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Abstract

Machine learning studies algorithms for learning from data. Probabilistic modeling and
reasoning define a principled framework for machine learning, where probability theory is
used to represent and manipulate knowledge. In this thesis we focus on two fundamental
tasks in probabilistic machine learning: probabilistic prediction and density estimation.
We study reliability of probabilistic predictive models, propose flexible models for density
estimation, and propose a novel training regime for densities with low-dimensional structure.

Neural networks demonstrate state-of-the-art performance in many different prediction tasks.
At the same time, modern neural networks trained by maximum likelihood have poorly
calibrated predictive uncertainties and suffer from adversarial examples. We hypothesize
that careful probabilistic treatment of neural networks would make them better calibrated
and more robust. However, Bayesian neural networks have to rely on uninformative priors
and crude approximations, which makes it difficult to test this hypothesis. In this thesis we
take a step back and study adversarial robustness of a simple, linear model, demonstrating
that it no longer suffers from calibration errors on adversarial points when the approximate
inference method is accurate and the prior is chosen carefully.

Classic density estimation methods do not scale to complex, high-dimensional data like
natural images. Normalizing flows model the target density as an invertible transformation
of a simple base density, and demonstrate good results in high-dimensional density estimation
tasks. State-of-the-art normalizing flow architectures rely on parametrizations of univariate
invertible functions. Simple additive/affine parametrizations are often used, stacking many
layers to express complex transformations. In this thesis we propose novel parametrizations
based on cubic and rational-quadratic splines. The proposed flows demonstrate improved
parameter-efficiency and advance state-of-the-art on several density estimation benchmarks.

The manifold hypothesis says that the data are likely to lie on a lower-dimensional manifold.
This assumption is built into many machine learning models, but using it with density
models like normalizing flows is difficult: the standard likelihood-based training objective
becomes ill-defined. Injective normalizing flows can be implemented, but their training
objective is no longer tractable, requiring approximations or heuristic alternatives. In this
thesis we propose a novel training objective that uses nested dropout to align the latent
space of a normalizing flow, allowing us to extract a sequence of manifold densities from
the trained model. Our experiments demonstrate that the manifolds fit by the method
match the data well.



Lay summary

Algorithms are lists of simple instructions that a computer can follow to perform a useful
task. Consider an algorithm that can take an image of a medical scan and predict if the
patient is likely to have a particular medical condition. Alternatively, consider an algorithm
that can generate medical scans that we can plausibly observe for a patient with a particular
condition. Such algorithms could potentially automate expensive and time-consuming
diagnostic assessment, or help train medical professionals. Unfortunately, developing such
algorithms by hand is infeasible: the logic that we would need to implement is simply too
complex.

In machine learning we overcome this complexity by considering algorithms that use
historical data (e.g. past medical scans with their associated conditions) to learn the required
logic. Machine learning has been applied successfully across science and industry to solve
tasks previously believed to require “intelligence”. This includes identifying and classifying
objects in images, understanding and generating speech and language, or matching human
skill on games like chess and Go.

Problems tackled by machine learning algorithms are often associated with uncertainty.
For example, given a single, low-quality medical scan, a doctor should realize the there
is not enough information to give a confident diagnosis. Similarly, a doctor who has only
ever seen a handful of scans would not consider themselves a subject expert, and will be
reluctant to give confident diagnoses. The probabilistic approach to machine learning allows
us to build algorithms that mimic this behavior, and only make confident predictions when
justified to do so.

Unfortunately, probabilistic methods can be more difficult to implement and run, which
is why machine learning practitioners often choose simpler alternatives. In this thesis,
we demonstrate that even in a simple task these alternatives can have undesirable side
effects. We then demonstrate how probabilistic methods can alleviate these side effects.
Next, we propose a novel method that increases the complexity of tasks that we can solve
using the probabilistic approach. Finally, we propose a way of using our prior knowledge
about certain tasks to make learning more efficient. We hope our work motivates more
practitioners to turn to probabilistic methods, and encourages further research in this area.
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Chapter 1

Introduction

In this thesis we study computer algorithms that can learn from data, i.e. extract knowledge
from data, present this knowledge in a human-understandable form, or use it for making
predictions. We can use such algorithms to solve complex tasks believed to require
“intelligence”, understand complex natural phenomena and make predictions about them, or
design better medical interventions and government policies. Algorithms for learning from
data are especially vital in the modern information age, where the rapid development of
technology for gathering, storing and transmitting information resulted in an abundance of
data across many different domains. As the size and complexity of available datasets grow,
so does the importance of automated ways of analyzing this data (Hastie et al., 2001b).

Machine learning is a field at the intersection of computer science, statistics and mathematics
that studies algorithms for learning from data. This learning can take many forms, as
determined by the target application and by the data available. In this thesis we focus on
two fundamental forms of learning: supervised learning and unsupervised learning.

In supervised learning, our aim is to use a dataset of labeled datapoints to predict labels for
previously unseen datapoints. Image classification is a common example of a supervised
learning task, where we have access to a dataset of human-labeled images, and use it to
train a model to predict labels for new images. For example, we can classify handwritten
digits (LeCun and Cortes, 2010), classify objects in natural images (Russakovsky et al.,
2015), or detect presence of metastatic cancer tissue in images of histopathologic scans
(Veeling et al., 2018).

In unsupervised learning, we aim to learn statistical patterns in unlabeled data, and
use the discovered patterns to summarize the data, generate new datapoints, or define
representations for further tasks. For example, generative modeling is an unsupervised
learning task where we train a model that can sample novel points from the data distribution.
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Besides obvious artistic applications (White et al., 2021), we can use such a model to sample
future world states in model-based reinforcement learning (Racanière et al., 2017), learn
simulators in likelihood-free inference (Cranmer et al., 2020), or use the latent variables
discovered by the model as representations in downstream tasks (Brown et al., 2020).

Probabilistic modeling and reasoning define a principled framework for machine learning,
where probability theory is used as a universal language for representing and manipulating
knowledge (Murphy, 2012). Probabilistic machine learning is appealing as it explicitly
accounts for the uncertainties present in all learning tasks: the irreducible uncertainty
inherent to the world, and the uncertainty that results from learning with a finite dataset.

From a probabilistic viewpoint, supervised learning is formalized as the problem of estimating
the conditional predictive distribution p(y |x) for the label y and the datapoint x. Given a
previously unseen datapoint x, the distribution p(y |x) represents our belief that y is the
label of x. Unsupervised learning is formalized as the density estimation task, where we
aim to estimate the unconditional data distribution p(x). We can then use the moments or
parameters of p(x) to summarize the data, sample new points from it, compute expectations
with respect to it, and evaluate the density of new datapoints (Papamakarios, 2019).

1.1 Approximate inference for probabilistic prediction

In the probabilistic treatment, learning starts with defining a probabilistic model and a prior
distribution on its parameters, which express our prior assumptions about the underlying
process that generates the data. We then perform Bayesian inference to compute the
posterior distribution over the parameter settings, where high densities should be associated
with parameter values that are consistent with the data and the prior. In other words, having
observed some data produced by the underlying process, we use the Bayesian machinery to
update our prior belief, and express the new belief via the posterior distribution.

For complex, high-dimensional data the probabilistic model should be flexible enough to
express the underlying process (Ghahramani, 2015). For example, in image classification
the image label (say, the class of the object in the image) is a complex, non-linear function
of the raw pixel values. A neural network is a parametric model that is defined as a chain
of simple transformations, or layers. While each individual layer is not expressive, stacking
multiple layers allows the neural network to express complex, non-linear functions. In
fact, a neural network is a universal approximator: a neural network with sufficiently
many hidden units can approximate any function (Hornik et al., 1989). Neural networks
consistently demonstrate state-of-the-art results in supervised learning applications across
various domains (Goodfellow et al., 2016).
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Unfortunately, neural network models present a set of problems for the probabilistic
treatment. Their individual parameters are not interpretable, which makes it difficult to
define informative priors. The posteriors of such models are complex, high-dimensional
and multi-modal, making probabilistic inference and prediction intractable. Bayesian
neural networks (BNNs, MacKay, 1992a; Neal, 1994) use approximate inference methods to
estimate the posterior over the neural network parameters, but rely on uninformative priors
and approximations that make naive assumptions (Graves, 2011; Blundell et al., 2015).

Instead, most practitioners resort to maximum a posteriori (MAP) or maximum likelihood
(MLE) estimation, where we compute a point-estimate of the full Bayesian posterior. Both
approaches re-define inference as optimization, where non-convex optimization methods
like gradient descent are used to find a local minimum in the parameter space. These
approximations greatly simplify both inference and prediction, and accuracy of their
predictions matches (or even beats) BNNs in practice, especially with large datasets.

While accurate, predictions made by modern non-Bayesian neural networks can fail in other
aspects. In particular, their predictions are surprisingly miscalibrated : their confidences are
poorly correlated with how accurate these predictions turn out to be (Guo et al., 2017). A
form of miscalibration that has recently attracted a lot of interest is the adversarial example
phenomenon (Szegedy et al., 2014; Goodfellow et al., 2014b). Adversarial examples are
points in the data distribution that an otherwise accurate model makes confident errors
on. Existence of such points means we can not rely on neural network predictions when
making decisions associated with risk.

The fact that neural networks can make confident yet wrong predictions suggests that
they underestimate their predictive uncertainty, i.e. do not know when they do not know.
Researchers suggest that misspecified priors and the inability of MLE/MAP training to
capture the model uncertainty underpin their miscalibration and the adversarial phenomenon
(Gal and Smith, 2018). Unfortunately, testing this hypothesis is difficult in BNNs, which
have to rely on crude approximations and uninformative priors.

In this thesis we take a step back and study adversarial robustness of a simpler model
class, where meaningful priors can be defined, and approximate inference methods can
be accurate. We take a linear model that suffers from calibration errors on adversarial
points when trained by MLE/MAP, and measure the extent to which various approximate
Bayesian inference methods can eliminate these errors. We show that accurate inference
and informative priors can completely eliminate the calibration errors in this setup. We
hope that our findings will further stimulate the development of Bayesian methods for
neural networks.
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1.2 Density estimation with normalizing flows

Density estimation is a fundamental problem in probabilistic machine learning. Classic
density estimation methods like histograms, kernel density estimation (KDE) and mixture
models do not scale to high-dimensional, complex densities, such as densities of natural
images. Normalizing flows have been proposed as flexible parametric density models (Tabak
and Turner, 2013; Rippel and Adams, 2013). A normalizing flow models a density as an
invertible transformation of a simple base density like a multivariate standard normal. An
arbitrarily complex density can be expressed by a flow with a sufficiently flexible invertible
transformation. Parametrizing such flexible transformations has been the main focus of
normalizing flow research.

Autoregressive (Kingma et al., 2016; Papamakarios et al., 2017) and coupling (Dinh et al.,
2017) transformations have been proposed, where we use neural networks to parametrize
invertible elementwise transformations of the inputs. Such transformations stay invertible
by construction, yet can take advantage of the expressive power of neural networks. Flows
based on autoregressive and coupling layers demonstrate excellent results across various
density estimation tasks (Kingma and Dhariwal, 2018; Huang et al., 2018).

At the same time, the expressivity of autoregressive/coupling transformations depends on
the expressivity of the elementwise function parametrizations. The first autoregressive
(Kingma et al., 2016; Papamakarios et al., 2017) and coupling (Dinh et al., 2017) normalizing
flows use simple additive/affine functions, and overcome the limited expressivity by stacking
many transformations in a chain. Like in neural networks, this combination can produce
expressive models, but long chains of transformations increase computational cost, and
can result in vanishing/exploding gradients (Koehler et al., 2021). Instead, more complex
invertible univariate function parametrizations have been proposed (Müller et al., 2018; Ho
et al., 2019), which we review in Section 3.2.

In this thesis we propose novel invertible univariate function parametrizations based on
monotonic cubic polynomial splines and monotonic rational-quadratic splines, which we use
to build more parameter-efficient normalizing flows that improve upon state-of-the-art on
several density estimation benchmarks.

1.3 Normalizing flows and low-dimensional structure

The curse of dimensionality makes high-dimensional density estimation problems particu-
larly challenging. One implication of this phenomenon is that the number of datapoints
required for an accurate estimate grows exponentially with the number of data dimensions,
so we have to make assumptions about the density in order to make density estimation fea-
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sible. Common assumptions include the smoothness of the density, presence of symmetries
or invariances in it, or its low intrinsic dimensionality (Papamakarios, 2019).

In normalizing flows based on autoregressive or coupling layers, smoothness and symme-
tries/invariances are typically enforced via architectural choices in the neural networks
that parametrize the transformations. The low intrinsic dimensionality assumption (the
manifold hypothesis) is the assumption that the target density lies on a lower-dimensional
manifold, and does not span the full space. Building this assumption into normalizing flows
is more difficult: the density is no longer well-defined in ambient space, which means that
the standard normalizing flow training objective is also ill-defined. Kumar et al. (2020)
and Brehmer and Cranmer (2020) use a more general normalizing flow setup that supports
injective transformations, but the likelihood of an injective flow is no longer tractable, so
the authors must use approximations or alternative, heuristic objectives.

In this thesis we take a different approach, and propose a novel training objective for a
standard, full-dimensional flow. The new objective is based on the nested dropout idea
by Rippel et al. (2014), and regularizes the latent space of the flow to allow extracting a
sequence of densities on manifolds from the trained model. Our experiments show that
the flow indeed captures the underlying data manifolds when using the proposed training
objective. Our method does not require knowledge of the manifold dimension at training
time, and is suitable for modeling data that lie close to a lower-dimensional manifold.

1.4 Thesis structure

This thesis consists of an introduction, three content chapters, and a discussion. Each of the
content chapters is written to be self-contained: it provides the necessary background, and
reviews the related literature. Chapter 2 is devoted to probabilistic prediction and Bayesian
inference, where we study adversarial robustness of a Bayesian linear model. In Chapters 3
and 4 we study density estimation, focusing on normalizing flows: in Chapter 3 we propose
novel normalizing flow parametrizations based on monotonic splines, while in Chapter 4
we propose a novel training objective for standard flows that allows extracting manifold
densities from the trained model. Finally, in Chapter 5 we discuss our contributions and
their implications, as well as avenues for future work.

Mathematical notation Following a common mathematical notation, in the rest of the
thesis we use the default font for scalar variables (x) and scalar functions (f), bold font for
vector variables (x) and vector functions (f), bold capitals for matrix variables (M), and
calligraphic capitals for sets (D). We use xi:j as a shortcut for [xi xi+1 ... xj−1 xj ]

>, only
defined for j ≥ i. The log function is always a natural logarithm, unless stated otherwise.



Chapter 2

Adversarial robustness of
approximate Bayesian inference

This chapter is based on Bayesian Adversarial Spheres: Bayesian Inference and Adversarial
Examples in a Noiseless Setting (Bekasov and Murray, 2018), a paper presented at the
Bayesian Deep Learning Workshop, part of the Thirty-second Annual Conference on Neural
Information Processing Systems (NeurIPS, 2018). The paper was selected for a spotlight
presentation at the workshop.

In this chapter we expand on the paper by providing a more extensive introduction,
background and discussion; performing a deeper analysis of the logistic regression posterior
approximations in the spheres problem; and including new experiments on Bayesian logistic
regression with learned neural features for planar classification, the spheres problem, and
image classification.

2.1 Introduction

Neural networks are powerful function approximators, making them an important tool in
the toolbox of a modern machine learning practitioner. Learning-as-optimization is the
mainstream approach when it comes to training modern neural networks. However, the
alternative — learning-as-Bayesian-inference — has attracted a lot of research interest
throughout the years. In their pioneering work MacKay (1992a) and Neal (1994) explored the
motivations behind Bayesian treatment of neural networks, as well as practical considerations
of doing Bayesian inference for complex neural network posteriors. Since then the community
has made significant progress in both methodology and applications of Bayesian neural
networks (Gal, 2016).
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Figure 2.1: Adversarial example phenomenon. By adding adversarially constructed noise to
the correctly classified input image we force the classifier to output an incorrect prediction
with high confidence, even though the two images look indistinguishable to our eye. Repro-
duced with permission from (Goodfellow et al., 2014b).

However, Bayesian methods are yet to see wide adoption by deep learning practitioners.
One common justification is that (regularized) maximum likelihood training is easy to
implement and cheap to run, while its predictive performance as measured by accuracy
or mean squared error (MSE) is often comparable to more involved Bayesian inference
methods. This is especially true in the large data regime, where there is less uncertainty
about the model parameters, and the regularization induced by the Bayesian prior and
inference procedure plays a smaller role (Kendall and Gal, 2017).

Predictive performance is not the only aspect that practitioners care about, however. For
example, when using model predictions for real-world decision-making it is important to
have a reliable measure of how confident the model is, and hence how much we can trust its
prediction. This is particularly important for risk-sensitive applications in e.g. medicine or
autonomous driving, where machine learning models with calibrated predictive uncertainty
— a strong correlation between predictive confidence and expected prediction error (Gal,
2016) — are especially desirable.

A particular manifestation of miscalibration that has recently attracted a lot of interest in
the machine learning community is the adversarial example phenomenon (Szegedy et al.,
2014; Goodfellow et al., 2014b). Adversarial examples are points found on the data manifold
that an otherwise accurate model confidently misclassifies. In particular, such points can lie
so close to correctly classified points that a human can not distinguish between a correctly
classified point and an adversarial point. Fig. 2.1 illustrates the phenomenon in image data.

Rawat et al. (2017) and Gal and Smith (2018) report that Bayesian neural networks (BNNs,
Blundell et al., 2015; Louizos and Welling, 2017) are better calibrated, and in particular
become more uncertain on adversarial points when compared to neural networks trained by
maximum likelihood. Unfortunately, studying these models is difficult, as the probabilistic
treatment of neural networks is notoriously hard: their weights are not interpretable and
hence difficult to put an informed prior on, and their posteriors are complex and high-



20

dimensional, making accurate inference challenging. As a result, we typically assume
uninformative priors and use approximate inference methods that make strong assumptions
with poorly understood effects. This is consistent with the observations made by Rawat
et al. and Gal and Smith that adversarial robustness of Bayesian neural networks depends
strongly on the inference method used.

In this work, we take a step back and study the interaction between the Bayesian treatment
and adversarial robustness using simple, linear predictive models and synthetic data. In
particular, we consider the “adversarial sphere” problem introduced by Gilmer et al. (2018),
but, instead of a multi-layer neural network like in the original work, we use a Bayesian
logistic regression model with handcrafted features. This allows us to reason about the
parameters of the model and perform accurate approximate inference.

We first demonstrate that when using maximum likelihood (MLE) or maximum a posteriori
(MAP) estimation this simple model makes zero mistakes on a large test set, yet adversarial
optimization can discover confident errors on the data manifold. We then experiment with
the prior and the approximate inference method to try to make the predictions uncertain
on these points.

We find that performing accurate inference and using informative priors eliminates the
calibration errors in this setting. At the same time, we find that bootstrap, a popular
non-Bayesian uncertainty estimation method, does not have the same effect. We use
the simplicity of the setup to study the posterior approximations of bootstrap and other
methods more closely.

2.1.1 Adversarial robustness of hybrid models

In complex prediction problems models with handcrafted features are outperformed by
end-to-end trained neural networks, and hence are of little interest to practitioners. At the
same time, as mentioned above, approximate Bayesian inference can be inaccurate when it
comes to complex models like neural networks. These two considerations limit the practical
impact of our work.

What if we consider a Bayesian linear model, but instead of designing features for it we
would learn a feature space using a non-linear model like a neural network? After all, a
neural network classifier itself could be interpreted as a logistic regression with an adaptive
basis (Murphy, 2012, Chapter 16), i.e. a logistic regression fit in a learned neural feature
space. The feature space can be fit via maximum likelihood, which could potentially get us
the best of both worlds: a non-linear model trained cheaply using standard optimization
tools, but with a Bayesian layer on top of it for better predictive uncertainty.

A hybrid approach of this form has been explored before (Snoek et al., 2015; Bauer et al.,
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2017; Bradshaw et al., 2017), with promising results on tasks designed to measure model
calibration. In the remainder of this chapter we study robustness of these models as
measured by calibration errors on adversarial points. We run experiments on synthetic
data, including the “adversarial sphere” setup with no handcrafted features, as well as
high-dimensional natural image datasets.

We observe that a hybrid model does not retain the adversarial robustness of a fully
Bayesian classifier. Further analysis suggests that such methods are fundamentally flawed,
due to the fact that the neural representation model itself remains vulnerable.

2.1.2 Contributions

In summary, we make the following contributions in this chapter:

• We show that an accurate linear model with handcrafted features suffers from
calibration errors on adversarial points in the concentric spheres problem introduced
by Gilmer et al. (2018).

• We use the spheres problem with a linear model to show that approximate Bayesian
inference methods take the model from being confidently wrong to being highly
uncertain on adversarial points, and that the same effect is not achieved when using
crude inference methods like MAP or bootstrap.

• We compare the inference results of MCMC, SVI and Laplace, studying the posterior
approximations and the failure modes of these methods. We analyze the transferability
of the adversarial points across predictive ensembles, showcasing the inability of
bootstrap to explore certain directions in the posterior.

• We evaluate an informed hierarchical prior that incorporates our knowledge about
the symmetries in the problem, and demonstrate that it completely eliminates the
calibration errors.

• We extend the experiments to Bayesian logistic regression with learned, neural features,
running the method on non-linear 2D classification, the high-dimensional spheres
problem, and an image classification problem. We demonstrate that the positive
results above do not transfer to such models, because the feature model itself remains
vulnerable.
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2.2 Background

Consider an abstract binary1 classifier p(y = 1 |x) = fθ(x) with parameters θ. In a
standard supervised learning setup given a set of training examples D we first choose
how to parametrize fθ (as a linear classifier, a neural network, a decision tree, etc.), and
possibly define a prior p(θ). We then fit θ∗ = argminθ L(θ;D) for some loss L, or perform
inference to get the posterior p(θ | D). To guide our choice of the parametrization and the
fitting/inference procedure, we need to understand what properties we want a good classifier
to have.

Naturally, we want the predictions made by a good classifier to be correct and to generalize
to unseen data, i.e. we want it to have high accuracy on a held-out test dataset. While
accuracy is undoubtedly of great importance, it is not the only desirable property of a good
classifier. For example, in certain applications it is crucial for the model’s predictions to be
interpretable, so that a practitioner can debug the model, and a user can understand the
reason for a particular prediction. In this work, we focus on another important property of
a good classifier: calibration. In particular, we use adversarial optimization to find points
for which the model is most miscalibrated.

2.2.1 Model calibration

In probabilistic prediction, we report a confidence/uncertainty alongside the prediction.
For a probabilistic binary classifier, the output fθ(x) defines the confidence, which is equal
to fθ(x) for y = 1, and 1− fθ(x) for y = 0. We would like this confidence to be calibrated,
meaning that we want the classifier to reliably indicate to what degree it is uncertain
about its prediction, and hence how likely it is to be wrong. More precisely, for all x s.t.
α < fθ(x) < β we want the classifier’s accuracy on these x’s to be between α and β. The
mismatch between the expected accuracy and the measured accuracy for a set of (α, β)

ranges defines the common calibration metric — Expected Calibration Error (ECE, Naeini
et al., 2015).

Guo et al. (2017) report that modern neural networks trained by maximum likelihood are
surprisingly miscalibrated as measured by ECE, and in fact become less calibrated as their
predictive performance improves. Knowing when to trust the model’s prediction is crucial
if the model is to be used for decision making, especially in safety-critical applications like
autonomous driving or medicine.

Non-Bayesian methods for calibrating neural networks have been proposed. For example,
we can use temperature scaling (Guo et al., 2017) to re-scale the predictive uncertainties

1We consider binary classification problems in this chapter to simplify the mathematical notation and
the experiments, and to make the results easier to interpret.
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after training, choosing the “temperature” that maximizes the likelihood on the validation
set. Mukhoti et al. (2020) propose replacing the maximum likelihood loss with the focal loss
(Lin et al., 2017) that penalizes low-entropy predictive distributions, thus discouraging the
network from becoming over-confident. Finally, we can directly optimize a differentiable
approximation to ECE by replacing the non-differentiable binning operation with soft
binning (Karandikar et al., 2021; Bohdal et al., 2021).

We do not expect the non-Bayesian methods above to make the model uncertain on
out-of-distribution points: it is only the training/validation points that contribute to the
training/calibration objectives. Bayesian methods, on the other hand, explicitly model
the uncertainty in the model parameters, which is an important factor in the predictive
uncertainty. Intuitively, if a prediction varies significantly under different parameter settings
all of which fit the training data well, we must be uncertain in that prediction. Bayesian
inference can be applied to neural networks, which empirically results in better calibrated
predictive uncertainties (e.g. Blundell et al., 2015; Louizos and Welling, 2017).

2.2.2 Bayesian neural networks

A Bayesian neural network (BNN, MacKay, 1992b; Neal, 1994) is a neural network with a
prior distribution on its parameters, where instead of optimizing we perform inference to
compute the posterior distribution over the parameters given the training data. Conceptually,
BNNs are an attractive idea, because they promise automatic regularization, principled
model selection and comparison, principled transfer learning and active learning, as well as
calibrated predictive uncertainties.

Unfortunately, neural networks present a set of challenges for Bayesian inference methods.
The individual weights are meaningless, making informative priors difficult to define.
The parameter space is high-dimensional (models used in practice can have millions of
parameters), and there are complex dependencies and symmetries among the parameters,
which means that posteriors are high-dimensional, complex and multi-modal. Various
approximate inference methods have been explored over the years:

• Laplace approximation (MacKay, 1992a). However, even fitting a simple multi-
variate Gaussian posterior is expensive, and we need to use approximations to make
it feasible (Kirkpatrick et al., 2017; Ritter et al., 2018).

• Stochastic variational inference (SVI, Graves, 2011; Blundell et al., 2015; Zhang
et al., 2017). Arguably the most active area, but methods are tied to the expressivity
of the variational family. Simple variational families (e.g. a diagonal Gaussian) are
commonly used, more expressive parametrizations have been proposed (Louizos and
Welling, 2016, 2017), but it is not clear how faithfully the distributions approximate
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the true Bayesian posterior.

• Markov chain Monte Carlo (MCMC, Neal, 1994). Asymptotically exact, but
expensive, and hence only feasible for small neural networks and datasets. There is
work on stochastic sampling methods that allow using larger datasets (Welling and
Teh, 2011; Chen et al., 2014).

• Assumed Density Filtering (ADF, Jylänki et al., 2014) and Expectation
Propagation (EP, Soudry et al., 2014; Hernández-Lobato and Adams, 2015). ADF
can be inaccurate due to its inability to iteratively refine the approximation, while
the memory requirements of EP scale linearly with the number of datapoints, limiting
use to small datasets. Li et al. (2015) propose a stochastic version of EP, but memory
requirements are lifted at the cost of a reduced approximation quality.

In summary, we do not have a method that could perform accurate inference for large
neural networks on large datasets, which keeps this an important research direction.

2.2.3 Hybrid Bayesian models

Prior work has shown that some benefits of Bayesian treatment might be achieved by only
performing Bayesian inference for the last layer of a neural network, fixing the rest of the
parameters to their MAP approximation. The setup might also be interpreted as using
the neural network to learn a set of basis functions for Bayesian logistic regression2. The
approach makes intuitive sense: we treat earlier layers as defining a “feature extractor”, and
only take uncertainty into account when making decisions based on the extracted features.

Snoek et al. (2015) successfully use a hybrid model of this sort as a surrogate model for
Bayesian optimization, replacing the more traditional but less scalable Gaussian Processes
model. Bauer et al. (2017) apply a hybrid model to few-shot learning: the posterior of the
Bayesian logistic regression layer is used as a prior when adapting the model to novel tasks.
Finally, Azizzadenesheli et al. (2018) use the same approach in a reinforcement learning
setting to parametrize a deep Bayesian Q-network that predicts the reward, enabling
principled exploration via Thompson sampling (Russo et al., 2018).

The method is appealing as it allows us to use the well-studied, accurate methods for
Bayesian inference in a linear model, while minimizing the computational overhead by
fitting a point estimate for the vast majority of the parameters.

2Other Bayesian models can be used (Bradshaw et al. (2017) use a Gaussian Process), but we restrict
ourselves to Bayesian logistic regression in this work.
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2.2.4 Adversarial examples

Adversarial examples are points for which a model outputs confident, wrong predictions,
and which are produced via small, imperceptible perturbations of correctly classified points
(Szegedy et al., 2014; Goodfellow et al., 2014b). Adversarial examples can reliably be found
for a variety of neural networks (Moosavi-Dezfooli et al., 2016), with some points being
general enough to transfer across models (Moosavi-Dezfooli et al., 2017). The adversarial
phenomenon has recently attracted a keen interest of the community, and numerous methods
have been developed for “attacking” the models, i.e. generating adversarial examples, and
“defending” the models, i.e. making them robust to adversarial inputs (Yuan et al., 2017).

The adversarial example phenomenon is worrisome from the AI safety and security perspec-
tive (Kurakin et al., 2017; Eykholt et al., 2018). More generally, the existence of adversarial
examples suggests that current models and training methods fail to (a) generalize in an
expected way, and (b) capture regions in the input space for which predictions must be
uncertain. While (a) raises questions about whether the models we are fitting have the right
inductive bias for the tasks of interest, (b) suggests an interpretation of adversarial examples
as calibration errors, which could be remedied through careful handling of uncertainty.

We focus on aspect (b) in this work: instead of measuring calibration on validation/test
data, we run adversarial optimization to find points in the input space that the model is
most miscalibrated on. In other words, adversarial optimization is used as a particularly
harsh critic of model calibration, one that specifically looks for the parts of the input space
with underestimated predictive uncertainty.

2.2.5 Bayesian inference and adversarial robustness

Adversarial robustness of Bayesian neural networks and non-Bayesian uncertainty estimation
methods has been studied before. Rawat et al. (2017) evaluate state-of-the-art Bayesian
neural networks, and observe increased predictive uncertainty on adversarial examples, but
note that the quality of said predictive uncertainty varies across inference methods. Li and
Gal (2017) use adversarial examples as a benchmark for a novel neural network loss designed
to provide cheap predictive uncertainty estimates, and also observe increased uncertainty
on adversarial inputs. Bradshaw et al. (2017) make similar observations for a hybrid neural
network/Gaussian Process model (similar to the one we use in Section 2.2.3). Finally,
Gal and Smith (2018) discuss idealized neural networks that would have no adversarial
examples, arguing that the Bayesian approach is vital for implementing such models.

Note that the motivation for using Bayesian methods in this line of work is to detect
adversarial examples: we hope that the predictions will become uncertain, indicating the
lack of data and/or inductive bias in the model to justify making a confident prediction.
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We believe adversarial examples can only be eliminated by modeling the right symmetries
and invariances in the data, which is tangential to uncertainty estimation. Imposing such
symmetries through architecture design has been studied before (Weiler et al., 2018). In the
Bayesian setting, it is also possible to express the known symmetries and invariances using
the prior, but it is difficult to do so for the non-interpretable neural network parameters.

When it comes to linear models, in their seminal paper Goodfellow et al. (2014b) demonstrate
adversarial vulnerability of such models, and argue that “Linear models lack the capacity to
resist adversarial perturbation”. Moreover, the authors conjecture that adversarial examples
in neural networks are caused by the locally linear nature of these models. Experiments
performed by Tabacof and Valle (2015) show that the issue is more complex, providing
examples of problems where linear models are less susceptible to adversarial attacks than
deep models. Finally, Tanay and Griffin (2016) present a theoretical analysis of adversarial
examples in linear models, pointing to overfitting as one of the underlying causes of this
phenomenon.

In summary, while there is evidence that Bayesian treatment improves adversarial robustness
of neural networks, the difficulty associated with the probabilistic treatment of such models
prevents us from making strong conclusions. To the best of our knowledge, adversarial
robustness of Bayesian linear models has not been studied before, which motivates our
work.

2.3 Methods

We now introduce the methods used in this chapter, including the model, the inference
methods, and the adversarial optimization methods.

2.3.1 Bayesian logistic regression

We use the logistic regression model as a linear classifier:

p(y = 1 |x; θ) = f(x; θ) = σ
(
w>x + b

)
(2.1)

σ(z) =
1

1 + exp(−z) , (2.2)

where θ = {w, b} are the learnable parameters of the model, σ is the logistic sigmoid
function, and y ∈ {0, 1} To simplify the notation in the rest of the chapter, we include b in
w, as the same effect can be achieved by adding a constant feature to x:

ŵ>x̂ = w>x + b, (2.3)
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where ŵ = [w b]> and x̂ = [x 1]>. The log likelihood given a dataset D = {(xi, yi)}Ni=1

is then defined as:

p(D |w) =
N∏
i=1

p(y = yi |xi; w) (2.4)

=

N∏
i=1

[
yif(xi; w) + (1− yi)(1− f(xi; w))

]
. (2.5)

Together with a prior p(w) specified by the practitioner, the likelihood defines the posterior,
which we know up to a normalizing constant:

p(w | D) ∝ p(D |w)p(w) (2.6)

Given the posterior, we marginalize over the parameters to compute the probabilistic
prediction:

p(y = 1|x,D) =

∫
p(y = 1 |x; w)p(w | D) dw (2.7)

In general, the integral in Eq. (2.7) is intractable. If we can sample from the posterior
(e.g. using MCMC methods, as discussed in Section 2.3.4), we can compute a Monte Carlo
estimate of the predictive distribution:

p(y = 1|x,D) ≈ 1

M

M∑
i=1

p(y = 1 |x; wi), where wi ∼ p(w | D). (2.8)

When we approximate p(w | D) with a Gaussian distribution (e.g. when using variational or
Laplace approximations from Sections 2.3.2 and 2.3.3), we can use the probit approximation
(Murphy, 2012, Section 8.4):

p(y = 1|x,D) ≈ σ
(
κ
(
σ2
a

)
µa
)

(2.9)

µa = m>x (2.10)

σ2
a = x>Vx (2.11)

κ
(
σ2
a

)
=
(

1 +
π

8
σ2
a

)
− 1

2 , (2.12)

where m and V are the mean and the covariance of the posterior approximation:

p(w | D) ≈ N (w |m,V). (2.13)
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Alternatively, we can find the mode w∗ of the posterior by optimizing, i.e. compute the
maximum a posteriori estimate (MAP), in which case the predictive distribution simplifies
to:

p(y = 1|x,D) ≈ p(y = 1 |x; w∗), where w∗ = argmax
w

p(w | D). (2.14)

When using a uniform, improper prior, we arrive at the maximum likelihood estimate
(MLE). The logistic regression posterior is known to be log-concave when using a Gaussian
prior, hence if we minimize the negative log posterior then the optimization surface is
convex. Second-order gradient optimizers can quickly find the global minimum in this case.
We use the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS, Shanno, 1985)
optimizer in our experiments.

2.3.2 Variational inference

The variational method for inference works by defining a parametric distribution (a
variational family, e.g. a Gaussian parametrized by its mean and covariance), and optimizing
over the parameters to minimize a distance (or, more precisely, a divergence) between the
parametrized distribution and the posterior. The Kullback–Leibler (KL) divergence is a
common choice for the distance measure:

DKL(qθ(w) ‖ p(w | D)) = Eqθ

[
log

qθ(w)

p(w | D)

]
(2.15)

= Eqθ

[
log

qθ(w)

p(w,D)

]
+ log p(D), (2.16)

where qθ is the variational distribution with parameters θ. Unfortunately, we can not evaluate
this divergence, as the marginal likelihood (or model evidence) log p(D) is intractable.
Instead, we rewrite Eq. (2.16) as

log p(D) = DKL(qθ(w) ‖ p(w | D)) + Eqθ

[
log

p(w,D)

qθ(w)

]
︸ ︷︷ ︸

ELBO

, (2.17)

where ELBO is the evidence lower bound, as ELBO ≤ log p(D) due to the KL divergence
always being non-negative. As log p(D) is fixed with respect to the variational parameters
θ, instead of minimizing the KL divergence we can maximize the ELBO, or equivalently
minimize the negative ELBO :

θ∗ = argmax
θ

ELBO(θ) = argmin
θ
−ELBO(θ). (2.18)
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The ELBO itself consists of three terms: the negative entropy, the cross-entropy and the
log-likelihood expectation:

ELBO = Eq [log q(w)]︸ ︷︷ ︸
neg. entropy

−Eq [log p(D|w)]︸ ︷︷ ︸
log-likelihood exp.

−Eq [log p(w)]︸ ︷︷ ︸
cross-entropy

. (2.19)

For a Gaussian variational family and a Gaussian prior, both the negative entropy and
the cross-entropy terms have easy-to-evaluate analytical expressions. The log-likelihood
expectation does not have an analytical expression, but a Monte Carlo approximation is
typically sufficient to obtain useful learning signal. We can further avoid evaluating the
log likelihood on the whole dataset by using mini-batch training, resulting in stochastic
variational inference (SVI, Hoffman et al., 2013; Ranganath et al., 2014). For a given
batch (y(i),x(i))Mi=1:

Eq [log p(D|w)] ≈ N

M

M∑
i=1

log p(y(i)|x(i); w); w ∼ q(w). (2.20)

To reduce the variance of this estimator, we can sample a different weight setting per
datapoint in the batch:

Eq [log p(D|w)] ≈ N

M

M∑
i=1

log p(y(i)|x(i); w(i)); w(i) ∼ q(w). (2.21)

Eq. (2.21) could be implemented naturally and efficiently using the local reparametrization
trick (Kingma et al., 2015). The trick involves sampling the activations directly (which for
a Gaussian variational family would also be Gaussian), as opposed to sampling the weights
and computing the corresponding activations.

2.3.3 Laplace approximation

Laplace approximation (MacKay, 2003, Chapter 27) fits a Gaussian to the posterior by
matching the curvature of the posterior at a mode. We can find a posterior mode by
optimizing, and then fit the Gaussian covariance by matching the curvature of the log
posterior at that mode. In practice, this means computing the MAP estimate w∗, and
using the inverse of a Hessian of negative log posterior at w∗ as the covariance:

L(w) = − log
[
p(D |w)p(w)

]
, w∗ = argmin

w
L(w), H = ∇∇L(w∗), (2.22)

p(w | D) ≈ q(w | D) = N
(
w |w∗, H−1

)
(2.23)
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We refer the reader to MacKay (2003, Chapter 27) for further details and derivations.

The method, while conceptually simple, scales poorly when implemented naively: computing
and inverting the Hessian (the size of which scales quadratically with the number of
parameters) is problematic for high-dimensional parameter spaces. Kirkpatrick et al. (2017)
use a diagonal approximation to the Hessian in order to improve scalability, making a naive
assumption that all the parameters are independent. Ritter et al. (2018) use a more accurate
approximation of the Hessian based on Kronecker factorization, relaxing the independence
assumption by modeling the diagonal blocks of the Hessian.

2.3.4 Markov chain Monte Carlo

Instead of fitting a parametric distribution as in variational/Laplace approximations,
methods based on Monte Carlo sampling allow us to sample from the target distribution
directly. Markov Chain Monte Carlo (MCMC) methods in particular are able to sample from
complex, high-dimensional distributions (e.g. MacKay, 2003, Chapter 29). The Metropolis
algorithm, a special case of the Metropolis–Hastings algorithm, is a classic MCMC method
that works by iteratively proposing transitions wi → ŵ in the parameter space using a
symmetric proposal distribution (e.g. a Gaussian) conditioned on the current position wi:

ŵ ∼ q(ŵ |wi). (2.24)

The transition is then stochastically accepted (we transition to the proposed location) or
rejected (we stay at the current location), where the probability of acceptance depends on
the posterior density ratio between ŵ and wi:

a =
p(ŵ | D)

p(wi | D)
, u ∼ U(0, 1), wi+1 =

ŵ if u < a

wi otherwise
. (2.25)

Transitions that increase the posterior probability (p(ŵ | D) > p(wi | D)) are always ac-
cepted, while ones that decrease it are sometimes accepted, but with low probability if the
decrease is significant. The explored locations in the parameter space will asymptotically
be distributed according to the target (posterior) distribution. In other words, as M →∞,
our approximation in Eq. (2.8) will approach the true Bayesian predictive distribution.

In practice, however, we can only obtain a finite set of samples, which means there will
be an error in our approximation of the predictive distribution. This error, unsurprisingly,
depends on the number of samples: obtaining more samples reduces the error (all the way
to zero in the limit of infinitely many samples), but increases the computational/memory
cost. The error also depends on how well the chain mixes, i.e. on how correlated the
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subsequent samples are, and is reduced when the correlation decreases. For the Metropolis
algorithm, the mixing is determined by the proposal distribution q(ŵ |wi). If it only
proposes transitions close to the current location (e.g. the variance of the Gaussian proposal
is small), the correlation will be high. If it proposes transitions too far away, we run the
risk of rarely accepting transitions and staying at the same location, which also increases
the correlation

Alternative Monte Carlo methods have been developed that aim to de-correlate the sam-
ples, in order to reduce the estimation error without using many samples. In particular,
Hamiltonian Monte Carlo (HMC, Duane et al., 1987) uses the gradient of the target density
to make multiple steps for each transition. However, HMC is itself sensitive to the number
of steps L it takes for each transition: if L is too small the subsequent samples have higher
correlation, but if L is too large we waste computation taking a lot of steps to obtain a
single sample. The No-U-Turn sampler (NUTS, Hoffman and Gelman, 2014) that we use in
our experiments tunes the L parameter automatically during sampling, making it possible
to run HMC with little to no hyperparameter tuning.

2.3.5 Bootstrap

Bootstrap is a baseline approach for obtaining predictive uncertainty that is easy to
implement for an arbitrary predictor class. The input dataset is re-sampled with replacement
N times, and N models are trained independently, each on a different re-sampled dataset.
In the end, we obtain a set of weight vectors that defines a predictive ensemble, which
allows for a direct comparison to an ensemble defined by MCMC samples. As in MCMC,
the prediction of the ensemble is computed by averaging the predictions of all the ensemble
members, see Eq. (2.8).

In certain circumstances bootstrap can be interpreted as a non-parametric approximation
to the Bayesian posterior with a non-informative prior (Hastie et al., 2001a, §8.4). However,
it is not clear how general this correspondence is, and what properties this approximation
has.

2.3.6 Adaptive basis logistic regression

In its abstract form, a neural network model is defined as a sequence of M transformations
Li:

f(x) = LM ◦ LM−1 ◦ · · · ◦ L1(x) (2.26)

Each Li is typically a linear transformation followed by an elementwise non-linearity.
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An alternative view of the same model is to consider the first M − 1 layers to be learning a
neural basis for the last layer LM (Murphy, 2012, Chapter 16). As explored by Snoek et al.
(2015) and Bauer et al. (2017), we consider a hybrid model, where said last linear layer is
replaced with Bayesian logistic regression.

Depending on the interpretation, we can consider the proposed hybrid model to either learn
a neural basis for a Bayesian linear model, or a Bayesian neural network where we only
marginalize over the last layer, using a MAP approximation for other parameters. The
latter interpretation leads to a simple extension: marginalizing over the last K layers, and
training the first M −K layers by (regularized) maximum likelihood.

Following Snoek et al. (2015) and Bauer et al. (2017), in our experiments we train the model
sequentially. We first fit the representation layers, simultaneously fitting a point-estimate
for the Bayesian layers. Following this we fix the learned representation layers, and perform
inference for the Bayesian layers only, discarding the point-estimate fit in the earlier stage.
In some cases, e.g. when we use variational inference for the Bayesian layers, we could train
the model end-to-end using the corresponding objective (e.g. variational ELBO, Bradshaw
et al., 2017), but we do not explore this.

2.3.7 Adversarial optimization

The goal of adversarial optimization is to find valid points that an otherwise accurate model
confidently misclassifies. By valid we define points that lie on the data manifold (or in the
data distribution). More precisely, we define a constrained adversarial optimization task for
a given predictor f and a true class y:

minimize Ladv(x) = BCE(f(x), 1− y) (2.27)

= −y log z − (1− y) log(1− z) (2.28)

subject to x is on manifold (2.29)

In other words, we try to find the point x that maximizes the prediction for the wrong
class, constraining x to stay on the data manifold.

The precise definition of “on manifold” depends on the problem at hand. In this work, we
consider two scenarios: a spherical manifold with a given radius r, and a manifold of a
particular natural image dataset. For the former, trivially

x is on manifold ⇐⇒ ‖x‖ = r. (2.30)

Characterizing the image manifold for the latter is tricky, but a common proxy used is to
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Algorithm 2.1 Projected gradient descent for adversarial optimization. Takes a differ-
entiable adversarial loss function Ladv, step size α, projection function g, initial point x0,
number of steps N . Outputs xN , the point at the final step.
1: for t← 0, N do
2: x̂← xt − α∇xtLadv(xt) . Gradient descent step
3: xt+1 ← g(x̂) . Projection step

keep x a small `∞ norm (or max norm) away from some valid image x0:

x is on manifold ⇐⇒ ‖x− x0‖∞ < ε (2.31)

⇐⇒ max |x− x0| < ε, (2.32)

where ε is the chosen threshold, and x0 is typically set to the image we initialize the
optimization from. In other words, x is considered valid if all its pixel values are at most ε
away from the corresponding values in x0, for some small ε.

In line with Gilmer et al. (2018) and Madry et al. (2018), we solve the constrained
optimization problem using Projected Gradient Descent (PGD). PGD augments any
standard gradient-based optimizer with an additional projection step, where the current
point is projected to a point that satisfies the constraint.

We use the Algorithm 2.1 to apply PGD to adversarial optimization, where Ladv is the
adversarial loss from Eq. (2.28), and g is a function that projects the argument to a point
on the manifold. In particular, if we want to keep the point on a sphere with radius r, we
use the following g:

g(x̂) = r
x̂

‖x̂‖ (2.33)

To keep the point within an `∞ norm of less than ε from some point x0:

g(x̂) = min(x0 + ε,max(x̂,x0 − ε)), (2.34)

where min and max are applied elementwise.

In our experiments we use the standard Stochastic Gradient Descent (SGD) update as given
in Algorithm 2.1, in some cases augmenting it with momentum and annealing the step size α.
The gradient step is not aware of the projection step, however, so accelerated gradient
descent methods have to be used with care. The literature on accelerating PGD is scarce,
but in practice we find that momentum works well and speeds up convergence. Adaptive
gradient methods like Adam (Kingma and Ba, 2015), on the other hand, performed poorly
in our preliminary experiments when used with PGD.
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2.3.8 Adversarial loss smoothing

Adversarial optimization requires finding gradients of the BCE loss with respect to the
inputs, i.e. ∇xtLadv(xt) in Algorithm 2.1. This, in turn, involves finding the gradient of
the prediction with respect to the input, ∇xfθ(x). When fθ is a logistic regression model:

∇xfθ(x) = ∇xσ
(
w>x

)
(2.35)

= ∇xz
∂σ(z)

∂z
where z = w>x. (2.36)

The problem lies with the derivative of the sigmoid in Eq. (2.36). For large magnitudes of
z the sigmoid saturates, and its derivative vanishes, i.e. becomes exactly zero due to finite
precision. This is why in practice the BCE loss is re-written as follows:

BCE(f(x), y) = −y log fθ(x)− (1− y) log(1− fθ(x)) (2.37)

= z − yz + log(1 + exp(−z)) (2.38)

= max(z, 0)− yz + log(1 + exp(− |z|)) (2.39)

where z = w>x are the logits, and log(1 + exp(− |z|)) has an implementation that is
numerically stable even for large |z| values (for example, numpy.log1p).

In this work, however, f will often be an ensemble of logistic regression models, rather than
a single model, where the prediction is computed as:

f(x) =
1

M

M∑
i=1

σ
(
wi
>x
)
, (2.40)

where M is the number of models in the ensemble.

We are unable to use the Eqs. (2.37) to (2.39) trick in this case. Instead, we note that
re-scaling the input to the sigmoid will not change the sign of the sigmoid’s derivative, but
will change its magnitude. Hence, during adversarial optimization, we use an alternative
predictor:

f̂(x, τ) =
1

M

M∑
i=1

σ
(
τwi

>x
)
, (2.41)

where τ is often referred to as temperature. Fig. 2.2 demonstrates the effect of the tempera-
ture on the predictive surface of a random ensemble. We see that at lower temperatures the
predictive surface is “smoothed out”, and its derivative can guide the optimizer towards the
extrema. To make use of this during optimization, we start with τ = 0 and continuously
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Figure 2.2: Temperature loss smoothing. Plots of f̂(x, τ) as defined in Eq. (2.41) for an
random ensemble in 1D, varying the value of τ . Ensemble size M = 10, a weight and
a bias (joined into wi) are sampled from N

(
0, 106I

)
, which simulates the case where

ensemble members are making extremely confident predictions. Decreasing the temperature
τ “smooths” the function, providing a useful derivative for optimization.

increase it to 1 according to a cosine schedule (Loshchilov and Hutter, 2017):

τ(t) = τend + (τstart − τend)
1

2

(
1 + cos

(
πt

N

))
, (2.42)

where t is the optimization step, τstart and τend are the temperatures at the start and at
the end of the optimization run (τstart = 0 and τend = 1 in our case), and N is the total
number of optimization steps. In other words, during the course of optimization we are
continuously morphing the optimization surface from the “smooth” approximation of the
loss surface f̂ to the actual loss surface f .

Empirically this method reliably finds calibration errors for a wide class of learning methods.
The method is an instance of continuation methods (Bengio et al., 2009) for minimizing
complex, potentially non-convex losses using similar “smoothed”-to-original transformations
of the optimization surface.

The vanishing gradient problem is an example of an adversarial defense by obfuscated
gradients (Athalye et al., 2018), albeit created unintentionally in this case. Learning an
approximation to the ensemble that has well-behaving gradients, amongst other methods
for attacking obfuscated gradient-based adversarial defenses discussed by Athalye et al.,
could provide an alternative to the temperature annealing method above, but we leave this
for future work.
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2.4 Experimental setup

In this chapter, we run experiments to evaluate the uncertainties of the Bayesian logistic
regression model using various inference methods. In particular, we are looking for pre-
dictions that would be accurate and confident on the validation points, and accurate or
uncertain on adversarial points. In other words, we would like the model to assign high
probability p(y |x) to the true labels y for both validation and adversarial (x, y) pairs. The
model is able to maximize p(y |x) for x that it knows it is likely to be wrong about by
increasing the entropy of p(y |x), i.e. by becoming more uncertain.

2.4.1 Datasets

In their work Gilmer et al. (2018) introduce a synthetic concentric spheres dataset that is
particularly useful for our purpose. In this dataset the data lie on two concentric spheres
(or hyperspheres), with one sphere having a smaller radius than the other. The class of a
datapoint is determined by which sphere it lies on: y = 0 for points on the inner sphere,
y = 1 for points on the outer sphere. We plot an example of the concentric spheres dataset
in 2D in Fig. 2.3.

Such dataset is easy to generate for any number of dimensions D by sampling data points
from an D-dimensional spherical Gaussian, and projecting each point onto a sphere with a
class-dependent radius:

x = r
z

‖z‖ , r =

r1 if y = 0

r2 if y = 1
, z ∼ N (0, ID). (2.43)

As a result x will be uniformly distributed on the surface of a sphere with radius r. To
see that this is the case, first note that if vectors z are sampled from a spherical Gaussian
distribution then

log p(z) = logN (z |0, σI) (2.44)

= −1

2
z>

1

σ
Iz + const. (2.45)

= − 1

2σ
‖z‖2 + const. (2.46)

We can see that the density of a spherical Gaussian only depends on the norm of the vector,
and is invariant to the “direction” ( z

‖z‖) of the vector. Intuitively, this means that the
distribution over the Gaussian-distributed vectors after normalization (i.e. the distribution
on a sphere) is indeed uniform. To show this more rigorously, we use the sum rule of
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probability to find the density3 of x:

p(x) =

∫
p(x | z)p(z) dz (2.47)

=

∫
δ

(
x− r z

‖z‖

)
N (z |0, σI) dz (2.48)

=

∫
{
z : x=r z

‖z‖

}N (z |0, σI) dz. (2.49)

In other words, it is the integral over all the vectors z that produce x when normalized.
We can find the same set of vectors by integrating over the (positive) lengths c for a fixed
direction z

‖z‖ :

p(x) =

∫ ∞
0
N
(
c

z

‖z‖ |0, σI
)

dc (2.50)

=

∫ ∞
0

f(c) dc (2.51)

= const., (2.52)

where we use Eq. (2.46) and the fact that
∥∥∥c z
‖z‖

∥∥∥ = c to go from Eq. (2.50) to Eq. (2.51).
This completes the proof. �

The sphere dataset is defined for an arbitrary dimension D. Moreover, we always know
the set of true decision boundaries: any hypersphere with a radius r∗ s.t. r1 < r∗ < r2

perfectly separates the data. The maximum margin decision boundary is a hypersphere
with a radius r∗ = (r1 + r2)/2.

Gilmer et al. (2018) demonstrate that for D as high as 500 one could learn an extremely
accurate (error rate less than 10−6) neural network for this dataset. At the same time, we
can use adversarial optimization to find points on the data manifold that the same highly
accurate model misclassifies with high confidence. Note that the true data manifold is
well-defined for this problem: it is a union of the two spheres. The existence of such errors
and the simplicity of the set-up make it particularly interesting for studying adversarial
robustness.

In addition to the spheres dataset, we use the moons dataset from sklearn.datasets (Pedregosa
et al., 2011) as a simple planar classification benchmark. As the non-synthetic dataset, we
use the CIFAR-10 dataset (Krizhevsky, 2009). To simplify the setup, we only consider two
classes from CIFAR-10 (truck and car) to define a binary classification task.

3Note this density is only well-defined for points x on the sphere with radius r (‖x‖ = r), and is not
well-defined in the ambient space.



38

−1 0 1

x1

−1

0

1
x

2

0 1

x2
1

0.0

0.5

1.0

1.5

x
2 2

y = 0

y = 1

Figure 2.3: The concentric spheres dataset in 2D. Left: The dataset. Datapoints colored
by true class. Max. margin decision boundary marked by a green line. Right: The same
dataset with features transformed by the elementwise square function in Eq. (2.54). The
data become linearly separable.

2.4.2 Model and prior

We use a logistic regression model with a bias in all of our experiments, only changing the
feature space and the inference method. In all cases we standardize the logistic regression
inputs to have zero mean and unit variance, using statistics computed on the training set.

For most experiments, apart from the ones that use a hierarchical prior (Section 2.5.6), we
use a spherical Gaussian prior for the regression weights (including the bias):

p(w) = N (w |0, σwI), (2.53)

with σw = 10. We use the same prior for MAP inference, which is equivalent to using a
corresponding L2 regularizer in maximum likelihood training. This wide prior is chosen to
represent our lack of prior belief about the weight values, which is common in practice.

2.4.3 Handcrafted features

The concentric spheres problem could be “linearized” by applying a square operation to
each data dimension:

φ(x) =
[
x2

1 . . . x2
D

]>
. (2.54)

A logistic regression in such transformed space defines a decision boundary that is a special
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case of a quadric surface in a D-dimensional space:

w>φ(x) =

D∑
i=1

wix
2
i = −b. (2.55)

Eq. (2.55) can parameterize a subset of quadric surfaces that includes an ellipsoid, obtained
by keeping all wi’s positive. The target decision boundary (a sphere) is, in turn, a special
case of an ellipsoid with all wi’s being positive and equal : w1 = w2 = ... = wD. This
explains why the elementwise transformation in Eq. (2.54) allows us to match the non-linear
target decision boundary with a linear model, as visualized in Fig. 2.3.

2.4.4 Learned features

We use a simple feedforward neural network when learning features for the spheres problem.
The neural network has 3 hidden layers of size 1000, and includes batch normalization (Ioffe
and Szegedy, 2015). We add a linear layer followed by a sigmoid to train the representation
on the spheres classification task. When training we sample new data for each batch, which
means the model effectively sees 108 points during training (2× 105 steps with batch size
500). The trained model achieves perfect accuracy on 106 validation points. For evaluation,
we replace the added linear and sigmoid layers with Bayesian logistic regression, keeping
the representation neural network fixed during inference.

For the image experiments, we use a Wide Residual Network by Zagoruyko and Komodakis
(2016) with the “deepening” factor l = 40 and the “widening” factor k = 2. We either load a
checkpoint pre-trained on ImageNet as provided by Hendrycks et al. (2019), or train on the
binary image classification task with CIFAR-10 images directly, optimizing for 30 epochs
with a batch size of 128.

2.5 Experiments: handcrafted features on spheres

We begin by considering the concentric sphere problem. We use the handcrafted features
to turn the target decision boundary into a linear one, which allows it to be expressed by a
simple logistic regression classifier.

We generate 1000 training and 106 validation samples on the concentric spheres with
D = 500, as described in Section 2.4.1. Note that the training sample size is orders of
magnitude smaller than the one used by Gilmer et al. (2018). Due to the linear model
being much less flexible than a multi-layer neural network, we have to reduce the dataset
size to replicate the same phenomenon, i.e. the model being accurate on validation points,
but suffering from calibration errors on adversarial points.
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Table 2.1: Results for Bayesian logistic regression with elementwise squared features.
Confidence defined as p(ytrue |x). Error defined as p(1− ytrue |x). Adversarial dataset
produced by perturbing validation points as described in Section 2.3.7.

Validation Adversarial

Model Log likelihood Confidence Log likelihood Max. error

MAP −0.000 1.000 −1.829 0.964
Bootstrap −0.000 1.000 −1.343 0.869
SVI −0.017 0.984 −0.802 0.632
MCMC −0.024 0.976 −0.737 0.612

Using this setup we compare the adversarial robustness of MAP, bootstrap, MCMC, and
SVI. The results are shown in Table 2.1. All methods achieve perfect accuracy on the
validation set (error rate < 10−6), so the accuracy numbers are omitted. We now compare
and discuss the results of the considered methods.

2.5.1 Maximum a posteriori

MAP is a point estimate, and as such is a crude approximation to the full Bayesian
treatment.4 While it captures a mode of the posterior, it does not capture any of the
uncertainty around the mode. For the concentric sphere problem, while MAP is sufficient
to demonstrate perfect accuracy on a large validation set, adversarial optimization finds
points on the data manifold (i.e. on the spheres) that the same accurate model misclassifies
with more than 96% confidence.

This replicates the results of Goodfellow et al. (2014b), who use a binary image classification
task and `∞ norm-constrained adversarial optimization to demonstrate vulnerability of
high-dimensional linear models. Goodfellow et al. (2014b, Section 3) conjecture that this
phenomenon would only be observable in sufficiently high-dimensional problems. A nice
property of the sphere problem is that it is defined for all dimensions D ≥ 2. We have
used this property and empirically confirmed the conjecture in our preliminary experiments
— we only find calibration errors when the feature space is sufficiently high-dimensional.
Moreover, in our setting we observe calibration errors only when the problem is sufficiently
high-dimensional and when the amount of data is insufficient to fully restrict the linear
model, which Goodfellow et al. do not discuss.

Our findings highlight that adversarial examples are not a neural network-specific issue,
and that adversarial robustness must be a consideration even when deploying simple (e.g.
linear) models. What is more important for this thesis, however, is that such simplified

4MAP is equivalent to regularized Maximum Likelihood Estimate (MLE), and does not provide a
measure of posterior uncertainty generally associated with Bayesian methods (Murphy, 2012, Section 5.2.1).
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Figure 2.4: Probabilities assigned to the true class by MAP and MCMC Bayesian logistic
regression with handcrafted features for validation and adversarial points. We see that
while MAP makes confident mistakes (p(ytrue |x)→ 0) for some of the adversarial points,
MCMC at most becomes uncertain. At the same time, the confidence of MCMC is reduced
for validation points.

setting allows us to study the phenomenon more deeply.

Given that the training dataset used is small (1000 points in a 500-dimensional space), one
might argue that calibration errors in this setting could be caused by overfitting, in which
case they could potentially be alleviated by tuning the regularization hyper-parameters.
In practice, tuning the Gaussian prior variance (i.e. the L2 regularization coefficient) has
not been fruitful: the picture is the same unless excessive regularization causes the model
to underfit the training set. This contradicts the theoretical analysis of Tanay and Griffin
(2016), who suggest regularization is one way to solve adversarial examples in a linear
model.

Alternative regularization methods could be used. However, choosing and tuning regular-
ization is tricky in this problem: for many sensible regularization settings the validation
negative log likelihood is too small to be measured (i.e. exactly zero with finite precision),
hence it is not clear what criterion to use.

2.5.2 Markov chain Monte Carlo

An MCMC method (HMC, Duane et al., 1987; Neal, 2011) shows a noticeable improvement
on the MAP results. The average log probability for the adversarial points is significantly
higher, and adversarial optimization is unable to uncover points which the model confidently
misclassifies. Fig. 2.4 compares the predictions of MAP and MCMC models for validation
and adversarial points. Unlike the MAP model, the MCMC ensemble never makes a
confident prediction for an adversarial point.
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At the same time, the MCMC ensemble is marginally less confident on the validation data.
One could argue that the predictive uncertainty of MCMC is poorly calibrated: after all, the
model is making no mistakes on 106 validation points, so should arguably be close-to-100%
confident on these points. We argue that the confidences of MCMC are not unjustified: it
so happens that the data in the concentric spheres problem are restricted to lie exactly on
the spheres, with no additional noise present to push some points off the surface. In other
words, the problem is linearly separable in the feature space. If that was not the case, and
the training data were a sample from an underlying noisy process, a completely confident
model could obtain an infinite validation NLL by making a single mistake on the validation
data.

Neither the model nor the wide prior that we use make assumptions about the linear
separability / lack of noise. The logistic regression model prescribes a Bernoulli sampling
process for the labels, which in practice means that weight settings with low-confidence
mistakes suffer little in terms of training NLL. We hypothesize that predictions would
become more confident if we used our prior knowledge about the linear separability and
considered hard classifiers (i.e. replaced the sigmoid likelihood with a step function), or
used a prior distribution with support restricted to high-norm weights. We leave such
experiments for future work.

We believe that the model parameters in the posterior are highly correlated: if we ignore
normalization, the true weights are all equal, as previously discussed in Section 2.4.3. MCMC
methods often struggle with correlations in the posterior, which results in slow mixing (high
auto-correlation in the samples), and higher estimation error. In our experiments we use
thinning to improve mixing: we run a longer Markov chain, but take every k-th sample,
jumping over multiple transitions. This way we reduce auto-correlation, but keep the final
number of samples fixed, enabling fair comparison to alternative inference methods. We
use k = 10 in our experiments.

Note that when there are no additional constraints on the number of samples, thinning
is often unnecessary and is always inefficient (Link and Eaton, 2012). There are other
approaches for improving MCMC mixing in problems with highly correlated parameters,
e.g. estimating a non-diagonal (dense) mass matrix for use in an HMC sampler. Using such
techniques could further improve our MCMC results.

2.5.3 Bootstrap

Bootstrap is a crude approximation to the Bayesian method, but one which aims to capture
some of the uncertainty in the posterior, as discussed in Section 2.3.5. It is trivial to
implement and run for an arbitrary predictor class, and as such is a popular choice among
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Figure 2.5: Scalar projections of weights onto validation/adversarial directions for MCMC
and bootstrap. We plot wi · x̂j values, which are the (signed) lengths of weight vector (wi)
projections onto direction vectors (normalized position vectors, x̂j = xj/ ‖xj‖) of either
validation points or adversarial points found for the bootstrap ensemble. The colors denote
the true classes of the points that we project onto. The scalar projections are proportional
to the prediction logits, and so, as expected, on validation points the values are negative
for y = 0 and positive for y = 1. On adversarial points, however, bootstrap places most of
the mass on the wrong scalar projections, which explains the mistakes. At the same time,
bootstrap places some mass on the correct values, which explains the marginally increased
uncertainty.

the practitioners. Here bootstrap marginally improves upon the results of MAP, but does
not reach the MCMC results: the ensemble is still making confidently wrong predictions.

To understand the nature of these mistakes, we investigate the distributions of ensemble
weights along validation and adversarial directions. In particular, we compute the scalar
projections5 of the weights onto position vectors of (a) validation points (b) adversarial
points found for the bootstrap ensemble. These values are proportional to the prediction

5The scalar projection of a vector a onto vector b is defined as a b
‖b‖ , i.e. the norm of a vector resulting

from projecting a onto a normalized b̂ = b
‖b‖ , but with a negative sign if the projection vector has the

opposite direction to b.
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Figure 2.6: Change in training negative log likelihood (NLL) values when moving along
validation/adversarial directions in weight space. We move along the position vectors of
either validation points or adversarial points found for the bootstrap ensemble, and measure
the training NLL (lower is better) when using the point as the weight vector. The colors
denote the true classes of the directions that we move along, hence we expect low NLL
for negative norms when y = 0, and for positive norms when y = 1. This is indeed the
case for validation directions, but is not the case for adversarial directions: the NLL values
see little change when moving along these directions, and the smallest NLL values are
achieved for the wrong norm sign. Moreover, the norms with the smallest NLL do not
change significantly when re-sampling the training points with replacement, as done when
training with bootstrap.

logits6, and hence we seek negative values for y = 0, and positive values for y = 1. We plot
the scalar projection histograms in Fig. 2.5.

For both methods the scalar projections onto the validation points are as expected, although
there is some overlap between the class histograms for MCMC, which explains the reduced
confidence in predictions on validation data. For the adversarial points, on the other hand,
MCMC places almost equal mass on both positive and negative projection values (positive

6More precisely, these values correspond to logits downscaled by the norms of the feature vectors. Note
that in this setting even after normalization the feature vectors have high norms. As a result, large logit
magnitudes (i.e. confident predictions) are achieved even by small norm weight vectors.
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and negative logits, equivalently), which supports the uncertain predictions. The picture
is different for bootstrap: while there is some mass placed on the correct projection sign,
most of the mass is misplaced for both classes. The misplaced mass explains the mistakes
made by bootstrap for these points. At the same time, the presence of some mass on both
scalar projection signs explains the marginally increased uncertainty for these predictions.

Why exactly does bootstrap put most of the mass on the wrong weight values? To
understand this, we plot the negative log likelihood (NLL) values as they change when
moving along the validation/adversarial directions. This way we hope to understand what
weights the training data favors in these directions. Note that while we use the data/feature
space to pick directions, we move along these directions in the weight space. The results
are shown in Fig. 2.6.

As we can see, in comparison to validation directions, the magnitude of the NLL change
is small as we move along the adversarial directions. At the same time, the wrong class
has the smallest NLL, which does not change as we re-sample the training data. In other
words, it so happens that this particular finite data sample prefers the wrong class in
adversarial directions, and the spread of the data is insufficient for bootstrap sampling to
have a significant impact on this. The ability of MCMC to explore does not depend on the
spread of the data, hence it can realize that neither class is strongly favored by the data in
these directions.

2.5.4 Stochastic Variational Inference

Results of SVI with the full-covariance Gaussian variational family are comparable to
MCMC results. In Fig. 2.7 we compare the samples from the SVI posterior to MCMC
samples. We see that MCMC explores a bigger volume of the posterior, especially higher
norm weights. A full-covariance Gaussian can be a good approximation to the posterior
of logistic regression (Murphy, 2012, Section 8.4), but it can not represent such posterior
exactly, so it is expected that some probability mass will be missed.

At the same time, the directions (normalized weights) are seemingly explored well by both
SVI and MCMC, which likely explains why the downstream performance of the two methods
is comparable. Rezende and Mohamed (2015) provide examples of challenging inference
problems where normalizing flows (see Chapter 3) show clear improvement over simple
variational families. Our own experiments with variational distributions parametrized by
normalizing flows did not yield a noticeable improvement in the spheres problem, further
suggesting that the multivariate Gaussian distribution is able to capture the most important
factors of variation in the posterior.
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Figure 2.7: Visualization of the posterior samples of the inference methods considered. We
consider a 2D plane spanned by two arbitrary weight vectors, and compute an orthogonal
projection of the weight samples onto that plane. We also plot the contour lines of the prior
log probability. We see that while the results of SVI and MCMC differ marginally, MCMC
explores a larger volume of the posterior. Bootstrap samples hardly leave the immediate
vicinity of the posterior mode.

2.5.5 Laplace approximation

When we use the Laplace approximation, we observe that the predictions become uncertain
for all input points, even though the model still has perfect accuracy on the validation set.
When using the probit prediction in Eq. (2.9) and a spherical posterior V = σ2

wI, as σ2
w

increases, the κ value approaches 0 (noting that 0 ≤ κ ≤ 1) and so does the activation
κ
(
σ2
a

)
µa. As a result, the sigmoid output approaches 0.5, meaning that all the predictions

become uncertain. Note that κ is non-negative and has no impact on the sign of the
activation, so the decision boundary and hence the accuracy of the model are unchanged.

We suspect that the Laplace approximation overestimates the model uncertainty because it
is only matching the posterior at the mode, which does not work well in the spheres problem
which is linearly separable. We visualize this behavior using a toy 1D classification task,
plotting the posteriors in Fig. 2.8. When the problem is linearly separable (the plot on the
right) and the prior is sufficiently wide, the posterior resembles the prior at the mode. As
we move away from the mode, however, the prior is sharply “cut” by a logistic likelihood
for parameter settings that result in mistakes on the training points. When only matching
curvature at the mode, such “cuts” are not captured.
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Figure 2.8: Laplace posterior fits for a toy 1D classification problem. In the non-separable
problem classes are defined by two univariate Gaussians that heavily overlap. In the
separable problem the two Gaussians are moved further apart. w has a Gaussian prior:
p(w) = N (0, 1)

Kuss and Rasmussen (2005) study the Laplace approximation in the context of inference
for Gaussian Process classification, and also note the tendency of this method to misplace
posterior mass and overestimate the predictive uncertainty.

2.5.6 Hierarchical model

We know that the true decision boundary in the spheres problem is expressed by all weights
being set to the same value, at least when we ignore normalization. In this particular case,
we know this because we use a synthetic problem that we have designed ourselves. With
real problems, however, we might still know something about the dependency structure of
the parameter space. In the Bayesian framework, one way to express such prior knowledge
is using a hierarchical prior. For example, we can define a hyperprior on the mean of the
weight prior:

µ ∼ N
(
0, σ2

µ

)
, (2.56)

wi ∼ N
(
µ, σ2

w

)
. (2.57)

In other words, we assume the weights have been sampled from a distribution with an
unknown (potentially non-zero) mean, and do inference for this mean as well. This induces
a correlation between the weights in the prior, the strength of which depends on σµ and
σw, as demonstrated in Fig. 2.9. Smaller σw expresses the belief that the weights do not
deviate much from the mean, and vice versa.

We can then run MCMC on this hierarchical model. In practice, however, MCMC might mix
slowly due to µ and wi’s being heavily correlated, which is why an equivalent non-centered
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Figure 2.9: Samples from a hierarchical prior. As defined by Eqs. (2.56) to (2.57), changing
the σw value.

parametrization can be used (Betancourt and Girolami, 2015):

µ ∼ N
(
0, σ2

µ

)
, (2.58)

ŵi ∼ N
(
0, σ2

w

)
, (2.59)

wi = µ+ ŵi. (2.60)

This new parametrization allows the sampler to explore the parameter space more efficiently
by sampling from two independent distributions, all while preserving the desired correlations
between wi’s.

In our experiments we use HMC to sample from the non-centered model. We use σµ = 10

and vary σw. The bias parameter has a simple non-hierarchical Gaussian prior with σb = 10.
Results are summarized in Table 2.2. To ensure that the prior is sensible, i.e. that the
target weights are indeed all equal, we no longer standardize the features. This explains
why the baseline results in this section are marginally worse in comparison to the MCMC
results in Table 2.1.

We see that the hierarchical model drastically improves upon the non-hierarchical baseline
for both values of σw. In both cases, adversarial optimization is no longer able to discover
misclassified points. For σw = 1 (stronger belief that weight values are close to one another)
the adversarial optimization is not able to find points with increased uncertainty at all.
While the latter is hardly surprising given that we are almost giving away the solution,
the former shows that even when the prior allows for high variation in the weights, it
usefully regularizes the model. These results showcase the value of hierarchical models that
is well-known in Bayesian literature (Gelman and Hill, 2006), even when the hyperpriors
used are wide and non-informative.

Instead of fixing σw, one could set a hyper-prior over it as well, e.g. an inverse gamma
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Table 2.2: Results for the Bayesian logistic regression with a hierarchical prior. Run on
the spheres problem using elementwise squared features, a non-centered hierarchical prior
as defined in Eqs. (2.58) to (2.60), and MCMC inference. σm is fixed to 10. Confidence
defined as p(ytrue |x). Error defined as p(1− ytrue |x). Adversarial dataset produced by
perturbing validation points as described in Section 2.3.7.

Validation Adversarial
Model Log likelihood Confidence Log likelihood Max. error

Baseline −0.114 0.892 −0.879 0.635
Hierarchical, σw = 10 −0.002 0.998 −0.355 0.363
Hierarchical, σw = 1 −0.002 0.998 −0.002 0.002

distribution. This way we would not prescribe how much the weights can diverge from the
mean, but would let the model learn this from data.

2.5.7 Transferability of adversarial points

In this section we test whether the adversarial points found for one bootstrap or MCMC
ensemble transfer to new ensembles obtained using the same method. More precisely, we
take the following steps:

Step 1: Fit a set of models with bootstrap / sample from the posterior using MCMC.

Step 2: Run adversarial optimization, saving the adversarial points found.

Step 3: Fit/sample another ensemble using the same training dataset.

Step 4: Evaluate the new ensemble on the previously saved adversarial points.

The results are shown in Table 2.3. We see that for both bootstrap and MCMC methods
the adversarial points do indeed transfer — the new ensembles stay uncertain and/or wrong
for the adversarial points found for a different ensemble. This suggests that adversarial
optimization not only exploits a particular ensemble, but discovers points for which the
training data and/or the inductive bias in the model are insufficient to restrict the weights.

The predictive uncertainty of the new bootstrap ensemble increases, but marginally. We
explain this by our observations in Section 2.5.3: all of the bootstrap ensembles will have
“wrong” weights in directions in which the MAP solution is wrong given a fixed, finite
training data sample, and these are exactly the directions that adversarial optimization
targets. As a result, the same adversarial points will generalize to all bootstrap ensembles
for the same fixed dataset.

Predictions of the new MCMC ensemble, on the other hand, become completely uncertain
on the same points: p(1− ytrue |x) ≈ 0.5. This suggests that for MCMC the adversarial
optimization exploits the finiteness of the posterior sample, not the method itself. In other
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Table 2.3: Resampling results for Bayesian logistic regression with elementwise squared
features. One ensemble is trained using the corresponding method (original results), and
adversarial points are found for it. A different ensemble is obtained using the same method,
and is evaluated on the same adversarial points (resampled results). Error defined as
p(1− ytrue |x). Adversarial dataset produced by perturbing validation points as described
in Section 2.3.7.

Log likelihood Max. adv. error

Model Original Resampled Original Resampled

Bootstrap −1.259 −1.225 0.870 0.863
MCMC −0.737 −0.533 0.612 0.504

words, unlike bootstrap, even if the adversary knows we are doing MCMC, they are unable
to find directions in the input space with underestimated model uncertainty. In addition,
this suggests that using more samples and/or improving mixing is likely to make the MCMC
model even more robust.

2.6 Experiments: learned features

While feasible for the simple sphere problem considered in the previous section, for most
problems of interest in modern machine learning (e.g. natural image classification) it is
difficult to design useful features by hand. We now move on to experiments that rely on
learning input features using neural networks.

2.6.1 Planar

To begin with, we visualize the predictive uncertainty of hybrid models on a planar binary
classification task, comparing to the “ideal” predictive uncertainty of full MCMC inference,
and to the baseline predictive uncertainty of a MAP estimate. We use a small ReLU neural
network with 2 hidden layers of size 10. We use the NUTS sampler, as in prior experiments.
The predictive uncertainties are visualized in Fig. 2.10.

For points close to the training data the predictive uncertainties are comparable for all the
methods. This is not the case for predictions further away from the training data, where the
MAP model is unreasonably confident, while the full MCMC model becomes increasingly
uncertain. The uncertainty does not increase in all directions, however: this is determined
by a combination of the model architecture and the prior, as chosen by the practitioner.

The predictive uncertainties of the hybrid models, i.e. ones where we use the MAP ap-
proximation for the initial layer(s) and do MCMC inference for the final layer(s), improve
upon the complete confidence of the maximum likelihood model on points far away from
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Figure 2.10: The predictive surface of a ReLU network when using a MAP approximation,
MCMC inference, or hybrid inference. The network has 2 hidden layers of size 10. Training
data is also plotted, colored by class. The right half of each subplot is the zoomed-out
version of the left half.

the training data. This could explain why the hybrid methods can be sufficient for some
downstream applications (Snoek et al., 2015; Bauer et al., 2017; Bradshaw et al., 2017).
At the same time, the uncertainties are clearly underestimated when compared to the
full Bayesian model. In the next sections we try to understand if these visual differences
manifest in adversarial robustness.

2.6.2 Concentric spheres

We now turn back to the spheres problem, but instead of prescribing a feature space, we
attempt to learn one using a neural network. We use a neural network with 4 hidden layers:
the first three of size 1000, and the last of size D = 500. In line with Gilmer et al. (2018)
we use ReLU activations and batch normalization (Ioffe and Szegedy, 2015). We train the
neural network by maximum likelihood. We use 108 training examples (106 optimization
steps with a batch size of 100, generating data online), and 106 validation examples. We
use the Adam (Kingma and Ba, 2015) optimizer. The final model makes zero errors on the
validation set (error rate < 10−6).

We then use the output from the layer before last as a representation to learn on a held-out,
smaller concentric spheres dataset, repeating experiments from Section 2.5. We standardize
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Table 2.4: Results for Bayesian logistic regression on the concentric spheres problem with
neural representations trained by maximum likelihood. Confidence defined as p(ytrue |x).
Error defined as p(1− ytrue |x). Adversarial dataset produced by perturbing validation
points as described in Section 2.3.7.

Validation Adversarial
Model Log likelihood Confidence Log likelihood Max. error

MAP −0.000 1.000 −31.355 1.000
SVI −0.000 1.000 −99.646 1.000
MCMC −0.000 1.000 −89.099 1.000
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Figure 2.11: Values of an arbitrary feature in a neural representation for the concentric
spheres problem colored by class.

the features to have zero mean and unit variance, removing the features with near-zero
variance before passing the representations to the Bayesian logistic regression model. Results
are summarized in Table 2.4.

As with the elementwise squared features, adversarial optimization finds points on the
manifold that the MAP model misclassifies with high confidence, which replicates the
findings of Gilmer et al. (2018). The adversarial log likelihood values are an order of
magnitude lower than corresponding values in Table 2.1, suggesting a model is wrong with
extreme confidence for a significant proportion of adversarial points. However, unlike the
encouraging results when using the handcrafted features, neither SVI nor MCMC improve
upon the MAP results when used on top of learned neural representations.

Trying to understand the negative results of the hybrid models, in Fig. 2.11 we plot the
values of a particular neural feature for validation points and for adversarial points, colored
by the true class. As we can see, this single feature allows the linear model to confidently
separate the two classes. As a result, a Bayesian model will infer a posterior with a lot of
mass put on the positive values of the weight corresponding to this feature. At the same
time, in the right half of Fig. 2.11, we see that adversarial optimization discovers input
points with reversed feature values for the two classes. In other words, the representation
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Table 2.5: Results for Bayesian logistic regression with CNN representations on images.
† for models that use a representation pre-trained on ImageNet. LL for log likelihood.
Confidence defined as p(ytrue |x). Error defined as p(1− ytrue |x). Adversarial dataset
produced by perturbing validation points as described in Section 2.3.7.

Validation Adversarial
Model Accuracy LL Confidence Accuracy LL Max. error

MAP 0.941 −0.187 0.936 0.033 −16.717 1.000
MCMC 0.941 −0.187 0.935 0.038 −16.834 1.000
SVI 0.941 −0.172 0.934 0.004 −10.846 1.000

MAP† 0.932 −0.164 0.911 0.000 −32.776 1.000

MCMC† 0.933 −0.164 0.910 0.001 −31.386 1.000

SVI† 0.936 −0.169 0.913 0.002 −31.413 1.000
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Figure 2.12: Values of an arbitrary feature in a CNN representation trained directly on the
classification task.

network itself remains vulnerable, and even if we could do exact Bayesian inference we
would not able to detect adversarial inputs in this representation space.

2.6.3 Images

To confirm the findings above in a more realistic setting, we move on from the synthetic
spheres dataset to an image classification task. We use a convolutional neural network
(CNN) to learn image representations, and, as before, use the Bayesian logistic regression
in the learned representation space. In addition, we experiment with using a representation
pre-trained on a different dataset (ImageNet, Russakovsky et al., 2015), which is a common
approach in practice. Results are shown in Table 2.5.

We see that the results are similarly negative. The Bayesian logistic regression can not
detect the adversarial points when used on top of the CNN representation space, which
itself remains vulnerable as shown in Fig. 2.12. The same happens when using a pre-trained
representation, even though Fig. 2.13 shows that the change of the feature values for
adversarial points is not as drastic.
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Figure 2.13: Values of features in a CNN representation pre-trained on ImageNet. Features
with the worst discrepancy between validation and adversarial distributions are shown.

2.7 Discussion

In this chapter we have studied adversarial robustness of Bayesian logistic regression,
demonstrating that, unlike its non-Bayesian counterpart, the Bayesian model no longer
makes confident errors on adversarial points. While this is shown in an idealized setting
with a synthetic dataset, to our knowledge we are the first to demonstrate that accurate
Bayesian inference and informative priors can completely eliminate calibration errors. The
use of complex neural network models and real datasets in prior work made it difficult to
observe the same level of impact.

We have shown that these results do not translate to hybrid models, where the feature
space, instead of being prescribed, is learned by a neural network. Such methods have
been used successfully in prior work, and we present a setup where their uncertainty
estimates are insufficient. This suggests that practitioners should be careful when using
Bayesian approximations based on marginalizing over a subset of parameters, especially
when adversarial robustness is important. An interesting future direction is to identify
the properties of the representation space that would make the hybrid model robust. For
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example, in their subsequent work Watson et al. (2021) show that promoting smoothness
and diversity of the features results in better predictive uncertainty of a hybrid model on
out-of-distribution data.

The results of MCMC and SVI are comparable in our benchmarks. This is encouraging,
because, unlike classic MCMC methods, SVI can scale to large models and datasets. At
the same time, the performance of SVI would suffer if the model was more complex, and
its posterior would not be well matched by a Gaussian distribution. Richer variational
families based on normalizing flows (Chapter 3) can be used, but can significantly increase
computational cost.

Laplace approximation is often used as simple method to fit a parametric distribution, but
our observations re-iterate that Laplace approximation can not be applied to problems
where the discovered posterior mode is not indicative of the rest of the posterior. Simi-
larly, the baseline non-Bayesian ensembling method (bootstrap) has not worked well in
this problem. Alternative non-Bayesian ensemble methods have shown promising results
(Lakshminarayanan et al., 2017), and exploring these methods would be a useful extension
of our work.

Exploring models tailored to linearly separable problems is another interesting direction for
future work. For example, Expectation Propagation (EP) and Assumed Density Filtering
(ADF) inference methods can be used with a hard step classifier (Minka and Picard, 2001),
which is the limiting case of a logistic classifier when the weight norm goes to infinity. This
could help eliminate the residual uncertainty of the Bayesian logistic regression model on
validation points.

We re-iterate that in this chapter we only consider the model calibration aspect of the
adversarial phenomenon. To many readers solving adversarial examples might mean “not
changing the predicted class or becoming uncertain after making imperceptible changes
to the input”, which we believe has solely to do with the inductive bias of the model. If
the logistic regression model fully captured the rotational symmetry present in the spheres
problem, a single sample per class would be sufficient to learn the perfect decision boundary
in an arbitrary dimension. Similarly, modern neural network image models have no notion
of “imperceptible” changes, and adversarial examples are a manifestation of the inability of
the model to learn to be invariant to such changes given limited data.

We demonstrate one way to induce the rotation symmetry in the spheres problem through
the use of a hierarchical prior, and show that it eliminates the calibration errors completely.
In realistic problems with deep neural networks, the choice of prior will only have a stronger
effect on the uncertainties reported by Bayesian methods, and exploring the families of priors
that can express symmetries and invariances in real problems is an important direction in



56

Bayesian deep learning.

Before we can design models that are able to generalize in ways that we expect, the best
we can hope for is that our models know when they do not know, i.e. know when they
lack the data to make confident predictions. It is undesirable for the model to become
uncertain for perfectly valid inputs, but we believe it is strictly more desirable than making
wrong predictions confidently. The squared features capture some symmetry inherent to
the spheres problem, but the uncaptured symmetry manifests in model uncertainty. It is
unlikely that we will ever be able to model all symmetries in real problems, hence capturing
model uncertainty will continue to be an important aspect of building reliable models.



Chapter 3

Neural spline flows: flexible models
for density estimation

A normalizing flow models a potentially complex distribution as a parametric transformation
of a simple base distribution, turning the density estimation problem into a function
approximation problem. To be able to match the target distribution with a normalizing
flow, we need to parametrize an invertible function that is flexible enough to express the
target function. In this work we propose novel, flexible parametrizations of invertible
functions, and experimentally demonstrate their effectiveness when used in a normalizing
flow.

This chapter is based on the following papers (* indicates joint-first authorship):

• Cubic-Spline Flows. Conor Durkan*, Artur Bekasov*, Iain Murray, George Papa-
makarios. Presented at the First Workshop on Invertible Neural Nets and Normalizing
Flows (INNF), part of the Thirty-sixth International Conference on Machine Learning
(ICML), 2019. Selected for a contributed talk. (Durkan et al., 2019a)

• Neural Spline Flows. Conor Durkan*, Artur Bekasov*, Iain Murray, George Papa-
makarios. In the proceedings of the Thirty-third Conference on Neural Information
Processing Systems (NeurIPS), 2019. (Durkan et al., 2019b)

Author’s contributions This work is the result of a collaboration between Artur, Conor,
Iain and George. Artur and Conor have collaborated closely on deriving and implementing
the proposed and baseline methods, which is reflected in joint-first authorship. Conor
run tabular density estimation and variational autoencoder experiments, and contributed
most to writing the papers, which is reflected in the ordering of the first authors. Artur
run generative image modeling experiments, and implemented substantial parts of the
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normalizing flow framework. George contributed to designing and implementing the
normalizing flow framework, and played a major part in shaping and directing the work.
Iain proposed the rational-quadratic spline idea, and advised on the project.

This chapter is written solely by Artur, and contains no material written by collaborators,
with the exception of the experimental details in Section 3.6, which were copied verbatim
from the Neural Spline Flows paper. The chapter combines the two papers into a single
narrative, provides a more extensive background and motivation, and introduces the methods
in more detail.

3.1 Introduction

Density estimation is one of the fundamental problems in statistics and machine learning,
where we aim to fit the distribution that the given dataset is likely to have been sampled
from, and thus capture the stochastic process that generates the data. For continuous data,
this distribution can be characterized by its density function, which is what we aim to
approximate. We can then sample novel points from the process, compute the density of
unseen points, or evaluate expectations with respect to the density. (Papamakarios, 2019)

Modern machine learning practitioners are interested in modeling densities of complex,
high-dimensional data like images or audio. Classic density estimation methods struggle
to fit such densities: histograms and kernel density estimation suffer from the curse of
dimensionality, simple parametric density models are limited in their expressivity, while the
cost of mixture models becomes excessive when using sufficiently many components.

Recently, the idea of a normalizing flow (Tabak and Turner, 2013; Rippel and Adams, 2013)
has emerged as a parametric density model that can model complex, high-dimensional
distributions. A normalizing flow models the density via a parametric, invertible transfor-
mation of some simple analytic density, such as a standard normal. We can sample from
the flow by transforming the samples from the simple base density, and evaluate the density
of an arbitrary point using the change-of-variables formula. The latter means the likelihood
of the model is readily available and can be used as a principled criterion for training and
model comparison.

The expressivity of the flow depends on the flexibility of the invertible transformation.
Parametrizing flexible invertible transformations is challenging, and is an active area of
research (Papamakarios et al., 2019a). In particular, the autoregressive and coupling
transformations have attracted a lot of attention in literature. Both make use of the
expressive power of neural networks, and both admit an analytic inverse and a cheap-to-
compute determinant of the Jacobian, which is required to compute the density by the
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change-of-variables formula (Section 3.2.2). The autoregressive transformation is appealing
as a universal approximator in the limit of infinite parameters, but computing the inverse
of coupling transformation is considerably cheaper, even though it is often less expressive.
Normalizing flows built by stacking multiple autoregressive or coupling layers demonstrate
excellent performance on density estimation tasks (Huang et al., 2018; Kingma and Dhariwal,
2018).

Both autoregressive and coupling layers rely on parametrizing invertible univariate functions.
Early work used simple additive/affine functions that can only shift and scale the input
(Kingma et al., 2016; Papamakarios et al., 2017; Dinh et al., 2017). As a result, modeling
complex densities would require stacking many layers, increasing computational cost, and
potentially resulting in vanishing/exploding gradients (Koehler et al., 2021). For example, a
state-of-the-art image flow architecture (Glow, Kingma and Dhariwal, 2018) uses up to 192
coupling layers. Later work proposed more expressive univariate function parametrizations
(Ho et al., 2019; Jaini et al., 2019), including the method by Huang et al. (NAF, 2018)
that uses a neural network with positive weights to parametrize the monotonic function,
and as a result is universal in the limit of infinite parameters. However, the more expressive
parametrizations like NAF generally do not provide an analytic inverse, requiring numerical
approximation to invert the flow.

Müller et al. (2018) proposed an alternative, which is to use parametric monotonic polynomial
splines, i.e. monotonic piecewise polynomial functions. Such functions can be arbitrarily
flexible in the limit of infinitely many “pieces”, yet the simplicity of each individual function
means they still provide an analytic inverse and an easy-to-compute derivative. Müller
et al. propose monotonic parametrizations of linear and square polynomial splines, using
the resulting flows to learn proposal distributions for importance sampling.

In our work we continue this line of research, building upon the work of Müller et al.
to propose two novel spline-based normalizing flow architectures that make use of au-
toregressive/coupling layers. We then demonstrate the improved flexibility of the novel
parametrizations experimentally.

3.1.1 Contributions

In particular, we make the following contributions:

• We propose and implement cubic polynomial spline flows that use the method of
Steffen (1990) to parametrize a monotonic cubic polynomial spline.

• We propose and implement rational-quadratic spline flows, using the monotonic
rational-quadratic spline parametrization of Gregory and Delbourgo (1982).



60

• We propose the use of linear tails for adapting spline-based flows to work with
unbounded data, overcoming the numerical instability of the sigmoid/logit transfor-
mation proposed by Müller et al. (2018).

• We combine the proposed methods into a novel class of flows that we refer to as neural
spline flows (NSF), and evaluate their effectiveness on tabular density estimation,
generative modeling of images, and inference in variational autoencoders.

• We show that NSF achieves state-of-the-art performance in tabular density estimation,
in some cases allowing the coupling flows to outperform autoregressive flows.

• We demonstrate greatly improved parameter efficiency of NSF when compared to a
state-of-the-art image flow (Glow, Kingma and Dhariwal, 2018), owing to the vastly
reduced number of layers required to achieve comparable performance.

3.2 Background

In this section we introduce and motivate the density estimation task, and discuss the
drawbacks of the traditional density estimation methods. We then introduce the normalizing
flow idea and state-of-the-art methods for constructing flexible normalizing flow models.

3.2.1 Density estimation

The general task of density estimation is defined as follows. Given a dataset D = {xi}Ni=1,
we assume the data have been sampled from some underlying probability distribution:
xi ∼ P ∗. If the distribution P ∗ is continuous, it can be defined by its density function p∗.
The density p∗(x) is defined as the probability of a point sampled from P ∗ falling in the
infinitesimal region around x.1 In other words, p∗(x) determines how much probability
mass there is in the vicinity of x. Importantly, p∗ is not the probability of sampling x,
which is always zero in a continuous space. Instead, we integrate the density to obtain a
probability of x lying in some continuous region D:

P ∗(x ∈ D) =

∫
D
p∗(x) dx. (3.1)

To define a valid distribution, the density function must be non-negative everywhere, and
must be normalized, i.e. must integrate to one over its domain:

p∗(x) ≥ 0 for all x,

∫
p∗(x) dx = 1. (3.2)

1We discuss this in more detail when talking about densities on manifolds in Section 4.2.1.
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The goal of density estimation is to recover the density function p∗ given the finite sample D.
Sometimes we are interested in estimating a conditional density p∗(x |y) for some context
variable y, having observed a set of (xi,yi) pairs instead.

Conceptually, by recovering the data density we capture the stochastic generative process
that has produced the data. More practically, however, an accurate model of data density
enables a broad set of applications. For example, we can use the density model to sample
novel data from the distribution, either directly if supported by the density estimator,
or using Markov chain Monte Carlo (MCMC) methods. We can evaluate expectations of
arbitrary functions with respect to the density. We can perform anomaly detection, spotting
input points that are unlikely to have been sampled from the data distribution.2 We can
perform lossless data compression using arithmetic coding (MacKay, 2003, Chapter 6),
which can achieve near-perfect compression as the density model approaches true data
density.

Moreover, density models are an important aspect of many machine learning methods.
Variational inference, for example, fits a density model to the Bayesian posterior (Hoffman
et al., 2013). The variational autoencoder (VAE, Kingma and Welling, 2014), a latent
variable model fit using variational inference, relies on two density models: the prior and
the conditional posterior. In likelihood-free inference, we approximate the posterior density
or the likelihood (Papamakarios, 2019). Both importance sampling and MCMC, popular
methods for sampling from arbitrary distributions, rely on the proposal density (Müller
et al., 2018).

A histogram is a simple, yet widely popular density model which partitions the space into a
set of non-overlapping bins, and sets the density in each bin to be proportional to number of
datapoints that fall into said bin. Kernel density estimation (KDE, Murphy, 2012, Section
14.7.2) is another popular, non-parametric density estimation method, which is similar
in spirit to the nearest neighbors approach to prediction. In KDE, the density of a point
is defined by its average “distance” to the points in the observed dataset. The “distance”
is defined by the kernel function k, which controls what form of “smoothing” we want to
apply to the estimate. The KDE density is then defined as

p(x) =
1

N

N∑
i=1

k(x− xi). (3.3)

While conceptually simple, both histograms and KDE suffer from the curse of dimensionality.

2One has to be careful when using densities directly to detect out-of-distribution points in high-
dimensional spaces. Paradoxically, for high-dimensional distributions the high-density points are often not
located in regions that we will sample in more often, which can lead to unexpected results (Nalisnick et al.,
2019a). The notions of a typical set and typicality are more intuitive in this case (Nalisnick et al., 2019b).
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For histograms, it is manifested in the fact that the number of bins required to cover the
space grows exponentially with dimensionality. For KDE, as for nearest neighbors, the
distances become more difficult to reason about as the dimensionality increases, and the
kernel/kernel bandwidth selection becomes a major challenge (Heidenreich et al., 2013).

We can fit high-dimensional data with a simple analytic density, e.g. a multivariate Gaussian,
or a mixture of such densities. The Gaussian mixture model (GMM, Murphy, 2012, Section
11.2.1) fits a convex combination of multivariate Gaussians, each parametrized by its mean
and covariance matrix. The GMM can fit any density given enough mixture components,
and is a strong baseline for simpler density estimation problems (Uria et al., 2013). At
the same time, its computational cost scales with the number of components, and many
components are needed to represent simple densities (for example, a uniform density in a
unit hypercube) that can be easily summarized by alternative models.

3.2.2 Normalizing flows

We now introduce the normalizing flow (Tabak and Turner, 2013; Rippel and Adams, 2013),
a flexible parametric density model. A normalizing flow defines a density as an invertible
transformation of some simple base density. Consider transforming the points z ∈ RD

sampled from some distribution π with a function f :

x = f(z) z ∼ π(z). (3.4)

Unless f is an identity function, the transformed points x will clearly no longer be distributed
according to π. To find the distribution of x, we can use the change-of-variables formula
(Murphy, 2012, Eq. 2.89):

p(x) = π(z)|det Jf (z)|−1 (3.5)

= π(z) |det Jf−1(x)| (3.6)

= π
(
f−1(x)

)
|det Jf−1(x)| , (3.7)

where f−1 is the inverse of f s.t. f−1(f(z)) = z, and J is the D ×D Jacobian matrix:

Jf (z)ij =
∂fi
∂zj

. (3.8)

We apply the inverse function theorem (Spivak, 1971) to go from Eq. (3.5) to Eq. (3.6).

In practice, we choose a simple base density π, one that is easy to evaluate and sample
from. The standard normal is a common choice. The idea behind a normalizing flow is
that even if π is a simple distribution like the standard normal, the flow can model an
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arbitrarily complex p(x), provided that f is sufficiently expressive.

If we parametrize the transformation function fθ we can effectively optimize over the space
of distributions by optimizing over the transformation parameters θ. In particular, we
can attempt to match a density p∗ by minimizing a divergence loss between the target
distribution and the distribution pθ modeled by the flow. The Kullback–Leibler (KL)
divergence loss is a common choice:

L(θ) = DKL(p∗(x) ‖ pθ(x)) (3.9)

= Ep∗(x)

[
log

p∗(x)

pθ(x)

]
(3.10)

= −Ep∗(x)[log pθ(x)] + const. (3.11)

In the context of density estimation, we do not have access to the true p∗ (this is what we
are aiming to estimate), but we assume that the training data have been sampled from it.
This is why we can use the training points x(i) to compute the Monte Carlo estimate of
Eq. (3.11):

L̂(θ) = − 1

N

N∑
i=1

log pθ

(
x(i)
)

(3.12)

≈ −Ep∗(x)[log pθ(x)]. (3.13)

In other words, by minimizing L̂ we are maximizing the probability of the data under the
flow distribution, or maximizing the likelihood of the flow parameters given the data. This
is why we refer to this procedure as maximum likelihood training.

Eq. (3.7) is only defined if f−1 exists, i.e. the function f must be invertible (or bijective).
Moreover, both f and its inverse f−1 must be differentiable, and must have a tractable
det Jf . Note that we only need f−1 to compute the likelihood during training, as per
Eq. (3.7). This is why we often parametrize hθ(x) = f−1

θ (x) instead, which explains why
we refer to the model as a normalizing flow: we can say we are learning a “sampler” f , but
we can also say we are learning a normalizing transformation h, i.e. a transformation that
turns the target distribution into a standard normal. Conceptually, it makes no difference
which direction we parametrize: we can simply invert fθ to arrive at f−1

θ , and vice versa, as(
f−1
θ

)−1
= fθ. In practice, however, the inverse operation can be computationally expensive.

Designing expressive parametrizations hθ/fθ with all the desirable properties is not straight-
forward, and is an active area of research (Papamakarios et al., 2019a). Neural networks
are expressive, differentiable function approximators, which makes it appealing to try to
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use them to parametrize the invertible transformation in a normalizing flow. Unfortunately,
we can not use neural networks directly, as they are not restricted to stay invertible dur-
ing training, even if we use invertible non-linearities like the sigmoid or the leaky ReLU.
Moreover, to compute the det Jf for a free-form neural network f , we need to compute the
determinants of all the free-form weight matrices. The cost of computing the determinant
for an arbitrary D × D matrix scales as O

(
D3
)
, making the computation increasingly

expensive for large neural networks.

Behrmann et al. (2019) propose a method for regularizing a residual neural network to
stay invertible during training, and a method to efficiently approximate the det Jf for said
network. Unfortunately, doing so involves significant technical difficulty, and results in a
model that lacks certain desirable properties of a normalizing flow. In particular, there is no
analytic inverse available (numerical inversion via fixed-point iteration must be performed),
and we can not compute exact densities under the model. A more common solution is to
construct neural network architectures that are restricted to express invertible functions
and have an easy-to-compute det Jf .

3.2.3 Autoregressive transform

We now consider one way to use neural networks to parametrize an invertible function:
the autoregressive transformation (Kingma et al., 2016; Papamakarios et al., 2017). It
works by transforming the input elementwise, conditioning each transformation on preceding
dimensions:

xi = fφ(i)(zi) where φ(i) = gθ(z1:i−1). (3.14)

In Eq. (3.14) gθ is the trainable conditioner function that outputs the parameters of the
univariate transformations fφ(i) . Note that for i = 1 the transformation is unconditional.

Evaluating the overall transformation is then as trivial as computing all φ(i)’s using the
corresponding values of z, and evaluating fφ(i) for each dimension i. This process can
be parallelized: all transformations fφ(i) are independent given the input vector z. In
particular, when using a neural network to parametrize gθ, we can use the method proposed
by Germain et al. (MADE, 2015) to compute all φ(i)’s in a single forward pass, which is
done by applying specially constructed masks to the weight matrices.

We can invert the autoregressive transformation in Eq. (3.14) by sequentially inverting
each of the elementwise functions, using the zi’s computed in earlier steps to recover the
transformation parameters:

zi = f−1
φ(i)

(xi) where φ(i) = gθ(z1:i−1). (3.15)
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This means we only need to keep each univariate function f invertible to make the overall
transformation f invertible. Moreover, because each output variable only depends on earlier
input variables in the ordering, the Jacobian matrix will be triangular:

Jf (z)ij =
∂fi
∂zj

= 0 if i < j. (3.16)

The determinant of a triangular matrix is the product of its diagonal entries, meaning that
for the autoregressive transformation:

det Jf (z) =

D∏
i=1

∂fφ(i)

∂zi
. (3.17)

This means that we only need to compute the derivatives of the elementwise functions to
compute the det Jf . The fact that we never have to invert gθ or compute its Jacobian
means we can use a complex, non-invertible model like a neural network to parametrize it.

Autoregressive layers are especially appealing because we know that the autoregressive flow
with a uniform base distribution is a universal approximator, which means that we can
model any valid distribution in the limit of infinite parameters. We now briefly outline
the proof of this statement. First note that according to the product rule of probability
any multivariate distribution can be decomposed into a sequence of univariate conditional
densities:

p(x) = p(x1)p(x2 |x1)p(x3 |x1,x2)... (3.18)

=

D∏
i=1

p(xi |x1:i−1). (3.19)

Any univariate density, in turn, can be expressed as a transformation of the uniform
distribution on (0, 1). Consider F (x), the cumulative density function (CDF) of some target
density p(x), which is defined as

F (x) = Pr
(
x′ ≤ x

)
=

∫ x

−∞
p
(
x′
)

dx′. (3.20)

We can show that if we transform the samples from the uniform distribution with the
inverse CDF of p(x)

x̃ = F−1(u) where u ∼ U(0, 1), (3.21)
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then the CDF of x̃ will be equal to F (x):

Fx̃(x) = Pr
(
F−1(u) ≤ x

)
(3.22)

= Pr(u ≤ F (x)) (3.23)

= F (x), (3.24)

which in turn implies that p(x̃) = p(x), i.e. we recover the target distribution. To go from
Eq. (3.23) to Eq. (3.24) we use the CDF of the uniform distribution:

Fu(y) = Pr(u ≤ y) = y if u ∼ U(0, 1). (3.25)

This completes the proof: we can represent any density in RD by autoregressively transform-
ing a uniform base distribution in the (0, 1)D cube, as soon as the univariate transforms
fφ(i) can match the (inverse) conditional CDFs of the target distribution. �

The forward direction of the autoregressive layer can be computed efficiently: values of all
output dimensions can be computed in parallel. This is not the case for the inverse: as per
Eq. (3.15), to computing inverse for i-th dimension we need to have inverted all the previous
dimensions in the ordering. Such operation can only be performed sequentially, and its
computational cost scales linearly with the number of dimensions. This means that if we
parametrize f−1

θ with an autoregressive flow, we can cheaply evaluate the densities, but
sampling from the flow is expensive. If we parametrize fθ, on the other hand, computing
densities of arbitrary points is expensive, but we can cheaply sample from the flow and
compute densities of the samples, given that we know which points in the z space have
produced them. This asymmetry is a considerable disadvantage of the autoregressive layer.

3.2.4 Coupling transform

One way we can speed up the inverse of the autoregressive transform is to transform
multiple variables at once. This is the main idea behind the coupling layer (Dinh et al.,
2017), which elementwise-transforms a block of variables, conditioning the transformation
on the remainder of the variables. More precisely, assuming the dimensions have been
ordered, for d s.t. 1 < d < D we compute x = f(z) as follows:

φ =
{
φ(i)
}d
i=1

= gθ(zd:D) (3.26)

x1:d−1 =
[
fφ(1)(z1) · · · fφ(d−1)(zd−1)

]>
(3.27)

xd:D = zd:D (3.28)
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Typically d = bD/2c+ 1, i.e. we transform a half of the variables, conditioned on the other
half. Note that the variables zd:D that we condition the transformation on are themselves
not transformed. While this clearly limiting, the transformation of the other variables can
now be parallelized, both in the forward and in the inverse direction. In particular, to
compute the inverse z = f−1(x) we simply go back through Eqs. (3.26) to (3.28):

zd:D = xd:D (3.29)

φ =
{
φ(i)
}d
i=1

= gθ(zd:D) (3.30)

z1:d−1 =
[
f−1
φ(1)

(x1) · · · f−1
φ(d−1)(xd−1)

]>
(3.31)

This means that the coupling layer is equally fast in both directions. As with the autore-
gressive layer, the inverse still only requires inverting the univariate functions, and never
the gθ. Moreover, the Jacobian of the transformation is still lower-triangular, taking the
following form:

Jf (z) =

diag
(
f ′1:d−1

)
0

Jgθ(zd:D) I

 where f ′i =
∂fφ(i)

∂zi
. (3.32)

This means that the determinant of the Jacobian is also the product of diagonal terms, in
this case:

det Jf (z) =
d−1∏
i=1

∂fφ(i)

∂zi
. (3.33)

Given that a subset of the variables are not transformed, clearly a single coupling layer
can not represent all transformations, even if the elementwise transform f is arbitrarily
flexible. This is the trade-off that comes with an efficient inverse. At the same time, recently
Teshima et al. (2020) have shown that when combining the coupling layer with an invertible
affine layer (see Section 3.2.6), we also arrive at a universal approximator.

There is a spectrum between a coupling layer and an autoregressive layer: in general we
can split the variables into M blocks, and transform one block at a time conditioned on
prior blocks in some ordering. The coupling layer corresponds to one extreme with M = 2,
and the autoregressive layer corresponds to the other extreme with M = D, i.e. each
block contains one variable only. There has been little work exploring other points on the
spectrum, however.
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3.2.5 Stacking multiple transforms

The expressivity of autoregressive and coupling layers will depend both on the expressivity
of f , and on the ordering of variables. For the coupling layer the ordering is especially
critical: it will determine which subset of the variables is transformed. The universality
proof of the autoregressive layer holds for any ordering, but in practice the assumption that
f is arbitrarily flexible will not hold. The variable ordering will determine the complexity
of the univariate conditional distributions to be matched in the autoregressive layer.

One simple way to increase the expressivity of a normalizing flow is to stack multiple
transformation layers. This is similar in spirit to neural networks, where relatively inex-
pressive layers are stacked to obtain an expressive function. Stacking is also well-defined in
normalizing flows because a sequence of invertible transformations stays invertible. The
inverse of a composite function x = f(z) = f2(f1(z)) = (f2 ◦ f1)(z) is defined as

z = f−1(x) = (f2 ◦ f1)−1(x) =
(
f−1
1 ◦ f−1

2

)
(x), (3.34)

meaning that if f1
−1 and f2

−1 are well defined, then so is f−1. By the same reasoning,
a sequence of differentiable transforms is also differentiable. Moreover, the det J of the
composite function is defined in terms of det J’s of the individual functions:

det Jf (z) = det Jf2◦f1(z) = det Jf1(z) det Jf2(f1(z)), (3.35)

which means that if det Jf1 and det Jf2 are cheap to compute, so will be computing det Jf .

3.2.6 Invertible linear layers

When stacking multiple layers in a normalizing flow, it is useful to change the ordering
of variables between layers. In earlier work this is done by reversing the ordering in each
subsequent layer, starting with either the original dataset ordering (Kingma et al., 2016;
Papamakarios et al., 2017), or a handcrafted ordering informed by the input structure
(Dinh et al., 2017). For the coupling layer in particular this ensures that all variables are
eventually transformed.

Note that reversing the ordering of dimensions is equivalent to applying a particular fixed
permutation matrix to the input vector. Can we learn this permutation matrix? While
the permutation operation is clearly non-differentiable, the set of permutation matrices
is a subset of the general set of invertible matrices. If we could find a differentiable
parametrization of invertible matrices, we could parametrize a set of transformations that
contains permutations.

The affine transformation y = Mx is not invertible in general, only if M is non-singular.
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Even if we somehow regularize M to prevent it from becoming singular during training,
det J of the affine transformation is equal to det M, which costs O

(
D3
)
to compute for a

D ×D matrix M. The same cost in incurred when computing M−1 for the flow inverse:
x = M−1y.

Instead, Kingma and Dhariwal (2018) propose to parametrize an invertible matrix via
its PLU decomposition, which alleviates the problems above. In particular, they propose
parametrizing two matrices: a lower-triangular matrix L with positive diagonal values, and
an upper-triangular matrix U with ones on the diagonal. For some fixed permutation
matrix P, the resulting matrix M = PLU is guaranteed to be invertible: M is invertible if
det M 6= 0, and

det M = det P︸ ︷︷ ︸
1

det L det U︸ ︷︷ ︸
1

=

D∏
i=1

Lii > 0, (3.36)

where the inequality holds as we restrict the diagonal of L to be positive. Eq. (3.36)
demonstrates another benefit of this parametrization, which is that computing the det M is
now a O(D) operation. Moreover, computing M−1 is also considerably cheaper:

M−1 = U−1L−1P>, (3.37)

where computing L−1 and U−1 for triangular L and U is O
(
D2
)
when using back/forward

substitution. In practice, we sample a permutation matrix P before training, and only
optimize L and U. The fixed P is a limitation of the PLU parametrization, because it
restricts the set of invertible matrices we can represent.

Alternative matrix decompositions can be used. Hoogeboom et al. (2019b) propose to
use the QR decomposition M = QR, parametrizing an orthogonal matrix Q, and an
upper-triangular matrix R with a positive diagonal. The QR parametrization, unlike the
PLU with fixed P, can represent all invertible matrices M. One can also consider using
the SVD decomposition M = UΣV>, where V and U are orthogonal, and Σ is diagonal
with positive values. The main benefit of the SVD parametrization is a cheaper inverse
when compared to PLU and QR parametrizations:

M−1 = VΣ−1U>, (3.38)

where Σ−1 is trivial for the diagonal matrix Σ.

While the QR and SVD parametrizations are attractive in theory, in practice parametrizing
the orthogonal matrices can be challenging. Differentiable parametrizations of orthogonal
matrices exist: for example, we can use the Householder transformations (Tomczak and
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Welling, 2016) to parametrize any D×D orthogonal matrix M as a sequence of D reflections.
However, most such parametrizations come with a expressivity vs. cost trade-off, and can be
expensive when fully general. We refer the reader to (Papamakarios et al., 2019a, Appendix
A) for more detail.

3.2.7 Invertible univariate transformations

We now discuss the parametrization of the univariate function f . The parametrization
must be restricted to invertible functions, must be differentiable, and the more flexible it
is, the more complex densities the normalizing flow will be able to model. The additive
function is a simple parametrization that has been used in early work by Dinh et al. (2015):

fφ(zi) = zi + t where φ = {t} . (3.39)

The derivative of this additive function is a constant: ∂fφ
∂zi

= 1. While this is convenient
for computing the density, this makes the transformation volume preserving. This means
that the transformation can not expand or contract density, only move it around, which is
limiting.

A generalization of the additive function proposed by Dinh et al. (2017) is the affine
function, which also scales the input:

fφ(zi) = exp(s) · zi + t where φ = {s, t} . (3.40)

The exp is a simple transformation that restricts the multiplier to positive values, guaran-
teeing invertibility. More numerically stable alternatives to exp are often used in practice,
for example softplus(s) + ε for ε > 0.

While the affine transformation is no longer volume preserving, and hence more expressive
than the additive one, it still is of limited flexibility. For example, if the base distribution
is a standard normal and we use an autoregressive layer with affine univariate functions,
we can only translate and scale a standard normal in each univariate transformation. This
means we can only represent distributions that can be factorized into a sequence of normal
conditional distributions.

Alternative ways of parametrizing invertible univariate functions have been considered.
Neural autoregressive flow (NAF, Huang et al., 2018) parametrizes a neural network with
positive weights and monotonic activation functions. The function modeled by such neural
network is guaranteed to be monotonically increasing, and we can represent any monotonic
function in the limit of infinite weights. Ho et al. (2019) propose parametrizing a mixture of
logistic CDFs, noting that a convex combination of monotonic functions is also monotonic.
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Sum-of-squares polynomial flow (SOS, Jaini et al., 2019) parametrizes coefficients of a
monotonic polynomial of an arbitrary degree by rewriting it as a sum of squares. While
these approaches greatly enhance the expressivity of a flow, they do not provide an analytic
inverse, meaning that we need to perform inefficient numerical inversion using methods like
bisection search.

3.2.8 Spline transforms

An alternative way to define a complex univariate function is by using a spline, i.e. as a
piecewise function. To do so we divide some finite input domain [a, b] intoK non-overlapping
pieces, or bins, where bin k is defined by its boundary coordinates [xk, xk+1], s.t.

[a, b] = [x0, x1] ∪ [x1, x2] ∪ ... ∪ [xK−2, xK−1] ∪ [xK−1, xK ] (3.41)

a = x0 ≤ x1 ≤ ... ≤ xK−1 ≤ xK = b. (3.42)

We then transform the input x with a function corresponding to the bin that x belongs to:

f(x) =



f0(x) if x0 ≤ x < x1

f1(x) if x1 ≤ x < x2

...

fK−1(x) if xK−1 ≤ x ≤ xK

(3.43)

While each function fk can be simple (for example, a polynomial), concatenating K such
functions into the spline f allows us to model increasingly complex functions as K increases.
All the bin boundaries must be sorted as per Eq. (3.42), which means that in practice we
can apply binary search to bin the input x with O(logK) computational cost.

Müller et al. (2018) propose to use the splines to parametrize the univariate functions in
a coupling layer. In particular, they explore linear and quadratic polynomial splines, i.e.
splines where fk are polynomials of the first and the second degree. In the linear spline,
the transformation for bin k is defined as

fk(x) = akx+ bk. (3.44)

In the quadratic spline it is defined as

fk(x) = akx
2 + bkx+ ck. (3.45)

The coefficients of the polynomials can not be arbitrary, however: we need to keep the
function f invertible is we want to use it in the autoregressive/coupling layer. Müller
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et al. propose an elegant parametrization that keeps the linear and quadratic splines
monotonically increasing. Instead of f itself they parametrize its derivative f ′, and integrate
said derivative to evaluate f . By the fundamental theorem of calculus

f(x) =

∫ x

a
f ′(t) dt+ f(a). (3.46)

Müller et al. also fix [a, b] = [0, 1], f(0) = 0 and f(1) = 1, so this simplifies to

f(x) =

∫ x

0
f ′(t) dt. (3.47)

This means we can restrict f to be monotonically increasing on the interval by simply
keeping f ′ positive on the interval. If the function is monotonically increasing, by definition
f(x0) ≤ f(x1) ≤ ... ≤ f(xK−1) ≤ f(xK), and the inverse is computed as:

f−1(y) =



f−1
0 (y) if f(x0) ≤ y < f(x1)

f−1
1 (y) if f(x1) ≤ y < f(x2)

...

f−1
K−1(y) if f(xK−1) ≤ y ≤ f(xK)

(3.48)

This means that the inverse can be computed analytically, with no numeric inversion required.
Moreover, with Müller et al.’s parametrization the derivative f ′ is readily available for
computing the Jacobian determinant.

Note that f ′ will be piecewise constant for the linear spline, and piecewise linear for the
quadratic spline, which is easy to see by differentiating Eq. (3.44) and Eq. (3.45). Both
piecewise constant and piecewise linear functions are straightforward to integrate exactly:
we simply sum the areas of a sequence of rectangles (for piecewise constant) or right
trapezoids (for piecewise linear). The computational cost of such integration scales linearly
with K.

The linear spline is a universal approximator in the limit of infinite bins: for an infinitesimal
bin width, to represent any function exactly one simply needs to set the slope of the line ak
to the derivative of the function. In practice, of course, we work with a finite number of
bins K, and the flexibility of the function in each bin matters. Moreover, it is desirable
to minimize the value of K while maintaining flexibility, as the computational cost of the
parametrization scales with K.

The set of quadratic functions is a superset of the set of the linear functions, so the quadratic
parametrization is strictly more flexible. However, it comes with additional benefits. First,
it allows us to learn the bin boundaries [xk, xk+1], in addition to the functions within said
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boundaries, enhancing expressivity for a fixed K. As discussed by Müller et al. (2018,
Appendix B), we can not do the same for the linear spline, and instead have to split the
input domain into K fixed, equally sized bins. And second, the derivative of the quadratic
spline is continuous, which Müller et al. argue helps optimization.

3.2.9 Modeling discretized data

The standard normalizing flow is only well-defined in a continuous space. Fitting a
continuous normalizing flow to discrete data is not meaningful, and will lead to degeneracies:
a discrete distribution has no volume in continuous space, which allows a normalizing flow
to “cheat” by placing narrow density spikes on the training datapoints. As the spikes get
narrower and the densities approach infinity, the likelihood also approaches infinity, even
though the normalizing flow is not capturing the target distribution in any meaningful way.
Discrete normalizing flows have been proposed by Hoogeboom et al. (2019a) and Tran et al.
(2019), but come with their own set of trade-offs.

An alternative solution is based on the observation that many datasets of interest are
not actually discrete, rather they contain discretized representations of the underlying
continuous signal. For example, the stored pixel intensities of natural images are quantized
representations of the true, continuous color intensities. To undo the quantization, i.e. to
dequantize the data, we can define a dequantization distribution q(x̃ |x), where x̃ is the
unknown continuous signal and x is the discretized observation. Intuitively, q(x̃ |x) defines
the relative likelihood of x̃ being the continuous signal that has produced the discrete
observation x after quantization. The continuous dequantized distribution p(x̃) is obtained
by marginalizing over the discrete observations x:

p(x̃) =
∑
x

P (x)q(x̃ |x). (3.49)

The distribution p(x̃) can be fit with a continuous normalizing flow using the standard
maximum likelihood loss in Eq. (3.12). To obtain the samples from p(x̃) for computing the
loss, we sample from q

(
x̃ |x(i)

)
given the training points x(i).

Theis et al. (2016) analyze how the density fit using this procedure relates to the target
discrete probability P (x). Consider the KL objective that we are maximizing when fitting
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the flow density q(x̃) to match p(x̃):

Ep(x̃)[log q(x̃)] =

∫
p(x̃) log q(x̃) dx̃ (3.50)

=

∫ ∑
x

P (x)q(x̃ |x) log q(x̃) dx̃ (3.51)

=
∑
x

P (x)

∫
q(x̃ |x) log q(x̃) dx̃ (3.52)

≤
∑
x

P (x) logQ(x), (3.53)

where we use the Jensen’s inequality to go from Eq. (3.52) to Eq. (3.53), and define Q(x) as

Q(x) =

∫
q(x̃ |x)q(x̃) dx̃. (3.54)

In other words, when maximizing the standard likelihood-based objective using the dequan-
tized data, we are maximizing a lower bound on the discrete likelihood for a probability
mass function Q, which is implicitly defined by the continuous normalizing flow and the
dequantization distribution.

As pointed out by Theis et al., the negative base-2 log of Q is equivalent to the average
number of bits required to losslessly compress the (discretized) data with an entropy coding
scheme that uses Q (Shannon, 1948). It is common to report this negative discrete log-
likelihood in bits per dimension (BPD), dividing the base-2 log value by the number of
input dimensions.

When it comes to natural image data, we commonly store the images with 8-bit color depth
and 3 color channels (RGB): x ∈ {0, ..., 255}D×D×3. We assume that the quantization is
a simple floor operation x = bx̃c, i.e. the continuous color intensity x̃ is mapped to the
greatest integer x that is less or equal to x̃. The support of q(x̃ |x) in this case is a unit
hypercube where x = bx̃c, and it is common to assume that q(x̃ |x) is uniform in this
hypercube.

Using the uniform dequantization makes it trivial to sample from p(x̃): we simply add
uniform noise to the training data x̃ = x(i) + u, where u is a sample from a uniform
distribution in [0, 1)D×D×3. In other words, to fit an implicit discrete distribution to the
data we simply fit a continuous normalizing flow q(x̃) to noisy training images. Moreover,
when using uniform noise, the implicit probability mass function Q is defined as an integral
over the density in the corresponding unit hypercube:

Q(x) =

∫
[0,1)D×D×3

q(x + u) du. (3.55)
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This means we can easily compute a Monte Carlo estimate of Eq. (3.55), and hence of
BPD, by taking the mean density of noisy test images, where only one noisy sample per
test image is often used in practice.

The disadvantage of the uniform dequantization is that the peculiar continuous distribution
defined by it — a set of hypercubes with uniform density — might be difficult to fit with a
normalizing flow designed to model smooth densities. To alleviate this, Ho et al. (2019)
propose to parametrize the dequantization density q(x̃ |x) with a smaller normalizing flow
and learn it jointly with the main flow. Ho et al. propose a training procedure based on
variational inference, referring to the resulting method as variational dequantization, and
empirically demonstrate improved performance when compared to uniform dequantization.

3.3 Neural spline flows

In this work, we build upon the spline flows of Müller et al. (2018). First we explore the
cubic polynomial spline flows, the natural evolution of the square polynomial spline flows.
We then consider using rational functions instead of a polynomials in a spline, proposing
rational-quadratic spline flows. We also consider an alternative way of adapting spline flows
to work with unbounded data. Finally, we combine the proposed methods into neural spline
flows, a novel class of flexible density estimators.

3.3.1 Cubic splines

One way to further increase the flexibility of a quadratic polynomial spline is to simply
increase the order of the polynomial. This results in a cubic spline, where the function in
each bin is defined as

fk(x) = ak + bkx+ ckx
2 + dkx

3. (3.56)

Beyond the potentially increased flexibility for a fixed number of bins, the cubic can be
made second-order continuous. As discussed above, in their work Müller et al. (2018) note
that first-order continuity of their quadratic spline parametrization is likely beneficial, as
we use the gradients of the function during optimization. However, through the Jacobian
determinant term in Eq. (3.7) the gradients themselves are a part of the loss, meaning that
second-order gradients are also used during optimization, and hence them being continuous
could also aid optimization.

We use the method of Steffen (1990) to restrict the cubic spline to be monotonically
increasing. Instead of parametrizing ak, ..., dk directly, Steffen parametrizes a set of K + 1
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monotonically increasing knots {(xk, yk)}Kk=0, such that

(x0, y0) = (0, 0), (xK , yK) = (1, 1) (3.57)

xk < xk+1 and yk < yk+1 for k = 0 : K − 1. (3.58)

We can parametrize the knots via a set of widths wk = xk+1 − xk, and a set of heights
hk = yk+1 − yk, both sets of size K. The knots are then defined by the cumulative sums of
weights and heights:

xk =

k∑
k′=0

wk′ yk =

k∑
k′=0

hk′ . (3.59)

To satisfy Eqs. (3.57) and (3.58), we ensure that all the weights and heights are positive,
and that both sets sum to 1:

wk > 0 and hk > 0 for k = 0 : K − 1 (3.60)
K−1∑
k=0

wk = 1,
K−1∑
k=0

hk = 1. (3.61)

We can convert an arbitrary parameter vector θ ∈ RK to a vector of weights (or heights,
equivalently) that satisfy the definition above by simply passing it through a softmax
function:

wk =
exp(θk)∑K−1

k′=0 exp(θk′)
. (3.62)

Having parametrized the knots, Steffen defines a cubic polynomial that smoothly interpolates
between these knots, while keeping the function monotonically increasing. In other words,
the function is defined by the set of points that lie on it (the knots), and the rest of the
function is “filled in” by connecting these knots using cubic functions. In particular, each
cubic function is defined as

fk(ξ) = α
(0)
k + α

(1)
k ξ + α

(2)
k ξ2 + α

(3)
k ξ3, (3.63)

where ξ = x− xk is the input in the “local” coordinate system of bin k. The coefficients are
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given by

α
(0)
k = yk α

(1)
k = dk (3.64)

α
(2)
k =

3sk − 2dk − dk+1

wk
(3.65)

α
(3)
k =

dk + dd+1 − 2sk
w2
k

, (3.66)

where wk is the bin width as defined above, sk = hk/wk is slope of the line joining
consecutive knots, and dk is the derivative at the knot. All the derivatives apart from d0

and dK are prescribed:

dk = min(pk, 2 min(sk−1, sk)), where pk =
sk−1wk + skwk−1

wk−1 + wk
. (3.67)

The boundary derivatives d0 and dK are free parameters that can be learned, but have to
be restricted to stay positive. Together with the widths wk and the heights hk this results
in 2K + 2 total learnable parameters for K bins. Intuitively, during optimization we move
the knots to match the target function.

The derivative of the function fk is trivially:

∂fk(ξ)

∂x
= α

(1)
k + 2α

(2)
k ξ + 3α

(3)
k ξ2. (3.68)

Inverting fk involves solving a cubic equation. More precisely, if we wish to compute
ξ = f−1

k (y), we need to solve the following equation for ξ:

(α
(0)
k − y) + α

(1)
k ξ + α

(2)
k ξ2 + α

(3)
k ξ3 = 0 (3.69)

Solving a cubic equation is considerably more difficult than solving a quadratic equation,
especially doing so in a numerically stable fashion (Blinn, 2007). We have found the
standard trigonometric and hyperbolic methods, as well as the Cardano’s formula, to be
too numerically unstable in practice. We settled on using a version of the method by Peters
(2016), which we adapted to better deal with cases where the cubic approaches a quadratic
(α(3)

k → 0) or even a linear (α(3)
k → 0, α(2)

k → 0) function.

In general, a cubic equation can have up to three roots. Knowing that the parametrization
keeps the function monotonic, only one of these roots will lie within the boundaries of
the bin k. In practice, we compute all the roots, and select the one lying in the required
interval.
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3.3.2 Rational-quadratic splines

A alternative approach to increase the flexibility of a quadratic polynomial is to consider a
fraction of two quadratic polynomials. Such fractions are known as rational functions, and
the rational quadratic function takes the following form:

fk(x) =
α

(0)
k + α

(1)
k x+ α

(2)
k x2

β
(0)
k + β

(1)
k x+ β

(2)
k x2

. (3.70)

We use the method of Gregory and Delbourgo (1982) to parametrize a monotonic rational-
quadratic spline. In line with monotonic cubic spline parametrization, we define a sequence
of knots {(xk, yk)}Kk=0 such that Eqs. (3.57) and (3.58) hold. However, in this case none of the
derivatives at the knots {dk}Kk=0 are prescribed. Instead we can learn the derivatives together
with the knots, restricting them to they stay positive to preserve monotonicity. Given the
knots and the derivatives, the method of Gregory and Delbourgo interpolates between
the knots with a monotonic rational quadratic spline. In particular, they parametrize the
transformation in bin k as a function of the transformed input x:

fk(x) = gk(ζ) =
αk(ζ)

βk(ζ)
, (3.71)

where ζ = x−xk
wk
∈ [0, 1], and

αk(ζ) = skyk+1ζ
2 + (ykdk+1 + yk+1dk)ζ(1− ζ) + skyk(1− ζ)2 (3.72)

βk(ζ) = skζ
2 + (dd+1 + dk)ζ(1− ζ) + sk(1− ζ)2. (3.73)

Gregory and Delbourgo note that gk can be re-written as

gk(ζ) = yk +
hk
[
skζ

2 + dkζ(1− ζ)
]

sk + (dk+1 + dk − 2sk)ζ(1− ζ)
, (3.74)

which is a more numerically stable form, especially for small sk. The wk, hk and sk in the
formulas above are the bin widths, heights and slopes as defined in Section 3.3.1. Gregory
and Delbourgo show that the spline defined by Eq. (3.74) will interpolate between the knots
and match the corresponding derivatives dk at each knot, all while staying monotonic on
the [0, 1] interval.

Differentiating the Eq. (3.74) results in:

∂fk(x)

∂x
=
∂gk(ζ)

∂ζ

∂ζ

∂x
=
s2
k

[
dk+1ζ

2 + 2skζ(1− ζ) + dk(1− ζ)2
]

[sk + [dk+1 + dk − 2sk]ζ(1− ζ)]2
. (3.75)
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To compute the inverse x = f−1
k (y), we note that in the end fk is a rational quadratic

with a particular parametrization of the coefficients. Using fk’s definitions in Eqs. (3.70)
and (3.71) we find the equation that needs to be solved for x:

q(x) = α(ζ(x))− yβ(ζ(x)) (3.76)

=
(
α

(2)
k − β

(2)
k y

)
︸ ︷︷ ︸

a

x2 +
(
α

(1)
k − β

(1)
k y

)
︸ ︷︷ ︸

b

x+
(
α

(0)
k − β

(0)
k y

)
︸ ︷︷ ︸

c

= 0 (3.77)

As we can see, inverting the rational quadratic only requires solving a quadratic equation.
We can rearrange Eq. (3.74) to find the coefficients of Eq. (3.77) in terms of the knots and
derivatives:

a = hk(sk − dk) + (y − yk)(dk+1 + dk − 2sk) (3.78)

b = hkdk − (y − yk)(dk+1 + dk − 2sk) (3.79)

c = −sk(y − yk) (3.80)

This is an important benefit of the parametrization: while the flexibility is increased
when compared to the quadratic polynomial, the inverse only requires solving a quadratic
equation, which can be done with fewer numerical difficulties when compared to the cubic
equation.

In general, a quadratic equation can have up to two roots. We are always interested in one
for which the rational-quadratic has a positive derivative, as the function is restricted to
be monotonic. To identify the root in a general case, note that the total derivative of a
constant function is always zero. Hence if q(x, y(x)) = 0, then

dq(x, y(x))

dx
=
∂q

∂x
+
∂q

∂y

dy

dx
(3.81)

=
∂q

∂x
+ β(ζ(x))

dy

dx︸ ︷︷ ︸
>0

= 0 (3.82)

where dy
dx > 0 as the function is monotonic on the interval, and β(ζ(x)) > 0 by its definition

in Eq. (3.73). To satisfy the Eq. (3.82), ∂q
∂x > 0 must hold for x to be a valid solution.

When using the discriminant formula, the following root always has ∂q
∂x > 0:

x =
−b+

√
b2 − 4ac

2a
=

2c

−b−
√
b2 − 4ac

, (3.83)

where the latter form is more numerically stable, especially when a→ 0 (near-linear case)
and/or c→ 0.
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3.3.3 Modeling unbounded data

In function parametrizations based on splines the input domain must be finite. This is a
problem if we want to model an unbounded target distribution. Müller et al. recognize this,
and propose a solution: we can map the unbounded input to some finite range using an
invertible function, and use the inverse of the function to undo the mapping having applied
the transformation. For example, when working in [0, 1] they propose to use the sigmoid
function and its inverse — the logit function. We can use the sigmoid function σ to map
the input from R to [0, 1], and then apply the [0, 1]→ [0, 1] transformation f :

ỹ = f(x̃), where x̃ = σ(x) =
1

1 + e−x
. (3.84)

Finally, we use σ−1 (the logit function) to map the output of f from [0, 1] back to R:

y = σ−1(ỹ) = log
ỹ

1− ỹ . (3.85)

While the approach is sound in theory, in our preliminary experiments we have observed
it to be unstable due to numerical issues. In particular, in 32-bit floating point precision
(common in GPUs) the tails of σ(x) underflow for x outside of the approximate range
of [−13, 13]. When σ(x) underflows (i.e. the output becomes exactly 0 or 1) its gradient
vanishes and the function becomes non-invertible, which means that the transformed density
is ill-defined.

We propose an alternative solution, which is to use the identity transformation outside the
range of the spline. This is equivalent to adding infinitely wide boundary bins or “tails” to
the spline, where the transformation is f(x) = x. To preserve the first-order continuity, we
match the derivatives at the boundary knots by setting d0 = dK−1 = f ′(x) = 1. This is
trivial to do for both the cubic and the rational-quadratic splines, where d0 and dK−1 are
free parameters. The inverse of the tails is trivially the identity as well, and the derivative
is a constant.

While the method above fixes the potential numerical issues of the Müller et al.’s approach,
its obvious deficiency is that the transformation happens in a finite interval. However, we
first note that this interval can be arbitrary: a spline that is defined on [0, 1] can trivially
be adapted to work on [−B,B] for any B > 0:

y = B − 2Bỹ, where ỹ = f(x̃), where x̃ =
x+B

2B
. (3.86)

More importantly, however, if the spline autoregressive/coupling layer is preceded by an
invertible affine layer, the affine layer can learn to map the input range that would most
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benefit from a non-trivial transformation to the required interval. In our experiments, we
rely on both: we pick a B that we believe is appropriate for the range of the data, and use
the invertible affine layers to allow the model to further adjust the effective range of the
transformation if needed.

3.3.4 The proposed model

We combine the methods introduced above to obtain a class of models that we name
neural spline flows (NSF). Such models use spline-based autoregressive/coupling layers
with either quadratic (Q-NSF), cubic (C-NSF) or rational-quadratic (RQ-NSF) splines.
Spline layers use the linear tails to model unbounded data, and each spline layer is preceded
by an invertible linear layer. The proposed model resembles a standard feed-forward
neural network: it is a sequence of linear transformations, each followed by an elementwise
non-linear transformation, albeit the latter is learned and has a non-trivial dependency
structure.

3.4 Experiments

The goal of the experiments in this section is to measure the performance of spline based
normalizing flows, and compare them to other state-of-the-art normalizing flow architectures.
In particular, we aim to understand whether the cubic and rational-quadratic splines improve
upon the quadratic spline baseline. We use three benchmarks for our experiments: density
estimation on tabular data, generative modeling of high-dimensional natural image data,
and variational inference in a VAE.

We model the function gθ with a residual neural network (He et al., 2016a) with pre-
activation residual blocks (He et al., 2016b). For autoregressive transformations we use the
ResMADE architecture outlined by Nash and Durkan (2019). Preliminary results indicated
only minor differences in setting the tail bound b within the range [1, 5], so we fix a value
B = 3 across experiments, and find this to work robustly. We also fix the number of
bins K = 8 across our experiments unless stated otherwise, and apart from preliminary
experiments where K = 10. We implement all invertible linear transformations using the
PLU decomposition, sampling and fixing a random permutation matrix P at the beginning
of training, and initializing the product LU to the identity. For all non-image experiments,
we define a flow “step” as the composition of an invertible linear transformation with either
a coupling or autoregressive transform, and use 10 steps per flow in all experiments, unless
otherwise noted. All flows use a standard normal base distribution: π(z) = N (z |0, I).

We train the models using the Adam optimizer (Kingma and Ba, 2015), annealing the
learning rate according to a cosine schedule (Loshchilov and Hutter, 2017). In some cases,
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Table 3.1: Tabular density estimation results of quadratic and cubic spline flows. Test log
likelihood (in nats) for UCI datasets and BSDS300; higher is better. Error bars correspond
to two standard deviations.

Model POWER GAS HEPMASS MINIBOONE BSDS300

Quadratic 0.65± 0.01 13.13± 0.02 −14.95± 0.02 −9.18± 0.43 157.49± 0.28
Cubic 0.65± 0.01 13.14± 0.02 −14.59± 0.02 −9.06± 0.44 157.24± 0.28

Table 3.2: Tabular density estimation results of Q-NSF and RQ-NSF. Test log likelihood
(in nats) for UCI datasets and BSDS300. Error bars correspond to two standard deviations.
FFJORD†, NAF†, Block-NAF†, and SOS† report error bars across repeated runs rather
than across the test set. Superscript? indicates results are taken from the existing literature.
For validation results which can be used for comparison during model development, see
Table 3.7 in Section 3.6.1.

Model POWER GAS HEPMASS MINIBOONE BSDS300

FFJORD?† 0.46± 0.01 8.59± 0.12 −14.92± 0.08 −10.43± 0.04 157.40± 0.19
Glow 0.42± 0.01 12.24± 0.03 −16.99± 0.02 −10.55± 0.45 156.95± 0.28
Q-NSF (C) 0.64± 0.01 12.80± 0.02 −15.35± 0.02 −9.35± 0.44 157.65± 0.28
RQ-NSF (C) 0.64± 0.01 13.09± 0.02 −14.75± 0.03 −9.67± 0.47 157.54± 0.28

MAF 0.45± 0.01 12.35± 0.02 −17.03± 0.02 −10.92± 0.46 156.95± 0.28

NAF?† 0.62± 0.01 11.96± 0.33 −15.09± 0.40 −8.86± 0.15 157.73± 0.04

Block-NAF?† 0.61± 0.01 12.06± 0.09 −14.71± 0.38 −8.95± 0.07 157.36± 0.03

SOS?† 0.60± 0.01 11.99± 0.41 −15.15± 0.10 −8.90± 0.11 157.48± 0.41
Q-NSF (AR) 0.66± 0.01 12.91± 0.02 −14.67± 0.03 −9.72± 0.47 157.42± 0.28
RQ-NSF (AR) 0.66± 0.01 13.09± 0.02 −14.01± 0.03 −9.22± 0.48 157.31± 0.28

we find applying dropout (Srivastava et al., 2014) in the residual blocks to be beneficial for
regularization. Full experimental details are provided in Section 3.6. Code reproducing the
experiments is available online at https://github.com/bayesiains/nsf.

3.4.1 Density estimation

We begin with density estimation on tabular data. We use a battery of tabular datasets
from the UCI repository (Dua and Karra Taniskidou, 2017) and BSDS3000 — a tabular
dataset derived from natural images (Martin et al., 2001). We follow the experimental setup
and pre-processing of Papamakarios et al. (2017), using the data provided by Papamakarios
(2018).

Experiments we run for our preliminary paper compare the cubic spline to the quadratic
spline when used in a coupling layer. In these experiments we use the sigmoid before and
the logit after each coupling layer, as proposed by Müller et al. (2018). We also only use
five flow layers for the Miniboone dataset to alleviate overfitting. The test likelihoods of
both models are shown in Table 3.1.

https://github.com/bayesiains/nsf
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As we can see, in a controlled comparison the cubic spline does improve upon the quadratic
spline for most of the datasets. At the same time, we find that the cubic spline leaves
a lot to be desired when it comes to numerical stability: careful tuning of optimization
hyperparameters becomes critical to prevent numerical issues. Due to these issues we move
on to the rational-quadratic for further experiments with tabular data.

In our main paper we aim to understand whether the rational-quadratic spline can also
improve upon the quadratic spline, and whether it can do so without the additional
numerical issues of the cubic. We perform a controlled comparison for both coupling layers
and autoregressive layers. We also include state-of-the-art coupling/autoregressive flows in
our comparison, and train two NSF baselines that use affine univariate functions instead
of splines. We refer to the baseline models as Glow and MAF: NSF (C) with an affine
transformation corresponds to Glow (Kingma and Dhariwal, 2018), while affine NSF (AR)
is equivalent to MAF Papamakarios et al. (2017) with an addition of LU layers. Details of
these experiments and final hyperparameters settings are provided in Section 3.6. The test
likelihoods are shown in Table 3.2.

We see that the rational-quadratic also beats the quadratic, for both coupling layers and
autoregressive layers. Moreover, we observe the rational-quadratic to be more numerically
stable and less sensitive to hyperparameters than the cubic. Both rational-quadratic and
quadratic spline models beat the affine baselines by a significant margin, exposing the
limited flexibility of these models. Moreover, both spline models achieve state-of-the-art
results for normalizing flow models on three out of five datasets. Surprisingly, spline flows
that use the coupling layers beat state-of-the-art autoregressive models on some of the
datasets. The latter finding goes against the common wisdom that autoregressive flows
should be strictly more flexible than flows with coupling layers.

3.4.2 Image modeling

We now run the experiments on generative modeling of high-dimensional natural image
datasets. In this section, we focus solely on flows with a cheap inverse that use coupling
layers.

In our preliminary work, we fit a Glow-like cubic spline image model to FashionMNIST
images (Xiao et al., 2017). The samples shown in Fig. 3.1 suggest that the trained model
captures the target distribution well. However, as in tabular density estimation experiments,
we find the cubic splines to be numerically unstable. In addition to issues during training,
we have found it difficult to avoid numerical artifacts when sampling, which stemmed from
numerical issues when solving the cubic equation. As a result, we again move on to the
rational-quadratic splines for further experiments.
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Figure 3.1: Fashion-MNIST samples from C-NSF (C) image models. Left: Training data.
Right: Unconditional samples from the cubic-spline flow. We re-scale the standard normal
base distribution during sampling, as common in literature. The standard deviation of the
used spherical normal base distribution is referred to as temperature. Samples for three
temperatures are shown in separate blocks, top-to-bottom: 0.5, 0.75, 1.0.

To test the model on higher-dimensional, more complex datasets, we use the CIFAR-
10 (Krizhevsky, 2009) and downsampled 64 × 64 ImageNet (van den Oord et al., 2016;
Russakovsky et al., 2015) datasets, both with original 8-bit color depth and with reduced 5-
bit color depth. We use Glow-like architectures with rational-quadratic coupling transforms.
We compare our results quantitatively in terms of bits-per-dimension (BPD) to the state-of-
the-art normalizing flow image model (Glow, Kingma and Dhariwal, 2018). We also train
a baseline Glow model that uses affine transforms instead of rational-quadratic splines, but
is otherwise equivalent to RQ-NSF (C). We provide all details for these experiments in
Section 3.6. Quantitative results are shown in Table 3.3, and the samples are shown in
Fig. 3.2.

Qualitatively, the samples from our model resemble the images in the training set: the
high-level structure, colors and textures are all captured well, even though visual fidelity
could be improved. Quantitatively, the RQ-NSF (C) image flow comfortably beats the
baseline on three out of four datasets, with a marginal increase in the number of parameters.
The baseline flow matches the RQ-NSF (C) performance on the CIFAR-10 5-bit dataset.
We conjecture that this is the “easiest” dataset of the four, hence it benefits least from
increased flow flexibility. In fact, we have experienced overfitting problems with this dataset,
further indicating that the lack of expressivity is no longer the issue.

When compared to the state-of-the-art image flow (Glow), we see that RQ-NSF(Q) achieves
competitive results, but does so using a much smaller number of layers, and an order of
magnitude fewer parameters as a result. We are unable to run the RQ-NSF (C) with the
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Table 3.3: Generative image modeling results for RQ-NSF (C). Test-set bits per dimension
(BPD, lower is better) and parameter count (Params) for CIFAR-10 and ImageNet64
models. Superscript? indicates results taken from the existing literature.

CIFAR-10 5-bit CIFAR-10 8-bit ImageNet64 5-bit ImageNet64 8-bit

Model BPD Params BPD Params BPD Params BPD Params

Baseline 1.70 5.2M 3.41 11.1M 1.81 14.3M 3.91 14.3M
RQ-NSF (C) 1.70 5.3M 3.38 11.8M 1.77 15.6M 3.82 15.6M

Glow? 1.67 44.0M 3.35 44.0M 1.76 110.9M 3.81 110.9M

Figure 3.2: Samples from RQ-NSF (C) image models. Top: Reduced 5-bit color depth.
Bottom: Original 8-bit color depth. Left: CIFAR-10. Right: ImageNet64.

number of parameters comparable to Glow due to lack of considerable GPU resources
required.
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Table 3.4: Variational autoencoder results of RQ-NSF. Test-set results (in nats) for the
evidence lower bound (ELBO) and importance-weighted estimate of the log likelihood
(computed as by Burda et al. (2016) using 1000 importance samples). Error bars correspond
to two standard deviations.

MNIST EMNIST

Posterior/Prior ELBO log p(x) ELBO log p(x)

Baseline −85.61± 0.51 −81.31± 0.43 −125.89± 0.41 −120.88± 0.38

Glow −82.25± 0.46 −79.72± 0.42 −120.04± 0.40 −117.54± 0.38
RQ-NSF (C) −82.08± 0.46 −79.63± 0.42 −119.74± 0.40 −117.35± 0.38

IAF/MAF −82.56± 0.48 −79.95± 0.43 −119.85± 0.40 −117.47± 0.38
RQ-NSF (AR) −82.14± 0.47 −79.71± 0.43 −119.49± 0.40 −117.28± 0.38

3.4.3 Variational autoencoder

Finally, we use the rational-quadratic spline flow to model the prior and the posterior
in a VAE. In particular, we use the VAE to model the images in the MNIST (LeCun
and Cortes, 2010) and the EMNIST (Cohen et al., 2017) datasets. We use the method
of Salakhutdinov and Murray (2008) to dynamically binarize the images: we treat the
(normalized) pixel intensities as Bernoulli probabilities, and sample binary values from the
pixel-wise distributions dynamically during training. This allows us to use the Bernoulli
likelihood in the VAE.

We evaluate using either the RQ-NSF (C) and the RQ-NSF (AR) as the prior and the
posterior density models, comparing to the flows that use affine transformations instead.
The affine flows in this case correspond to Glow (Kingma and Dhariwal, 2018) when using
the coupling layer, and to IAF/MAF (Kingma et al., 2016; Papamakarios et al., 2017) when
using the autoregressive layer. We also compare to the commonly used baseline where the
prior is a standard normal and a diagonal normal is used to model the posterior. Further
details of the VAE models evaluated are provided in Section 3.6. Quantitative results are
provided in Table 3.4. We compare the models in terms of their evidence lower bound
(ELBO), as well as importance-weighted estimate of their log likelihood (Burda et al., 2016).
Samples from the trained VAEs are shown in Fig. 3.3, and demonstrate that the VAEs that
use rational-quadratic spline flows have indeed captured the data distribution.

All of the VAEs that use normalizing flows improve upon the baseline that uses normal
distributions. Using the normal distributions for the prior and posterior is still common in
practice, and our results demonstrate a clear benefit of using more flexible density models.
At the same time, in this case we see little benefit from using the rational-quadratic splines
instead of simple affine transformations: all of the results are well within the error bars.
Previous sections provide evidence that rational-quadratic spline flows are (sometimes
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(a) MNIST (b) EMNIST-letters

Figure 3.3: Samples from a VAE with a RQ-NSF prior and posterior. Top to bottom:
training data, RQ-NSF (C), RQ-NSF (AR).

significantly) more flexible than affine flows, which is why we conjecture that the affine
flows are sufficient to model the latent space in the VAE models considered, hence we do
not benefit from increasing the flexibility further.

3.5 Discussion

Normalizing flows based on autoregressive/coupling layers allow us to exploit the expressive
power of neural networks to build flexible, high-dimensional density estimators. However,
we can not make full use of this expressive power if the neural networks parametrize
elementwise transformations that themselves have limited flexibility. This is seen in
our experimental results, where flows based on polynomial or rational-quadratic splines
consistently outperform affine baselines.

RQ-NSF achieves state-of-the-art results on several tabular density estimation datasets.
Moreover, when using the rational-quadratic spline in a coupling layer, the flows perform on-
par with, and sometimes outperform, the autoregressive flows with simpler transformations.
When compared with Glow (Kingma and Dhariwal, 2018), RQ-NSF requires an order of
magnitude fewer parameters to achieve the same level of results. This suggests that RQ-NSF
(C) approaches a universal density model: it has the expressivity of an autoregressive flow,
yet also provides fast sampling, allowing to use RQ-NSF (C) in any density estimation
context.

Increased flexibility is of most benefit when the target density is sufficiently complex,
and when we have enough data to learn it. While RQ-NSF is strictly more flexible than
Q-NSF, in tabular density estimation we observe the most significant improvement on
Power, Gas, and Hepmass, the datasets with the highest ratio of the number of datapoints
to dimensionality (see Tables 3.5 and 3.6). In generative image modeling, the improvement
of RQ-NSF upon the affine baseline is most significant on the ImageNet dataset, which has
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an order of magnitude more datapoints than CIFAR-10, and contains many more object
classes.

On CIFAR-10, and its 5-bit variant in particular, RQ-NSF model does not improve upon
the affine baseline. We also observe no significant improvement when using RQ-NSF instead
of an affine baseline in a VAE, which likely means that the prior/posterior is already well
captured by this baseline. Nevertheless, with careful hyperparameter tuning, at worst
RQ-NSF performs on-par with flows based on quadratic splines and affine transformations.

Despite achieving high likelihoods on image data, the image samples in Fig. 3.2 lack visual
acuity. This is often the case with likelihood-based models (van den Oord et al., 2016;
Kingma and Dhariwal, 2018; Ho et al., 2019), samples from which do not achieve the
perceptual quality of e.g. GAN-based models (Brock et al., 2019). It is not clear if this is
due to the likelihood-based models not being flexible enough and/or not having the right
inductive bias, or due to the fundamental properties of likelihood-based training objectives,
whose relationship with sample quality is a complex one (Theis et al., 2016). Running a
RQ-NSF model of size comparable to Glow would be an interesting extension of our work,
although one requiring considerable GPU resources.

At the same time, we have experienced issues with overfitting when modeling some of the
image datasets with RQ-NSF, having to increase the dropout rate and reduce the model
size considerably. This suggests that while RQ-NSF is a flexible model, it might not provide
the right inductive bias for modeling natural image data. Ho et al. (2019) show that other
aspects of the flow, such as the dequantization distribution and the used neural network
architecture, are more important: Ho et al.’s model significantly outperforms Glow, with
ablations showing that the use of variational dequantization and self-attention (Vaswani
et al., 2017) layers bring the biggest improvement.

Flows based on cubic splines also demonstrate increased flexibility when compared to the
quadratic splines, but simultaneously result in numerical issues, both during optimization
and when inverting the flow for sampling. This suggests that increasing the order of
a polynomial in a spline beyond quadratic is not a good way forward, and alternative
approaches to increasing flexibility must be considered. Switching to rational functions
proved fruitful, but other options likely exist.

Finally, we note that flexible, differentiable monotonic function parametrizations are also
useful outside of density estimation. For example, in the context of supervised learning, they
can be used to warp the output space of a Gaussian process (GP), allowing for non-Gaussian
processes with non-Gaussian noise (Snelson et al., 2004). Alternatively, using invertible
architectures can reduce the memory requirements of backpropagation, as we can recompute
the activations instead of storing them (Gomez et al., 2017; MacKay et al., 2018). We hope
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our density estimation results together with these potential applications will motivate the
community to propose novel monotonic function parametrizations.

3.5.1 nflows: normalizing flows in PyTorch

During this project we have developed a framework for building normalizing flow models
in PyTorch (Paszke et al., 2019). The framework has been used to implement the flow
models for experiments in (Durkan et al., 2019a) and (Durkan et al., 2019b). After the
publication, the framework has been released as a standalone Python package under the
name of nflows (https://github.com/bayesiains/nflows). Since the release of the package,
Artur has been its primary maintainer. To date the package has amassed more than 500
“stars” on GitHub, and has been cited by at least 16 subsequent papers through its DOI
(https://doi.org/10.5281/zenodo.4296287).

The package is based on three core concepts/classes: a Distribution, a Transform, and a
Flow. The Distribution instances are the continuous probability distributions for which we
can evaluate the (log) density, and which we can sample from. The Transform instances
are invertible transformations for which we can evaluate the forward pass, the inverse
pass, and the log |det J|. Finally, the Flow is a subclass of Distribution that is defined as a
combination of a (base) Distribution and a Transform.

The framework provides a set of Transform implementations, including affine/spline-based
autoregressive and coupling transforms; invertible affine transforms that use LU, QR or
SVD parametrization; activation normalization and 1× 1 convolution from (Kingma and
Dhariwal, 2018); etc. Moreover, we encourage the external contributors to add new types of
transformations. For example, Antoine Wehenkel has recently worked with Artur to add the
unconstrained monotonic neural networks (UMNN, Wehenkel and Louppe, 2019) to nflows.

Alternative frameworks for building normalizing flows exist. TensorFlow Probability (TFP,
Dillon et al., 2017) provides a similar framework, with implementations of many bijective
transformations. In the world of PyTorch, the probabilistic programming framework
Pyro (Bingham et al., 2019) provides a set of distribution transformations, which are in
the process of being factored out into a separate FlowTorch package (https://flowtorch.
ai). All of the frameworks mentioned above now include the rational-quadratic spline
implementation. At the time of working on NSF, however, these frameworks had a limited
set of transformations implemented. Moreover, these more established frameworks tend to
err on the side of generality when it comes to accepted tensor shapes, bijectivity requirements
for transformations, domain constraints, etc. nflows, while less general, has a minimal API
that makes it trivial to construct and train a state-of-the-art normalizing flow, which likely
explains the continued interest in it.

https://github.com/bayesiains/nflows
https://doi.org/10.5281/zenodo.4296287
https://flowtorch.ai
https://flowtorch.ai


90

3.6 Appendix: Experimental details

3.6.1 Tabular density estimation

Model selection is performed using the standard validation splits for these datasets. We clip
the norm of gradients to the range [−5, 5], and find this helps stabilize training. We modify
MAF by replacing permutations with invertible linear layers. Hyperparameter settings are
shown for coupling flows in Table 3.5 and autoregressive flows in Table 3.6. We include the
dimensionality and number of training data points in each table for reference. For higher
dimensional datasets such as Hepmass and BSDS300, we found increasing the number of
coupling layers beneficial. This was not necessary for Miniboone, where overfitting was an
issue due to the low number of data points.

Table 3.5: Hyperparameters for density-estimation results using coupling layers in Sec-
tion 3.4.1.

Power Gas Hepmass Miniboone BSDS300

Dimension 6 8 21 43 63
Train data points 1,615,917 852,174 315,123 29,556 1,000,000

Batch size 512 512 256 128 512
Training steps 400,000 400,000 400,000 200,000 400,000
Learning rate 0.0005 0.0005 0.0005 0.0003 0.0005
Flow steps 10 10 20 10 20
Residual blocks 2 2 1 1 1
Hidden features 256 256 128 32 128
Bins 8 8 8 4 8
Dropout 0.0 0.1 0.2 0.2 0.2

Table 3.6: Hyperparameters for density-estimation results using autoregressive layers in
Section 3.4.1.

Power Gas Hepmass Miniboone BSDS300

Dimension 6 8 21 43 63
Train data points 1,615,917 852,174 315,123 29,556 1,000,000

Batch size 512 512 512 64 512
Training steps 400,000 400,000 400,000 250,000 400,000
Learning rate 0.0005 0.0005 0.0005 0.0003 0.0005
Flow steps 10 10 10 10 10
Residual blocks 2 2 2 1 2
Hidden features 256 256 256 64 512
Bins 8 8 8 4 8
Dropout 0.0 0.1 0.2 0.2 0.2

3.6.2 Generative modeling of images

For image-modeling experiments we use a Glow-like model architecture introduced by
Kingma and Dhariwal (2018, Section 3). This involves stacking multiple steps for each level
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Table 3.7: Validation log likelihood (in nats) for UCI datasets and BSDS300, with error
bars corresponding to two standard deviations.

Model POWER GAS HEPMASS MINIBOONE BSDS300

RQ-NSF (C) 0.65± 0.01 13.08± 0.02 −14.75± 0.06 −9.03± 0.43 172.51± 0.60
RQ-NSF (AR) 0.67± 0.01 13.08± 0.02 −13.82± 0.05 −8.63± 0.41 172.5± 0.59

in the multi-scale architecture of Dinh et al. (2017), where each step consists of an actnorm
layer, an invertible 1 × 1 convolution and a coupling transform. For our RQ-NSF (C)
model, we make the following modifications to the original Glow model: we replace affine
coupling transforms with rational-quadratic coupling transforms, we go back to residual
convolutional networks as used in RealNVP (Dinh et al., 2017), and we use an additional
1× 1 convolution at the end of each level of transforms. The baseline model is the same as
RQ-NSF (C), except that it uses affine coupling transforms instead of rational-quadratic
ones. For CIFAR-10 experiments we do not factor out dimensions at the end of each level,
but still use the squeezing operation to trade spatial resolution for depth.

For all experiments we use 3 residual blocks and batch normalization (Ioffe and Szegedy,
2015) in the residual networks which parameterize the coupling transforms. We use 7 steps
per level for all experiments, resulting in a total of 21 coupling transforms for CIFAR-10, and
28 coupling transform for ImageNet64 (Glow models used by Kingma and Dhariwal (2018)
use 96 and 192 affine coupling transforms for CIFAR-10 and ImageNet64 respectively).

We use the Adam (Kingma and Ba, 2015) optimizer with default β1 and β2 values. An
initial learning rate of 0.0005 is annealed to 0 following a cosine schedule (Loshchilov and
Hutter, 2017). We train for 100,000 steps for 5-bit experiments, and for 200,000 steps for
8-bit experiments. To track the performance of our models, we split off 1% of the training
data to use as a development set. Due to the resource requirements of the experiments,
we perform a limited manual hyper-parameter exploration. Final values are reported in
Table 3.8.

We use a single NVIDIA Tesla P100 GPU card per CIFAR-10 experiment, and two such
cards per ImageNet64 experiment. Training for 200,000 steps takes about 5 days with this
setup.

Table 3.8: Hyperparameters for generative image-modeling results in Section 3.4.2.

Dataset Batch Size Levels Hidden Channels Bins Dropout

CIFAR-10 5-bit 512 3 64 2 0.2
8-bit 512 3 96 4 0.2

ImageNet64 5-bit 256 4 96 8 0.1
8-bit 256 4 96 8 0.0
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3.6.3 Improving the variational autoencoder

We use the Adam optimizer (Kingma and Ba, 2015) with default hyperparameters, annealing
an initial learning rate of 0.0005 to 0 using a cosine schedule (Loshchilov and Hutter, 2017)
over 150,000 training steps with batch size 256. We use a ‘warm-up’ phase for the KL
divergence term of the loss, where the multiplier for this term is initialized to 0.5 and
linearly increased to 1 over the first 10% of training. This modification initially reduces
the penalty incurred by the approximate posterior in deviating from the prior, and similar
schemes have been shown to improve VAE training dynamics (Rezende and Viola, 2018).
Model selection is performed using a held-out validation set of 10,000 samples for MNIST,
and 20,000 samples for EMNIST.

We use 32 latent features, and residual nets use 2 blocks, with 64 latent features for coupling
layers, and 128 latent features for autoregressive layers. Both coupling and autoregressive
flows use 10 steps. As with the tabular density-estimation experiments, we modify IAF
(Kingma et al., 2016) and MAF (Papamakarios et al., 2017) by replacing permutations
with invertible linear layers using an LU-decomposition. All NSF models use 8 bins. The
encoder and decoder architectures are set up exactly as described by Nash and Durkan
(2019), and are similar to those used in IAF (Kingma et al., 2016) and NAF (Huang et al.,
2018).

Conditioning the approximate posterior distribution q(z |x) follows a multi-stage procedure.
First, the encoder computes a context vector h of dimension 64 as a function of the input x.
This vector is then mapped to the mean and diagonal covariance of a Gaussian distribution
in the latent space. Then, h is also given as input to the residual nets in each of the flow’s
coupling or autoregressive layers, where it is concatenated with the input z, mapped to the
required number of hidden features, and also used to modulate the additive update of each
residual block with a sigmoid gate. We found this scheme to work well across experiments.



Chapter 4

Nested dropout flows:
lower-dimensional structure in density
estimation

In this chapter we consider the problem of learning a density given data that lie on or close
to a lower-dimensional manifold. We first review existing work on normalizing flows that fit
densities on manifolds, and then propose a training regime for a standard normalizing flow
based on the nested dropout idea of Rippel et al. (2014). The additional nested dropout
objective allows extracting a sequence of densities on manifolds from the full-dimensional
flow fit to the data. Unlike the alternatives, our method defines a valid density in the
ambient space, and does not rely on prior knowledge of the intrinsic data dimension. We
experimentally demonstrate that our method captures lower-dimensional structure in the
data, but also identify trade-offs.

This chapter is based on Ordering Dimensions with Nested Dropout Normalizing Flows
(Bekasov and Murray, 2020), a paper presented at the Workshop on Invertible Neural
Networks, Normalizing Flows, and Explicit Likelihood Models, a part of the Thirty-seventh
International Conference on Machine Learning (ICML). The paper was selected for a
spotlight presentation at the workshop.

This chapter extends the paper: we provide a broader background and a deeper review
of related work, and include more experimental results that help evaluate the captured
manifolds and understand the likelihood-reconstruction trade-off.
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4.1 Introduction

In Chapter 3 we have introduced a normalizing flow as a method for parametrizing a
complex, high-dimensional distribution via a sequence of invertible transformations of a
simple base distribution. Unlike most other popular flexible generative models (e.g. Kingma
and Welling, 2014; Goodfellow et al., 2014a; Du and Mordatch, 2019), flows have a tractable
likelihood, which simplifies both training and model comparison. It is also easier to use
tractable representations of distributions in other models and algorithms, for example
when modeling the prior and the posterior in a variational autoencoder (VAE, Kingma and
Welling, 2014).

We are often interested in capturing a density of structured, high-dimensional data, such as
images or audio. It is common to assume that such data do not span the high-dimensional
observation space, but lie on (or close to) a lower-dimensional manifold. In other words,
we assume that the number of hidden factors that underlie each observation is smaller
than the number of variables that represent the observation. For example, in images of
handwritten digits in the MNIST dataset such factors include the position of the digit, its
orientation and size, or the thickness of the stroke (Hinton et al., 1997).

The low-dimensional manifold assumption is directly built into many generative models.
For example, in the generative adversarial network (GAN, Goodfellow et al., 2014a) the
generative process is defined as a transformation of samples from a low-dimensional noise
distribution. This restricts the density modeled by a GAN to lie on a low-dimensional
manifold. A similar effect is achieved by prescribing a low-dimensional latent space in a VAE.

In the classic treatment of normalizing flows, we restrict the transformation between the
base distribution (the latent space) and the data distribution (the data space) to be bijective,
i.e. a one-to-one correspondence. Such transformation can only exist if the dimension of
the latent space matches the dimension of the observation space. Moreover, if the base
distribution itself is non-degenerate (has volume in the latent space), no invertible function
can transform it to a distribution on a lower-dimensional manifold, because this requires
collapsing the density. As a result, standard normalizing flows are ill-suited to modeling
data on lower-dimensional manifolds.

We can use a more general form of the change-of-variables formula to extend the definition
of a normalizing flow to injective transformations, i.e. transformations that are bijective
only when restricted to a subset of points in the ambient space, for instance to points that
lie on some low-dimensional manifold. When the manifold is known, Gemici et al. (2016)
and Rezende et al. (2020) model a density in a lower-dimensional space using a standard
normalizing flow, and embed the density in the observation space using a prescribed injective
map. When the data manifold is unknown and/or can not be expressed analytically, Kumar
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et al. (2020) learn the injective flow transformation end-to-end, while Brehmer and Cranmer
(2020) learn the injective map and a low-dimensional flow simultaneously.

The methods above fix the manifold dimension before training, and hence rely on prior
knowledge of the intrinsic data dimension. In this work we propose an alternative method
that simultaneously fits a sequence of injective flows, i.e. a sequence of lower-dimensional
densities, each lying on a manifold of different dimension. Our methods trains a standard,
full-dimensional flow, but induces an ordering on the latent variables, such that taking the
first k of them will reconstruct the data with small square error. We induce such ordering
using the nested dropout idea of Rippel et al. (2014). Having fit the flow, we recover a
density on a k-dimensional manifold by sampling k latent variables.

For a linear flow, our approach recovers a solution to principal components analysis (PCA).
For a non-linear flow, our experimental results suggest that the method also captures
the principal modes of variation. Besides not requiring prior knowledge of the intrinsic
data dimension, our method retains a valid density in the ambient space, does not require
specialized normalizing flow architectures, and is simple to implement. At the same time,
we note that the normalizing flow architecture has an impact on how effective the additional
nested dropout objective can be, while the additional objective itself can have a negative
effect on the likelihood of the full-dimensional flow. We hope that our work will motivate
further research into flows that can naturally represent low-dimensional structure.

4.2 Background

We are often interested in modeling densities of high-dimensional data like images or audio.
Naively modeling the density of such data with (say) a histogram is problematic due to
the curse of dimensionality. Consider covering a unit hypercube with evenly spaced points,
such that the distance between two adjacent points (sampling precision) is ε ∈ (0, 1). In
this case ε−D points are required to cover a D-dimensional hypercube.1 For example, for
ε = 0.01 in 1D we only need 0.01−1 = 100 points. For the same ε, if we go up to as few
as 10 dimensions, we need 0.01−10 = 1020 points, an intractable number. Modern image
datasets can have thousands of dimensions: small 32× 32 pixel images with 3 channel color
contain 32× 32× 3 = 3072 dimensions.

This is why additional assumptions must be made about a high-dimensional density to
make density estimation feasible. Often we make assumptions about the smoothness of
the density, or the presence of symmetries/invariances in it (Papamakarios, 2019). In this

1The unit hypercube is split into a number of smaller non-overlapping hypercubes. Volume of a D-
dimensional hypercube with side ε is εD, so the number of non-overlapping ε-sided hypercubes that fit into
a unit hypercube is 1D/εD = 1/εD = ε−D.
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chapter we focus on another common assumption: the one of low intrinsic dimensionality,
or the manifold hypothesis.

4.2.1 Manifold hypothesis and density estimation

In machine learning, and generative modeling in particular, we often assume that each
datapoint has a small number of underlying latent “factors”, where each factor can control
a group of variables (Hinton et al., 1997). Another way to express the same assumption
is to say that the data lie on a lower-dimensional, potentially non-linear manifold that
is embedded in the higher-dimensional observation space, which is why we refer to this
assumption as the manifold hypothesis (Bengio et al., 2013, Section 8).

The manifold hypothesis is typically implemented by using information bottlenecks in ma-
chine learning model architectures. For example, if the hidden dimension of an autoencoder
architecture is set to be smaller than the data dimension, the output from the decoder is
forced to lie on a manifold of corresponding dimension (Kramer, 1991).

When it comes to density estimation, employing the manifold hypothesis is difficult. This
is because the density of data that lie on a lower-dimensional manifold is ill-defined in the
ambient space. To see why, we use the definition of a probability density at a point x

p(x) = lim
V (∆(x))→0

P (∆(x))

V (∆(x))
, (4.1)

where ∆(x) is a continuous region centered at x, P (A) is the probability of a sampled a
point landing in a region A, and V (A) is the volume of a region A. In other words, p(x) is
the probability of a sample landing in an infinitesimal region in the vicinity of x. This limit
must be finite for a density to integrate to one while staying positive. However, if x are
restricted to a lower-dimensional manifold, we can take a region ∆(x) on the manifold, in
which case V (∆(x)) = 0 and P (∆(x)) > 0, and hence p(x) =∞. In other words, there exist
regions that have zero volume in the ambient space, but that contain non-zero probability
mass. For points off the manifold, on the other hand, p(x) = 0, due to P (∆(x)) = 0.

A standard, “ambient” normalizing flow can never represent such a degenerate density: the
transformation that turns a density defined in the ambient space into a density on a manifold
can not be invertible: it requires collapsing probability density into regions with zero volume,
which is a lossy transformation. At most, the flow can fit a smooth approximation of such
a low-dimensional density, and we are likely to experience numerical issues during training
as the optimization pushes the flow towards non-invertible configurations.
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4.2.2 Representation learning

While the discussion above has focused on using the manifold hypothesis as a way to make
density estimation tractable for high-dimensional problems, learning manifolds has a useful
side-effect. Having learned the low-dimensional underlying factors for the data, we can
use them as representations of data in downstream tasks. For example, we can train a
classifier in the representation space instead of the high-dimensional data space, which
could potentially simplify the classification problem (Bengio et al., 2013). This approach is
particularly useful in problems where little labeled data is available, as the representations
could be learned on unlabeled data.

Representation learning, and manifold learning in particular, are important subfields of
machine learning, with a long history (Cayton, 2005) and recent developments (van den
Oord et al., 2018; Chen et al., 2020). Normalizing flows are rarely the method of choice when
representation learning is the primary objective, where simpler methods like deterministic
autoencoders work well, and are easier to implement and train. Like representation learning
methods based on VAEs and GANs, however, an advantage of normalizing flows is that
they, besides providing representations, can sample in the learned latent space. Looking at
the samples is an easy way to debug the learned representations, verifying that they indeed
capture the principal factors of variation in the data.

The continuous manifold hypothesis is only one possible assumption that is useful for
learning representations. For example, natural clustering is an assumption that the data
is split into separate groups or categories, in which case group identity is an important
underlying factor. Other possible assumptions include factor sparsity, disentanglement of
factors, or simplicity of factor dependencies (Bengio et al., 2013). Making normalizing flows
work with assumptions beyond the manifold hypothesis is an exciting direction for future
research.

4.2.3 Normalizing flows on manifolds

The standard normalizing flow setup can be adapted to allow modeling data on lower-
dimensional manifolds. While the density in the ambient space is not well-defined, as
discussed above, we attempt to model the density of the subset of points that lie on the
manifold. In other words, for a particular manifoldM⊂ RD the density is only defined for
points x ∈M, is undefined for other points in RD, and is only normalized on the manifold,
not on RD: ∫

M
p(x) dx = 1. (4.2)

Flows on manifolds have to employ an alternative change-of-variables formula, one which,
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unlike Eq. (3.7), is not restricted to bijective transformations. Let f : Z → X be an injective
(one-to-one, but not bijective) differentiable mapping between a lower-dimensional latent
space Z and the data space X , i.e. x = f(z) for x ∈ X and z ∈ Z. The function f

transforms an infinitesimal hypercube dz at point z ∈ Z to a corresponding parallelepiped
on the manifold embedded in X . The volume of this parallelepiped is det

(
Jf (z)>Jf (z)

)
1
2 ,

where Jf is the Jacobian of the mapping f (Ben-Israel, 1999). The density of points on the
manifold is then defined as

p(x) = π(z) det
(
Jf (z)>Jf (z)

)
− 1

2 , (4.3)

where z is the unique point for which x = f(z), and π is the base density on Z. The density
p(x) is only defined for points on the manifold x ∈M, whereM = {f(z) : z ∈ Z}, and is
only normalized on the same manifold.

When f is bijective, a property of a square determinant matrix Jf (z) implies that

det
(
Jf (z)>Jf (z)

)
= det(Jf (z))2, (4.4)

and, as expected, we recover Eq. (3.7) from Eq. (4.3):

p(x) = π(z)
(
det Jf (z)2

)− 1
2 (4.5)

= π(z)
∣∣det Jf (z)−1

∣∣ (4.6)

= π
(
f−1(x)

)
|det Jf−1(x)| . (4.7)

Eq. (4.3) means that we can model a density on a manifold with a normalizing flow by
parametrizing an injective transformation fθ which transforms a lower-dimensional base
density π into a density p(x) on a manifold embedded in the data space. While this approach
is sound in theory, implementing it in practice is difficult. In particular, evaluating Eq. (4.3)
is expensive, even for transformations with a cheap det Jf . This is a major concern, as
tractable likelihood is an important feature of standard normalizing flow models.

In subsequent sections we review several methods that aim to overcome this difficulty and
fit normalizing flows on manifolds. We start with methods that learn densities on prescribed,
analytic manifolds, and move on to methods that simultaneously learn the manifold, using
architectures and/or approximate optimization objectives to make training tractable.

4.2.4 Prescribed manifolds

Gemici et al. (2016) use Eq. (4.3) to fit a normalizing flow on the sphere2 SD ⊂ RD+1. The

2Here and in the rest of the chapter we use the term “sphere” to refer to the (D−1)-dimensional surface
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authors define an injective3 function f that maps the Euclidean space RD to the sphere
SD ⊂ RD+1. The function f−1 (defined for points on the sphere) is used to project an
analytic base density on SD (e.g. uniform) to a density on RD. Any bijective transformation
g : RD → RD could then be used to transform the simple base density to a potentially
complex, multi-modal density. Finally the authors use f to project the enriched density
back to SD.

The approach of Gemici et al. allows fitting a normalizing flow on any pre-defined manifold,
as soon as the map f is known. However, if the manifold prescribed by f is not homeomorphic
to RD, the method is prone to numerical instability. In fact, SD is not homeomorphic to
RD, hence the f proposed by Gemici et al. cannot be well-behaved for all points on the
manifold. The inverse of f is equivalent to the well-known stereographic projection of the
unit hypersphere:

f−1(x) =
x1:D

1− xD+1
, (4.8)

and it will not be well-defined for some points x ∈ SD ⊂ RD+1 on the sphere: the output
will approach infinity as xD+1 → 1.

Rezende et al. (2020) consider an alternative that avoids said numerical issues. They first
propose robust methods based on spline flows (Chapter 3) for modeling densities on the
circle S1, and use them to build flows on the sphere SD recursively. At each step of the
recursion, like Gemici et al. (2016), a transformation is applied in an intermediate space,
but instead of RD the authors use the cylinder SD−1 × [−1, 1]. Analytic maps Ts→c and
Tc→s are defined that transform the sphere to the cylinder and back, respectively, which the
authors show to be more numerically stable than equivalent transformations between the
sphere and the Euclidean space. The density on the cylinder is modeled autoregressively
using two flows: a 1-dimensional flow on the cylinder height h ∈ [−1, 1], and a conditional
flow on the sphere SD−1. The latter is itself defined via a density on a lower-dimensional
cylinder, continuing the recursion all the way down to S1.

Rezende et al. also parameterize a density on a D-dimensional torus TD as a product of
conditional densities on S1. Their methods are less prone to numerical problems than those
proposed by Gemici et al., but extending them to other types of manifolds is less trivial
than simply writing down a manifold map f .

of a D-dimensional ball.
3Gemici et al. refer to f as a homeomorphism: a bijective, continuous function that also has a continuous

inverse (is bicontinuous). Note that f is only a homeomorphism when treated as a transformation between
RD and SD. When viewed as a transformation between RD and RD+1 it is injective, not bijective.
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Continuous manifold flows

Using continuous normalizing flows presents an attractive alternative when it comes to
density estimation on prescribed manifolds. Consider a continuous normalizing flow based
on a neural ordinary differential equation (Neural ODE, Chen et al., 2018):

dh(t)

dt
= fθ(h(t), t) (4.9)

Given the input z, we set the initial condition h(0) = z, and use a numerical ODE solver
to compute x = h(1). Under some mild smoothness assumptions on fθ, the resulting z→ x

transformation is guaranteed to be invertible (Chen et al., 2018). Moreover, fθ itself does not
need to be bijective, meaning that a free-form neural network can be used to parametrize it.

Mathieu and Nickel (2020), Lou et al. (2020) and Falorsi and Forré (2020) have all
concurrently proposed to extend the setup above to model densities on prescribed manifolds.
The core idea is to use some analytic base density π(z) on the manifold (e.g. a uniform
density on SD), and restrict the output of fθ to lie in the tangent space of said manifold.
When paired with a manifold-aware ODE solver (e.g. a projective solver that projects each
step onto the manifold), x will be restricted to stay on the presribed manifold, and will
have a well-defined density on it. The main benefit of continuous manifold flows when
compared to the alternatives is that they only require a local map of the manifold, not a
global one. The latter, as discussed above, can be difficult to define for some manifolds
without running into numerical difficulties.

4.2.5 Learned manifolds

Methods above assume that we know the data manifold a priori and can define it analytically.
This is the case in applications where the variables are representing, for example, angles,
axes or directions (Mardia and Jupp, 2009). For example, directions from earth to stars
could be represented as points on the sphere S2 ⊂ R3, if the distances to the stars are
ignored or unknown. We can use the methods above to model a probability density of such
directions.

Unfortunately, often we only know that there is some manifold structure in the problem,
but do not know what it is, and/or cannot define it analytically. This is the case with the
manifold of natural images, which is a commonly used benchmark for generative models.
Both Kumar et al. (2020) and Brehmer and Cranmer (2020) propose methods that allow
learning a potentially complex, non-linear manifold and a density on that manifold at the
same time.
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Injective flows

Kumar et al. (2020) parameterize the transformation f with a neural network, attempting
to train a generative neural sampler (Goodfellow et al., 2014a; Nowozin et al., 2016) with a
lower-dimensional latent space. The authors keep f (a neural network with an arbitrary
architecture) injective by penalizing solutions where the singular values of Jf approach
zero. This is achieved by penalizing low values of ‖Jfv‖2 for non-zero vectors v, effectively
discouraging settings of Jf for which Jfv = 0 for some non-zero vector v.

Training f by optimizing Eq. (4.3) exactly is also too computationally expensive: it involves
computing a D × K Jacobian Jf for a potentially large neural network. In automatic
differentiation frameworks computing such Jf involves K iterations of backpropagation.
Moreover, computing the determinant of the resulting D×D matrix is an O

(
D3
)
operation.

Instead, Kumar et al. derive a lower-bound on the log likelihood, which provides a tractable
training objective. In addition, to avoid solving the inverse problem for each x, i.e. finding
z s.t. x = f(z), the authors train an encoder h : X → Z s.t. f(h(x)) ≈ x for points x on
the manifold.

Following the required approximations, the training regime of Kumar et al. resembles the
one of a deterministic regularized autoencoder (RAE, Ghosh et al., 2020). Both injective
flows and RAEs, beyond the standard reconstruction error loss, regularize the latent space
of the encoder, and encourage the smoothness/injectivity of the generator/decoder f by
penalizing the Jacobian norm or an approximation to it.

In the end, by making the flow injective, we lose a tractable analytic inverse of f , and
effectively arrive at a different model class. At the same time, this is also the case for certain
standard normalizing flow architectures, where we have to resort to numerical methods
(like bijective search or fixed-point iteration) to compute the inverse (Huang et al., 2018;
van den Berg et al., 2018; Behrmann et al., 2019; Wehenkel and Louppe, 2019). If we
parametrize f (the noise-to-data transformation) using these flow architectures, this allows
for cheap sampling, but density evaluation is expensive, same as with injective flows.

Manifold-learning flows

Brehmer and Cranmer (2020) propose an alternative way of parametrizing a flexible
injective transformation f . They parametrize a bijective transformation in the ambient
space g : RD → RD with a standard normalizing flow. The transformation f is then defined
by padding the input to g with zeros, which is a simple way to push the lower-dimensional
point z into the ambient space RD:

x = f(z) = g
(

[z 0]>
)
, (4.10)
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where z ∈ RK and [z 0]> ∈ RD. Such a transformation f is injective by construction (see
Section 4.3.2), hence additional penalties on non-injective configurations are not needed.
For points x on the manifold, g−1 can be used to exactly solve the inverse problem, i.e.
find z s.t. x = f(z), but the authors also evaluate training a separate encoder as done by
Kumar et al. (2020).

Like in the method by Gemici et al. (2016), additional bijective transformations in the
latent space can be used to enrich the density on the manifold, which is cheaper than
making fθ more expressive, because it is done in the lower-dimensional space Z. The
approximate lower bound on Eq. (4.3) by Kumar et al. (2020) could be used for efficient
likelihood evaluation and training, but Brehmer and Cranmer also discuss other possible
approximations.

Brehmer and Cranmer propose a way of dealing with points off the manifold. Any point x

can be projected onto the manifold by computing z̃ = f−1(x), taking the corresponding
dimensions z = z̃1:K , and reconstructing x̃ = f(z). This way we can obtain “denoised”
datapoints x̃, or use the reconstruction error ‖x− x̃‖ as a metric for detecting anomalous
or out-of-distribution points.

At the same time, Brehmer and Cranmer point out the fundamental problem with training
manifold flows by maximizing the likelihood on the manifold as the sole objective. The
authors argue that comparing two densities that lie on different manifolds is fundamentally
meaningless. As an extreme example, they consider the situation where the learned manifold
is perpendicular to the true manifold. If this were the case, all data would be projected to a
small region of high density, allowing for large likelihoods even without discovering the true
manifold at all. To alleviate such pathological scenarios Brehmer and Cranmer augment the
likelihood objective with additional reconstruction error, resulting in the overall objective
not unlike the one that Kumar et al. (2020) arrive at by putting an approximate lower-bound
on the likelihood objective.

Kim et al. (2020) propose SoftFlow, a method that learns a density of noisy data, conditioned
on the level of the noise. In particular, Kim et al. push the data into the ambient space by
adding noise to it, where the noise magnitude itself is a random variable:

x̃i ∼ N
(
xi, c

2
i I
)
, ci ∼ U(a, b). (4.11)

They then train a conditional flow to match p(x̃ | c), i.e. learn the density of the noisy data
x̃ conditioned on the known magnitude of the noise c. In other words, Kim et al. learn a
sequence of flows that model increasingly noisy versions of the dataset. To sample data on
the manifold, they propose to sample from p(x̃ | c) with a small c, or even c = 0. SoftFlow
demonstrates good generative performance on synthetic 2D data and 3D point clouds, but
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it is not clear whether these results generalize to higher-dimensional density estimation
problems. Moreover, when setting c = 0, we are still asking a bijective flow to represent
a density with no volume in the ambient space, something that it can not do exactly, as
discussed in Section 4.2.1.

4.3 Nested dropout flows

In this section we propose nested dropout flows (NDF), a training regime for a normalizing
flow that allows extracting low-dimensional densities from the fit full-dimensional density.
We first review nested dropout (Rippel et al., 2014), a method for ordering dimensions in
a standard autoencoder, and show how nested dropout can also be used to order latent
dimensions in a normalizing flow. We then compare and contrast NDF with alternative
manifold normalizing flows.

4.3.1 Nested dropout

The proposed method relies on the idea of nested dropout. Nested dropout was introduced
by Rippel et al. (2014) in the context of autoencoders, with a goal of imposing an ordering
on representation dimensions, such that information is pushed into earlier dimensions in
the ordering.

As in standard dropout (Srivastava et al., 2014), nested dropout randomly “drops” (i.e.
zeros out) representation dimensions during training, but only does so for the output of
the encoder, not for its intermediate activations. Moreover, rather than dropping features
independently, we sample an index k ∼ pk(·), and drop dimensions k + 1 . . .K, i.e. all
dimensions above that index, where K is the latent dimension.

We define z↓k =
[
z1:k 0(D−k)

]> as a representation z where all dimensions above the k-th
have been dropped. We then define a low-dimensional reconstruction of a given datapoint
x for a given dimension k as

x̂↓k = gθ(fθ(x)↓k), (4.12)

where fθ and gθ are the encoder and the decoder, respectively, with parameters θ.

To train the autoencoder for a given dataset {xn}Nn=1, we minimize the following objective:

L(θ) =
1

N

N∑
n=1

Ek∼pk [d(xn, x̂n↓k)], (4.13)

where d is the chosen distance metric, typically L2 distance. This setup encourages the
autoencoder to put more information into dimensions that correspond to lower indices, as
shown both theoretically and empirically by Rippel et al. (2014).
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The theoretical analysis of Rippel et al. applies to any sampling distribution pk, as soon
as it has support over all latent indices. The original work uses a geometric distribution,
parametrized as pk(k)=(1− p)k−1p for a given Bernoulli probability p ∈ (0, 1], which is a
hyper-parameter. We follow the choice of Rippel et al. in this work and use a geometric
distribution, but note that in a different application of nested dropout Xu et al. (2021)
have observed limited effect when using an alternative (uniform) sampling distribution.

Rippel et al. show that when used with a linear autoencoder (LAE), nested dropout recovers
principal components of the data, i.e. is equivalent to PCA. In their more recent work,
Bao et al. (2020) show that the convergence of a gradient-based optimizer is slow when
training the LAE with nested dropout, explained by the fact that the Hessian of the loss is
ill-conditioned when close to the global minimum. Bao et al. use a deterministic variant of
nested dropout with a LAE, where instead of sampling from pk they minimize the expected
reconstruction error with respect to it. This expectation has an analytic form for the LAE,
which allows reducing the variance of the gradients. Bao et al. also explore an alternative
representation regularization scheme that recovers PCA: non-uniform L2, but it also suffers
from slow convergence when used with a LAE. Experimenting with the non-uniform L2

and other potential representation regularization schemes would be an interesting extension
of our work.

Characterizing the solution when using nested dropout with a non-linear autoencoder
is more difficult. Nevertheless, Rippel et al. demonstrate empirically that the learned
dimension ordering is useful for several downstream tasks. In particular, it allows performing
efficient retrieval by constructing a binary trie/prefix tree from binarized, ordered latent
representations of the items in a database. It also allows performing adaptive lossy
compression, where a compressed item can be decoded progressively for an arbitrary number
of bits received.

4.3.2 Nested dropout flows

We now apply nested dropout to normalizing flows, aiming to replicate the alignment of
the latent space observed by Rippel et al. (2014). We start with the standard training
objective of a normalizing flow, which is to maximize the likelihood of its parameters given
in Eq. (4.7). For a given a dataset D = {xn}Nn=1, we fit the flow parameters θ by minimizing
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the negative log likelihood objective:

L(θ) = −
N∑
i=1

log pθ(xi) (4.14)

= −
N∑
i=1

log π
(
f−1
θ (xi)

)
+ log

∣∣∣det Jf−1
θ

(xi)
∣∣∣ . (4.15)

We can redefine a lower-dimensional reconstruction in Eq. (4.12) for a normalizing flow
by treating the flow as a type of an autoencoder where the function f−1

θ is the invertible
“encoder”, and its inverse fθ is the invertible “decoder”. The reconstruction is then defined as

x̃↓k = fθ
(
f−1
θ (x)↓k

)
. (4.16)

We combine Eqs. (4.13), (4.14) and (4.16) into a novel objective, which specifies that the flow
should achieve high log likelihood, but also give good reconstructions from low-dimensional
parts of its representation:

L(θ) =

N∑
i=1

− log pθ(xi) + λEk∼pk [d(xi, x̃i↓k)], (4.17)

where λ is a hyper-parameter that balances the two losses. Intuitively, we optimize the flow
to match the target density in the data space and align the latent space to ensure that each
of k low-dimensional manifolds is close to the data. We call the normalizing flow trained
with this objective a nested dropout flow (NDF).

In line with Rippel et al., we estimate the expectation in Eq. (4.17) with a single Monte
Carlo sample: for each image xi in a batch, we sample a single value of k ∼ pk, project
the image onto the corresponding manifold, and compute the reconstruction error. Using
multiple samples of k would reduce the variance of the estimator, but will considerably
slow down the training: a full pass through the flow transformation is required to compute
x̃ = fθ(z↓k) for each k, even though z = f−1

θ (x) could be cached and re-used for all samples.

Having trained the NDF, to sample from the k-dimensional manifold we define a function
hθ,k : Zk → X that uses the trained fθ to transform samples from a lower-dimensional
base distribution to samples on the manifold:

x = hθ,k(z̃) = fθ

(
[z̃ 0]>

)
, where z̃ ∼ πk(z̃), (4.18)

and πk is the k-dimensional marginal base distribution. When π is a standard normal, πk
is simply a k-dimensional standard normal. As (D − k) dimensions of the input to fθ are
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set to a constant (zero), the sample x is guaranteed to lie on a k-dimensional manifold,
a manifold that the nested dropout objective pushes towards the data during training.
We recover the standard, ambient flow when k = D. For k < D, the samples will come
from a valid density on the k-dimensional manifold, as the transformation hθ,k is injective
(one-to-one, but not a correspondence).

To show that hθ,k is indeed injective, we note that the zero-padding operation in Eq. (4.18)
is invertible: if z = [z̃ 0]>, then z̃ = z↓k, meaning that each sample z̃ is associated with
a unique z. Each z, in turn, is associated with a unique x, as fθ is a bijection between
Z and X . As a result, hθ,k is necessarily one-to-one. The codomain of hθ,k, i.e. the
modeled manifold, is a subset of points with zeros at the corresponding latent dimensions,
i.e. x ∈Mk ⊂ X where

Mk =
{
x′ ∈ X : f−1

θ

(
x′
)
k+1:D = 0

}
, (4.19)

whereMk is a strict subset when k < D. By definition, a function is injective if it maps
points in its domain to a subset of points in its codomain, and each output point corresponds
to at most one input point. We have shown that both properties hold for hθ,k. �

Like Brehmer and Cranmer (2020), we can use the definition of the manifold in Eq. (4.19)
to check whether any given point x lies on said manifold, which is only the case if
f−1
θ (x)k+1:D = 0. Similarly, dropping all but k latent dimensions of a point and passing the
resulting vector through fθ we can project the point onto the k-dimensional manifold, which
is equivalent to computing the lower-dimensional reconstruction for the nested dropout loss
as done in Eq. (4.16).

To compute the manifold density of a point x, we must use the general change-of-variables
formula in Eq. (4.3), which involves “inverting” hθ,k, i.e. finding z̃ s.t. x = hθ,k(z̃) and
computing det

(
Jhθ,k(z̃)>Jhθ,k(z̃)

)
. The former is trivial, assuming x lies on the manifold:

z̃ = f−1
θ (x)1:k. For the latter, we note that the Jacobian of the zero-padding transformation

is an identity function padded with zeros, which means that

Jhθ,k(z̃) = Jfθ(z)Jz̃→z(z̃) = Jfθ(z)

[
Ik
0

]
, (4.20)

and hence

det
(
Jhθ,k(z̃)>Jhθ,k(z̃)

)
= det

([
Ik 0

]
Jfθ(z)>Jfθ(z)

[
Ik
0

])
. (4.21)

In our case, fθ is parametrized using a sequence of standard normalizing flow layers (coupling
layers, invertible affine layers, etc.). Such layers were designed to enable cheap computation
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(a) No noise (b) With noise

Figure 4.1: Data on the manifold vs. data near the manifold. A 1-dimensional line embedded
in R3 via a non-linear map, with/without Gaussian noise added in the ambient space. With
no noise, data lie on the manifold, hence as discussed in Section 4.2.1 their density is not
defined in R3, only on the 1-dimensional manifold. With noise, data lie near the manifold,
and have a well-defined density in R3. NDF is best suited for dataset (b).

of det Jfθ(z), not det
(
Jfθ(z)>Jfθ(z)

)
. In practice, this means that we need to compute the

Jacobians of the individual layers explicitly, multiply them, and compute the determinant
of the resulting D×D matrix using one of the general O

(
D3
)
algorithms. In the end, NDF

in no way overcomes the common problem of manifold flows, which is that computing the
exact density on the manifold is expensive, or even intractable.

4.3.3 Compared to alternative manifold flows

The fundamental difference between NDF and alternative manifold flows introduced in
Section 4.2.3 is that in NDF we do not assume that the target density actually lies on the
manifold. Instead we assume that the density is well-defined in the ambient space, but has
lower-dimensional structure, as visualized in Fig. 4.1. Based on the popularity and success
of PCA, we conjecture that this assumption holds in many datasets of interest, where the
data lie close to a lower-dimensional manifold, not exactly on it. If the assumption holds,
the standard log-likelihood training objective is well defined, and can be used for training
the full-dimensional flow. In NDF, we simply augment the likelihood-based objective to
allow extracting the low-dimensional densities from the trained ambient flow.

There are parallels between our training procedure and noise level sampling of SoftFlow
(Kim et al., 2020). Like ours, their method does not assume that we know the true manifold
dimension. In fact, with SoftFlow we can not control this dimension at all, instead relying
on the model to find the single best fit. As mentioned in Section 4.2.3, both Brehmer
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and Cranmer (2020, Eq. 22) and Kumar et al. (2020, Eq. 6) arrive at an objective that
1) minimizes the reconstruction error, and 2) maximizes the likelihood on the manifold.
Our loss in Eq. (4.17) is similar in spirit, but has important distinctions.

First, when training an NDF we are not actually maximizing the likelihood on the manifold.
Instead, we maximize the likelihood of the ambient flow, and expect that, when projected
onto a manifold that fits the data well, the modeled density on the manifold will resemble
the true density. On one hand, this allows us to avoid the expensive evaluation of the density
on the manifold through Eq. (4.3) during training. On the other hand, this means we can
not guarantee that the true density on the manifold will indeed be captured. Brehmer and
Cranmer, on the other hand, optimize the density on the manifold, albeit only training a
part of their injective transformation for this part of the objective. Kumar et al. resort to
training their injective flow using a series of lower bounds on the true manifold density.

Second, our method does not rely on the prior knowledge of the intrinsic data dimension.
Brehmer and Cranmer discuss this as a potential drawback of their method in problems
where the true manifold dimension is unknown. With their model, as well as with the model
of Kumar et al., this would warrant a brute-force search for the right latent dimension K,
re-training the flow for each considered value and choosing one based on performance on
held-out data. Like PCA, NDF makes it possible to pick the latent dimension at test time.

Finally, while Brehmer and Cranmer use two separate flows, one for each part of the loss, we
train a single flow for both. This potentially simplifies the implementation, but also results
in a bigger model: Brehmer and Cranmer can use a low-dimensional flow to model the
density on the manifold, and a bigger flow to learn the manifold itself, where latter is not
optimized for manifold density. At the same time, in line with Brehmer and Cranmer, the
ability of NDF to trivially “invert” the injective transformation allows us to avoid training
a separate encoder as done by Kumar et al.

4.3.4 Greedy sorting baseline

The reader might wonder if the additional training objective is strictly necessary. Can
we take a flow trained with the standard log likelihood objective, and align the latent
space afterwards? This leads to a simple baseline, where we order the dimensions of a
standard, pre-trained flow by sorting the dimensions greedily according to reconstruction
error. Pseudocode describing the approach is given in Algorithm 4.1. At each iteration
we go through all unselected dimensions, and select the one which, when included, results
in the smallest MSE on validation data. It is known that if the reconstruction error is
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Algorithm 4.1 Sorting dimensions greedily by their MSE contribution. Takes a validation
set D and a data dimension D. Outputs sorted, a sorted list of dimension indices.
1: unsorted ← set with numbers 1 to D
2: sorted ← empty list
3: while unsorted is not empty do
4: min ← max float value
5: next ← empty
6: for all idx in unsorted do
7: dims ← sorted
8: dims.append(idx)
9: mse ← reconstruction MSE on D for when retaining dims dimensions

10: if mse < min then
11: min ← mse
12: next ← idx
13: unsorted.remove(next)
14: sorted.append(next)

submodular4 as a function of the set of selected dimensions, a greedy algorithm will discover
a near-optimal ordering (Nemhauser et al., 1978).

The method assumes that the latent space is already axis-aligned in the pre-trained flow,
and it is only a matter of finding the correct ordering of dimensions. We hypothesize that
this is not the case, because the standard flow training regime has no incentive to align
latent dimensions in any way, assuming a spherically-symmetric distribution like a standard
normal is used.

Moreover, at each iteration we need to compute the MSE on a potentially large validation
set, and the number of iterations scales as O

(
D2
)
, i.e. quadratically in the number of

dimensions. This makes the computational cost prohibitive for higher-dimensional problems.
Nevertheless, we use the greedy approach as a baseline in our experiments. To make
experiments manageable, we restrict the size of validation set that we evaluate the MSE on.

4.4 Experiments

We now run experiments to evaluate NDF empirically. Our goal is to understand whether
the additional nested dropout objective is indeed aligning the latent space of the flow in a
way that allows us to obtain meaningful samples from low-dimensional manifolds. We first
turn to a simple synthetic 3-dimensional dataset, where PCA is the optimal dimensionality
reduction method. We then move on to a high-dimensional natural image density estimation

4Informally, a set function is submodular if there are diminishing returns: as the input set size increases
the gain in function value from adding a single element to the set decreases.
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Figure 4.2: Synthetic data, sampled from a transformed normal distribution in 3D. The three
eigenvectors of the covariance are plotted (rescaled to aid readability). The corresponding
eigenvalues are: λ1 = 1, λ2 = 0.1, λ3 = 0.01. The data distribution looks like a “fuzzy”
elliptical disc embedded in the three-dimensional space, and can be projected onto a planar
manifold with a small re-construction error.

task using Fashion-MNIST images.

4.4.1 Synthetic dataset

We first consider a simple synthetic dataset, where we sample points from a centered
3-dimensional normal distribution that is scaled along the axis, and then rotated. The
eigenvalues of the covariance are 1, 0.1, and 0.01, so the target distribution looks like a
fuzzy elliptical disc embedded in 3-dimensional ambient space, as visualized in Fig. 4.2. We
sample 104 points for training, and another 104 points for evaluation.

We use a simple flow with a standard normal base distribution and a single invertible linear
transformation. Such a flow can express the target distribution exactly by scaling/rotating
the base distribution as required. However, due to the spherical symmetry of the standard
normal distribution, the likelihood objective is invariant to a permutation (or indeed to any
orthogonal transformation) of the latent dimensions. As a result, the standard training
does not incentivize the model to align/order the latent dimensions in any way.

The invertible linear transformation is parameterized by either an LU decomposition
with a random, fixed permutation matrix P (Kingma and Dhariwal, 2018), or a QR
decomposition (Hoogeboom et al., 2019b) with the orthogonal matrix Q parameterized by
3 Householder transformations (Tomczak and Welling, 2016). We train the flow using the
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Table 4.1: Nested dropout results on synthetic data. Average test log-likelihood (in nats)
and reconstruction MSE when projecting down to 1 or 2 dimensions for the synthetic
dataset, comparing baseline flows to the same flows trained with the additional nested
dropout objective. Mean ± 2 standard deviations over 10 different initializations. Nested
dropout moves the flow reconstruction results closer to PCA numbers, although with larger
variance for the LU parametrization.

LL MSE(2) MSE(1)

PCA – 0.003 0.037

QR (baseline) −0.804± 0.000 0.240± 0.053 0.321± 0.025
QR (NDF) −0.804± 0.000 0.003± 0.000 0.037± 0.000

LU (baseline) −0.804± 0.000 0.051± 0.042 0.257± 0.130
LU (NDF) −0.805± 0.001 0.008± 0.007 0.037± 0.001

Adam optimizer (Kingma and Ba, 2015) for 30×103 iterations with a batch size of 500.
We set the reconstruction coefficient to λ = 20 for nested dropout runs, with pk set to a
geometric distribution with p = 0.33, unless stated otherwise.

Likelihood and reconstruction results of the trained flows are summarized in Table 4.1. We
use PCA as a baseline for reconstruction numbers, computing the corresponding principal
components. With both the QR and the LU flows the additional nested dropout loss
improves the low-dimensional reconstruction errors. Moreover, the QR flow trained with
nested dropout matches the optimal PCA reconstruction results, with no impact on the
test likelihood of the flow.

With the LU flow, the nested dropout objective negatively impacts the test likelihood, in
addition to not pushing the reconstruction error all the way to PCA results. The results for
this parametrization also have a higher variance, which is likely due to the fixed permutation
matrix P: it is initialized to a random permutation matrix at the beginning of each run,
and is not learned. The matrix P defines the subset of transformations that the LU layer
can represent, and determines the optimization surface for the matrices L and U. At the
same time, we see that the LU parametrization is biased towards solutions with better
reconstruction results, even when training without the nested dropout objective.

In Fig. 4.3 we analyze the samples from the NDF manifold. We sample from NDF with
k = 2 using Eq. (4.18), and project the samples onto the first two principal vectors computed
by PCA for the training data. We do the same for validation data. A mismatch between
the principal components of the two sets of datapoints would suggest that the true manifold
density has not been captured, which is what we see for the baseline flow. For NDF, the
empirical density of sample projections resembles the validation data, indicating that the
manifold density of NDF is not unreasonable.
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Figure 4.3: Projections of the low-dimensional NDF samples onto the principal vectors
of the data. Flows fit to synthetic data in Fig. 4.2. We sample from the trained NDF for
k = 2, and project the samples onto the first two principal vectors of PCA computed for
the training data. We plot the resulting two-dimensional points, as well as their kernel
density estimate. We do the same for validation data. For NDF the two densities are
similar, which is not the case for the baseline flow. This suggests that the two-dimensional
manifold density fit by NDF is not unreasonable given the data.

Finally, we aim to understand whether NDF is equivalent to PCA for this dataset. We
do so empirically, measuring the correlation between the latent variables of NDF and the
principal components of PCA. We plot the latent variables with corresponding principal
components in Fig. 4.4. Unlike for the baseline flow, the correlation between these values
is perfect for NDF, assuming we normalize the principal components (divide each by the
square root of the corresponding eigenvalue). At the same time, we see that the correlation
is negative (≈ −1) for one of the components. This is expected: the loss of PCA is invariant
to reversing the direction of any of the component vectors. The objective of PCA is to
find a vector v∗ that minimizes the reconstruction error, or, equivalently, maximizes the
variance of the principal components:

v∗ = argmax
v

(Xv)>(Xv), s.t. ‖v‖ = 1, (4.22)
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Figure 4.4: Correlation between latent variables of NDF and principal components of PCA.
Flows fit to synthetic data in Fig. 4.2. For the validation set, we plot the latent variables zi
and the principal components ũi. The latter are normalized : we divide each component
by the square root of the corresponding eigenvalue. As we can see, the NDF values are
perfectly correlated with the corresponding principal components, suggesting that NDF
indeed fits PCA in this case. The correlation is negative for the second variable — the PCA
loss is invariant to reversing the direction of any of the component vectors. This correlation
is significantly weaker for the baseline flow trained without nested dropout.

where we assume that the data matrix X = [x1 x2 ... xN ]> is centered (the mean of
each column is zero). Defining ṽ = −v, if ‖v‖ = 1 then trivially ‖ṽ‖ = 1, and the PCA
objective is unchanged:

(Xṽ)>(Xṽ) = −vX>X−v (4.23)

= (Xv)>(Xv). � (4.24)

4.4.2 Images

To evaluate the method on real, high-dimensional data, we fit a normalizing flow to Fashion-
MNIST images (Xiao et al., 2017). To simplify the flow architecture, we zero-pad the
images by 2 pixels on each side, giving 32×32 images, which means the observation space
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Figure 4.5: Impact of dimension ordering on the flow reconstruction MSE. Mean squared
error of Fashion-MNIST reconstructions for RQ-NSF (C) flow against the number of retained
dimensions k, varying the order in which the dimensions are dropped. Greedy for the order
that results from sorting the dimensions greedily according to their MSE contribution, as
described in Section 4.3.4. The reversed ordering is clearly preferable. The greedy ordering
shows surprisingly poor results.

is 1024-dimensional. We use the provided test set, but split the training set into 50 000

training images and 10 000 validation images. We dequantize the images by adding uniform
noise U ∈ [0, 1)32×32 (as discussed in Section 3.2.9).

We use a RQ-NSF (C) image flow (Section 3.3 and Durkan et al., 2019b) containing 3
multi-scale levels with 4 transformation steps per level, where each step consists of an acti-
vation normalization layer, a 1x1 convolution, and a rational-quadratic coupling transform.
Residual convolutional networks with 3 blocks and 128 hidden channels parameterize the
4-bin rational-quadratic splines in the coupling transforms. We train all models for 100×103

iterations, with a batch size of 256. We anneal the learning rate of the Adam optimizer
from 5×10−4 down to zero according to a cosine schedule (Loshchilov and Hutter, 2017,
Eq. 5).

Ordering in a multi-scale architecture

The multi-scale architecture with variable splitting, introduced by Dinh et al. (2017) and
used in RQ-NSF (C), already induces a partial ordering on variables, even without the
additional nested dropout objective. In the multi-scale architecture some variables undergo
more transformations than others. Each time the variables are “split-off”, an invertible
squeezing transformation is undertaken, which reduces the spatial resolution of the image,
offloading finer detail to additional channels. The end result is that the variables that
undergo more transformations are eventually transformed at a “coarser scale”, i.e. by
transformations conditioned on variables that are further away spatially. Dinh et al. (2017,
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Figure 4.6: Impact of nested dropout on the flow reconstruction MSE. Mean squared error
of Fashion-MNIST reconstructions for RQ-NSF (C) flow against the number of retained
dimensions k. Comparing a flow trained with nested dropout to the baseline without the
additional loss. bpd is the negative test log-likelihood in bits per dimension (lower is better).
Training with nested dropout results in better reconstruction numbers, but at a cost the
lower likelihood.

Appendix D) demonstrate that this by itself causes a subset of the variables to contain
higher-level semantic information.

We demonstrate the effect of this on reconstruction errors in Fig. 4.5. There is a sudden
drop in reconstruction error after including ≈250 dimensions from the reversed order. In
our implementation of the multi-scale transform, it is this last quarter of the variables
that are transformed at all 3 multi-scale levels. This makes the results consistent with the
intuition above.

We attempt to improve the ordering by sorting the dimensions greedily according to
Algorithm 4.1. This performs much worse than the reversed ordering, and, surprisingly,
barely beats the random ordering. It could be due to only the small subset of the validation
set being used, and/or because the problem at hand is not actually submodular (as discussed
in Section 4.3.4).

We use the reverse order as the baseline order in all further experiments. In addition, we use
the reverse order when indexing dimensions for training with nested dropout. For example,
for k = 1 we would only retain the last dimension in the latent vector, for k = 2 the last
two dimensions, and so on.

Training with nested dropout

We now evaluate the additional nested dropout objective, aiming to improve upon the
baseline RQ-NSF (C) model in terms of reconstruction error. We set the reconstruction
coefficient λ = 10−3, and we set p = 10−3 for the geometric distribution pk.
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(a) Training data (b) Baseline

(c) NDF (k = 1024) (d) NDF (k = 128)

(e) NDF (k = 64) (f) NDF (k = 16)

Figure 4.7: Fashion-MNIST image samples from the NDF manifolds. Training data and
samples from a baseline flow with no nested dropout are shown for comparison. We sample
from the full-dimensional NDF (D = 1024 for the padded FashionMNIST), and from the
manifolds with corresponding dimension k. We see that the smaller the manifold dimension
k, the less “low-level” information (textures, detailing, etc.) is present in the samples,
suggesting NDF has indeed captured the principal modes of variation.
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Figure 4.8: NDF samples when increasing the number of dimensions retained k. The number
of dimensions retained k increases in [2, 4, 8, 16, 32, 64, 128, 256, 512] top-to-bottom. The
values in the retained dimensions stay fixed across rows. Finer details appear as more
dimensions are sampled, while the object identity and higher-level features stay consistent.
This is not the case for the baseline flow, indicating the lack of similar alignment of the
latent space.

As shown in Fig. 4.6, the reconstruction errors are reduced significantly when training with
nested dropout, in particular for k < 250. At the same time, the test likelihood of the flow
suffers, being reduced by ≈ 4% for NDF, hinting at a conflict between the two objectives.
We study this conflict further in later experiments.

We show the samples from the densities on manifolds learned by NDF in Fig. 4.7. We
vary the manifold dimension k, and compare the NDF samples to the training data and
to samples from the baseline flow. With k = 1024 (retaining all dimensions), there is no
clear difference between the NDF and baseline flow samples, even though the likelihoods of
the two models differ. Both methods capture the data distribution reasonably well judging
by their samples. This is not unexpected: Theis et al. (2016) note that the relationship
between the perceptual quality of samples and likelihood can be complex.

However, as we reduce k, the low-dimensional samples from NDF contain less detail and
high-frequency information, but retain the high-level features and sample diversity. This is
the “regularization” effect that we seek when applying the manifold hypothesis, and suggests
the manifold densities learned by NDF indeed match the data well.

Aiming to better understand the nature of the manifolds learned by NDF, in Fig. 4.8 we
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again plot the manifold samples varying the manifold dimension k, but this time fixing
the retained latent values. In other words, when increasing k we sample additional latent
values, keeping the previously sampled values unchanged. We see that as we sample more
dimensions, the object identity and high-level properties stay fixed, but the object becomes
less generic and gains detail. For example, the generic t-shirt for k = 2 becomes a t-shirt
with a print for k = 16, which becomes a t-shirt with a certain material texture and a
particular print for k = 256.

In Fig. 4.9 we plot lower-dimensional projections and reconstructions of validation images.
For NDF, the story resembles the one in Fig. 4.8: as we project onto manifolds with fewer
dimensions retained k, the object in the image sheds detail, but its identity and high-level
properties stay consistent. In comparison, the object identity consistently flips with k < 128

for the baseline flow trained without nested dropout. Together with Fig. 4.8, these results
suggest that NDF has indeed captured semantically meaningful manifolds, in addition to
densities on them.

The likelihood-reconstruction trade-off

We now revisit the trade-off between the likelihood and the reconstruction error of NDF,
noted in previous experiments. To understand the impact of the hyper-parameters on this
trade-off, we perform a limited grid-search for λ and p, starting with the baseline values
used in previous experiments, and perturbing each hyper-parameter independently. The
resulting likelihoods and reconstruction errors are shown in Fig. 4.10.

The lower value of p (dropping more dimensions on average during training) marginally
improves the MSE for k < 200, but generally this hyper-parameter has a limited impact on
the results. This is consistent with the observation made by Xu et al. (2021) that the form
and parameters of the distribution pk are not critical to the success of the method.

The effect of perturbing λ is more pronounced. The larger value causes a noticeable improve-
ment in reconstruction results, while the lower value has the opposite effect. Surprisingly, all
4 hyper-parameter settings improve upon the baseline in terms of test likelihood. This could
be due to non-trivial interactions between λ and p, or simply due to a large variation across
runs. All but one hyper-parameter setting, including the one with the best reconstruction
results, still lose to the baseline flow in terms of test likelihood (as reported in Fig. 4.6).

Finally, we aim to understand the role of optimization in the likelihood-reconstruction
trade-off. We start with a flow trained without the additional nested dropout penalty and
fine-tune it using the combined nested dropout objective. The likelihood and reconstruction
curves are shown in Fig. 4.11. We can see that very quickly after adding the nested dropout
penalty the optimization settles into a region with much better reconstruction numbers,
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(a) NDF (b) Baseline

Figure 4.9: Lower-dimensional projections of Fashion-MNIST images on the NDF manifolds.
The input images are given in the top row, followed by lower-dimensional projections, decay-
ing k in [512, 256, 128, 64, 32, 16, 8, 4, 2] top-to-bottom. The identity of the projected object
stays consistent for NDF, with textures and detailing disappearing for lower-dimensional
projections. This suggests the high-level information is indeed pushed to the desired latent
dimensions in NDF. This is not the case for the baseline, where the object identity always
flips.

but worse likelihoods, further suggesting that the two objectives are at odds with each
other for the used flow architecture.

4.5 Discussion

Nested dropout is a simple way to encourage a normalizing flow to represent data as closely
as possible in the top, principal elements of its latent representation. Given the large
redundancy in the way flows parametrize distributions, we can train flows with similar
likelihoods that align the latent space. The goal of this alignment in this work is to allow
extracting densities on low-dimensional manifolds from the trained ambient flow. Our
experiments show that the manifold densities learned by NDF are meaningful, both for the
low-dimensional synthetic dataset and the high-dimensional Fashion-MNIST image dataset.

For linear flows with an unrestricted parametrization, we know we can rotate the latent
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Figure 4.10: Effect of NDF hyper-parameters. Mean squared error of Fashion-MNIST
reconstructions for RQ-NSF (C) flow trained with nested dropout against the number of
retained dimensions k, varying hyper-parameters λ and p. The dotted line for the baseline
nested dropout model. bpd is the negative test log-likelihood in bits per dimension (lower is
better). The effect of changing p is limited, the effect of changing λ is as expected: higher
values lead to better reconstruction results, but lower likelihoods. All runs improve on the
baseline in terms of bpd: the interactions between hyperparameters are likely complex.

space without losing generality, and hence observe no impact on the likelihood. For more
realistic flows, we saw some loss of model likelihood when encouraging the flow to order
its representation. This suggests that existing flows have some inductive bias against the
desired alignment. It is likely that for some parametrizations the desired ordering might
come naturally and with no likelihood cost, while other parametrizations might find it
difficult to represent the desired ordering while also matching the target density well. We
have studied the impact of hyper-parameters and optimization on this trade-off, but more
research is needed to understand the role of the flow parametrization, as well as the inherent
biases for useful orderings in flow architectures.

Unlike other manifold flows, NDF does not explicitly fit the density on the manifold. Instead,
it aims to match the ambient density and the low-dimensional structure using two separate
terms in its loss. We conjecture that the density on the manifold will be approximated well
when projecting the well-matched ambient density on the well-matched manifold, and our
experimental results provide evidence that this is indeed the case. On one hand, this allows
us to avoid the expensive density evaluation or approximation during training, and to use
standard normalizing flow frameworks and architectures. On the other hand, it is difficult
to characterize the relationship between the manifold density fit by our method and the
true manifold density, and hence put any guarantees/bounds on the fit. Theoretical and/or
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Figure 4.11: Effect of fine-tuning a trained flow after adding the nested dropout objective.
Fine-tuning a baseline RQ-NSF(C) model with λ = 10−3 and p = 10−3. Dashed line
indicates the iteration at which the fine-tuning begins. Training log likelihood in bits per
dimension and reconstruction mean squared error are plotted. After adding the nested
dropout objective the model quickly settles in a region with better reconstruction numbers,
but lower likelihoods.

empirical study of this relationship would be an interesting extension of our work.

In NDF the flow must be evaluated in both directions on every iteration to compute the
likelihood and the reconstruction error. In our experiments the training was typically
slower by a factor of two when using architectures with one-pass sampling. NDF with flow
architectures without a cheap inverse, e.g. auto-regressive flows, would be impractical.

NDF, like other contemporary manifold flows, does not provide a cheap-to-compute density
on the manifold, which requires computing the determinant of a D × D matrix for a
D-dimensional data space. When evaluating densities on the manifold is important,
subsequently proposed conformal embedding flow (CEF, Ross and Cresswell, 2021) should
be considered. CEF is based on injective transformations designed to have an easy-to-
compute det J>J, and hence provides tractable densities on the manifold.

When data really lie on a low-dimensional manifold, densities in data space are ill-defined,
and so is the NDF training objective. If that is the case, and the dimension of the manifold
is known, the methods of Kumar et al. (2020) and Brehmer and Cranmer (2020) are more
appropriate. However, PCA and other dimensionality reduction methods are often applied
when data are not really restricted to a subspace of fixed dimension, or when this dimension
is unknown. We hope that nested dropout flows will prove useful in similar circumstances.



Chapter 5

Discussion

The probabilistic approach to machine learning allows us to use the language of probability
to formalize and reason about learning problems. Probabilistic methods explicitly account
for the uncertainty inherent to natural processes, and the uncertainty resulting from learning
with finite data. While attractive conceptually, the probabilistic approach is often difficult
to implement in practice, especially when it comes to complex, high-dimensional learning
problems. Classic probabilistic methods make naive assumptions about the modeled
processes and/or struggle to scale to large, high-dimensional datasets, which means that
practitioners often simplify or ignore important aspects of the probabilistic approach.

5.1 Probabilistic prediction

As our first contribution, the experiments in Chapter 2 demonstrate the importance of
careful Bayesian treatment in probabilistic prediction with high-dimensional data. The
success of neural networks trained by maximum likelihood is often used as a justification
against developing accurate, scalable approximate inference methods and complex, hierar-
chical priors that faithfully express our prior belief about the underlying function. This
justification is being questioned as underestimated model uncertainty manifests in overcon-
fident predictions for out-of-distribution and adversarial points. Our work demonstrates
that principled probabilistic treatment is important for training trustworthy models that
know when they do not know.

In particular, our experiments show how informative priors and accurate methods for
estimating the posterior eliminate the calibration errors on adversarial points for a simple
linear model. Increasing the flexibility of the model only increases the importance of
using proper priors and accurate inference schemes. Assuming a fixed dataset, extending
the set of functions that the model can represent amplifies the effect of prior-induced
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“regularization” and the negative impact of underestimated model uncertainty — there
are more parameter settings consistent with the data that will not be captured by naive
inference methods. In other words, principled probabilistic treatment is no less important
for expressive models like neural networks, and is likely to bring a similar improvement to
their predictive uncertainty.

To this end, there are several exciting directions in the Bayesian neural network literature.
Instead of setting priors in the neural network weight space directly, Hafner et al. (2019)
propose to define a prior on the input-output relationship instead, while Sun et al. (2019),
Pearce et al. (2019) and Karaletsos and Bui (2020) propose to define priors in the function
space of neural networks, searching for architectures and/or weight priors that correspond
to a particular Gaussian Process kernel. Finally, Atanov et al. (2019) train a generative
model of the neural network weights, using it as a prior for novel tasks.

When it comes to approximate inference, Izmailov et al. (2021) study the properties of neural
network posteriors by running standard HMC on modern neural network architectures,
Cobb and Jalaian (2021) develop scalable HMC methods for accurate and practical inference
in BNNs, while Tomczak et al. (2021) propose a novel variational lower bound for BNNs,
demonstrating improved performance of the cheap mean-field approximation. Importantly,
Nado et al. (2021), Band et al. (2021) and Osband et al. (2021) develop benchmarks and
implement baselines in order to stimulate the development and principled evaluation of
novel BNN methods.

5.2 Density estimation

As our next contribution, in Chapter 3 we propose a class of flexible models for high-
dimensional density estimation. Density estimation is a principled formalization of unsu-
pervised learning in the context of probabilistic machine learning. Estimating densities of
high-dimensional data is hard, however, and practitioners often consider more practical,
non-probabilistic formulations of unsupervised learning. In this thesis, we propose NSF
— a novel class of normalizing flow models that use flexible rational-quadratic monotonic
splines. Such flexible parametrizations allow NSF to fully exploit the expressive power
of neural networks to parametrize complex, high-dimensional densities, demonstrating
state-of-the-art performance on several density estimation benchmarks.

We believe an important implication of our results is that the proposed coupling NSF ap-
proaches a universal density model: it is expressive and parameter-efficient, is differentiable
and hence trainable by gradient-based methods, provides tractable densities, and is cheap
to sample from. Representing and manipulating densities is fundamental to probabilistic
modeling and reasoning, and, besides estimating the data density directly, density models
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are useful in likelihood-free inference (Papamakarios et al., 2019b), variational inference
(Rezende and Mohamed, 2015), sampling algorithms (Müller et al., 2018), and for build-
ing generative classifiers (Schott et al., 2019). We believe that NSF is a step towards a
plug-and-play density model that works well in many density estimation contexts.

While normalizing flows demonstrate excellent density estimation results, the perceptual
quality of their samples is lacking when compared to alternative generative methods like
GANs. Recently proposed denoising diffusion models (Ho et al., 2020) resemble normalizing
flows, but instead fix the data-to-noise direction to a prescribed diffusion process, and learn
a sequence of conditional densities that iteratively “de-noises” the samples from the base
distribution. Diffusion models are trained by maximum likelihood, but their samples are
competitive with the samples of state-of-the-art GAN models (Dhariwal and Nichol, 2021).

At the same time, diffusion models demonstrate underwhelming density estimation results
when compared to alternative likelihood-based models. Similarly, training normalizing
flows with an alternative objective (e.g. the Jensen–Shannon divergence, as used in GANs)
improves their sample quality, but negatively impacts their likelihoods (Grover et al., 2018).
Studying the tension between the likelihood-based training objectives and sample quality
will be an important topic for future research.

As our final contribution, in Chapter 4 we propose a novel method for fitting normalizing
flows to data with lower-dimensional structure. Assumptions about the target density are
necessary to make high-dimensional density estimation tractable, and to build models with
the desired inductive bias. The manifold hypothesis is an important assumption used in
many machine learning methods, but it is difficult to use with likelihood-based density
models: the standard training objectives become ill-defined when data are restricted to a
lower-dimensional manifold.

Unlike the existing manifold flows, NDF is based on the assumption that many types of real
data (including images) are not restricted to a manifold, even if they do have non-trivial
lower-dimensional structure. In this case, nested dropout can align the latent space of a
flow, thus capturing the lower-dimensional structure of the density, as indicated by the
samples from our model.

NDF allows us to avoid the conceptual and practical complications of training injective
flows, but is less principled: we never actually fit the density on the manifold. Studying
the NDF manifold densities is an important direction for future work, aided by the fact
that said densities, while expensive, can be computed. It is also important to understand if
the performance of NDF transfers to more complex, higher-dimensional image datasets like
ImageNet (Russakovsky et al., 2015), or alternative data modalities like speech or general
time series.
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5.3 Bayesian inference and density estimation

While Bayesian inference and density estimation have been treated separately in this thesis,
there are several interesting lines of research in the intersection of the two topics.

As mentioned before, density models like normalizing flows can be used to define flexible
variational families in the context of variational inference (Rezende and Mohamed, 2015).
When it comes to neural network posteriors, the target densities are extremely high-
dimensional, so a normalizing flow with a single invertible linear layer — equivalent to fitting
a full-covariance Gaussian if the base distribution is Gaussian — becomes too expensive.
Existing work by Louizos and Welling (2017) reparametrizes the neural network to allow
fitting the normalizing flow in a lower-dimensional parameter space. Developing similar ways
of incorporating structure and independence assumptions into normalizing flows is important
if we want to use them for variational inference with complex models like neural networks.

Finally, in Chapters 3 and 4 we fit the normalizing flow parameters by maximum likelihood.
As demonstrated in Chapter 2, this can lead to undesirable effects, which can be alleviated
by setting proper priors and performing Bayesian inference to compute the posterior. Pope
et al. (2020) note that modern normalizing flows also suffer from adversarial examples, where
minimal perturbations to the valid input can significantly decrease its likelihood. Trippe
and Turner (2018) explore Bayesian normalizing flows, and observe improved performance
on a set of conditional density estimation tasks. Can we improve adversarial robustness
and/or reduce overfitting observed in Chapter 4 through careful probabilistic treatment of
normalizing flows? Unfortunately, setting priors on the parameters of neural normalizing
flows and doing accurate inference for them is no less difficult than it is for other neural
networks. We hope that future developments in Bayesian deep learning can enable a
Bayesian treatment of normalizing flows as well.
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