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Abstract

The K → π`+`− decay is a flavor changing neutral current process which is

forbidden at tree level in the Standard Model and instead occurs as a second-

order electroweak process. This suppression causes the decay to be sensitive

to potential New Physics, however the decay channels are dominated by long-

distance contributions which require non-perturbative methods of investigation.

The details of a lattice calculation on a 483 × 96 zMöbius domain wall fermion

action, with near-physical pion and kaon masses, Mπ ≈ 140 MeV and MK ≈ 500

MeV respectively, will be presented in this thesis.

The challenges that occur when evaluating four-point correlation functions

which include two effective operators, that are required to study second-order

electroweak processes, will be discussed. These challenges include extracting

unphysical intermediate states that grow exponentially in the Euclidean-space

correlators, the ultra-violet divergence that occurs when the operators approach

each other and the extrapolation to the physical charm quark mass needed to

deal with this divergence. A comparison of different methods of creating quark

propagators, the All-to-All method and using Coulomb gauge-fixed wall sources,

will also be presented, showing that the All-to-All method is not suited for a

study of this type of decay.

The form factor V (z) for the K → π`+`− decay, where z = q2/M2
K and q is

difference in the 4-momenta of the kaon and pion, is found to be V (z) = −0.8(5.9)

for z = 0.0151(5). The large error on this result, that leads to our calculation of

V (z) being consistent with zero, stems from a statistical decorrelational between

the single-propagator traces of physical light- and charm-quarks. This statistical

decorrelational will be presented along with a discussion on how it may be tackled

in the future.
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Lay Summary

The Standard Model is a theory of the unification of three fundamental forces:

the electromagnetic, the strong, and the weak, and a set of fundamental particles

needed to describe these forces. It is the origin of many discoveries and predictions

that give insight into the structure and inner-workings of our universe. There are

some phenomena, however, that are not currently explainable by the Standard

Model. For example we do not understand why there is more matter than

antimatter in the universe, nor can we explain the existence of dark matter,

which is needed to understand the observed rotation of galaxies. Finding new

discrepancies between theoretical predictions and experimental observations may

illuminate a path to expanding the Standard Model such that these mysteries

can be solved.

One potential source of such a discrepancy is lepton-flavor universality. This is

the expectation that a process involving a charged lepton, such as the electron or

its heavier counterparts, the muon and tauon, and interaction mediating particles,

known as gauge bosons, should behave in exactly the same way, independent of

which lepton flavor is involved. The decay of a kaon to a pion and a lepton/anti-

lepton pair (the titular K → π`+`− decay) is one such process. This decay

has garnered interest in recent years and it has been observed at with increased

precision in particle colliding experiments at CERN. We wish to improve our

theoretical understanding of the decay in tandem with experiment in order to

stringently test for any disagreement.

The current theoretical description of this decay is lacking in the low-momentum

transfer region, as typical “pen-and-paper” methods require high-momentum

transfer in order to make certain approximations that make a calculation feasible.

One method that is capable of investigating this region is Lattice Quantum
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Chromodynamics, where we take the sub-theory of the Standard Model, Quantum

Chromodynamics, and define it with spacetime discretized on a finite 4D lattice.

This method allows for computational simulations and calculations, leading to

predictions that were previously out of reach. Our theoretical knowledge can

then be pushed to new limits along with computational capabilities, with the

cutting edge of software and hardware being employed to make more precise and

more ambitious analyses of physical processes.

In this thesis I outline a Lattice Quantum Chromodynamics calculation of the

K → π`+`− decay amplitude. This is the first calculation of its kind to be

done with quark masses that give near-physical kaon and pion masses, which are

needed in order to have a sound comparison to experimental results. A bound

for the prediction of the amplitude is given, and the contributions that require a

refined approach in order to tighten this bound are identified.
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(Fionn Ó hÓgáin, September 2021 )

iv



Acknowledgements

I would like to thank my supervisor Antonin Portelli, for his guidance and
encouragement these past years. I will forever be grateful for his advice and
support. I am also grateful for the help and insight given by me second supervisor
Peter Boyle, who laid much of the computational foundation upon which this
project was built.

My thanks also go to everyone in RBC-UKQCD, for their discussion, input,
and inspiration. In particular, but of course not limited to, I would like to
thank Norman Christ, Jonathan Flynn, Vera Gülpers, Andreas Jüttner, Chris
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Introduction

The K → π`+`− (` = e, µ) rare kaon decays are flavor changing neutral current

processes that occur in the occur in the Standard Model (SM) through W-W

and γ exchange diagrams. Theses second-order electroweak interactions are

suppressed in the SM and so the decays can be used to probe areas of potential

New Physics, such as lepton flavor universality violation. Short distance top

quark contributions to the CP-conserving KS → π0`+`− and K+ → π+`+`−

decays are suppressed by the CKM factor Re(λt), and short distance light quark

contributions are suppressed by a logarithmic GIM cancellation. As such the

long-distance single-photon exchange dominates these processes.

These decays have been observed in experiment at the NA48 experiment at the

Super Proton Synchrotron at CERN in the late 1990s and early 2000s, with

∼ 1000 K± → π±`+`− [11, 12] and 13 KS → π0`+`− [13, 14] decay modes being

observed. The NA62 experiment, the successor of NA48, measured ∼ 28000

K+ → π+µ+µ− events during the 20016-2018 Run 1, with prospects for further

measurements during the 2012-2024 Run 2. The PDG average of the branching

ratios of these decays are [92]

BR
[
K+ → π+e+e−

]
= (3.00± 0.09)× 10−7,

BR
[
K+ → π+µ+µ−

]
= (9.4± 0.6)× 10−8,

BR
[
KS → π0e+e−

]
=
(
3.0+1.4
−1.2

)
× 10−9,

BR
[
KS → π0µ+µ−

]
=
(
2.9+1.5
−1.2

)
× 10−9.

There are no theoretical estimates for these branching ratios, due to the long-

distance nature of the decays. Lattice QCD is uniquely poised in its abilities to

compute long distance contributions to this decay, and an exploratory calculation

of the K+ → π+`+`− decay amplitude with unphysically heavy pion and kaon

masses was performed in [34]. This thesis outlines the first lattice QCD study

of this decay using physical light quark masses, and thus near-physical pion and

1



kaon masses.

The structure of the thesis is as follows. Chapters (1) through (3) will provide the

background knowledge required to give context to the results that are presented in

Chapter (4). Chapter (1) will introduce the Standard Model, giving a description

of the fundamental interactions, particles, and symmetries in Section (1.1).

Following that a summary of quantum chromodynamics and the electroweak

theory are given in Sections (1.2) and (1.3). As they play a key role in the

study of rare kaon decays Fermi’s theory of the weak interaction and the operator

product expansion method are introduced in Sections (1.4) and (1.5.1). Finally

a description of chiral perturbation theory, which has previously been used to

study the long-distance part of rare kaon decays, is given in Section (1.6).

Chapter (2) introduces lattice QCD, describing fundamental concepts of discretiz-

ing QCD in Section (2.1), along with a review of the fermion actions used in this

project. An overview of the process simulating QCD on the lattice and extracting

observables from these simulations is is given in Section (2.2). Sections (2.3) and

(2.4) describe the various methods used to construct quark propagators for this

calculation and the structure of the sources used to create the propagators.

A summary of the K → π`+`− decay is given in Chapter (3), with an overview of

the effective Hamiltonians needed to study the decay in Section (3.1), along with

a non-lattice description of the decay amplitude. Experimental and non-lattice

theoretical predictions for this amplitude are also presented. Section (3.2) defines

this amplitude in Euclidean spacetime and describes how to extract the it using

lattice QCD.

Chapter (4) gives an outline of the lattice QCD calculation that was performed.

Details of the simulation are given in Section (4.1). with a description of the

calculation setup in Section (4.2). This setup is contrasted with an all-to-all

approach as presented in Section (4.3), where results from an all-to-all study

of the decay are used to justify the choice not to perform the full calculation

with all-to-all vectors and meson fields. The numerical results of the calculation

are given in Section (4.4), with a discussion of the results and future outlook in

Chapter (5).
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Chapter 1

The Standard Model

The Standard Model (SM) is a theory of the unification of three fundamental

forces: the electromagnetic, the strong, and the weak, and a set of fundamental

particles needed to describe these forces. The SM gives us a highly accurate

representation of the territory it is capable of mapping, guiding the way to the

discovery of fundamental particles, such as the tau[90], the Z-boson[54], Higgs-

boson[49, 60], and quarks [52] and giving theoretical predictions that have been

verified to incredible precision. For example the prediction for the anomalous

magnetic moment of the electron agrees with experiment to 10 significant figures

[7].

However there are many phenomena that are not contained in this territory.

There is no SM answer to the question of why we observe an asymmetry in the

amount of matter/antimatter in the universe [85] or a satisfactory explanation for

dark matter, needed to describe the observed rotation of galaxies[16], let alone a

clear way to fold the fourth fundamental force of gravity into the model. There

are also parts of the SM that still come under scrutiny, with some discrepancies

invoking the curiosity of many scientist interested in finding ways to expand the

borders of the theory. In contrast to the electron, there is disagreement between

the SM and experimental predictions for the anomalous magnetic moment of the

muon, interim results from a Fermilab experiment shows that this discrepancy

is currently 4.2σ[3] and further data collection is expected to improve the

statistical error on this result. Lattice Quantum Chromodynamics is expected

to improve the theoretical prediction by reducing uncertainties surrounding

hadronic contributions [6], with results from the Budapest-Marseille-Wuppertal

collaboration showing that the discrepancy can potentially be reduced to 1.5σ
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with these improvements [22].

Lepton flavor universality is another source of tension in the SM. Decays involving

different flavors of lepton should not prefer any particular flavor, according to the

SM, and so ratios of decay probabilities ought to be measured to be close to

one. Experiments at LHCb that look at B → K`+`−, for ` = e, µ, show a 3.1σ

discrepancy between this prediction and their results [2]. The analogous decay of

K → π`+`−, which is the focus of this thesis, is also an avenue in which lepton

flavor universality can be explored for inconsistencies in the SM[38].

In order to discover New Physics, to increase the overlap in what we observe and

how we describe it, both experiment and theory must be push to the cutting edge

in tandem. In this chapter I will give an introduction to the SM, beginning with

Section (1.1) where I will give an overview of the model, discussing fundamental

interactions, particles and symmetries. Following that I will give further details

needed to understand rare kaon decays, presenting quantum chromodynamics in

Section(1.2), electroweak theory in Section (1.3), and Fermi effective theory of

the weak interaction in Section(1.4).

1.1 Fundamental Interactions, Particles and

Symmetries

The Standard Model is constructed using the mathematical framework of

quantum field theory (QFT), where particles are treated as excited states of

dynamical quantum fields. The interaction terms in a general, renormalizable,

Lagrangian which obeys the appropriate symmetries describe the interactions

between these particles. For the SM the Lagrangian takes the form of

LSM = LQCD + LEW + LHiggs + LY ukawa. (1.1)

The particles that are described in the SM can be split into fermions, with
1
2
-integer spin, and bosons, with integer spin. Fermions obey Fermi-Dirac

statistics and come in two types: quarks and leptons (along with their antimatter

counterparts: anti-quarks and anti-leptons). There are 3 generations of two

quarks types: the up, charm, and top quarks make up the “up” type quarks and

the down, strange, and bottom quarks make up the “down” type quarks. The

leptons, again, have three generations, consisting of the e−, µ−, and τ− leptons,

each of which has an associated neutrino. The neutrinos participate only in weak
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interactions, the charged leptons participate in electroweak (EW) interactions,

and the quarks participate in strong and EW interactions.

Bosons obey Bose-Einstein statistics and consists of four, force carrying, gauge

bosons with spin 1 and one scalar boson with spin 0. The gauge bosons include

the photon, which mediates electromagnetic forces, the W and Z bosons, that

mediate the EW forces, and the gluon which mediates the strong force. The

scalar boson is known as the Higgs bosons which, when it acquires a non-zero

vacuum expectation value (VEV), gives rise to the quarks, leptons, the W boson,

and the Z boson acquiring mass at low energies.

I will now focus on the QCD Lagrangian, describing it and the relevant

symmetries and conserved currents needed for this thesis.

1.2 Quantum Chromodynamics

The QCD Lagrangian is given by

LQCD =
∑
f

ψf (x)
(
i /D −mf

)
ψf (x)− 1

4
Ga
µ,νG

µ,ν
a . (1.2)

Here the quarks are represented as Dirac 4-spinors, ψf , and we have summed

over the six flavors, f , of quark, the spinor indices, µ, ν = 1, 2, 3, 4, and the color

index, a, which goes from 1 to 8 (one index for each generator of SU(3)). The

covariant derivative is given by

Dµ = ∂µ + igT aAaµ (1.3)

where g is the QCD coupling, T a are the generators of the SU(3) algebra and Aaµ

is the gauge field of the gluon. This gauge field is also used to define the gluon

field strength tensor, Ga
µ,ν ,

Ga
µ,ν = ∂µA

a
ν − ∂νAaµ + gfabcAµbAµc (1.4)

where fabc are the SU(3) structure constants.

The quark-gluon interaction is induced by the covariant derivative and (unlike in

QED) the gluon-gluon interaction is induced by the gluon field strength tensor.

Expanding a functional integral of the QCD Lagrangian over the ψ, ψ, andAaµ

fields in perturbation theory, starting with the free Lagrangian and g = 0, the

Feynman rules can be derived. These show three basic interactions: quarks
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(a) Quark-gluon ver-
tex

(b) Three-gluon ver-
tex

(c) Four-gluon vertex

Figure 1.1 Feynman diagrams showing the basic interaction vertices in QCD.

absorbing and emitting gluons, gluons absorbing and emitting gluons and two

gluons interacting. In principle the gluon fields in equation (1.2) should be written

with color indices and the quark feilds with both Dirac and color indices, as Aaµ,c,d
and ψfc,µ. These are suppressed for brevity though it is color that dictates the

bound states in which quarks can exist. The colors are conventionally called red,

green, and blue and these must be combined such that “colorless” (or white)

bound states, called hadrons, can be created.

Hadrons can be made up of either two quarks, a color-anti-color pair, called

mesons, or three quarks, one of each color, called baryons. Tetra- and pentaquark

are exotic particles that have been observed in experiment [1, 72]. Hexa- and

heptaquark, consisting of six and seven quarks respectively, can exist in theory

but have never been observed in experiment.

1.2.1 The Running Coupling

After a renormalization procedure to subtract UV divergences the QCD coupling,

g, gains a dependence on energy scale, as can be seen in Figure (1.2). This

dependence is determined by the renormalization group equation, for a given

scheme, S,

µ
∂gS (µ)

∂µ
=
∂gS (µ)

∂lnµ
= βS (gS) (1.5)

where in perturbation theory the β function takes the form

βS (gS) = −b0g
3
S − b1g

3
S − b2g

5
S − . . . (1.6)
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Figure 1.2 The Q dependence of the strong coupling, αs[92]. The respective
degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets.

The first two coefficients are scheme independent and are given by

b0 =
1

(4π)2

(
11− 2

3
nf

)
, b1 =

1

(4π)2

(
102− 38

3
nf

)
(1.7)

where nf is the number of “active” quark flavors, that is, the number of quarks

in which the energy-momentum involved in allows for the production of. The

coefficients are known up to b4 in the MS scheme [10, 59], one of the most

commonly used schemes. Solving equation (1.5) to first order for αS = g2

4π
gives

αS (µ) =
αS (Λ)

1 +
(
11− 2

3
nf
) αS(Λ)

4π
ln
(
µ2

Λ2

) (1.8)

It can be seen for nf = 6, and up to nf = 16, that the coupling is positive,

a phenomena observed by experiment. As µ grows the coupling shrinks and

so quarks and gluons become asymptotically free, with quarks feeling no gluon

exchange they can be considered quasi-free particles. At low energies the coupling

grows, leading to quarks and gluons being confined to hadrons.

There must also exist a scale, Λ, such that αS →∞ as µ→ Λ. The point where

the coupling goes to infinity is called the Landau pole, and although perturbation

theory breaks down before the Landau pole is reached, and so the very definition

of the coupling represented in terms of the β function breaks down, it is still
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convenient to to define a mass scale, Λ, such that(
11− 2

3
nf

)
αS (Λ)

4π
ln

(
µ2

Λ2

)
= 1 (1.9)

which allows us to write equation (1.8) at this scale as

αS (µ) =
2π(

11− 2
3
nf
)
ln
(
µ2

Λ2

) (1.10)

This description depends on the scheme chosen, the number of active quarks,

and the order to which the perturbative calculation has been established, but it

is still useful to determine an energy scale at which perturbation is theory is valid

above and not valid below. Values for ΛMS range from ∼ 200 MeV for nf = 5

to ∼ 400 MeV for nf = 3 [15, 27, 31]. This is roughly the mass of the lightest

hadrons, and so there is a need for non-perturbative methods in order to study

QCD phenomena at low energies.

1.2.2 Global Symmetries

In order or QCD to be a valid relativistic QFT it must contain the global

Poincaré symmetry, that is: translational symmetry in time and space, rotational

symmetry in space, and an inertial reference frame invariance where Lorentz

transformations relate uniformly moving bodies. Noether’s theorem states that

each continuous symmetry of an action gives rise to a conservation law [81]. In

the case of the Poincaré symmetries, in four dimensional spacetime, there are

10 such symmetries, giving 10 conservation laws: time invariance associated to

energy conservation, 3 translational invariances associated to 3 momenta being

conserved, 3 rotational invariances associated to the angular momenta being

conserved, and the boost invariances associated to the 3 components of velocity

of the center of mass being conserved.

It is possible to extend the Lorentz group to the “nonorthochronous improper

Lorentz group” by including the discrete transformations Parity, P , and time

reversal, T ;

P(t, ~x) = (t,−~x), T (t, ~x) = (−t, ~x). (1.11)

It is also convenient to discuss a third discrete transformation, charge conjugation,

C, under which particles and anti-particles are interchanged. Although the grav-

itational, electromagnetic and strong interactions are invariant under individual
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C,P , T transformations, a relativistic field theory generally does not have to be.

For example, the weak interactions violate C and P separately, but preserve CP
and T . CP and T violations have been observed in neutral kaon decays [45], but

they preserve CPT , along with all other processes in nature. In fact, a Lorentz-

invariant QFT with a hermitian Hamiltonian cannot be build such that it violates

CPT [88].

In QCD these operation transform the fermion fields as

ψ(t, ~x)→ ηγ0ψ(t,−~x)

ψ(t, ~x)→ η∗ψ(t,−~x)γ0

(1.12)

for the parity transformation, where η is a complex phase,

ψ(t, ~x)→ γ1γ3ψ(−t, ~x)

ψ(t, ~x)→ ψ(−t, ~x)γ1γ3

(1.13)

for time reversal, and

ψ(t, ~x)→ −i
(
ψ(t, ~x)γ0γ2

)T
ψ(t, ~x)→ −i (γ0γ2ψ(t, ~x))T

(1.14)

for charge conjugation. It can be seen that fermion fields are not eigenstates

of these transformations but that fermion bilinears are. These symmetries are

important for the construction of hadron interpolators, as we will see in Section

(2.2.2).

The charged pion, for example, has zero spin (J = 0), negative parity (P = −1),

isospin I = 1, and charge Q = +e, in units of electromagnetic charge, e. Using

a d-u quark combination, to match the charge and isospin, we can construct the

appropriate pseudoscalar state

φ(x) = d(x)γ5u(x). (1.15)

The pion is the lowest energy state that is created by this operator, and we will

see in Section (2.2.2) how this helps us extract observables from the lattice in

QCD. A generic meson interpolator has the form ψΓψ and Table (1.1) shows

quantum numbers for interpolators in this form.
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State J PC Γ Particles

Scalar 0++ 1, γ0 f0, a0, K
∗
0 , . . .

Pseudoscalar 0−+ γ5, γ5γ0 π+−, π0, η,K+−, K0, . . .
Vector 1−− γi, γ0γi ρ+−, ρ0, ω,K∗, φ, . . .

Axial Vector 1++ γiγ5 f1, a1, . . .
Tensor 1+− γiγj h1, b1, . . .

Table 1.1 Quantum numbers for of meson interpolating operators, in the
form ψΓψ and some of the particles that are represented by those
interpolators.

1.2.3 Chiral Symmetry

If we consider the chiral transformation of quarks in QCD

ψ(x)→ ψ′ = eiαγ5ψ

ψ(x)→ ψ
′
= ψeiαγ5 ,

(1.16)

where α is a real constant, the Lagrangian transforms as

LQCD
(
ψ′, ψ

′
, A,m

)
= LQCD

(
ψ, ψ,A,m = 0

)
−mψei2αγ5ψ. (1.17)

and we see that the massless Lagrangian is invariant under the transformation,

but the massive part is not. The Lagrangian can be split into “left-handed” and

“right-handed” fermion fields using projectors

PR =
1

2
(1 + γ5) , PL =

1

2
(1− γ5) (1.18)

such that

ψL/R = PL/Rψ, ψL/R = ψPR/L. (1.19)

Using these projectors we can write the massless Lagrangian as

LQCD(ψ, ψ,A,m = 0) = ψLDψL + ψRDψR (1.20)

and the massive term can be written as

mψψ = m
(
ψRψL + ψLψR

)
(1.21)

The mass term mixes the left- and right-handed fields, and explicitly breaks the

chiral symmetry. The symmetry is also implicitly broken by the quark condensate.
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If the quarks were massless the energy cost of creating a ψψ would be small and

these quarks would have a strong attractive interaction. It is thus expected that

the QCD vacuum will contain a condensate of ψψ pairs, leading to a non-zero

expectation value for the scalar operator

〈0|ψψ |0〉 = 〈0|ψLψR + ψRψL |0〉 6= 0 (1.22)

which, again, mixes the left- and right-handed fields.

Thus the SU(nf )L×SU(nf )R symmetry is spontaneously broken to SU(nf ). The

Goldstone theorem predicts that there will be nf−1 pseudo-Goldstone bosons[55].

With only u and d quarks the three pions (π−, π0, π
+) are these pseudo-Goldstone

bosons. With an additional s quark the four kaons
(
K−, K0, K0, K

+
)

and the η

meson make up the missing five pseudo-Goldstone bosons.

While taking the limit of vanishing quark mass, or the chiral limit, an effective

theory, called chiral perturbation theory (or χPT), can be constructed by

expanding QCD in the external momenta and quark masses. This theory will

be discussed further in Section (1.6).

1.2.4 Chiral Ward Identities

Noether’s theorem allows us to define conserved currents and charges for each

continuous symmetry of a given action. It is convenient to now describe several

such conserved currents for the QCD action in the continuum before discussing

them on the lattice. We do so by considering an infinitesimal variation on the

quark fields which can be written in the form

ψ(x)→ ψ′(x) = ψ(x) + δψ(x) (1.23)

The infinitesimal deformation of the of the fermion field associated with the vector

symmetry is given by

δψ(x) = iαλψ(x)

δψ(x) = iψ(x)αλ̂
(1.24)

where α is a real infinitesimal constant and λ, λ̂ are matrices in Dirac and flavor

spaces. In SU(2), where M=diag(mu,md) is the mass matrix in flavor space it
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can be shown that

∂µ
(
ψγµλψ

)
= ψ

(
λ̂M+Mλ

)
ψ. (1.25)

We consider four different matrix structures: λ = 1; the Pauli matrices, λ = σa;

λ = γ5; and λ = γ5σ
a. These give the vector currents

λ = 1, λ̂ = −1 : ∂µJµ ≡ ∂µ
(
ψγµψ

)
= 0 (1.26)

λ = σa, λ̂ = −σa : ∂µJaµ ≡ ∂µ
(
ψγµσ

aψ
)

= ψ [M, σa]ψ (1.27)

and the axial currents

λ = λ̂ = γ5 : ∂µAµ ≡ ∂µ
(
ψγµγ5ψ

)
= 2ψMγ5ψ (1.28)

λ = λ̂ = γ5σ
a : ∂µAaµ ≡ ∂µ

(
ψγµγ5σ

aψ
)

= ψ{M, σa}γ5ψ (1.29)

The Ward identity in equation (1.26), ∂µJ
µ = 0, holds regardless of of quark

mass. The symmetry in equation (1.27) is broken by the mass, but holds for

degenerate u/d quarks. Equation (1.28) is the chiral symmetry discuss in the

previous section. Finally for equation (1.29), if we define

Aaµ =
1

2
ψγµγ5σ

aψ (1.30)

as the partially conserved axial current, and

P a =
1

2
ψγ5σ

aψ (1.31)

as the pseudoscalar density, then equation (1.29) gives us the partially conserved

axial current (PCAC) relation:

∂µ 〈0|Aaµ(x)O |0〉 = 2m 〈0|P a(x)O |0〉 . (1.32)

This relation can be used to calculate the pion decay constant, fπ, as

∂µ
〈

0
∣∣∣Aaµ(x)

∣∣∣πb(~p = ~0)
〉

= δabm
2
πfπe

−imπt (1.33)

but it also useful for proving that the choices of quark masses on the lattice are

reasonable, as will be discussed in Section (2.1.5).
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1.3 Electroweak Theory

The electroweak (EW) theory unifies electromagnetism and the weak interactions

with a SU(2)×SU(2) symmetry group that is spontaneously broken via the Higgs

mechanism to U(1) [49, 60] and its Lagrangian is given by

LEW = Lgauge + Lfermion + LHiggs + LY ukawa (1.34)

It is a chirally coupled gauge theory where left-handed fermion fields transform

as SU(2) doublets and right-handed fermion fields transform as SU(2) singlets.

Be we describe these fermion fields in more detail we do well to define the gauge

sector of the Lagrangian:

Lgauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν . (1.35)

This Lagrangian describes the interactions o the gauge bosons, the three W vector

bosons and the B vector boson, which are described bu the field strength tensors

corresponding to the SU(2) and U(1) groups respectively:

W a
µν = ∂µW

a
ν − ∂νW a

µ − gW εabc
[
σb, σc

]
, a ∈ [1, 2, 3] (1.36)

and

Bµν = ∂µBν − ∂νBµ. (1.37)

Here W a
µ and gW are the gauge field and coupling constant for the SU(2) group

and Bµν is the gauge field for the U(1) group. We will see how these four massless

vector bosons will be broken to the familiar three massive and one massless bosons

by the Higgs mechanism.

1.3.1 Higgs Sector

The Lagrangian for the Higgs sector is

LHiggs = (Dµφ)†Dµφ− V
(
φ†φ
)

(1.38)

13



where the scalar field, φ, is an SU(2) doublet

φ =

(
φ+

φ0

)
(1.39)

and the Higgs potential is given as

V
(
φ†φ
)

= µ2φ†φ+ λ
(
φ†φ
)2
. (1.40)

In order for the theory to be invariant under local transformations we need

Dµ = ∂µ + igW
1

2
~σ · ~Wµ + igBY Bµ (1.41)

where gB is the coupling constant for the U(1) group and Y is the hypercharge,

the generator for the U(1 group. For µ2 < 0 and λ > 0 we acquire a vacuum

expectation value of

〈φ〉 =
1√
2

(
0

v

)
, v =

√
−µ2

λ
(1.42)

If we consider Q ≡ T 3 + Y , where T a = 1
2
σa, then

Q 〈φ〉 =

[
1

2

(
1 0

0 −1

)
+

1

2

(
1 0

0 1

)]
〈φ〉 = 〈0〉 → eiεQ 〈φ〉 = 〈φ〉 (1.43)

but

T 1 〈φ〉 =
1

2

(
0 1

−1 0

)
〈φ〉 =

1

2
√

2

(
v

0

)
6= 〈0〉 (1.44)

and we see that Q gives a symmetry and T 1, along with T 2 and T 3 − Y , is

a broken generator. From this we expect 1 massless Goldstone boson and 3

Goldstone bosons that need to be gauged away. A gauge transformation, U , can

be chosen such that we can rewrite the Higgs doublet as

φ′(x) = Uφ(x) =
1√
2

(0, v + h(x)) (1.45)
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where we are expanding about the minimal potential, v, and h(x) is the Higgs

field. We can now write the Higgs Lagrangian as

LHiggs =

[
Dµ

(
0

h+ v

)]†
Dµ

(
0

h+ v

)
− V

(
1

2
(h+ v)2

)
=

1

2
∂µh∂

µh− µ2

2
(h+ v)2 − λ

4
(h+ v)4

+
g2
W

8
(h+ v)2 (W 1

µW
1µ +W 2

µW
2µ
)

+
1

8

(
gBB

µ − gWW 3µ
) (
gBBµ − gWW 3

µ

)
(h+ v)2

(1.46)

and we can see the coupling between the Higgs field and the vector bosons.

The interactions of the W 1
µ and W 2

µ arise through combinations of W±
µ =

W 2
µ + iW 1

µ with an associated mass MW = 1
2
vgW being read directly from

the 1
8
v2g2

W

((
W 1
µ

)2
+
(
W 2
µ

)2
)

term. Their linear combinations become the

recognizable W+ and W− gauge bosons. For the interaction of the W 3
µ and

Bµ bosons we get

LW 3B =
v2

8

(
W 3
µ Bµ

)( g2
W −gWgB

−gBgW g2
B

)(
W 3
µ

Bµ

)
. (1.47)

With the redefinition(
W 3
µ

Bµ

)
=

(
cosθW sinθW

−sinθW cosθW

)(
Zµ

Aµ

)
, sinθW =

gB√
g2
W + g2

B

, (1.48)

where θW is known as the Weinberg angle, we can rewrite equation (1.47) as

LW 3B =
v2

8

(
g2
w + g2

B

)
(Zµ Aµ)

(
1 0

0 0

)(
Zµ

Aµ

)
. (1.49)

and we can then see that Aµ is the massless photon and Zµ is the massive vector

boson with mass M2
Z =

g2W+g2B
4

v2 = 1
4

v2g2W
cos2θW

=
M2
W

cos2θW
. Finally we can also pick

out the Higgs boson, with mass M2
H = −2µ2.

If we rewrite the covariant derivative again, in terms of mass eigenstates, it

becomes

Dµ = ∂µ + i
gW√

2

(
W+
µ T

+ +W−
µ T

−)
+

i√
g2
W + g2

B

Zµ
(
g2
WT

3 + b2
BY
)
− i gWgB√

g2
W + g2

B

Aµ
(
T 3 + Y

) (1.50)
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where W±
µ = W 1

µ ± iW 2
µ , and T± has a similar definition. The final term here

shows that the photon, Aµ, couples to the gauge generator from equation (1.43)

and so we can identify Q = T 3 + Y as the electric charge quantum number and

the coefficient of the electromagnetic interaction, e:

e =
gWgB√
g2
W + g2

B

(1.51)

as the electric charge.

1.3.2 Fermion Sector

Ignoring fermion mass, the fermionic matter of the EW theory are described by

Lferm =
3∑
i=1

QLii /DQLi + uRii /DuRi

+ dRii /DdRi + ELii /DELi + eRii /DeRi

(1.52)

where the i index runs over the 3 generations of fermions that pave been split

into separate terms:

QLi =

(
uL

d′L

)
,

(
cL

s′L

)
,

(
tL

b′L

)
, (1.53)

are the left-handed quark doublets;

uRi = uR, cR, tr (1.54)

dRi = d′R, s
′
R, b

′
r, (1.55)

are the right-handed up and down type quark singlets;

ELi =

(
νe

eL

)
,

(
νµ

µL

)
,

(
ντ

τL

)
, (1.56)

are the left-handed lepton doublets; and

eRi = eR, µR, τR, (1.57)
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are the right-handed lepton singlets. By splitting up the covariant derivative into

left- and right-handed parts, such that

Lferm =
3∑
i

ψ
i

Li /DLψ
i
L + ψ

i

Ri /DRψ
i
R (1.58)

we see that

DLµ = 1∂µ +
i

2
gW~σ · ~W + igBY Bµ1 (1.59)

and

DRµ = ∂µ + igBY Bµ (1.60)

and so the right-handed fermions do not interact with the SU(2) gauge bosons.

As with the gauge sector there are no mass terms defined, they are added by the

Yukawa sector that describes the couplings between the fermions and the Higgs.

1.3.3 The Yukawa Sector

The Yukawa Lagrangian is given by

LY ukawa =− yuijQLi

(
iσ2
)
φ∗uRjy

d
ijQLiφdRj

− yeijELiheRj +H.C.
(1.61)

where the yu,d,e are matrices of Yukawa coupling. It is important to investigate

whether or not the entries in these matrices are physical, i.e. they cannot

be absorbed by a redefinition of fields and complex phases. It can be shown

that a basis exists such that the lepton coupling matrix is diagonalizable, ye =

diag (λe, λµ, λτ ). This means that there is no allowance for lepton flavor mixing,

and in this same basis the mass matrix for the leptons is also diagonalizable.

If we attempt to choose a basis for the quarks we find that there is a dependence

shared between the up and down type quarks. If we choose a basis such that the

up type coupling matrix is diagonal, yu = diag (λu, λc, λt), then the down type

coupling matrix, yd, takes the form

yd = V DdV
† (1.62)
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where Dd = diag (λd, λs, λb) and V is the unitary rotation matrix known as the

Cabibbo-Kobyashi-Maskawa (CKM) matrix [30, 67]:

V =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.63)

This change of basis is also relevant when we introduce the Higgs mechanism to

give the fermions mass as it leads to an additional interaction between the W±

bosons and the SU(2) quark doublets as the is a change in the term from equation

(1.61) of the form

e√
2sinθW

QLiγ
µW+

µ QLi →
e√

2sinθW
QLiγ

µW+
µ VijQLj. (1.64)

The CKM matrix describes the weak interactions between the quark flavors that

lead to flavor changing, with the probability of a quark qi transitioning to quark

qj being proportional to |Vij|2. The mass terms for fermions given by the Higgs

mechanism are

mf = λf
v√
2

(1.65)

and so the Yukawa Lagrangian after breaking the Higgs is

LY ukawa = −

(e, µ, τ)

me 0 0

0 mµ 0

0 0 mτ


eµ
τ



+
(
u, c, t

)mu 0 0

0 mc 0

0 0 mt


uc
t



+
(
d, s, b

)md 0 0

0 ms 0

0 0 mb


ds
b


(1 +

h

v

)
(1.66)

where the mass eigenstates of the down type quarks are a linear combination of

the EW eigenstates, given by the CKM matrixds
b

 = V

d
′

s′

b′

 . (1.67)
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1.4 Fermi’s Theory of the Weak Interaction

In 1938 Enrico Fermi proposed a theory with a four-fermion interaction in order

to explain β-decay, the process where a neutron decays into a proton, an electron

and an antineutrino. At the time this was a “bottom-up” effective field theory

(EFT), that is, as this was a precursor to the theory of weak interaction and there

was no UV description of weak processes. Fermi thus constructed his theory as

a modification to QED which accounted for neutron decay. Now we can think of

the Fermi theory as a “top-down” EFT and so it is useful for describing processes

at energies far below the W mass.

In the SM the coupling of the W± and Z0 bosons to the fermions are given in

terms of the electromagnetic current for the right-handed SU(2) singlets

jµem =
3∑
i

2

3
uRiγ

µuRi −
2

3
dRiγ

µdRi − eRiγµeRi (1.68)

and in terms of the left-handed SU(2) currents

jµa =
3∑
i

ψγµ
(

1− γ5

2

)
σa
2
ψ (1.69)

The couplings of the heavy gauge bosons to these currents is

LJ =
e

sinθW

(
W+
µ J

µ
− +W−

µ J
µ
+

)
+

e

sinθW cosθW
Zµ(jµ3 − sin2θW j

µ
em) (1.70)

where Jµ± = 1√
2

(jµ1 ± j
µ
2 ). This gives that the amplitude of a tree level exchange

of a W boson at low momentum exchange is

iA = −i e2

M2
W sin

2θW
Jµ−Jµ+ +O

(
q2

Mw
W

)
(1.71)

A low energy EFT with a “pinched” contact interaction, as in Figure (1.3), can

reproduce this amplitude to lowest order in q2/M2
W as

LF =
8√
2
GFJ

µ
−Jµ+, (1.72)

where

GF =

√
2

8

e2

M2
W sin

2θW
= 1.166× 10−5GeV 2 (1.73)
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Figure 1.3 We see how the effective vertex in the low energy EFT is the pinched
version of the tree level W (or Z) exchange between four fermions.

is the Fermi constant.

This effective theory is quite useful for LQCD calculations as the highest scales

of the calculations are typically O(2GeV ), i.e, much lower than the mass of the W

boson (O (∼ 80GeV )). As it is not possible to resolve heavy particles at this scale

we instead exclude the weak interaction bosons and heavy quarks and instead

use a low energy EFT, where light quark interactions that would be mediated

by the exchange bosons are described by local operators. In order to express the

short distance behavior of the product of these operators we will need to discuss

operator product expansions.

1.5 Operator Product Expansion

To compute an amplitude for some process, for example the weak meson decay we

are interested in, we must consider the integral over some time-ordered product

of operators:

A ∝
∫
d4x1 . . . d

4
n−1e

−iq1·x1 . . . e−iqn−1·xn−1

× 〈0|T [O1 (x1) . . .On−1 (xn−1)]|0〉 .
(1.74)

Operator product expansion (OPE) is the method of expanding these products

of operators into a sum over local, composite, renormalized operators such that

A =
∑
i

Ci (µ,MW ) 〈Qi (µ)〉 . (1.75)

Here we have factorized an effective Hamiltonian into the Wilson coefficients, Ci,

and the matrix elements of local operators, Qi. Particles with mass larger that

the scale µ are removed from the theory as dynamical degrees of freedom and
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Figure 1.4 Processes that the Q1 and Q2 operators describe.

instead their effect are described by the Wilson coefficients. One interpretation

of this approximation is that the sum
∑

iCiQi acts as an effective Hamiltonian

for the process in question where the Qi are the effective vertices that describe

long distance contributions and the Ci are the effective couplings that describe

short distance contributions. The final amplitude can not depend on scale so the

scale dependence of the Wilson coefficients and the matrix elements cancel with

each other

The Wilson coefficients are calculated using perturbation theory at a scale

µ � ΛMS and the scale is then reduced. This must be done with care,

as the perturbative calculation will have been done to some order where the

αS (µ) log
(
M2
W

µ2

)
terms are small. This term blows up, however, at scales where

µ � MW and the perturbative expansion is no longer valid. Renormalization

group improved perturbation theory is needed for the transitions between theories

with different choices of renormalization scales.

1.5.1 Effective Operators Renormalization

Take, for example, the four-quark interaction describing the qs → qd transition

that we are interested in for the K+ → π+`+`− decay. We have an effective

theory that describes the processes given in Figure (1.4) where the W propagator

has been pinched as in Figure(1.5). We can write the amplitude for this process

in the effective theory as [28]

A =

∫
d4x

2∑
i=1

Ci (µ) 〈Qu (µ)−Qc (µ)〉 (1.76)

where the active quark flavors are q = u, c.

To compute the Wilson coefficients we perturbative compute the amplitude in

both the full SM and in the effective theory to the same order. As this is done an
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Figure 1.5 The “pinched” equivalent of the processes in Figure (1.4), used in
the calculation of Zij.

additional renormalization step for the Q1 and Q2 operators must be taken.This

is because divergences that do not exist in the full theory appear in the effective

theory as the W propagator is pinched. The renormalization condition for these

operators are given as

〈Qi〉 = Z2
qZ
−1
ij 〈Qj〉b (1.77)

where the superscript, b, indicates the unrenormalized (bare) quantity, Zq comes

from the quark renormalization condition, q = Z−
1
2 qb, and Zij is a renormalization

matrix. We see from this matrix structure that the divergences introduced by

〈Q1〉b are removed by those introduced by 〈Q2〉b. The Wilson coefficients are

given by matching the SM amplitude to the effective theory one:

A = CiZ
2
qZij 〈Qj〉b (1.78)

and reading off the Ci’s.

1.5.2 Renormalization Group Equation

In order to compute the Wilson coefficients at a scale µ�MW that we use in our

lattice calculations we must take the Ci’s that were computed at µ� ΛQCD and

evolve them down to our lower scale. This is done by solving the renormalization

group equation for Ci with appropriate boundary conditions between schemes:

d

dlnµ
Ci (µ) = γji (g)Cj (µ) (1.79)

where γij (g) = Z−1
ik

d
dlnµ

Zkj is the matrix of coupling anomalous dimensions for

coupling g.
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The solution to this equation with appropriate boundary conditions between

schemes can be achieved by using the evolution matrix

Ui,j (µ, µ′) = 1 +

∫ g(µ)

g(µ′)

dg1
γji (g1)

β (g1)

+

∫ g(µ)

g(µ′)

dg1

∫ g1

g(µ′)

dg2
γji (g1) γji (g2)

β (g1) β (g2)
+ . . .

(1.80)

where we have already seen β (g) in equation 1.5 when discussing the running of

the QCD coupling. Now we can write

Ci (µ) = Uij (µ,MW )Cj (MW ) (1.81)

and solve equation (1.80) order by order in perturbation theory to evolve Ci to

our required scale. Care must also be taken when running the coupling down

to consider the number of active quark flavors. As the scale falls below a quark

mass we must move into an effective theory where this quark has been integrated

out. The running of the coupling depends on the number of flavors, changing the

structure of the perturbative theory. Flavor boundaries must then be established

where the Wilson coefficients can be matched at given scale, µb, with

Cf−1
i (µ+ b)Qf−1

i (µ+ b) = Cf
i (µ+ b)Qf

i (µ+ b) (1.82)

1.6 Chiral Perturbation Theory

Another EFT that is useful to consider is chiral perturbation theory (χPT)[21,

46], an effective theory of the pseudoscalar mesons. As discussed in Section

(1.2.3) the QCD Lagrangian has a global SU(nf )L × SU(nf )R symmetry in the

massless limit that is spontaneously broken to SU(nf )L. With non-zero masses

this symmetry is explicitly broken, giving n2
f−1 pseudo Goldstone bosons (pGBs).

If the SU(nf )L×SU(nf )R symmetry proves to be an approximate symmetry then

this would result in the pGBs being light. This is the case for the nf = 2 case,

where mu ≈ md, the 3 pGBs are the triplet of pions

φ =

(
1√
2
π0 π+

π− − 1√
2
π0

)
, (1.83)
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all of which are roughly equal in mass and much lighter than the lightest baryons,

with mπ/mp ∼ 0.15. For nf = 3, where ms � md, the pGBs are the octet of

pions, kaons, and η mesons

φ =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 −+ 2√

6
η

 (1.84)

. Here we see that the assumption of an approximate symmetry is less accurate,

with mK+/mp ∼ 0.5, however nf = 3 χPT is phenomenologically useful,

describing more phenomena than nf = 2 but not breaking down as much as

nf = 4.

In order to construct the most general χPT Lagrangian for pseudoscalar mesons

that is invariant under SU(nf )L × SU(nf )R transformations we use the matrix

valued field, U (x), that transforms as

U (x)U ′ (x) = LU (x)R†

U † (x)U ′† (x) = RU (x)L†
(1.85)

for the local independent transformations L/R ∈ SU (nf )L/R.

We chose the exponential representation of U

U (x) = exp

(
2iφ (x)

f

)
(1.86)

where φ (x) are the fields defined in (1.83) and (1.84) for nf = 2, 3 and f is the

parameter defined in the PCAC relation, given in Equation (1.32), that gives the

φ (x) field the canonical mass dimensions of a scalar field.

An effective Lagrangian is then written in terms of the fields U that represent

the pGBs.

Leff = Leff
(
U,U †; ∂U, ∂U †; ∂2U, ∂2U †

)
(1.87)

which is expanded in chiral powers related to the number of derivatives acting on

the pGB fields

Leff = L(0)
eff + L(2)

eff + L(4)
eff + . . . (1.88)

Only even chiral powers appear as the Lagrangian is a Lorentz scalar and so

tensor indices of derivatives must appear in pairs. At each order the Leff must

be invariant under chiral transformations, implying that the zeroth order can only

be a function of UU †, a constant that can be dropped. In the massless case the
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second-order term consists of

L(2)
eff = c1tr

(
∂µU

†∂µU
)

+ c2tr
(
U †∂2U

)
(1.89)

where c1 and c2 are constants to be determined and the second term can be

combined with the first using partial integration such that

L(2)
eff = c1tr

(
∂µU

†∂µU
)
. (1.90)

If we expand the exponential representation

U (x) =
inf∑
x=0

1

n!

(
2i

f
φ

)
(1.91)

and demand that our Lagrangian take the standard kinematic form

L(2)
eff =

1

2
∂µφ∂

µφ+O
(
φ4
)

(1.92)

we get that c1 = f2

4
and that the effective Lagrangian at leading order is

L(2)
eff =

f 2

4
tr
(
∂µU

†∂µU
)
. (1.93)

In order to include mass to the effective theory we consider, instead of the

quark mass matrix, M = diag
(
m1, . . . ,mnf

)
, an external scalar source, χ, that

transforms as

χ→ χ′ = LχR†

χ† → χ′† = Rχ†L†,
(1.94)

where χ = 2BM and B is a low energy constant that contains the matching of

the chiral theory to QCD. The effective Lagrangian is extended to include this

scalar source, at leading order this takes the form

L(2)
eff =

f 2

4
tr
(
∂µU

†∂µU
)

+
f 2

4
tr
(
χU † + Uχ†

)
(1.95)

where we have, again, expanded the exponential representation and matched

constants to the expected form of the mass term.

For this thesis we are also interested in an EFT that includes not just hadronic

interactions that would describe the K+ → π+`+`− decays. At leading order the
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weak contribution to this transition can be written as [47]

L(2)
∆s=1 =

GF√
2
VudV

†
usG8 (LµL

µ)23 (1.96)

where Lµ = if 2U∂µU †, the 23 subscript are the indices of the entry of the matrix,

andG8 is a parameter consisting the Fermi constant, CKM matrix elements, and a

dimensionless constant characterizing the enhancement of ∆I = 1/2 non-leptonic

amplitudes.

To include electromagnetism a U (1) gauge interaction is introduced, such that

the derivatives are replaced with covariant derivatives and the extra terms

L(2)
EM = −eAµtr

(
Q̂V µ

)
+ e2AµA

µ1

2
f 2
(
1− |U11|2

)
(1.97)

are added, where Q̂ = diag (1, 0, 0) is the generator of the U (1) interaction and

Vµ = 1
2
if 2
[
U, ∂µU

†]. We will see the application of this EFT to theK+ → π+`+`−

decay in Chapter (3).
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Chapter 2

Lattice Quantum Chromodynamics

As discussed in Section (1.2.1), and as can be seen in Figure (1.2), the QCD

coupling grows as energy decreases, leaving analytic perturbative methods unable

to investigate phenomena that appear occur in low energy regions of of the theory.

EFTs can approximate QCD in order to make low energy predictions, but another

approach is lattice QCD: a non-perturbative method that discretizes Euclidean

spacetime on a finite, hypercubic, lattice, on which computational simulations of

fermion and gauge interactions are created.

I will begin this chapter by introducing the fundamental concepts of discretizing

QCD in Section (2.1.1) and presenting a näıve discretization of the fermion action

in Section (2.1.3) and discuss why more nuanced actions are needed. In Section

(2.1.4) I will introduce one such action in detail, as it is used in our study of rare

kaon decays, as well as giving the formulation of the conserved currents for this

action. Beyond that I will discuss both the hybrid Monte Carlo (HMC) method

that is used to simulate sample gauge configurations in Section (2.2.1) and the

methods that we use to compute gauge averaged correlation functions from which

physical observables can be extracted in Sections (2.2.2) through (2.2.5). Finally,

the various methods that can be used to create propagators on the lattice will be

introduced in Section (2.3), with the lattice noises used as a foundation for these

propagators being described in Section (2.4).
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2.1 Discretizing QCD on the Lattice

2.1.1 Fundamental Concepts

In continuum QCD correlation functions can be computed using path integrals

〈0|O1 (x1) . . .On (xn)|0〉 =
1

Z

∫
D
[
A,ψ, ψ

]
O1 (x1) . . .OneiS[A,ψ,ψ] (2.1)

where S is the action and Z is the partition function

Z =

∫
D
[
A,ψ, ψ

]
eiS[A,ψ,ψ]. (2.2)

Here we typically work in Minkowski spacetime in the continuum, however for our

lattice calculations we wish to perform a Wick rotation, x0 → −ix4, to express

this path integral in a Euclidean spacetime lattice:

ΛL =
{
x ∈ N4|x1, x2, x3 = 0, 1, . . . , L− 1;x4 = 0, 1, . . . , T − 1

}
(2.3)

where the lattice point are separated by the lattice spacing, a. The spatial extent

of the lattice is aL and the temporal extant of the lattice is aT , giving a finite

volume of a4V = (aL)3×aT that regulates infrared divergence. On this lattice we

replace the continuous integral with a Riemann sum, using a4 as an elementary

volume: ∫
d4xψ (x)→ a4

∑
x∈ΛL

ψ (x) . (2.4)

We have our choice of operator work as a discrete derivative on our lattice, one

such choice is the central finite difference:

∂µψ (x)→ ∆µψ (x) =
1

2a
(ψ (x+ aµ̂)− ψ (x− aµ̂))

= ∂µψ (x) +
a2

6
∂3
µψ (x) +O

(
a4
) (2.5)

where in the second line we have take the Taylor expansion for the continuum

limit, a→ 0. We can also introduce discretized momenta

Λ∗ =

{
p ∈ N4|pµ =

2π

aNµ

(
xµ −

Nµ

2
+ 1

)}
(2.6)
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where N1,2,3 = L1,2,3 and N4 = T , which gives a Brillouin zone such that −π
a
<

pµ ≤ π
a

and we see that the lattice spacing acts as an ultraviolet regulator. We

can also define the Fourier transform on ΛL as

f̃ (p) = a4
∑
z∈ΛL

f (x) e−ip·ax, (2.7)

and the inverse Fourier transform as

f (x) =
1

V

∑
p∈Λ∗

f̃ (p) eip·ax (2.8)

.

2.1.2 Gauge Invariance

On the lattice the full Lorentz symmetry group of the continuum is reduced to

a subgroup called the hypercubic group. Care must be taken when defining,

for example, angular momentum on the lattice as the hypercubic group has a

finite number of irreducible representations of the rotational group, which has an

infinite number of irreducible representations in the continuum. Gauge invariance

is another such example of an invariance with which me must consider non-

trivially. We require that the lattice QCD Lagrangian be invariant under the

local gauge transformation

ψ (x)→ ψ′ (x) = Ω (x)ψ (x)

ψ (x)→ ψ
′
(x) = ψ (x) Ω† (x)

(2.9)

where Ω (x) is a SU(3) matrix. In our LQCD Lagrangian, where we have replace

ψ (x) ∂µψ (x) with ψ (x) ∆µψ (x), there will be terms that transform as

ψ (x)ψ (x+ aµ̂)→ ψ (x) Ω† (x+ aµ̂)ψ (x+ aµ̂) 6= ψ (x)ψ (x+ aµ̂) (2.10)

which is not invariant. Instead, if we introduce a field, Uµ (x) that transforms as

Uµ (x)→ U ′µ (x) = Ω (x)Uµ (x) Ω† (x+ aµ̂) , (2.11)
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then we can construct the gauge invariant term

ψ (x)Uµ (x)ψ (x+ aµ̂)→ ψ (x)U ′µ (x)ψ (x+ aµ̂) = ψ (x)Uµ (x)ψ (x+ aµ̂) .

(2.12)

The Uµ (x) fields are “link variables” that connect the sites at x and x+ aµ̂ and

can be related to the gluon gauge field by

Uµ (x) = eiaAµ(x). (2.13)

We can now write down a lattice covariant derivative that is invariant under

gauge transformations:

Dµ =
1

2a
(Uµ (x)ψ (x+ aµ̂)− U−µ (x)ψ (x− aµ̂)) , (2.14)

where U−µ (x) ≡ U †µ (x− aµ̂), which can be used to describe the fermionic part

of our LQCD actions.

For the gluonic part of the action we consider closed loops on the lattice, know

as Wilson loops, the shortest, non-trivial, of which is known as the plaquette

Uµν (x) = Uµ (x)Uν (x+ aµ̂)U †µ (x+ aν̂)U †ν (x) . (2.15)

The plaquette remains invariant under the gauge transformation and so expand-

ing the link fields in their exponential form, as in Equation (2.13), as a → 0, it

can be shown that

Uµν (x) = 1 + ia2gGµν (x)− a4g2

2
Gµν (x)Gµν (x) +O

(
a6
)

(2.16)

and using this the the Wilson gauge action can be constructed as

SWG (U) =
2

g2

∑
x∈ΛL

∑
µ<ν

Re (Tr [1− Uµν (x)])

=
a4

2g2

∑
x∈ΛL

∑
µ<ν

Tr [Gµν (x)Gµν (x)] +O
(
a6
) (2.17)

and so the continuum QCD gauge action is matched as a→ 0. More complicate

Wilson loops may be used, for example the 1 × 2 rectangle Rµν , gives a gauge

action of the form

SImprovedG =
2

g2

∑
x∈ΛL

Tr

[
(1− 8c1)

∑
µ<ν

Uµν + c1

∑
µ6=ν

Rµν

]
(2.18)

30



where c1 is a coefficient to be chosen. For the actions used in this thesis

c1 = −0.331 is taken, giving what is known as the Iwasaki gauge action [63, 64].

2.1.3 Näıve Fermion Action

Using the covariant derivative we define in Equation (2.14) we can write a näıve

LQCD fermion action

SF
[
ψ, ψ, U

]
= a4

∑
x∈ΛL

ψ

(∑
µ

γµ
2a

(Uµ (x)ψ (x+ aµ̂)− U−µ (x)ψ (x− aµ̂)) +mψ (x)

)
= ψ (x)D (x, y)ψ (y)

(2.19)

where we consider only one quark flavor, for convenience, and we have defined

the näıve Dirac operator, D (x, y). If we take the Fourier transform of the Dirac

operator, in the free fermion case where Uµ (x) = 1, we find that

D̃ (p, q) =
1

V

∑
x∈ΛL

e−(p−q)·ax

(∑
µ

γµ
1

2a

(
eiqµa−e

−iqµa
)

+m

)

= δ (p− q)

(
m+

i

a

∑
µ

γµsin (pµa)

)
= δ (p− q) D̃ (p) .

(2.20)

The quark propagator is given by the inverse of D̃, given as [83]

D̃−1 (p) =
m− i

a

∑
µ γµsin (pµa)

m2 + 1
a2

∑
µ γµsin

2 (pµa)
. (2.21)

If we take the massless continuum limit

D̃−1 (p) |m=0 = −ia
∑

µ γµsin (pµa)∑
µ γµsin

2 (pµa)

a→0−−→ − /p

p2
(2.22)

we see that this Dirac operator has the correct continuum limit. However, as

lattice momenta are contained in the Brillouin zone of −π
a
< pµ ≤ π

a
we see that

this operator has 16 poles, the expected pµ = (0, 0, 0, 0) pole and an additional

15 poles when any of the pµ entries are π
a

or 0. Thus the ψ fields can create

16 independent fermion states with the same energy, 15 of which are unphysical

fermions, called “doublers”. To remove these doublers the näıve Dirac operator
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can be modified, adding a “Wilson term” to create the Wilson Dirac operator

[51]:

DW (x, y) =

(
4

a
+m

)
δx,y −

1

2a

∑
µ

(1− γµ) [Uµ (x) δx+aµ̂,y

− (1 + γµ)U−µ (x) δx−aµ̂] ,

(2.23)

which in momentum spaces is

D̃W (p) = m+
i

a

∑
µ

γµsin (pµa) +
1

a
(1− cos (pµa)) . (2.24)

This action gives the doubler fermions a mass of order a−1 so that when we take

the continuum limit their masses become infinitely large and decouple from the

theory. The Wilson term is equivalent to adding the discretized for of −a
2
∂µ∂

µ to

the operator, which disappears as we take the continuum limit, but this additional

term also explicitly breaks chiral symmetry. A useful relation that can be defined

when discussing a Dirac operator, D, that obeys chiral symmetry is

Dγ5 + γ5D = 0. (2.25)

For the massless Wilson Dirac operator, we find:

DW |m=0γ5 + γ5DW |m=0 6= 0. (2.26)

In fact, the Nielsen-Ninomiya no-go theorem [80] states that it is impossible to

construct a lattice action such that these four conditions are met:

� the action is local,

� the correct propagator is retrieved in the continuum limit,

� there are no doublers,

� chiral symmetry is obeyed for massless quarks.

This means that when constructing a lattice fermion action one must acquiesce

and violate at least one of these conditions. Examples of fermion actions other

than the Wilson action are the “Staggered Fermion” action [68], the “Overlap”

action [79], and the “Domain Wall Fermion” (DWF) action [65]. The staggered

fermion action reduces the number of doublers down to four “tastes”, and a
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subgroup of chiral symmetry is maintained. The overlap action is a solution to

the Ginsparg-Wilson equation [53]

Dγ5 + γ5D = aDγ5D (2.27)

which has the form

Dov =
1

2
(1 +m) +

1

2
(1 +m) γ5ε (H) (2.28)

where ε is the sign function ε (H) = H√
H†H

, H = γ5Dkernel and Dkernel is some

Dirac operator that satisfies chiral symmetry. The overlap action allows for lattice

fermions that are free of doublers ans achieve chiral symmetry in the continuum

limit. The DWF action serves as the foundation of the action used for this thesis,

and so warrants further discussion.

2.1.4 Domain Wall Fermions

In order to simulate fermions with approximate chiral symmetry at finite lattice

spacing an auxiliary fifth dimension, that has length Ls and is denoted by s,

is introduced. This dimension is constructed such that, at low energies, chiral

symmetry breaking is suppressed exponentially in Ls. Left- and right-handed

fermions can be thought to be localized at opposite ends of the fifth dimension

with the exponential suppression causing a suppression of any overlap of their

wavefunctions. The four dimensional theory is retrieved by considering the

physics at these boundaries.

To see this we consider a fermion with an s-dependent mass that has the shape

of a domain wall

m (s) = mθ (s) =

+m, s > 0

−m, s < 0
(2.29)

A five dimensional free Dirac operator defined as

D (x, s) = /D + γ5∂s +m (s) (2.30)

for which the five dimensional spinor, Ψ (x, s), that satisfies the Dirac equation

D (x, s) Ψ (x, s) = 0, (2.31)

33



can be separated into functions of s multiplied by four dimensional spinors, ψ (s),

Ψ (x, s) =
∑
n

[bn (s)PR + fnPL]ψ (x) (2.32)

satisfying the equations [66]

[∂s +m (s)] bn (s) = λnfn (s)

[−∂s +m (s)] fn (s) = λnbn (s)
(2.33)

A solution for b (s) can be found with eigenvalue λ = 0, given by

b0 = Nexp

(
−
∫ s

0

m (s′) ds′
)

= Ne−m|s|. (2.34)

So we have a solution that is localized near the mass defect at s = 0 which falls off

exponentially with distance s, describing a single, massless, right-handed fermion

at the right domain wall. There is no analogous solution for fn (s) as

f0 ∼ exp

(
+

∫ s

0

m (s′) ds′
)

(2.35)

as this grows exponentially with distance s and is not renormalizable for infinite

s. For a fifth dimension that has periodic boundary conditions Ψ (x, s+ Ls) =

Ψ (x, s) , the theory can be defined on the interval s ∈
[
−Ls

2
, Ls

2

]
with mass

m (s) = m s
|s| . Now the f0 solution

f0 = N ′exp

(
+

∫ s

0

m (s′) ds′
)

= N ′em|s| (2.36)

is renormalizable, as the transverse direction is finite, and f0 corresponds to a

left-handed chiral fermion on the left domain wall.

A discretized DWF action is then given, in the Shamir formulation, as

SDWF
(
Ψ,Ψ, U

)∑
x,y

∑
s,r

Ψ (x, s)DDWF (x, s; y, r) Ψ (y, r) (2.37)

where we now consider the interval s, r ∈ [0, Ls − 1] and the domain wall Dirac

operator is given by

DDWF (x, s; y, r) = δs,rDW (x, y) + δx,yD
5
DWF (s, r) (2.38)
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where DW is the Wilson operator with the mass term replaced with M5, the

height of the domain wall, and D5
DWF (s, r) is given by

D5
DWF (s, r) =δs,r − (1− δs,Ls−1)PLδs+1,r − (1− δs,0)PRδs−1,r

+m (PLδs,Ls−1δ0,r + PRδs,0δLs−1,r) .
(2.39)

The four dimensional fermion fields are then given by

ψ (x) = PLΨ (x, 0) + PRΨ (x, Ls − 1) (2.40)

ψ (x) = Ψ (x, Ls − 1)PL + Ψ (x, 0)PR (2.41)

In the Ls → ∞ limit the DWF operator has arbitrarily exact chiral symmetry

and is equivalent to overlap operator, with different DWF formulations making

up different kernels in argument of the sign function. For example, for the Shamir

formulation, we can write [86]

DShamir
kernel =

a5D
W (M5)

2 + a5DW (M5)
(2.42)

where a5 is the lattice spacing in the fifth dimension, that is generally set to a5 = 1

in units of the spacetime lattice spacing. For finite Ls there is an equivalence

between the DW operators and an “effective” overlap operator that has a Ls

dependence:

Dov (Ls) =
1

2
(1 +m) +

1

2
(1 +m) γ5ε

Ls (H) (2.43)

where εLs (x) is an approximate sign function. For the finite Ls Shamir

formulation we have

εLs (x) =
(1 + x)Ls − (1− x)Ls

(1 + x)Ls + (1− x)Ls
= tanh

(
Ls tanh−1 (x)

)
. (2.44)

A general form of the the Shamir kernel is the Möbius kernel [26]

DMob
kernel =

(bs + cs)D
W (M5)

2 + (bs − cs)DW (M5)
(2.45)

where bs and cs are s-dependent real parameters, with the Shamir case given by

αa5 = bs + cs, a5 = bs − cs, where α is a scaling parameter. The Möbius fermion

has an approximate sign function of the form

εLs (x) =
f (x) + f (−x)

f (x)− f (−x)
; f (x) =

Ls−1∏
i=0

(ωi + x) ; ωi ≡
1

bi + ci
. (2.46)
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The extent to which the overlap between the left- and right-handed fermions

manifest due to finite Ls can be seen through the residual mass, and additive

renormalization to the bare quark mass

mq = m+mres (2.47)

which we will discuss further in (2.1.5). With an appropriate choice of ωi’s

Equation (2.46) for the Möbius kernel can better approximate the sign function

than Equation (2.44) for the Shamir kernel. This can reduce the residual chiral

symmetry breaking for a given Ls, or alternatively, produce an equivalent residual

breaking for a reduced Ls. An “approximate equivalence relation” between the

two operators can be given in terms of the scaling parameter, α [26]:

Shamir at Ls ≈ Möbius at Ls/α. (2.48)

A smaller Ls is beneficial, not only for reducing the computational costs of using

the action, but also it allows for more eigenvector generation, the uses of which

will be discussed in sections (2.3.2) and (2.3.3).

Another method to reduce Ls is to introduce the zMöbius operator [77], the kernel

of which is equivalent to the Möbius kernel with complex bi and ci. As the sign

function must be real the ωi’s must be real or come in complex conjugate pairs.

For a given Ls, L
′
s, where L′s < Ls, a set of ωi’s can be found such that the

approximation

εL
′
s (x) ≈ εLs (x) (2.49)

is satisfied. This is a function approximation problem, and so can be achieved

using the Remez algorithm.

After they have been computed these ωs’s can be used to construct a reduced-

Ls Möbius operator, which can then be used in the “Möbius-accelerated DWF”

(MADWF) algorithm [91] to speed up inversions of the original large-Ls operator,

or, as is the case in this thesis, used as a cheaper approximation of the original

action to which bias correction step can be applied. This is analogous to

the all-mode-averaging (AMA) technique [20] where, for an observable O, an

approximation of the the observable O′ is computed using an “inexact” method.

O is typically expensive to compute using an “exact” method and so is only

calculated on a small number of configurations in order to measure a correction

term ∆O. The AMA estimator, or equivalently the Möbius bias correction
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estimator, is given by

OAMA =O′ + ∆O (2.50)

=O′ +
(
Õ′ − Õ′

)
, (2.51)

where the observables with a tilde have been computed on a set of statistics that

is smaller and separate than that of O′. With an appropriate choice of O′ and

∆O the computational cost of calculation OAMA with a particular statistical error

can be greatly reduced compared to a direct computation of O.

2.1.5 Conserved Currents

When defining conserved currents on the lattice it is not enough to simply take

a discrete derivative of the currents defined in Equation (1.25). Instead we must

vary the lattice action under some same symmetry transformations, corresponding

to the matrices λa, and derive the lattice Ward identities. For example, the Wilson

action gives

JW,aµ =
1

2

(
ψ (x+ aµ̂) (1 + γµ)U †µλ

aψ (x)

− ψ (x)
(
1− γµ)U †µλ

aψ (x+ aµ̂)
)
.

(2.52)

For some actions, including the Möbius DWF action, an alternative approach

is taken. We take advantage of the fact that gauge symmetry leaves the action

invariant at O (α) under the simultaneous transformations

Uµ (x)→ (1 + iα)Uµ (x)

Uµ (x− aµ̂)→ Uµ (x− aµ̂) (1− iα)
(2.53)

and those in Equation (1.26). A change of variables can be performed on the

fermion fields such that the phase is absorbed

ψ′ (x) = (1 + iα)ψ (x)

ψ
′
(x) = ψ (x) (1− iα)

(2.54)
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The Jacobian matrix for this change of variable is the identity, and so, for example,

the partition function can be written as

Z = Z ′ =

∫
dψ
′
dψ′e−S[ψ′,ψ′,U]

(
1+

iα
∑
µ

[
δS

δUµ (x)
Uµ (x)− δS

δUµ (x− aµ̂)
Uµ (x− aµ̂)

])
.

(2.55)

When we insist that〈∑
µ

(
δS

δUµ (x)
Uµ (x)− δS

δUµ (x− aµ̂)
Uµ (x− aµ̂)

)〉
= 0 (2.56)

we can, for example, rederive Equation (2.52) for the Wilson action in this

manner. In fact for a gauge invariant Lagrangian this can always be done. In

order to derive the conserved current for the Möbius DWF action we consider

this variation of the gauge links for the associated approximate overlap Dirac

operator, giving [19]

δDMob
ov =

1

2
(1−m) γ5δ

(
1

1− T−Ls

)
(2.57)

where T is the so-called transfer matrix,

T = −D
Mob
kernel + 1

DMob
kernel − 1

. (2.58)

It can be shown with this method that the conserved Möbius current is [19]

JMob
µ =

1−m
bs + cs

γ5

(
1 + T−Ls

)−1 [
δ
(
T−Ls

)] (
T−Ls + 1

)−1

=
1−m
bs + cs

γ5

(
1 + T−Ls

)−1

[
Ls−1∑
s=0

T−sδ
(
T−1

)
T−(Ls−s−1)

] (
T−Ls + 1

)−1

=
1−m
bs + cs

γ5

(
1 + T−Ls

)−1

[
Ls−1∑
s=0

T−s
[
bs
(
PR − T−1PL

)
+ cs

(
T−1PR − PL

)]
×δ (DW )

[
bs
(
PR + PLT

−1
)

+ cs
(
PRT

−1 + PL
)]
T−(Ls−s−1)

] (
T−Ls + 1

)−1

(2.59)
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where we have used the fact that δ
(
T−Ls

)
=
∑Ls−1

s=0 T−sδ (T−1)T−(Ls−s−1) and

δ
(
T−1

)
=
[
bs
(
PR − T−1PL

)
+ cs

(
T−1PR − PL

)]
× δ (DW )

[
bs
(
PR + PLT

−1
)

+ cs
(
PRT

−1 + PL
)]
,

(2.60)

and we have used the variation of the Wilson action δ (DW ) that gives (2.52) with

the form ψδ (DW )ψ = ∆−µ J
W
µ , for the backwards derivative, ∆−.

Taking bs and cs to represent the Shamir DWF formulation the conserved current

constructed by Furman and Shamir for the λa = 1 related symmetry can be

rederived. For a general λa the current in the four spacetime dimensions is [87]

ja4,µ (x, s) =
1

2

(
Ψ (x+ aµ̂, s) (1 + γµ)U †µ (x)λaΨ (x, s)

−Ψ (x, s) (1− γµ)U †µ (x)λaΨ (x+ aµ̂, s)
) (2.61)

and for the fifth dimension the current is

ja5,µ (x, s) Ψ (x, s)PRλ
aΨ (x, s+ 1)−Ψ (x, s+ 1)PLλ

aΨ (x, s) . (2.62)

The conserved four dimensional vector current is given as

Ja,Shamirµ =
∑
s

ja4,µ (x, s) . (2.63)

In order to construct the axial current the following five dimensional fermion field

rotation is considered

Ψ (x, s)→

eiΓ(s)Ψ (x, s) : x = x0

Ψ (x, s) : x 6= x0

(2.64)

where

Γ (s) =

−1 : 0 ≤ s < Ls
2

+1 : Ls
2
≤ s

(2.65)

which gives the axial current for the Möbius action as [19]

AMob
µ =

(
1 + T−Ls

)−1

[
Ls−1∑
s=0

T−sΓ (s) δ
(
T−1

)
T−(Ls−s−1)

] (
T−Ls + 1

)−1
. (2.66)

In the Shamir case this simplifies to

Aa,Shamirµ = Γ (s) ja4,µ. (2.67)
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For both the Möbius and Shamir constructions the axial current leads to a lattice

PCAC relation of the form

a
〈
∂µAaµ (x)

〉
= 2ma 〈P a (x)〉+ 2 〈P a

J5〉 , (2.68)

where P a is the pseudoscalar density, defined in Equation (1.31) and P a
J5 is known

as the midpoint term and is given by

P a
J5 (x) = Ψ

(
x,
Ls
2
− 1

)
PRλ

aΨ

(
x,
Ls
2
− 1

)
+ Ψ

(
x,
Ls
2

)
PLλ

aΨ

(
x,
Ls
2

)
.

(2.69)

As we expect to recover the continuum PCAC, Equation (1.32), as we take a→∞
we see that the midpoint term is a deviation that does not disappear. If we dived

across Equation (2.68) by a 〈P a (x)〉 this gives

1

2
=

〈
∂µAaµ (x)

〉
〈P a (x)〉

= m+mres (2.70)

where we have defined amres ≡
〈PaJ5〉
〈Pa(x)〉 as the residual mass. This residual mass

represents the extent to which the finite Ls leads to mixing of the left- and right-

handed fermions, leading to residual chiral symmetry breaking. For the lighter

quarks, the up, down, and strange, mres has been studied for the ensembles used

in this thesis and the Ls extent is long enough the mres is small. For the charm

quark that is needed to study the rare kaon decays, however, more consideration

is needed. This is discussed further in Section (4.1).

2.2 Simulation and Measurement

2.2.1 Gauge Configuration Generation

In order to calculate correlation functions, as in Equation (2.1) after performing

a Wick rotation, for a given gauge and fermion action the number of degrees of

freedom in the path integral must be reduced, as it would be too computationally

expensive to perform the calculation directly. The fermions are typically

integrated out for this reason, and instead are represented in terms of bosonic
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“pseudofermion” fields, φ, as∫
DψDψe−ψDψ = det (D) =

1

det (D−1)
=

∫
DφDφ†e−φ

†D−1φ. (2.71)

The correlation function now takes the form

〈0|O1 (x1) . . .On (xn)|0〉 =
1

Z

∫
D
[
A, φ, φ†

]
O1 (x1) . . .OneiS[A,φ,φ†]. (2.72)

Integrating over the space of all ensembles is still prohibitively expensive and

instead a statistical approach is taken to evaluated 〈0|O1 (x1) . . .On (xn)|0〉. A

sequence of N gauge field configurations, Ui, are generated with probability

weighted appropriately, such that

〈0|O1 (x1) . . .On (xn)|0〉 ≈ 1

N

N∑
i=1

O1 (x1) . . .One[Ui] (2.73)

which hold true up to O
(

1√
N

)
statistical errors. The method with which the

gauge configurations used in this project were generated was a hybrid Monte

Carlo algorithm [19, 42].

2.2.2 Construction of Correlators

As a simple example of how to construct such a correlation function as in Equation

(2.73) let us consider the pion two point function〈
φπ+ (y)φ†π+ (x)

〉
(2.74)

where φ†π+ (x) is the pseudoscalar interpolator that creates a state with the same

quantum numbers of a π+ meson at position (tx, ~x) and φ (y) is the equivalent

annihilation operator. For the π+ these interpolators are given by

φπ+ (y) = d (y)αa (γ5)αβ u (y)βb

φ†π+ (x) =
(
d (x)αa (γ5)αβ u (x)βb

)†
= −u (x)βb (γ5)βα d (x)αa

(2.75)

where the minus sign comes from the interchange of the Grassman variables, the

Greek indices give spin and the Roman indices color. Using these interpolators
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we get〈
φπ+ (y)φ†π+ (x)

〉
= −

〈
d (y)αa (γ5)αβ u (y)βb u (x)γc (γ5)γδ d (x)δd

〉
=
〈

[u (y)u (x)]βγbc (γ5)γδ
[
d (x) d (y)

]δα
da

(γ5)αβ
〉

= 〈Tr [Su (y, x) γ5Sd (x, y) γ5]〉

=
〈
Tr
[
S†u (x, y)Sd (x, y)

]〉
(2.76)

where we have performed a Wick contraction, used the definition of the

propagator

Sq (x, y)αβab = [q (x) q (y)]αβab , (2.77)

and used the γ5 hermiticity property of the propagator:

γ5Sq (x, y) γ5 = S†q (y, x) . (2.78)

In order to compute the pion two point function for a specific momentum, ~p, such

that is couples to the corresponding eigenstates of the Hamiltonian, we consider

the Fourier transform of the interpolator

φ̃π+ (t, ~p) =
1

V

∑
~x

φπ+ (y) e−i~p·~x. (2.79)

Since the Fourier transform is over the spatial part of the lattice the creation

and annihilation operators are projected to the momentum, ~p, at source and sink

times, t0 and ts. The two pion correlator is then given as〈
φ̃π+ (ts, ~p) φ̃

†
π+ (t0, ~p)

〉
=
∑
~x,~y

〈
φπ+ (y)φ†π+ (x)

〉
e−i~p·(~y−~x). (2.80)

2.2.3 Extracting Observables

To study the vacuum expectation value of the pion 2-point function we consider

its time dependence. If we take Equation (2.80) and insert a complete set of

eigenstates for the Hamiltonian

1 =
∑
n

1

2En (~p)
|n〉 〈n| , (2.81)
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and use the Euclidean time evolution for operators

O (t) = etĤOe−tĤ , (2.82)

where Ĥ is the Hamiltonian operator, we get

Γ(2) (ts, t0, ~p) =
∑
n

1

2En (~p)
〈0| e(ts−T )Ĥ φ̃π+ (0, ~p) e−tsĤ |n〉 〈n| et0Ĥ φ̃†π+ (0, ~p) e−t0Ĥ |0〉

=
∑
n

1

2En (~p)
〈0| e(ts−T )E0φ̃π+ (0, ~p) e−tsEn |n〉 〈n| et0Enφ̃†π+ (0, ~p) e−t0E0 |0〉

=
∑
n

Z2
n (~p)

2En (~p)
e−En(ts−t0)

(2.83)

where T is the time extent of the lattice, the energy of the vacuum is E0 = 0 and

Zn (~p), defined as

Z2
n (~p) =

∣∣∣〈n|φ̃†π+ (0, ~p) |0
〉∣∣∣2 , (2.84)

represents the probability of the interpolator, φ̃†π+ (0, ~p), to create the meson state

|n > from the vacuum. We can see that this 2-point function does not only the

pion meson state, but also includes contributions from excited states. However,

due to the exponentially decaying behavior of the correlator, in the t >> ts limit

we have

Γ(2) (ts, t0, ~p)
ts>>t0−−−−→ Z2

π (~p)

2Eπ (~p)
e−Eπ(~p)(ts−t0) (2.85)

as the pion is the ground state of the interpolator. In practice, as we have a finite

volume on the lattice, we do not compute the VEV of the 2-point function, but

instead

Γ(2) (ts, t0, ~p) =
∑
m

〈m| φ̃π+ (ts, ~p) φ̃
†
π+ (t0, ~p) |m〉 , (2.86)

which becomes the VEV in the infinite limit. Periodic boundary conditions are

also used on the lattice, and these result in “round-the-world” effects that are due

to the fact that the meson states also propagate in the negative time direction.

If we perform the same procedure of evolving the interpolators of (2.86) in time,

and combine those results with forward propagating equivalent, (2.83), we get

Γ(2) (ts, t0, ~p)
T>>ts>>t0−−−−−−−→ Z2

π (~p)

2Eπ (~p)

(
e−Eπ(~p)(ts−t0) + e−Eπ(~p)(T−(ts−t0))

)
=
Z2
π (~p)

Eπ (~p)
e
T
2
Eπ(~p) cosh

(
Eπ (~p)

[
ts − t0 −

T

2

]) (2.87)

43



which takes these “round-the-world” into account. We use Equation (2.87) as a

model to fit our lattice data for Z2
π (~p) and Eπ (~p), in the appropriate fit range

T >> ts >> t0. For the zero momentum case fitting for Eπ

(
~0
)

is equivalent to

fitting for the pion mass, and a useful quantity that can be used to determine an

appropriate fit range is the effective mass

aMeff (ts) = ln

 Γ(2)
(
ts, t0,~0

)
Γ(2)

(
ts + 1, t0,~0

)
 , (2.88)

which gives a clear plateau when excited states no longer contribute. A similar

approach of inserting a complete set of states and using the Euclidean time

evolution for interpolators is used to create the 3- and 4-point functions that

are presented in Section (3.2.1), which we wish to fit for the matrix elements and

energies we need to describe the rare kaon decays we are interested in.

2.2.4 Bootstrap Resampling

After calculating a distribution of some correlation function,

C = {Ci} ; 1 ≤ i ≤ NC , (2.89)

on NC gauge configurations, we estimate the VEV of some observable, O, by

taking the average of each observable, O, extracted from Ci

〈O〉 ≈ Ō =
1

NC

NC∑
i=1

Oi. (2.90)

In the NC →∞ limit this will coverage to the “true” VEV of the theory we are

working in, but for finite NC we can only calculate an estimator of the true value.

A statistical error on the average must in order to consider the result meaningful.

The distribution of observables is expected to follow a Gaussian distribution, so

for large number of independent measurements we may calculate the variance on

the observables as as

σ2
O =

1

NC − 1

NC∑
i=1

(
Oi − Ō

)2
. (2.91)
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In practice it is too computationally costly to compute a large enough distribution

for Equation (2.91) to hold true, and in any case our measurements are not

always independent. The gauge configurations are generated as a Markov chain,

using Monte Carlo methods, and so suffer from auto-correlation. To compensate

for this we can either calculate observables on gauge configurations that are

sufficiently separated in the Markov chain that the correlation contributes less

than the statistical error would, or bin our data such that the binned data is

sufficiently independent. To compensate for the low statistics in the distribution

we may employ bootstrap resampling. This procedure involves creating a new

distribution, CB
j , called a bootstrap sample, that is given as [48]

CB
j =

{
Cb
i

}
; 1 ≤ i ≤ NC ; Cb

i = rand (Ci) , (2.92)

that has the same number of elements as the the original distributions, but each

element is chosen randomly from the original. This is repeated Nb times and a

distribution of the mean of the bootstrap sample is created

CB =
{
C̄B
i

}
; 1 ≤ j ≤ Nb, (2.93)

with corresponding observables being extracted, OB and ŌBi . From this we can

define the standard deviation as

σB =
1

Nb

Bb∑
i=1

(
ŌB − ŌBi

)2
(2.94)

or by finding the values, a and b, of ŌBi , that bound the 68% confidence interval

#
{
ŌBi < a

}
Nb

= 0.16,
#
{
ŌBi < b

}
Nb

= 0.84, (2.95)

and defining the bootstrap estimate of the standard deviation to be half the

length of this interval

σB =
b− a

2
. (2.96)

2.2.5 Fitting

When fitting some ensemble average lattice data,
{
Ȳi
}

, Ȳi = 1
NC

∑NC
i=1 Yij, we

want to test how well this data agrees with some model, F (X,α1, α2, . . .), where

X is some variable associated with the lattice (usually time, but it may also be
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quark mass or lattice spacing) and the α’s are fit parameters of the model we

wish to determine. If the data are independent then we find the fit parameters

by comparing the data to the model on an appropriate set of data points, β, and

look for the α’s that minimize the χ2 function, defined as

χ2 =
∑
i∈β

[
Ȳi − F (X,α1, α2, . . .)

]
σ2
i

. (2.97)

The degrees of freedom (dof) in this fit are given by Nβ −Nα, and χ2/dof gives

an indication of the goodness of fit, with a smaller χ2/dof corresponding to a

good agreement between the data and model over a number of fit points. To be

confident in our fit result we must also investigate the probability that randomly

selected data would have the same χ2. This probability is known as the p-value,

and for this thesis the two-sided p-value is used, and is given by

p = 2min
{
P
(
X > χ2

)
, P
(
X < χ2

)}
, (2.98)

where X is a random variable that has a χ2-distribution. Our lattice data is

not expected to be independent. As our observables may depend on multiple

quantities that are measured using the same gauge fields they will be correlated

with each other. Even within one correlator, C(t), there may be significant

correlation between adjacent time slices. Due to this we instead seek to minimize

the correlated χ2:

χ2 =
∑
i,j∈β

(
Ȳi − F (X,α1, α2, . . .)

)
C−1
ij

(
Ȳj − F (X,α1, α2, . . .)

)
(2.99)

where Cij is the covariant matrix that describes the correlation between different

data points, and is given by

C−1
ij =

1

NC (NC − 1)

NC∑
k=1

(
Yik − Ȳi

) (
Yjk − Ȳj

)
. (2.100)

If the number of configurations used to create the ensemble average data is not

large enough to give a good signal the the covariance matrix may become singular,

or close to singular, making it impossible, or difficult, to invert. In these cases it

is necessary to depend only on the uncorrelated χ2 to determine goodness of fit.
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2.3 Lattice Propagator

To compute a lattice propagator, as in Equation (2.77), needed to construct the

correlation functions, we need to invert the Dirac matrix

Sq (x, y) = D−1 (x, y,m = mq) . (2.101)

This describes the propagation amplitude of a quark from every point x on the

lattice to every other point y, for each other 4× 3 = 12 spin-color combinations.

In the thesis we have made use of Dirac operators for gauge configurations with

spacetime volume N3
L ×NT = 483 × 96 with Ls = 10 for the zMöbius action and

Ls = 24 for the Möbius action. This leads to a Dirac matrix with ∼ 1016 elements

in 4 dimensions and ∼ 1018 elements in 5 dimensions. These are prohibitively

expensive to invert exactly and, although there are methods that can be employed

to reduce the computational cost of inversion, some approximation is made.

Typically the approximation is done by solving

D−1 (x, y) = η (x, z) = S (x, z) (2.102)

where η (x, z) is a source field that only has a subset of elements on the lattice.

This matrix problem, where S (x, z) is our solution, can be solved with various

methods and for various source, η (x, z). For this thesis the conjugate gradient

(CG) algorithm, a Krylov subspace method, was used [84]. The remainder of this

section is spent discussing ways to improve the convergence of this algorithm,

reduction its computational cost with even-odd preconditioning in Section (2.3.1)

and “deflating” the solves by constructing guess vectors using eigenvectors of

the Dirac matrix in Section (2.3.2). Following that the “all-to-all” method of

approximating the Dirac matrix will be introduced in Section (2.3.3) and the

various η (x, z) sources that are used in this thesis are introduced in Section

(2.4).

2.3.1 Even-Odd Preconditioning

Consider the matrix problem

Mψ(x) = η(x) (2.103)
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where M is the massive lattice Dirac operator, η(x) is a given source quark field,

and ψ(x) is the solution we are looking for. If we wish to solve the matrix problem

though some conjugate gradient algorithm then the convergence of this algorithm

depends on the condition number, κ(M), of the matrix M †M , given by [73]

κ(M) =

(
λmax
λmin

)1/2

∝ (am)−1 (2.104)

where the λ’s are the extremal eigenvalues of the matrix M †M , a is the lattice

spacing and m is the quark mass. For small quark masses and lattice spacings

the Dirac operator is said to be “ill-conditioned.”

The problem can be rearranged in such a way that a different matrix with a

better condition number must be inverted in order to find a solution. This

procedure is called preconditioning and a common method used is called “even-

odd preconditioning.” A lattice point x is considered even or odd depending on

whether the sum of its coordinates xµ is even or odd. This allows for a Schur

decomposition of M into LDU form:

M =

(
Mee Meo

Moe Moo

)

=

(
1 0

MoeM
−1
ee 1

)(
Mee 0

0 Doo

)(
1 M−1

ee Meo

0 Moo

)
= LDU

(2.105)

where Doo = 1−MoeM
−1
ee MeoM

−1
oo and Meo, for example, stands for the hopping

terms that go from the odd to the even sites. Mee and Moo include mass terms

(and possibly a Pauli term if the theory is O(a)-improved). They can easily be

inverted as they do not couple to different lattice points. Using this decomposition

we can rewrite equation (2.103) as

LDUψ = η. (2.106)

Therefore we can write

DUψ = L−1η(
Mee Meo

0 DooMoo

)
ψ =

(
1 0

−MoeM
−1
ee 1

)
η.

(2.107)
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This can be decomposed into odd and even subspaces(
Mee Meo

0 DooMoo

)(
ψe

ψo

)
=

(
1 0

−MoeM
−1
ee 1

)(
ηe

ηo

)
(
Meeψe +Meoψo

DooMooψo

)
=

(
ηe

ηo −MoeM
−1
ee ηe

)
=

(
ηe

η′o

) (2.108)

By solving the equation

D†ooDooMooψo = D†ooη
′
o (2.109)

for ψo we can find

ψe = M−1
ee (ηe −Meoψo) (2.110)

and obtain the full solution. D†ooDoo is a Hermitian, positive definite matrix, so

we can use the CG algorithm to find its inverse. The condition number of D†ooDoo

is smaller than that of M †M , and so the cost of the CG algorithm is reduced.

2.3.2 Deflation

If we had the Nl lowest eigenvectors and eigenvalues of D†ooDoo

D†ooDooφi = λiφi (2.111)

then this knowledge could be used to improve the condition number of and create

a denser eigenvalue spectrum for the CG algorithm, both of which would improve

convergence. To do this we first consider that for a matrix with M eigenvectors

D−1
oo =

(
D†ooDoo

)−1
D†oo =

i=M∑
i=1

φiφ
†
i

λi
D†oo. (2.112)

and then rewrite
(
D†ooDoo

)−1
in terms of low and high mode parts

(
D†ooDoo

)−1
=

i=M∑
i=1

φiφ
†
i

λi

=

i=Nl∑
i=1

φiφ
†
i

λi
+

i=M∑
i=Nl+1

φiφ
†
i

λi

=
(
D†ooDoo

)−1(l)
+
(
D†ooDoo

)−1(h)
.

(2.113)

49



Similarly the source D†ooη
′
o can be split into high and low mode parts

D†ooη
′
o =

i=Nl∑
i=1

φiφ
†
iD
†
ooη
′
o +

i=M∑
i=Nl+1

φiφ
†
iD
†
ooη
′
o

=
(
D†ooη

′
o

)(l)
+
(
D†ooη

′
o

)(h)
,

(2.114)

as can ψ. The orthogonality of the eigenvectors means that we can write the

solution as

ψ(l) + ψ(h) =
(
D†ooDoo

)−1(l) (
D†ooη

′
o

)(l)
+
(
D†ooDoo

)−1(h) (
D†ooη

′
o

)(h)
(2.115)

The low mode part of the solution can be constructed using the known eigenvalues

and eigenvectors and the high mode part is better conditioned. If the low mode

part of the source is explicitly removed from
(
D†ooη

′
o

)(h)
and the conjugate gradient

algorithm is started with a guess vector that is orthogonal to the space of low

modes then the solution will remain orthogonal to the low modes also.

For this thesis, the Implicitly Restarted Lanczos method was employed to

compute the eigenvectors that were used to deflate the Dirac matrix. A discussion

on how to compute these eigenvectors is given in A .

2.3.3 All-to-All Propagators

General Case

All-to-all propagators are an approximation to the quark propagators S(x, y) =

D−1(x, y) for any x and y that can be found without inverting the Dirac operator

for each choice of y [50]. In general we write

D−1
A2A =

i=Nl∑
i=1

φiφ
†
i

λi
+

h=Nh∑
h=1

D−1
deflηhηh (2.116)

where

D−1
defl = D−1 −

j=Nl∑
j=1

φjφ
†
j

λj
(2.117)

and ηh are Nh sets of ‘source’ vectors that have the property

lim
Nh→∞

ηhηh = 1 (2.118)
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and so

lim
Nh→∞

D−1
A2A = D−1. (2.119)

The ‘All-to-all Vectors’ are defined as

vi =

 1
λi
φi : 1 ≤ i < Nl

D−1
deflηi : Nl ≤ i < Nl +Nh

(2.120)

wi =

φi : 1 ≤ i < Nl

ηi : Nl ≤ i < Nl +Nh

(2.121)

such that

D−1
A2A =

∑
i

viwi (2.122)

Preconditioned DWF Case

The inverse of the even-odd preconditioned Dirac operator given in Equation

(2.105) is:

D−1
DWF = U−1D−1L−1

=

(
1 −M−1

ee MeoM
−1
oo

0 M−1
oo

)(
M−1

ee 0

0 D−1
oo

)(
1 0

−MoeM
−1
ee 1

)

= U−1

(
M−1

ee 0

0 (D†ooDoo)
−1

)(
1 0

0 D†oo

)
L−1

(2.123)

This can be written in two parts by separating the low-mode parts of D†ooDoo:

D−1
DWF = A+B

A = U−1

(
0 0

0
∑

1
λi
φiφ

†
i

)(
1 0

0 D†oo

)
L−1

B = U−1

(
M−1

ee 0

0 D−1
ooDefl

)(
1 0

0 D†oo

)
L−1

(2.124)
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where D−1
ooDefl = (D†ooDoo)

−1−
∑

1
λi
φiφ

†
i . The all-to-all vectors are then given as

vi = U−1

(
0

1
λi
φi

)

wi = L−1†

(
1 0

0 Doo

)(
0

φi

) (2.125)

for 1 ≤ i < Nl and

vi = U−1

(
M−1

ee 0

0 D−1
ooDefl

)(
1 0

0 D†oo

)
L−1ηi

wi = ηi

(2.126)

for Nl ≤ i < Nl +Nh.

Decomposing the v and w vectors into odd and even subspaces for the low-modes

gives:

vie = − 1

λi
M−1

ee MeoM
−1
oo φi

vio =
1

λi
M−1

oo φi

(2.127)

and

wie = −M−1†
ee M †

oeDooφi

wio = Dooφi.
(2.128)

For the high-modes we note that we can rewrite the vi part of equation 2.126 as:

(
Mee 0

0 D−1†
oo DooDefl

)
Uvi = L−1ηi(

Mee Meo

0 D−1†
oo DooDeflMoo

)
vi =

(
1 0

−MoeM
−1
ee 1

)
ηi

(2.129)
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This is almost equivalent to what we had in equation 2.107, and if we proceed

with a similar even odd decomposition we find:(
Mee Meo

0 D−1†
oo DooDeflMoo

)(
ve

vo

)
=

(
1 0

−MoeM
−1
ee 1

)(
ηe

ηo

)
(

Meeve +Meovo

D−1†
oo DooDeflMoovo

)
=

(
ηe

ηo −MoeM
−1
ee ηe

)
=

(
ηe

η′o

) (2.130)

Now we must solve the equation

DooDeflMoovo = D†ooη
′
o (2.131)

which is almost equivalent to equation 2.109. By finding vo

vo = M−1
oo (DooDefl)

−1D†ooη
′
o

= M−1
oo

(
(D†ooDoo)

−1 −
∑ 1

λi
φiφ

†
i

)
D†ooη

′
o

(2.132)

we can compute

ve = M−1
ee (ηe −Meovo) (2.133)

The even and odd decomposition of wi is trivially:

wie = ηie

wio = ηio.
(2.134)

When using a 5-D Domain Wall Fermion action the 4-D propagator is given by:

S(x, y) = PRD
−1
DWF (x, Ls − 1; y, 0)PR

+ PRD
−1
DWF (x, Ls − 1; y, Ls − 1)PL

+ PLD
−1
DWF (x, 0; y0)PR

+ PLD
−1
DWF (x, 0; y, Ls − 1)PL.

(2.135)

Similarly for a 5-D All-to-All propagator:

D−1
A2A(x, s; y, t) =

∑
i

vi(x, s)wi(y, t) (2.136)
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the 4-D v and w vectors are given by

vi(x) = PLvi(x, 0) + PRvi(x, Ls − 1)

wi(y) = wi(x, Ls − 1)PL + wi(x, 0)PR
(2.137)

which is the same projection to the walls of the fifth dimension that would be

done to find the physical 4-D quark fields.

Meson Correlation Function

We can now write the meson correlator functions

C(t) =
∑
x,y

Tr
[
S(q)(x, y)Γ1S

(q′)(y, x)Γ2

]
(2.138)

as

C(t) =
∑
x,y,i,j

Tr
[
v

(q)
i (x)w

(q)
i (y)Γ1v

(q′)
j (y)w

(q′)
j (x)Γ2

]
=
∑
i,j

∑
x

w
(q′)
j (x)Γ2v

(q)
i (x)

∑
y

w
(q)
i (y)Γ1v

(q′)
j (y)

=
∑
i,j

Π
(q′,q)
ji (tx; Γ2)Π

(q,q′)
ij (ty; Γ1)

(2.139)

where the Π
(q,q′)
ij (tx; Γ) =

∑
xw

(q)
i (x)Γv

(q′)
j (x) are known as “Meson Fields.” A

description of how to construct the 3- and 4-point functions that are relevant to

the rare kaon decays we are interested in are given in (B).

2.4 Lattice Sources

Lattice propagators, S (x, z), are constructed by solving the matrix problem given

in Equation (2.101) using some source field η (y, z). S (x, z) here may be the full

lattice propagator or it may the high-mode portion of an A2A propagator. The

source field typically consists of a subset of the available parameter space, and the

solutions of the corresponding matrix problems are combined to approximate the

full results. For example, all the sources in this thesis are said to be “spin-color”
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diluted, that is

η (y, z)αβab = κ (y, z) δαβδab, (2.140)

where κ (y, z) is a source field that describes only the spacetime structure of

η (y, z). This means that we perform have to perform 12 inversions, one for each

spin-color combination, which can then be combined to give a propagator that

describes the full spin-color space.

The most basic of the spacetime sources, κ (y, z) is the point source, that

corresponds to a single lattice site, z0,

κ (y, z0) = δ (~y − ~z0) δ (ty − tz0) . (2.141)

The propagator obtained using the point source describes the propagation

amplitude from z0 to all other sites, y. Several such propagators can be computed

with point sources defined at different lattice sites and these can be combined

in average when constructing correlators. When these correlators are analyzed

to extract physical observables, as discussed in Section (2.2.3), the spatial

distribution of the source vector can change the regions where the ground state

of the interpolators dominates. This means that some spatial distributions in the

source vector can results in larger regions of ground state domination over which

we can fit, leading to more precise results for no additional computational cost.

For this thesis wall sources are used to compute the propagators used in studying

the rare kaon decays, these are given as [51]

κ (y, z, ~p) = δ (ty − tW ) ei~p·~z, (2.142)

which is the sum of all spatial point sources for a given time, tW . This choice of

source is not gauge invariant and so gauge fixing must be performed in order to

make use of them.

Gauge Fixing

Lattice “links” transcribe the gauge field via the matrix exponential given in

Equation (2.13). We use the Coulomb gauge

∂iAi = 0, i = 1, 2, 3 (2.143)
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to fix the gauge in order to use wall sources. On the lattice this is the equivalent

of minimizing the functional

F [A (x)] =
1

(Nd − 1)NcV

∑
x

Nd−1∑
i=0

Tr

[(
ag0Ai

(
x+

1

2
âi

))2
]

(2.144)

which is done using a Fourier accelerated conjugate gradient algorithm [61]. This

algorithm iteratively produces a gauge transformation matrix, g(n) (x), such that

the gauge is transformed as

g(n) (x) = e−αa∆iag0A
n
i (x) (2.145)

U
(n+1)
i

(
x+

1

2
âi

)
= g(n) (x)U

(n)
i

(
x+

1

2
âi

)
g†(n)

(
x+ âi

)
(2.146)

where α is a tuning parameter, chosen to be 0.1 for Coulomb gauge fixing. This

procedure s performed iteratively, until after N iterations the criteria F [A (x)] <

θ, for some θ chosen to be small, is met.

This procedure minimizes g0A
n
i (x) while retaining the gauge invariance of the

action, and so the gauge is transformed as in (2.146) with g(N) (x) and can be

used for wall sources.

If eigenvectors are being used to deflate solved with a fixed gauge, but have been

generated on the unfixed gauge, then the gauge transformation matrix must also

be applied to them

λi → g(N) (x)λi (2.147)

in order to achieve the same speed-up in inversion.

2.4.1 Stochastic Sources

The spacetime distribution of a source may also be treated stochastically, which

decreases the effects of local fluctuations in the gauge fields. This is important

for constructing lattice propagators of the form S (x, x), which may be needed to

calculate a disconnected diagram or a single-propagator trace contribution to a

correlation function. To create the propagators we depend on N stochastic source
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that fulfill the properties

lim
N→∞

1

N

N∑
i=1

κi (x) = 0,

lim
N→∞

1

N

N∑
i=1

κi (x)κ†i (y) = δxy.

(2.148)

One appropriate choice is the Z2 source [41], where each element is randomly

chosen from

Z2 ⊗ Z2 =

{
1√
2

(±1± i)
}
. (2.149)

Using these as a fermion field source, we can solve

D−1 (x, y)κi (y) = ψi (x) , (2.150)

and create N propagators that have the form

Si (x, x) = ψi (x)κ†i (x) . (2.151)

We can see, by right-multiplying Equation (2.150) with κ†i , that

lim
N→∞

N∑
i=1

Si (x, x) = D−1 (x, x) . (2.152)

It is expected that the statistical error introduced from using stochastic sources

scales as 1√
N

. This Z2 noise structure was used in our investigation of A2A

propagators, with the spatial components being given by Z2 noise with spin-

color-time dilution. For the 483 gauge ensemble the high mode noise in Equation

(2.116) was given by

ηi (x)αβab = κZ2 (~x) δt,tiδαβδab, (2.153)

for a total of N = 96× 12 = 1152 high modes.

Each stochastic source here covers the the full volume but we can also create

“sparse sources” to improve the 1√
N

scaling of the statistical error. In d-

dimensional spacetime we we create N = nd sparse sources where

κsparse(x) =

κZ2(x) : xµ mod n = 0, µ = 0, 1, 2, 3

0 : otherwise
(2.154)

57



v(0,0) f(0,1) v(0,2) f(0,3)

f(1,0) f(1,1) f(1,2) f(1,3)

v(2,0) f(2,1) v(2,2) f(2,3)

f(3,0) f(3,1) f(3,2) f(3,3)

-

shift
y-dim

f(0,0) f(0,1) f(0,2) f(0,3)

v(1,0) f(1,1) v(1,2) f(1,3)

f(2,0) f(2,1) f(2,2) f(2,3)

v(3,0) f(3,1) v(3,2) f(3,3)

Figure 2.1 An example of sparse noises for d = 2, n = 2. The filled circles
represent a site with Z2 noise, the empty circles represent a site that
has been set to zero. Two further shifts are needed to cover the full
volume, giving 22 = 4 sparse sources.

for the first source and we shift in each dimension to ensure that the N sources

cover the entire volume with no overlap when combined, see Figure (2.1) for a

d = 2, n = 2 example. When investigating rare kaon decays we use N = 24 = 16

sparse sources for each hit of a propagator, S (x, x) that we compute.

2.4.2 Sequential Sources

For the study of rare kaon decays we will be interested in correlators that have a

vector current inserted between two meson interpolators. The simplest of these

correlators is the 3-point function

Cµ
J,π+ (tπ, tJ , t, ~p1, ~p2) =

∑
z

〈
φ̃π+ (t, ~p2) Jµ (tJ , ~z) φ̃†π+ (tπ, ~p1)

〉
e−i~q·~z, (2.155)

where q = p1− p2 and Jµ is the conserved vector current, as described in Section

(2.1.5). These correlators can be constructed using a sequential source [76], which

is given by

Σµ (z, y) = Jµ (tJ , z)S (z, y) e−i~q·~z. (2.156)

Using this source in a Dirac operator matrix problem gives

D−1 (x, z) Σµ (z, y) = Sσ (x, y) (2.157)
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which gives the propagator

SΣ (x, y) =
∑
z

S (x, y) Jµ (tJ , z)S (z, x) e−i~q·~z. (2.158)

When working with 5 dimensional Dirac actions that have conserved currents that

depend on the fifth dimension it is important to include this dimension in the

sequential source. This is done by introducing the “surface-to-bulk” propagator

[36]

SSB (x, s; y) =
〈
Ψ (x, s)ψ (y)

〉
, (2.159)

and defining the 5-dimensional sequential sources as

Σ5
µ (z, y) = Jµ (tJ , z)SSB (z, s; y) e−i~q·~z. (2.160)

Using this source in a Dirac operator matrix problem returns a 5-dimensional

propagator, which must be converted to the physical 4-dimensional, using

Equation (2.135).

The γ5 hermiticity of the sequential propagator for a general operator O has the

property

SΣ (x, y,O) = γ5S
†
Σ

(
x, y,O†

)
γ5. (2.161)

In the case of the vector current this means

SΣ (x, y) = −γ5S
†
Σµ

(x, y) γ5. (2.162)
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Chapter 3

The Rare Kaon Decay K → π`+`−

3.1 Phenomenology of the K → π`+`− decay

The K → π`+`− (` = e, µ) decays are flavor changing neutral current (FCNC)

processes that are suppressed in the standard model (SM) from which insights

into new physics (NP) may be gleaned. This process is dominated by a single

virtual-photon exchange (K → πγ∗), whose amplitude is predominantly described

by long-distance, non-perturbative physics. The branching rations for these

decays, taken from the latest PDG average [92], are Br [K+ → π+e+e−] =

(3.00± 0.09)×10−7 and Br [K+ → π+µ+µ−] = (9.4± 0.6)×10−8. With tensions

between the measurement of the RK ratio from LHCb and SM predictions [2]

creating increased interest in lepton-flavor universality violations (LFUV), these

equivalent rare kaon decays could also be suitable candidates to study LFU in

the kaon sector.

The relevant long-distance Minkowski amplitude for the j = +, S decays are [39]

Ajµ =

∫
d4x,

〈
πj (~p)

∣∣∣T [Jµ (0)H∆S=1
W (x)

] ∣∣∣Kj
(
~k
)〉

, (3.1)

where z = q2/M2
K , q = k − p, and k and p indicate the momenta of the K and π

respectively. Here Jµ is the conserved current operator and H∆S=1
W is an effective

weak Hamiltonian.

The contraction of this amplitude is performed using the Fermi effective theory,

for which the weak bosons have been integrated out. This process allows us to

separate the long-distance, hadron contributions, which we seek to study on the
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lattice, from the short-distance contributions, which can be investigated using

perturbation theory. The short-distance dominated processes that contribute

to the full amplitude of the decay are described by local ∆S = 1 operators

that are also involved in K+π0`+ν (K`3) decays, that are known accurately from

experiment and previous lattice results [4, 78].

In Section (3.1.1) the relevant effective weak Hamiltonian will be presented with

a discussion on how it will be applied to the K → π`+`− decay. Section (3.1.2)

will introduce the electromagnetic form factor that we seek to extract from the

amplitude that we calculate on the lattice, with experimental and theoretical

predictions for this form factor presented for comparison.

3.1.1 The ∆S = 1 Weak Hamiltonian

The K → π`+`− decay requires an effective weak Hamiltonian to describe the

four-quark interaction that results in a s → d transition. This ∆S = 1 weak

Hamiltonian is given by [28]

H∆S=1
W =

GF√
2
V ∗usVud

(
2∑
i=1

Ci (µ) (Qu
i (µ)−Qc

i (µ)) +
10∑
i=3

Ci (µ)Qi (µ)

)
. (3.2)
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Figure 3.1 The diagram from which the operators Q3,...,6 originate.

As we wish to consider the four-flavor theory the renormalization scale is taken

to be mc < µ < mb. The operators of H∆S=1
W are [28]

Qq
1 =

(
s̄iγ

L,µqj
) (
q̄jγ

L
µdi
)
, (3.3)

Qq
2 =

(
s̄iγ

L,µqi
) (
q̄jγ

L
µdj
)
, (3.4)

Q3 =
(
s̄iγ

L,µdi
)∑

q

(
q̄jγ

L
µ qj
)
, (3.5)

Q4 =
(
s̄iγ

L,µdj
)∑

q

(
q̄jγ

L
µ qi
)
, (3.6)

Q5 =
(
s̄iγ

L,µdi
)∑

q

(
q̄jγ

R
µ qj
)
, (3.7)

Q6 =
(
s̄iγ

L,µdj
)∑

q

(
q̄jγ

R
µ qi
)
, (3.8)

Q7 =
3

2

(
s̄iγ

L,µdi
)∑

q

eq
(
q̄jγ

R
µ qj
)
, (3.9)

Q8 =
3

2

(
s̄iγ

L,µdj
)∑

q

eq
(
q̄jγ

R
µ qi
)
, (3.10)

Q9 =
3

2

(
s̄iγ

L,µdi
)∑

q

eq
(
q̄jγ

L
µ qj
)
, (3.11)

Q10 =
3

2

(
s̄iγ

L,µdj
)∑

q

eq
(
q̄jγ

L
µ qi
)
. (3.12)

where γ
L/R
µ = γµ (1± γ5), eq are quark charges, and i, j are summed color indices.

For Qq
1,2 the quark is q = u, c whereas for the remaining operators Q3,...,10 the

quark q runs over all active quark flavors.

The Qq
1,2 operators are the result of the current-current diagrams in Figure
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(1.4). The Q3,...,6 operators are the result of QCD-penguin diagrams, as shown in

Figure (3.1), and the Q7,...,10 operators come from electroweak-penguin diagrams,

as shown in Figure (3.2).

The Wilson coefficients for these operators have been calculated in theMS scheme

at two-loop order in [29] and regularization-independent symmetric momentum-

subtraction (RI/SMOM) schemes for the operators have been defined in [71]

along with one-loop matching factors to the MS scheme in naive dimensional

regularization. In order to run the Wilson coefficients down to the four-flavor

theory it is convenient to express them in terms of 10-dimensional vectors

~C (µ) = ~z (µ) + τ~y (µ) , (3.13)

where [92]

τ = − λt
λu
, |τ | ' 1.3× 10−3 (3.14)

is the ratio of CKM matrix elements, λq = VqdV
∗
qs. The ~y (µ) vector, containing

up, charm, and top quark contributions, can be written as

~y (µ) = ~v (µ)− ~z (µ) (3.15)

where ~z (µ) contains only up and charm quark contributions. Running the Wilson

coefficients down to the four-flavor theory thus requires taking

~v4 (µ) = U4 (mc,mb, µ)M (mb)U
5 (mb,mW , µ)~v (mW ) , (3.16)

where the superscripts indicate the number of active quarks, U f (m1,m2, µ) are

the evolution matrices, and M (mb) is the quark threshold matching matrix.

In the four flavor theory we see that the Wilson coefficients for the Qq
1,2 operators

are significantly larger than the Wilson coefficients for the Q3,...,10 operators.

For the QCD- and photon-penguin diagrams this is due to a logarithmic GIM

mechanism that occurs occurs when computing the Wilson coefficients. Due to

the logarithm the heavier quark mass enhancement is diminished, and are thus

comparable to the light quark contributions. The top quark contributions are

also suppressed by CKM matrix elements. For the Z-penguin diagram there is a

quadratic GIM mechanism, as well as top quark contributions that are enhanced

due to compared to the lighter quarks. However the weak coupling of the Z boson

suppresses these contributions. The study of rare kaon decays with four quark

flavors can then be confined to the Qq
1 and Qq

2 operators.
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(a) (b)

Figure 3.2 The diagrams from which the operators Q7,...,10 originate.

There are additional short distance processes that can contribute to the K →
π`+`− Hamiltonian that should be considered. For example the penguin diagrams

in Figure (3.3) contribute to the KL → π0`+`− decay and are described by the

operators [28]

Q7V =
(
s̄iγ

L,µdi
)∑

q

eq (q̄jγµqj) , (3.17)

Q7A =
(
s̄iγ

L,µdi
)∑

q

eq (q̄jγµγ5qi) . (3.18)

This contribution is, again suppressed by the GIM mechanism and CKM

suppression for the top quark contribution. The effective weak Hamiltonian we

use for our four-flavor study of the K → π`+`− is

HW =
GF√

2
V ∗usVud

2∑
i=1

Ci (µ) (Qu
i (µ)−Qc

i (µ)) . (3.19)

In the three-flavor theory we would not be able to take advantage of the GIM

suppression and so several other operators would still have to be considered. The

effective weak Hamiltonian in such a case is

H3
W =

GF√
2
V ∗usVud

(
2∑
i=1

Ci (µ)Qu
i (µ) +

6∑
i=3

Ci (µ)Qi (µ) + C7V (µ)Q7V (µ)

)
.

(3.20)

An extensive description of this effective weak Hamiltonian is given in [69].
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Figure 3.3 The diagram from which the operators Q7A and Q7V originate.

3.1.2 Form Factor

The amplitude in Equation (3.1) can be written in terms of the form factor V i (z)

as [39, 47]

Aj = −iGF
V i (z)

(4π)2

(
q2 (k + p)µ −

(
M2

K −M2
π

)
qµ

)
. (3.21)

This form factor has been analyzed in χPT [39] and can parameterized as

Vi (z) = ai + biz + V ππ
i (z) , (3.22)

where ai and bi are free real parameters and V ππ(z) describes the contribution

from a πππ intermediate state with a π+π− → γ∗ transition. A detailed

description of V ππ(z) is given in [39] and the free parameters have, until recently,

only been obtained by fitting experimental data. Having previously measured

the K+ decay channel for electrons and muons at the NA48 experiment at

the CERN SPS [11], the follow-up NA62 experiment made measurements of

the K+ → π+µ+µ− decay during the 2016-2018 Run 1 [17], with prospects

for further measurements during the 2021-2024 Run 2 [70]. From the NA48

data the free parameters have been determined to be a+ = −0.578 ± 0.016 and

b+ = −0.779 ± 0.066 for the electron [11], and from the available NA62 data

values of a+ = −0.592± 0.015 and b+ = 0.699± 0.058 have been obtained for the

muon [17].

In parallel there is work being done to improve the theoretical understanding of

these processes. The authors of [43, 44] have constructed a theoretical prediction
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of a+ and b+ by considering a two-loop, low energy, expansion of the form factor

in three flavor QCD, with a phenomenological determination of quantities that

are unknown at vanishing momentum transfer. For the electron and muon they

find a+ = −1.59± 0.08 and b+ = −0.82± 0.06.

The non-perturbative ab initio approach of lattice QCD is well suited to study

the dominant long-distance contribution to the matrix element of the K → πγ∗

decay and obtaining a lattice prediction for a and b by investigating the K →
πγ∗ → π`+`− decay will complement the experimental and theoretical results.

Methods with which such a lattice calculation could be performed were first

proposed in [62] and additional details of how the K → π`+`− matrix elements

could be extracted using renormalized operators, in order to have full control of

ultraviolet divergences, were introduced in [36]. Following these an exploratory

lattice calculation was performed in [34], using unphysical masses, in order to

demonstrate how the results in [36, 62] could be applied. This calculation led to

predictions of a+ = 1.6± 0.7 and b+ = 0.7± 0.8 for the free parameters.

For the KS decays the dilepton invariant-mass spectra are unavailable, due to

the low number of observations of the decay in experiment. By assuming vector

meson dominance, i.e. that

aS
bS

=
1

r2
V

, rV =
Mρ

MK

, (3.23)

the magnitude of aS has been estimated to be |aS| = 1.06+0.26
−0.21 for the electron

and |aS| = 1.54+0.40
−0.32 for the muon [39].
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3.2 K → π`+`− on the Lattice

In order to study the rare kaon decays discussed in Section 3.1 on the lattice we

must relate the amplitudes of the decays in Euclidean space to 4-point correlation

functions that we can compute. In practice this means that we calculate the

single photon exchange amplitude of the K+ → π+γ∗ decay, in place of the

K+ → π+`+`− amplitude on the lattice.

The correlators needed for the lattice study, made of bilocal operators inserted

between meson states, will be presented in Section (3.2.1) with the Euclidean

formulation given in Section (3.2.2). A description of these correlators on a

discrete, finite volume, lattice is given in Section (3.2.3) along with a description

of the unphysical intermediate states that the Euclidean formulation introduces.

Finally in Section (3.2.4) the renormalization of the lattice operator will be

discussed.

3.2.1 Operators and Correlators

For the K+ → π+γ∗ decay the long-distance amplitude we wish to compute

is given in Equation (3.1). In this expression the the electromagnetic current

operator is given by the standard flavor-diagonal operator

Jµ =
1

3

(
2V u

µ − V d
µ − V s

µ + 2V c
µ

)
, (3.24)

where V q
µ id the local or conserved vector current, as described in Section (2.1.5),

for quark q. The weak Hamiltonian operator that we use for our calculation is

HW =
2∑
i=1

Ci (Q
u
i −Qc

i) , (3.25)

a repetition of the operator given in Equation (3.19) with the prefactor

GFV
∗
usVud/

√
2 excluded for simplicity, as it can be reintroduced at a later stage.

It is useful to consider the 3-point function given by the weak Hamiltonian

operator inserted between pion and kaon interpolators

Γ
(3)
H (tH , ~p) =

∫
d3~x

〈
φπ (tπ,~p)HW (tH , ~x)φ† (tH , ~p)

〉
, (3.26)
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Figure 3.4 The four classes of diagrams obtained after performing the Wick
contractions of the charged pion and kaon interpolating operators
with the HW operator. ` denotes a light (u or d) quark propagator.
The two black circles represent the currents in the four-quark
operators Qq1,2 defined in (3.25). The Connected and Eye diagrams
contain an insertion of Qq1 and the Wing and Saucer diagrams
contain an insertion of Qq2.

where tk < tH < tπ. The four classes of diagrams that are obtained from the

resulting Wick contractions are shown in Figure (3.4). These diagrams primarily

serve as the foundation on which the 4-point functions are built upon, but in

our analysis we are also interested in extracting the weak Hamiltonian matrix

elements from these 3-point functions. Using the same procedure as outlined in

Section (2.2.3) we can see that for tk � tH � tπ Γ
(3)
H (tH , ~p) has the following

behavior

Γ
(3)
H (tH , ~p) =

Zπ (~p)ZK (~p)MH (~p)

4Eπ (~p)EK (~p)
e−Eπ(~p)tπe−[EK(~p)−Eπ(~p)]tH , (3.27)

where MH (~p) = 〈π (~p)|HW (0) |K (~p)〉 is the matrix element we wish to fit for.

In our analysis we are also interested in the 3-point function of the

electromagnetic current

Γ
(3),P
Jµ

(
t, tJ , ~p,~k

)
=

∫
d3~xe−i~q·~x

〈
φP (t, ~p) Jµ (tJ , ~x)φ†P

(
0, ~k
)〉

, (3.28)

where P = π,K denotes the pseudoscalar meson. For 0� tJ � t Γ
(3),P
Jµ

has the

following behavior

Γ
(3),P
Jµ

(t, tJ , ~p,~k) =
ZP (~p)ZP

(
~k
)
MP

Jµ

(
~p,~k
)

4EP (~p)EP

(
~k
) e−(t−tJ )EP (~k)e−tJEP (~p), (3.29)
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where MP
Jµ

(
~p,~k
)

=
〈
P (EP (~p), ~p)

∣∣∣ Jµ (0)
∣∣∣P (EP (~k) , ~k)〉.

3.2.2 Euclidean Rare Kaon Decay Amplitude

To construct the 4-point correlators that we need, the conserved current is

inserted on each of the quark legs in the four classes of diagrams in Figure (3.4),

along with a disconnected self-contracted current contribution, resulting in 20

total diagrams to be completed. Examples of the resulting diagrams are given

for the “Connected” class in Figure (3.5). The combination of all these diagrams

make up the 4-point correlation function

Γ(4)
µ

(
tH , tJ , ~k, ~p

)
=

∫
d3~x

∫
d3~y

〈
φπ (tπ~p)T [Jµ (tJ , ~x)HW (tH , ~y)]φ†K

(
0, ~k
)〉

,

(3.30)

where 0 < tJ , tH < tπ. In order to compute the final amplitude without including

source/sink factors and normalizations that should not contribute, it is convenient

to define the factor

ZKπ =
Zπ (~p)Z†K

(
~k
)
L3

4Eπ (~p)EK

(
~k
) e−Eπ(~p)tπ , (3.31)

and use this to define the “reduced” correlator

Γ̃(4)
µ =

Γ
(4)
µ

ZKπ
. (3.32)

Obtaining the amplitude requires us to integrate this reduced 4-point correlator

as

Iµ

(
Ta, Tb, ~k, ~p

)
= e−[Eπ(~p)−EK(~k)]tJ

∫ tJ+Tb

tJ−Ta
dtH Γ̃(4)

µ

(
tH , tJ , ~k, ~p

)
, (3.33)

in the limit Ta, Tb →∞. The exponential factor in front of the integral allows us

to omit any tJ dependence on the decay by translating to tJ = 0.

The spectral decomposition of the unintegrated 4-point correlator can be written

as

Γ̃(4)
µ

(
tH , ~k, ~p

)
=


∫∞

0
dE ρ(E)

2E

〈
π (~p)

∣∣∣ Jµ ∣∣∣E,~k〉〈E,~k∣∣∣HW

∣∣∣K (~k)〉 e−(EK(~k)−E)tH , tH < 0,∫∞
0
dE ρS(E)

2E

〈
π (~p)

∣∣∣HW

∣∣∣E, ~p〉〈E, ~p∣∣∣ Jµ ∣∣∣K (~k)〉 e−(E−Eπ(~p))tH , tH > 0,

(3.34)
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Figure 3.5 The five possible current insertions for the C class of diagrams,
contributing to the rare kaon decay correlator (3.30). The diagramtic
conventions are the same as in Fig. 3.4

where ρ (E) and ρS (E) are spectral density functions that select states with

strangeness s = 0 and s = 1 respectively. The integral in Equation (3.33) can

thus be written as

Iµ

(
Ta, Tb, ~k, ~p

)
=−

∫ ∞
0

dE
ρ (E)

2E

〈
π (~p)

∣∣∣ Jµ ∣∣∣E,~k〉〈E,~k∣∣∣HW

∣∣∣K (~k)〉
EK

(
~k
)
− E

(
1− e(EK(~k)−E)Ta

)

+

∫ ∞
0

dE
ρS (E)

2E

〈
π (~p)

∣∣∣HW

∣∣∣E, ~p〉〈E, ~p∣∣∣ Jµ ∣∣∣K (~k)〉
E − Eπ (~p)

(
1− e−(E−Eπ(~p))Tb

)
.

(3.35)

The states
∣∣∣E,~k〉, in the ρ (E) term of the integral, have strangeness S = 0, and

so have the quantum numbers of a pion. For physical pion and kaon masses there

are three intermediate states that could exists with E < EK

(
~k
)

which would

cause the exponential Ta term to diverge, namely the π, ππ, and πππ states. For

the ρS (E) term the states |E, ~p〉 have the quantum numbers of the kaon. Thus

all the states will have E > Eπ(~p) and this term of the integral converges to the

appropriate value for 0� Tb.

The rare kaon decay amplitude is given by the constant terms in the integral in
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Equation (3.35), i.e. the terms that have no Ta or Tb dependence. Extracting this

amplitude requires the subtraction of the exponentially growing terms related to

Ta. If we define Ĩµ

(
Ta, Tb, ~k, ~p

)
to be the integrated 4-point function where this

subtraction has been performed the the Minkowski amplitude for the K+ → π+γ∗

decay is given by

Aµ
(
q2
)

= −iGF√
2
V ∗usVud lim

Ta,Tb→∞
Ĩµ

(
Ta, Tb, ~k, ~p

)
, (3.36)

where we have reintroduced the GF/
√

2V ∗usVud prefactor that we dropped in

Equation (3.25). From this we can use Equation (3.21) relate the form factor

we wish to study to the integrated 4-point function as

V (z)
(
q2 (k + p)µ −

(
M2

K −M2
π

)
qµ

)
=

(4π)2

√
2
V ∗usVud lim

Ta,Tb→∞
Ĩµ

(
Ta, Tb, ~k, ~p

)
.

(3.37)

3.2.3 Lattice Implementation

We now seek to express the correlators that described the rare kaon decay

amplitude in a discrete, finite volume, fashion, such that they can be related

to the lattice results we obtain. This involves using the fundamental concepts

of discretization discussed in Section (2.1.1), primarily the replacement of the

continuous integrals in Equations (3.33) and (3.35) with Riemann sums, along

with the finite volume spectral density being given as ρ (E) =
∑

nEnδ (E − En).

It was first noted in [34] that the discretization of the exponential terms with Ta

and Tb dependence, in Equation (3.35) should be considered with care. Instead of

a simple summation of the exponential contributions we evaluate the sums that

correspond to the integral of Equation (3.34) as a geometric series. To do so we

first introduce the notation

∆a
n = EK

(
~k
)
− En, ∆b

m = Em − Eπ (~p) , (3.38)

where n and m label the states contained in the finite volume spectral densities,

ρ (E) and ρS (E) respectively, and a and b label the contributions associated with

Ta and Tb respectively. The geometric series that we are interested in are given
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by

a

0∑
tH=−Ta

e−∆a
ntH =a

1 + ea∆a
n

(
1− 2e∆a

nTa
)

2
(
1− ea∆a

n

) , (3.39)

a

Tb∑
tH=0

e−∆b
mtH=a

1 + e−a∆b
m

(
1− 2e−∆b

mTb

)
2
(
1− e−a∆b

m

) . (3.40)

The unphysical intermediate states are contained by the terms that depend in Ta

and Tb in Equations (3.39) and (3.40) Expanding these terms in powers of the

lattice spacing gives

−a ea∆a
n

1− ea∆a
n
e∆a

nTa =

(
1 +

a∆a
n

2
+

(a∆a
n)2

12
+O

(
a3
)) e∆a

nTa

∆a
n

, (3.41)

−a e−a∆b
m

1− e−a∆b
m
e−∆b

mTb =

(
−1 +

a∆b
m

2
−
(
a∆b

m

)2

12
+O

(
a3
)) e−∆b

mTb

∆b
m

. (3.42)

Here we can see that the continuum result is reproduced with O (a) discretization

effects. A key observation from [34] is that neglecting these discretization effects

results in an incorrect subtraction of the exponentially growing intermediate state

contribution, and so the geometric series treatment of the integral reduces the

systematic effect of discretization.

The integrated 4-point correlation function on a discrete, finite lattice is then

given by

Iµ

(
Ta, Tb, ~k, ~p

)
= a

∑
n

1

2En

MJ,n→π
µ

(
~k, ~p
)
MK→n

H

(
~k
)

2
(
1− ea∆a

n

) [
1 + ea∆a

n

(
1− 2e∆a

nTa
)]

+

a
∑
m

1

2Em

Mπ→m
H (~p)MJ,K→m

µ

(
~k, ~p
)

2
(
1− e−a∆b

m

) [
1 + e−a∆b

m

(
1− 2e−∆b

mTb
)]
,

(3.43)

where MP1→P2
H (~p) = 〈P2, ~p|HW |P1, ~p〉 and MJ,P1→P2

µ

(
~k, ~p
)

=
〈
P2, ~p

∣∣∣ Jµ ∣∣∣P1, ~k
〉

are equivalent to the 3-point matrix elements given in Equations (3.27) and (3.29)

respectively. In this study we perform the calculation with approximately physical

pion and kaon masses, satisfying EK

(
~k
)
< 3Mπ, and so we must consider the

contributions of the single-, two-, and three-pion intermediate states.
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Single-Pion Intermediate State: Explicit Subtraction

The unphysical term caused by the single-pion state in Equation (3.43) is given

by

Dπ
µ

(
Ta, ~k, ~p

)
=

a

2Eπ

(
~k
)MJ,π→π

µ

(
~k, ~p
)
MK→π

H

(
~k
)

1− e−a∆a
π

e∆a
πTa . (3.44)

This term can either be fit from the integrated correlator or Dπ
µ

(
Ta, ~k, ~p

)
can be

reconstructed using 2- and 3-point fit results of correlators discussed in Sections

(2.2.3) and (3.2.1).

In practice we not only have to remove the exponential term that grows with Ta,

but also the exponential term that shrinks with Tb. This term is an unphysical

single-kaon contribution, which may not converge in our finite Tb range. We

can treat the unphysical single-kaon state as we have the single-pion state, and

express the integrated 4-point correlator as

Iµ

(
Ta, Tb, ~k, ~p

)
=Aµ

(
~k, ~p
)

+ c1
µ

(
~k, ~p
)
e∆a

πTa

[
∆a
π

1− e−∆a
π

]
+ c2

µ

(
~k, ~p
)
e−∆b

KTb

[
∆b
K

e∆b
K − 1

]
,

(3.45)

where Aµ is the amplitude we wish to extract, up to the factors given in Equation

(3.36), and c1
µ and c2

µ can be written in terms of 3-point matrix elements and

meson energies as

c1
µ

(
~k, ~p
)

=
MJ,π

µ

(
~k, ~p
)
MH

(
~k
)

2Eπ

(
~k
)

∆a
π

, c2
µ

(
~k, ~p
)

= −
MJ,K

µ

(
~k, ~p
)
MH (~p)

2EK (~p) ∆b
K

. (3.46)

There are several approaches that can be taken to extract the amplitude using

this strategy. The first is to simply fit the integrated correlator for Aµ, c1
µ, and c2

µ.

We can also use a zero-momentum transfer approximation, and take c2
µ = −c1

µ,

which is exactly true when ~k = ~p, and fit for Aµ and c1
µ. Beyond this we can

reconstruct c1
µ and c2

µ using results of 2- and 3-point fits. Typically the matrix

element MH (~p) is difficult to fit as the weak Hamiltonian 3-point function with

non-zero momentum has a poor signal. This introduces a significant amount of

statistical error to the reconstruction of c2
µ. As a result an SU (3) flavor symmetry

approximation can be used, where we take MH

(
~k
)

= MH (~p), which is exact

when Mπ = MK . The proof of both of the approximations discussed here can be
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found in the appendix of [34].

Single-Pion Intermediate State: Weak Hamiltonian Shift

A second method to remove the single-pion divergence is based on an additive

shift to the weak Hamiltonian by the scalar density s̄d [8, 33] where a parameter

cs (k) is chosen such that〈
π
(
~k
)∣∣∣H ′W ∣∣∣K (~k)〉 =

〈
π
(
~k
)∣∣∣HW − css̄d

∣∣∣K (~k)〉 = 0. (3.47)

By replacing Hw with H ′w in Equation (3.43) the divergent contribution from the

single-pion state is removed. This shift does not change the amplitude, as was

shown in [36] using the vector Ward identity

i(ms −md)s̄d = ∂µV
s̄d
µ . (3.48)

The cs parameter can be extracted from the the ratio of 3-point functions

cs

(
~k
)

=
Γ

(3)
HW

(
~k
)

Γ
(3)
s̄d

(
~k
) , (3.49)

by fitting the region tK � tO � tπ, for O = Hw, s̄d. Similarly cs can be obtained

by fitting ratios of the equivalent 4-point functions, when tK � tO � tJ .

Two- and Three-Pion States

In principle the two-pion intermediate state can contribute to the exponentially

growing unphysical term, with the matrix elements of the contributions being

given by

Mππ
H = 〈π (p1) π (p2)|HW |K (p3)〉 (3.50)

Mππ
Vµ = 〈π (p1)|Vµ |π (p2) π (p3)〉 . (3.51)

In the continuum the vector current matrix element has the following for factor

decomposition

Mππ
Vµ = εµνρσp

ν
1p
ρ
2p
σ
3F (s, t, u) , (3.52)
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where s = (p1 + p2)2, t = (p1 − p3)2, and u = (p2 − p3)2 are Mandelstam

variables. As a result of four-momentum conservation p1 is a linear combination

of p2 and p3, and so the vector current contribution vanishes once the Levi-

Civita contraction is performed. On the lattice, cubic symmetry allows for the

same vanishing behavior, with lattice artifact corrections that shrink as a → 0.

Previous lattice studies of the KL − KS mass difference with a−1 = 1.73GeV

and unphysical pion and kaon masses have found that the on-shell two-pion

contributions are just a few per-cent and that the artifacts are of O (3%) of

these [8, 32]. The calculation that was performed for this thesis has the same

inverse lattice spacing, though with physical pion and kaon masses and a larger

volume than theses ∆MK studies. As such we do not expect the two-pion state

contribution to be significant at the precision we hope to achieve.

The measured widths of the K+,S → πππ decays are suppressed relative to the

K+,S → ππ, and the relative phase-space suppressions have been estimate to be

a factor of O (1/500) or smaller. As the two-pion contribution is expected to be

small the three-pion contribution should then be negligible, and only of interest

for a calculation that wishes to achieve percent-level precision. Removing the

πππ states would involve computing the K → πππ states and reconstructing a

term similar to the single-pion state in Equation (3.44) that could be subtracted

explicitly. In the future the construction of a three-particle quantization condition

that relates finite-volume energies to infinite volume scattering amplitudes could

lead to lattice calculations that would extract the intermediate states we are

interested in [57, 58].

Multi-hadron states also suffer from finite volume effects in lattice calculations. In

practice these would only come into play for the ππ intermediate states. Two-pion

finite volume corrections have been studied in the context of K → ππ decays and

the ∆MK lattice studies. If the results of our study of rare kaon decays were ever

to reach a high enough precision then finite volume effects could be investigated

using a similar approach.

3.2.4 Renormalization of Lattice Operators

The current and weak Hamiltonian operators in Equation (3.30) must be

renormalized, both individually and in order to remove any UV divergences that

occur when the two operators make contact. The renormalization of the currents

Jµ are not needed if conserved currents are used, as conserved vector currents

have ZV = 1. If we use local currents, however, then ZV must be determined. To
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CMS
1 CMS

2 ∆r11 = r22 ∆r12 = r21 Z11 = Z22 Z12 = Z21

-0.2967 1.1385 -6.562× 10−2 7.521× 10−3 0.5916 -0.05901

Table 3.1 The Wilson coefficients in the MS scheme, the RI → MS
matching matrix entries, and the non-perturbative lat→ RI operator
renormalization matrix entries.

do so we can calculate the pion electromagnetic form factor f+
ll (q2), defined by

the matrix element given in Equation (3.28) for the pion by

〈π (p1)|Vµ |π (p2)〉 = f+
ll

(
q2
)

(p1 + p2)µ (3.53)

where q = p2 − p1 is the momentum transfer. For two pions at rest f+
ll (0) = 1,

and ZV can be fit using the temporal component of Equation (3.53), using a ratio

of correlators

ZV
1�t,|tsrc−tsnk|

=
Γ2
π (tsnk)

Γ3,π
Jµ

(tsrc,t,tsnk)
, (3.54)

where Γ2
π is the pion two-point function with the around-the-world state removed.

The renormalization of the Q1 and Q2 operators that make up HW requires a

matching procedure to relate the bare lattice operators to those in continuum

perturbation theory in the MS scheme, where the Wilson coefficients are

known at NLO. This involves renormalizing the bare lattice operators non-

perturbatively using the regularization independent symmetric momentum-

subtraction renormalization (RI-SMOM) scheme [89] and using the matching

formula [33]∑
i=1,2

C lat
i (µ)Qlat

i (µ) =
∑
i=1,2

CMS
i (µ)

(
1 + ∆rRI→MS

)
ij

(
Z lat→RI)

jk
Qlat
k (µ)

(3.55)

where Z lat→RI is the RI-SMOM renormalization matrix for the bare lattice

operators and ∆rRI→MS is the matching matrix from the RI-SMOM scheme to

the MS scheme. In the four flavor theory case this is a 2×2 matrix given by [71]

∆rRI→MS =
αS (µ)

4π

(
−4ln (2) −8 + 12ln (2)

−8 + 12ln (2) −4ln (2)

)
. (3.56)

This renormalization procedure was performed in [33] at the scale µ = 2.15GeV,

the entries of the matching matrices Z lat→RI and ∆rRI→MS that were used are

given in Table (3.1), along with the Wilson coefficients in the MS scheme. The

lattice Wilson coefficients were found to be C lat
1 = −0.2216 and C lat

2 = 0.6439.
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Figure 3.6 The subdiagram of the Saucer and Eye class of diagrams that could
lead to UV divergences.

Having renormalized the Jµ and HW operators individually, it is important to

consider additional divergences that occur as the two operators approach each

other. This is possible for one of the 4-point Saucer and Eye diagrams where

the current is inserted on the loop [62]. The relevant part of these diagrams is

shown in Figure (3.6), and we can see that this subdiagram is analogous to the

one-loop contribution to the vacuum polarization in QED and QCD which, with

naive power counting, is quadratically divergent. If the conserved vector current

is used then electromagnetic gauge invariance gives a transversality factor of

qµqν − q2gµν , reducing the order of the divergence to a logarithmic one.

This logarithmic divergence is independent of mass, resulting in an exact

cancellation of the divergence when the GIM subtraction of the up and charm

quark loops is performed. This would not be the case if the process was described

in a 3-flavor theory, or if local currents were used. In the three-flavor theory

gauge invariance still reduces the quadratic divergence and with local currents

in the four-flavor theory there is still some form of GIM suppression. In either

case the remaining divergences would have to be removed using non-perturbative

renormalization techniques [75].

77



Chapter 4

K → π`+`− Numerical Results

In this chapter I will present the results of the lattice calculation of the long

distance contributions to the K → πγ∗ decay, along with my analysis of the

results. It was first shown in [62] that a lattice calculation of this kind was possible

in principle. The approach was further refined in [36], where the operators

required to control the ultraviolet divergences were introduced, and a lattice

calculation using unphysical masses was performed in [34] to demonstrate the

feasibility of extracting the amplitude of the decay. This calculation is the first

of its kind to be performed using physical light quark masses.

In Section (4.1) I will introduce details of the gauge configurations used and I

will give details of the setup of the calculations in Section (4.2). Following that

I will present a justification of this choice of setup, over that of an all-to-all

approach. I will then present numerical results for 2-, 3-, and 4-point correlation

functions in Sections (4.4.1) and (4.4.2), with the application of methods to

remove intermediate states being given in Section (4.4.3). I will then present

the final result, the form factor extracted from the amplitude, in Section (4.4.4).

4.1 Details of the Simulation

This study was performed on a lattice ensemble generated with the Iwasaki

gauge action and 2+1 flavors of Möbius DWF [19]. The spacetime volume of

the ensemble is 483 × 96 and the inverse lattice spacing is a−1 = 1.730 (4)GeV.
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Figure 4.1 The residual mass of various heavy quarks on the 483 gauge
configuration. These were calculated using 60 gauge ensembles, with
4 times translations per ensemble. We see that the DWF theory
breaks down for heavy quark masses, as the residual mass diverges
for am = 0.40.

The fifth-dimensional extent is Ls = 24 and the residual mass is mres =

6.102 (40) × 10−4 in lattice units. The light and strange sea quark masses are

ml = 0.00078 and ms = 0.0362 respectively, corresponding to pion and kaon

masses of Mπ = 139.2(4)MeV and MK = 499(1)MeV.

The Möbius action was used to simulate the light quarks in the ensemble, with

a rational approximation being used to simulate the strange quarks. In our

calculation the valence quarks use zMöbius for the light quarks for which 2000

low mode eigenvectors per configuration were generated in order to deflate the

low mode inversions. In order to perform the GIM subtraction unphysical charm

quark masses were used. With the choice of zMöbius parameters for the light

quark it would be impossible to use a physical charm quark mass, as the DWF

theory breaks down for heavy quarks. This can be seen in Figure (4.1) where

we plot the residual mass for various heavy quark masses. As the quark masses

increase the residual mass increases, and additional time is needed for mres to

plateau, until reach am = 0.40 where the result diverges. Whilst it may have

been possible to use another action, this would have interfered with the the GIM

subtraction, where the difference between the light and charm quarks depend

strongly on the very low modes that the actions are sensitive to.

Instead we simulate 3 unphysical charm quarks and use these to extrapolate our

results to the physical point. The quark masses were taken to be amc1 = 0.25,

79



amc2 = 0.30, amc3 = 0.35. The calculations of the ηc mesons used for the

extrapolation were performed with a sample of 13 configurations, each separated

by 20 time units. The results for the amplitude were calculated with a sample of

87 configurations with the same separation.

For the investigation into using the A2A method to calculate the decay amplitude

another lattice ensemble was used, this one generated with the Iwasaki gauge

action and 2+1 flavors of Shamir DWF [5]. The spacetime volume of the ensemble

is 243 × 64 and the inverse lattice spacing is a−1 = 1.73 (3)GeV. The fifth-

dimensional extent is Ls = 16 and the residual mass is mres = 3.08 (6)× 10−3 in

lattice units. The light and strange sea quark masses are ml = 0.005 and ms =

0.04 respectively, corresponding to pion and kaon masses of Mπ = 340(1)MeV

and MK = 594(2)MeV.

4.2 Calculation Setup

In order to calculate the 2-, 3- and 4-point correlators that were outlined in Section

(3.2.1), the C++ library “Grid” [24] and the framework based on Grid, “Hadrons”

[82], were used. The correlators are constructed with a kaon at time tK = 0, at

rest, decaying to a pion at time tπ = 32, with momentum ~pπ = 2π
L

(1, 0, 0).

The time separation between between the mesons is chosen to be as small as

possible such that the signal we achieve is clear, but as large as possible such

that the integral around the current insertion is can be extended to give a wider

fit range for the rare kaon decay amplitude. There have been studies of kaon

semileptonic form factors [25] that have used similar time separations and we

have also investigated other time separations for the 4-point correlation function

ourselves, as in Figure (4.2). The current is inserted midway between the kaon and

the pion such that excited states from the interpolators can be avoided, following

the precedent set by [34] . Coulomb gauge-fixed wall sources are used as they give

good overlap with the kaon and pion ground states, helping us reduce excited state

contamination. The Möbius conserved vector current is used, and is implemented

using sequential solves and using only the time extent, µ = 0. This allows us to

extract the form factor from the amplitude, as in Equation (3.1). The loops in the

Saucer and Eye diagrams, shown in Figure (3.4), were calculated using spin-color

diluted sparse sources, as described in Section (2.4.1). It is these single quark

propagator traces that introduce the largest contributions of statistical noise in
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Figure 4.2 (a) The Wing diagram contribution to the rare kaon 4-point
correlator for different sink times. The kaon is always at tK = 0
and the current is always inserted midway between the pion and the
kaon. (b) The relative error of the Wing diagram contributions.

the diagrams we compute. The strategy to reduce this noise is to compute the

correlators with multiple hits for the loop and to employ all-mode-averaging [20],

as shown in Equation (2.50). This entails performing the inversions required for

the loop propagators on a given source with an “exact” solver residual and using

the same source to perform inversions using an “inexact” solver residual. The

difference between the exact and inexact results are used to compute an AMA

correction that are applied to a further 9 inexact hits. For the light quark the

exact solver residual is 10−8, for the heavier quarks a more precise residual must

must be used in order to accurately describe large time behavior, as can be seen

in Figure (4.3). For this reason the charm residuals are taken to be 10−10, 10−12,

and 10−14 for c1, c2, and c3 respectively. The inexact residuals were taken to be

10−4 for all quarks. For this calculation we do not include disconnected diagrams,

as in “Cdis” in Figure (3.5), where the electromagnetic current is self-contracted.

These diagrams are very noisy, the statistics needed such that the signal from

these diagrams would be comparable to the rest of the calculation would be

prohibitively expensive. We also expect that the disconnected contribution is

suppressed by a factor of 1/NC and approximate SU(3) flavor symmetry [40],

giving ∼ 10% of the connected contributions in the continuum. We have not

reached a statistical precision where including the disconnected diagrams are

necessary, but the disconnected light and charm loops have been contracted and

saved as part of our calculation. The strange loops could be computed at a

later date, along with further light and charm statistics, and combined with the

connected diagrams in order to compute the disconnected contribution.

Table (4.1) shows the number of quark propagators needed for one config-
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Figure 4.3 The residual mass of a heavy quark with mass am = 0.35 on
the 483 gauge configuration, calculated with several solver precision
tolerances. The tol = 10−08 result was calculated using the same
statistics as shown in Figure (4.1) and the remaining results were
computed using a significantly smaller set of statistics. Error bars
are omitted.

uration. If we were to include disconnected this would require a further

16 (Nη + 1) (Nt + 1) strange propagators. The motivation for the use of the

zMöbius action, to reduce the Ls dimension, can be seen in the large number of

light inversions to be computed, as well as the application of deflation, discussed

in Section (2.3.2). In order to compute the bias correction for the zMöbius action,

as discussed in Section (2.1.4), the same set of diagrams were computed using the

Möbius action for Nt = 1 times translations on 62 configurations. The Möbius

inversions were computed using the Möbius-accelerated DWF solver [91], that

uses the zMöbius approximation to compute a guess that is close to the solution

of the Möbius Dirac matrix problem.

4.3 All-to-All Approach

The setup of the calculation outlined in the previous section is similar to the

approach taken in the exploratory calculation with unphysical masses, with the

significant change being the use of sparse noise and three unphysical charm quark

masses for the loop. The decision to take this approach was taken after an

investigation of the application of the A2A method to study the rare kaon decays.
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Description Source Type
Number of Inversions

Light Strange Charm

C and W propagators Gauge-fixed wall 3Nt Nt 0
S and E loops: Exact Sparse random volume 16 0 48
S and E loops: Inexact Sparse random volume 16Nη 0 48Nη

Current insertions: Exact Sequential 19Nt Nt 48Nt

Current insertions: Inexact Sequential 16NηNt 0 48NηNt

Scalar density Gauge-fixed wall 0 Nt 0
Total: Nη = 10, Nt = 6 - 1268 18 3696

Table 4.1 Number of propagators needed to be computed for a single
configuration of our calculation. Nη is the number of on noise sources
used for the quark loops and Nt is the number of time translations per
configuration.
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Figure 4.4 The light-light 2-point correlators for the (a) pseudoscalar-
pseudoscalar and (b) vector-vector cases, found using the A2A
method and Z2 wall sources. The effective masses of the (c)
pseudoscalar-pseudoscalar and (d) vector-vector correlators are
given, as in Equation (2.87)
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Figure 4.5 The zero-momentum Wing diagram contribution to the 3-point weak
Hamiltonian correlation function, computed using A2A vectors and
Z2 wall sources.

On the same 483×96 gauge configuration a number of A2A vectors were computed

for the light and strange quarks. These were spin-color-time diluted vectors, with

2000 low modes. Two sets of of A2A vectors were constructed using two separate

noises in order to avoid introducing bias when performing contractions. Meson

fields were constructed using these vectors, from which correlation functions

could be created. Figures (4.4) (a) through (d) show the correlators and

effective masses of light-light pseudoscalar-pseudoscalar and vector-vector 2-point

functions, created using 17 configurations worth of A2A vectors, using the method

given in Equation (2.139). These are compared to results found using Z2 wall

source, with 88 configurations and a source at each time slice. We can see that

the results between the two methods are consistent and that the A2A results have

a signal that extends further in time for the vector-vector case.

The non-eye 3-point HW correlators were constructed using the 243 × 64 DWF

action, with 600 low modes for the light quark. Figure (4.5) shows the Wing

diagram, with zero-momentum, created using the A2A approach, as detailed

in Appendix (B), compared to using Z2 wall sources. The A2A results were

constructed using 20 configurations, and the Z2 wall results were constructed

using 24 configuration with a wall source at every 4th timeslice. We see here

that we have good agreement between the methods. When performing the 4-

quark contraction it is empirically known that placing all the“v-vectors,” those
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Figure 4.6 The 4-point Wing diagram computed using the A2A method with the
current inserted (a) stochastically and (b) sequentially on the kaon’s
light quark.

for which the solves have been performed, at the vertex leads to the best signal,

and so including the “w-vector” noise at the vertex should be avoided.

For the the 4-point rare kaon correlators two approaches were taken, the first was

to treat all propagators in the A2A fashion. With this method it is impossible

to avoid creating a contraction that places the w-vector noise on either the 4-

quark vertex or on the current insertion, leading to noisy results. Figure (4.6) (a)

shows the result for this method when constructing the wing diagram with a local

current inserted on the kaon’s light quark, with 15 243× 64 gauge configurations

used in the bootstrap resampling of the result.

The second method is to perform a set of sequential solves, such as those described

in Section (2.4.2), in order to remove the noise at the current insertion. Figure

(4.6) (b) shows the result of this approach for the same diagram as (a), computed

using 8 243 × 64 gauge configurations. This method results in a loss of the

translation of the current insertion time tJ , requiring that a sequential solve be

performed for a number of time translations, similar to the wall source approach.

However, this involves performing inversions on all of the low modes, which

become prohibitively expensive for the 2000 low modes on the 483 × 96 gauge

configuration.

Due to the inability to escape the noise of the current when computing all

propagators in the A2A fashion and the cost of treating the current sequentially

using A2A vectors we decided to investigate a hybrid approach to calculate the

rare kaon decay amplitude. The non-loop propagators would be be computed

with Coulomb gauge-fixed wall sources and the loops would be calculated using

A2A vectors. The results of the method were compared to correlation functions

computed using full volume and sparse noises on the 483×96 gauge configuration.
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Figure 4.7 The relative error, weighted by the cost of inversions, of the
zero-momentum Saucer diagram contribution to the 3-point weak
Hamiltonian correlation function, computed using different noise
strategies for the single quark propagator loop.

A cost benefit analysis was performed using the quantity ∆X
∆Sparse

√
NX

NSparse
, where

∆X is the statistical error of the result from method X and the root of the number

of inversions NX tracks the computational cost of using method X. Figure (4.7)

shows the results of this cost-benefit analysis for the 3-point Saucer diagram with

zero momentum. It can clearly be seen that the sparse noise approach is the most

successful. It is also worth repeating that the current insertion for the 4-point

functions here were performed using a local current insertion. The Möbius action

conserved current requires information from the fifth dimension of the source

to construct a sequential source as described in Equation (2.160), but saving

the A2A vectors to disk in their full five dimensions is too costly. Instead the

four dimensional vectors are saved and local currents are used, which leads to a

quadratic divergence when the current is in inserted on the loop of the Eye and

Saucer diagrams, as discussed in Section (3.2.4).

After these investigations into applying the A2A approach we came to the

conclusion that Coulomb gauge-fixed wall sources are the the best way to we

have to calculate the rare kaon decay amplitude. Constructing all diagrams

using entirely A2A propagators leaves noise at the current insertion, performing

sequential A2A solves is prohibitively expensive, time diluted A2A vectors are

beaten by sparse volume random noise sources when computing loop propagators,
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and the A2A method does not practically allow for the use of conserved vector

currents.

Another reason to abandon the A2A approach is a lack of compatibility with

other projects. The main strength of the A2A method is that the A2A vectors

and meson fields only need to be computed once. They can be saved to disk and

reused to construct a variety of diagrams. However in the UKQCD collaboration

there are no projects where the A2A method was deemed useful. The calculation

of isospin-breaking corrections to K`2 and π`2 decays found a similar need for

A2A sequential solves when dealing with /A insertions, and though they did not

lose translations of the insertion with their method, it was found to return a

disappointing signal given the cost. Other projects, such as the calculation of

Kπ scattering at the physical point, have been looking towards distillation, and

the study of rare hyperon decays must overcome all the same problems as the

rare kaon decays A2A approach, with the additional struggle of controlling the

noise that comes with a lattice calculation of baryon decays.

4.4 Numerical Results

The goal of this calculation is to determine the amplitude of the K+ → π+γ∗

decay using physical light quark masses. In this Section I will present the results

of our calculation and discuss various methods of analyzing the results. All results

presented are in lattice units, unless otherwise stated.

In order to extract the decay amplitude we must integrate the reduced 4-point

correlator given in Equation (3.32) and subtract intermediate states that appear

in Equation (3.43). To calculate the source/sink factors needed to normalize

the 4-point correlator we must fit 2-point pion and kaon correlators. In order to

subtract the intermediate states we can either construct the single pion state using

matrix elements and energies extracted from 2- and 3-point fits, as in Equation

(3.45) or shift the weak Hamiltonian, as in Equation (3.47), requiring a fit of

the scalar density and weak Hamiltonian 3-point ratio given in Equation (3.49).

The final result we extract will come from an extrapolation to the physical charm

quark mass, which requires fits to the unphysical 2-point ηc meson correlators. I

will thus present the results of these 2- and 3-point correlators before discussing

the 4-point correlators.
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Figure 4.8 Fits to the 2-point wall sink (a) kaon and (b) pion correlators. The
source time for each meson is shown.

4.4.1 2- and 3-point Correlators

~p
(0, 0, 0) 2π

L
(1, 0, 0)

EK(~p) 0.28888(22) 0.31699(37)
Eπ(~p) 0.08015(18) 0.15402(30)
ZK(~p) 30812(60) 28760(150)
Zπ(~p) 28341(89) 26098(153)

MJ,K
µ=3(~0, ~p) - 0.5676(30)

MJ,π
µ=3(~0, ~p) - 0.2323(19)

Table 4.2 Fit results to 2- and 3-point correlators that do not depend on
charm mass. The 2-point fits results are obtained with a fully-
correlated simultaneous fit with point sink correlators for each meson
and kinematic. The Zm (m = K,π) results contain a volume factor
of
√
L3 that is retained in order to aid the calculation of the

renormalization factor in Equation (3.31). The 3-point fit results
are obtained with a fully-correlated simultaneous fit to the relevant
2-point functions, that are outlined in Equation (3.29).

When fitting the 2-point pion, kaon, and eta correlators we fit our data to

Equation (2.87), seeking to extract Zm for m = K, π and Em for m = K, π, η1,2,3,.

The matrix elements we need to calculate must be obtained using the same wall-

source/sink-smearing setup as the 4-point functions. However, as we apply the

sink smearing after our inversion we can compute the correlator with a point sink

with only the cost of a contraction. The point sink produces a clearer signal and

can be used as part of a simultaneous fit, allowing for a better fit of the energy.

We compute four 2-point correlators for the pion and kaon, two for each

momentum used in the calculation with either a wall or point sink. Results
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Figure 4.9 (a) The effective masses, as described in Equation (2.88), of the
ηc mesons found using the unphysical charm quark masses and (b)
the extrapolation to the physical ηc mass Mη = 2983.8(4)MeV. The
result of the extrapolation gives amc = 0.510(1).

amc1 = 0.25 amc2 = 0.30 amc3 = 0.35
aEη 1.0187(2) 1.1598(2) 1.2881(2)
Mη 1762(4) MeV 2006(5)Mev 2228(5)

Table 4.3 The masses of the ηc mesons found by fitting the 2-point correlators
constructed using the unphysical charm quark masses, given in lattice
and physical units. Extrapolation to the physical ηc mass Mηc =
2983.8(4)MeV gives amc = 0.510(1)

of fits to the wall sink correlators are shown in Table (4.2), along with plots of

the correlators with the fits shown in Figure (4.8). For each of the unphysical

charm quark masses we computed point-sink ηc 2-point correlators and fit for

their masses, which are shown in Figure (4.9) (a) and given in Table (4.3). The

extrapolation to the physical ηc mass is shown in Figure (4.9) (b).

The 3-point matrix element for the HW operator is found by fitting the

correlator given by Equation (3.26) to the model given in Equation (3.27). The

matrix elements for the 3-point correlators with the vector current insertion are

amc1 = 0.25 amc2 = 0.30 amc3 = 0.35

MH(~k) -0.000378(19) -0.000483(19) -0.000580(19)
MH(~p) -0.000434(232) -0.000512(235) -0.000582(237)
cs -0.000163(10) -0.000209(10) -0.000250(10)

Table 4.4 Fit results to 3-point function that depend on charm mass. The MH

fit results are obtained for ~k = (0, 0, 0) and ~p = 2π
L (1, 0, 0) with a fully-

correlated simultaneous fit to the relevant 2-point functions, that are
outlined in Equation (3.27).
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Figure 4.11 Fits to the 3-point (a) kaon and (b) pion correlators with a vector
current insertion.

found by fitting the correlator given by Equation (3.28), for mesons m = K, π,

to the model given in Equation (3.29). Results for matrix elements extracted

from these fits are given in Tables (4.2) and (4.4), with plots of the HW 3-point

correlator results given in Figure (4.10) and plots of the Jµ 3-point correlator

results given in Figure (4.11). In order to shift the weak Hamiltonian, with the

aim of removing the exponentially growing intermediate single pion state, the

parameter cs must be fit from the ratio of Hw and scalar-density correlators, as

in Equation (3.49). The results of these ratios are shown in Figure (4.12) for the

3-point ratios for the 3 unphysical charm quark masses. A fit was performed for

the 3-point ratio in the region tK � tO � tπ, where tO is the time position of

the operator O = HW , s̄d, and the results are given in Table (4.4).
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Figure 4.13 The (a) Q1 and (b) Q2 operator contributions to the rare kaon
4-point correlator, separated into the diagrams given in Figure
(3.4) both before and after GIM subtraction, shown for the lightest
unphysical charm quark mass, amc1 = 0.25.

4.4.2 4-point Correlators

Figures (4.13) (a) and (b) show the the contributions from the Q1 and Q2

diagrams, that make up the 4-point function in Equation (3.30), for the lightest

charm quark mass. These diagrams have been constructed by applying the

appropriate fractional quark charges and Wilson coefficients needed to match

to the MS scheme. For the bare lattice operators Q1 and Q2, at the scale

µ = 2.15GeV, we use the Wilson coefficients C lat
1 = −0.2216 and C lat

2 = 0.6439

respectively. These were calculated in [33] on a 2+1 flavor, domain wall fermion,

163× 32 gauge ensemble with a 421 MeV pion mass and the same lattice spacing

that the gauge ensemble for this calculation used. The results are given without
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Figure 4.14 The Q2 operator contributions to the rare kaon 4-point correlator
after GIM subtraction, shown for all three unphysical charm quark
masses.

error, though the systematic errors caused by the Wilson coefficients have been

discussed for calculations of the K → ππ decay amplitudes in [18], where they

were estimated to be 12%. As we are currently dominated by statistical error

for this project we neglect to calculate the equivalent systematic error for this

decay. It can be seen that the diagrams in Figure (4.13) (b), associated with

the Q2 operator, contribute to the 4-point function more significantly than those

associated with the Q1 operator, and that these diagrams produce the cleaner

signal. We also see that the Saucer and Eye contributions, given by the GIM

subtractions, are more significant here than they were in [34], as the physical

light quark mass reduces the severity of the GIM cancellation. This results in

a larger degree of separation between the Saucer and Wing diagrams, as they

add destructively when creating the rare kaon 4-point correlator. It is the Saucer

diagram that has the largest contribution to the statistical error of our final result,

as the GIM subtracted result has a magnitude that is comparable to the Wing

diagram contribution, but with larger statistical error. Figure (4.14) shows the

GIM subtracted Saucer diagram results for the three unphysical charm quark

masses, with the Wing diagram for comparison. Figure (4.15) shows the 4-point

function, as defined in Equation (3.30), for each of the unphysical charm quark

masses. Figures (4.16) (a) and (b) show a slice of the Ta and Tb dependence

of the normalized, integrated 4-point correlator. The exponential growth of

the intermediate states that depend on Ta can clearly be seen, and we also see

the smaller contribution of the shrinking intermediate states that depend on Tb.

In order to extract the amplitude from these correlators we must remove these
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Figure 4.16 The normalized, integrated rare kaon 4-point correlator, shown for
(a) Tb = 8 and (b) Ta = 6.

intermediate states.

4.4.3 Extracting the Rare Kaon Amplitude

Construction and Removal of the Single Pion State

The first method we use to remove the intermediate pion state is to fit to the

model given in Equation (3.45). We can do this by fitting the the A0, c1
0, and

c2
0 parameters explicitly, with a simultaneous fit to with the relevant 2-point

functions needed to describe the exponential dependence on meson energies. We

can also construct the c1
0 and c2

0 parameters, as they are given in Equation (3.46),

performing a simultaneous fit with the relevant 2- and 3-point function to extract
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Analysis A0 (mc1) A0 (mc2) A0 (mc3)
A0, c

1
0, c

2
0 -0.00025(219) -0.00017(220) -0.00012(220)

A0, c
2
0 = −c1

0 -0.00033(167) -0.00027(167) -0.00024(167)
2pt/3pt -0.00026(182) -0.00002(183) 0.00018(183)

MH(~p) =MH(~k) -0.00027(176) -0.00014(177) -0.00003(177)
cs shift 0.00027(237) 0.00031(239) 0.00035(239)
cs × s̄d -0.00002(5) -0.00003(7) -0.00003(9)

Table 4.5 Fit results for the rare kaon amplitude using several different methods,
as well as a sanity check that cs × s̄d does not contribute to the
amplitude. These fits were performed with simultaneous fit to the
relevant 2- and 3-point functions, with the 2- and 3-point fits being
fully-correlated and the fit of the integrated 4-point function being
uncorrelated.

Coefficient Fit Method amc1 = 0.25 amc2 = 0.30 amc3 = 0.35

c1
0

A0, c
1
0, c

2
0 fit -0.0023(10) -0.0031(10) -0.0037(10)

A0, c
2
0 = −c2

0 fit -0.0023(10) -0.0030(10) -0.0037(10)
2pt/3pt -0.0023(4) -0.0030(4) -0.0037(4)

MH(~p) =MH(~k) -0.0023(5) -0.0031(5) -0.0037(5)

c2
0

A0, c
1
0, c

2
0 0.0021(14) 0.0028(14) 0.0034(14)

2pt/3pt 0.0016(7) 0.0020(7) 0.0023(7)

MH(~p) =MH(~k) 0.0019(4) 0.0026(4) 0.0031(4)

Table 4.6 The c1
0 and c2

0 parameters of Equation (3.46) obtained via fitting the
integrated 4-point correlator using different methods.

the 3-point matrix elements and meson energies needed. As the 3-point weak

Hamiltonian correlation function is noisy at non-zero momentum the c2
0 parameter

is less well resolved. In order to avoid this additional statistical error we can

investigate two approximations that were introduced in [34] and described in

Section (3.2.3), namely the zero-momentum transfer approximation: c2
0 = −c1

0,

and the SU (3) flavor symmetry approximation: MH

(
~k
)

=MH (~p). Table (4.6)

shows values of the c1
0 and c2

0 parameters obtained using various methods. It

can can be seen that the zero-momentum transfer approximation holds well, as

we only have 1 unit of momentum difference between the pion and kaon. The

SU (3) flavor symmetry limit gives results that are consistent with others, which

is unexpected as we work with physical light quark masses. Figures (4.18)

through (4.21) show the Ta and Tb dependence of the integrated correlator with

the intermediate states subtracted using the various methods described above.

These are shown for the various charm quark masses, and the results of the fits

to the plateaus are given in Table (4.5).

94



-0.01

	0

	0.01

	0.02

	0.03

	0.04

	0.05

	0.06

	0 	2 	4 	6 	8 	10 	12 	14 	16

I~ 0(
4)

Ta

Tb	=	8

I
~
0
(4)(amc=0.25)
I
~
0
(4)(amc=0.30)
I
~
0
(4)(amc=0.35)

-0.003

-0.002

-0.001

	0

	0.001

	0.002

	0.003

	0.004

	0.005

	0.006

	0 	2 	4 	6 	8 	10 	12 	14 	16

I 0(4
)

Tb

Ta	=	6

I
~
0
(4)(amc=0.25)
I
~
0
(4)(amc=0.30)
I
~
0
(4)(amc=0.35)

(a) (b)

Figure 4.17 Fit of the normalized, integrated rare kaon 4-point correlator with
the intermediate states removed, shown for (a) Tb = 8 and (b)
Ta = 6. The results were obtained by fitting A0, c1

0, and c2
0 directly.

The fits to the plateaus correspond to A0 (amc1) = −0.00025(219),
A0 (amc2) = −0.00017(220), and A0 (amc3) = −0.00012(220).
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Figure 4.18 Fit of the normalized, integrated rare kaon 4-point correlator with
the intermediate states removed, shown for (a) Tb = 8 and (b) Ta =
6. The results were obtained by fitting A0 and c1

0, with the zero-
momentum transfer approximation that c2

0 = −c1
0. The fits to the

plateaus correspond to A0 (amc1) = −0.00033(167), A0 (amc2) =
−0.00027(167), and A0 (amc3) = −0.00024(167).
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Figure 4.19 Fit of the normalized, integrated rare kaon 4-point correlator with
the intermediate states removed, shown for (a) Tb = 8 and (b)
Ta = 6. The results were obtained by fitting A0 the 2- and 3-
point parameters that make up c1

0 and c2
0, as in Equation (3.46).

The fits to the plateaus correspond to A0 (amc1) = −0.00026(182),
A0 (amc2) = −0.00002(183), and A0 (amc3) = 0.00018(183).
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Figure 4.20 Fit of the normalized, integrated rare kaon 4-point correlator with
the intermediate states removed, shown for (a) Tb = 8 and (b)
Ta = 6. The results were obtained by fitting A0 the 2- and 3-
point parameters that make up c1

0 and c2
0, with the SU (3) flavor

symmetry approximation, where we take MH

(
~k
)

= MH (~p) as

discussed in Section (3.2.3). The fits to the plateaus correspond
to A0 (amc1) = −0.00027(176), A0 (amc2) = −0.00014(177), and
A0 (amc3) = 0.00003(177).
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Figure 4.21 Fits to the the normalized, integrated rare kaon 4-point correlator
with the with the intermediate states removed using a shift of the
weak Hamiltonian, shown for (a) Tb = 8 and (b) Ta = 6. The fits to
the plateaus correspond to A0 (amc1) = 0.00027(237), A0 (amc2) =
0.00031(239), and A0 (amc3) = 0.00035(239).

Shift the Weak Hamiltonian

After shifting the rare kaon 4-point correlator by css̄d, with the values of cs given

in Table (4.4) and shown in Figure (4.12), and performing the integration over

Ta and Tb we obtain the results that are shown in Figures (4.21). The amplitude

is extracted by fitting the integrated correlator in the regions where both sides of

the integral plateau. Fit results for the amplitude are given in Table (4.5).

As the css̄d correlator is supposed to describe solely the intermediate states a

useful consistency check is to apply the fit methods described in Section (3.2.3)

in order to verify that any contribution to the amplitude is compatible with zero.

The results of this consistency check, performed with a direct fit to A0, c1
0, and

c2
0 are shown in Figures (4.22) and the result of the fits are given in Table (4.5).

4.4.4 Form Factor and Discussion

The results of extracting the amplitude from the 4-point rare kaon correlator are

shown in Table (4.5). We can see that our results are still dominated by statistical

error, as the noisy contribution from the GIM subtracted Saucer diagram proves

to be too poorly resolved. Results between the different methods agree within

errors, however this does not encourage much excitement, given the size of these

errors. We are unable to confidently establish the sign of the amplitude, although

we can place a bound on the value of A0, and thus the form factor from Equation
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Figure 4.22 A consistency check to ensure that the four-point scalar density
correlator css̄d does not contribute to the rare kaon amplitude
when the weak Hamiltonian is shifted. The integrated 4-point
correlator

∫ tJ+Tb
tJ−Ta csΓ̃

s̄d
0 dtH is shown for (a) Ta = 6 and (b)

Tb = 8. Performing the same fit analysis as in Figure (4.18)
results in plateaus that correspond to A0 (amc1) = −0.00002(5),
A0 (amc2) = −0.00003(7), and A0 (amc3) = −0.00003(9), as shown
for (c) Ta = 6 and (d) Tb = 8 .
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Figure 4.23 The extrapolation of the amplitude, found using the weak
Hamiltonian shift, to the physical charm quark mass. The result of
the extrapolation is A0 = 0.00036(239).

(3.21), given these results.

The intermediate pion state contribution that grows exponentially with Ta can

be seen in Figure (4.16) (a) and it can be seen that the subtraction of this state

for all the methods attempted was successful, as we have a clear plateau with

which to fit A0 in all cases. The exponentially shrinking kaon state with Tb

dependence is seen to have be suppressed, which is to be expected as we work

with a near-physical kaon mass. The subtraction of this state is successful for all

methods, with the exception of the zero-momentum transfer approximation. As

can be seen in Figure (4.18) (b) taking c2
0 = −c1

0 leads to a poor estimation of

the intermediate kaon state.

Perhaps surprisingly, given the use of near physical pion and kaon masses, the

SU (3) symmetric limit approximation holds strong, giving reasonable values for

the amplitude, as well as a reconstruction of the c1
0 and c2

0 parameters that agrees

well with fits from other methods, as given in Table (4.6). The choice to neglect

the 2π and 3π intermediate states appears to be justified for this calculation, given

the reasonable fits to c1
0 and c2

0, with consistent results between methods, and the

fact that we see plateaus when fitting for A0. As the charm quark tends towards

the physical point the central values of the fits to A0 move to a positive result,

while the errors remain consistent. Of the methods used the weak Hamiltonian

shift is the only method that uses no approximations and it is the method that

gives the largest errors, and so gives the most conservative estimate of A0. It

is for these reasons that the cs shift result is taken to be extrapolated to the

physical charm quark mass and used to compute the form factor as our final
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result. Figure (4.23) shows the extrapolation of the amplitude to the physical

charm quark mass, giving a value of A0 = 0.00035(239).

For our choice of kinematics we have z = 0.0151(5), giving us a form factor of

V (z) = −0.8(5.9). This value approximates the a+ parameter in Equation (3.22),

as our low value of z brings us close to the intercept and suppresses the value

of the slope b+, which we expect to be of the same order at a+. As discussed in

Section (3.1.2), the value of a+ extracted from experiment is aexp+ = −0.578(16)

for the electron and aexp+ = −0.592(15) for the muon. The value extracted from

the 3 flavor, 2 loop, QCD prediction is apheno+ = −1.59(8), and the previous lattice

calculation using unphysical pion and kaon masses found alatt+ = 1.6(7).
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Chapter 5

Conclusions

The aim of this work was to study the long-distance contributions to the

rare kaon decay K+ → π+`+`−, using lattice QCD with physical light quark

masses. This has been the first calculation of its kind to be performed with

near-physical pion and kaon masses. The calculation was investigated using

both all-to-all propagators and Coulomb gauge-fixed wall source propagators.

The A2A approach struggled when confronted with the insertion of currents

and was deemed inappropriate for this calculation, whereas computing wall

source propagators with sequentially inserted currents proved to sufficient for

all non-loop propagators. When using physical light quark masses, even with

unphysically light charm quark masses, the GIM subtraction introduces an

unsatisfactory amount of noise. Although sparse noises reduced the statistical

error introduced by the single-propagator trace contribution to the Eye and

Saucer diagrams, more needs to be done in order to reach a well resolved result.

The form factor that encapsulates the behavior of the long-distance amplitude of

the rare kaon decay was found to be V (0.0151 (5)) = −0.8 (5.9). When this is

compared to experimental results, V exp (0) ≡ aexp+ = −0.578(16) for the electron

and aexp+ = −0.592(15) for the muon, it can be seen that the error on our lattice

result is ∼ 10 times larger than the central value of the experimental result. Näıve

square root scaling of the error tells us that 100 times the current statistics would

need to be generated in order to have an error that is of the same order as the

experimental central value, which would at least allow for a lattice determination

of the sign of a+, but this is computationally unfeasible at this time.

Approaches that may be developed to reduce the statistical error introduced but

the loops in the Eye and Saucer diagrams will be closely coupled to studies of
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disconnected diagrams, any improvements that can be made to the calculation of

single-propagator traces will be crucial for the study of the decay process we are

interested in. Further improvements to the analysis may come from integrating

over the current insertion time, as well as the weak Hamiltonian time. Though

this will not tackle the dominant source of noise for this decay, its use may be

needed in conjunction with improvements to the loop noise in order to reduce the

computational cost of a physical point calculation.

It is also possible to work in 3 flavor QCD, forgoing the calculation of the charm

quark loop, further reducing computational costs. This would require a new

renormalization procedure which would be analogous to that of the K → πνν̄

study that was performed by the RBC-UKQCD collaborations previously [9, 35].

This is particularly relevant for the study of this rare kaon decay on RBC-

UKQCD’s 483 × 96 DWF ensemble, on which physical charm quarks can not

be simulated. RBC-UKQCD’s 643 × 96 ensemble, with inverse lattice spacing

a−1 = 2.38GeV, could be used to study the decay with a physical charm

quark mass. If methods to control the statistical error introduced by single-

propagator traces are formulated then such a calculation would be feasible, given

improvements to computational capabilities of future computers.
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Appendix A

Eigenvector Generation

The lattice Dirac operator is a large, sparse, near-singular, hermitian, matrix.

Although it is unreasonable to expect to be able to compute any significant

proportion of the Dirac matrix it is the low lying eigenvectors that couple to

low energy physics, and so only the lowest few eigenvectors are important to us.

We thus wish to find an algorithm that can find a small subset of eigenvectors

of a large, sparse, hermitian matrix. It would also be beneficial to conserve the

structure of the Dirac matrix in this process, as its sparsity can be used to our

advantage when multiplication is carried out. We would also like a method that

has low memory requirements, as the storage costs of these eigenvectors can be

unwieldy. For example, the lowest 2000 eigenvectors of the preconditioned zMöius

DWF Dirac operator for light quark masses on 483 and 643 Iwasaki ensembles at

near physical pion mass take up 9.3TB and 36TB per configuration respectively.

[37]

This section discusses the Symmetric Lanczos Algorithm, a Krylov Subspace

method that is used to find a small subset of eigenvectors of a large, sparse,

hermitian matrix. Improvements to the performance of this algorithm using

implicit restarting and Chebyshev polynomials are also discussed, along with

a compression method that can be used to reduce memory requirements.
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A.1 Krylov Subspaces

Subspaces of the form

Km (A, x) ≡ span
{
x,Ax, . . . , Am−1x

}
(A.1)

for a matrix A and vector x are called Krylov subspaces. Repeatedly applying

A on the vector x brings x closer to the dominant eigendirection. So the Krylov

space can be seen to be close to spanning the dominant eigenvectors.

Suppose the columns of the matrix, Vm = [v1, . . . , vm], form an orthonormal basis

of Km (A, x). Then if A is hermitian

Tm = V †mAVm (A.2)

is tridiagonal. To see this we consider Tij for i < j + 1. Note that Tij = v†iAvj,

and

Avj ∈ span
{
x,Ax, . . . , Ajx

}
= span {v1, v2, . . . , vj+1} .

(A.3)

Since {vi}mi=1 form an orthonormal set, vi is orthogonal to span {v1, v2, . . . , vj+1}
for i > j+1. This means that v†iAqj = 0, all the entries below the first subdiagonal

are zero, so Tm has an upper Hessenberg form. However, as A is symmetric,

V †mAVm = Tm is also symmetric. Thus Tij = 0 for i < j−1 and Tm is tridiagonal.

We write it is as

Tm =


α1 β2

β2 α2 β3

. . .

βm−1 αm−1 βm

βm αm

 (A.4)

The next Krylov subspace is found by by orthogonalizing Avj against v1, . . . , vj,
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instead of Ajv:

Km+1(A, x) = span
{
x,Ax, . . . , Ajx

}
= span {v1, v2, . . . , vj, Avj} .

(A.5)

Let

wj = Avj −
j∑

k=1

vk

(
v†kAvj

)
= Avj − αjvj − βjvj−1

(A.6)

and

vj+1 =
wj
‖wj‖2

. (A.7)

By construction, v†i vj+1 = 0 for i = 1, 2, . . . , j, so

Km+1(A, x) = span {v1, v2, . . . , vj, vj+1} . (A.8)

Using the mutual orthogonality of the vi’s a recursion relation can be used to find

the αi’s and the βi’s. We first examine the jth column of AVm = VmTm:

Avj = βjvj−1 + αjvj + βj+1vj+1. (A.9)

Thus we can find αj as

v†jAvj = αj (A.10)

and βj+1vj+1 can be found as

βj+1vj+1 = Avj − αjvj − βjvj−1 = wj. (A.11)

This gives

vj+1 =
wj
βj+1

(A.12)

where βj+1 = ‖wj‖2.

The algorithm that uses this recursion relation to find the αi’s and the βi’s is

called the Lanczos Algorithm.
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A.2 The Lanczos Algorithm

The Lanczos Algorithm is given as [84]

1. Choose an initial vector v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:

3. wj = Avj − βjvj−1

4. αj = v†jwj

5. wj = wj − αjvj
6. βj+1 = ‖wj‖2. If βj+1 = 0 then Stop

7. vj+1 =
wj
βj+1

8. EndDo

This algorithm produces a tridiagonal matrix Tm and m vectors Vm = [v1, . . . , vm]

such that

AVm = VmTm + wme
†
m (A.13)

and

V †Mwm = 0. (A.14)

An orthonormal matrix Sm that diagonalizes Tm can be found:

S†MTmSm = Θm =


θ1

. . .

θm

 . (A.15)

Letting Ym = VmSm, the column vectors, yi, of Ym = [y1, . . . , ym] are said to

be “close” to the eigenvectors of A and the θi’s are said to be “close” to the

eigenvalues of A. Specifically:

‖Ayi − θiyi‖2 = |βm+1||(Sm)mi|. (A.16)

To see this we right-multiply (A.13) by Sm

AVmSm = VmTmSm + wme
†
mSm (A.17)
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and using the definition of Ym and the fact that Sm is orthonormal we get

AYm = VmSmS
†
mTmSm + wme

†
mSm

= YmΘm + wme
†
mSm.

(A.18)

Looking at the ith column:

Ayi = θiyi + wme
†
mSmei (A.19)

implies that that ‖Ayi − θiyi‖2 = |βm+1||(Sm)mi| since |βm+1| = ‖wm‖2.

In exact arithmetic the Lanczos Algorithm guarantees that the vectors, vi, are

orthogonal. In practice the exact orthogonality of these vectors is lost rapidly.

There is also no way to determine in advance how many steps it will take to find

the eigenvalues of interest to a specified accuracy. Convergence is determined by

the distribution of the eigenvalues and the choice of the starting vector, v1. In

many case convergence will not occur until m gets very large, and maintaining

the orthogonality of the vectors, vm, becomes costly.

Another way to converge to the required eigenvalues and maintain orthogonality

s to limit the size of Vm and use restarting schemes. For each restart of the

Lanczos Algorithm the starting vector, v1, is replaced with an “improved” starting

vector, ṽ1. The residual vector, wm, vanishes if ṽ1 is a linear combination of m

eigenvectors of A, and restarting schemes aim to have this happen. A scheme

in which a new starting vector is produced by some process is called explicit

restarting.

An implicit restart involves a combination of an implicitly shifted QR scheme

and an m-step Lanczos factorization.

A.3 Implicitly Restarted Lanczos

Consider the case where the starting vector is a linear combination of two

eigenvectors

v = c1v1 + c2v2. (A.20)

If the eigenvalue associated with v2, λ1, is known an “improved” starting vector
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could be given by

ṽ = (A− λ1) v = c1 (λ1 − λ1) v1 + c2 (λ2 − λ1) v2 (A.21)

which removes the component n the known v1 direction. By applying a

polynomial with shifts, sn,

p (A) = (A− s1) . . . (A− sn) (A.22)

to the starting vector we can remove or reduce components in some eigen direction

and converge to a desired subspace. The spectrum of Tm, σ (Tm) = {θ1, . . . , θm},
can be divided into k wanted and p unwanted components, and the p unwanted

components can be used as shifts. The polynomial, p(A), is not applied directly,

but instead through a QR transformation, as shown in the following algorithm

[56].

1. For m > k, p = m− k, compute an m-step Lanczos factorization

AVm = VmTm + wme
†
m

2. Repeat until convergence (Tk = Dk diagonal)

3. Compute σ(Tm) and select p shifts θ1, . . . , θp

4. Q = Im

5. For j = 1, 2, . . . , p Do:

6. QjRj = Tm − θjIm
7. Q = QQj

8. Tm = Q†jTmQj

9. EndDo

10. σk = Q(m, k)

11. βk = Tm(k, k − 1)

12. wk = vk+1βk+1 + wmσk

13. Vk = VmQ(1 : m, 1 : k)

14. Tk = Tm(1 : k, 1 : k)

15. Beginning with the k-step Lanczos factorization

AVk = VkTk + wke
†
k

apply p additional steps of the Lanczos process to obtain a new m-step

Lanczos

factorization

AVm = VmTm + wme
†
m

16. EndRepeat
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To see how the implicit restart works consider the QR decomposition after the

m-step Lanczos factorization

QR = Tm − θIm (A.23)

that is constructed for a given shift θ. Using the fact that Q is orthonormal

AVm = VmTm + wme
†
m (A.24)

AVmQm = VmTmQm + wme
†
mQm (A.25)

AV ′m = V ′mT
′
m + wme

†
mQm. (A.26)

It can be shown that

e†mQ = ẽ = (0, . . . , 0, ẽk, . . . , ẽm). (A.27)

The first non-zero row of Q is the kth one. Equating the first k columns above

gives

AVk = VkTk + wke
†
k. (A.28)

This is the k-step Lanczos factorization. This is the same factorization we would

have obtained had we started with the vector p(A)v. To show this consider

AVm = VmTm + wme
†
m

= Vm(QR + θIm) + wme
†
m

(A.29)

so

(A− θIm)Vm = V ′mR + wme
†
m. (A.30)

Multiplying by e1 gives the first column

(A− θIm)Vme1 = V ′mRe1. (A.31)
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Figure A.1 The polynomial T10(q(x;α = 5, β = 1))

Since R is upper triangular

Re1 = (ρ, 0, . . . , 0) (A.32)

we have

v′1 =
1

ρ
(A− θIm)v1. (A.33)

The new factorization is equivalent to one started with (A− θIm)v1 instead of v1

and repeating this process with the other shifts effectively multiplies this by the

other factors of p(A).

A.4 Chebyshev Filters

The matrix whose eigensystem is to be found may be replaced with a polynomial

of the matrix p(A) which has better spectral properties, namely that the wanted

eigenvalues are large and well separated. The largest eigenvalues of p(A)

p(A) = p(λi)vi (A.34)

can be found in fewer iterations than the lowest eigenvalues of A. Since p(A)

and A have common eigenvectors the eigenvalues of A can be obtained from the

Rayleigh quotient

λi =
v†iAvi

v†i vi
(A.35)
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once the eigenvectors have been found. The polynomial is applied explicitly and

will be more expensive than doing a single multiplication by A, so there is a trade

off between a smaller number of iterations and a larger cost for each one.

In order to compute the lowest eigenvalues of A we need a polynomial that is

nearly zero for the high modes and rapidly increasing for the low ones, separating

them from each other. First, consider the polynomial

q(A) = q(A;α, β) =
2A2 − (α2 + β2)

α2 − β2
(A.36)

where α and β are some constants. Now consider the nth order Chebyshev

polynomial defined by

Tn(t) =

{
cos[ncos−1(t)], if − 1 ≤ t ≤ 1

cosh[ncosh−1(t)], otherwise
(A.37)

which can be given by the recursion relation

Tn(t) = 2tTn−1(t)− Tn−2(t). (A.38)

Note that −1 ≤ q(x) ≤ 1 for β ≤ x ≤ α, and that the Chebyshev polynomials

are small in the interval [−1, 1] and rapidly rising outside. Thus Tn(q(x)) is large

for x > α and x < β. If we choose α as the largest eigenvalue of the matrix A

(or larger) and β as the largest eigenvalue we wish to compute then the wanted

part of the spectrum is greatly enhanced and the spectrum in the interval [β, α]

is damped.

A.5 Local Coherence Lanczos Solver

Little appears to be known about the space-time structure of the low quark modes,

but numerical inspection suggests that they are locally coherent.[74] This property

allows highly effective deflation subspaces to be built from only a few low modes

using block projectors, which is utilized in the Local Coherence Lanczos solver.

A spatially-blocked basis of the lowest N eigenmodes allows for the creation of a

coarse-grid representation of the eigenmodes that can have a significantly reduced

memory requirement than that of a fine-grid. The following steps are to be taken
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0 0

incoherent coherent

Figure A.2 When restricted to a small block of lattice points, the O(V ) low
modes of the Dirac operator tend to align to a relatively low-
dimensional linear space, a property referred to as local coherence.
[73]

[37]:

1. Find N basis vectors using the Chebyshev-accelerated Implicitly Restarted

Lanczos method

2. For each block use these N basis vectors to create a locally orthogonal basis

to define a mapping between the coarse and the fine grid

3. Use the IRL method to find a full set of eigenvectors on the coarse grid

4. Reconstruct an approximation of the eigenvalues by locally inverting the

Chebyshev polynomial of the Lanczos eigenvalues

5. Correct the eigenvalues outside of the basis with a smoothing procedure
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Appendix B

A2A Formulation of the Weak

Hamiltonian 3-point Functions

The contractions given by the diagrams in Figure (3.4) can be written in terms

of A2A vectors and meson fields as follows.

B.1 Wing (W) Diagram

C(t) =
∑

xH ,xπ ,xK

Tr
[
γ5S

(l)(xπ, xH)γLµS
(l)(xH , xπ)

]
Tr
[
γLµS(l)(xH , xK)γ5S

(s)(xK , xH)
]

=
∑

xH ,xπ ,xK

∑
i,j,m,n

Tr
[
γ5v

(l)
i (xπ)w

(l)
i (xH)γLµ v

(l)
j (xH)w

(l)
j (xπ)

]
× Tr

[
γLµv(l)

m (xH)w(l)
m (xK)γ5v

(s)
n (xK)w(s)

n (xH)
]

=
∑

xH ,xπ ,xK

∑
i,j,m,n

w
(l)
j (xπ)γ5v

(l)
i (xπ)w

(l)
i (xH)γLµ v

(l)
j (xH)

× w(s)
n (xH)γLµv(l)

m (xH)w(l)
m (xK)γ5v

(s)
n (xK)

=
∑
i,j,m,n

Π
(l,l)
ji (tπ; γ5)Π(l,s)

mn (tK ; γ5)
∑
xH

[
w

(l)
i (xH)γLµ v

(l)
j (xH)w(s)

n (xH)γLµv(l)
m (xH)

]
(B.1)
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B.2 Connected (C) Diagram

C(t) =
∑

xH ,xπ ,xK

Tr
[
γ5S

(l)(xπ, xH)γLµS
(l)(xH , xK)γ5S

(l)(xK , xH)γLµS(s)(xH , xπ)
]

=
∑
xH

∑
i,j,m,n

Π
(l,l)
ni (tπ; γ5)w

(l)
i (xH)γLµ v

(l)
j (xH)w

(l)
j (xK)γ5v

(s)
m (xK)w(s)

m (xH)γLµv(l)
n (xH)

=
∑
i,j,m,n

Π
(l,l)
ni (tπ; γ5)Π

(l,s)
jm (tK ; γ5)

∑
xH

[
w

(l)
i (xH)γLµ v

(l)
j (xH)w(s)

m (xH)γLµv(l)
n (xH)

]
(B.2)

B.3 Saucer (S) Diagram

For the charm quark case:

C(t) =
∑

xH ,xπ ,xK

Tr
[
γ5S

(l)(xπ, xK)γ5S
(s)(xK , xH)γLµS

(c)(xH , xH)γLµS(l)(xH , xπ)
]

=
∑
i,j,m,n

Π
(l,l)
ni (tπ; γ5)Π

(l,s)
ij (tK ; γ5)

∑
xH

[
w

(s)
j (xH)γLµ v

(c)
m (xH)w(c)

m (xH)γLµv(l)
n (xH)

]
(B.3)

B.4 Eye (E) Diagram

For the charm quark case:

C(t) =
∑

xH ,xπ ,xK

Tr
[
γ5S

(l)(xπ, xK)γ5S
(s)(xK , xH)γLµS

(l)(xH , xπ)
]

Tr
[
γLµS(c)(xH , xH)

]
=
∑
i,j,m,n

Π
(l,l)
mi (tπ; γ5)Π

(l,s)
ij (tK ; γ5)

∑
xH

[
w

(s)
j (xH)γLµ v

(l)
m (xH)w(c)

n (xH)γLµv(c)
n (xH)

]
(B.4)
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