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Abstract 

Cerebral small vessel disease (CSVD) describes multiple and dynamic 

pathological processes disrupting the optimum functioning of perforating 

arterioles, capillaries and venules, increasing the risk of stroke and dementia. 

Although the pathogenesis of this disease is still elusive, the breakdown of the 

blood-brain barrier (BBB), which would hinder brain waste clearance, is 

thought to play a pivotal factor in it. Nonetheless, the microscopic origin and 

nature of these abnormalities and the lack of a ground truth make the study of 

CSVD in vivo in humans via magnetic resonance imaging (MRI) challenging 

and signal processing schemes likely to be sub-optimal. 

In this doctoral thesis, we proposed signal analysis and processing techniques 

to improve the quantification and characterisation of subtle and clinically 

relevant neuroimaging features of CSVD. We applied our proposals to 

analyses of structural and dynamic-contrast enhanced MRI (sMRI and DCE-

MRI) to better characterise CSVD. 

DCE-MRI is commonly used to investigate cerebrovascular dysfunction, but 

the extremely subtle nature of the signal in CSVD makes it unclear whether 

signal changes are caused by microscopic yet critical BBB abnormalities. 

Moreover, ethical and safety considerations in vivo and the lack of validation 

frameworks hinder optimising imaging protocols and processing schemes. To 

cope with these issues, we thus proposed an open-source computational 

human brain model for mimicking the four-dimensional DCE-MRI acquisition 

process. With it, we quantified the substantial impact of spatiotemporal 

considerations on permeability mapping, detected sources of errors that had 

been overlooked in the past, and provided evidence of the harmful effect of 

post-processing or lack thereof on DCE-MRI assessments.  

Perivascular spaces (PVS) in the brain, which are involved in brain waste 

clearance, can become visible in sMRI scans of patients with neuroimaging 

features of CSVD, but their automatic quantification is challenging due to the 

size of PVS, the incidence and presence of imaging artefacts, and the lack of 

a ground truth. We first proposed a computational model of sMRI to study and 
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compare current PVS segmentation techniques and identify major areas of 

improvement. We confirmed that optimal segmentation requires tuning 

depending on image quality and that motion artefacts are particularly 

detrimental to PVS quantification. We then proposed a processing strategy 

that distinguished high-quality from motion-corrupted images and processed 

them accordingly. We demonstrated such an approximation leads to estimates 

that correlate better with clinical visual scores and agree more with full manual 

counts. After optimisation using our proposals, we also found PVS 

measurements were associated with BBB permeability, in accordance with the 

link between brain waste clearance and endothelial dysfunction. 

This work provides means for understanding the effect of image acquisition 

and processing on the assessment of subtle markers of brain health to 

maximise confidence of studies of endothelial dysfunction and brain waste 

clearance via MRI. It also constitutes a cornerstone on which future 

optimisation and development can be based upon. 
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Lay Summary 

Blood vessels transport blood throughout the body, delivering oxygen and 

nutrients to cells and collecting waste products, making them essential to the 

normal functioning of the human body. When diseases damage tiny blood 

vessels of the brain, harmful substances that would otherwise stay in the 

bloodstream leak to brain tissues and injure them. This affects other critical 

functions, such as brain waste clearance. Long-term, this condition leads to 

cognitive, psychiatric, and physical problems and increases the risk of stroke 

and dementia. 

Researchers and clinicians visualise internal structures of the body and its 

status using magnetic resonance imaging (MRI). Nonetheless, the subtle 

nature of these injuries and the inherent presence of noise and image 

distortions on MRI make these automatic examinations challenging. In the 

present work, we thus propose methods to improve the characterisation and 

quantification of extremely subtle signatures of brain health function.  

The integrity of blood vessels can be established by comparing images taken 

before and after intravenous injection of chemicals that glow on MRI, since 

regions with damaged vasculature would light up. However, signal changes 

coming from millimetre blood vessels are subtle and slightly above the 

distortion level expected in MRI. This makes it unclear whether these 

variations are pathological or not. We thus proposed a computational model 

simulating the aforementioned process to determine the effect image artefacts 

and processing have on these assessments. We: 

1) demonstrated that imaging artefacts need to be compensated for,  

2) detected sources of error that had been overlooked in the past, and  

3) provided recommendations to obtain more reliable estimates of the 

status of tiny blood vessel. 

Perivascular spaces (PVS) are tiny structures in the brain involved in brain 

waste clearance, known to become enlarged and visible in MRI scans of 

patients with other features indicative of small blood vessel damage. Their 

automatic quantification is still challenging due to their size (diameter < 3 mm) 
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and the presence of imaging distortions. We first proposed a computational 

model of MRI to study and compare current PVS segmentation techniques and 

identify major areas of improvement. We confirmed that optimal segmentation 

requires tuning depending on image quality and that motion artefacts are 

particularly detrimental to PVS quantification. We then proposed a processing 

strategy that distinguished high quality from motion-corrupted images and 

processed them accordingly. We demonstrated such an approximation leads 

to estimates agree better with clinical experts. After optimisation, we also found 

PVS measurements were associated with estimates of the integrity of blood 

vessels, supporting the theory that the damage diseases cause to blood 

vessels affects brain waste clearance. 

This work provides means for understanding the effect of image acquisition 

and processing on the assessment of subtle markers of brain health to 

maximise confidence of studies of cerebrovascular damage and brain waste 

clearance via MRI. It also constitutes a cornerstone on which future 

optimisation and development can be based upon. 
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 Introduction 

In this chapter, we introduce the reader to the disease under study and to ways 

we typically assess it. We also discuss open challenges motivating our work. 

We conclude with a summary of the main structure of the present thesis. 

1.1 Blood vessels 

Blood vessels are active and dynamic organs responsible for transporting 

blood throughout the body while delivering oxygen and nutrients to cells and 

collecting their waste (Bit et al., 2020). This key role in blood supply makes 

them pivotal for the optimum functioning and maintenance of the human body 

(Perosa et al., 2020). 

There exist three major types of blood vessels: arteries, veins, and capillaries 

(Figure 1) (Tucker et al., 2021). Arteries carry blood away from the heart, 

whereas veins return it. Capillaries — the tiniest and thinnest blood vessels — 

connect arteries and veins. It is also at the level of capillaries where the 

exchange of oxygen, nutrients, and waste products between tissues and blood 

takes place (Bit et al., 2020; Tucker et al., 2021).  

 

Figure 1. Arteries, veins, and capillaries transport blood throughout the body, delivering 

oxygen and nutrients to cells and collecting their waste products (left). Capillaries in the brain 

consists of a single and tight sheet of endothelial cells, which serve as a semi-permeable and 

selective membrane controlling substance flow in and out of brain tissues (right). Created with 

BioRender.com. 
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Capillaries in the brain consist of a single and compact sheet of endothelial 

cells, or endothelium, which serves as a selective membrane between the 

blood and the brain (Figure 1), known as the blood-brain barrier (BBB). This 

unique arrangement of the microvasculature of the brain regulates substance 

flow in and out of brain tissues and ultimately protects the brain from toxic 

agents and pathogens circulating in blood (Daneman and Prat, 2015). 

Alterations to the delicate operation of the BBB (e.g. increased permeability) 

would therefore lead to an abnormal accumulation of toxic substances in the 

grey and white matter and cause their eventual deterioration. This in turn can 

lead to serious consequences, such as stroke, dementia, and cognitive, 

neurological, psychiatric, and physical disabilities (Wardlaw et al., 2019).  

 

Figure 2. Disruption of the optimum functioning of the BBB causes damage to the brain, which 

manifests clinically in stroke as well as cognitive, neurological, and physical alterations. We 

typically examine the damage this disruption has caused to the brain via magnetic resonance 

imaging. Created with BioRender.com. 
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1.2 Cerebral small vessel disease 

Cerebral small vessel disease (CSVD) is a general term used to describe 

multiple and dynamic pathological processes disrupting cerebral microvessels 

(Wardlaw et al., 2019). Since the assessment of small brain vessels in humans 

in vivo is not entirely feasible using standard imaging technologies, the study 

of CSVD revolves around detecting and quantifying the repercussions of their 

dysfunction (Figure 2): subtle and heterogeneous lesions or structural 

anomalies in multimodal magnetic resonance imaging (MRI) studies (Wardlaw 

et al., 2019). This poses a key challenge in the field, as these hallmarks are 

not evident unless patients undergo scanning, which happens either 

incidentally or after dementia diagnosis or stroke presentation (Clancy et al., 

2021). Examination of these neuroimaging features at different stages in life is 

therefore crucial for improving our understanding of CSVD, monitor them over 

time, and designing novel and targeted therapeutics to counteract them. 

The pathogenesis of CSVD is still elusive, but growing evidence suggests 

endothelial dysfunction plays a pivotal factor in it (Wardlaw et al., 2019). A 

dysregulated movement of potentially harmful substances from the 

bloodstream to the brain parenchyma due to an impaired BBB could trigger a 

chain of events impeding other brain processes, such as brain waste 

clearance. This would explain why perivascular spaces (PVS) become 

enlarged and abundant in patients with neuroimaging features of CSVD 

(Wardlaw et al., 2020). Determining whether this is the case or not requires 

the ability to estimate BBB dysfunction and PVS enlargement accurately and 

reliably nonetheless. 

1.3 Imaging subtle neuroimaging features of CSVD 

1.3.1 Introduction to MRI 

Medical imaging refers to techniques that enable visualisation of internal body 

structures (Miller, 1987). These techniques often rely on the interaction 

between an energy source, an energy detector, and the human body: an 

energy source releases energy, which is attenuated as it passes through the 
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body and collected by an energy detector (El-Bendary et al., 2015; Fessler, 

2009). The magnitude of the energy being detected is crucial for clinical 

purposes as it reflects tissue properties, e.g. water content or tissue density, 

which can be later used for determining the healthy or pathological state of the 

structures of interest (Brown and Semelka, 2005; El-Bendary et al., 2015; 

Miller, 1987). 

The following subsections correspond to a summary of fundamental principles 

of MRI (Brown and Semelka, 2005; Dale et al., 2015; McRobbie et al., 2017). 

1.3.1.1 Nuclear spin 

MRI is a medical imaging technique that leverages the nuclear magnetic 

resonance (NMR) phenomenon, which is the capacity of magnetic nuclei with 

non-zero spin to absorb and re-emit radiofrequency energy when immersed in 

a magnetic field (Bloch 1946 and Purcell 1946).  

An atom is made up of three fundamental particles: protons, neutrons, and 

electrons. An atom’s nucleus contains both protons and neutrons, whereas 

electrons are distributed in orbitals surrounding the nucleus. The quantity of 

these particles in an atom determines the inherent spin angular momentum of 

an element and, more importantly in our case, whether we can use it to image 

the human body. If the atomic weight (number of protons and neutrons) and 

atomic number (number of protons) are both even numbers, a nucleus has 

spin equal to zero and, consequently, does not display the NMR phenomena. 

Otherwise, its nucleus has a non-zero spin and it can therefore be studied via 

MRI. Among the elements with a non-zero spin that are widely found in 

biological systems and have historically been employed for MRI, hydrogen 1H 

stands out because its response to an applied magnetic field is one of the 

largest found in nature and hydrogen atoms present in water and lipid 

molecules are abundant in the human body. 

1.3.1.2 Larmor precession 

In the absence of an external magnetic field, the spin vectors (or magnetic 

moments) of hydrogen protons within a tissue appear randomly oriented in all 
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directions, causing a zero net magnetisation �⃗⃗�  (Figure 3). When the tissue is 

immersed in a magnetic field �⃗� , the individual protons begin to align to it and 

precess around it (Figure 3), causing the net magnetisation �⃗⃗� 0 to be non-zero 

only in the direction of the field (longitudinal magnetisation). The frequency at 

which precession happens depends on the strength of the magnetic field, as 

described by the Larmor equation 

𝜔0 = 𝛾 ∙ 𝐵0, (1) 

where 𝛾 = 42.57 MHz T-1 is the gyromagnetic ratio and 𝐵0 the strength of the 

magnetic field. It is important to note that the net magnetisation cannot be 

detected since it is only longitudinal and its magnitude does not rival with that 

of the external magnetic field. 

To have a detectable magnetisation, the average magnetic vector of the 

protons is deflected 𝜃𝐹𝐴 degrees away from the magnetic field vector using a 

radiofrequency (RF) pulse source (transverse magnetisation). If the RF energy 

has the right frequency (𝜔0, Eq. 1), the proton exposed to it will absorb it and 

change from a low energy to a high energy state, or vice versa (Figure 3). 

1.3.1.3 Radiofrequency signal detection 

When the RF source is turned off, protons swiftly realign with one another and 

with the magnetic field in which the body has been immersed (Figure 3), 

releasing energy at frequency 𝜔0 in a process known as relaxation. The net 

magnetisation is then measured using a receiver coil arranged perpendicular 

to the transverse plane (Faraday-Lenz law) (Berger, 2002; Harris and 

Hollstein, 1993). The voltage induced to the coil, or MR signal, is referred to 

as the free induction decay (FID). Its magnitude depends on the magnitude of 

𝑀0 immediately preceding the RF pulse and its time-dependent decay on the 

protons that give up the energy they absorbed. 
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Figure 3. The magnetic moments of hydrogen protons are randomly oriented in the absence 

of an external magnetic field (1). When the body is immersed in a magnetic field �⃗� , individual 

protons align parallel or anti-parallel to it and precess around it (2). The number of protons 

parallel to �⃗�  is slightly higher than the number of protons antiparallel to it (Zeeman effect), 

causing the net magnetisation to be non-zero in the direction of �⃗� . An RF pulse is utilised to 

deflect protons away from the magnetic field vector (3). When the RF source is switched off, 

protons realign with each other and with the magnetic field (4), releasing energy. 

1.3.1.4 Relaxation 

Relaxation has two main phases: the longitudinal relaxation and transverse 

relaxation. When the RF is switched off, the transverse magnitude decays and 

protons stop being in resonance (transverse relaxation). Protons then 

transition from high to low energy state or vice versa, restoring longitudinal 

magnetisation while freeing energy (longitudinal relaxation). These two 
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relaxation times vary from one tissue to another and, thus, are key elements 

of the imaging process. 

The longitudinal relaxation time, 𝑇1, is the amount of time necessary for the 

longitudinal component of �⃗⃗�  to recover 63% of its original magnitude after an 

RF pulse (Figure 4). As protons release energy, a resumption of longitudinal 

magnetisation will be noticed over time. This process is formally described by 

the Bloch equations as an exponential growth: 

𝑀𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙(𝑡) = 𝑀0 ∙ (1 − 𝑒
−
𝑡
𝑇1) , (2) 

where 𝑇1 is a constant describing the growth rate and 𝑡 is the time after the RF 

pulse. 𝑇1 is long for fluids (e.g. 1500-2000 ms) and short for fat-based tissues 

(e.g. 100-150 ms).  

The transverse relaxation time, 𝑇2, is the amount of time necessary for the 

transverse  component of �⃗⃗�  to decay to 37% of its initial magnitude (Figure 4). 

Absorption of the RF pulse produces rotation into the transverse plane, 

resulting in coherence in the transversal plane. This coherence fades as time 

passes and protons lose energy and realign with the magnetic field. This 

process is formally described by the Bloch equations as an exponential decay: 

𝑀𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒(𝑡) = 𝑀0 ∙ 𝑒
−𝜄𝜔0𝑡 ∙ 𝑒

−
𝑡
𝑇2
∗
 (3) 

where 𝑇2
∗ is a constant describing the decay rate and 𝑡 is the time after the RF 

pulse. Because of magnetic field inhomogeneities and magnetic susceptibility 

differences, we commonly measure the effective transverse relaxation time 𝑇2
∗ 

rather than 𝑇2 directly. 𝑇2
∗  is long for fluids (e.g. 700-1200 ms) and short for 

fat-based tissues (e.g. 10-100 ms).  
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Figure 4. Longitudinal and transverse magnetisation over time. The longitudinal magnetisation 

grows with rate 𝑇1 whereas the transverse magnetisation decays with rate 𝑇2. 

The complete magnetisation process is repeated by applying RF pulses and 

sampling the MR signal successively. The delay between successive RF 

pulses is known as repetition time (TR), while the delay between an RF pulse 

and sampling is known as echo time (TE). The selection of TR and TE 

emphasises longitudinal or transverse relaxations and tissue contrasts. 

Differences in longitudinal relaxation time are exaggerated in T1-weighted (T1-

w) acquisition sequences, where both TR and TE are short (TR: 1000 ms; TE: 

>30 ms) (Figure 5). Differences in transverse relaxation time are highlighted in 

T2-weighted (T2-w) acquisition sequences, where both the TR and TE are 

lengthy (TR: >2000 ms; TE: >80 ms) (Figure 5). 

 

Figure 5. Differences in longitudinal relaxation time are exaggerated in T1-weighted images 

(left) and in transverse relaxation times in T2-weighted images (right).  
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1.3.2 Quantifying cerebrovascular dysfunction via DCE-MRI 

Dynamic contrast-enhanced MRI (DCE-MRI) is being increasingly used for 

investigating cerebrovascular dysfunction in CSVD and related pathologies 

(Quarantelli, 2015; Thrippleton et al., 2019). In this imaging modality, a series 

of MRI scans are taken before and after injecting a Gadolinium-based contrast 

agent intravenously to image its distribution to brain tissues over time 

(Thrippleton et al., 2019). This contrast agent causes relaxation time of water 

molecules to decrease in T1-w and, hence, its accumulation in the extracellular 

extravascular space due to an abnormally permeable BBB would result in 

signal enhancement (Heye et al., 2016a). 

Let 𝑆[𝑡] 𝜖 ℝ be the DCE-MRI signal measured over time, such that 𝑆[0] 

denotes the signal intensity prior to contrast administration. If the spoiled 

gradient echo technique is used (McRobbie et al., 2017), then: 

𝑆[𝑡] = 𝑀0

(1 − 𝑒
−
𝑇𝑅
𝑇1[𝑡]) sin 𝜃𝐹𝐴

1 − 𝑒
−
𝑇𝑅
𝑇1[𝑡] cos 𝜃𝐹𝐴

∙ 𝑒
−
𝑇𝐸
𝑇2
∗[𝑡], (4)  

where 𝑇1[𝑡] and 𝑇2
∗[𝑡] are the longitudinal and effective transverse relaxation 

times at time 𝑡, respectively. If relaxation rates vary linearly with the contrast 

agent concentration, 𝐶𝑡[𝑡], and its relaxivities,𝑟𝑖, then 

1

𝑇𝑖[𝑡]
=
1

𝑇𝑖0
+ 𝑟𝑖 ∙ 𝐶𝑡[𝑡], 𝑖 = 1, 2

∗. (5) 

Contrast agent concentration has particularly strong effects on 𝑇1[𝑡] versus 

𝑇2[𝑡] (McRobbie et al., 2017). For example, if 𝑟1 = 4 and 𝑟2 = 5 mmol-1 s-1 

(approximate relativities for Gadolinium), 𝐶𝑡[𝑡 = 1] = 0.1 mmol kg-1, and 𝑇10 =

700 ms and 𝑇20 = 75 ms, the relative change in 𝑇1 and 𝑇2 is approximately 

22% and 4%, respectively. Furthermore, in spoiled gradient echo, the use of 

gradient or RF spoiling diminishes residual transverse magnetisation, thereby 

making 𝑆[𝑡] to depend primarily on 𝑇1 (Heye, 2015). The effect of 𝑇2
∗[𝑡] on 𝑆[𝑡] 

is therefore frequently dismissed. 
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The enhancement and concentration of contrast agent over time can therefore 

be estimated, respectively, by computing the relative signal change, i.e.  𝐸[𝑡] =

𝑆[𝑡] 𝑆[0] − 1⁄ , and by finding a 𝐶𝑡[𝑡] that minimises: 

𝐸[𝑡] =
𝑆[𝑡]

𝑆[0]
− 1 =

1 − 𝑒−𝑃−𝑄[𝑡] − cos 𝜃𝐹𝐴 (𝑒
−𝑃 − 𝑒−2𝑃−𝑄[𝑡])

1 − 𝑒−𝑃 − cos 𝜃𝐹𝐴 (𝑒−𝑃−𝑄
[𝑡] − 𝑒−2𝑃−𝑄[𝑡])

𝑒−𝑟2∙𝐶𝑡[𝑡]∙𝑇𝐸 − 1, (6) 

where 𝑃 = 𝑇𝑅/𝑇10 and 𝑄[𝑡] = 𝑟1 ∙ 𝐶𝑡[𝑡] ∙ 𝑇𝑅 (Armitage et al., 2011; Heye et al., 

2016a). 

1.3.2.1 Estimating longitudinal relaxation times 

Unlike the majority of parameters in Eq. 4-6 which are either known or supplied 

by radiographers, tissue-specific pre-contrast relaxation times, 𝑇10, must be 

estimated in vivo. 

Variable flip angle 𝑇1 mapping is a quantitative measurement technique that is 

often utilised to acquire whole-brain 𝑇1 maps within a clinically reasonable 

amount of time (Boudreau et al., 2020). The technique briefly consists of 

acquiring multiple spoiled gradient echo acquisitions, each of them with distinct 

excitation flip angles ({𝜃𝐹𝐴1 , … , 𝜃𝐹𝐴𝑁}, 𝜃𝐹𝐴𝑖 ≠ 𝜃𝐹𝐴𝑗), and finding 𝑇1 values such 

that Eq. 4 holds. While non-linear least squares fitting is certainly an option for 

this task, linear least squares is often used (Boudreau et al., 2020; Brookes et 

al., 1999; Gupta, 1977). After algebraic refactoring, Eq. 4 can take the form 

𝑦 = 𝑚𝑥 + 𝑏 (Gupta, 1977): 

𝑆𝜃𝐹𝐴𝑖
[0]

sin 𝜃𝐹𝐴𝑖
= 𝑒−

𝑇𝑅
𝑇1 ∙

𝑆𝜃𝐹𝐴𝑖
[0]

tan 𝜃𝐹𝐴𝑖
+𝑀0 (1 − 𝑒

−
𝑇𝑅
𝑇1) , (7) 

where 𝑆𝜃𝐹𝐴𝑖
 represents the signal intensity gauged with 𝜃𝐹𝐴𝑖. In the case of two 

flip angles, 𝑇1 can be estimated as follows (Armitage et al., 2011; Brookes et 

al., 1999): 

𝑇1 = −
𝑇𝑅

ln [
𝑆𝜃𝐹𝐴1 sin 𝜃𝐹𝐴2 − 𝑆𝜃𝐹𝐴2 sin 𝜃𝐹𝐴1

𝑆𝜃𝐹𝐴1 sin 𝜃𝐹𝐴2 cos 𝜃𝐹𝐴1 − 𝑆𝜃𝐹𝐴2 sin 𝜃𝐹𝐴1 cos 𝜃𝐹𝐴2
]

. (8)
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It should be noted that 𝑇1 mapping is technically challenging. First, 𝑇1 depends 

on the intensity of the magnetic field as well as the patient's body temperature 

(Boudreau et al., 2020). Second, because the flip angle specified at the 

scanner end differs from the flip angle experienced by the spins, high 

sensitivity to flip angle inaccuracies is to be expected (Boudreau et al., 2020). 

Third, 𝑇1 quantification requires multiple scans. Since each of them is uniquely 

affected by k-space sampling, motion, and noise, all of these imaging errors 

will be projected onto 𝑇1 maps, causing additional estimation errors (Hallack et 

al., 2014). 

1.3.2.2 Compartmental modelling 

Formally, the paradigm of DCE-MRI considered in this thesis Error! 

Reference source not found.states signal variations following an intravenous 

Gadolinium-based contrast agent injection are related to the presence of 

contrast agent per unit of tissue, 𝐶𝑡(𝑡), which in turn depends on a vascular 

and extracellular extravascular component. The vascular component relates 

the contrast agent concentration in the capillary blood plasma at a certain time 

point, 𝑐𝑝(𝑡), and the fractional plasma volume, 𝑣𝑝.The extracellular 

extravascular component relates the contrast agent concentration in the 

extracellular extravascular space at a certain time point, 𝑐𝑒(𝑡), and the 

fractional interstitial volume, 𝑣𝑒. Together, this relationship can be explicitly 

modelled as follows (Sourbron and Buckley, 2013; Tofts, 2010, 2003):  

𝐶𝑡(𝑡) = 𝑣𝑃𝑐𝑝(𝑡) + 𝑣𝑒𝑐𝑒(𝑡). (9) 

Note that the contrast agent can also flow from the vascular to the 

extravascular extracellular space with a BBB leakage rate, 𝐾𝑡𝑟𝑎𝑛𝑠. Assuming 

the system is permeability limited, 𝐾𝑡𝑟𝑎𝑛𝑠 = 𝑃𝑆, where 𝑃𝑆 is the permeability-

surface area product (Sourbron and Buckley, 2013). The change in 

concentration in the extracellular extravascular space over time caused by the 

leakage of the BBB can be modelled as follows: 

𝑣𝑒
𝑑𝑐𝑒
𝑑𝑡
(𝑡) = 𝑃𝑆 ∙ 𝑐𝑝(𝑡). (10) 
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We resort to the Laplace transform to solve the previous first-order differential 

equation. The application of the Laplace transform onto Eq. 10 yields 

𝑠 ∙ 𝑐�̅�(𝑠) − 𝑐𝑒(0) =
𝑃𝑆

𝑣𝑒
∙ 𝑐�̅�(𝑠), (11) 

where 𝑐�̅�(𝑠) and 𝑐�̅�(𝑠) represent the Laplace transform of 𝑐𝑒(𝑠) and 𝑐𝑝(𝑠), 

respectively. The concentration of contrast agent in the extravascular 

extracellular space at time point zero is equal to zero. The analytical solution 

for 𝑐𝑒(𝑡) is thus 

𝑐𝑒(𝑡) =
𝑃𝑆

𝑣𝑒
𝛿(𝑡) ∗ 𝑐𝑝(𝑡) =

𝑃𝑆

𝑣𝑒
∫ 𝛿(𝜏)𝑐𝑝(𝑡 − 𝜏)𝑑𝜏
𝑡

0

=
𝑃𝑆

𝑣𝑒
∫ 𝑐𝑝(𝜏)𝑑𝜏
𝑡

0

, (12) 

where ∗ represents the convolution operator and 𝛿(𝑡) the impulse response 

function. Replacing 𝑐𝑒(𝑡) in Eq. 9, we find that 𝐶𝑡(𝑡) corresponds to: 

𝐶𝑡(𝑡) = 𝑣𝑃𝑐𝑝(𝑡)⏟    
𝑉𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+ 𝑃𝑆 ∫ 𝑐𝑝(𝜏)dτ
𝑡

0⏟        
.

𝐸𝑥𝑡𝑟𝑎𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝑒𝑥𝑡𝑟𝑎𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

(13)
 

 

Figure 6. Paradigm considered in this thesis to describe contrast agent concentration in a unit 

of tissue . Signal increase is proportional to the concentration of contrast agent per unit of 

tissue, 𝐶𝑡(𝑡). This variable in turn depends on the amount of contrast agent in blood plasma 

and extravascular extracellular space, 𝑐𝑝(𝑡) and  𝑐𝑒(𝑡); fractional plasma and interstitial 

volumes, 𝑣𝑝 and 𝑣𝑒; and the BBB leakage rate, 𝑃𝑆. Created with BioRender.com 
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1.3.3 PVS enlargement 

PVS are millimetre fluid-filled tubular structures that surround cerebral 

microvessels (Wardlaw et al., 2020). They form part of the glymphatic system 

and, consequently, play an essential role in waste elimination, interstitial fluid 

exchange, and, more broadly, healthy brain function (Wardlaw et al., 2020). 

PVS can become visible on structural MRI when enlarged or dilated, especially 

around arteries supplying the basal ganglia, centrum semiovale, and 

pontomesencephalic junction (Figure 7) (Wardlaw et al., 2020). Even though 

this situation may be normal at any age, the abundance and enlargement of 

PVS seem associated with ageing, hypertension, altered BBB permeability (Li 

et al., 2018), and other neuroimaging features of CSVD (Francis et al., 2019). 

Quick, accurate and reliable quantification of PVS is therefore crucial to 

determine their involvements in CSVD and in the nervous system in a broader 

context. 

 

Figure 7. MRI-visible PVS appear hyperintense in T2-w MRI scans. They can appear in the 

basal ganglia (left), centrum semiovale (centre), and pontomesencephalic junction (right). 

Adapted from Valdés-Hernandez et al. (2013). 

Evaluation of PVS in the brain nowadays relies largely on visual clinical ratings, 

given full manual counts are extremely time consuming and impractical on a 

larger scale. Scores are quick to obtain and easy to interpret as they 

approximate PVS burden qualitatively. However, they are limited by floor and 

ceiling effects and interobserver variability (González-Castro et al., 2017). 

Computational methods may be used alternatively to overcome the limitations 
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of visual ratings, but careful design and tuning is needed to segment such 

small structures. 

1.4 General challenges when quantifying extremely 

subtle neuroimaging features of CSVD 

The evolution of neuroimaging technologies nowadays enables visualising 

minuscule structures of the brain that have received little attention, not 

because they are any less important than larger and evident ones, but because 

routine MRI was insensitive to them. Nonetheless, there are still major barriers 

to measuring biomarkers of CSVD that limit their translation to clinics (Figure 

8). From a computational perspective, these are two: 

 Proposal validation and lack of a ground truth: the development of 

computational processing techniques requires a ground truth, e.g. 

segmentation of the structures of interest. Nonetheless, building a 

ground truth is an extremely time-consuming, laborious, and impractical 

task to perform, especially on a larger scale and when dealing with tiny 

and abundant structures. Moreover, validation of a few techniques may 

require correlating in vivo and ex vivo observations, making it 

impractical in real life. 

 Subtlety and imaging artefacts: imaging artefacts arising during MRI 

scanning can compromise the quantification of subtle neuroimaging 

features of CSVD. Although compensating for these visual distortions 

retrospectively may seem useful, careful testing and tuning is essential 

to avoid dispensing with clinically relevant information. Note this is not 

possible without a ground truth. 
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Figure 8. A few computational challenges when studying CSVD. CSVD is characterised by 

subtle and heterogeneous abnormalities. This subtlety makes quantification challenging as 

spatial and temporal imaging considerations alter the visual quality of MRI scans. Additionally, 

the lack of a ground truth prevents determining whether quantification is accurate and precise. 

Together, these issues lead to potentially sub-optimal processing methods, which may 

dispense with or neglect subtle yet clinically relevant information. Created partially with 

BioRender.com. 

1.5 Aims and research questions 

In this doctoral thesis, we propose computational models and signal 

processing techniques to enable objective examination of image processing 

schemes and improve the quantification of subtle and clinically relevant 

neuroimaging features. We focus on the analysis of structural and dynamic-

contrast enhanced MRI (sMRI and DCE-MRI) to better characterise the 

relationship between endothelial dysfunction and the glymphatic system. 

We also investigate whether signal and image processing tools can 

compensate for spatial and temporal imaging considerations without 

dispensing with clinically relevant information and, if so, under what conditions 

can they be considered. 
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1.6 Scope 

The present document describes strategies to improve the characterisation of 

two extremely subtle features of CSVD: cerebrovascular function and enlarged 

PVS. The quantification of other neuroimaging features of CSVD and related 

pathologies is therefore out of the scope of this work.  

1.7 Thesis outline 

The rest of the thesis is structured as follows: 

In PART I of this thesis (Chapter 2-5), we focus on the examination of 

cerebrovascular function using DCE-MRI.  

 Chapter 2. We identify common techniques for post-processing DCE-

MRI signals when assessing endothelial dysfunction as well as potential 

methodological problems around the validation of such processing 

schemes. 

 Chapter 3. We determine the extent to which measurements extracted 

from DCE-MRI signals reflect the patient’s health status. This statistical 

analysis is the stepping stone to determining the effect of post-

processing on subsequent chapters. 

 Chapter 4. We introduce a computational model mimicking 4D DCE-

MRI to determine the effect of imaging considerations (e.g. noise, 

motion, and sampling) on assessments of BBB dysfunction. For the first 

time, we demonstrate the harmful effect spatial and temporal 

considerations have on these assessments. We also provide evidence 

supporting the need for careful interpretation of results. 

 Chapter 5. We use our computational model to determine the effect of 

common post-processing schemes identified in Chapter 2. We 

demonstrate that a few post-processing techniques reduce estimation 

errors, whereas others should be reconsidered as our experiments 

suggest they may be detrimental. We additionally report the use of 

appropriate post-processing techniques leads to reduced variability and 
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implausible estimates of BBB dysfunction and more evident 

associations. 

In PART II of this thesis (Chapter 6-7), we focus on the examination of PVS 

using sMRI.  

 Chapter 6. We introduce a computational model of sMRI to determine 

the effect of imaging considerations on PVS quantification. We 

demonstrate that methods are relatively robust against most conditions, 

except motion artefacts. 

 Chapter 7. We propose a technique filtering or tuning parameters 

depending on imaging quality. We show selective processing leads to 

estimates that correlate better with clinical visual scores and agree 

more with full manual counts, highlighting the potential of our proposal.  

Chapter 8. We summarise key findings of our works and put forward a set of 

recommendations for future and ongoing studies examining cerebrovascular 

function via DCE-MRI and PVS via T2-w sMRI. 
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 DCE-MRI artefacts and post-

processing in subtle BBB leakage assessments: 

a systematic review 

In this chapter, we review the literature around DCE-MRI assessments of 

subtle BBB leakage to determine common imaging artefacts affecting these 

assessments and common post-processing methods to compensate for them.  

2.1 Introduction 

The enhancement caused by the injection, distribution and leakage of 

paramagnetic substances in the brain is reflective of cerebrovascular 

dysfunction (Quarantelli, 2015; Thrippleton et al., 2019). Nonetheless, extrinsic 

and intrinsic imaging considerations alter these signals and make it unclear 

whether signal variations are caused by subtle yet critical BBB abnormalities 

(Armitage et al., 2011; Barnes et al., 2016; Heye et al., 2016a; Manning et al., 

2021; Thrippleton et al., 2019). For this reason, researchers have looked into 

ways to post-process DCE-MRI signals to obtain more reliable measurements. 

The application of DCE-MRI to the study of the breakdown of the BBB has 

been extensively and thoroughly reviewed in recent years (Chagnot et al., 

2021; Heye et al., 2014; Raja et al., 2018; Thrippleton et al., 2019). In this 

chapter, we focus on identifying imaging artefacts compromising these types 

of assessments, on post-processing methods used to compensate for them, 

and their validation.  

2.2 Materials and methods 

2.2.1 Search sources and eligibility criteria 

We searched for journal articles published up to February 2021 on the Web of 

Science and Medline on subtle BBB dysfunction assessments using DCE-MRI. 

For these two databases, we developed a search strategy to retrieve papers 

using this imaging modality and linked to cerebral CSVD and related 

neuroimaging features and pathologies. 
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2.2.1.1 Keywords 

We used the following categories and keywords to search the literature 

systematically: 

 Imaging modality: dynamic contrast enhanced magnetic resonance 

imaging, DCE-MRI. 

 Structure: blood-brain barrier, BBB, cerebrovascular, endothelial, 

endothelium, vascular. 

 Problematic: permeability, integrity, dysfunction, leakage, disruption, 

breakdown. 

 Disease: cerebral small vessel disease, SVD, CSVD, lacunar stroke, 

ischaemic stroke, white matter lesion, microangiopathy, white matter 

hyperintensity, WMH, leukoariasis, microbleed, perivascular space, 

dementia, AD, Alzheimer. 

2.2.1.2 Inclusion criteria 

We included DCE-MRI studies examining BBB dysfunction in CSVD and 

related neurodegenerative diseases that were carried out in humans in vivo. 

2.2.1.3 Exclusion criteria 

We excluded all pre-clinical studies as well as those in humans that were 

published as abstracts, that were not related to CSVD or associated 

neurodegenerative diseases, or that did not use DCE-MRI. 

2.2.1.4 Data extraction 

We extracted the following data from papers fulfilling the inclusion criteria: 

 General information: authors, title, year of publication, journal, DOI. 

 Study information: number of recruited and scanned subjects, of 

scans discarded due to imaging artefacts, and of images included in the 

final analysis. 

 Imaging artefacts: spatiotemporal imaging artefacts present in studies 

and whether or not authors discuss how these may limit analysis and 

interpretation. 
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 Type of assessment: qualitative or computational, semi-quantitative or 

quantitative. 

 Post-processing details: co-registration, intensity standardisation, 

bias field correction, signal filtering. 

 Reporting: whether or not authors report raw estimates. 

 Validation: whether post-processing methods were validated prior to 

their use. 

2.3 Search results 

We used the search terms and inclusion and exclusion criteria in Section 2.2.1 

to carry out our systematic search (Figure 9). First, we used keywords to 

search on both titles and abstracts. Second, we removed all duplicates. We 

found three duplicated records. Third, we screened titles and abstracts to 

exclude studies outside the scope of our review. We removed 523 records that 

included pre-clinical work, targeted a disease that was not related to CSVD, or 

reviewed the literature. Fourth, we evaluated the full text of the remaining 

articles, applying inclusion and exclusion criteria. We also reviewed works in 

recent reviews that were missed in our primary search (manual inclusions in 

Figure 9). This process led to 40 works examining cerebrovascular dysfunction 

via DCE-MRI. Data extraction results are condensed in Table 1. 
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Figure 9. PRISMA flow diagram depicting inclusion and exclusion of papers at various stages 

of the systematic search. 

2.3.1 Imaging issues present in DCE-MRI based assessments 

of BBB dysfunction 

The majority of studies highlight the presence of imaging issues in their 

assessments of cerebrovascular function via DCE-MRI (25 out of 40, 63%). In 

them, spatial or spatiotemporal problems related to motion, noise, and 

sampling are common (reported in 13, 10, and 7 papers, respectively). In 

approximately 13% of all studies, the level of distortion caused by these 

imaging artefacts was such that exclusion of scans was necessary. In those 

cases, the discard rate was as high as 6%. Discussion and awareness of their 

potentially harmful effect has improved over time (Figure 11), with 43% of 
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works in the field recognising spatial or temporal imaging considerations limit 

permeability measurement and subsequent interpretation. 

 

Figure 10. Imaging issues compromising DCE-MRI based assessments of cerebrovascular 

function. The number inside parenthesis corresponds to the number of papers highlighting the 

problem. A single paper can report multiple imaging issues. 

 

Figure 11. Publications discussing imaging issues limit DCE-MRI based analyses of BBB 

dysfunction throughout the years. We use rectangular brackets and parenthesis to denote 

inclusion and exclusion of endpoints of the interval, respectively. 

2.3.2 Type of computational analysis 

Computational analysis of DCE-MRI signals are classified into quantitative or 

semi-quantitative depending on whether they rely or not on biophysical models 

describing pharmacokinetics, respectively (Thrippleton et al., 2019). 
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Semi-quantitative methods, also referred to as model-free, have been used in 

approximately a third of all works in the field (Figure 12). This group relies 

mostly on the quantification of the area under the curve as measure of the total 

enhancement throughout the acquisition process and of the slope of signal-

time curves as measure of the contrast uptake and washout rates. While their 

computation is relatively simple, two key drawbacks limit their applicability. 

First, their interpretation is ambiguous since multiple factors mediate their 

response. For example, the area under the curve can be linked to the 

accumulation of contrast agent in the extra-vascular extra-cellular space, but 

it can also be a product of its capillary density. Second, these measurements 

are largely determined by the imaging protocol (Thrippleton et al., 2019). For 

instance, under similar permeability and vascular conditions, the more the 

contrast is being injected intravenously, the more the contrast that flows 

through the brain and the higher the total enhancement. Undoubtedly, these 

shortcomings imply these techniques are useful and meaningful whenever 

scanning factors are kept constant. 

Textural and spectral variations over time have also been used to investigate 

the relationship between signal fluctuations over time and health status. These 

types of computer vision descriptors have been successfully used to study pre- 

and post-contrast changes in FLAIR images in patients with neuroimaging 

features of CSVD (Valdés Hernández et al., 2017), investigate potential links 

between spatial signal fluctuations and brain pathologies (Khalifa et al., 2016), 

and characterise neurophysiological and hemodynamic patterns in 

neurodegenerative diseases (Mattia et al., 2003). Particularly for DCE-MRI 

and BBB dysfunction, these established computer vision descriptors have 

been found to vary with the burden of neuroimaging features of CSVD (Bernal 

et al., 2020c, 2020a, 2020b). Nonetheless, their application is more 

methodologically demanding than that of conventional semi-quantitative 

techniques as they require examining regions of similar volume in all patients 

to avoid encoding volumetric information (Bernal et al., 2020a, 2020c), which 

would naturally correlate with the health of the patient. 
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Quantitative methods, on the other hand, rely on biophysical models that 

describe enhancement as the interaction of capillary density or vascular 

permeability. For this reason, variables being fitted with these approaches 

have a clear biophysical interpretation linked to either of these components, 

making them appealing for the study of BBB function and potentially explaining 

their frequent use in the literature (Figure 12). However, the reliability of these 

approaches depends on whether their assumptions about the underlying 

pathology hold or not and on the availability of validation frameworks. The 

subtle nature of the signal in low-permeability scenarios and intrinsic and 

extrinsic imaging considerations seem to affect the accuracy and precision of 

quantitative methods (Armitage et al., 2011; Heye et al., 2016a). Moreover, the 

computation of such measurements is computationally and methodologically 

more complex than that of standard semi-quantitative approaches. 

 

Figure 12. Approximation to study BBB dysfunction using DCE-MRI. We categorised 

assessments into qualitative, semi-quantitative, and quantitative (Thrippleton et al., 2019). 

2.3.3 Post-processing methods 

We found post-processing to occur at the level of the signal and permeability 

values. In the following subsections, we present the different strategies used 

in the literature to post-process DCE-MRI signals in low-permeability 

scenarios. 
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2.3.3.1 Signal post-processing 

2.3.3.1.1 Spatial realignment 

Spatial realignment compensates for movement of the head of the patient 

during imaging, thereby improving spatiotemporal consistency and enabling 

voxel-wise analysis. This processing step is frequent in the field (reported in 

75% of all works, 30 out of 40) and primarily relies on rigid body registration 

and the use of standard processing libraries (FMRIB Software Library [FSL] in 

most cases). Works that do not carry inter-frame co-registration out fail to 

discuss the reasons behind this decision. 

2.3.3.1.2 Temporal filtering 

The aim of temporal filtering is to smooth signal-time curves in the temporal 

domain to correct for eccentric or ‘noisy’ measurements that may affect 

parameter regression in later stages of the analysis. Only four works reported 

the use of these types of techniques: Shao et al. (2020), Taheri et al. (2011a, 

2011b), van de Haar et al. (van de Haar et al., 2017b). The filters that were 

used for this purpose were the Kalman filter (Kalman, 1960), Savitsky-Golay 

filter (Savitzky, A.; Golay, 1964), and moving average. In their classical 

formulation, each of these filters assumes linearity of the signal, which clashes 

with the potentially non-linear nature of the enhancement (Parker et al., 2006). 

Moreover, temporal filtering requires parameter tuning to ensure optimal filter 

response: the Kalman filter requires setting up state transition and observation 

models and initialising noise matrices; the Savitsky-Golay filter tuning the order 

of the smoothing polynomial and the number of data points used for fitting it; 

and the moving average the number of data points used for prediction. 

However, these details are lacking in all four papers. 

2.3.3.1.3 Segmentation mask erosion 

Partial volume effects are inherent to the discretisation process occurring 

during MRI since signals coming from multiple tissues may be represented by 

a single voxel in the image (McRobbie et al., 2017). This situation is particularly 

problematic in DCE-MRI acquisition given that partial volume effects may vary 

over time, giving the erroneous impression of signal diminution or 

enhancement, especially in voxel-wise computations. Methods used in the 
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study of cerebrovascular function using DCE-MRI do not possess mechanisms 

to account for partial volume effects automatically, implying permeability 

measurements around tissue interfaces may be incorrect, hence biasing visual 

and quantitative analyses. Nevertheless, only a fifth of the works (8/40) attempt 

to deal with these problems and uniquely via segmentation mask erosion, i.e. 

by excluding voxels from the analysis (Figure 13). 

 

Figure 13. Segmentation mask erosion to reduce tissue contamination due to partial volume 

effects. From left to right, slice from structural T1-w scan, original segmentation and 

segmentation map after erosion. 

2.3.3.1.4 Signal peak discard 

Rapid signal variations arising immediately after the intravenous injection of 

contrast agent are typically under-sampled to the temporal resolution of 

standard acquisition protocols, e.g. causing the first pass to be missed (Heye 

et al., 2016a). Additionally, pharmacokinetic models may not describe this non-

linearity accurately (Larsson et al., 2009a). Exclusion of a few post-contrast 

time points from all computations is the recommended approximation to deal 

with both of these issues (Heye et al., 2016a; Larsson et al., 2009a), especially 

when extracting quantitative measurements. However, excluding too many 

data points can be counterproductive as it increases uncertainty in the 

estimation (Vidarsson et al., 2009). Despite the previous reasons supporting 

its application, this post-processing step is used in less than 20% (7 out of 40) 

of all works in the field.  
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2.3.3.2 Parameter value post-processing 

Negative pharmacokinetic parameter values are implausible yet common in 

low-permeability parameter mapping (Thrippleton et al., 2019). These negative 

measurements are erroneous and may bias the computation of central 

tendency statistics – especially those based on the mean value. 

Understanding the source of these errors and compensating for them is then 

essential for improving reliability of these subtle BBB dysfunction 

assessments. 

Simulation work suggests these questionable measurements are caused by 

extrinsic and intrinsic imaging considerations (Barnes et al., 2016; Bernal et 

al., 2021a; Heye, 2015). Even though the effect of imaging considerations are 

not particularly evident in T1-w scans, they substantially distort permeability 

mapping, leading to negative values (Figure 14). 

 

Figure 14. Negative values in parameter maps. From left to right, slices of structural T1-w 

scan, leakage rate map (PS), and fractional blood plasma volume map (vP). White arrows 

show areas of evident and concentrated negative leakage rates.  

A fifth of the works in the field deal with this situation by identifying of a zero-

centred symmetric ‘noise’ distribution contaminating the true distribution of 

measurements (van de Haar et al., 2017a). The approach, referred to as 

histogram analysis, consists of two steps. First, it identifies negative 

measurements from the histogram of permeability values. These values 
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constitute the left tail of the ‘noise’ distribution. Second, it mirrors the estimated 

tail around zero, which results in the zero-centred symmetric distribution that 

represents the noise distorting the measurement process. This ‘noise’ 

distribution is then excluded from averaging. Given that this method leverages 

histograms, its effectiveness may depend on binning directives (e.g. number 

of bins, width of bins). However, this information is not disclosed in papers. 

Furthermore, none of the works using this approximation present sufficient 

evidence to support the existence of a distribution with such characteristics. 

2.3.4 Synthesis method 

Researchers typically summarise permeability values using two 

approximations: signal averaging and parameter averaging. In signal 

averaging, they spatially average signal-time curves per region of interest prior 

to pharmacokinetic analysis, obtaining a single estimate of permeability per 

region of interest. In parameter averaging, they compute parameter maps and 

average per region of interest. The application of parameter averaging has 

parameter maps as a by-product, enabling spatial visualisation of permeability 

values and potentially explaining why this synthesis method is so frequent in 

the literature (Figure 15). However, the practical advantages or disadvantages 

of one method over another are unknown.  

 

Figure 15. Synthesis methods used in quantitative analyses of DCE-MRI signals for assessing 

BBB dysfunction. The total number of papers using quantitative methods is 26. 
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2.3.5 Is there evidence supporting the use of post-processing 

methods? 

The effect of post-processing either DCE-MRI signals or parameter maps is 

predominantly overlooked: out of the 34 works that consider post-processing, 

only one investigated its impact numerically. The paper corresponds to the 

work of Vidarsson et al. (2009), in which the authors showed that discarding 

less data points resulted in lower uncertainty in permeability estimation. 

Evidence supporting the use of most post-processing schemes in silico is also 

lacking, except that on the benefits of signal peak discard (Heye et al., 2016a; 

Larsson et al., 2009a). 

2.4 Discussion 

Growing interest surrounds the use of DCE-MRI for probing endothelial 

dysfunction and determining its role on the pathogenesis of CSVD and related 

pathologies. The increasing number of articles published throughout the years 

suggests this is a promising imaging technique to investigate cerebrovascular 

dysfunction. However, technical and methodological strides towards validating 

and harmonising processing workflows are still required to maximise reliability 

in these studies.  

We reviewed studies examining cerebrovascular dysfunction in CSVD and 

related pathologies via DCE-MRI systematically to identify imaging issues 

compromising such assessments as well as ways researchers have adopted 

to compensate for them. This systematic review allowed us to pinpoint a 

methodological gap in the field: the effect of spatiotemporal imaging issues 

and post-processing is unknown and there are no general ways to quantify it. 

DCE-MRI is prone to spatial and temporal imaging issues due to the prolonged 

duration and the nature of the scanning process. While some of these imaging 

issues can be minimised using specialised software or hardware, some 

distortions, such as those originating from k-space sampling over time, are 

inherent to the imaging process. In our literature review, we found that motion, 

noise, and sampling were frequently deemed detrimental, possibly due to their 
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visual repercussions on structural images and on permeability maps (Figure 

14). However, the consequences of these imaging issues may be subtle 

enough to evade human detection (Esteban et al., 2017), without this implying 

they should be ignored. In extremely low permeability scenarios, these imaging 

issues hinder estimating permeability accurately and confound whether 

tenuous signal fluctuations are a consequence of subtle yet critical BBB 

abnormalities (Armitage et al., 2011; Barnes et al., 2016; Bernal et al., 2021a; 

Heye et al., 2016a; Thrippleton et al., 2019). Therefore, quantifying the effect 

of these spatiotemporal distortions on current assessments and compensating 

for them either prospectively or retrospectively is essential for a more reliable 

examination of cerebrovascular dysfunction in CSVD studies using DCE-MRI. 

Processing workflows designed for treating DCE-MRI vary from centre to 

centre and can incorporate optional steps to deal with the aforementioned 

problematics. In our review, we identified five ways researchers post-process 

DCE-MRI signals: 

 Spatial realignment to correct for potential bulk head motion in the DCE-

MRI sequence and align pre-contrast longitudinal relaxation maps 𝑇10 

maps. Even though the utilisation of this post-processing techniques is 

intuitively useful to enforce spatiotemporal consistency, many works do 

not report or consider it. Whether this is due to the use of specialised 

hardware or software for automatic motion correction is not made clear 

either. Note the use of inter-frame realignment does not provide a 

solution to imaging artefacts caused by motion (e.g. ringing, blurring, or 

ghosting) (Zaitsev et al., 2015). 

 Temporal filtering to compensate for ‘noisy’ measurements caused, for 

instance, by motion. Nonetheless, it is unclear whether temporal filtering 

makes a distinction between ‘noise’ and ‘real’ measurements since 

some of these eccentric observations may be also a result of 

physiological conditions too, e.g. cardiovascular brain pulsations, as 

seen in functional MRI (Tuovinen et al., 2020). 

 Segmentation mask erosion to exclude regions of interest proximal to 

large blood vessels or around tissue interfaces. While this technique 
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effectively ignores regions affected by partial volume effects varying 

over time, which pharmacokinetic models cannot describe 

appropriately, it does not compensate for all ways of signal 

contamination, such as that caused by the propagation of ringing 

artefacts arising after undersampling the signal around large blood 

vessels. 

 Signal peak discard to omit a few post-contrast time points given that 

rapid signal variations immediately after contrast injection may be 

inadequately sampled and described by quantitative methods (Heye et 

al., 2016a; Larsson et al., 2009a). This step is also useful in semi-

quantitative analyses of signal time curves relying on the computation 

of the slope as the nature of these signal fluctuation are not necessarily 

linear (Parker et al., 2006).  

 Histogram analysis of pharmacokinetic parameter estimates to 

minimise the effect implausible values may have on the computation of 

central tendency statistics. Its use ensures average leakage rates are 

always positive. Whether ‘positive’ is a synonym of ‘better’ or 

‘overestimation’ is elusive.  

However, the lack of a standard processing workflow can cause the vast 

variability in estimates from different research studies, situation which limits 

interpretation and impedes direct comparison between studies (Raja et al., 

2018; Thrippleton et al., 2019). On top of that, the lack of evidence on 

parameter tuning, assumption testing, and validation of processing pipelines 

makes it unclear whether estimates obtained using a certain processing 

scheme are more reflective of the underlying pathology than others. 

The development of frameworks simulating the imaging process in recent 

years has yielded crucial insights into requirements optimising aspects of 

DCE-MRI acquisition protocols and methodologies. Nonetheless, all of them 

rely on Monte Carlo simulations (Armitage et al., 2011; Barnes et al., 2016; 

Cramer and Larsson, 2014; Heye et al., 2016a; Manning et al., 2021), which 

prevents assessing the effect of spatiotemporal imaging considerations and 

validating most processing techniques. Simulating the four-dimensional nature 
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of the acquisition and processing may enable testing the effectiveness of 

current imaging protocols and processing schemes in a more realistic scenario 

and optimising them to improve quantification of vascular permeability using 

DCE-MRI. 

2.5 Take-home messages 

 Studies of subtle BBB dysfunction leveraging DCE-MRI utilise post-

processing techniques which effect, whether positive or negative, is 

largely unknown or unreported.
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Table 1. Data extracted for studies investigating subtle vascular permeability using DCE-MRI until February 2021. We report synthesis method only if the 

analysis was quantitative. In the column ‘discard rate’, we report the frequency and relative frequency of scan discard in the study. NA: not applicable. 

FSL: FMRIB Software Library. ROI: Region of interest. 

G
ro

u
p
 

Study 
Mentioned 

imaging 
artefacts 

Discard rate Assessment Method 
Signal post-
processing 

Parameter 
post-

processing 
Synthesis 

Is the effect 
of signal or 
parameter 

post-
processing 
evaluated? 

Do authors 
comment 
imaging 

artefacts limit 
analysis? 

W
a

h
lu

n
d
 

Bronge and 
Wahlund  
(2000) 

-- 0 (0%) 
Semi-

quantitative 
Enhancement 

ratio 
-- -- NA NA No 

A
b

e
 

Hanyu et al. 
(2002) 

-- 0 (0%) 
Semi-

quantitative 
T1 enhancement -- -- NA NA No 

S
u

 Wang et al. 
(2006) 

Partial volume 0 (0%) 
Semi-

quantitative 
Enhancement 

and slope 
Signal peak 
discard 

-- NA No No 

M
a

rd
o

r 

Israeli 
(2011) 

Intensity 
inhomogeneity 
Motion 

0 (0%) Qualitative Subtraction maps 
Rigid registration 
Bias field 
correction 

-- NA No No 
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F
ie

b
a
c
h
 

Villringer et 
al. (2016) 

Partial volume 
Noise 

0 (0%) Quantitative Pharmacokinetic 

Rigid registration 
Inter-slice 
histogram 
correction 

-- 
Parameter 
averaging 

No Yes 

B
a

rb
e

r 

Sah et al. 
(2019) 

-- 0 (0%) Quantitative Pharmacokinetic Rigid registration -- 
Parameter 
averaging 

No No 

K
a

s
s
n

e
r 

Vidarsson et 
al. (2009) 

Motion 
Noise 

0 (0%) Quantitative Pharmacokinetic 
Signal peak 
discard 

-- 
Parameter 
averaging 

Yes, in vivo Yes 

Wu et al. 
(2009) 

Motion 0 (0%) Quantitative Pharmacokinetic Rigid registration -- 
Parameter 
averaging 

No Yes 

Merali et al. 
(2017) 

T1 
inhomogeneity 

0 (0%) Quantitative Pharmacokinetic 
Affine 
registration 

-- 
Parameter 
averaging 

No Yes 

R
o
s
e

n
b
e

rg
 Taheri et al. 

(2011a) 
Motion 0 (0%) Quantitative Pharmacokinetic 

Rigid registration 
Kalman filtering 

-- 
Parameter 
averaging 

No No 

Taheri et al. 
(2011b) 

Motion 0 (0%) Quantitative Pharmacokinetic 
Rigid registration 
Kalman filtering 

-- 
Parameter 
averaging 

No No 

Huisa et al. 
(2016) 

Motion 0 (0%) Quantitative Pharmacokinetic 
Rigid registration 
Kalman filtering 

-- 
Parameter 
averaging 

No No 

H
u

 

Li et al. 
(2017) 

-- 0 (0%) Quantitative Pharmacokinetic -- -- 
Parameter 
averaging 

NA No 

Li et al. 
(2018) 

-- 0 (0%) Quantitative Pharmacokinetic -- -- 
Parameter 
averaging 

NA No 

Li et al. 
(2019) 

-- 0 (0%) Quantitative Pharmacokinetic -- -- 
Parameter 
averaging 

NA No 

Z
lo

k
o

v
ic

 

Montagne et 
al. (2015) 

-- 0 (0%) Quantitative Pharmacokinetic -- -- 
Parameter 
averaging 

NA No 

Nation et al. 
(2019) 

-- 0 (0%) Quantitative Pharmacokinetic Rigid registration -- 
Parameter 
averaging 

No No 

Shao et al. 
(2020) 

-- 0 (0%) Quantitative Pharmacokinetic 
Rigid registration 
Moving average 

-- 
Parameter 
averaging 

No Yes 

B
a

c
k
e

s
 van de Haar 

et al. (2016) 
-- 0 (0%) Quantitative Pharmacokinetic 

Rigid registration 
(FSL) 

Histogram 
analysis 

Parameter 
averaging 

No No 

van de Haar 
et al. 

(2017a) 
Noise 0 (0%) Quantitative Pharmacokinetic 

Rigid registration 
Savitsky-Golay 
filtering 

Histogram 
analysis 

Parameter 
averaging 

No Yes 
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van de Haar 
et al. 

(2017b) 

Motion 
Signal drift 
Noise 

2 (6%) Quantitative Pharmacokinetic 
Rigid registration 
 

Histogram 
analysis 

Parameter 
averaging 

No Yes 

Wong et al. 
(2017) 

Noise 
Partial volume 
Motion 

0 (0%) Quantitative Pharmacokinetic Registration -- 
Parameter 
averaging 

No Yes 

Zhang et al. 
(2017) 

Noise 4 (3%) Quantitative Pharmacokinetic -- 
Histogram 
analysis 

Parameter 
averaging 

No No 

Zhang et al. 
(2019) 

Imaging 
artefacts 

4 (5%) Quantitative Pharmacokinetic Rigid registration 
Histogram 
analysis 

Parameter 
averaging 

No No 

Freeze et al. 
(2020) 

Noise 
Partial volume 

0 (0%) Quantitative Pharmacokinetic -- 
Histogram 
analysis 

Parameter 
averaging 

No Yes 

Verheggen 
et al. 

(2020a) 
-- 0 (0%) Quantitative Pharmacokinetic Rigid registration 

Histogram 
analysis 

Parameter 
averaging 

No No 

Verheggen 
et al. 

(2020b) 
-- 0 (0%) Quantitative Pharmacokinetic Rigid registration 

Histogram 
analysis 

Parameter 
averaging 

No No 

W
a

rd
la

w
 

Wardlaw et 
al. (2008) 

-- 0 (0%) 
Semi-

quantitative 

Linear mixed 
models and area 
under time curve 

Rigid registration -- NA No No 

Wardlaw et 
al. (2009) 

-- 0 (0%) 
Semi-

quantitative 

Linear mixed 
models 

 

Rigid registration 
Tissue 
probability map 
thresholding 

-- NA No No 

Starr et al. 
(2009) 

Flow artefacts 0 (0%) 
Semi-

quantitative 
Signal average in 

ROI 
Rigid registration 
(FSL) 

-- NA No Yes 

Armitage et 
al. (2011) 

Noise 
Signal drift 

0 (0%) 
Semi-

quantitative 

Average 
enhancement, 
concentration, 

and longitudinal 
relaxation times 

Rigid registration 
(FSL) 

-- 
Parameter 
averaging 

No Yes 

Wardlaw et 
al. (2013) 

-- 0 (0%) 
Semi-

quantitative 

Average 
enhancement, 
concentration, 

and longitudinal 
relaxation times 

Rigid registration -- NA No No 

Heye et al. 
(2016a) 

Signal drift 
Noise 

0 (0%) Quantitative Pharmacokinetics Rigid registration -- 
Signal 

averaging 
No Yes 
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Bias field 
inhomogeneity 
Truncation 
Motion 

Signal peak 
discard 
Erosion 

Heye et al. 
(2016b) 

Motion 7 (3%) 
Semi-

quantitative 
Area under time 

curve 
Rigid registration 
Erosion 

-- NA No No 

Wardlaw et 
al. (2017) 

-- 0 (0%) 
Semi-

quantitative 
Slope of time 

curve 

Rigid registration 
Signal peak 
discard 
Erosion 

-- NA No No 

Muñoz-
Maniega et 
al. (2017) 

Motion 5 (2%) 
Semi-

quantitative 
Slope of time 

curve 

Rigid registration 
Signal peak 
discard 
Erosion 

-- NA No No 

Ulas et al. 
(2019) 

Partial volume 
Imaging 
artefacts 

0 (0%) Quantitative 
Pharmacokinetics 

with deep 
learning 

Rigid registration 
Erosion 

-- 
 

Parameter 
averaging 

No Yes 

Bernal et al. 
(2020a) 

Signal drift 
Imaging 
artefacts 
T1 
inhomogeneity 

0 (0%) 
Semi-

quantitative 
Power spectrum 

Rigid registration 
Erosion 

-- NA No Yes 

Bernal et al. 
(2020b) 

Signal drift 
Noise 

0 (0%) 
Semi-

quantitative 

Area under time 
curve 

Slope of time 
curve 

Power spectrum 

Rigid registration 
Signal peak 
discard 
Erosion 

-- NA No Yes 

Bernal et al. 
(2020c) 

Truncation 
Motion 

0 (0%) 
Semi-

quantitative 
Power spectrum 

Textures 

Rigid registration 
Signal peak 
discard 
Erosion 

-- NA No Yes 
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 Examining the relationship 

between computational DCE-MRI measurements 

and cerebrovascular dysfunction 

In this chapter, we compare semi-quantitative and quantitative methods 

analysing DCE-MRI curves to establish their relationship with cerebrovascular 

dysfunction. We published a previous version of this work in the following 

journal paper:  

Bernal, Jose, María d.C. Valdés-Hernández, Javier Escudero, Eleni 

Sakka, Paul A. Armitage, Stephen Makin, Rhian M. Touyz, and Joanna 

M. Wardlaw. "Examining the relationship between semiquantitative 

methods analysing concentration-time and enhancement-time curves 

from dynamic-contrast enhanced magnetic resonance imaging and 

cerebrovascular dysfunction in small vessel disease." Journal of Imaging 

6, no. 6 (2020): 43. 

3.1 Introduction 

We can group computational approximations for studying signal-time 

trajectories into two categories: semi-quantitative and quantitative (Thrippleton 

et al., 2019). A pivotal difference between these two sets of methods lies on 

their assumptions. On the one hand, semi-quantitative methods do not make 

assumptions about the underlying tissue’s pharmacokinetic properties – i.e. 

they are model free. These methods typically examine the slope of or area 

under enhancement-time or concentration-time curves as surrogate measures 

of the contrast washout rate and overall accumulation of contrast agent (Bernal 

et al., 2020b), respectively. On the other hand, quantitative methods describe 

signal-time curves via pharmacokinetic modelling, i.e. as interactions between 

cerebral capillaries and the extra-cellular extra-vascular space. Ideally, this 

configuration permits interpretation since model variables account for specific 

tissue properties. However, these assumptions may be invalidated by imaging 

considerations (Armitage et al., 2011; Heye et al., 2016a; Manning et al., 
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2021), thereby compromising their calculation. Understanding strengths and 

weaknesses of each of these computational approaches and the extent to 

which they reflect the underlying pathology is therefore crucial for studying 

BBB dysfunction. 

In this chapter, we study to what extent semi-quantitative and quantitative 

methods analysing DCE-MRI trajectories reflect cerebrovascular dysfunction. 

We focus on their relationship with clinically relevant information. We assume 

that the higher the percentage of variance clinical variables explain, the more 

the BBB dysfunction-relevant information these methods capture.  

3.2 Methods 

We provide a high-level schematic of the work in this chapter in Figure 16. 

First, we acquire structural and dynamic scans for each patient. Second, we 

segment regions of interest. Third, we analyse time curves in each region of 

interest for each patient to extract measurements of dysfunction. Fourth, we 

use statistical tests and tools to determine the extent to which these 

measurements reflect aspects of cerebrovascular function. Further details on 

each step are provided in the following sections. 
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Figure 16.High level schematic of our processing pipeline. First, we acquire dynamic contrast-

enhanced magnetic resonance images for each patient. Second, we segment regions of 

interest. Third, we analyse time curves to extract quantitative and semi-quantitative 

measurements of endothelial function. Fourth, we use statistical tools to examine the extent 

to which they reflect cerebrovascular dysfunction. 

3.2.1 Semi-quantitative analysis of time curves 

Semi-quantitative analyses focus on estimating the area under the curve and 

slope of enhancement- and concentration-time curves (Table 2). Each of these 

methods informs of complementary aspects of cerebrovascular dysfunction. 

The area under time curves informs jointly of permeability and capillary 

density: the higher the extent of BBB dysfunction and the higher the capillary 

density, the higher the area under the curve. The slope of time curves 

quantifies the rate at which the contrast enters and washes out of tissues: the 

steeper the slope of the curve, the higher the wash out or uptake of contrast. 

Moreover, the sign may be also of relevance since positive and negative 

values imply contrast concentration accumulation and decay over time, 

respectively. 
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Table 2. Computation of semi-quantitative measures analysing enhancement-time 

concentration-time curves (𝐸𝑛ℎ and 𝐶𝑜𝑛, respectively). We use the symbols ∆𝑡 and 𝑡∗ to 

denote the time between time points and from which we assume the signal trend is linear. 

 Description Computation 

𝐴
𝑈
𝐶
𝐸
𝑛
ℎ
 Area under 

the 
enhancement-

time curve 

𝐴𝑈𝐶𝐸𝑛ℎ = ∑ ∆𝑡 ∙
𝐸[𝑡] + 𝐸[𝑡 + 1]

2

𝑡𝑚𝑎𝑥−1

𝑡=0

 

𝐴
𝑈
𝐶
𝐶
𝑜
𝑛
 Area under 

the 
concentration-

time curve 

𝐴𝑈𝐶𝐶𝑜𝑛 = ∑ ∆𝑡 ∙
𝐶𝑡[𝑡] + 𝐶𝑡[𝑡 + 1]

2

𝑡𝑚𝑎𝑥−1

𝑡=0

 

𝑆
𝑙𝑜
𝑝
𝑒 𝐸
𝑛
ℎ
 

Slope of the 
enhancement-

time curve 

𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ

=
(𝑡𝑚𝑎𝑥 − 𝑡

∗)∑ 𝑡 ∙ 𝐸[𝑡]
𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗ − ∑ 𝑡

𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗ ∙ ∑ 𝐸[𝑡]

𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗

(𝑡𝑚𝑎𝑥 − 𝑡∗)∑ 𝑡2 − (∑ 𝑡
𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗ )

2𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗

 

𝑆
𝑙𝑜
𝑝
𝑒 𝐶
𝑜
𝑛
 

Slope of the 
concentration-

time curve 

𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛

=
(𝑡𝑚𝑎𝑥 − 𝑡

∗)∑ 𝑡 ∙ 𝐶𝑡[𝑡]
𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗ − ∑ 𝑡

𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗ ∙ ∑ 𝐶𝑡[𝑡]

𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗

(𝑡𝑚𝑎𝑥 − 𝑡∗)∑ 𝑡2 − (∑ 𝑡
𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗ )

2𝑡𝑚𝑎𝑥−1
𝑡=𝑡∗

 

  

3.2.2 Quantitative analysis of time curves 

Quantitative analyses primarily relies on fitting physics- and biology-driven 

models to time curves. We examine 𝑇10, 𝑃𝑆, and 𝑣𝑃. 

3.2.3 Validation against clinical parameters 

We used analysis of covariance to examine inter-group dissimilarities and 

intra-group similarities concerning cerebrovascular function measurements. 

Groups of patients corresponded to clinical visual scores accounting for 

neuroimaging features of CSVD. We corrected measurements for 

demographics and clinical risk factors, i.e. computed marginal means after 

adjusting for covariates. Given that inter-group differences may not be 

statistically significant due to the potential overlap between them and the 

degrees of freedom, we focus mainly on data trends. 

We also used multiple linear regression to determine whether clinical variables 

were associated with semi-quantitative and quantitative measurements. We 
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report the weight of each predictor in the model as well as their statistical 

significance. Additionally, we report the adjusted 𝑅2 to quantify the extent to 

which clinical variables explain the outcome variable linearly.  

We carried out our statistical analyses using RStudio v1.1.456 with R v3.5.1. 

3.3 Materials 

3.3.1 Subjects and imaging 

We used DCE-MRI scans and clinical data from 201 patients in the Mild Stroke 

Study 2 (MSS2) (Wardlaw et al., 2017). The in-vivo study was approved by the 

Research Ethics Committee (ref. 09/81101/54) and in accordance with the 

Declaration of Helsinki; all patients gave signed informed consent. Full details 

of the study have been published in: Valdés-Hernández et al. (2015), Heye et 

al. (2016a), and Wardlaw et al. (2017). 

DCE-MRI scans were obtained a month after stroke presentation, using a 3D 

T1-w spoiled gradient echo sequence (Table 3). Following a pre-contrast scan, 

patients were scanned after an intravenous bolus injection of 0.1mmol/kg of 

gadoterate meglumine (Gd-DOTA, Dotarem, Guerbet, France) every 73 s 

during 25 min, leading to 21 frames.  

Table 3. Parameter values of reference MSS2 MRI Protocol. These parameter values were 

extracted from the in-vivo study (Heye et al., 2016a). Reproduced from Bernal et al. (2021a). 

MRI protocol parameter Parameter value 

Repetition time 8.24 ms 

Echo time 3.1 ms 

Flip angle 12° 

Field of view 24x24x18.4 cm 

Acquired resolution 0.9375x1.25x4 mm 

Temporal resolution 73 s 

Pre-contrast acquisitions 1 

Post-contrast acquisitions 20 

 

We retrieved demographic data and cardiovascular risk factors for each 

patient. In particular, we considered age (66.8 [IQR 56.8, 75.2] years), 

biological sex (male 60% and female 40%), smoking status (ever smoker 65% 
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vs never smoker 35%), diabetes (yes 12% vs no 88%), hyperlipidaemia (yes 

60% and no 40%), hypertension (hypertensive 75% vs normotensive 25%), 

and stroke lesion subtype (cortical 46% vs lacunar 54%). We additionally 

included the total volume of white matter hyperintensities and stroke lesions 

as well as two clinical visual scores, the total Fazekas score (Fazekas et al., 

1988) and the total CSVD score (Staals et al., 2014). The total Fazekas score 

corresponds to the summation of the independent periventricular and deep 

Fazekas scores. The distribution of clinical visual scores in the sample is 

condensed in Table 4. 

Table 4. Distribution of clinical visual scores accounting for the total burden of white matter 

hyperintensities and of neuroimaging features of CSVD in MSS2 (n=201; Section 3.3.1). 

Rating Total Fazekas score Total CSVD score 

0 3% 33% 

1 8% 24% 

2 37% 23% 

3 11% 13% 

4 15% 7% 

5 10% -- 

6 16% -- 

 

3.3.2 Segmentation of regions of interest 

We studied time curves in five regions of interest comprising deep grey matter, 

normal-appearing white matter, white matter hyperintensities, and stroke 

lesions. We followed the segmentation protocol described in (Valdés 

Hernández et al., 2015) to obtain the corresponding segmentation masks. 

First, we obtained an initial segmentation using validated tools. Second, 

trained analysts rectified segmentation masks, blinded to imaging and patient 

information. Third, we eroded segmentation masks to avoid partial volume 

effects and tissue contamination. Details on the segmentation method can be 

found in (Heye et al., 2016a; Valdés Hernández et al., 2015, 2010). 
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3.4 Results 

3.4.1 Stratifying estimates by clinical visual scores 

We stratified measurements from the normal-appearing white matter, white 

matter hyperintensities, and deep grey matter by the total Fazekas score 

(Figure 17) and the total CSVD score (Figure 18). We observed relationships 

between quantitative and semi-quantitative measurements of cerebrovascular 

dysfunction and clinical visual scores, irrespective of the region under 

examination (Table 5). Most of them were positive, implying that the higher the 

burden of white matter hyperintensities or of neuroimaging features of CSVD, 

the higher the value of these measurements. Also, we observed similar trends 

for semi-quantitative measurements computed from enhancement-time curves 

or concentration-time curves. 

Table 5. Trends observed when stratifying measurements by clinical visual scores (Figure 17 

and Figure 18), after correcting for demographics and cardiovascular risk factors. Results 

based on MSS2 data (n=201; Section 3.3.1). 

Clinical 
visual 
score 

Region of 
interest 

Visible increase 
Visible 

decrease 
No 

trend 

Total 
Fazekas 

score 

Normal-
appearing 

white matter 
All -- -- 

White matter 
hyperintensity 

𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ, 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛, 
𝑇10 

𝐴𝑈𝐶𝐸𝑛ℎ, 
𝐴𝑈𝐶𝐶𝑜𝑛, 𝑣𝑃 

𝑃𝑆 

Deep grey 
matter 

All -- -- 

Total 
CSVD 
score 

Normal-
appearing 

white matter 

𝐴𝑈𝐶𝐸𝑛ℎ, 𝐴𝑈𝐶𝐶𝑜𝑛, 𝑇10, 
𝑣𝑃 

𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ, 
𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛 

𝑃𝑆 

White matter 
hyperintensity 

𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ , 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛, 
𝑇10 

𝐴𝑈𝐶𝐸𝑛ℎ, 
𝐴𝑈𝐶𝐶𝑜𝑛, 𝑃𝑆, 𝑣𝑃 

-- 

Deep grey 
matter 

𝐴𝑈𝐶𝐸𝑛ℎ, 𝐴𝑈𝐶𝐶𝑜𝑛,  
𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ, 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛, 

𝑇10, 𝑃𝑆 

-- 𝑣𝑃 
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Figure 17. Marginal estimates per region of interest stratified by the total Fazekas score, after 

adjusting for demographics and cardiovascular risk factors. Points represent mean values and 

error bars the standard error. We used linear regression to highlight potential trends. Results 

based on MSS2 data (n=201; Section 3.3.1). 𝐴𝑈𝐶𝐸𝑛ℎ and 𝐴𝑈𝐶𝐶𝑜𝑛: area under the 

enhancement- and concentration-time curves. 𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ  and 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛: slope of the 

enhancement- and concentration-time curves. 𝑇10: pre-contrast longitudinal relaxation times. 

𝑃𝑆: BBB permeability-surface area product. 𝑣𝑃: capillary blood plasma volume fraction.  
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Figure 18. Marginal estimates per region of interest stratified by the total CSVD score, after 

adjusting for demographics and cardiovascular risk factors. Points represent mean values and 

error bars the standard error. Results based on MSS2 data (n=201; Section 3.3.1). 𝐴𝑈𝐶𝐸𝑛ℎ and 

𝐴𝑈𝐶𝐶𝑜𝑛: area under the enhancement- and concentration-time curves. 𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ  and 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛: 

slope of the enhancement- and concentration-time curves. 𝑇10: pre-contrast longitudinal 

relaxation times. 𝑃𝑆: BBB permeability-surface area product. 𝑣𝑃: capillary blood plasma 

volume fraction. 
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3.4.2 Relationship between estimates of cerebrovascular 

dysfunction and clinical variables 

We carried out multiple linear regression to unravel potential associations 

between DCE-MRI measurements (outcome) and demographics, clinical risk 

factors, stroke lesion subtype, and white matter hyperintensity and stroke 

lesion volume (predictors). We ran analyses separately for each region of 

interest and each measurement. 

3.4.2.1 Measurements of cerebrovascular dysfunction in normal-

appearing white matter and clinical variables 

Clinical variables explained less than a tenth of the variance in the 

measurements from the normal-appearing white matter in most cases (Table 

6). 𝑇10 were the only exception as clinical variables explained approximately 

42% of their variability.  

Increasing age was associated with lower  

𝐴𝑈𝐶𝐶𝑜𝑛 (𝑝 < 0.001) and lower 𝑣𝑃 (𝑝 < 0.01), but higher 𝑇10 (𝑝 < 0.001). 𝑇10 also 

increased with the volume of white matter hyperintensities (𝑝 < 0.001). A 

diagnosis of hypertension was positively associated with  𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ and 

𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛 (𝑝 < 0.01). 

We did not find biological sex, smoking status, hyperlipidaemia, diabetes, or 

stroke lesion subtype to be significantly associated with any of the 

measurements extracted from the normal-appearing white matter. 

Table 6. Multiple linear regression results with measurements of cerebrovascular dysfunction 

of the normal-appearing white matter as output variable and clinical variables as predictors. 

Results based on MSS2 data (n=201; Section 3.3.1).Biological sex: 0 - female, 1 - male. Stroke 

lesion type: 0 - cortical, 1 - lacunar. SL: stroke lesion. WMH: white matter hyperintensity. We 

used bold fonts and the superscripts a and b to indicate p-values fall below  0.01 and 0.001, 

respectively. 

Variable 𝐴𝑈𝐶𝐸𝑛ℎ 𝐴𝑈𝐶𝐶𝑜𝑛 𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛 𝑃𝑆 𝑣𝑃 𝑇10 

Age -0.001 -0.002b 0.002 0.002 -0.018 -0.005a 0.006b 

Biological sex -0.023 -0.008 0.094 0.323 -0.035 -0.081 0.008 

Smoker -0.076 -0.018 0.064 0.204 0.029 -0.084 -0.016 
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Hypertension -0.019 0.001 0.170a 0.589a 0.390 -0.041 -0.030 

Hyperlipidaemia -0.015 -0.009 0.025 0.044 -0.006 -0.062 0.014 

Diabetes 0.020 0.017 0.092 0.252 0.449 0.042 -0.044 

SL type -0.024 -0.008 -0.102 -0.369 -0.232 0.055 0.006 

WMH volume 1.448 -0.137 -0.849 -3.261 -0.755 0.293 2.398b 

SL volume 0.635 -0.291 -2.445 -8.903 -10.068 1.125 1.853 

Adj. 𝑅2 (%) 1.2 6.7 4.3 4.1 1.3 4.3 42.4 
 

3.4.2.2 Measurements of cerebrovascular dysfunction in white matter 

hyperintensities and clinical variables 

Clinical variables explained between 5% and 27% of the variability in the 

measurements from white matter hyperintensities, with 𝐴𝑈𝐶𝐶𝑜𝑛 and 𝑇10 being 

the ones that explained the most (Table 7).  

Age was a strong predictor of most measurements. It was negatively 

associated with 𝐴𝑈𝐶𝐸𝑛ℎ and 𝐴𝑈𝐶𝐶𝑜𝑛 (𝑝 < 0.01) and 𝑣𝑃 (𝑝 < 0.001), and 

positively associated with 𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ (𝑝 < 0.01) and 𝑇10 (𝑝 < 0.001). While a 

diagnosis of diabetes was positively associated with 𝐴𝑈𝐶𝐸𝑛ℎ and 𝐴𝑈𝐶𝐶𝑜𝑛 (𝑝 <

0.01) and 𝑣𝑃 (𝑝 < 0.01), an increasing burden of white matter hyperintensities 

was negatively associated with them (𝑝 < 0.01). The volume of the index 

stroke lesion was positively associated 𝑇10 (𝑝 < 0.001). 

We did not find biological sex, smoking status, hypertension, or 

hyperlipidaemia associated significantly with any of the measurements 

extracted from white matter hyperintensities. 

Table 7. Multiple linear regression results with measurements of cerebrovascular dysfunction 

of white matter hyperintensities as output variable and clinical variables as predictors. Results 

based on MSS2 data (n=201; Section 3.3.1). Biological sex: 0 - female, 1 - male. Stroke lesion 

type: 0 - cortical, 1 - lacunar. SL: stroke lesion. WMH: white matter hyperintensity. We used 

bold fonts and the superscripts a and b to indicate p-values fall below 0.01 and 0.001, 

respectively. 

Variable 𝐴𝑈𝐶𝐸𝑛ℎ 𝐴𝑈𝐶𝐶𝑜𝑛 𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛 𝑃𝑆 𝑣𝑃 𝑇10 

Age -0.008a -0.003b 0.011a 0.024 -0.019 -0.017b 0.005b 

Biological sex 0.062 0.019 -0.009 0.048 0.165 0.074 -0.007 

Smoker -0.041 -0.005 0.106 0.311 0.333 -0.048 -0.014 

Hypertension -0.076 -0.014 0.203 0.542 0.265 -0.167 -0.006 
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Hyperlipidaemia -0.010 -0.008 0.064 0.101 0.126 -0.037 0.010 

Diabetes 0.215a 0.056a -0.030 -0.131 0.614 0.327a -0.012 

SL type 0.017 -0.001 -0.043 -0.139 -0.119 0.045 0.023 

WMH volume -4.599a -1.571b 3.690 8.895 -13.695 -8.198a 1.527 

SL volume 6.071 -0.419 1.027 -4.624 -2.184 0.341 7.779b 

Adj. 𝑅2 (%) 13.5 26.3 8.8 6.2 5.1 19.4 27.0 

 

3.4.2.3 Measurements of cerebrovascular dysfunction in the deep grey 

matter and clinical variables 

In the deep grey matter, clinical variables explained less than a 5% of the 

variability in 𝐴𝑈𝐶𝐸𝑛ℎ, 𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ, 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛, and 𝑃𝑆 (Table 8). However, they 

explained 12%, 17%, and 41% of that in 𝐴𝑈𝐶𝐶𝑜𝑛, 𝑣𝑃, and 𝑇10, respectively. 

Increasing age was associated with lower 𝐴𝑈𝐶𝐶𝑜𝑛 and 𝑣𝑃, but higher 𝑇10 (𝑝 <

0.01). A diagnosis of diabetes was positively associated with increasing 

𝐴𝑈𝐶𝐶𝑜𝑛 (𝑝 < 0.001) and 𝑣𝑃 (𝑝 < 0.01). 𝑇10  was higher in patients  with higher 

loads of white matter hyperintensities (𝑝 < 0.001) and stroke lesions (𝑝 <

0.01). 

We did not find biological sex, smoking status, hypertension, hyperlipidaemia 

or stroke lesion subtype associated significantly with any of the measurements 

extracted from the deep grey matter. 

Table 8. Multiple linear regression results with measurements of cerebrovascular dysfunction 

of the deep grey matter as output variable and clinical variables as predictors. Results based 

on MSS2 data (n=201; Section 3.3.1). Biological sex: 0 - female, 1 - male. Stroke lesion type: 

0 - cortical, 1 - lacunar. SL: stroke lesion. WMH: white matter hyperintensity. We used bold 

fonts and the superscripts a and b to indicate p-values fall below 0.01 and 0.001, respectively. 

Variable 𝐴𝑈𝐶𝐸𝑛ℎ 𝐴𝑈𝐶𝐶𝑜𝑛 𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛 𝑃𝑆 𝑣𝑃 𝑇10 

Age -0.003 -0.003a 0.003 0.008 -0.022 -0.010b 0.007b 

Biological sex 0.009 -0.01 0.095 0.232 0.026 -0.046 0.041 

Smoker -0.07 -0.005 0.134 0.294 0.175 -0.059 -0.030 

Hypertension -0.032 0.002 0.203 0.475 0.326 -0.045 -0.033 

Hyperlipidaemia -0.018 -0.013 0.005 -0.019 -0.116 -0.053 0.028 

Diabetes 0.160 0.050b 0.024 -0.018 0.469 0.223a -0.053 

SL type 0.020 0.002 -0.078 -0.200 -0.174 0.047 0.020 

WMH volume 2.056 -0.359 -1.258 -1.060 -2.818 -0.744 3.040b 

SL volume 2.712 -0.140 -4.190 -9.654 -8.317 2.052 2.597a 

Adj. 𝑅2 (%) 1.3 16.8 3.1 2.9 3.9 11.9 40.6 
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3.4.2.4 Measurements of cerebrovascular dysfunction in recent stroke 

lesions and clinical variables 

Clinical variables explained between a fifth and a third of the variability in the 

𝐴𝑈𝐶𝐸𝑛ℎ and 𝐴𝑈𝐶𝐶𝑜𝑛 and quantitative measurements computed from DCE-MRI 

signals in regions with recent stroke lesions (Table 9). 

Larger cortical stroke lesions in patients with a diagnosis of diabetes were 

significantly associated with 𝐴𝑈𝐶𝐸𝑛ℎ, 𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ, and 𝑇10 (𝑝 < 0.01). In addition, 

a diagnosis of hypertension was positively associated with 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛 (𝑝 < 0.01). 

We did not find biological sex, smoking status, hyperlipidaemia or white matter 

hyperintensity burden associated significantly with any of the measurements 

extracted from recent stroke lesions. 

Table 9. Multiple linear regression results with measurements of cerebrovascular dysfunction 

of recent stroke lesions as output variable and clinical variables as predictors. Results based 

on MSS2 data (n=201; Section 3.3.1). Biological sex: 0 - female, 1 - male. Stroke lesion type: 

0 - cortical, 1 - lacunar. SL: stroke lesion. WMH: white matter hyperintensity. We used bold 

fonts and the superscripts a and b to indicate p-values fall below 0.01 and 0.001, respectively. 

Variable 𝐴𝑈𝐶𝐸𝑛ℎ 𝐴𝑈𝐶𝐶𝑜𝑛 𝑆𝑙𝑜𝑝𝑒𝐸𝑛ℎ 𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑛 𝑃𝑆 𝑣𝑃 𝑇10 

Age -0.003 -0.004 -0.002 -0.030 -0.077 -0.008 0.011b 

Biological sex 0.157 0.034 0.177 0.323 1.138 0.121 0.016 

Smoker 0.135 0.017 0.159 0.372 0.733 -0.044 0.084 

Hypertension 0.221 0.059 0.631 1.504a 2.501 0.012 0.044 

Hyperlipidaemia 0.172 0.026 0.053 0.245 0.412 -0.008 0.056 

Diabetes 1.112b 0.302b 0.698 2.283b 6.367b 0.659b -0.074 

SL type 
-0.627b -0.098a -0.359 -0.662 -2.515a -

0.386b 
-0.155a 

WMH volume 
-6.056 -1.456 -5.881 -14.424 -

33.462 
-3.023 1.393 

SL volume 29.449b 3.004 36.220b 47.178 82.434 1.194 10.421b 

Adj. 𝑅2 (%) 34.7 31.8 19.7 15.9 27.6 22.8 28.9 

3.5 Discussion 

Various computational methods have been utilised for the study of DCE-MRI 

signals in low permeability scenarios. Among them, quantitative models of the 

disruption process are preferred since variables being regressed have a clear 
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physical or biological interpretation (Thrippleton et al., 2019). Nonetheless, 

their suitability depends on whether imaging conditions are also ideal (Heye, 

2015), which may not always be the case. In this chapter, we compared the 

extent to which methods analysing time curves are indicative of endothelial 

dysfunction, as a way to identify their pros and cons. 

We studied seven methods: four semi-quantitative and three quantitative. The 

semi-quantitative methods relied on the estimation of the area under or slopes 

of enhancement-time and concentration-time curves. The quantitative 

methods contemplated the estimation of the longitudinal relaxation times, 

leakage rate, and fractional blood plasma volume. 

3.5.1 Semi-quantitative vs quantitative measurements 

All computational measurements were frequently associated with ageing, 

cardiovascular risk factors, stroke lesion type, and white matter hyperintensity 

and stroke lesion volume, thereby reflecting aspects of cerebrovascular 

function. The strength of these relationships was stronger when 

measurements were obtained from pathological versus normal appearing 

regions.  

Clinical variables explained the variance in longitudinal relaxation times better 

than in any other measurement, even than those derived from concentration-

time curves (namely, area and slope of the concentration-time curve, leakage 

rates and fractional blood plasma volume). This outcome is not necessarily 

surprising since temporal analyses taking place in DCE-MRI assessments are 

much more challenging and demanding, especially due to potential occurrence 

of spatiotemporal imaging artefacts. The strength between the leakage rate 

and clinical variables was strong only in stroke lesions, a region of 

considerable permeability, suggesting the estimation problems may be in a 

way linked to the extremely low magnitude of the enhancement and 

dysfunction in CSVD.  

The area under the concentration-time curve had the strongest associations 

with clinical parameters among semi-quantitative measurements compared in 

this work. While both the area and slope under the concentration-time curve 
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depend on longitudinal relaxation values and imaging parameters, the 

difference between the slopes of the enhancement-time and concentration-

time curves was less obvious compared to that of their areas. This may be due 

to time curves in DCE-MRI not obeying a linear but an exponential decay 

(Parker et al., 2006) and that linear regression is sensitive to outliers. 

A general limitation of the analysis is that we assumed linearity between 

predictors and outcome variables, which may not reflect the vast biological 

variability, given by the age, health status and premorbid brain condition that 

influence the nature of the brain of each individual at any time point. However, 

much more complex models may not be as interpretable as those obtained via 

linear regression. Furthermore, the current setup does not permit assessing 

the accuracy or precision of any of these measurements. The development of 

biophysical computational methods may enable assessing these aspects and 

determining which approximation is more reliable in practical scenarios. 

3.5.2 Computational measurements and clinical aspects 

Multiple studies in animals and humans suggest microvascular structural 

changes with ageing and increased white matter lesions due to perfusion 

deficits (Brown and Thore, 2011). In our work, we also observed that the age 

of the patient was consistently and significantly associated with decreasing 

capillary density, irrespective of whether the region under examination was 

normal appearing or pathological. Nonetheless, we did not find vascular 

permeability to be associated strongly with ageing, a situation that could be in 

part driven by the reduced vascular surface area and cerebral blood flow as a 

result of ageing (Brown and Thore, 2011). Whether this is indeed the case or 

not is unclear and the literature in this regard is contradictory (Bernal et al., 

2020b; Heye, 2015; Montagne et al., 2015; Nation et al., 2019; Taheri et al., 

2011a). However, a key difference between previous works and this one is the 

access to a well-phenotyped and relatively large cohort of patients with 

different features of CSVD, which allowed us to adjust our regression models 

by many variables at once. Further studies in animal models may be able to 

elucidate this aspect. 
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We observed that water content in healthy and pathological brain tissues 

increased with white matter hyperintensity worsening, stroke lesion volume, 

and ageing. Moreover, we noticed water content was higher in white matter 

hyperintensities than that in the normal-appearing white matter, regardless of 

the baseline load of neuroimaging features of CSVD. While elderly patients 

may accumulate more lesions than younger ones, we observed the same 

increasing trends even when adjusting for the age of the patient, thereby 

suggesting increased interstitial fluids may not be solely caused by age. This 

outcome also indicates the so-called normal-appearing tissue becomes 

abnormal and oedematous as CSVD progresses, in agreement with previous 

works in the field (Wardlaw et al., 2017).  

We found strong relationships between two cardiovascular risk factors, 

hypertension and diabetes, and a few of the computational measurements of 

the cerebrovascular impairment. This is not surprising since both conditions 

are known to be associated with microvascular disease, especially when co-

occurring (Harvey et al., 2015; Petrie et al., 2018). Diabetes was positively 

associated with increased vascular permeability, effects likely to be explained 

by the effects of diabetes on cerebrovascular function (Petrie et al., 2018). 

Hypertension was negatively associated with the rate at which blood vessels 

deliver the contrast agent to tissues, which is likely given the vascular 

remodelling with fibrosis, stiffness, and inflammation that blood vessels 

undergo as a result of this condition (Touyz et al., 2018). Furthermore, it could 

be linked to a potential capillary loss (rarefaction) due to hypoperfusion caused 

by injuries to the vascular system as a result of hypertension (Brown and 

Thore, 2011; Dalby et al., 2019). Together these findings provide further 

evidence on the key role of cardiovascular conditions in CSVD. 

In conclusion, neuroimaging the distribution of a Gadolinium based contrast 

agent provides insights into multiple aspects of cerebrovascular integrity given 

that patients with different age, health status and premorbid brain conditions 

exhibit different tendencies, adding confidence to previous studies in the field.   
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3.6 Take-home messages 

 All measures extracted from DCE-MRI time curves reflect aspects of 

cerebrovascular dysfunction, in line with previous studies in the field.  

Longitudinal relaxation times were particularly reflective of the overall 

clinical status, more so than any dynamic measurement, even more 

than those depending on relaxation times per se.
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 A four-dimensional computational 

model of DCE-MRI for assessing subtle BBB 

leakage 

In this chapter, we present a computational model for mimicking the four-

dimensional DCE-MRI acquisition process and enable a more realistic 

examination of the accuracy and precision of BBB leakage assessments. We 

published part of the content of this work in the following journal paper:  

Bernal, Jose, Maria d.C. Valdés-Hernández, Javier Escudero, Anna K. 

Heye, Eleni Sakka, Paul A. Armitage, Stephen Makin, Rhian M. Touyz, 

Joanna M. Wardlaw, and Michael J. Thrippleton. "A four-dimensional 

computational model of dynamic contrast-enhanced magnetic resonance 

imaging measurement of subtle blood-brain barrier leakage." 

NeuroImage 230 (2021): 117786. 

4.1 Introduction 

While the estimation of pharmacokinetic parameters can be conveniently 

approached via linear regression, two challenges prevent establishing BBB 

leakage reliability (Barnes et al., 2016; Raja et al., 2018; Thrippleton et al., 

2019). Firstly, the microscopic level at which BBB dysfunction occurs imply 

signal enhancement is extremely low, slightly above the noise level, making it 

difficult to detect in standard MRI scanners. Secondly, the potentially 

suboptimal characteristics of current DCE-MRI protocols and processing 

schemes due to ethical and safety considerations around Gadolinium-based 

contrast agent administration in-vivo.  

Previous computational studies have attempted to address these problems by 

means of simulation (Armitage et al., 2011; Barnes et al., 2016; Cramer and 

Larsson, 2014; Heye et al., 2016a). Typically, researchers generate synthetic 

one-dimensional signal-time curves for pre-specified tissue properties and 

pharmacokinetic parameters, alter them, re-estimate parameter values and 

quantify deviation as a measure of the repercussions caused by the induced 
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changes. While this approach has yielded important insights into the accuracy 

and precision of permeability mapping, it has overlooked spatiotemporal 

effects caused by sampling and patient motion, which may also have a 

significant impact on the appearance of parameter maps (Heye et al., 2016a) 

and, potentially, on reported leakage rates. Moreover, it omits the contribution 

of extra-cerebral tissues to imaging artefacts, which typically exhibit a greater 

signal enhancement than brain tissues due to the lack of a BBB. The inclusion 

of these spatiotemporal considerations in simulations is more conceptually and 

computationally demanding since both the measurement process and the 

participant must be simulated in four dimensions: space plus time. 

In this chapter, we propose an open-source computational model that uses in-

vivo volunteer and patient data for mimicking the four-dimensional DCE-MRI 

acquisition process to evaluate the aforementioned confounds and enable 

better protocol optimisation in the future. Unlike previous works in the field, we 

utilised an atlas of head and neck to simulate the human anatomy realistically. 

We used the resulting signals to simulate the appearance of leakage maps 

and measured leakage values in healthy and diseased brain tissue under 

realistic experimental conditions, including k-space sampling, noise, gross 

motion and motion artefacts. 

4.2 Methods 

We simulated the DCE-MRI signal generation, measurement and analysis 

processes via the steps illustrated in Figure 19 and described in detail below. 

First, we created digital reference objects (DRO), high-resolution four-

dimensional signal-time data, to mimic pharmacokinetics in the real-world 

object. For that, we leveraged a high-resolution head model and pre-specified 

MRI and ground truth pharmacokinetic properties. Second, we simulated the 

acquisition process by sampling the data in k-space. We applied spatial 

transformations derived from in-vivo scan data to simulate gross motion and 

motion artefacts, resampled the resulting data in k-space and added random 

noise to yield “acquired” images at lower resolution. Third, we spatially 

realigned the resulting scans to compensate for bulk motion, thus 
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guaranteeing temporal and spatial consistency, and post-processed them to 

extract pharmacokinetic parameter maps. Fourth, we compared the ground 

truth and obtained parameter maps to understand and quantify the effect of 

the imaging protocol and imaging artefacts on permeability mapping. 

 

Figure 19. Computational model for mimicking the 4D DCE-MRI acquisition process. 𝑃𝑆: 

permeability-surface area product. 𝑣𝑃: fractional blood plasma volume per unit of tissue. HR: 

high-resolution. SR: scanning resolution. Adapted from Bernal et al. (2021a).  
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4.2.1 Signal generation 

4.2.1.1 Reference head model 

Ensuring that our DRO resembled the human anatomy was essential for 

studying the repercussions of spatial imaging artefacts on real scans. We 

identified key requirements in this regard: 

1. Healthy and pathological tissues: the reference head model should 

contain healthy and pathological brain tissues to represent the ageing 

brain. In particular, it should include white matter hyperintensities and 

lacunar stroke lesions to mirror a patient with neuroimaging features of 

CSVD. 

2. Extra-cerebral structures: the reference head model should 

incorporate extra-cerebral regions to allow studying the effect of 

sampling on regions with considerably high enhancement.  

3. Spatial distribution: the spatial distribution of cerebral and extra-

cerebral structures in the reference head model should resemble the 

human anatomy to ensure imaging artefacts mimic reality. 

4. Original resolution: the reference head model should be of high 

resolution to enable simulating the MRI acquisition process (i.e. high-

resolution to low-resolution).  

Taking the afore requirements into consideration, we developed the signal 

model based on a three-dimensional high-resolution (0.5-mm isotropic), 

comprehensively-labelled and publicly available human head and neck atlas 

(Iacono et al., 2015)1. This atlas is particularly suitable for application to DCE-

MRI since it contains a wide range of segmented cerebral and extra-cerebral 

structures (Figure 20). We combined some classes to reduce granularity and 

because enhancement properties of each are not well known. While the 

original atlas fulfils most conditions, it lacked pathological tissues 

representative of CSVD. Hence, we added white matter hyperintensities and 

lacunar stroke lesions – both regions of elevated permeability – using spatial 

                                            
1 The MIDA human head model can be downloaded from www.itis.ethz.ch/MIDA/ 
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occurrence templates extracted from patient data  

(https://doi.org/10.7488/ds/2716). The stroke lesion is based on that of a 

patient with a small recent lacunar stroke lesion in the basal ganglia. The white 

matter hyperintensities are located mostly periventricularly. In total, our 

computational model comprised 16 regions of interest.  

 

Figure 20. Anatomical head model of reference. In total, we considered 16 regions of interest, 

including both cerebral and extra-cerebral structures. White matter hyperintensities were 

located mostly periventricularly and the lacunar stroke lesion in the basal ganglia. Adapted 

from Bernal et al. (2021a).  

https://doi.org/10.7488/ds/2716
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4.2.1.2 Ground truth parameter maps 

We used the three-dimensional high-resolution brain atlas to generate three-

dimensional high-resolution maps for 𝑀0, 𝑇10, 𝑣𝑃, and 𝑃𝑆. Note this step only 

applied to brain tissues as extra-cerebral structures and cerebrospinal fluid do 

not possess a BBB, hence the Patlak model does not reflect their contrast 

uptake and washout over time. 

4.2.1.3 Generation of four-dimensional high-resolution data 

We used the Patlak model to transform the three-dimensional high-resolution 

pharmacokinetic parameter maps into a four-dimensional high-resolution 

concentration-time data. We then calculated the corresponding signal-time 

curves (Section 3.2.1). To simulate signal-time curves for structures without a 

BBB, such as muscle and skull, we used time-signal curves measured directly 

from in-vivo patient data.  

4.2.2 Imaging 

Once we generated our high-resolution object, we simulated its acquisition. 

The imaging step in our computational model consisted of sampling the k-

space data of this synthetic object. We considered the following steps to 

simulate DCE-MRI data acquisition:  

4.2.2.1 Starting head position 

First, we applied a random rigid-body spatial transform to all time frames of the 

high-resolution object to randomise the initial head position. Each degree of 

freedom in the transformation was uniformly distributed: ±5° for rotations and 

±2.5 mm for translations.  

4.2.2.2 Gross patient movement 

Second, we applied different rigid-body spatial transforms to each time frame 

of the high-resolution object. The transformation matrices were obtained from 

in-vivo patient imaging data. 
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4.2.2.3 k-space sampling 

Third, we used a three-dimensional Fourier transform to obtain the k-space 

data of each time frame of the high-resolution object. We then resampled it 

according to the protocol under study. We assumed three-dimensional 

Cartesian k-space sampling and suppressed signals from outside the field of 

view to avoid wrap-around artefacts (Figure 21).  

 

Figure 21. Aliasing during k-space sampling. The region inside the yellow rectangle 

corresponds the region being imaged. Without suppression of k-space elements outside the 

field of view, the reconstructed image exhibits aliasing artefacts. This problem can be treated 

via low-pass filtering. 

Sampling causes information loss, which manifests in the form of Gibbs ringing 

artefacts and partial volume effects. 

4.2.2.4 Motion artefacts 

Fourth, we simulated motion artefacts inspired by the work of (Shaw et al., 

2020). We generated a composite k-space image for each frame: a random 

portion of successive k-space lines was acquired with the head in its initial 

position (i.e. that at the end of the previous time frame) and the remaining lines 

with the head in its subsequent position (i.e. that at the start of the next time 

frame). Figure 22 illustrates this process. 
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Figure 22. Simulation of motion artefacts. We simulate motion artefacts by generating 

composite k-spaces for each time frame: we take a random proportion of successive k-space 

lines from position A and the rest from position B. Both positions were given by in-vivo patient 

data. Created in part with BioRender.com 

The level of displacement between consecutive frames and the time at which 

the motion occurs determines the severity and appearance of the motion 

artefacts in the resulting image, typically manifesting as blurring, ringing or 

ghosting.  

4.2.2.5 Rician noise 

Fifth, we incorporated Rician noise in the imaging process. The raw k-space 

data is traditionally thought to come from a linear combination of the true 

noiseless k-space data and a realisation of the measurement noise, 휀[𝑡] 

(Cárdenas-Blanco et al., 2008; Coup et al., 2010; Kim et al., 2011). This noise 

is assumed to be complex, with both real and imaginary components following 

zero-centred Gaussian distributions with the same variance,  𝜎2, i.e. 휀[𝑡] ∈ ℂ,

휀[𝑡] ~ 𝒩(0, 𝜎2) + 𝜄 ∙ 𝒩(0, 𝜎2) (Cárdenas-Blanco et al., 2008; Coup et al., 2010; 

Kim et al., 2011). The signal variations observed in the corresponding 
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magnitude images follow a Rician distribution (Coup et al., 2010), explaining 

why this type of noise is widely known as “Rician noise”. 

To simulate Rician noise and obtain the “acquired” four-dimensional DRO 

image, we added uncorrelated additive white Gaussian noise to the real and 

imaginary channels of the sampled k-space data, applied a three-dimensional 

Fourier transform, and computed the magnitude image. At this stage, we 

obtained a DRO image with sampling artefacts, gross motion, motion artefacts 

and Rician noise. 

4.2.3 Permeability mapping 

We followed the pipeline described in Heye et al. (2016a) to obtain permeability 

maps. We used FSL-MCFLIRT (Jenkinson et al., 2002) to correct for patient 

motion, computed concentration profiles for each voxel, and, finally, fitted them 

to the Patlak model by means of linear regression. In all cases, we omitted the 

first three post-contrast time points from model fitting, as recommended in 

Heye et al. (2016a) and Larsson et al. (2009b). 

4.2.4 Parameter deviation quantification 

We quantified parameter deviation as a measure of the repercussions of the 

imaging protocol and imaging artefacts on DCE-MRI measurement. We 

computed deviation in terms of error (difference between ground truth and 

measured parameters) and relative error. 

4.3 In-vivo data 

4.3.1.1 MRI protocol parameters 

With our proposal, we recreated the acquisition protocol of MSS2 (Table 3).  

4.3.1.2 Tissue parameters 

We used average 𝑀0, 𝑇10, 𝑣𝑃 and 𝑃𝑆  values for normal-appearing white 

matter, grey matter, recent stroke lesion and white matter hyperintensities 

obtained from this study as ground-truth values for signal generation (Table 

10). We assumed 𝑃𝑆 = 0 and 𝑣𝑃 = 1 − 𝐻𝑐𝑡 (Hct: haematocrit was assumed to 

be 0.45) for brain vessels.  
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Table 10. Ground truth for tissue parameters. These parameter values were based on data 

from MSS2 (n=201; Section 3.3.1) (Heye et al., 2016a). 𝑀0: equilibrium signal.  𝑇10: pre-

contrast longitudinal relaxation time. 𝑃𝑆: BBB permeability-surface area product. 𝑣𝑃: capillary 

blood plasma volume fraction. Adapted from Bernal et al. (2021a). 

Tissue class 𝑀0 𝑇10 [s] 𝑃𝑆 [x10-4min-1] vP [x10-2] 

Normal appearing-white 
matter 

9726 0.99 2.75 0.57 

White matter 
hyperintensity 

9402 1.20 3.91 0.72 

Grey matter 9298 1.34 3.85 1.20 

Recent stroke lesion 9858 1.27 7.25 1.05 

 

4.3.1.3 Vascular input function measurement 

We modelled the contrast agent in plasma space over time, 𝑐𝑝[𝑡], using the 

parameters fitted in the original study (Heye et al., 2016a). We used the 

function introduced by (Parker et al., 2006) in which the concentration is 

modelled through two Gaussian functions expressing signal increase due to 

first pass and recirculation and a bi-exponential decay representing signal 

decrease due to washout and non-brain tissue uptake: 

𝑐𝑝[𝑡] =  
1

1 − 𝐻𝑐𝑡
[𝑤1𝒩(𝜇1, 𝜎1

2) + 𝑤2𝒩(𝜇2, 𝜎2
2) +

𝛼1𝑒
−𝛽1𝑡 + 𝛼2𝑒

−𝛽2𝑡

1 + 𝑒−𝑠(𝑡−𝜏)
] , (14) 

where wi, 𝜇i, and 𝜎i to the weight, mean and standard deviation of the i-th 

Gaussian in the mixture; αi and βi to the weight and decay rate of the i-th 

exponential decay; and s and τ to the decay rate and delay of the sigmoid. The 

fitted values are condensed in Table 11. 

Table 11. Parameter values of the vascular input function extracted from Heye et al. (2016a). 

These parameter values were based on data from MSS2 (n=201; Section 3.3.1). 

Index 𝑤𝑖 𝜇𝑖 𝜎𝑖 𝛼𝑖 𝛽𝑖 𝑠 𝜏 Hct 

𝑖 = 1 0.809 0.17046 0.0563 3.1671 1.0165 
38.078 0.483 0.45 

𝑖 = 2 0.330 0.365 0.132 0.5628 0.0266 
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4.3.1.4 Extra-cerebral signal-time profiles 

The Patlak model does not approximate the enhancement of extra-cerebral 

regions, mainly due to the lack of a BBB. Instead, we generated their signals 

based on in-vivo data of a single patient in the study cohort. We sampled their 

signal-time curves from in-vivo images manually, under the supervision of an 

experienced neuroradiologist, and fitted the resulting curves using exponential 

or power functions to reduce noise. 

4.3.1.5 Motion trajectories 

We used distinct motion trajectories for each run to generate realistic motion 

effects in our simulations, including examples of low, moderate and high 

degrees of motion. Each trajectory consisted of 20 rigid-body transformation 

matrices, where each matrix is the inverse of the transformation used to realign 

each time frame in the MSS2. We generated 201 high-resolution objects using 

a different motion trajectory, randomised starting position and newly generated 

spatial noise for each run. 

4.3.1.6 Noise level 

We measured the signal-to-noise ratio from in-vivo data to simulate it 

realistically. First, we computed the standard deviation of intensity values of 

the background, 𝜎𝐵𝐺. Second, we calculated the mean and standard deviation 

of intensities within the normal-appearing white matter, 𝜇𝑁𝐴𝑊𝑀. Third, we 

determined the signal-to-noise ratio 

𝑆𝑁𝑅𝑖𝑛 𝑣𝑖𝑣𝑜 =
1

√2 − 𝜋 2⁄
 
𝜇𝑁𝐴𝑊𝑀
𝜎𝐵𝐺

. (15) 

Note we adjusted the denominator by √2 − 𝜋 2⁄  to transform the Rayleigh 

distributed noise measured in the air outside of the head to a Gaussian 

distribution. Fourth, we assumed that the noise level in vivo and in silico should 

be similar, i.e.  𝑆𝑁𝑅𝑖𝑛 𝑣𝑖𝑣𝑜 = 𝑆𝑁𝑅𝑠𝑖𝑚, and used the aforementioned relationship 

to establish the standard deviation of the additive white Gaussian noise to use 

in simulations. Fifth, we added uncorrelated additive white Gaussian noise to 

the real and imaginary channels of the sampled k-space data. 
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4.4 Results 

4.4.1 Simulation setup 

4.4.1.1 Classification of motion trajectories 

We defined three levels of motion based on the available trajectories in the 

MSS2: low, medium and high degrees. We classified each of them based on 

the mean root mean square (RMS) voxel displacement as yielded by the 

rmsdiff utility function in the FSL package. In our sample, the mean RMS was 

approximately 0.33 [IQR 0.22 – 0.48] mm for each inter-frame step. We then 

classified all 201 trajectories according to the following criteria based on the 

Tukey fences: 

 Low motion (n=150): mean RMS lower than 0.48 mm [< Q3]; 

 Moderate motion (n=41): mean RMS between 0.48 mm and 0.84 mm [Q3 

< mean RMS < Q3 + 1.5*IQR]; 

 High motion (n=10): mean RMS higher than 0.84 mm [> Q3 + 1.5*IQR]. 

While the classification per se is slightly arbitrary and entirely cohort-

dependent, it provides a reference for what are “good” and “bad” trajectories 

in a relatively large cohort of CSVD patients. We do not expect this 

classification to represent different levels of motion in other studies. 

4.4.1.2 Signal profiles for cerebral and extra-cerebral regions 

The signal-time curves generated based on in-vivo data for both cerebral and 

extra-cerebral tissues can be seen in Figure 23. All brain tissues enhanced 

over time after contrast agent administration. However, while the maximum 

enhancement for brain tissues did not exceed 22%, it was as high as 60% for 

most extra-cerebral regions, except for skull diploe, adipose tissue and eyes.  
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Figure 23. Ground-truth signal-time curves generated in cerebral and extra-cerebral tissues 

based on in-vivo data. Reproduced from Bernal et al. (2021a). 

4.4.1.3 Estimating noise level 

We estimated a signal to noise ratio from real patient data and applied it to all 

voxels in the simulated images. We measured a signal-to-noise ratio of 91.5 

for the normal-appearing white matter. Noise in our simulations followed a 

Rician distribution (Figure 24). 

 

Figure 24. Noise in our simulations follows a Rician distribution.  

4.4.2 Qualitative appearance of parameter maps 

We induced sampling, gross motion, motion artefacts, and noise progressively 

and in that order to understand the cumulative effect of imaging artefacts on 

parametric maps (Figure 25). Truncation of high frequencies during k-space 
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sampling produced Gibbs ringing artefacts in all three dimensions, especially 

in the superior-inferior direction where resolution is the lowest. However, these 

sinc-like patterns did not overshadow regions of increased permeability or 

capillary density. The inclusion of motion dramatically altered parametric 

maps, obscuring tissues interfaces. Regions that were particularly affected, i.e. 

which displayed either increased or decreased permeability, were located 

around main cerebral vessels (e.g. basal ganglia near the anterior cerebral 

artery) and around lateral ventricles. Noise propagated from concentration-

time curves in the high-resolution object to parametric maps of the acquired 

images. Nonetheless, the visual effect of noise was minor compared to that 

caused by motion. The effect of imaging artefacts on parameter maps was 

visually more severe than that in the underlying T1-w images. 

We observed that repercussions of motion were notably evident in the 

ventricular area, where temporal partial volume effects caused the observed 

artefactual periventricular leakiness (Figure 26). Inconveniently, this problem 

occurs around the lateral ventricles and in the adjacent supraventricular 

corona radiata, where white matter hyperintensities often appear. Thus, this 

artefactual leakiness could be mistakenly confused with pathological tissues. 
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Figure 25. Appearance of PS and vP maps as we progressively induced spatiotemporal imaging considerations. Sampling led to Gibbs ringing in parameter 

maps (white arrows in coronal view), especially in the z-direction. Gross motion produced artefactual leakiness in all brain regions, particularly around 

blood vessels and tissue interfaces (white dashed rectangle in sagittal view). Moreover, it obscured regions of elevated leakage (solid white circle in axial 

view). Motion artefacts resulted in additional ringing, characteristic of Cartesian sampling schemes (solid white rectangle in axial view). Visual artefacts in 

permeability maps appear only at a low level in T1-w images (second column). Reproduced from Bernal et al. (2021a).
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Figure 26. Sampling and motion produces artefactual periventricular leakiness. These features 

appear around the lateral ventricles (white arrows) and the adjacent supraventricular corona 

radiata (black arrows), where white matter hyperintensities typically occur, making them 

susceptible to confusion with subtle pathology. Reproduced from Bernal et al. (2021a). 

4.4.3 Distribution of parameter values 

We additionally created histograms of 𝑃𝑆 and 𝑣𝑃 within each tissue of interest 

for the low-level patient motion simulation in Figure 26 (Figure 27). Even 

though we defined each tissue with uniform pharmacokinetic parameter 

values, spatiotemporal imaging considerations caused distributions to widen 

and central tendencies to shift. In most cases, the flattening effect also resulted 

in implausible negative permeability values. Sampling and gross motion 

produced the most visible changes on the histograms. The effects these two 

imaging artefacts were particularly evident for the cortical grey matter, where 

the bias in 𝑃𝑆 and 𝑣𝑃 was approximately -0.71x10-4 min-1 and -0.20x10-2 (-

18.49% and -16.66%) relative to the ground-truth value, respectively.
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Figure 27.  Cumulative effect of spatiotemporal imaging considerations on the distribution of permeability values in each region of interest. Data correspond 

to ‘Low motion’ case depicted in Figure 26. Grey and red vertical lines represent the ground truth and median parameter values, respectively. Reproduced 

from Bernal et al. (2021a).
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We additionally examined the effect spatiotemporal effects on multiple 

simulations (Figure 28). We ran 201 simulations, each using the same 

anatomical head model, but different motion trajectories, noise effects and 

starting head position. On its own, sampling consistently caused systematic 

bias, shifting central statistics from the ground truth value. This situation also 

resulted in a clear overestimation of both pharmacokinetic parameters for 

white matter hyperintensities and underestimation of 𝑃𝑆 for cortical grey 

matter, normal-appearing white matter and stroke lesions. While subsequent 

incorporation of the other three imaging considerations produced dispersion in 

parameter estimation, gross motion caused most of this variation. These 

observations are consistent with those obtained for a single scan in Figure 27. 

 

Figure 28. Effect of spatiotemporal imaging considerations on parameter estimation for 201 

different simulations: fixed anatomical head model, different motion trajectory, noise effects 

and starting head position each time. We obtained these estimates by means of parameter 

median. We kept the width of violins constant. The horizontal dotted lines represent the true 

parameter values. A: sampling. B: sampling and gross motion. C: sampling, gross motion, and 

motion artefacts. D: sampling, gross motion, motion artefacts and Rician noise. Adapted from 

Bernal et al. (2021a). 
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4.4.4 Effect of head position 

The position of the head in regards to the voxel grid determines the 

appearance of partial volume effects and Gibbs ringing artefacts  (Kellner et 

al., 2016). We simulated the impact of this effect on leakage maps by 

examining the error for two random starting head positions (Figure 29). We 

excluded intra- or inter-frame motion and noise. Patterns in parameter maps 

suggest the error caused by k-space sampling propagates differently for 

different head positions. 

 

Figure 29. The head position determines the way ringing artefacts propagate in space in 

permeability maps. This simulation did not include motion or noise. Reproduced from Bernal 

et al. (2021a). 
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4.4.5 Effect of extra-cerebral enhancement 

We performed simulations with and without extra-cerebral signal enhancement 

to study the effect of their sampling on permeability mapping (Figure 30). Extra-

cerebral enhancement is responsible for most ringing artefacts in the 

intracranial region, except for those proximal to medium and large blood 

vessels. Also, note that disabling extra-cerebral enhancement does not 

necessarily reduces the magnitude of the estimation error. 

 

Figure 30. Effect of extra-cerebral signal enhancement and sampling on parameter mapping. 

Ringing artefacts disappeared when we keep the signal of extra-cerebral structures constant 

over time. This simulation did not include motion or noise. Reproduced from Bernal et al. 

(2021a). 
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4.4.6 Effect of slice thickness 

We evaluated the effect of slice thickness on parameter maps (Figure 31). We 

considered two thicknesses: two and four millimetres. The use of thinner slices 

resulted in reduced ringing artefacts and, in most cases, reduced estimation 

error. This effect was particularly evident in the cortical grey matter, where the 

relative error reduced from -16.72% and -13.97% when using 4 mm slices to -

0.06 % and -1.04 % when using 2 mm slices, for 𝑃𝑆 and 𝑣𝑃, respectively. 

 

Figure 31. Qualitative and quantitative effect of slice thickness on the appearance of parameter 

maps. These two simulations correspond to a single high-resolution object acquired with 

different resolutions: 0.9375x1.25x4 mm (original resolution in the case study) and 

0.9375x1.25x2 mm. Thinner slices reduced ringing artefacts and estimation errors overall. 

Simulations excluded motion and noise effects. Reproduced from Bernal et al. (2021a). 
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4.5 Discussion 

We presented a computational model for mimicking the DCE-MRI acquisition 

process for quantifying accuracy and precision of subtle BBB leakage mapping 

under realistic conditions, including patient motion, anatomy and signal 

enhancement dynamics. Our development enabled us to simulate 

spatiotemporal imaging factors and demonstrate their simulation is 

fundamental due to their substantial effect on permeability mapping, over and 

above that of noise. 

We examined the effect of spatiotemporal considerations on the appearance 

and estimation of leakage maps by progressively inducing them during 

acquisition. These imaging artefacts led to visible patterns in permeability 

maps and implausible pharmacokinetic parameter estimates, which have been 

previously documented in the literature (Thrippleton et al., 2019). We 

additionally found that: 

 Finite k-space sampling caused partial volume averaging and Gibbs 

ringing. Both of these visual artefacts were particularly evident in the 

superior-inferior direction where the voxel dimension was the greatest. 

 The enhancement of extra-cerebral structures also contributed to the 

appearance of permeability maps: most ringing artefacts, except for 

those around large blood vessels, observed when extra-cerebral 

structures enhanced disappeared after disabling their enhancement. 

The oval shape of these ringing artefacts implied they originated from 

the extra-cerebral region, most likely from the truncation of the high 

spatial frequencies representing signal differences between inner and 

outer skull tables and surrounding tissues, which may become 

hyperintense after Gadolinium based contrast injection. 

 The inclusion of gross patient motion further degraded the appearance 

of leakage maps, obscuring tissue differences and introducing 

artefactual leakiness lateral ventricles. This artefactual leakiness was a 

direct consequence of motion and sampling: potentially distinct head 

positions per time frame caused distinct sampling artefacts over time 
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due to their dependence on the voxel grid (Ferreira et al., 2009). Given 

that the computation of permeability maps rely on voxel-wise temporal 

consistency, these distinct patterns resulted in regions of both 

increased and decreased permeability values. 

 Inducing motion artefacts further deteriorated permeability mapping, 

primarily in the form of ghosting and blurring features, characteristic in 

Cartesian sampling schemes (Zaitsev et al., 2015). 

 While noise propagated from signals to leakage maps, the additional 

relative impact was small compared to that of sampling and motion.  

Our work has implications for the interpretation of DCE-MRI assessments of 

subtle BBB leakage. First, spatiotemporal considerations have a major impact 

on the accuracy and precision of permeability mapping. Thus, the development 

of techniques to compensate for them either prospectively or retrospectively is 

critical for improving subtle BBB leakage assessments using DCE-MRI. 

Second, leakage maps in individual patients may be an unreliable source of 

information as their appearance varies depending on the underlying pathology 

but also on the presence of imaging artefacts and motion. In fact, permeability 

maps should be interpreted with caution since motion and sampling cause 

artefactual leakiness, which could be easily confused with key neuroimaging 

features, such as periventricular white matter hyperintensities. Acknowledging 

this is the case is fundamental for better understanding permeability mapping 

in ageing studies. Third, motion may happen occasionally, but medical 

conditions – e.g. strokes (Handley et al., 2009) – may also cause movement 

disorders, which, as demonstrated in this work, affect quantitative leakage 

rates. Adjusting for this type of confounders in statistical tests may help to 

determine whether this is indeed the case and alleviate this problem (Lutti et 

al., 2021). Fourth, the enhancement of blood vessels and extra-cerebral 

structures causes visual and quantitative problems in permeability mapping. 

Given that the magnitude of the enhancement depends, among many factors, 

on the amount of contrast flowing intravenously, which in turn is directly 

proportional to the weight of the patient, it may be that permeability mapping 
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is also biased by this cardiovascular risk factor. Checking whether this is the 

case and adjusting for it is also crucial for reducing potential study bias. 

Our computational model is limited by its assumptions and simplifications. 

First, we reduced the level of granularity of the original brain atlas, i.e. we did 

not simulate all anatomical structures in the head, mainly due to the lack of 

information concerning their tissue properties. Moreover, while the brain atlas 

used as reference is the highest resolution (e.g. based on 7-T data) head and 

neck atlas with comprehensive labelling available at present, another brain 

atlas with even higher resolution could enable representing many more 

structures and tissue interfaces accurately. Second, our motion model 

recreated motion artefacts with realistic appearance within acceptable 

computational time. However, we acknowledge simulation of continuous 

patient motion throughout the acquisition would generate realistic data at the 

expense of increase computational responses. Evidently, this problem could 

be alleviated with the use of GPUs. Third, we simulated a single imaging 

protocol. Nevertheless, the reference protocol is typical of those described in 

the literature, concerning spatial resolution, acquisition time and pulse 

sequence. Alternative protocols and pulse sequences could be generated by 

altering each of the components presented in this work. Fourth, we simulated 

a fixed subset of neuroimaging features characteristic of CSVD: white matter 

hyperintensities and stroke lesions. While this work enabled us to determine 

systematic biases and random errors, future work should evaluate the impact 

of other biomarkers with varied burden on the accuracy of leakage 

measurements. 

In conclusion, we found that spatiotemporal imaging considerations have a 

notable impact on the appearance and estimation of parameter maps, making 

their simulation essential for objectively designing acquisition protocols and 

devising post-processing techniques. We have made our development publicly 

available for other researchers to build upon it and test their imaging and 

processing schemes in advance (https://doi.org/10.7488/ds/2966). Our work 

reveals reasons to interpret permeability mapping carefully and provides 

means to estimate and optimise the reliability of measurements. 

https://doi.org/10.7488/ds/2966
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4.6 Take-home messages 

 Spatiotemporal considerations determine the visual appearance of 

parameter maps and the magnitude of estimation errors, demonstrating 

their simulation is essential for understanding the sensitivity and 

limitations of current BBB leakage assessments. 
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 Quantitative evaluation of signal 

and permeability map processing on subtle BBB 

leakage assessments using DCE-MRI 

In this chapter, we objectively investigate the effect of signal post-processing 

techniques commonly used on DCE-MRI assessments of CSVD. The following 

two journal papers partially inspire the work contained in this chapter:  

Bernal, Jose, Maria d.C. Valdés-Hernández, Javier Escudero, Anna K. 

Heye, Eleni Sakka, Paul A. Armitage, Stephen Makin, Rhian M. Touyz, 

Joanna M. Wardlaw, and Michael J. Thrippleton. "A four-dimensional 

computational model of dynamic contrast-enhanced magnetic resonance 

imaging measurement of subtle blood-brain barrier leakage." 

NeuroImage 230 (2021): 117786. 

Bernal, Jose, María d.C. Valdés-Hernández, Javier Escudero, Eleni 

Sakka, Paul A. Armitage, Stephen Makin, Rhian M. Touyz, and Joanna 

M. Wardlaw. "Examining the relationship between semiquantitative 

methods analysing concentration-time and enhancement-time curves 

from dynamic-contrast enhanced magnetic resonance imaging and 

cerebrovascular dysfunction in small vessel disease." Journal of Imaging 

6, no. 6 (2020): 43. 

5.1 Introduction 

The aim of post-processing DCE-MRI signals to study BBB malfunction is to 

attempt reducing estimation problems caused by spatiotemporal imaging 

considerations. While the incorporation or omission of these techniques may 

seem reasonable, their actual impact on extremely low permeability 

assessments is unknown and overlooked (Chapter 2). In this chapter, we 

attempt to fill this knowledge gap by investigating the effect of post-processing 

methods used in these types of assessments using synthetic and real data. 

With this research, we aim to answer whether post-processing is suitable and 

if so under what conditions can it be applied.  
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5.2 Methods 

We evaluated signal and permeability map post-processing methods via the 

steps illustrated in Figure 32 and described in detail below. Using our 

computational model, we scrutinised their impact on pharmacokinetic 

parameter estimation on synthetic data. The procedure consisted of 

generating four-dimensional high-resolution DCE-MRI signals, acquiring them, 

post-processing signals, regressing parameters via the Patlak model, post-

processing permeability maps, and, finally, quantifying deviation. In this sense, 

improvement or worsening in parameter estimation would be a direct 

consequence of post-processing. We also examined the effect of post-

processing on real data. Given the lack of a ground truth in reality, we opted 

for examining the strength of associations between clinical variables and 

permeability measurements. 

 

Figure 32. Evaluating the effect of signal and permeability map post-processing methods. 

Once we acquire images, we post-process them at two stages: after imaging by altering the 

signal or after permeability mapping by altering pharmacokinetic parameter maps. Deviation 

quantification depends on whether ground truth data is available (simulation or not simulation). 

𝑃𝑆: permeability-surface area product. 𝑣𝑃: fractional blood plasma volume per unit of tissue. 
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5.2.1 Quantifying the effect of post-processing synthetic data 

Based on the data obtained in Chapter 4, we have the figures of the 

repercussions of the imaging protocol and imaging artefacts on DCE-MRI 

measurement. We used this information to examine the additional 

improvement or worsening caused by the incorporation of post-processing into 

the analysis pipeline. We computed deviation in terms of error (difference 

between ground truth and measured parameters) and relative error as a 

surrogate measure of the effect of post-processing on permeability mapping. 

5.2.2 Quantifying the effect of post-processing real data 

The assessment of the actual effect of post-processing real DCE-MRI scans 

is problematic given the lack of a ground truth. Nonetheless, the associations 

between permeability measures and clinical variables could be used to 

determine whether processing overshadows originally evident relationships or 

makes them more apparent statistically speaking.  

We used multiple linear regression to test for associations between 

periventricular and deep white matter hyperintensity burden and 𝑃𝑆, after 

correcting for demographics and cardiovascular risk factors. We carried out 

our statistical analyses using RStudio v1.1.456 with R v3.5.1. 

5.3 Materials 

5.3.1 In-silico data 

We used DCE-MRI scans generated by our computational model. We run the 

simulations 201 times with the same anatomical reference model, but with 

distinct spatiotemporal effects. Full details are given in Chapter 4. 

5.3.2 In-vivo data 

We used DCE-MRI scans and clinical data from the MSS2 (Chapter 3). We 

additionally retrieved demographics, cardiovascular risk factors, and clinical 

visual scores for each patient. We considered age, stroke lesion subtype, 

biological sex, smoking status, diabetes, hyperlipidaemia, and the Fazekas 

score (Fazekas et al., 1988). 
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5.4 Experimental results 

5.4.1 In-silico results 

We simulated 201 DCE-MRI acquisitions using the same anatomical model 

but different motion trajectories, spatiotemporal effects and starting head 

positions each time. We then estimated the accuracy and precision of 

parameter estimation using signal and parameter averaging and pre- and post-

processing techniques reported in the literature. We present the corresponding 

results in the following sections. 

5.4.1.1 Signal peak discard 

Assuming the signal peak is sampled perfectly and modelled by the Patlak 

model – as in our simulations – we wondered whether exclusion of signal peak 

held any additional benefits (Figure 33). Results suggest this method has 

positive quantitative and qualitative effects on permeability mapping. The 

truncation of high spatial frequencies right after contrast administration leads 

to pronounced ringing artefacts due to the substantial increase of signal 

differences, especially in regions proximal to large blood vessels. 

Consequently, the inclusion of the signal peak results in increased distortion 

and quantification errors compared to when omitted. For example, the relative 

𝑃𝑆 error on the normal-appearing white matter in a low-motion simulation was 

-28.45% when including the signal peak and -1.25% when discarding it. Given 

the theoretical and practical aspects supporting the application of this signal 

post-processing method, we considered it in all of the following experiments. 
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Figure 33. Effect of signal peak discard on parameter mapping on a single simulation. 

Including the signal peak on pharmacokinetic parameter estimation causes additional 

distortion as sampling artefacts are more pronounced on the time point right after the arrival 

of contrast agent to the brain. This simulation included all spatiotemporal considerations. 

5.4.1.2 Spatial realignment 

We evaluated the effect of spatial realignment or lack thereof using our 

simulations (Figure 34). Experimental results confirmed spatial normalisation 

is fundamental, having beneficial impact on the precision and accuracy of 

parameter estimation. While this situation was particularly favourable in cases 

of moderate or high motion, we found it beneficial in cases of low motion. For 

stroke lesions and white matter hyperintensities, spatial realignment reduced 

estimation errors enormously: the relative 𝑃𝑆 error in simulations of high 

motion was -9.84 [IQR -15.17, -0.1] % and 19.32 [IQR 10.46, 25.73] % after 
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spatial realignment vs -60.38 [IQR -94.38, -26.39] % and 214.7 [IQR 107.65, 

291.33] % without spatial realignment, respectively. Additionally, we evaluated 

the effect of trilinear (default in MCFLIRT) and sinc interpolation on the 

estimation. Both methods yielded comparable errors. 

 

Figure 34. Effect of spatial realignment on pharmacokinetic parameter estimation stratified by 

extent of motion, region of interest, and interpolation method. Simulations included all 

spatiotemporal considerations. We computed estimates using the parameter median 

approach. The explicit definition of low, moderate, and high motion can be found in the Chapter 

3. The horizontal dotted lines represent the true permeability values for each region of interest. 

The maximum width of violins was kept constant. Reproduced from Bernal et al. (2021a). 

5.4.1.3 Signal and parameter averaging 

We examined the accuracy and precision of permeability estimation using both 

approaches (Figure 35).  Parameter median led to comparable or slightly 

better estimates and lower dispersion than the other three estimation 

approaches. Nonetheless, differences were subtle. 
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Figure 35. Parameter estimation by means of signal and parameter averaging. We computed 

these results after inter-frame realignment. Simulations included all spatiotemporal 

considerations. We kept the width of violins constant. The horizontal dotted lines represent the 

true parameter values. Adapted from Bernal et al. (2021a). 

5.4.1.4 Temporal filtering 

We identified two techniques that have been used for temporal filtering: the 

Savitzky-Golay and Kalman filtering. 

We smoothed signal-time curves using the Savitzky-Golay filtering (Figure 37 

and Figure 36). This method requires setting up two parameters, frame length 

and order. Consequently, we tested whether any possible combination 

reduced quantification errors. Indeed, these two input parameters determined 

the performance of the filter: the higher the frame length and the lower the filter 

order, the higher the estimation errors. However, the opposite did not lead to 

better quantitative or qualitative results than those obtained from raw signals. 
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Figure 36. Qualitative effect of Kalman and Savitzky-Golay filtering on the temporal dimension on pharmacokinetic parameter estimation. Visually, the 

effect of temporal filtering is imperceptible. This simulation included gross motion but excluded motion artefacts and noise effects and the extent of motion 

was high. 
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Figure 37. Effect of Savitzky-Golay filtering on the temporal dimension on pharmacokinetic parameter estimation. Labels in the x-axis represent the frame 

length and order of the filter. Simulations included all spatiotemporal considerations. The horizontal dotted lines represent the true permeability values for 

each region of interest. We kept the maximum width of violins constant.
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We also evaluated whether filtering signal-time curves using Kalman filtering 

could help to reduce errors in permeability parameter estimation (Figure 38 

and Figure 36). We tested two models: one relying on a constant velocity 

model and another one on a constant acceleration model. The effect of both 

methods was small, in most cases leading to slightly higher estimation errors. 

Qualitatively, the impact of this technique on permeability mapping was 

imperceptible. 

 

Figure 38. Effect of Kalman filtering on the temporal dimension on pharmacokinetic parameter 

estimation. We tested filtering with constant velocity and acceleration models denoted by “vel” 

and “acc”, respectively. Simulations included all spatiotemporal considerations. The horizontal 

dotted lines represent the true permeability values for each region of interest. We kept the 

maximum width of violins constant.  

5.4.1.5 Segmentation post-processing 

We tested whether segmentation mask erosion could decrease estimation 

errors caused by partial volume effects (Figure 39). We used a sphere kernel 

as structural element and different radii ranging from zero to three. Excluding 

regions highly affected by partial volume effects (e.g. tissue interfaces) helped 

to reduce inaccuracies in pharmacokinetic parameter regression. For example, 
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the relative 𝑃𝑆 error for normal-appearing white matter and cortical grey matter 

was -18.47 [IQR -32.35, -10.01] % and -15.60 [IQR -19.92, -10.75] % originally 

versus -8.19 [IQR -11.41, -4.76] % and -6.58 [IQR -9.18, -4.31] % following 

erosion. However, further erosion did not necessarily lead to better estimates: 

eroding the cortical grey matter with a large structural element yielded higher 

systematic bias or variance compared to that obtain with a sphere of radius 

equal to one.  

 

Figure 39. Effect of segmentation mask erosion on pharmacokinetic parameter estimation. 

Simulations included all spatiotemporal considerations. The horizontal dotted lines represent 

the true permeability values for each region of interest. We kept the maximum width of violins 

constant. 

5.4.1.6 Low-pass filtering 

Gibbs ringing artefacts can be mitigated by applying a low-pass filter to the 

measured k-space. We considered a Bessel low-pass filter, given that it would 

be available to implement prospectively in a Siemens scanner (filter order 5; 

cut-off frequency: half low-resolution field of view in k-space). Indeed, the 
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application of the low-pass filter enhanced the qualitative appearance of 

parameter maps (Figure 40). 

 

Figure 40. Qualitative effect of a Bessel low-pass filter on the appearance of permeability 

maps. Low-pass filtering reduces ringing artefacts as it attenuates high frequencies. However, 

it does not correct the underlying problem: data loss. This simulation included gross motion 

but excluded motion artefacts and noise effects and the extent of motion was low. Reproduced 

from Bernal et al. (2021a). 

We also examined whether this qualitative effect translated into reduced 

estimation errors (Figure 41). On its own and in most cases, low-pass filtering 

led to comparable or worse regression results than when omitted. This was 

the case of stroke lesion, where the use of this filter led to increased error: -

10.91 [IQR -14.59, -6.62] % before filtering and -15.58 [IQR -19.49, -12.44] % 

after filtering. The use of segmentation mask erosion to reduce contribution of 

partial volume effects tended to enhance estimation accuracy and precision 

slightly. However, this improvement was not necessarily as good as that 

obtained when considering segmentation mask erosion alone. 
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Figure 41. Effect of low-pass filter signals prior to pharmacokinetic parameter estimation. We 

eroded segmentation masks using a sphere with radius equal to one. Simulations included all 

spatiotemporal considerations. The horizontal dotted lines represent the true permeability 

values for each region of interest. We kept the maximum width of violins constant. 

5.4.1.7 Permeability histogram analysis 

We examined the effect of histogram analysis on our simulations (Figure 42). 

We considered different numbers of bins to evaluate whether the way 

estimates are grouped determines the effectiveness of the approach. The 

application of this technique led to an overestimation of 𝑃𝑆 values in most 

tissues. For instance, the relative estimation error of the 𝑃𝑆 value of the 

normal-appearing white matter and deep grey matter went from -18.47 [IQR -

32.35, -10.01] % and 2.50 [IQR -2.46, 8.60] % to 12.59 [IQR 4.66, 25.28] % 

and 8.95 [IQR 2.20, 24.18] %, respectively. The only case where this even did 

not occur was in stroke lesions (relative 𝑃𝑆 error equal to -10.91 [IQR -14.59, 

-6.62] % with and without denoising), which evidenced little to no negative 

values. Median 𝑣𝑃 estimation errors decreased for cortical and deep grey 

matter and increased for normal-appearing white matter and white matter 
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hyperintensities. We noticed the aforementioned trends irrespective of the 

number of bins.  

 

Figure 42. Effect of histogram analysis on pharmacokinetic parameter estimation. The number 

of bins determine the bins used for computing the histogram, where bins equal zero denotes 

the original estimates. Simulations included all spatiotemporal considerations. The horizontal 

dotted lines represent the true permeability values for each region of interest. We kept the 

maximum width of violins constant. 

5.4.2 In-vivo results 

We used data collected in the MSS2 to evidence the effect of processing on 

the estimates. Since the lack of a ground truth prevent us from assessing 

accuracy and precision, we focused on dispersion and central tendencies. We 

present the corresponding results in the following sections. 

5.4.2.1 Spatial realignment 

We tested the effect of rigid-body frame realignment using real DCE-MRI 

scans to establish whether patterns observed in-silico matched those in-vivo 

(Figure 43). Experimental results also suggest spatiotemporal normalisation 
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reduces dispersion in parameter value even in cases of low motion. Moreover, 

inter-frame realignment affected quantification in regions of high permeability 

greatly: in cases of high motion, the coefficient of quartile variation in 𝑃𝑆 values 

for white matter hyperintensity and stroke lesions was 651% and 145% without 

spatial realignment vs 44% and 44% with spatial realignment, respectively. We 

hence opted for utilising this technique in the following experiments.  

 

Figure 43. Effect of spatial realignment on pharmacokinetic parameter estimation in-vivo 

stratified by extent of motion, region of interest, and interpolation method. Results based on 

MSS2 data (n=201; Section 3.3.1). We computed estimates using the parameter averaging. 

The explicit definition of low, moderate, and high motion can be found in the Chapter 4. The 

maximum width of violins was kept constant. 

5.4.2.2 Signal and parameter averaging 

We examined the distribution of pharmacokinetic parameter computed via 

signal and parameter averaging (Figure 44).  Parameter averaging tended to 

lead to higher 𝑃𝑆 and 𝑣𝑃 estimates regardless of the region of interest 
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compared to any other method. However, differences in BBB leakage 

measurements yielded by the four processing methods were minor. 

 

Figure 44. Parameter estimation by means of signal and parameter averaging using in-vivo 

data. Results based on MSS2 data (n=201; Section 3.3.1). We computed these results after 

inter-frame realignment. We kept the width of violins constant. 

5.4.2.3 Effect of post-processing permeability estimates and their 

relationship with clinical variables 

We investigated the effect of post-processing on pharmacokinetic parameter 

estimation using in-vivo data (Figure 45 and Table 12). The findings of this 

experiment were three-fold. First, segmentation mask erosion led to similar or 

higher parameter values compared to those computed from raw signals. In 

agreement with our previous simulations, erosion led to higher estimates for 

the normal-appearing white matter and stroke lesions. The median 𝑃𝑆 was 

equal to 2.68 [IQR 1.81, 3.48] x 10-4 min-1 and 4.75 [IQR 3.29, 5.78] x 10-4 min-

1 before erosion and 3.38 [IQR 2.61, 4.35] x 10-4 min-1 and 6.07 [IQR 3.91, 8.42] 

x 10-4 min-1 after erosion for both tissues, respectively. Second, the application 
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of histogram analysis consistently led to higher 𝑃𝑆 and 𝑣𝑃 values than those 

obtained with any other method. We gauged an increase between 47% and 

181% in parameter values versus those obtained without any type of 

processing. Additionally, its use resulted in higher values for normal-appearing 

white matter than for white matter hyperintensities. Third, Kalman filter yielded 

estimates similar to those obtained before processing, except for stroke 

lesions where it shifted the distribution of 𝑃𝑆 estimates upwards, specifically 

from 4.75 [IQR 3.29, 5.78] x 10-4 min-1 to 5.05 [IQR 3.50, 6.50] x 10-4 min-1. 

 

Figure 45. Effect of post-processing on pharmacokinetic parameter estimation using in-vivo 

data. Results based on MSS2 data (n=201; Section 3.3.1). We estimated pharmacokinetic 

parameters after spatial realignment and excluding the first three time points which include the 

signal peak. We tested erosion (sphere; radius = one voxel), histogram analysis (bins = 1000), 

and Kalman filtering (constant velocity model). The maximum width of violins was kept 

constant. 

Table 12. Pharmacokinetic parameters estimated with and without signal and permeability 

map processing. Results based on MSS2 data (n=201; Section 3.3.1). We estimated 

pharmacokinetic parameters after spatial realignment and excluding the first three time points 

which include the signal peak. We eroded using a sphere of radius equal to one, used 1000 
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bins for histogram analysis, and filtered signal-time curves over time with a Kalman filter with 

a constant velocity model. We report median and IQR.  
 Parameter 

Normal-
appearing 

white 
matter 

White matter 
hyperintensity 

Deep grey 
matter 

Stroke 
lesion 

O
ri
g

in
a
l 𝑃𝑆 

[10-4 min-1] 
2.68 

(1.81, 3.48) 
3.69 

(2.94, 4.52) 
3.39 

(2.73, 3.94) 
4.75 

(3.29, 5.78) 

𝑣𝑃 
[10-2] 

0.48 
(0.32, 0.67) 

0.62 
(0.38, 0.84) 

0.83 
(0.67, 1.02) 

0.56 
(0.32, 0.77) 

E
ro

s
io

n
 𝑃𝑆 

[10-4 min-1] 
3.38 

(2.61, 4.35) 
3.69 

(2.94, 4.52) 
3.58 

(2.95, 4.24) 
6.07 

(3.91, 8.42) 

𝑣𝑃 
[10-2] 

0.48 
(0.31, 0.67) 

0.60  
(0.34, 0.88) 

0.88 
(0.68, 1.08) 

0.50 
(0.25, 0.80) 

H
is

to
g
ra

m
 

a
n
a

ly
s
is

  𝑃𝑆 
[10-4 min-1] 

5.81 
(4.99, 6.94) 

5.78 
(4.98, 6.61) 

4.94 
(4.52, 5.69) 

6.97 
(4.87, 9.95) 

𝑣𝑃 
[10-2] 

1.35 
(1.23, 1.63) 

1.33 
(1.16, 1.59) 

1.31 
(1.19, 1.46) 

1.27 
(0.79, 1.80) 

K
a

lm
a

n
 

fi
lt
e

r 

𝑃𝑆 
[10-4 min-1] 

2.65 
(1.65, 3.49) 

3.73 
(2.91, 4.76) 

3.32, 
(2.69 3.91) 

5.05 
(3.50, 6.50) 

𝑣𝑃 
[10-2] 

0.45 
(0.27, 0.64) 

0.59 
(0.35, 0.83) 

0.85 
(0.68, 1.04) 

0.59 
(0.29, 0.82) 

 

We checked the relationship of computational estimates of pharmacokinetic 

parameters before and after post-processing to examine its effect on their 

relationship with clinical parameters. We used multiple linear regression for 

this purpose: 𝑃𝑆 as outcome variables and clinical variables as predictors (age, 

biological sex, smoking history, diagnosis of hypertension, diagnosis of 

hyperlipidaemia, diagnosis of diabetes, stroke lesion subtype). The results for 

the normal-appearing white matter, white matter hyperintensities, deep grey 

matter, and recent stroke lesions is condensed in Table 13, Table 14, Table 

15, and Table 16, respectively. In general, strength and significance of the 

relationships varied depending on whether DCE-MRIs had been post-

processed or not. Adjusted 𝑅2 values remained similar or increased after 

eroding segmentation masks, where as they decreased consistently after 

using histogram analysis.  
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Table 13. Multiple linear regression results with raw and post-processed leakage rates (PS) of 

normal-appearing white matter as output variable and clinical variables as predictors. Results 

based on MSS2 data (n=201; Section 3.3.1). We estimated pharmacokinetic parameters after 

spatial realignment and excluding the first three time points which include the signal peak. We 

used bold fonts and the superscripts a and b to indicate p-values fall below 0.01 and 0.001, 

respectively. 

Variable Original Erosion 
Histogram 
analysis 

Kalman 
Filter 

Age -0.018 -0.020 -0.036 -0.026b 

Biological sex (m/f) -0.035 -0.002 -0.755 0.101 

Smoker (never/yes) 0.029 0.102 0.892 0.115 

Hypertension (no/yes) 0.390 0.320 -0.095 0.413 

Hyperlipidaemia (no/yes) -0.006 0.060 0.364 0.025 

Diabetes (no/yes) 0.449 0.415 -0.800 0.487 

Stroke lesion type (cortical/lacunar) -0.232 -0.269 -0.746 -0.246 

White matter hyperintensity volume -0.755 -4.294 15.805 -4.799 

SL volume -10.068 -12.083 -14.408 -12.085 

Adj. 𝑅2 (%) 1.3 1.9 1.1 5.0 

 

Table 14. Multiple linear regression results with raw and post-processed leakage rates (PS) of 

white matter hyperintensity as output variable and clinical variables as predictors. Results 

based on MSS2 data (n=201; Section 3.3.1). We estimated pharmacokinetic parameters after 

spatial realignment and excluding the first three time points which include the signal peak. We 

used bold fonts and the superscripts a and b to indicate p-values fall below 0.01 and 0.001, 

respectively. 

Variable Original Erosion 
Histogram 
analysis 

Kalman 
filter 

Age -0.019 -0.026 -0.013 -0.023 

Biological sex (m/f) 0.165 0.333 0.109 0.302 

Smoker (never/yes) 0.333 0.325 0.330 0.319 

Hypertension (no/yes) 0.265 -0.112 -0.180 -0.011 

Hyperlipidaemia (no/yes) 0.126 0.559 0.021 0.474 

Diabetes (no/yes) 0.614 1.593b 0.284 1.083 

Stroke lesion type (cortical/lacunar) -0.119 0.068 -0.087 0.159 

White matter hyperintensity volume -13.695 -19.871 -8.564 -13.196 

SL volume -2.184 18.377 -2.013 17.162 

Adj. 𝑅2 (%) 5.1 8.5 0.0 5.0 

 

Table 15. Multiple linear regression results with raw and post-processed leakage rates (PS) of 

deep grey matter as output variable and clinical variables as predictors. Results based on 
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MSS2 data (n=201; Section 3.3.1). We estimated pharmacokinetic parameters after spatial 

realignment and excluding the first three time points which include the signal peak. We used 

bold fonts and the superscripts a and b to indicate p-values fall below 0.01 and 0.001, 

respectively.  

Variable Original Erosion 
Histogram 
analysis 

Kalman 
filter 

Age -0.022a -0.022a -0.017 -0.021a 

Biological sex (m/f) 0.026 -0.008 -0.271 0.005 

Smoker (never/yes) 0.175 0.148 0.303 0.169 

Hypertension (no/yes) 0.326 0.317 -0.394 0.320 

Hyperlipidaemia (no/yes) -0.116 -0.138 0.198 -0.123 

Diabetes (no/yes) 0.469 0.542 0.170 0.500 

Stroke lesion type (cortical/lacunar) -0.174 -0.145 -0.292 -0.161 

White matter hyperintensity volume -2.818 -3.252 -2.841 -3.702 

SL volume -8.317 -9.937 -4.681 -10.984 

Adj. 𝑅2 (%) 3.9 4.4 2.9 4.6 

 

Table 16. Multiple linear regression results with raw and post-processed leakage rates (PS) of 

recent stroke lesions as output variable and clinical variables as predictors. Results based on 

MSS2 data (n=201; Section 3.3.1). We estimated pharmacokinetic parameters after spatial 

realignment and excluding the first three time points which include the signal peak. We used 

bold fonts and the superscripts a and b to indicate p-values fall below 0.01 and 0.001, 

respectively. 

Variable Original Erosion 
Histogram 
analysis 

Kalman 
filter 

Age -0.077 -0.083 -0.076 -0.059 

Biological sex (m/f) 1.138 1.404 1.065 0.784 

Smoker (never/yes) 0.733 0.491 1.210 0.113 

Hypertension (no/yes) 2.501 2.366 1.698 1.270 

Hyperlipidaemia (no/yes) 0.412 0.753 -0.658 0.120 

Diabetes (no/yes) 6.367b 7.341b 6.852b 5.305b 

Stroke lesion type (cortical/lacunar) -2.515a -3.069a -4.651a -1.455 

White matter hyperintensity volume -33.462 -44.904 -49.125 -31.664 

SL volume 82.434 79.454 99.653 75.594 

Adj. 𝑅2 (%) 27.6 27.4 25.6 20.4 
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5.5 Discussion 

While post-processing or lack thereof may seem appropriate, their use in low-

permeability scenarios may have little to no effect on permeability estimation 

or, in the worst case, be completely counterproductive. Determining which 

ones are helpful and under what conditions they work is hence essential for 

improving assessments in low permeability scenarios and adding confidence 

to studies of CSVD and related pathologies. We used our computational model 

of the DCE-MRI acquisition process and in-vivo data to quantify the effect of 

common signal and permeability map processing on subtle BBB leakage 

assessments. This investigation enabled us to identify common practices that 

seem to compromise current studies and conditions under which they may 

function. Furthermore, we demonstrate patterns observed in simulations are 

also present in reality.  

Reporting a unique permeability value per region of interest requires averaging 

either permeability maps or signal-time curves. There is no definite consensus 

on which approach to follow to obtain more reliable measurements 

(Thrippleton et al., 2019). In-silico results using our computational model 

suggest either yields comparable accuracy or precision. In-vivo results also 

indicate similar distributions regardless of the estimation method. Nonetheless, 

a key theoretical aspect concerning outlier sensitivity may be crucial to choose 

one set of methods over another: eccentric data points affect the computation 

of the mean value. On the one hand, this allows mean based pharmacokinetic 

parameter synthesis to account for subtle abnormal measurements, which 

could be reflective of the underlying pathology. On the other hand, the 

widening effect of spatiotemporal imaging considerations on the distribution of 

parameter values leads to negative or artefactually increased permeability 

values, causing mean based parameters to under- or over-estimate actual 

permeability values. Therefore, we recommend parameter mean if motion 

levels are relatively low and parameter median otherwise. 

Motion and sampling are detrimental for extremely low permeability mapping 

and estimation, even in cases of low motion. Temporal partial volume effects 
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cause signal mixture, especially around tissue interfaces, averaging tissues of 

potentially different pharmacokinetic properties. In simulations, the observed 

underestimation of 𝑃𝑆 in the normal-appearing white matter could be explained 

by the progressive incursion of surrounding leakier regions, such as white 

matter hyperintensities, grey matter and stroke lesion, caused by these two 

spatiotemporal imaging considerations given that this situation worsens as 

motion increases and reduces after inter-frame realignment and segmentation 

mask erosion. Experimental results using real patient data also reveal 

dispersion in pharmacokinetic parameter values lessens after rigid-body inter-

frame realignment and erosion. Therefore, spatial normalisation and 

segmentation mask erosion are fundamental to reduce systematic and random 

estimation errors retrospectively. Future work should consider testing the 

effect of sophisticated frameworks performing joint motion correction and 

parameter estimation, as these have been found promising in challenging 

cases of large and periodic motion (Coll-Font et al., 2021; Enescu et al., 2014). 

Prospectively, head padding may also help to reduce these errors (Thrippleton 

et al., 2019). 

Low-pass filtering DCE-MRI signals prior to voxel-wise permeability mapping 

reduces k-space sampling artefacts, potentially enabling visual assessment of 

permeability maps. However, this technique induces additional blurring, 

thereby causing additional tissue contamination and an increase in estimation 

error, which was still present even after segmentation mask erosion. Moreover, 

even though low-pass filtering enhances the visual quality of the resulting 

permeability maps, it does not compensate for the main problem of finite k-

space measurement: data loss. We recommend using the raw signal for 

quantitative purposes and the filtered signal for qualitative purposes.  

Spatiotemporal imaging considerations have significant effects on the 

distribution of permeability estimates. The histogram analysis method 

assumes there is a zero-centred symmetric “noise” distribution corrupting 

permeability estimates and, consequently, attempts to cope with this problem 

by estimating and removing it (Kerkhofs et al., 2021; van de Haar et al., 2017a, 

2017b, 2016; Zhang et al., 2017). According to our simulations, sampling and 



   

Chapter 5. Quantitative evaluation of signal and permeability map processing 
on subtle BBB leakage assessments using DCE-MRI 105 

motion widen the distribution of permeability estimates, leading to estimates 

below and above the actual permeability values. While this could be a 

consequence of the way we simulate the acquisition of DCE-MRI scans, such 

an aftereffect would nicely explain the long tails towards both positive and 

negative values seen in Figure 1 in Zhang et al. (2017). Thus, the assumption 

of a noise distribution with the aforementioned characteristics may not 

necessarily reflect the nature of the distortion and consequently its use would 

be counterproductive. In silico, we confirmed this was the case and typically 

led to an overestimation of permeability. In vivo, the use of histogram analysis 

led to permeability values above those obtained with any other method. 

Moreover, and unsettlingly enough, its application resulted in higher 

permeability values for the normal-appearing white matter than those for white 

matter hyperintensities in vivo, in agreement with Zhang et al. (2017) and in 

disagreement with trends seen in the original data and with previous work in 

the field (Heye et al., 2016a). Considering all this information, we do not 

encourage its application to subtle BBB permeability analyses. 

Eroding segmentation masks reduces partial volume effects (Heye et al., 

2016a), which are a primary source of error. Nonetheless, the effectiveness of 

this morphological operation depends on the size of the structural element and 

of the region of interest. Excessive erosion on small or thin regions of interest 

causes estimation errors to rise potentially since it leaves less voxels to 

average on. Overall, we found that erosion with a sphere of radius equal to 

one was sufficient to reduce estimation errors. 

Temporal filtering attempt to smooth out variations in signal-time curves 

caused by excessive motion (Shao et al., 2020; Taheri et al., 2011a; van de 

Haar et al., 2017b). Even though intuitively their application should help ensure 

temporal consistency locally, we observed little to no positive effect of Kalman 

and Savitzky-Golay filtering on permeability estimation. Thus, we discourage 

its application in low permeability scenarios. 

Post-processing signal or permeability maps altered the associations between 

permeability estimates and clinical variables. Thestrength and significance of 
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these associations changed after post-processing. In general, spatial 

realignment, signal peak discard, and segmentation mask erosion led to 

estimates that clinical variables described better. Given the impact that this 

situation may have on the interpretation of the role of BBB disruption on CSVD 

and other neurodegenerative diseases characterised by low BBB permeability, 

we consider necessary to report estimates before and after post-processing 

and also carry out statistical analyses with both. 

Our quantitative evaluation has limitations. First, following the limitations 

outlined in the previous chapter, our computational model has assumptions 

and simplifications, preventing it from being a completely realistic model of the 

DCE-MRI acquisition. Nonetheless, this initial approximation permits alerting 

of potential malpractices, ultimately shifting the mindset of researchers 

towards objective evaluation of imaging and processing schemes for better 

understanding DCE-MRI assessments of endothelial dysfunction. Second, we 

realigned frames using FSL-MCFLIRT’s default similarity metric, normalised 

cross-correlation. We therefore assumed a linear relationship between the 

reference and moving images, which might result in substandard non-rigid 

motion correction in DCE-MRI sequences (Coll-Font et al., 2021; Enescu et 

al., 2014). While we did not witness registration issues, better similarity 

metrics, such as mutual information, should be considered in the future. Third, 

while most post-processing methods considered in this chapter are accessible 

in MATLAB, the histogram analysis method is not. This synthesis method is 

not publicly available either, making it difficult to reproduce. Thus, it is likely 

that the results may not be the same obtained using the gold standard. 

Nonetheless, the issue of the noise distribution assumption would still remain. 

In conclusion, we found that post-processing techniques have an impact on 

permeability estimation, both positive and negative, making their quantitative 

evaluation in simulations essential for obtaining more reliable permeability 

measurements and add more confidence to subtle BBB leakage studies. Once 

again, we have made our development publicly available for other researchers 

to test their processing schemes (https://doi.org/10.7488/ds/2966). Our work 

https://doi.org/10.7488/ds/2966
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reveals reasons to design processing pipelines in low-permeability scenarios 

both carefully and objectively. 

5.6 Take-home messages 

 Post-processing is a source of variability in pharmacokinetic parameter 

estimation. Therefore, validation of post-processing schemes prior to 

their application is essential for reducing estimation errors. 

 Co-registration, signal peak discard, and segmentation mask reduce 

estimation errors in simulations and lead to stronger associations with 

clinical risk factors in real patient data. 

 The use of histogram analysis for denoising parameter maps needs to 

be reconsidered as simulation work suggests its assumption may not 

be met and it consistently leads to over-estimation of parameter values. 
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 A computational model for 

assessing PVS quantification in sMRI 

In this chapter, we present a computational model for evaluating PVS 

segmentation and investigate its robustness against imaging distortions as a 

way to provide insights into critical aspects to improve PVS quantification. This 

chapter contains preliminary results of the following preprint:  

Bernal, J., Valdés-Hernández, M.d.C., Escudero, J., Duarte, R., Ballerini, 

L., Bastin, M.E., Deary, I., Thrippleton, M.J., Touyz, R.M. and Wardlaw, 

J.M. and Thrippleton, M.J. (2022). Assessment of perivascular space 

enhancement methods using a three-dimensional computational model, 

Preprints, 2022040058. 

 

6.1 Introduction 

The evolution of neuroimaging technologies has recently enabled visualising 

of PVS. Until recently, quantification for research purposes has relied primarily 

on clinical visual scores (Heier et al., 1987; Patankar et al., 2005; Potter et al., 

2015; Rouhl et al., 2008). These approximate the frequency of PVS in several 

standard brain regions according to ordinal scales, as full manual counts are 

extremely time-consuming, laborious, and impractical to perform, especially in 

large studies (Ballerini et al., 2018). However, the ordinal visual scales are 

relatively insensitive, may be prone to variation between observers, especially 

when co-occurring with other CSVD features (González-Castro et al., 2017), 

and do not capture other aspects of PVS such as length, width, individual or 

total PVS volumes.  

The use of computational techniques could help to overcome the limitations of 

visual scores if accurate, if they can reduce operator time and subjectivity, and 

accurately measure PVS. However, computational quantification of subtle 

neuroimaging features such as small PVS is extremely challenging due to the 

small size, the frequency of artefacts, and substandard processing workflows 
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(Ballerini et al., 2020b, 2018). Determining which computational methods are 

suitable for PVS quantification and robust against imaging considerations is 

therefore crucial for measuring PVS, validating them as biomarkers of brain 

health function, and enabling their translation to clinics.  

In this chapter, we propose an open-source computational model synthesising 

three-dimensional DRO based on in-vivo volunteer and patient data to 

evaluate the performance and robustness of segmentation methods and 

enable better PVS quantification in the future. Our model generates three-

dimensional T2-w-like images with PVS distributed and oriented realistically 

throughout the brain. We scrutinise the behaviour of segmentation methods in 

the presence of typical imaging distortions including gross motion, motion 

artefacts, and noise. 

6.2 Methods 

We assessed PVS quantification methods via the steps illustrated in Figure 

46. The inputs of our model are an atlas of the human head and PVS 

occurrence and orientation maps. First, we generated a T2-w like image by 

assigning each region of interest in the atlas signal intensities. Second, we 

altered the image by applying spatial transformations to simulate gross motion 

and motion artefacts and adding Rician noise. Third, we segmented PVS 

spaces and compared the resulting mask versus the ground truth to determine 

the robustness of the segmentation filter against distortion. We provide further 

details in the following sections. 
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Figure 46. Computational model for assessing PVS quantification. We generate PVS maps 

based on occurrence and orientation templates extracted from real patient data. We use a 

model of the head and the PVS map to synthesise a T2-w like image. We distort it by rotating 

and translating it, adding motion artefacts and Rician noise. We then segment PVS on this 

DRO and compare the results against the ground truth. The closer the results to the ground 

truth, the more resilient the segmentation filter against distortion. 
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6.3 Computational model 

6.3.1 Input maps 

6.3.1.1 Reference brain model 

We leveraged on the MIDA model, a three-dimensional 0.5 × 0.5 × 0.5-mm 

human head and neck atlas of a healthy volunteer (Iacono et al., 2015)2. This 

publicly available digital model contains the segmentation of 116 cerebral and 

non-cerebral structures. We excluded and combined some of these structures 

to reduce the level of granularity and focus on those of interest: normal-

appearing white matter, cortical and subcortical grey matter, and cerebrospinal 

fluid (Figure 47). 

 

Figure 47. Brain model of reference. In total, we considered five healthy cerebral regions of 

interest: normal-appearing white matter, cortical and subcortical grey matter, and 

cerebrospinal fluid. 

                                            
2 The MIDA human head model can be downloaded from www.itis.ethz.ch/MIDA/ 
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6.3.1.2 Reference PVS model 

6.3.1.2.1 PVS model 

Works describe PVS as tiny tubular structures in the brain (Wardlaw et al., 

2020). In this work, we assumed PVS were ellipsoids for the sake of simplicity 

(Figure 48). We thus generated them using the following equation: 

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
≤ 1, (16) 

where 2𝑎, 2𝑏, and 2𝑐 represent the width, height, and length of the PVS, 

𝑎, 𝑏, 𝑐 ∈ ℝ+. The volume of each PVS is consequently equal to 
4

3
𝜋𝑎𝑏𝑐. We 

based intensity, orientation, location, and dimension of each individual PVS on 

real patient data. 

 

 

Figure 48. Representing PVS as ellipsoids. Assuming the origin coincides with the centre of 

the ellipsoid, then the points (a, 0, 0), (0, b, 0), and (0, 0, c) lie on the surface of the ellipsoid.  

6.3.1.2.2 PVS count, dimensions, occurrence, and orientation 

We considered estimates of PVS counts, dimensions, occurrence, and 

orientation from a large-scale study from 700 community-dwelling individuals 

(mean age 72.6 [SD 0.7] years; 48.3% female) from the Lothian Birth Cohort 

1936 study (Ballerini et al., 2020a). Structural MRI scans were obtained using 

a 1.5-Tesla GE Signa Horizon HDx scanner (General Electric, Milwaukee, WI) 

and the following parameters: 11320 ms repetition time, 104.9 ms echo time, 

20.83 kHz bandwidth, 2 mm slice thickness, and 256 × 256 mm field-of-view. 
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Written informed consent was obtained from each participant under protocols 

approved by the Lothian (REC 07/MRE00/58) and Scottish Multicentre 

(MREC/01/0/56) Research Ethics Committees 

(http://www.lothianbirthcohort.ed.ac.uk/) (Deary et al., 2007). 

PVS were quantified on T2-w MRI scans (Ballerini et al., 2020a). All images 

were first resampled to a 256 × 256 × 80 matrix, 1 mm in-plane resolution. PVS 

were then segmented using a thoroughly validated method leveraging the 

Frangi filter (Ballerini et al., 2020a). An experience image analyst later 

inspected all binary segmentation masks visually to filter erroneous ones. 

Around 77% (540) of segmentation masks passed this test. 

PVS characteristics were measured for each subject in the sample (Table 17). 

Count and volume correspond to the number of connected components 

identified per subject and the number of voxels forming each individual 

connected component. Length and width are linked to Figure 48: length 

correspond to the measure of the major axis of the ellipsoid and width to the 

second longest axis. 

Table 17. PVS characteristics considered in this work. Except for length, we retrieved these 

values from a Lothian Birth Cohort 1936 study (Ballerini et al., 2020a). *We computed length 

based on real volume and width measurements under the assumption PVS are ellipsoids. SD: 

standard deviation. 

Characteristic Mean (SD) 

Count 258 (94.81) 

Volume [mm3] 13.76 (4.85) 

Width [mm] 2.01 (0.36) 

Length* [mm] 6.50 (3.27) 

 

PVS occurrence and orientation templates were also constructed (Figure 49). 

Occurrence templates were created by averaging all 540 segmentation masks, 

whereas orientation templates by averaging the 3D orientation of each 

individual PVS in each region of interest. 

http://www.lothianbirthcohort.ed.ac.uk/
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Figure 49. Three slices of the PVS spatial occurrence template used for the synthesis of PVS 

in our computational model. PVS are most likely to appear in red regions. 

6.3.1.3 Pathological regions 

The presence of pathological regions of interest near or around PVS may 

influence the ability of segmentation filters to detect PVS appropriately. Thus, 

we considered two pathological regions of interest characteristics of patients 

with neuroimaging features of CSVD in a few experiments: white matter 

hyperintensities and lacunar stroke lesions – both hyperintense in T2-w MRI 

sequences – using spatial occurrence templates extracted from patient data 

(https://doi.org/10.7488/ds/2716). We placed the stroke lesion based on that 

of a patient with a small non-disabling recent lacunar stroke lesion in the basal 

ganglia and white matter hyperintensities mostly periventricularly. 

6.3.2 Signal synthesis 

We used the detailed head and neck atlas, PVS spatial occurrence and 

orientation maps, and PVS model to create 3D DRO. First, we generated PVS 

within the white matter and grey matter at random but following the PVS 

occurrence and orientation maps. Second, we assigned each region of interest 

intensity profiles measured from in-vivo patient data. Third, we down-sampled 

each region of interest individually to the target voxel size. Note this step also 

produces partial volume averaging effects, which allows us to smooth the 

tissue interfaces of our final DRO.  

https://doi.org/10.7488/ds/2716
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6.3.3 Image distortion 

6.3.3.1 Initial head position 

The initial head position with respect to the sampling grid determines partial 

volume effects (Ferreira et al., 2009). We studied the effect of the initial head 

position on PVS quantification by applying random rigid-body spatial 

transforms to the generated DRO. We generated these transforms randomly: 

±5° for rotations and ±2.5 mm for translations.  

6.3.3.2 Motion artefacts 

Ghosting, blurring or ringing caused by motion affects the visual quality of the 

MRI scans, potentially compromising the quantification of subtle neuroimaging 

features. We studied their effect on PVS quantification using the composite k-

space model we introduced in Chapter 4: we extract a random proportion of 

successive k-space lines with the head on its initial position and the remaining 

lines with the head on another position. We generated secondary head 

positions by applying a random rigid-body spatial transform to the DRO (±5° 

for rotations). 

6.3.3.3 Rician noise 

The signal-to-noise ratio may reduce the performance of the PVS 

segmentation filter. We investigated the effect of Rician noise by adding 

uncorrelated additive white Gaussian noise to the real and imaginary channels 

of the k-space data. We then use the three-dimensional Fourier transform and 

computed the magnitude to yield the DRO image, which now includes gross 

motion, motion artefacts, and Rician noise. 

6.3.4 PVS segmentation methods 

Computational techniques that rely on explicit geometrical information often 

consider three major steps: pre-processing, PVS enhancement, and 

segmentation (Ballerini et al., 2020a, 2018; Bernal et al., 2021b; Liu et al., 

2020; Ramirez et al., 2015; Sepehrband et al., 2021, 2019; Valdés Hernández 

et al., 2020; Wang et al., 2016). At first, all images undergo quality control,  

Then, researchers employ “vesselness” enhancement methods to increase the 
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saliency of tubular structures (including PVS). Lastly, binarisation of 

“vesselness” response maps takes place. Here, we specifically evaluate the 

performance and robustness of “vesselness” enhancement methods. We 

scrutinise their behaviour in the presence of typical imaging distortions caused 

by motion artefacts and noise, as well as other pathological features that may 

co-occur. 

6.3.4.1 Hessian-based enhancement methods 

The majority of PVS enhancement approaches rely on the analysis of the 

second-order derivatives, which encode geometric properties, to separate 

tubular structures from round or planar ones (Frangi et al., 1998; Jerman et al., 

2015; Lamy et al., 2020).  

In a nutshell, the functioning of Hessian-based filters consists of three main 

steps  (Lamy et al., 2020). First, second-order partial derivatives are computed 

for each voxel to form the Hessian matrix 𝐻, i.e. (𝐻𝑓)𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
⁄ . Given 

that the computation of 𝐻 requires the function to be continuous and twice 

differentiable, digital images are often convolved with Gaussian kernels in 

advance. Second, the eigenvalues of the Hessian matrix are found. The sign 

and magnitude of these eigenvalues 𝜆1, 𝜆2, 𝜆3, with |𝜆1| ≤  |𝜆2| ≤  |𝜆3|, are 

indicative of whether a voxel contains a bright structure and whether it is 

tubular. The search for PVS can be narrowed down to regions fulfilling |𝜆1| ≈

0 and  𝜆2 ≈ 𝜆3 ≪ 0, as these constraints limit responses to hyperintense 

tubular structures (Lamy et al., 2020). Third, further analysis of eigenvalues 

enables filtering potential candidates by specific properties, such as contrast 

and eccentricity. The Frangi and Jerman filters present two approaches for 

improved detection of elongated structures. 

6.3.4.1.1 The Frangi filter 

The Frangi filter (Frangi et al., 1998) — considered by many the gold standard 

of Hessian-based filtering (Lamy et al., 2020) — examines three additional 

properties 𝑅𝑏 = |𝜆1| √|𝜆2𝜆3|⁄ , 𝑅𝑎 = |𝜆2| |𝜆3|⁄ , and 𝑆 = √𝜆1
2 + 𝜆2

2 + 𝜆3
2  to filter 

blobs, lines, and low contrast structures, respectively (Frangi et al., 1998; 
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Lamy et al., 2020). These three aspects are jointly evaluated in the following 

likelihood response: 

𝑉 =  {
0 if 𝜆2 > 0 or 𝜆3 > 0,

(1 − 𝑒−𝑅𝑎
2 2𝑎2⁄ ) ∙ (𝑒−𝑅𝑏

2 2𝑏2⁄ ) ∙ (1 − 𝑒−𝑆
2 2𝑐2⁄ ) otherwise, 

                          (17) 

and the sensitivity of the filter to each of them is adjusted via 𝑎, 𝑏, and 𝑐 ∈ ℝ+. 

We used the implementation of the Frangi filter available in MathWorks 

(www.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-

frangi-vesselness-filter). 

6.3.4.1.2 The Jerman filter 

The Jerman filter (Jerman et al., 2015) is a relatively recent Hessian-based 

filter. This filter takes inspiration from the volume ratio, a scalar index used in 

diffusion tensor imaging to gauge structural anisotropy (Pierpaoli and Basser, 

1996; Vilanova et al., 2006). The likelihood response of the Jerman filter is the 

following:  

𝑉 =

{
 
 

 
 0 if 𝜆2 > 0 or 𝜆3 > 0,

𝜆2
2 ∙ (𝜆3

∗ − 𝜆2) ∙ (
3

𝜆2 + 𝜆3
∗)

3

 if 𝜆2 ≤ 0.5 ∙ 𝜆3
∗ ,

1 otherwise,

(18) 

 

where 𝜆3
∗  is a regularised version of 𝜆3 which prevents division by zero.  

We used the implementation available in MathWorks 

(www.mathworks.com/matlabcentral/fileexchange/63171-jerman-

enhancement-filter). 

6.3.4.2 Ranking Orientation Responses of Path Operators (RORPO) 

Unlike the previous methods, RORPO does not rely on differential information, 

but on mathematical morphology, path opening in particular (Merveille et al., 

2018, 2014). Given an input binary image 𝑋:ℝ3 → {0, 1} and a connectivity 

operator Γ, path opening 𝛼𝐿
Γ(𝑋) consists of finding all possible paths of length 
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𝐿 in 𝑋 (Heijmans et al., 2005), understanding “path” as a set of successively 

connected voxels according to Γ (Figure 46).  

 

Figure 50. Intuition of connectivity, path, and path opening. We use the 2D image in (A) to 

illustrate these concepts. Connectivity determines which voxels are connected to each other. 

The connectivity operator in (B) indicates a voxel (red) is connected to only three voxels above 

it (white). A path of length 𝐿 is a set of L connected voxels. We highlight a few paths of length 

2, 3, and 4 present in (A) in yellow, blue, and green in (C), respectively. Path opening consists 

of finding all paths of length L in an input image. We provide examples of path opening of 

length 𝐿 = 3, 4, 5 in (D). Note the path opening depends on the connectivity operator too. 

RORPO utilises this notion of path opening to detect tubular structures in an 

eight-bit image 𝐼: ℝ3 → ℝ. First, it applies path opening in multiple directions 

using seven connectivity operators {Γi}𝑖𝜖 [1,7]. Since this operation applies to 

binary images, RORPO thresholds 𝐼 on all possible intensity levels (e.g. 𝜏 ∈

[0, 28 − 1] for an eight-bit image). This step results in seven response 

images {𝐴𝐿
Γi(𝐼)}

𝑖𝜖 [1,7]
, where each 𝐴𝐿

Γi(𝐼) = max
𝜏 ∈[0,28−1]

{𝜏|(𝑥, 𝑦, 𝑧) 𝜖 𝛼𝐿
Γi(𝐼 ≥ 𝜏)}. 

Second, RORPO computes the difference between the maximum and median 

response for every voxel in {𝐴𝐿
Γi(𝐼)}

𝑖𝜖 [1,7]
. The higher the difference, the more 

likely a voxel pertains to a thin object rather than a blob since the response of 

an isotropic structure will be similar in all directions. This difference image is 

the output of the filter (Figure 51). 
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Figure 51. Functioning of RORPO on a 2D binary image. First, RORPO applies path opening 

with connectivity operators 𝛤𝑖∈[1,𝑛] in 𝑛 directions, leading to 𝑛 response images. In this 

example, we assume 𝑛 = 4 and the length of the path 𝐿 = 3. Second, RORPO computes and 

outputs the difference between the maximum and median response for each voxel. A voxel 

remaining in all response images receives a value of zero (both the maximum and median 

response equal to one) whereas those in only one receive a value of one (maximum and 

median response equal to one and zero, respectively). 

The parameter 𝐿, which controls the length of the paths, requires tuning 

depending on the problem at hand. However, since it has a physical meaning 

related to the length of the object of interest, it is easily adjustable. We used 

the implementation of RORPO available in GitHub (https://github.com/path-

openings/RORPO). 

https://github.com/path-openings/RORPO
https://github.com/path-openings/RORPO
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6.4 Performance metrics 

6.4.1 Segmentation performance 

We evaluated the segmentation results using three metrics based on the 

confusion matrix, precision, recall, F-score; and the area under the precision-

recall curve (AUPRC). We opted for precision-recall curves instead of the 

popular receiver operating curves due to the dramatic disproportion between 

positive (PVS) and negative samples. 

6.4.1.1 Precision 

Precision allows us to examine the proportion of correct segmented PVS.  

Given a binary segmentation map Seg and a binary ground truth 𝐺𝑇, we 

computed precision by dividing the number of voxels classified as PVS in both 

images by the number of voxels classified as PVS in 𝑆, i.e. 

Precision =
∑Seg ∩ 𝐺𝑇

∑Seg
. (19) 

 

The values for precision lie between zero and one, with one being the 

maximum and optimum precision score a method can obtain. 

 
6.4.1.2 Recall 

Recall allows us to examine the proportion of PVS the filter actually identified. 

We computed recall by dividing the number of voxels classified as PVS in both 

images by the number of voxels classified as PVS in 𝐺𝑇, i.e. 

Recall =
∑ Seg ∩ 𝐺𝑇

∑𝐺𝑇
. (20) 

 

The minimum and maximum recall scores are zero and one.  

6.4.1.3 F-score 

F-score permits combining precision and recall in a single measurement: 
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F-score = 2 ∙
Precision ∙ Recall

Precision + Recall
. (21) 

The highest and lowest possible values of an F-score is one and zero, 

respectively. 

6.4.1.4 Area under precision-recall curve (AUPRC) 

The AUPRC summarises the precision and recall values obtained by the 

segmentation method for different thresholds applied on the filter response. 

We computed the AUPRC by integrating over the precision-recall curve. 

Consequently, a good PVS segmentation method should obtain AUPRC 

values close to one. 

6.5 In-silico experiments 

6.5.1 MR protocol parameters and intensity data for 

generating DROs 

We used in-vivo patient T2-w MRI data extracted from a sample of an ongoing 

prospective study of patients with a recent mild stroke (The Mild Stroke Study 

3 – MSS3: ISCTRN 12113543) for our simulations. Full details of the study 

protocol and image acquisition are provided in Clancy et al. (2020). T2-w MRI 

was performed on a 3T MRI scanner (MAGNETOM Prisma, Siemens 

Healthcare, Erlangen, Germany) and a 3D axial SPACE T2-w imaging 

sequence (Table 18). Approval for this study was obtained from South East 

Scotland Research Ethics Committee (Ref 18/SS/0044) and NHS Lothian 

Research & Development (Ref 2018/0084). 

Table 18. Parameter values of the 3D axial SPACE T2-w MRI sequence of MSS3 (Clancy et 

al., 2020). 

MRI protocol parameter Parameter value 

Repetition time 3200 ms 

Echo time 408 ms 

Field of view 24.0 × 24.0 × 24.0 cm 

Acquired resolution 0.94 × 0.94 × 0.90 mm 
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6.5.1.1 Signal intensity and PVS contrast 

MRI scans exhibit non-standard intensities: signal intensities vary regardless 

of whether the same imaging protocol, same subject, same scanner, and same 

region of interest are considered (Nyú and Udupa, 1999; Shinohara et al., 

2014). We synthesised T2-w like scans using median estimates of signal 

intensity per region of interest (Table 19).  

Table 19. Ground truth signal intensities. We based these values on data from the reference 

in-vivo study (Clancy et al., 2020).  

Region of interest Signal intensity 

Cerebrospinal fluid 355 [IQR 316-389] 

Normal-appearing white matter 66 [IQR 56-76] 

White matter hyperintensity 110 [IQR 89-136] 

Recent stroke lesion 128 [IQR 91-175] 

Grey matter 83 [IQR 69-101] 

PVS 305 [IQR 270-349] 

 

6.5.1.2 Noise level 

We measured the signal-to-noise ratio from in-vivo data to simulate it 

realistically, as previously described in Chapter 4. The signal-to-noise ratio for 

the normal-appearing white matter was equal to 79.23 and the standard 

deviation of the noise was approximately 0.9467. 

6.5.2 Experiments 

We generated high-resolution T2-w like DROs with PVS of different sizes 

distributed all over the brain. We varied PVS characteristics as indicated in 

Section 6.3.1.2.2. We considered four aspects of interest: 

Section 6.6.1. We tested all three enhancement filters on these ideal 

high quality high-resolution DROs to determine whether their 

performance varied with PVS dimensions or contrast. 

Section 6.6.2. We performed in-silico experiments to investigate the 

impact of motion artefacts and Rician noise on enhancement results. 
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Section 6.6.3. We synthesised DROs with “WMH” and “stroke lesions” 

to study whether enhancement filters were able to discern between 

tubular and non-tubular hyperintense structures.  

Section 6.6.4. We finally looked at what optimal image binarisation 

thresholds might look like for the cases described above (1-3). 

We repeated each experiment ten times (RStudio v1.2.5019 with R v3.5.1). 

We ran all experiments on a 189GB RAM computer running Scientific Linux 

7.3 (Nitrogen; Arch x86 64; 56 CPUs 178 Intel(R) Xeon(R) CPU E5-2683 v3 

@ 2.00GHz). 

6.6 Results 

6.6.1 Effect of PVS characteristics 

6.6.1.1 Effect of PVS dimensions 

We investigated whether all three filters could segment PVS of different 

volumes, widths, and lengths. To minimise confounding effects, we conducted 

this assessment on images with no distortion (Figure 52). RORPO consistently 

outperformed the other two enhancement methods, reaching AUPRC values 

above 98 regardless of PVS characteristics, whereas those obtained by the 

two Hessian-based filters ranged between 90 and 93. Precision-recall curves 

for the Frangi and the Jerman filters were similar. 
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Figure 52. Effect of PVS characteristics (volume, width, ergo length) on their segmentation. 

We considered three segmentation methods: the Frangi, Jerman, and RORPO filters. Curves 

represent the mean over 10 runs. The total count of PVS and head position were the same for 

all runs. Greek letters 𝜇 and 𝜎 represent the mean and standard deviation of the parameter in 

subscript (Table 17). 

We then inspected filter response maps to determine whether segmentation 

errors followed distinctive patterns (Figure 53). Maps produced by the Frangi 

and Jerman filters showed both methods may over-estimate the boundaries of 

hyperintense tubular structures, causing a few voxels around the lateral and 

third ventricles to be erroneously included as potential PVS candidates, even 

though we excluded these regions from our analysis. Segmentation in real 

data also show evidence of this situation (Figure 54). 
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Figure 53. Response of the Frangi, Jerman and RORPO filters on two images. We took into 

account responses within the white matter and sub-cortical structures (here delimited in “zoom 

T2-w” image). Inferior localisation of hyperintense tubular structures when using the Frangi 

and Jerman filters, as opposed to RORPO, resulted in the erroneous inclusion of a few voxels 

outside of their real boundary (dashed blue circle) and around ventricles (dashed orange 

circles). Responses cannot be compared as values themselves vary in range and scale. 
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Figure 54. Example of erroneous segmentation of PVS around the occipital horns of the lateral 

ventricles in real data. We use the Frangi filter in this case. Erosion of the segmentation masks 

of the regions of interest can help to compensate for these errors. 

Segmentation mask erosion was naturally helpful for compensating for these 

errors (AUPRCFrangi: 91.90 [IQR 91.71, 92.70] before erosion vs 96.13 [IQR 

95.14, 96.79] after erosion; AUPRCJerman: 91.14 [IQR 90.64, 91.71] before 

erosion vs 95.44 [IQR 94.27, 97.24] after erosion). Since mask erosion does 

not have any particular effect on RORPO, from hereon, we use this approach 

to present the results of all three filters. 

6.6.1.2 Effect of PVS contrast 

We investigated the effect contrast played on PVS enhancement (Figure 55), 

understanding contrast as the relative intensity variation between PVS and the 

normal-appearing white matter (i.e. 
Intensit𝑦𝑃𝑉𝑆

Intensit𝑦𝑁𝐴𝑊𝑀
− 1). We compared the 

performance of the three filters on three scenarios:  

 PVS with fixed contrast equal to that of reference (362%), 

 PVS with fixed contrast lower to that of reference (59%), 

 PVS with varying contrast (between 59% and 362%). 

We kept the location and dimensions of all PVS fixed for these scenarios to 

avoid additional confounding factors. Precision-recall curves suggest contrast 

is secondary: all filters performed consistently better when segmenting salient 
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PVS, but differences in AUPRC among the considered configurations was 

negligible. 

 

Figure 55. Effect of contrast on PVS segmentation. We expressed contrast as the relative 

intensity change between PVS and normal-appearing white matter. We considered three 

segmentation methods: the Frangi, Jerman, and RORPO filters. Curves represent the mean 

over 10 runs. The total count of PVS and head position were the same for all runs. The Greek 

letters 𝜇 and 𝜎 represent the mean and standard deviation of the parameter in subscript (Table 

17). 

6.6.2 Effect of imaging considerations 

6.6.2.1 Effect of motion artefacts 

We gauged the effect motion artefacts could have on PVS segmentation to 

determine whether quantification was still feasible on motion corrupted scans 

(Figure 56). Experimental results suggest motion artefacts hinder PVS 
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segmentation irrespective of the filtering method or PVS dimensions, causing 

a substantial reduction in both precision and recall. AURPC values dropped 

from 96.13 [IQR 95.14, 96.79], 95.44 [IQR 94.27, 97.24], and 98.57 [98.46,   

98.61] for the Frangi, Jerman and RORPO filters to 75.11 [70.73, 75.59], 73.62 

[72.26, 73.93], and 70.73 [67.18, 72.67], respectively. The observed similar 

effects in real patient data (Figure 57). 

 

Figure 56. Effect of motion artefacts on PVS segmentation. We considered three segmentation 

methods: the Frangi, Jerman, and RORPO filters. Curves represent the mean over 10 runs. 

The total count of PVS and head position were the same for all runs. The Greek letters 𝜇 and 

𝜎 represent the mean and standard deviation of the parameter in subscript (Table 17). 
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Figure 57. PVS segmentation in a motion-corrupted scan using the Frangi filter (red). Motion 

artefacts lead to increased false positive rates. 

6.6.2.2 Effect of Rician noise 

We incorporated Rician noise to clean images to examine whether the level of 

noise present in the reference study could have an impact on PVS 

segmentation (Figure 58). The effect of noise on AUPRC was negligible. Even 

when the standard deviation of the noise was 1.5 times higher than that of 

reference, AUPRC values were above 90. RORPO is resilient to noise 

compared to the other two filters.  
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Figure 58. Precision-recall curves obtained when segmenting PVS on images with different 

levels of Rician noise with three segmentation methods: the Frangi, Jerman, and RORPO 

filters. Curves represent the mean over 10 runs. The total count of PVS and head position 

were the same for all runs. The Greek letters 𝜇 and 𝜎 represent the mean and standard 

deviation of the parameter in subscript (Table 17). 

6.6.3 Effect of other vascular lesions 

We tested the performance of all three filters in the presence of white matter 

hyperintensities and lacunar strokes — common in the ageing brain (Figure 

59). These T2-w hyperintense regions of interest have a negative impact on 

PVS segmentation overall. The effect was particularly evident for RORPO as 

AUPRC values decreased by 20 units (from 98.57 [IQR 98.46, 98.61] to 78.34 

[IQR 77.11, 78.61]) whereas for Hessian-based filters they did by only four 
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units (AUPRCFrangi from 96.13 [IQR 95.14, 96.79] to 92.38 [IQR 90.59, 92.75]; 

AUPRCJerman from 95.44 [IQR 94.27, 97.24] to 91.72 [IQR 89.83, 93.84]). 

 

Figure 59. Effect of the presence of white matter hyperintensities and lacunar stroke lesions 

on PVS segmentation. We considered three segmentation methods: the Frangi, Jerman, and 

RORPO filters. Curves represent the mean over 10 runs. The total count of PVS and head 

position were the same for all runs. The Greek letters 𝜇 and 𝜎 represent the mean and standard 

deviation of the parameter in subscript (Table 17). 

We inspected response maps to determine the main cause for such 

performance drop (Figure 60). We noted the response of RORPO for tiny focal 

white matter hyperintensities was localised and sharp, similar to that obtained 

for some PVS. The presence of these brain lesions in the brain thus caused 

increase false positive rates, explaining the decay in precision. Instead, the 

response of Hessian-based filters was diffuse and distinct to that of PVS. 
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Figure 60. Response of the Frangi, Jerman, and RORPO filters on lacunar stroke lesions and 

white matter hyperintensities.The white arrow points to the lacunar stroke lesion. Responses 

of different filters cannot be compared as values themselves vary in range and scale. 

6.6.4 Optimal binarisation thresholds 

We had a closer examination at the optimal thresholds for each one of the 

experiments presented previously to determine whether a single threshold 

could lead to optimal segmentation results (Table 20). Optimal thresholds – 

those maximising the F-score metric – varied depending on image quality and 

PVS contrast, suggesting parameter tuning is necessary on a case-by-case 

basis. 

Table 20. Optimal thresholds for segmenting PVS of average volume, width, and length on 

different experiments. The optimal threshold correspond to that leading to the maximum F-

score value, i.e. best balance between precision and recall. We put in bold maximum values 

per experiment and per metric. 

Experiment Method 
Optimal 

threshold 
F-score Precision Recall 

Clean images 

Frangi 1.14x10-4 88.39 89.27 87.52 

Jerman 7.24x10-2 86.40 78.52 96.03 

RORPO 3.49x10-1 94.71 95.62 93.83 

PVS contrast 
equal to 33% 

Frangi 3.79x10-5 88.36 88.85 87.83 

Jerman 8.48x10-2 86.43 87.74 85.15 
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RORPO 3.53x10-1 94.28 95.39 93.20 

PVS contrast 
within 33 % and 

166 % 

Frangi 6.83x10-5 87.94 88.67 87.22 

Jerman 1.45x10-1 86.09 84.46 87.80 

RORPO 2.57x10-1 93.33 92.44 94.24 

Rician noise 
(𝑆𝐷𝑛𝑜𝑖𝑠𝑒 = 1.0 ∙

𝑆𝐷𝑠𝑖𝑚) 

Frangi 6.89x10-5 87.75 83.35 92.63 

Jerman 2.56x10-1 86.16 93.36 79.99 

RORPO 3.43x10-1 95.07 95.74 94.42 

Rician noise 
(𝑆𝐷𝑛𝑜𝑖𝑠𝑒 = 1.5 ∙

𝑆𝐷𝑠𝑖𝑚) 

Frangi 1.59x10-4 87.72 93.39 82.70 

Jerman 2.32x10-1 86.51 90.81 82.60 

RORPO 3.48x10-1 95.27 96.17 94.38 

Motion artefacts 

Frangi 1.17x10-4 75.51 70.37 81.47 

Jerman 2.35x10-1 71.55 68.45 74.94 

RORPO 2.84x10-1 70.38 63.54 78.88 

White matter 
hyperintensities 

and stroke lesion 

Frangi 1.17×10-4 85.17 85.41 84.93 

Jerman 2.16×10-1 84.48 86.48 82.57 

RORPO 1.16×10-2 71.98 77.72 67.02 

 

6.7 Discussion 

We presented a computational model for synthesising three-dimensional 

images with PVS-like structures to quantify the sensitivity and recall of PVS 

segmentation methods, particularly when images undergo distortion. Our 

development enabled us to detect key factors that influence PVS quantification 

and that need to be taken into consideration to better measure PVS.  

We examined the effect of PVS dimensions, contrast, registration, noise, and 

motion artefacts on the segmentation of three “vesselness” segmentation 

methods: the Frangi, Jerman, and RORPO filters. Out of all considered factors, 

image registration and motion artefacts were particularly detrimental to the 

quantification of these millimetre structures of the brain. We additionally found 

that: 

 Segmentation performance varied minimally with the size, orientation, 

location, and contrast of PVS. However, it is important to keep two 

aspects in mind. First, as in the study of reference, we considered cases 

in which voxels were almost isotropic. We expect these effects to be 

crucial in anisotropic scenarios nonetheless since these determine 

partial volume effects, which we found adverse for PVS segmentation. 

Second, the original estimates of size, orientation, and location were 
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computed using the Frangi filter and, hence, they are potentially biased 

towards the method’s own capabilities. The development of a physical 

reference object may enable a fairer evaluation of the effectiveness of 

PVS segmentation filters. 

 All three considered segmentation methods were robust against noise, 

highlighting they are effective at separating tubular structures from 

unstructured noise. Filtering performance varied slightly even when 

considering noise levels 1.5 times higher than that of the reference 

study 

 Optimal segmentation thresholds vary with the quality of the 

acquisitions. While the selection of a threshold on a case-by-case basis 

would consequently lead to excellent segmentation results, this 

approximation is impractical in large-scale multi-centre studies. Instead, 

finding a single threshold per study (at least per scanner and per 

protocol) favouring low false positive rates over high true positive rates 

is likely to be the most suitable practice at present. 

 Hessian-based filters are prone to segmentation errors around the 

lateral ventricles, a direct consequence of the Gaussian blurring step 

taking place before the computation of the Hessian matrix. Erosion of 

the mask of the region under examination was an effective strategy to 

cope with this problem. Correct delimitation of such regions prior to PVS 

segmentation is therefore crucial to alleviate quantification errors. 

 Focal white matter hyperintensities are particularly detrimental to 

automatic analyses as they are identified as potential PVS candidates. 

In their presence, the use of RORPO led to higher false positive rates 

versus Hessian-based filters. Additional features such as sharpness 

could be looked into to differentiate between tiny white matter 

hyperintensities and PVS. Overall, exclusion of these pathological 

regions prior to PVS segmentation is consequently necessary for 

improved PVS quantification. 

 Even though RORPO outperformed the Frangi and the Jerman filter in 

many cases, it presents two key disadvantages that can limit its use on 
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heterogeneous datasets. First, RORPO assumes connectivity between 

voxels is similar in all directions. While this is true when dealing with 

[nearly] isotropic voxels, it may produce undesirable results with 

anisotropic ones. Second, RORPO tends to over-estimate PVS 

boundaries when these are difficult to notice due to the acquisition 

process or post-processing. We propose the quantisation step that 

takes place in RORPO reduces the contrast between the PVS and its 

neighbouring voxels when PVS limits are blurred. 

 Both Hessian-based filters yielded similar precision-recall curves. Thus, 

either the Frangi or Jerman filters could be used for the segmentation 

of PVS as long as motion-corrupted images are processed separately. 

Our work has implications for the quantification of PVS on sMRI. First, motion 

artefacts have a major impact on the sensitivity and recall of current 

segmentation methods. Thus, the development and validation of techniques to 

compensate for it during or after image acquisition is critical for measuring 

PVS. Second, registration — a widely used technique in medical image 

processing — inevitably causes blurring of the images that compromises 

subsequent segmentation of PVS. When possible, we recommend scans to be 

processed in their native spaces to avoid unnecessary smoothing. Third, 

optimal segmentation thresholds are specific to each individual scan. Even if 

response values are standardised (Sepehrband et al., 2019), a unique 

threshold may result in inaccurate PVS estimation.  

Our computational model is limited by its assumptions and simplifications. 

First, our computational model does not mimic all acquisition processes. 

However, from a methodological standpoint, our research demonstrates 

spatiotemporal and imaging considerations influence PVS quantification and 

lays groundwork for future research. Our computational model might be used 

in conjunction with MRI simulators, such as MRilab (Liu et al., 2017), to enable 

testing and optimising imaging protocols for computational PVS assessments.. 

Second, for the sake of simplicity, we assumed PVS can be represented by 

elongated ellipsoids. However, Euclidean shapes are not representative of the 

actual curvilinear geometry of PVS.  
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In conclusion, current segmentation methods can segment PVS with relatively 

high sensitivity and recall, except when processing images corrupted by 

motion artefacts, highlighting the importance of prospective or retrospective 

image enhancement for better PVS quantification. We have made our 

development publicly available for other researchers to build upon it and test 

their segmentation schemes in advance 

(https://github.com/joseabernal/PVSDRO.git). Our work reveals appropriate 

processing of sMRI signals is necessary to maximise PVS measurement 

reliability. 

6.8 Take-home messages 

 PVS segmentation filters are relatively robust against distortion caused 

by spatiotemporal imaging considerations, except motion artefacts. 
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 Improving perivascular space 

segmentation in sMRI 

In this chapter, we propose a processing pipeline to distinguish between high 

quality and motion-corrupted T2-w scans to produce better estimates of PVS 

burden in the brain. The following two book chapters partially inspire the work 

contained in this chapter:  

Bernal, J., Valdés-Hernández, M., Ballerini, L., Escudero, J., Jochems, 

A. C., Clancy, U., ... & Wardlaw, J. M. (2020). A Framework for Jointly 

Assessing and Reducing Imaging Artefacts Automatically Using Texture 

Analysis and Total Variation Optimisation for Improving Perivascular 

Spaces Quantification in Brain Magnetic Resonance Imaging. In Annual 

Conference on Medical Image Understanding and Analysis (pp. 171-

183). Springer, Cham. 

Bernal, J., Xu, W., Valdés-Hernández, M. D. C., Escudero, J., Jochems, 

A. C., Clancy, U., ... & Wardlaw, J. M. (2021). Selective Motion Artefact 

Reduction via Radiomics and k-space Reconstruction for Improving 

Perivascular Space Quantification in Brain Magnetic Resonance 

Imaging. In Annual Conference on Medical Image Understanding and 

Analysis (pp. 151-164). Springer, Cham. 

7.1 Introduction 

Computational PVS quantification faces issues when dealing with images 

presenting imaging artefacts, particularly motion artefacts (Chapter 6). The 

patterns and textures that originate from motion may be confused with PVS by 

computational algorithms even if a human observer would never mistake them 

for a PVS (Figure 61), causing a substantial decrease in the precision and 

recall of PVS segmentation filters. Reports in large-scale studies of the ageing 

population suggest motion artefacts impeding automatic assessments are 

relatively frequent (Ballerini et al., 2020a): motion artefacts may corrupt one 

out of every five images. Together, these issues act as a major barrier for 
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assessing the validity PVS as novel biomarkers of cerebral health function and 

ultimately limit their translation to clinics. 

In this chapter, we propose a framework for processing T2-w MRI scans 

depending specifically on their imaging quality prior to PVS quantification, 

giving the possibility to either enhance the images or adjust parameters to 

make filters less sensible to distortion.  

 

Figure 61. Motion-corrupted images present ringing (red arrow; left image) or textures in 

general (red arrow; right image) that may be erroneously confused with PVS. Better 

quantification of PVS in the wild thus requires distinguishing between motion-corrupted and 

high-quality scans and processing them according to their visual quality. 

7.1.1 MRI quality control 

Sampling, motion, noise and, in general, spatiotemporal considerations 

inevitably corrupt MRI signals, potentially jeopardising later processing and 

analysis (Bennett and Miller, 2010; Lutti et al., 2021; Oksuz et al., 2019). The 

extent to which this happens and our ability to detect it and account for it (or 

not) determines ultimately the validity of our studies (Alfaro-Almagro et al., 

2018; Epistatou et al., 2020; Esteban et al., 2017; Lorenzini et al., 2020; 

Mortamet et al., 2009; Oksuz et al., 2020). The development of image quality 
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control modules and their integration into MRI processing workflows appear as 

measures to address this problem (Esteban et al., 2017). 

Quality control should not be confused with quality assurance (Alfaro-Almagro 

et al., 2018). Quality assurance focuses on preventing imaging problems from 

occurring in the first place (prospective) (Alfaro-Almagro et al., 2018). This 

process involves the use of physical phantoms (e.g. the phantom of the 

American College of Radiology) to test MRI systems stability and find 

appropriate imaging parameters (Epistatou et al., 2020). However, complying 

with the best quality assurance policies does not imply artefact-free images. 

Detecting imaging problems prior to image processing is therefore crucial for 

diminishing errors in later analyses and is what quality control centres on 

(retrospective) (Alfaro-Almagro et al., 2018).  

Traditionally, MRI quality control leverages visual inspection: a single or 

multiple radiologists or image analyst would examine scans in a study and 

separate them into low- and high-quality (Esteban et al., 2017; Marcus et al., 

2013). Scans of poor visual quality would then be omitted from processing 

since quantification results would be sub-optimal, producing erroneous 

measurements — e.g. outliers — that could compromise statistical analyses 

(Ballerini et al., 2020a). Nonetheless, this approximation would come at the 

expense of the study’s sample size, relevance to the population of interest, 

and translatability to the general population (Lutti et al., 2021). Moreover, while 

these strategies may be useful in small datasets during early development of 

analysis tools, the creation of massive datasets, such as the UK Biobank, 

makes qualitative assessments laborious, time-consuming, and impractical 

nowadays (Alfaro-Almagro et al., 2018; Esteban et al., 2017). These key 

limitations have propelled research around computational MRI quality control. 

Various imaging-related quality control metrics have been proposed over the 

years (Esteban et al., 2017). We condensed those used for assessing the 

visual quality of sMRI in Table 21. We test whether applicable metrics can 

distinguish between high quality and motion-corrupted scans in later sections.
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Table 21. Quality control metrics and their applicability to studies of the ageing population. 𝐶(𝑎, 𝑏) represents the co-occurrence matrix and μ and σ the 

mean and standard deviation. GM: grey matter. WM: white matter. CSF: cerebrospinal fluid. ICV: intracranial volume. BG: background. 

Metric Target Definition 
Applicable? 

(yes/no) 
Reason 

Coefficient of 
Joint Variation 

(Ganzetti et 
al., 2016) 

Intensity 
inhomogeneity 

CJV =
𝜎𝑊𝑀 + 𝜎𝐺𝑀
|𝜇𝑊𝑀 − 𝜇𝐺𝑀|

 No 

Computation leverages signal 
intensity of brain tissues – 
influenced by tissue damage and 
abnormalities 

Contrast to 
noise ratio 

(Gorgolewski 
et al., 2011) 

Contrast CNR =
|𝜇𝑊𝑀 − 𝜇𝐺𝑀|

√𝜎𝐵𝐺
2 + 𝜎𝑊𝑀

2 + 𝜎𝐺𝑀
2

 No 

Computation leverages signal 
intensity of brain tissues – 
influenced by tissue damage and 
abnormalities 
Segmentation filters are resilient to 
contrast variations (Chapter 6)  

Entropy focus 
criterion 

(Atkinson et 
al., 1997) 

Motion 
EFC = 𝐻 (

Intensity𝐵𝐺

max (Intensity𝐵𝐺)
), 𝐻 

represents Shannon’s entropy 
Yes 

Computation leverages analysis of 
background signal 

Foreground to 
background 
energy ratio 
(Zarrar et al., 

2015) 

Motion FBER=
𝜎𝑇𝑖𝑠𝑠𝑢𝑒
2

𝜎𝐵𝐺
2  Yes 

Applicable, but computation 
leverages signal intensity of brain 
tissues – influenced by tissue 
damage and abnormalities 

Full-Width Half 
Maximum 

(Friedman et 
al., 2008) 

Blur 
FWHM = 2𝜎√2 ln 2, 𝜎 is the standard 

deviation estimated by fitting 
Gaussian to intensities 

No 

Computation leverages signal 
intensity of brain tissues – 
influenced by tissue damage and 
abnormalities 
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Tissue volume 
(Esteban et 
al., 2017) 

Volume 
Ratio between CSF/GM/WM volume 

and ICV 
No 

Not relevant 
Influenced by tissue damage and 
abnormalities 

Intensity non-
uniformity 

level (Esteban 
et al., 2017)  

Intensity 
inhomogeneity 

Statistics (min, max, median, mean) 
of estimated B1 inhomogeneity 

No 
B1 inhomogeneity estimation can 
be influenced by WMH (Valdés 
Hernández et al., 2016) 

Mortamet’s 
quality index 1 
(Mortamet et 

al., 2009) 

Motion 
𝑞𝑖1 represents the proportion of 
background voxels detected as 

artefacts after morphological opening 
Yes 

Computation leverages analysis of 
background signal 

Mortamet’s 
quality index 2 
(Mortamet et 

al., 2009) 

Noise 
𝑞𝑖2 = 𝑞𝑖1 + 𝜒,  𝜒 represents 

goodness-of-fit of the background 
signal to a Rayleigh distribution  

Yes 
Computation leverages analysis of 
background signal 

Signal to noise 
ratio  

Noise SNR=
𝜇𝑇𝑖𝑠𝑠𝑢𝑒

𝜎𝑇𝑖𝑠𝑠𝑢𝑒√𝑛𝑇𝑖𝑠𝑠𝑢𝑒 (𝑛𝑇𝑖𝑠𝑠𝑢𝑒 − 1)⁄
 No 

Computation leverages signal 
intensity of brain tissues – 
influenced by tissue damage and 
abnormalities 

Dietrich’s 
signal to noise 
ratio (Dietrich 
et al., 2007) 

Noise SNRd=
𝜇𝑇𝑖𝑠𝑠𝑢𝑒
𝜎𝐵𝐺

 Yes 
Applicable, but influenced by tissue 
damage and abnormalities 

Background 
intensity 

(Esteban et 
al., 2017) 

Motion 
Statistics (min, max, median, mean) 

of background intensity 
Yes 

Computation leverages analysis of 
background signal 

Tissue 
intensity 

Motion 
Statistics  (min, max, median, mean) 

of tissue intensity 
No 

Computation leverages signal 
intensity of brain tissues – 
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(Esteban et 
al., 2017) 

influenced by tissue damage and 
abnormalities 

White-matter 
to maximum 
intensity ratio 
(Esteban et 
al., 2017) 

Hyperintensities 
in WM 

wm2max =
𝑚𝑒𝑑𝑖𝑎𝑛𝑊𝑀

95𝑡ℎ − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑊𝑀
 No 

Computation leverages signal 
intensity of brain tissues – 
influenced by tissue damage and 
abnormalities 

Energy 
(Haralick et 
al., 2007) 

Textures Energy =∑𝐶(𝑎, 𝑏)

𝑎,𝑏

 Yes 
Applicable, if computation 
leverages analysis of background 

Contrast 
(Haralick et 
al., 2007) 

Textures Contrast =∑(𝑎 − 𝑏)2𝐶(𝑎, 𝑏)

𝑎,𝑏

 Yes 
Applicable, if computation 
leverages analysis of background 

Correlation 
(Haralick et 
al., 2007) 

Textures 

Correlation

= −∑
(𝑎 − 𝜇𝐶) ∙ (𝑏 − 𝜇𝐶)

 𝜎𝐶
2 𝐶(𝑎, 𝑏)

𝑎,𝑏

 Yes 
Applicable, if computation 
leverages analysis of background 

Homogeneity 
(Haralick et 
al., 2007) 

Textures 

Homogeneity

=∑
1

1 + (𝑎 − 𝑏)2
𝐶(𝑎, 𝑏)

𝑎,𝑏

 Yes 
Applicable, if computation 
leverages analysis of background 

Entropy 
(Haralick et 
al., 2007) 

Textures 
Entropy = 𝐻(𝑃(𝑖, 𝑗)), 𝐻 represents 

Shannon’s entropy 
Yes 

Applicable, if computation 
leverages analysis of background 

Variance 
(Haralick et 
al., 2007) 

Motion, noise Variance =∑(𝑎 − 𝜇𝐶)
2𝐶(𝑎, 𝑏)

𝑎,𝑏

 Yes 
Applicable, if computation 
leverages analysis of background 
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7.1.2 Motion artefact correction in MRI 

Motion artefact correction has received significant attention throughout the 

years since these would enable considering scans that would otherwise be 

discarded (Godenschweger et al., 2017; Zaitsev et al., 2015). However, this is 

still a challenging problem that remains unsolved and for which many partial 

solutions exist (Loktyushin et al., 2013; Maclaren et al., 2013; Zaitsev et al., 

2015). Motion artefact correction depends heavily on the availability of motion-

tracking devices, prior knowledge of the patient’s movement, and stage at 

which images are processed (e.g. prospective vs retrospective). Here we 

provide intuitions of a few strategies that are considered for this purpose. 

7.1.2.1 Motion prevention 

Motion prevention attempts to stop motion artefacts from occurring by getting 

users used to the acquisition settings, restraining their mobility with foam, 

sedating them, or asking them to hold their breath for a few seconds (Zaitsev 

et al., 2015). These measures are frequent in clinical settings. However, their 

appropriate implementation does not imply acquisitions will be free of artefacts. 

Additionally, a few of these strategies may be costly (mock MRI systems), risky 

(anaesthesia), or limit scan duration (hold breathing) (Greene et al., 2018; 

Maclaren et al., 2013; Zaitsev et al., 2015). 

7.1.2.2 MRI acquisition settings for artefact reduction 

Accelerating acquisition times is an effective strategy for reducing motion 

artefacts (Zaitsev et al., 2015). Intuitively, the less time a patient spends inside 

the MRI scanner, the less likely they are to get stressed, uncomfortable, and 

impatient, and, therefore, the less they move. Imaging methods leveraging 

non-Cartesian sampling, such as spiral or elliptical, are quicker and less 

susceptible to motion artefacts than conventional Cartesian sampling (Liao et 

al., 1997; McRobbie et al., 2017; Wright et al., 2014; Zaitsev et al., 2015). In 

brief, the key advantage is that these schemes oversample the centre of the 

k-space, process which diminishes imaging artefacts: the more the samples 

acquired of low frequencies, the more the data points to average during 

interpolation onto a uniform rectilinear grid (McRobbie et al., 2017). However, 
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given that faster imaging is not a synonym for better imaging, the use of such 

techniques poses new questions: are subtle neuroradiological features 

preserved in faster sequences? Can these be used for diagnostics in clinical 

settings? (Jaspan et al., 2015). 

In cases in which motion is periodic, acquisition parameters could be 

customised to take cardiac and breathing cycles into account (Rigdway, 2010). 

For example, measurements of the region of interest could be acquired at the 

same point within these cycles (triggering) at the expense of scanning time or 

acquired continuously and ordered afterwards (gating) at the cost of scanning 

efficiency and increased data redundancy (Rigdway, 2010; Zaitsev et al., 

2015). Such synchronisation requires additional physiological signals 

provided, for instance, by electrocardiograms (Rigdway, 2010).  

7.1.2.3 Prospective motion correction 

Prospective motion correction seeks to update the pulse sequence in real time 

based on the position and orientation of the imaged object (Maclaren et al., 

2013). This process relies on the continuous interaction of three entities: a 

tracking device, a scanner controller, and a scanner. The tracking device (e.g. 

a stereo camera system) determines the pose of the imaged object. Then, the 

scanner controller utilises the estimated pose to adjust the pulse sequence. In 

rigid-body scenarios, a pulse sequence requires phase adjustments to 

compensate for a translation and rotating the initial gradient waveform to 

correct for a rotation. Ideally, by updating pulse sequences, voxels experience 

the same field as if the transformation never happened (Maclaren et al., 2013). 

Finally, the scanner receives this information and updates image acquisition 

accordingly. This three-step process happens throughout the entire 

acquisition, guaranteeing the imaging volume always coincides with the 

imaged object. While potentially acceptable in clinical practice, such 

modification of the acquisition per patient is unlikely to be acceptable in 

research settings where analyses require consistent images or where 

demanding sequences are in use that already occupy a substantial part of the 

scanner’s ‘band width’. 
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7.1.2.4 Retrospective motion correction 

Retrospective motion correction attempts to reduce motion artefacts once the 

data has been already acquired (Loktyushin et al., 2013). The success of these 

strategies depends on the knowledge of the imaging protocol and the motion 

that took place during scanning (Godenschweger et al., 2017).  

7.1.2.4.1 Availability of pose information 

If motion parameters have been acquired by tracking devices, motion artefacts 

could be corrected to a certain extent by leveraging on properties of the Fourier 

transformation: shift and rotation. However, while compensation for translation 

in a retrospective setup would correspond to a phase correction, rotation is 

more intricate as data has been effectively lost — effect which is seen in k-

space as “pie-slice” regions. This implies that some data points may need to 

be extrapolated to obtain acceptable reconstruction results (Godenschweger 

et al., 2017).  

7.1.2.4.2 Autofocusing 

If motion parameters have not been acquired, motion artefacts could be 

reduced by means of autofocusing. These approaches seek to estimate 

motion parameters per line or per segment of the k-space such that motion 

correction — via Fourier shift or rotation properties — optimises an image 

quality metric (Godenschweger et al., 2017), such as the entropy focus 

criterion (Atkinson et al., 1997). Autofocusing methods are in general 

computationally demanding and potentially intractable as optimisation requires 

setting up multiple parameters (optimisation per line or per segment; 

optimisation of one parameter at once or all at once). Moreover, 

implementations are typically protocol-dependent. Thus, an autofocusing 

method that works well for images acquired with a Cartesian sampling scheme 

are not necessarily useful for non-Cartesian ones. Note incorrect estimation of 

motion parameters may induce additional artefacts (McGee et al., 2000). 

7.1.2.4.3 Deep learning 

Deep learning, a branch of artificial intelligence, has attracted the attention of 

many researchers due to its potential for medical image understanding and 
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analysis (Bernal et al., 2022), retrospective motion artefact correction is no 

exception (Duffy et al., 2021; Lyu et al., 2021; Oksuz et al., 2020; Pawar et al., 

2020, 2019; Zhao et al., 2021). In a nutshell, researchers train convolutional 

neural networks in a supervised fashion to learn a mapping function which 

“filters out” imaging artefacts. The inputs of the network are commonly 

corrupted images (real or synthetic ones) and the outputs their high-quality 

versions. Obvious risks include fabrication of pseudo-features of interest and 

erasing genuine features of interest. Therefore, while these strategies are 

certainly powerful, further development on their generalisability is necessary 

to consider their utilisation. 

7.2 Materials and methods 

Our framework consists of the steps illustrated in Figure 62. Given an input 

image, we first assess its quality. If the image exhibits motion artefacts, we 

enhance it or tune filtering parameters accordingly prior to PVS segmentation. 

If it does not, we segment PVS right away, as blurring can compromise PVS 

quantification (Chapter 6).  
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Figure 62. Proposed pipeline for quantifying PVS in T2-w scans. We evaluate the quality of 

the scans, selectively process those corrupted by motion, and segment PVS (green). Tuning 

or filtering depends on whether the segmentation filter has mechanisms to reduce sensitivity 

to distortion or not. Adapted from Bernal et al. (2021b). 

7.2.1 Subjects, imaging, and clinical visual scores 

We retrieved T2-w scans from the MSS3. We considered all scans from the 

first and second visits that were available at the time of the study (60 and 35 

scans, respectively). An experienced neuroradiologist provided visual clinical 

ratings for PVS in the basal ganglia and centrum semiovale, following the 

Potter scale (Potter et al., 2015). The distribution of scores in the sample can 

be found in Figure 63. Additionally, a trained image analyst blind to our 

automatic assessment classified images into motion-corrupted vs high quality 



 

150 Chapter 7. Improving perivascular space segmentation in sMRI 

images. Approximately 20 and 26% of the images in the first and second visits 

were visually corrupted by motion artefacts — evidenced ghosting, ringing, or 

blurring artefacts. 

 

Figure 63. Frequency of clinical visual ratings of PVS in the basal ganglia and centrum 

semiovale in the MSS3 subsample (n=60; Section 7.2.1). 

7.2.2 Image quality assessment 

The first step of our framework consists of automatically assessing the visual 

quality of all input images. For this purpose, we tested ten image quality 

metrics accounting for textures, noise, and motion that were already built-in in 

MATLAB or in the MRI Quality Control tool3 (Esteban et al., 2017) (Table 21). 

We considered metrics leveraging signal intensities outside the head to avoid 

considering those within the intracranial region that indicate the status of the 

brain (Bernal et al., 2020c; Valdés Hernández et al., 2017). 

Quality control then consisted of deciding whether the image was motion-

corrupted or not based on its descriptors. For this aim, we entered the resulting 

descriptor values to a logistic regression model to predict image quality. We 

                                            
3 The MRIQC documentation can be found in mriqc.readthedocs.io 
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trained this model using data from the second visit as described in Section 

7.2.1 (29 high-quality and 9 motion-corrupted T2-w MRI scans). 

7.2.3 Image enhancement and parameter tuning 

The second step is to either adjust parameters to make segmentation filters 

more robust against distortion or reduce imaging artefacts retrospectively. The 

selection of either of these two approximations depends on whether the 

segmentation filters have mechanisms to cope with distortion on their own.  

7.2.3.1 Motion artefact reduction for Frangi filter 

The Frangi filter does not have a mechanism to cope with distortion. We thus 

opted for reducing motion artefacts beforehand. In this case, we operate on 

the ‘k-space’ data obtained via the Fourier transform given the lack of the 

original k-space data or patient movement information. We chose to identify 

and exclude inconsistencies in the ‘k-space’ data of the T2-w images — 

sawtooth-like patterns depicted in Figure 64. As a proof-of-concept, we visually 

inspected k-spaces of motion-corrupted images and nullified segments 

displaying sawtooth patterns (e.g. Figure 64C, but not Figure 64D). We 

performed these steps blind to all clinical or other imaging information. 
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Figure 64. Sawtooth patterns in k-space data of a T2-w MRI scan exhibiting motion artefacts. 

These patterns are visible in the slice direction 𝑘𝑧  in A and B (yellow arrows) and in plane in 

C. Image D depicts a slice visually free of artefacts. Adapted from Bernal et al. (2021b). 

7.2.3.2 Robustness parameter tuning for RORPO filter 

Experiments in Section 6.4.3 showed RORPO does not cope well on blurred 

images. Thus, instead of utilising the k-space filtering approximation (Section 

7.2.3.1), we used a procedure within RORPO that restricts PVS sensitivity 

(Merveille et al., 2018). RORPO relies on the effectiveness of path opening, 

an operation known to be affected by discontinuities caused by imaging 

distortion (Merveille et al., 2018). To compensate for this problem, RORPO 

dilates the input image prior to path opening. This enables joining paths that 

were initially separated by a few disconnected — noisy — voxels (Figure 65).  

We take advantage of this mechanism: if the scan is corrupted by motion-

artefacts, we avoid dilation to be restrictive and avoid augmenting false 

positives rates; otherwise, we dilate. 
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Figure 65. RORPO considers dilation prior to path opening to join disconnected paths by 

default. The output of path opening with the connectivity operator 𝛤1 corresponds to the 

intersection between the input image and the path opening result after dilation.  If the image 

is motion-corrupted, we avoid this step as it would increment the false positive rate.  

7.2.3.3 Parameter optimisation 

We tuned image enhancement and segmentation parameters through a 

systematic visual assessment of the resulting segmentation masks. We initially 

selected twelve cases (six of each quality) at random and gave them to an 

experienced observer who blindly optimise parameters. We then set initial 

parameters and optimised parameters systematically. 

 For the Frangi filter, we set initial parameters based on previous 

evaluations (Ballerini et al., 2018): filter responses above 0.5 and 0.15 

were considered PVS in the basal ganglia and centrum semiovale, 

respectively. An experienced observer increased and decreased these 

thresholds in 0.01 depending on whether segmentation masks under- 
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or over-estimated PVS counts. The procedure was carried out 

independently for high quality and motion-reduced images. 

 For RORPO, we set the minimum length 𝐿 based on the number of 

voxels that could contain a PVS. We assumed that a PVS should 

occupy at least in three voxels lengthwise (𝐿 = 3).  

7.2.4 Computational measurements of PVS burden 

The last step in the framework contemplates segmenting and estimating the 

burden of PVS. We considered two statistics of PVS burden: count — number 

of segmented connected components — and volume — total PVS volume 

divided by the intracranial volume. 

7.2.5 Validation against visual clinical ratings 

We computed polyserial correlations to determine the strength of the 

relationship between visual and computational measurements of PVS. 

7.2.6 PVS burden and cerebrovascular dysfunction 

We also investigated the relationship between PVS burden and 

cerebrovascular dysfunction. We obtained estimates of BBB permeability in 

MSS3 following the recommendations in Chapter 5. For this analysis, we used 

linear regression and corrected all models for age, sex, and mean arterial 

pressure. We report the weight of each predictor and their statistical 

significance. We also report the adjusted 𝑅2  to quantify the extent to which 

clinical variables explain the outcome variable. We carried out our statistical 

analyses using RStudio v1.1.456 with R v3.5.1.  

7.3 Results 

7.3.1 Image quality classification results 

We computed all 12 considered image quality metrics and used boxplots to 

determine whether they discriminated individually between high quality and 

motion-corrupted T2-w MRI scans (Figure 66). High-quality scans displayed 

significantly higher energy, foreground-background energy ratios, and 



   

Chapter 7. Improving perivascular space segmentation in sMRI 155 

Dietrich’s signal-to-noise ratios, and lower correlation and mean background 

intensities compared to motion-corrupted scans. We found subtle differences 

between these groups of images using the entropy-focus criterion, despite it 

being specifically devised for this purpose (high quality: 0.48 [IQR 0.46, 0.50] 

vs motion-corrupted: 0.47 [IQR 0.46, 0.49]; p=0.52). 

 

Figure 66. Image quality scores for high quality (pink) and motion-corrupted (green) T2-w 

scans. Results based on a subset of MSS3 (n=60; Section 7.2.1). We tested for differences in 

scores using the unpaired two-sample Wilcoxon test (p-values in each subplot). Fg-bg: 

foreground-background. We kept the width of violins constant. 
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We then used trained multiple logistic regression models on descriptors of 

images of the second visit to predict image quality of the first visit (Table 22). 

We observed that the use of motion descriptors — i.e. foreground-background 

intensity ratio, entropy-focus criterion, mean background intensity, and 

Mortamet’s quality index 1 — predicted image quality with the highest 

classification performance (AUCROC=98.44). Even though the entropy-focus 

criterion did not differ substantially across high quality and motion-corrupted 

scans, leaving it out did not result in superior performance (AUCROC=96.18). 

On the contrary, omitting Mortament’s quality index 1 caused no alteration on 

the model’s classification performance (AUCROC=98.44). We decided to use 

the logistic regression model analysing three features: foreground-background 

intensity ratio, entropy-focus criterion, and mean background intensity.  

Table 22. Area under the receiver operating curve (AUCROC) for different logistic regression 

models predicting image quality. Results based on a subset of MSS3 (n=60; Section 7.2.1). 

Target Descriptors in model AUCROC 

Texture Energy 84.72 

Texture Contrast 55.21 

Texture Correlation 74.31 

Texture Homogeneity 61.98 

Texture Entropy 65.97 

Texture Variance 65.97 

Motion Foreground-background energy ratio 84.72 

Motion Entropy-focus criterion 56.25 

Noise Dietrich’s signal-to-noise ratio 80.38 

Motion Mean background intensity 93.40 

Noise Mortament’s quality index 1 49.13 

Motion Mortament’s quality index 2 75.87 

Texture All textures descriptors 93.75 

Motion All motion descriptors 98.44 

Noise All noise descriptors 75.35 

All All descriptors 97.40 
 

The logistic regression model using motion descriptors misclassified two scans 

out of the 60 scans (one of each imaging quality) in the test set. Inspection of 

these two images revealed the high-quality one had in fact higher signal in the 

background region that the motion-corrupted scan (foreground-to-background 
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energy ratio: 4403.45 vs 4779.42) and therefore it should have been classified 

as motion corrupted. This result is consistent with Figure 67. 

 

Figure 67. Images that were misclassified using our logistic regression model. We thresholded 

intensities above 50 to show the background signal clearly (second column). Adapted from 

Bernal et al. (2021b). 

7.3.2 Image enhancement and parameter tuning 

7.3.2.1 Motion artefact reduction for the Frangi filter 

We applied the proposed motion artefact reduction method on motion-

corrupted scans. The algorithm improves the visual quality of the T2-w images 

while retaining detail (Figure 68); in some cases, these features become 

evident after image enhancement. Visual inspection of k-space suggested 

keeping 22 lines in kz direction around the centre of the k-space data led to an 
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acceptable trade-off between motion correction and detail visibility in this 

particular case. 

 

Figure 68. Images displaying motion artefacts and their corresponding filtering results. Red 

arrows point to regions where motion artefacts have been drastically reduced. Yellow arrows 

highlight regions with enlarged PVS. Note, filtering comes at the expense of real PVS being 

removed. 

7.3.2.2 Parameter optimisation 

We optimised response thresholds for both filters by means of a systematic 

visual assessment. The thresholds leading to the best PVS segmentation 

results in the basal ganglia and centrum semiovale for high quality and motion-

corrupted/enhanced images are condensed in Table 23 and Table 24. In 

agreement with Chapter 6, we noticed thresholds were different for each 

image, even if they exhibited similar imaging quality. We selected the mode as 



   

Chapter 7. Improving perivascular space segmentation in sMRI 159 

final threshold to maximise the number of cases in which segmentation was 

the best.  

Table 23. Thresholds leading to the best PVS segmentation with the Frangi filter for each of 

the high quality and enhanced images according to our systematic visual assessment. Results 

based on 12 cases from MSS3 (Section 7.2.1). 

Case 
Enhanced images High quality images 

Basal ganglia 
Centrum 

semiovale 
Basal ganglia 

Centrum 
semiovale 

1 0.46 0.34 0.44 0.22 

2 0.48 0.32 0.46 0.24 

3 0.50 0.34 0.44 0.24 

4 0.48 0.32 0.44 0.22 

5 0.42 0.34 0.44 0.22 

6 0.48 0.34 0.46 0.22 

Mode 0.48 0.34 0.44 0.22 

 

Table 24. Thresholds leading to the best PVS segmentation with RORPO for each of the high 

quality and enhanced images according to our systematic visual assessment. Segmentation 

of PVS in motion-corrupted cases 4, 5, 6 resulted in a binary images. Results based on 12 

cases from MSS3 (Section 7.2.1). 

Case 
Motion-corrupted images High quality images 

Basal ganglia 
Centrum 

semiovale 
Basal ganglia 

Centrum 
semiovale 

1 0.05 0.10 0.10 0.06 

2 0.10 0.08 0.08 0.10 

3 0.08 0.10 0.08 0.08 

4 0.00 0.00 0.05 0.08 

5 0.00 0.00 0.06 0.10 

6 0.00 0.00 0.08 0.10 

Mode 0.08 0.10 0.08 0.10 

 

7.3.3 Relationship between computational measures and 

clinical visual scores 

We then examined the relationship between visual and computational 

estimates of PVS burden via polyserial correlations (Table 25). We considered 
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three scenarios: segmentation on raw images, using our selective processing 

proposal, or processing regardless of imaging quality. 

Correlation values tended to increase after processing images depending on 

their imaging quality. The effect was evident in the centrum semiovale (Frangi: 

ρ = 0.17 [95% CI 0.14, 0.21] on raw images vs ρ = 0.88 [95% CI 0.87, 0.89] 

using our selective motion artefact reduction strategy; RORPO: ρ = 0.52 [95% 

CI 0.50, 0.55] on raw images vs ρ = 0.75 [95% CI 0.73, 0.77] using our 

selective motion artefact reduction strategy). The sign of the correlation was 

always positive after using our proposal. 

Table 25. Polyserial corrections between computational and clinical visual scores of PVS 

obtained using standard processing schemes and our proposed framework. Results based on 

a subset of the MSS3 (n=60; Section 7.2.1). We highlight the highest correlation per row in 

bold. Raw images: PVS segmentation on raw images. Process all: PVS segmentation after 

processing all images (either k-space segment nullification or parameter tuning) irrespective 

of imaging quality.CI: confidence interval.  

F
ilt

e
r 

Region of 
interest 

Metric 
Raw images 

Selective 
processing 

Process all 

𝜌 [95% 𝐶𝐼] 𝜌 [95% 𝐶𝐼] 𝜌 [95% 𝐶𝐼] 

F
ra

n
g

i 

Basal 
ganglia 

Count 
0.38 

[0.35, 0.41] 
0.27 

[0.23, 0.30] 
0.56 

[0.54, 0.59] 

Volume 
0.63 

[0.61, 0.65] 
0.82 

[0.81, 0.83] 
0.76 

[0.75, 0.78] 

Centrum 
semiovale 

Count 
-0.10 

[-0.13, -0.06] 
0.43 

[0.41, 0.46] 
0.35 

[0.32, 0.38] 

Volume 
0.17 

[0.14, 0.21] 
0.88 

[0.87, 0.89] 
0.59 

[0.57, 0.51] 

R
O

R
P

O
 

Basal 
ganglia 

Count 
0.46 

[0.44, 0.49] 
0.64 

[0.62, 0.66] 
0.80 

[0.79, 0.81] 

Volume 
0.65 

[0.63, 0.67] 
0.51 

[0.48, 0.54] 
0.41 

[0.39, 0.45] 

Centrum 
semiovale 

Count 
0.08 

[0.05, 0.12] 
0.73 

[0.71, 0.75] 
0.64 

[0.62, 0.66] 

Volume 
0.52 

[0.50, 0.55] 
0.75 

[0.73, 0.77] 
0.53 

[0.51, 0.56] 

 

We later examined computational PVS measurements stratified by clinical 

visual score and imaging quality (Figure 69). Counts and volumes obtained 

from raw motion-corrupted images were consistently higher than those 
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obtained with our selective processing scheme. Also, patients with similar 

visual ratings presented similar computational estimates irrespective of image 

quality when we process either selectively or all images. This effect was more 

evident for the Frangi filter vs RORPO filter. 
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Figure 69. PVS count and volume estimated for high-quality (pink) and motion-corrupted T2-w scans (green), stratified by clinical visual scores. Results 

based on a subset of the MSS3 dataset (n=60; Section 7.2.1). We expect patients with similar visual rating to present similar PVS count and volume 

irrespective of imaging quality. We kept the width of violins constant. Raw images: PVS segmentation on raw images. Process all: PVS segmentation 

after processing all images (either k-space segment nullification or parameter tuning) irrespective of imaging quality.
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7.3.4 Agreement between visual and computational counts 

We constructed Bland-Altman plots to better visualise the level of agreement 

between the two standard and proposed processing strategies and full manual 

counts (Figure 70 and Table 26). Our findings were three-fold. First, on raw 

scans, PVS counts obtained with RORPO agreed consistently and notoriously 

better with manual counts compared to those obtained with Frangi. Second, 

Frangi benefited more from nullifying segments of the k-space of all images 

than when doing it selectively. Third, on the other hand, quantities obtained 

with RORPO agreed more with manual counts when processing selectively.  

Table 26. Mean and standard deviation of differences between manual and computational 

PVS counts. Results based on a subset of the MSS3 dataset (n=60; Section 7.2.1). Raw 

images: PVS segmentation on raw images. Process all: PVS segmentation after processing 

all images (either k-space segment nullification or parameter tuning) irrespective of imaging 

quality. 

Region 
of 

interest 
Strategy Method 

Mean 
difference 

Standard 
deviation 

B
a

s
a

l 
g
a

n
g

lia
 Raw images Frangi 16.28 8.73 

Selective processing Frangi 10.90 7.57 

Process all Frangi -1.77 4.67 

Raw images RORPO 3.56 6.68 

Selective processing RORPO 0.51 5.60 

Process all RORPO -7.23 4.65 

C
e
n

tr
u

m
 

s
e

m
io

v
a

le
 Raw images Frangi 26.53 22.89 

Selective processing Frangi 16.08 11.11 

Process all Frangi -8.51 12.56 

Raw images RORPO -3.61 13.38 

Selective processing RORPO -7.31 7.68 

Process all RORPO -16.18 12.91 

 

Visual inspection of segmentation maps revealed three trends (Figure 71). 

First, PVS localisation was better with RORPO versus Frangi — as in Chapter 

6. Second, thin and lengthy PVS were often fragmented into multiple 

segments. Third, both filters present to opposite behaviours: RORPO misses 

subtle PVS whereas Frangi tends to detect many potential false positives. 
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Figure 70. Bland-Altman plots describing the agreement between manual and computational counts of PVS. Results based on a subset of the MSS3 

dataset (n=60; Section 7.2.1). Black solid and dashed lines depict the mean difference and 95% confidence intervals, respectively. The narrower the 

confidence interval and the closer the mean difference to zero, the higher the agreement between visual and computational measurements. Raw images: 

PVS segmentation on raw images. Process all: PVS segmentation after processing all images (either k-space segment nullification or parameter tuning) 

irrespective of imaging quality. 
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Figure 71. PVS segmentation in real high-quality patient data using the Frangi and RORPO filters. General observations are three-fold. First, 

segmentations with RORPO are more localised than with Frangi (green box) — in accordance to our findings in Chapter 6. Second, long and thin PVS 

are generally fragmented into multiple pieces (yellow box). Third, RORPO often misses subtle PVS whereas Frangi detects multiple potential false 

positives (blue and orange boxes, respectively).
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7.3.5 Relationship between estimates of leakage rates and 

PVS burden 

We carried out multiple linear regression to unravel potential associations 

between computational measurements of PVS burden (outcome) and age, 

mean arterial pressure, and BBB leakage estimates in white matter 

hyperintensities (predictors). Results are condensed in Table 27 and Table 28. 

Clinical variables explained the best PVS estimates obtained with our 

proposed framework utilising RORPO, explaining between 13.5% and 25.5% 

of their variance. Higher leakage rates in white matter hyperintensities were 

negatively associated with PVS burden in the centrum semiovale.  

Table 27. Multiple linear regression: PVS burden in basal ganglia as output variable and age, 

biological sex (0 – female; 1 – male), mean arterial pressure (MAP), and leakage rates in the 

white matter hyperintensities (𝑃𝑆𝑊𝑀𝐻) as predictors. Results based on a subset of the MSS3 

dataset (n=60; Section 7.2.1). We used bold fonts to indicate p-values fall below 0.01. Raw 

images: PVS segmentation on raw images. Process all: PVS segmentation after processing 

all images (either k-space segment nullification or parameter tuning) irrespective of imaging 

quality. 

M
e

tr
ic

 

M
e

th
o

d
 

Strategy 

Predictors 

𝑃𝑆WMH Age 
Biological 

sex 
MAP Adj. 𝑅2 

P
V

S
 c

o
u

n
t 

F
ra

n
g

i Raw images -13.76 0.57 -12.62 0.34 3.5 

Selective 
processing 

-15.70 -0.84 -18.05 0.95 5.1 

Process all -3.85 0.11 -2.98 0.17 8.1 

R
O

R
P

O
 Raw images -28.74 1.06 -31.13 1.12 5.6 

Selective 
processing 

-31.75 -0.40 -38.57 1.73 18.3 

Process all -3.93 -0.51 -16.18 0.73 5.8 

B
G

 P
V

S
 v

o
lu

m
e

 

F
ra

n
g

i Raw images -0.10 -0.00 -0.35 0.01 6.7 

Selective 
processing 

-0.10 -0.01 -0.40 0.02 13.1 

Process all -0.16 -0.01 -0.53 0.02 11.6 

R
O

R
P

O
 Raw images -0.06 -0.01 -0.38a 0.01a 12.0 

Selective 
processing 

-0.10 -0.01 -0.37 0.01 13.5 

Process all 0.00 -0.00a -0.08 0.00 8.1 
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Table 28. Multiple linear regression: PVS burden in centrum semiovale as output variable and 

age, biological sex (0 – female; 1 – male), mean arterial pressure (MAP), and leakage rates in 

the white matter hyperintensities (𝑃𝑆𝑊𝑀𝐻) as predictors. Results based on a subset of the 

MSS3 dataset (n=60; Section 7.2.1). We used bold fonts to indicate p-values fall below 0.01. 

Raw images: PVS segmentation on raw images. Process all: PVS segmentation after 

processing all images (either k-space segment nullification or parameter tuning) irrespective 

of imaging quality. 

M
e

tr
ic

 

M
e

th
o

d
 

Strategy 

Predictors 

𝑃𝑆WMH Age 
Biological 

sex 
MAP Adj. 𝑅2 

P
V

S
 c

o
u

n
t 

F
ra

n
g

i Raw images -69.03 -6.96 49.09 -2.44 -6.1 

Selective 
processing 

-62.08 -21.72a -17.75 4.51 14.3 

Process all -43.12a 0.11 2.84 0.43 10.1 

R
O

R
P

O
 Raw images -150.51 8.70 -26.83 4.09 4.5 

Selective 
processing 

-182.14a 1.72 -39.20 5.97 25.5 

Process all -44.75 -0.74 0.03 1.18 6.8 

P
V

S
 v

o
lu

m
e

 

F
ra

n
g

i Raw images -1.84 0.11 -1.54 0.04 3.3 

Selective 
processing 

-2.24 -0.01 -1.58 0.08 12.4 

Process all -1.14 0.00 -0.75 0.02 13.7 

R
O

R
P

O
 Raw images -0.66 0.01 -0.50 0.03 14.8 

Selective 
processing 

-0.80a -0.01 -0.48 0.03 19.1 

Process all -0.06 -0.00 -0.05 0.00 -0.8 

 

7.4 Discussion 

Motion artefacts jeopardise computational PVS quantification, preventing the 

validation of PVS as biomarkers of brain health and their routine evaluation in 

clinics. In consequence, we propose a computational pipeline for evaluate 

image quality automatically and act upon it, for instance by adjusting 

segmentation filter parameters or reducing motion artefacts retrospectively. 

Our proposal enabled us to better quantify PVS in both high quality and motion-

corrupted scans. 

Motion and motion artefacts are problematic in MRI-based clinical 

investigations (Zaitsev et al., 2015). While patient movement during scanning 
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might occur on occasion, studies of the ageing population are prone to them 

since elderly subjects can present medical conditions causing involuntary 

movement (e.g. stroke or vascular diseases). For example, the incidence of 

motion artefacts limiting computational PVS quantification has been found to 

be as high as 20% in a large-scale study (Ballerini et al., 2020a) — a similar 

proportion of motion-corrupted scans to that estimated in our sample of the 

MSS3 study. Making use of this data, which would otherwise be difficult to 

process, is therefore critical for the validation of PVS quantification. 

Separating motion-corrupted from high quality scans is therefore an essential 

step to improved PVS quantification. Our selective image processing 

framework permits skipping the potentially unnecessary enhancement of high 

quality scans, which ultimately may lead to reduced PVS sensitivity. To 

distinguish between these two groups of images, we opted for image quality 

metrics using background information only or ratios between the background 

and foreground signal to avoid encoding pathological information contained in 

signal within the brain region. We tested multiple descriptors accounting for 

textures, motion, and noise and found that those gauging motion, the entropy-

focus criterion, foreground-background energy ratio, and mean background 

intensity, were particularly suitable for characterising motion artefacts in the 

considered sample, yielding an AUCROC = 98.44. We discovered that an 

image labelled as “high quality” was actually corrupted by motion artefacts, 

supporting the claim that certain imaging distortions elude human detection 

owing to their subtlety or visual fatigue (Esteban et al., 2017). Incorporating 

automatic image quality control in processing pipelines can consequently allow 

earlier detection of these imaging issues and adjustment of processing 

parameters in consequence. However, the definition of image quality depends 

to a large extent on the acquisition protocol, preventing proposals from 

generalising. Rich and massive crowdsourcing databases collecting image 

quality metrics generated from MRI scans from multiple scanner and sites and 

containing expert manual judgments could enable developing a more general 

proposal for automatic image quality control in the future (Esteban et al., 2019). 
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Once we identified scans that were affected by motion artefacts, we proposed 

to either compensate for them or adjust filtering parameters depending on 

whether segmentation filters had mechanisms to cope with motion artefacts on 

their own or not. We proposed approximations to two vesselness segmentation 

filters: the Frangi filter — the most popular method for PVS segmentation — 

and RORPO. The RORPO filter offers an option for restricting PVS sensitivity. 

We thus leverage on it to deal with motion-corrupted images. The Frangi filter 

on the other hand does not contain any means to cope with motion artefacts. 

We decided to tackle the primary problem: missing or corrupted k-space 

measurements. As a proof of concept, we manually nullified segments of k-

space displaying pie-slice or sawtooth patterns (Godenschweger et al., 2017). 

We confirmed these segments were indeed linked with motion artefacts since 

their correction led to increased image quality. Future work should consider 

automatic detection of these motion-corrupted k-space regions. 

We then investigated the relationship between visual and computational 

estimates of PVS burden. We first used polyserial correlations to examine the 

strength of the relationship between clinical visual scores and computational 

figures. We observed that correlations were consistently higher when we 

applied our selective processing scheme, especially in the centrum semiovale. 

We then used Bland-Altman plots to examine the agreement between manual 

and computational counts of PVS. We observed that the counts obtained 

utilising RORPO agreed consistently better with those obtained with the Frangi 

filter. Moreover, the use of the selective processing proposal leads to reduced 

bias and narrower limits of agreement in most cases. Together, these findings 

support the initial hypothesis that processing images based on their imaging 

quality improves PVS quantification. If voxel are nearly isotropic and images 

sharp, we recommend the use of RORPO for PVS segmentation as its results 

agreed more with the medical experts. 

Our statistical analyses suggest PVS burden in the whole brain increases with 

mean arterial pressure, and not only in the basal ganglia as found in a recently 

meta-analysis (Francis et al., 2019). Moreover, we found that PVS 

measurements were associated with BBB permeability, in accordance with the 
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link between brain waste clearance and endothelial dysfunction. The direction 

of this association disagrees with the expectations, as the theory suggests 

increasing BBB permeability would hinder brain waste clearance and cause 

PVS to become visible (Wardlaw et al., 2020). Evidently, our analysis is limited 

by the sample size (n=60) and the variables that we considered in the analysis. 

Future work should consider assessing this relationship on a larger dataset.  

Our work has some limitations. First, although the manual nullification of 

segments of the k-space displaying sawtooth patterns resulted in increased 

visual quality, this procedure cannot generalise to other studies in which k-

space filling trajectories are different. Leveraging on artificial intelligence for 

retrospective motion correction may enable more general solutions to this 

problem. We could take advantage of our computational model (Chapter 6) to 

train a model with heterogeneous and realistic cases, thereby diminishing 

potential generalisability issues (Billot et al., 2020). Second, we tested our 

proposal on small subsample of an ongoing study. While our findings appear 

promising, more testing on larger datasets including T1-w and T2-w imaging 

sequences obtained using imaging scanners and protocols is required to 

evaluate the suitability of our proposal in the wild and determine whether it 

does indeed improves PVS quantification. 

In conclusion, we have developed a pipeline for evaluating image quality 

automatically and correct motion artefacts if needed or adjust filtering 

parameters accordingly to improve PVS quantification. Experimental results 

suggests our proposal leads to estimates of PVS that agree better with medical 

experts. Our development is practical since it helps to process or recover data 

otherwise useless and timely given the growing interest in PVS as a potential 

biomarker of brain dysfunction 

7.5 Take-home messages 

 Processing images depending on their quality and segmenting PVS 

with RORPO leads to estimates that agree with clinical experts. 
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 Accurate and precise PVS quantification remains challenging; current 

PVS segmentation filters either miss subtle PVS or present high false 

positive rates. 
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 Conclusions 

MRI permits visualising and assessing subtle and heterogeneous 

abnormalities characterising CSVD. However, spatial and temporal 

considerations — e.g. motion, sampling, and noise — corrupt MRI signals, 

hindering subsequent quantification and analysis. Moreover, the generalised 

lack of validation frameworks makes it unclear whether current computational 

assessments of these neuroradiological features are accurate and precise or 

not. The aforementioned issues ultimately lead to suboptimal signal post-

processing schemes, which may neglect or dispense with clinically relevant 

information as they operate on the MRI scans. 

The main purpose of this thesis was to propose signal analysis and processing 

techniques to improve the quantification and characterisation of two potentially 

connected features of CSVD: cerebrovascular dysfunction and enlarged PVS. 

8.1 Summary of findings 

8.1.1 Part I: cerebrovascular dysfunction and DCE-MRI 

We started by reviewing the literature on post-processing DCE-MRI signals for 

assessing cerebrovascular function systematically (Chapter 2). This review 

revealed a critical methodological issue: the effect of signal post-processing, 

either positive or negative, is largely unknown since current one-dimensional 

simulation works prevent gauging it. We therefore concentrated on developing 

new tools to determine their suitability in low-permeability scenarios, such as 

in CSVD. 

We then set up a workflow for summarising DCE-MRI signals and examining 

their relationship with CSVD (Chapter 3). This work helped us to determine the 

extent to which DCE-MRI signals reflect aspects of ageing and 

cerebrovascular function and organise the foundations onto which we later 

investigated the effect of signal post-processing on real patient data. The main 

finding of the analysis was that DCE-MRI measurements were reflective of 

age, health status, and cerebrovascular integrity, in agreement with previous 

works in the field. 
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We subsequently proposed a computational model mimicking the four-

dimensional DCE-MRI acquisition process to investigate the effect of 

spatiotemporal imaging considerations of these types of assessments and 

identify those that required being tackled urgently (Chapter 4). We found that 

spatiotemporal imaging considerations — motion and sampling particularly —

cause substantial over- and under-estimation of pharmacokinetic parameter 

values; reinforcing the notion that signal post-processing is necessary to 

improve DCE-MRI assessments of cerebrovascular function. 

We finally implemented common DCE-MRI post-processing techniques and 

investigated their effect on cerebrovascular dysfunction assessments 

leveraging DCE-MRI using our computational model and real patient data 

(Chapter 5). In synthetic data, we found that spatial realignment, segmentation 

mask erosion, and signal peak discard increased estimation accuracy and 

precision while histogram analysis caused consistent parameter over-

estimation. In real data, we found that post-processing with the recommended 

methods led to reduced variability and implausible estimates. We also 

discovered different signal post-processing schemes indeed produce distinct 

results, confirming the lack of harmonisation creates variability in the studies. 

We quantitatively demonstrated that the evaluation of the effect of signal post-

processing is critical to boost our assessments of subtle BBB dysfunction via 

DCE-MRI.  

8.1.2 Part II: PVS and sMRI 

Choosing appropriate PVS segmentation methods is challenging due to the 

lack of carefully annotated datasets. Thus, we proposed a computational 

model generating three-dimensional DRO to benchmark potential PVS 

segmentation techniques and evaluate their robustness to PVS characteristics 

and spatiotemporal imaging effects (Chapter 6). We found that segmentation 

filters are relatively robust to many considerations except motion artefacts, 

implying distinguishing between clean and motion-corrupted scans is key to 

better PVS quantification. 
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We then proposed a framework for segmenting PVS from input images 

according their imaging quality (Chapter 7). We demonstrated the application 

of the proposed framework led to higher agreement between full manual and 

computational PVS counts. Using our recommended pipelines for the analysis 

of DCE-MRI and sMRI signals, we finally demonstrated that the abundance 

and enlargement of PVS in the brain was associated with hypertension and 

cerebrovascular dysfunction.  

8.2 Strengths and contributions 

8.2.1 Part I: cerebrovascular dysfunction and DCE-MRI 

Two decades of research suggest DCE-MRI is highly valuable for studying 

extremely subtle abnormalities of small blood vessels in the brain and related 

neurodegenerative diseases. Thorough validation of signal post-processing 

schemes is fundamental to minimise estimation errors and maximise 

confidence in our studies. To this end, researchers typically leveraged one-

dimensional simulations to optimise imaging protocols and processing 

schemes. However, these works have overlooked the role spatiotemporal 

considerations and extra-cerebral brain tissues play on these assessments. 

The contributions of our work to the field are five-fold: 

1. We developed and released publicly a computational model mimicking 

DCE-MRI acquisition 

2. For the first time, we demonstrated spatiotemporal effects have a major 

influence on the accuracy and precision of subtle BBB leakage 

assessments leveraging DCE-MRI, highlighting the importance of their 

simulation and correction. 

3. We provided substantial and objective evidence against the widespread 

visual assessment of permeability maps as their appearance varies with 

pathologies but also with imaging artefacts.  

4. We detected two sources of errors inherent to the imaging process that 

had been neglected in the past, extra-cerebral enhancement and head 

position, that are not currently compensated for, and that determine the 

visual quality of permeability maps. 
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5. To fill the gap on the lack of validation, we systematically reviewed, 

implemented, and tested common signal post-processing schemes 

used in assessments of cerebrovascular dysfunction via DCE-MRI. We 

demonstrated that an adequate pipeline is essential to minimise 

variability and implausible estimates and that both no or sub-optimal 

post-processing can lead to increased estimation errors.  

Our work therefore provides means for gauging the effect of DCE-MRI 

acquisition and processing on cerebrovascular dysfunction and constitutes a 

cornerstone on which future optimisation and development can be based 

upon. It also permits maximising confidence in CSVD studies of BBB 

permeability and improving our understanding on how other diseases 

evidencing endothelial dysfunction (e.g. Alzheimer’s disease, multiple 

sclerosis, and Parkinson’s disease) initiate and develop. This development 

contributes to open-science and reproducibility as our model is available 

openly. 

Recommendations for studies of CSVD leveraging DCE-MRI 

1. Realign all frames prior to analysis — even in cases of low motion 

2. Erode segmentation masks to reduce influence of partial volume effects 

around tissue interfaces 

3. Discard signal peak to avoid non-linear signal changes misrepresented by 

the Patlak model and strong Gibbs-ringing artefacts 

4. Avoid DCE-MRI post-processing techniques untested in low-permeability 

scenarios 

5. Employ computational models — e.g. ours — to evaluate the effect of 

imaging protocol and processing prior to carrying out studies 

 

8.2.2 Part II: PVS and sMRI 

Growing interest surrounds the assessment of PVS in sMRI and their 

validation as a clinical biomarker of brain health function. Nonetheless, the lack 

of a ground truth prevents selecting the most suitable methods for carrying out 
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such a task and determining their robustness against PVS characteristics and 

imaging considerations. The contributions of our work to the field are three-

fold: 

1. We developed and released publicly a computational model mimicking 

sMRI acquisition 

2. We demonstrated motion artefacts require compensation or motion-

corrupted scans processed differently as these have a major influence 

on the performance of segmentation methods. 

3. We demonstrated processing sMRI scans according to their visual 

quality leads to estimates that correlate better with clinical visual ratings 

and agree more with full manual counts. 

Our proposal is impactful since it will help to improve our assessments of PVS 

burden and timely given the growing interest in finding novel biomarkers of 

brain health function. The ability to measure these tiny cerebral structures on 

routine MRI scans offers major opportunities for early detection of persons at 

increased risk of neurodegenerative diseases. The findings can translate 

rapidly to clinics to aid diagnosis, assess prognosis, monitor progression, and 

accelerate the development of therapeutics and assess their effectiveness.  

Recommendations for studies of CSVD quantifying PVS 

1. Implement quality control modules within processing workflows to ensure 

sMRI scans are processed according to their imaging quality — especially 

if corrupted by motion artefacts 

2. In retrospective studies, improve the visual quality of motion-corrupted 

sMRI scans and/or tune segmentation parameters to ensure sensible PVS 

quantification 

3. Employ computational models — e.g. ours — to evaluate test and compare 

potential PVS segmentation methods prior to carrying out the actual study 

to maximise true positive rates and minimise false positive rates 
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8.3 Limitations and future directions 

The work presented in this thesis has limitations, which offer new research 

avenues. 

8.3.1 Part I: cerebrovascular dysfunction and DCE-MRI 

 Arterial input function and longitudinal relaxation values. Our 

simulations assumed the arterial input function and longitudinal 

relaxation values 𝑇10 were measured perfectly. However, in real life, 

these measurements are error-prone as they are affected by 

spatiotemporal considerations (Gwilliam et al., 2021; Hallack et al., 

2014; Manning et al., 2021). First, we could investigate the accuracy 

and precision of the estimation of the arterial input function by 

measuring it from the DCE-MRI signals our computational model 

generates. This would give insights on how confident we can be of our 

estimates of this parameter and how detrimental are spatiotemporal 

considerations on its quantification. Second, we could incorporate an 

additional module to our computational model to enable the 

examination of the effect errors on longitudinal relaxation values have 

on permeability mapping, as in Hallack et al. (2014). Both of these 

extensions would make a more solid model of DCE-MRI acquisition and 

processing. 

 Spatial and temporal imaging considerations. We evaluated the 

effect of four imaging considerations: sampling, gross motion, motion 

artefacts, and Rician noise. Future work should consider incorporating 

other spatial and temporal factors, such as signal drift, and 𝐵0 

inhomogeneities. 

 Artefactual leakiness and partial volume effects. The conventional 

computation of the relative signal enhancement (𝑆[𝑡] 𝑆[0]⁄ − 1) ignores 

the possibility of signal mixing within a single voxel and gives rise to 

artefactual leakiness around tissue interfaces. Future work should 

therefore consider extending current pharmacokinetic parameter 
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regression schemes to account for partial volume effects. This would 

enable better visualisation of permeability maps.  

 Signal post-processing. We implemented and tested common DCE-

MRI signal post-processing schemes that we identified in our 

systematic review of the literature. However, other methods reducing 

the effects of sampling and motion could be tested in the future. For 

example, given that ringing artefacts caused by k-space sampling bias 

permeability mapping, their reduction via Kellner’s Gibb-ringing artefact 

removal algorithm (Kellner et al., 2016) could perhaps lead to improved 

quantification results.  

8.3.2 Part II: PVS and sMRI 

 Imaging quality dichotomisation. For the sake of simplicity, we 

categorised images into high quality and motion-corrupted. While this 

dichotomisation eases subsequent processing, it causes scans with 

intermediate visual quality to be processed either insufficiently or 

excessively. Future work should consider using image quality scores 

per se to adjust processing pipelines. 

 Optimal segmentation thresholds. Segmentation thresholds need to 

be chosen on a case-by-case basis to avoid inaccurate PVS estimates. 

Nonetheless, this is extremely time consuming and impractical in real 

life. A compromise between sensitivity and recall may be an option to 

set this parameter up. The procedure would need to be carried out at 

least per protocol and per scanner, as these two factors determine 

visual quality. We could also construct a continuous function modelling 

the relationship between imaging quality descriptors (e.g. motion and 

noise descriptors) and optimal thresholds. In such a way, we could truly 

select sensible thresholds for individual cases. 

 Sample size. We tested our framework for PVS quantification in a 

relatively small cohort of mild stroke patients (n=60). While results seem 

encouraging, future work should test the effectiveness of our proposal 

on large-scale multi-centric studies, such as UK Biobank, ADNI, and 
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OASIS. This would enable determining whether our approximation 

works with varying acquisition protocols, imaging conditions, and 

heterogeneity in neurodegenerative disease subtype (e.g. normal 

controls versus Alzheimer’s disease versus vascular dementia). 

 Super-resolution. We demonstrate nullifying segments of the k-space 

leads to improved quantification results when using the Frangi filter. 

However, such an approximation comes at the expense of resolution — 

in this work, in the inferior-superior direction. Super-resolution may help 

to cope with this side effect (Cengiz et al., 2017; Li et al., 2021; Wang 

et al., 2021). Note careful examination on the suitability of these 

frameworks is needed to ensure they model minuscule structures and 

abnormalities properly. 

 Modality switch. If T2-w scans are corrupted by motion, PVS 

segmentation could be carried out in other structural imaging modalities 

in lieu. Such a strategy would be convenient as switching modalities 

(e.g. T1-w instead of T2-w) does not require motion correction. Also, its 

adaptation to the proposed pipeline is realisable. However, there are 

two aspects that require consideration. First, its success would depend 

on the actual availability of alternative high-quality structural images. 

Second, parameter tuning experiments would be needed. This second 

item may be by-passed by considering image synthesis algorithms 

(Iglesias et al., 2021; Jog et al., 2015, 2013; Roy et al., 2010), but their 

applicability would depend on whether they are able to depict 

neuroradiological features of the ageing brain.  

 Adjusting statistical analyses. Statistical analyses could account for 

degradation due to motion, as presented in Lutti et al. (2021). Instead 

of splitting images into “high-quality” and “low-quality”, we could use 

estimates of image quality as weights to the regression model. The 

advantage of this technique would be two-fold. First, its use would 

increase model reliability since measurements extracted from images 

of lower quality would have a lower weight associated to them and, 

consequently, lower relevance during model fitting. Second, this 
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approach does not require classification, but image quality estimation. 

This means that images with intermediate visual quality would not be 

misrepresented due to the use of a continuous scale describing quality. 

8.3.3 Part I and II 

 Computational models. The closer the computational model to reality, 

the more confident we can be about our findings. For the sake of 

simplicity, we made assumptions about the imaging process that may 

differ from reality. For example, our model leverages Cartesian k-space 

sampling and, hence, it may not represent well the issues seen in a 

protocol relying on non-Cartesian k-space sampling. The integration of 

our model and numerical MRI simulators, such as MRiLab (Liu et al., 

2017), may enable mimicking multiple imaging protocols and boost the 

flexibility and applicability of our models. 

 The direction of the relationship between cerebrovascular 

dysfunction and PVS is still elusive. On the one hand, a relatively 

recent clinical work by Li et al. (2019) suggested the breakdown of the 

BBB causes fluid accumulation in PVS, making them visible. On the 

other hand, in this thesis, we found that the higher BBB leakage rates 

in white matter hyperintensities, the lower the total load of PVS in the 

brain. Note that this outcome may be a reflection of the challenge that 

the spatial co-occurrence of white matter hyperintensities and PVS 

poses for computational PVS segmentation. Tackling this quantification 

issue may help to shed light on the actual relationship between these 

two features of CSVD. 

8.3.4 Future directions regarding machine learning 

From intelligent systems suggesting products and services (Alfarhood and 

Cheng, 2021) to complicated natural language processors placed in 

smartphones capable of interpreting inquiries and responding appropriately 

(Bouziane et al., 2015), machine learning has become a part of our daily lives. 

In medicine, research undertaken by numerous research centres across the 

world has demonstrated deep learning, a branch of machine learning, is 



 

182   Chapter 8. Conclusions 

effective and has the potential to, in the future, aid medical decision making in 

sensible, complex, and time-consuming tasks that were computationally 

challenging or unachievable not so long ago (Liu et al., 2019). Examples 

include automatic breast cancer screening (McKinney et al., 2020), skin lesion 

classification (Esteva et al., 2017), dementia diagnosis and prognosis 

(Borchert et al., 2021), accurate brain image segmentation (Akkus et al., 2017; 

Bernal-Moyano et al., 2017), parametric map prediction (Ulas et al., 2019), 

highly undersampled MRI reconstruction (Hyun et al., 2018), and joint artefact 

detection and reconstruction (Duffy et al., 2021; Oksuz et al., 2020, 2019; 

Pawar et al., 2019).  

Despite the success, deep learning requires vast and heterogeneous amounts 

of training data to avoid generalisation problems (Bernal et al., 2022; Kushibar 

et al., 2019). However, because they are primarily trained on small and curated 

datasets, it is possible that they will be unable to process medical images in 

the wild, particularly if scans were acquired using imaging protocols other than 

those considered during training. Collecting massive volumes of sufficiently 

diverse and accurately annotated data from a single institution is difficult since 

annotation is time consuming and arduous, and heterogeneity is clearly 

constrained by population, diseases, raters, scanners, and imaging 

sequences. Furthermore, exchanging data in a centralised configuration 

requires addressing legal, privacy, and technological considerations in order 

to comply with good clinical practise standards, general data protection rules, 

and avoid the leakage of patient information. Translation to clinical practise will 

be impossible unless these issues are fully addressed. 

The computational models developed in this thesis have the potential to 

overcome the restrictions outlined above. From a deep learning point of view, 

our developments fall into the category of ‘physics-based data augmentation 

strategies’ because, with them, we are able to generate MRI-like images using 

biophysical models. Because imaging considerations and distortion levels in 

our models are easily tuneable, we can train deep learning models with 

sufficient, heterogeneous, and plausible sets of images, allowing them to be 

robust against imaging artefacts and generalise to potentially unseen datasets 
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without requiring additional adjustments. Furthermore, because synthetic — 

rather than actual — images would be utilised for training, data sharing issues 

would be ruled out. Fairly recent work in brain image analysis indicates this 

topic, referred to in the literature as contrast-agnostic and distortion-robust 

training schemes (Billot et al., 2021; Shaw et al., 2020) and biophysical-driven 

image generation (Bernal et al., 2021a; Liu et al., 2017), is promising and 

definitely worth pursuing. 

The use of deep learning techniques does not necessarily imply classical 

methodologies need to be put aside. On the one hand, traditional model-based 

signal processing approaches offer interpretability and thorough and extensive 

validation, both of which are critical in healthcare. On the other hand, recent 

methods leveraging artificial intelligence offer the possibility of training models 

to be robust against imaging distortions (Shaw et al., 2020) and acquisition 

settings (Billot et al., 2021). Incorporating prior knowledge from physics, 

imaging, and signal processing into machine learning algorithms, also referred 

to as learning known operators, has been proven feasible and can lead to 

improved quantification (Maier et al., 2019). Known operators, such as the 

Hessian vesselness filters or scale-space theory, can be incorporated into 

deep learning frameworks to decrease the amount of samples on which a 

network must be trained as well as the number of parameters that must be 

manually adjusted (Maier et al., 2019; Pintea et al., 2021). 

8.4 Final summary 

In this thesis, we proposed new tools to improve the assessment of subtle 

neuroimaging features of CSVD. We provided substantial evidence on the 

need for carefully optimised pipelines to improve the study of CSVD. The 

technical advancements presented in this thesis will help to shed light on the 

role of cerebrovascular dysfunction and PVS enlargement on CSVD and 

facilitate optimal study design in the future as well as optimal processing in 

future and ongoing studies. 
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