray scattering detector images to molecular

motion (subsec.5.4.2).

5.4.1 Videos and robot control

First, we perform a series of experiments on simulated videos, when ground truth is

explicitly available. We compare our method against existing system identification

methods, evaluating speed of estimation and accuracy of the identified parameters.

Next, we evaluate our method on a set of real videos. Finally, we perform a physical

experiment involving online system identification from a camera feed.

5.4.1.1 Setup

We use a bouncing ball as an example hybrid dynamical system. This is a particularly

useful example, as the dynamics of the ball vary depending on the ball state, making

system identification particularly challenging from high dimensional sensor data using

classical techniques. The governing dynamics of the bouncing ball can be described
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using the following set of ordinary differential equations:

S =


st = s0 + ṡ0t +

1

2
s̈t2, s̈ = g−d Free fall

ṡy
t =−eṡy

t−1,when ṡy
t < 0;sy

t = 0 Bounce

ṡx
t = rṡx

t−1,when s̈y
t = 0 Rolling

(5.11)

We use s, ṡ, s̈ for the current position, velocity and acceleration respectively, e is the

coefficient of restitution and r the rolling resistance. Additional dynamic effects are

often observed such as air drag d =−cṡ
√

(ṡx)2 +(ṡy)2/m, where c is the drag constant

and m is mass. Thus the acceleration becomes s̈ = g+d, where g is the gravitational

force (gx = 0). As such, the system is completely determined by the initial state of the

system s, ṡ, s̈ and its physical properties e,r,m,c,g ∈ θ. It should be noted that the real

world behaviour of any specific ball could deviate from this model depending on its

shape, initial spin (Magnus effect), the presence of wind, and so on.

We make the following assumptions: 1) there is a single moving object, the bouncing

ball 2) the ball bounces off a flat surface. We do not assume to know the physical

properties of the ball, the height of the surface or the exact velocities of the ball, and we

use a single low quality camera for sensing.

We use a parallel adaptive ODE solver to simulate data described by eq.5.11. We

use these simulated trajectories to generate a sequence of images. We generate 10000

training and 100 test videos, with 200 timesteps/10 seconds, 28×28, with e ∈ [0.6,1.0],

g ∈ [−6.81,−12.81],d ∈ [0.05,0.0005],r ∈ [0.0,0.7]. We split the parameters into 10

sub-ranges and alternately use them for training and testing, so no parameters used in

the training data are available in the test data.

For the real videos and robot experiment, we trained a separate model with 5000

videos, 100 × 50 with 75 timesteps/10 seconds and the same physical parameters.

Additionally, we add motion blur based on the velocity and black-out part of the frames

to account for some of the missing/noisy data typically exhibited when using low-cost

cameras. Additionally, we randomize the height of the plane on which the ball bounces.

Our encoder-decoder network follows a similar architecture to [45] and for the RNN

we use a standard LSTM network. We set α = 1, β = 1 and γ = 10 throughout our

experiments (eq.5.7). We use an NVidia 1080 Ti for training and laptop NVidia Quadro

M2000M GPUs for testing the model. We use MSE as an accuracy metric throughout

the chapter and normalize positions and parameters.
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5.4.1.2 System identification

In this experiment, we evaluate the speed and accuracy of the proposed method against

different simulation alignment approaches. We evaluate the likelihood of the observed

trajectory with respect to simulated trajectories by performing MLE estimation (simi-

larly to [229]). We sample 2000 trajectories by placing a uniform prior over the physical

parameters and compare the simulated trajectories against those observed. We select

the parameters which generated the least error between the trajectories, and compare

these against parameters that generated the observed trajectory.

Secondly, we extend this by imposing a Gaussian Process prior over the parameters

of interest and performing Bayesian Optimization [83] [182]. We use Expected Im-

provement as an acquisition function and use 20 optimisation steps. The baselines have

access to the initial velocity, n number of positions (as such we don’t need a tracker as

in [229]) and an optimized ODE solver for sampling.

In contrast, our trained model receives only the video as an input, and no other

parameters. Speed and accuracy benchmarks are shown in fig.5.3. It can be seen that

our method has similar or better performance, despite not having access to the initial

ground truth trajectory of the ball.

(a) Accuracy (b) Speed

Figure 5.3: Performance of different system identification methods with variable

number of observed frames. (a) Overall error of the predicted normalized parameters

(b) Speed of computation. We denote [229] as ’lsq’ and [83] as ’bo’.
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5.4.1.3 Forward predictions

Here, we evaluate the future prediction accuracy as frames are observed. In addition

to previous baselines in Sec.5.4.1.2, we add an additional non-parametric model for

system identification that approximates responses using a set of modes with different

frequencies [121]. Three sets of predictions are evaluated - after 20, 50 and 100

frames respectively - until the end of the video at 200 frames, as shown in fig.5.4.

We visualize example model predictions and their associated uncertainty in fig.5.5.

Importantly, the proposed approach becomes more certain as additional frames are

observed, highlighting the probabilistic nature of Vid2Param.
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Figure 5.4: Accuracy of forward prediction. The accuracy is evaluated after 20, 50 and

100 frames are observed, predicting for the next 100 frames. The DMD error is scaled

down 1k, 50 and 5 times respectively for predictions after 20, 50 and 100 observations.

We note [229] as ’lsq’, [83] as ’bo’ and [53] as ’dmd’.

5.4.1.4 Varying physical properties and sensitivity analysis

In this experiment, we evaluate how well Vid2Param can estimate physical parameters

when they are changing as the video is unrolled (using a model where parameters are
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Figure 5.5: Forward prediction uncertainty after different numbers of observed frames

(20, 40, 60, 80 and 100). Observed trajectory (green), future ground truth (dashed-

green), predictions (red).

assumed to stay constant throughout the video). Therefore, this is a test of robustness or

sensitivity of the model. We generate a new dataset, wherein the parameters change

every 50 frames (2.5 seconds) in a given video. The results are shown in fig.5.6, and

show that the proposed model can infer changing parameters, provided there is enough

system excitation to facilitate this. For example, gravitation coefficients can only be

inferred if the ball is bouncing, while the rolling coefficient can be inferred if the ball is

rolling.

In this set of experiments we evaluate how well over method works outside of the

domain randomization ranges (see Subsec.5.4.1.1), when noise in the ground truth

labels are present or a reduced model is used. First, we test for extrapolation over

unseen parameters by training on the first half of the range for different parameters - eg.

etrain ∈ [0.6,0.8] (for restitution). We evaluate performance for increasing parameter

deviations, ∆params, in the test data - etest ∈ [0.8,1.0]. Secondly, we evaluate the

performance when training with increasing additive parameter noise. Finally, we train

with simpler physics model (fixed drag and rolling coefficient) and test how well we can

estimate gravity and restitution when testing with the full model as the video is unrolled.

Results can be seen in fig.5.7, with extrapolation performance slowly decaying outside

of training regions and consistent performance even with large percentage of noise

added to the training parameters.
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Figure 5.6: System Identification from video with varying physical parameters. The

physical parameters of the bouncing ball change every 50 frames (4 times per video).

We plot ground truth (green), predicted samples (red), and the predicted - mean (blue).

Given enough excitation, our model can detect the change in the parameters.
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cient.
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5.4.1.5 Real videos

Here, we evaluate how well our method can scale to real videos. We record a set of

videos, lasting between 1-5 seconds, of different types of bouncing balls - rubber, tennis

and ping-pong balls. Since the exact physical properties of the balls are not available,

we instead use the accuracy of the forward predictions as an evaluation metric. We

compare the last ten positions of the ground truth position of the ball, with the forward

predictions of a model as the video is unrolled. Here, we compare our method against

[229], where we generate 5000 uniform samples of all physical parameters, horizontal

and vertical velocities, horizontal and vertical position in a small region around the

starting location of the ball - in order to account for some of the noise in the real videos.

In fig.5.8 we show the convergence of our method for different types of balls, as well as

the accuracy of the forward predictions as the video is observed.

(a) Convergence
(b) Accuracy

Figure 5.8: Experiments with real videos. We evaluate the performance of our method

on real videos with bouncing balls with different physical properties (rubber, tennis,

ping-pong). As the video is unrolled we compare the future predictions for the very last

10 frames of each video (the long term prediction accuracy) as explicit ground truth over

the physical parameters is not available (a) Example model predictions for the three

different types of balls, overlaid on the extracted positions from the images (b) Accuracy

of the last 10 forward predictions as the video is observed. We denote [229] as ’lsq’.
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t

Inferred Predictions Arm axis movement Ball position

Random Policy 8/35 (23%)

Random Policy (2x) 10/35 (29%)

Vid2Param 27/35 (77%)

Figure 5.9: Experiments with PR2. We perform a set of experiments, where a slowly

actuated arm of the PR2 robot must intercept a bouncing ball, using only video as

sensory input. We evaluate our method against a random policy feeding actions at

1Hz/2Hz. We demonstrate that our method can perform fast inference over the physical

parameters of interest (e.g., restitution factor, height of the table) and correct future

trajectories. Each experiment lasts about 2 seconds. At each throw of the ball, the model

state is reset - so system identification is performed at every throw of the ball.

5.4.1.6 PR2 Robot experiments

Finally, we evaluate the accuracy and speed of our method in an experiment where

the PR2 robot uses its arm to intercept a bouncing ball from a visual feed, using a

standard low-cost camera as sensory input. Firstly, the camera is calibrated with respect

to the arm movements, so that predictions of the ball in the image, correspond to the

same position of the gripper. No calibration with respect to the bouncing surface,

position/velocity mappings, size of the ball, etc. are needed since these should be

robustly dealt with by the model trained on randomized physics in simulation. The

difference between two consecutive frames are fed directly into our model and the latent

predictions are unrolled until the future predicted horizontal position is approximately

the same as the horizontal position of the gripper of the arm. Then the generated vertical

position of the ball is sent as a positional set point to the arm. An experimental run

usually lasts for 2-3 seconds, during which the PR2 robot must infer the physics of the

ball, predict its future trajectory and execute an action to intercept it. Our model runs at

20Hz on a standard laptop GPU, using IKFast for inverse kinematics of the arm. We

use different types of ping-pong balls, in order to test how well our model can reach to

balls with different physical properties. After each experiment (each throw of a ball),

the model state is reset - so in each experiment we evaluate how well we can perform

online system identification. Results can be seen in fig.5.9.
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5.4.2 Molecular dynamics

In this set of experiments, we evaluate how well the proposed model can deal with

inversion of complex molecular dynamics. Below, we describe the experimental setup,

traditional baselines used within this. The subsection finishes with results and discussion

over their significance.

5.4.2.1 Inversion with dynamics constraints

We are interested in recovering all atomic distances as a function of time, from a

sequence of detector images. Our model allows the detector image at each time step,

together with the dynamics carried by the recurrent part of the model, to be encoded into

a latent space. Part of that latent space is simultaneously trained to represent the different

distances in the given trajectory. As such, the model can account for time dependencies

of the detector images and atomic distances, unlike traditional frame-by-frame methods,

while also interpolating between the training examples.

(a) Experimental overview (b) Baseline and metrics

Figure 5.10: (5.10a) Overview of the experimental setup. We are interested in inferring

molecular motion from a sequence of detector signals. (5.10b) Baseline and metrics.

As a baseline we use the best frame fit from all training pairs. We use two metrics to

evaluate the accuracy of the predicted atom-to-atom distances and the quality of the

reconstructed signal.

An overview of the experimental data can be seen in fig.5.10a. We utilise simulated

data to train, validate and test our model, which is done separately for each molecule.

We use previously published full-dimensional quantum molecular dynamics (MD)

simulations for three molecules – N-Methylmorpholine (NMM) [207], ethene (C2H4)

[116], and carbon disulfide (CS2) [25], which are are summarised in Table 5.11. When

taken collectively, the full set of trajectories for a given molecule gives a statistical

representation of the molecular wave packet. Here, we use them independently as if
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they represent different modes of motion that the molecule may exhibit. Thus, our

approach ignores phenomena such as wave packet width, dispersion and bifurcation.

Nonetheless, the trajectories obey the physical principles of propagation (energy con-

servation, continuity, etc.) and, thus, encode the relevant physics of molecular motion.

This is crucial because, as detailed in the introduction, the inversion problem is under-

determined – the simulated trajectories provide meaningful constraints on the type of

motion. It should also be pointed out that the complexity of nuclear motion necessitates

a case-by-case approach [148], which means that the network needs to be trained on the

specific molecule under consideration, and the inversion of real-life data would only be

as good as the simulated trajectories used to train the model.

We also use synthetic detector images calculated from these trajectories as follows.2

To a first approximation, the electrons in the molecule can be considered to be bound

to the atomic nuclei, the so called Independent Atom Model (IAM), in which case the

elastic X-ray scattering recorded on the detector is proportional to the Debye scattering

formula:

I(q, t) = ∑
A
| fA(q)|2 +∑

A
∑

B̸=A
fA(q) fB(q)

sin(qRAB(t))
qRAB(t)

, ∆S(q, t) =
I(q, t)− I(t, t0)

I(q, t0)
.

(5.12)

In Eq. (5.12), the scattering intensity, I(q, t), is function of the delay time between

optical laser and the X-rays, t, and the magnitude of the scattering vector, q. fA(q) and

fB(q) are tabulated quantities. RAB(t) denotes the interatomic distance between atoms

A and B. In addition to the terms in Eq. (5.12), the intensity on the detector, I(q, t),

has a contribution from inelastic X-ray scattering, which to a first approximation is

constant that does not evolve with time. To ensure that the approach is valid beyond

the approximations implied in the IAM, our CS2 data set uses a more advanced method

to calculate the scattering signal directly from the ab initio electron density of the

molecule [241].

As two of the molecules exhibit dissociation of the molecule structure, in two of

the simulations we explicitly separate out this hard-to-tackle phenomenon. Therefore,

we perform a set of five experiments – all NMM, all C2H4, all CS2, and separately

with only the dissociation-free C2H4 and CS2 trajectories. We use a frame-by-frame χ2

structural fitting as a baseline. More specifically, at each time step, we compute the sum

of squared residuals (SSR) between the current detector image and all the reference

2Datasets, expanded results and source code can be seen at https://sites.google.com/view/mlscattering/

https://sites.google.com/view/mlscattering/
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Molecule NMM C2H4 CS2

Method SHARC AI-MCE [226] SHARC [142]

Electronic states X/3s/3p S0–S2 S0–S3, T1–T4

Simulated time 1 ps 150 fs 1 ps

Time steps 201 151 201

# Train 85 800 753

# Val 11 100 (82) 94 (26)

# Test 11 100 (87) 95 (32)

Figure 5.11: Quantum molecular dynamics simulations used to train, validate and test

our model. The table reports only the number of intermediate time steps used in our

model. The numbers in brackets are the trajectories that do not show dissociation. All

three simulations use CASSCF ab initio level of theory.

detector images from the training data. We then assign the atom-atom distances from

that reference detector image that has the lowest SSR.

5.4.2.2 Nuclear geometry recovery

We evaluate how well we can recover the true underlying molecular geometry from

a sequence of detector images by using a mass-weighted root-mean-square deviation

(RMSD) from the ground truth as seen in fig.5.10b. We observe that in all but one

experiment the proposed method outperforms the baseline method (Figure 5.12a). Our

model is able to capture time dependencies and constraints associated with movements

of atoms. As exemplified in Figure 5.12c, the vid2param RMSD values for most

individual time points are indeed below the baseline. Importantly, the vid2param

exhibits much smoother behaviour compared to the large variations with time seen in

the baseline. This is a manifestation of the fact that different time points are correlated.

The smooth changes in the RMSD imply that the evolution of the molecular structure is

also smooth, as expected physically.

Beyond the RMSD metric, the quality of the inversion of individual atom-atom

distances depends on two factors. Physically, X-ray scattering is dominated by atoms

with many electrons, hence, the detector signal has vanishing contributions from light

atoms such as Hydrogen. Accurate estimates of the distances between such atoms

are not possible even with our model. However, we noticed that vid2param tends to

infer the correct oscillation periods, presumably, because of the correlation with the
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Figure 5.12: (5.12a) Sum of atomic RMSD values for all time steps and all trajectories

in the test part of the five data sets. The asterisk (*) denotes the data sets where

trajectories with dissociation has been filtered out. (5.12b) O−N distance in a single

NMM trajectory. (5.12c) RMSD and sum of squared residuals (SSR) as a function of

time step for the baseline and vid2param methods.



88 Chapter 5. Vid2Param: Modelling of Dynamics Parameters from Video

motion of heavier atoms. The detector signal also has almost no contribution from

atoms that are far away (see Eq. 5.12). While sometimes correlated motion can ensure

that these distances are still adequately inferred, the process of dissociation possesses

a challenge because coherence between the fragments is lost quickly. We believe this

is the reason why our experiment with CS2 where dissociation occurs fails against

the baseline method. In the case of relatively heavy atoms and no dissociation, both

vid2param and the baseline method perform quite well as illustrated on Figure 5.12b.

5.4.2.3 Analytic reconstruction of detector images

In this set of experiments, we evaluate how well the detector image can be analytically

reconstructed from the estimated set of atomic distances using Eq. (5.12). This gives

us a second metric which is not based directly on the molecular geometry but on its

scattering fingerprint. A typical SSR between the ground truth and the reconstructed

detector is illustrated also on Figure 5.12c. It is important to note that we try to

reconstruct only the visible part of the detector – the part of the signal that is not

detected, i.e. at large values of q, still contains vital information.

We observe that the baseline outperforms the proposed model as seen in Figure 5.12c,

which at first may seem counter-intuitive. However, given the limited information

in the detector image, even an exact match of the visible part of the signal at any

given time does not guarantee a perfect estimate for the molecular structure via the

atomic separations. Unlike the baseline method, vid2param learns atomic distances

and motion constraints from previous time points, hence, producing a better estimate

for the molecular structure without producing a perfect fit for the visible part of the

detector image. This again suggests that because of the limited information in a single

detector image, it is useful to incorporate time dependencies in the process of inferring

the atomic distances, to carry out constraints and information from previous time steps.

5.5 Results and Analysis

Unified model for physical reasoning. In this work we present a model for inference of

physical parameters and generation of plausible future states from videos. We observe

that such a model can be trained in an end-to-end fashion and perform accurate system

identification in simulated and real settings, and subsequently used for control. We

constrain our experiments to a single object and show that using just a video stream we
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can perform online system identification. Importantly, the proposed approach is able

to generalise well to images captured from a real camera, despite only being trained

on simulated data. This highlights the value of sim2real techniques for interpreting

physical parameters in various applications, and its potential to enable reasoning about

physical properties, from relatively low fidelity sensors bootstrapped by learning from

simulation.

System identification. We observe that the proposed method can accurately infer

different physical parameters, outperforming baselines from the literature. The magni-

tude of gravity and air drag can usually be inferred from observing just a few frames.

Air drag can usually be inferred after observing a few more frames, as it is a function of

both horizontal and vertical velocity, rather than just the vertical velocity as in the case

of gravity. Restitution factors can be inferred a few frames after the ball has bounced

for the first time. The rolling coefficient has a higher error, which starts to decrease

towards the end of the videos. While traditional system identification methods can infer

physical properties, which have a clear effect on the trajectory (such as restitution), it

is challenging to infer properties that jointly contribute to a certain effect. By using

domain randomization and a sim2real approach, our method can learn the difference in

parameters of trajectories with similar appearance even when trained with noisy data.

As such we can accurately estimate parameters with similar effect on the dynamics

(such as gravity and air drag), as well as parameters whose effects are not observed until

the end of the trajectory (such as rolling coefficients). Moreover, we also demonstrate

that to an extent detect change in the parameters, as a video is unrolled (although this

requires system excitation), and extrapolate to unseen parameters.

Forward predictions. We have shown that our model can perform forward predic-

tions in the latent space, over parameters of interest such as physical state variables. The

forward predictions bring out key aspects of the evolution of uncertainty, such as high

variability before a bounce and lower variability soon after, high variability over the

stopping point before rolling is observed, etc. The proposed approach outperforms both

parametric and non-parametric baselines in its ability to accurately perform forward

predictions.

Molecular dynamics. We address the issue of how to unravel the evolution of

molecular structure given a time-series of detector images generated by a novel experi-

mental technique called Ultrafast X-ray Scattering (UXS). While still in its early days,

UXS has shown enormous capacity to elucidate fundamental questions in chemistry

such as how molecules move, how bonds between atoms are broken or formed, and
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even how electrons may change their position inside molecules. Nevertheless, there are

still big gaps in our ability to analyse and interpret such experiments. We believe that

the method presented here addresses a major limitation in the current way of extracting

information from UXS data, thus improving our ability to unravel chemical dynamics.

Limitations and future work. We observe in robotics experiments that our model

performs well in real settings. Nevertheless, we experienced some limitations arising

from making the predictions based on a single image, e.g., the ball passing behind

or in front of the gripper. Thus in the future it will be beneficial to extend this line

of work by inferring future predictions from multiple sources of video stream from

different locations, or incorporating depth sensing. We note that our proposed model is

independent of the choice of encoder, decoder and training data. It would be of interest

to explore how such a model would perform with richer training data (e.g., multiple

objects) by using advanced domain randomization [236] or different encoder-decoder

structure [22].

5.6 Conclusions

This chapter looks into a method for learning inverse mappings between rich sensory ob-

servations and parameters of interest. For the purpose an additional loss to a variational

recurrent neural network is proposed, forcing consistency between simulator of interest

and the latent space of the NN model. The proposed method outperforms existing

baselines from literature, both in terms of speed and accuracy of the identification, and

forward predictions as a consequence of that. To showcase the utility of the proposed

approach, we evaluate on two challenging tasks. First, we address the task of stopping

an unknown bouncing ball with a robot arm, performing online identification from a

camera feed and using the proposed model for inference of the physics parameters.

Further, we show its ability to generate future predictions of the ball position, laying

the groundwork for much more sophisticated predictive motion planning schemes.

Secondly, we evalulate the proposed method on a challenging problem in molecular

dynamics. We demonstrate that the proposed method outperform standard frame-by-

frame baselines used in literature, and is able to capture relevant dynamics required for

an accurate inversion, showing the utility of the proposed beyond robotics.



Chapter 6

Future Work & Conclusion

6.1 Key Ideas

The dissertation aims to connect and extend ideas from SBI to the specific needs

of online robot motion planning. A key requirement that this thesis addresses is

that of strict computational limitations imposed by the need to act in dynamic and

uncertain environments. As such the inference method must be fast enough for the

given task, while the underlying simulation model expressive enough to capture the

observed variations in the dynamics. This work looks into different problems with

varying complexity of the simulation model or observations used - gas localization

with a UAV using a fluid simulation (Chapter 3), safe medical suction (Chapter 4) and

control from rich sensory observation such as videos (Chapter 5). This dissertation

looks into two central approaches for solving inverse problems - sampling reduced

simulation representations (Chapter 3 & 4) and learning inverse mapping directly from

raw observations (Chapter 5).

Sampling reduced representations

The first two chapters of this dissertation look into reduced simulation representa-

tions for SBI. Those reduced representations are motivated by specific observations

about the dynamics of the phenomena and factors of variation. In Chapter 3 the moti-

vating problem of gas localization is examined. This work focuses on improving the

efficiency of the sampling process, by exploiting domain specific knowledge about the

observed dynamics - e.g. short-distance spatial invariance of wind speed and direction.

To further strengten the analysis of dominant factors of variations, techniques such

as sensitivity analysis can also be employed (Fig. 3.5). By focusing on the leading

causes of difference in the observed data, we can devise an expressive model for the
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task, while employing efficient sampling techniques. This allows for online inference in

highly dynamic tasks and long term planning under uncertainty. In Chapter 4, this thesis

builds up on those ideas in the context of medical suction. In addition to reducing the

complexity of the simulation to fascilitate more efficient SBI, this work also studies how

this can be incorporated into a planning procedure, taking uncertainty into account. This

results in a safe and efficient completition of the task compared to naive and myopic

solutions.

Learning inverse relations

Coming up with the right simplified simulation model to enable online inference

might be challenging, and is domain specific. In the last chapter of the thesis we develop

a method for direct regression to parameters of interest from complex observations. The

inference process is amortized by structing the latent space of variational recurrent NN

in accordance to a given simulator (Fig. 5.2). This allows for online inference from

long sequence of high dimensional observations. The improved speed and accuracy

of the proposed approach is verified in two challenging domains - robot control from

video observations and inversion of molecular dynamics. This testifies for the broad

applicability of the proposed method in robotics applications and beyond.

6.2 Future Work & Open Questions

This section discusses open questions and future research directions. This thesis

explores various robotics domains, their respective complexities and challenges for

applying SBI techniques. While this work showcases the promise of following this

methodology, challenges remain. First of all, many of presented practical robotic

examples, and the respective simulations used, remain limited. Making simulators fully

differentiable is one area of research, that has the promise of better scalability and

integration with modern machine learning methods. Learning them from raw data is

another avenue of research, that can similarly address some of those challanges. From a

robotics context, there are many more constrained task that would benefit from the here

presented methodology. Those directions of research are discussed in order below.

Fully differentiable open worlds

Imposing the right structure and biases within neural networks have facilitated

efficient learning of ever more complicated tasks. This has ranged from imposing cas-

cades of filters applied across patches of images for classification [125] and efficiently

propagating long-term information [89], to scaling attention mechanism for machine
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translation [224]. While a lot of NN modules assume almost no prior knowledge of the

training data, often there is a lot of known dynamics and physics that we understand

and model. By making this existing knowledge in the form of differentiable programs,

they can readily be included within the wide existing end-to-end differentiable models.

Many examples of modelling different dynamics aspects have already been proposed

including fluids and contacts [197] [60] [157], allowing for solving challenging infer-

ence tasks in an unsupervised way [101]. There is still, however, a gap between the

complexity of tasks that can be constructed using those differentiable models, that has

so far not matched the performance of supervised methods paired with vasts amount

of data. Given the usual complexity of acquiring that amount of data within robot

platforms, constructing expressive fully differentiable open world environments can be

an important ingridient for solving hard control tasks.

Learning physics engines from raw data

SBI methods are of course relying on the existance of a simulation. While models

of different aspects of dynamics such as contact, fluids, rigid bodies, etc. have been

proposed, almost all of them tend to be approximate in their nature, unable to capture

the full complexity of the real world. While often challenging, most of the robotics

systems have the luxury to be able to observe and interact with their environment. As

such it is possible in principle to build internal models of those observations, that can

subsequently be used for control. A common way to approach this problem is to use as

a model what is known and learn the residual unknown part of the observed process

[232]. New developments in sensing [75] [179] can make this process significantly

easier, allowing for readily available state representations and safe learning [234] - a

concept explored within cognitive science [59].

Constrained, but dynamically and visually rich tasks

Modern robot arms surpass human level performance of precision and load-carrying

capacity. Understanding the dynamics and visual variations of the environment on the

other hand is still a major limiting factor for wider deployment of robot systems. The

above-mentioned developments of simulations and data gathering can unlock many

new applications, where there is a strong business case, and the opportunity to collect

real-world labelled data. Learning robust policies, will mostly likely require some

knowledge of the environment, but not it’s exact state. While there is no consencus on

the best way to approach open-ended tasks (e.g., driving in a city), current approaches

can potentially handle constrained versions of the same problems (e.g., driving on a

highway with certified marking). Many fields can benefit of automation of constrained
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environments, but with variations in the dynamics and visuals - handling diverse objects

within factories, non-invasive medical tasks, automating and scaling bench experiments.

6.3 Concluding remarks

In conclusion, we addressed the problem planning in dynamic environments, where the

exact state or parameters of the modeled phenomena might not be known. In this thesis

we propose multiple strategies of employing a simulation as a model to perform online

SBI and solve the given task.
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