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Abstract

Today’s world is fuelled by data. From self-driving cars through to agriculture, massive amounts

of data are used to fit learning models to provide valuable insights and predictions. Such in-

sights come at a significant price as many traditional learning procedures have both memory and

computational costs that scale with the size of the data. This quickly becomes prohibitive, even

when substantial resources are available. A new way of learning is therefore needed to allow

for efficient model fitting in the 21st century. The birth of compressive learning in recent years

has provided a novel solution to the bottleneck of learning from big data. Situated at the core

of the compressive learning framework is the construction of a so-called sketch. The sketch is

a compact representation of the data that provides sufficient information for specific learning

tasks. In this thesis we develop the compressive learning framework to a host of new models

and applications. In the first part of the thesis, we consider the group of semi-parametric models

and demonstrate the unique advantages and challenges associated with creating a compressive

learning paradigm for these particular models. Concentrating on the independent component

analysis model, we develop a framework of algorithms and theory enabling magnitudes of com-

pression with respect to memory complexity compared to existing methods. In the second part

of the thesis, we develop a compressive learning framework to the emerging technology of

single-photon counting lidar. We demonstrate that forming a sketch of the time-of-flight data

circumvents the inherent data-transfer bottleneck of existing lidar techniques. Finally, we ex-

tend the compressive lidar technology by developing both an efficient sketch-based detection

algorithm that can detect the presence of a surface solely from the sketch and a sketched plug

and play framework that can integrate existing powerful denoisers that are robust to noisy lidar

scenes with low photon counts.



Lay Summary

The availability of data has increased exponentially in recent years, partly thanks to the ad-

vances in technology and the growth of data centric industries. However, many of the models

used to uncover the relationships in the data require memory and computational resources that

typically scale with the size of the datasets. As a result, training models on a large scale has

become increasingly slow and expensive. Recently, the field of compressive learning has at-

tempted to tackle this problem by compressing the data into a fixed sized summary, called a

sketch. Crucially, the sketch retains sufficient salient information of the data enabling a spe-

cific model to be trained directly on the compact sized sketch without recourse to the original

dataset. In this thesis, we extend the compressive learning paradigm by developing new models

and applications. In Part I, we develop a compressive independent component analysis scheme

that enables one to find mutually independent components of the dataset using only a sketch

resulting in significant memory compression. Part II of the thesis concentrates on the applica-

tion of light detection and ranging (lidar), a 3D imaging modality that achieves high resolution

depth images using eye-safe lasers. By developing a sketch based lidar framework, it is shown

that the data associated with lidar scenes can be enormously compressed without sacrificing the

overall resolution of the depth images. This paves the way for high resolution, high frame-rate

lidar devices that can be processed in real time.
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Chapter 1
Introduction

Data is the new oil

Clive Robert Humby

1.1 Motivation

In the early 2000s, famous British mathematician and data scientist Clive Humby claimed that

data is the new oil. Fast forward twenty years to the midst of the so-called data revolution and

his quote is as pertinent as ever. With data comes the potential to uncover patterns and enable

powerful predictions. From sports and marketing through to science and finance, most domains

of industry are utilising this widely available commodity to gain invaluable insights. In recent

years the volume, frequency and availability of data has rapidly increased with little sign of

slowing. Many experts have coined this exceptional growth as the big data era. So what has

fuelled the big data era? The main two drivers can be attributed to the invention of the internet

and major advances in technology. The success of the internet has allowed humankind to be-

come more connected and live more conveniently due to the prominence of social media, search

engines and online shopping. With each online transaction, a digital footprint is harvested and

recorded as data. On the other hand, the exponential growth of technology has resulted in

products such as mobile phones, autonomous vehicles and personal computers consisting of

multiple sensors which can record data at ever faster rates. In addition, such technology has

become increasingly affordable and accessible in recent years. All of these factors have lead to

ever increasingly large datasets.

Synonymous with big data and shadowing its rise is the field of machine learning which con-

cerns the problem of learning the underlying process of a task, such as classification, detection

or prediction, given a set of data. Here machine learning refers to the umbrella terminology

that encompasses any model that is trained using a collection of data, including the broader

family of deep learning. In its most simplified form, machine learning consists of a model fθ
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Figure 1.1: A schematic illustrating a simplified version of the machine learning process.

parametrized by θ, whereby a collection of data X is used to learn an estimate θ̂ of the model.

The learning stage consists of optimisation algorithms that typically require recourse to the

original dataset. Figure 1.1 depicts a simplified schematic of the machine learning process.

Both the rise of big data and machine learning are intertwined. Conventional statistical wisdom

states that larger datasets enable practitioners to build increasingly accurate models. As a result,

machine learning facilitates a greater demand for big data. The self-perpetuating growth of both

big data and machine learning poses significant challenges for modern day large scale learning.

1.1.1 Large Scale Learning Challenges

The challenges of large scale learning can be characterised into two main groups, namely re-

source limitations and societal costs.

Resource Limitations

Datasets typically assume the form of a matrix (once pre-processed) as shown in Figure 1.1,

consisting of N individual entries (representing for example a patient, product or specific point

in a time-series) with a dimension or feature space d containing specific attributes of the en-

try (for example height, cost, temperature). With ever increasing technology, memory access

and sensor design the size of both N and d have increased substantially over the years. It is

commonplace to have datasets that consist of millions of entries N with thousands of associ-

ated features d, requiring up to terabytes of available storage. However, many of the classical

optimisation algorithms associated with learning the model fθ require recourse to the original

dataset which poses a restriction as the dataset must typically be stored on local memory. Sec-

ondly, the computational complexity, or the runtime of learning the model fθ generally scales

with the size of N and d, regularly exhibiting a polynomial dependency on these dimensions.

Large scale learning can therefore become extremely time intensive, taking days or even weeks
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to complete. For this reason, large scale learning quickly becomes prohibitive.

Societal Costs

Associated with the theoretical resource limitations are the increasing costs to society. Due to

the large computational overhead of large scale learning, practitioners and industry frequently

resort to graphic processing units (GPUs) that parallelize numerical operations and can sub-

stantially reduce the runtime of their optimisation algorithms. However, these units consume

enormous amounts of energy and are therefore expensive to run from a monetary point of view.

Furthermore, they significantly contribute to CO2 emissions, for instance a cluster of eight

RTX2080Ti NVIDIA GPUs used over a 24 hours duration emits approximately 35.5 kg of

CO2 emissions which is equivalent to driving an average car for a total of 143.2 kilometres

[4]. Due to the increased demand for quicker computations, many GPUs are updated within

a short time frame producing a greater quantity of waste and leading to inflated prices due to

GPU shortages. Owing to the increased monetary cost and the restrictive access to big datasets,

large scale learning has become progressively limited to the larger corporations. For example,

OpenAI trained GPT-3, a state-of-the-art language model consisting of 125 billion trainable pa-

rameters, at a reported cost of $12 million [5]. As a result, this enables the larger corporations

to hold a near monopoly as smaller institutions, including university research groups, can not

feasibly compete.

Traditional approaches to large scale learning are not sustainable and therefore a new learning

paradigm is needed. Does compressive learning provide the answer?

1.1.2 Compressive Learning to the Rescue?

Compressive learning (or often referred to as sketched learning) partially addresses the fun-

damental challenges of large scale learning by severely compressing the whole dataset into a

compact representation of fixed size m, named a so-called sketch, in a single (or limited) pass

of the data prior to learning. In general, the sketch is constructed by taking an empirical aver-

age of a nonlinear function over the dataset. Once the sketch is formed, the parameters of the

model are inferred solely from the sketch, hence a compressive learning algorithm, for a given

task or model, needs never to return to the original dataset. The sketching and learning stages

of compressive learning are illustrated by the schematic in Figure 1.2. Fundamentally, the size

of the sketch does not scale with the dimensions of the dataset, or indeed the data’s underlying
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dimensionality, but instead is driven by the complexity or dimensionality of the learning task

or model of interest. In theory, one can work with datasets of arbitrary length, as the dimension

of the sketch is fixed constant throughout, making compressive learning especially amenable to

large scale learning. The key advantages of compressive learning are

• Only the sketch of sizem� Nd is required throughout the learning stage of compressive

learning, therefore recourse to the original dataset is not required and subsequently can

be discarded from local memory.

• As the sketch is constructed by computing the empirical mean of a nonlinear function,

compressive learning is highly amenable to both parallel processing and distributed learn-

ing. In addition, due to its nature, the sketch can be computed on the fly without any

additional computational overhead (as will be shown in Chapter 5).

• The compressive learning algorithms that estimate the parameters θ of the model directly

from the sketch typically have a computational complexity that is dependent only on the

size of the sketchm, thereby significantly reducing the computational burden of learning.

 

Figure 1.2: A schematic illustrating the compressive learning process.

In this thesis, we develop the compressive learning framework by introducing new models and

applications which provide a solution to some of the challenges faced by modern day large

scale learning. The contributions of the thesis are stated below.

1.1.3 Contributions

This thesis is divided into 2 parts, namely, new compressive learning models and compressive

learning applications. To date, compressive learning has mainly centred around building frame-

works for parametric models including the Gaussian mixture and K-means models. In this the-

sis, we develop the compressive learning framework to explicitly highlight the intricacies and

challenges that are unique to the class of semi-parametric models. The key novelty in this first
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half of the thesis is the introduction of a compressive independent component analysis (ICA)

framework in Chapter 3, which includes both theory and practical algorithms allowing for sub-

stantial space complexity compression compared with existing ICA methods. In Chapter 4, we

reformulate the compressive learning framework in [1, 6] to be explicit in the construction of a

compressive semi-parametric scheme. With the use of a case study between the models of ICA

and generalized principal component analysis (GPCA), the unique challenges of compressive

semi-parametric learning are highlighted and we demonstrate when efficient compression can

be attained. Our reformulation provides a clear blueprint on constructing compressive learning

schemes for other semi-parametric models.

The second half of the thesis focuses on the application perspective of compressive learning.

The key novelty of this part is the development of a compressive time-of-flight (ToF) imaging

framework which utilises a compressive mixture model in its construction. In Chapter 5, we

provide a framework in which a sketch of the ToF data allows efficient reconstruction of a field

of view depth scene. In Chapter 6, we further develop the framework by designing a pixel-

wise object detection scheme that requires only a small sized sketch and also a multi-pixel

denoiser that is robust to noisy scenes. This thesis contains a background chapter (Chapter 2),

4 technical chapters (Chapters 3-6) and a conclusion chapter (Chapter 7). A brief overview of

each technical chapter is highlighted below.

Chapter 3: Compressive Independent Component Analysis

In this chapter we build a compressive ICA framework including both theory and algorithms.

Focusing on cumulant based ICA, we show that solutions to the cumulant based ICA model

have particular structure that induce a low dimensional model set that resides in the larger cu-

mulant tensor space. One of the main contributions of this chapter is proving that a restricted

isometry property (RIP) holds for the sketch of cumulant tensors constructed using Gaussian

ensembles. The established RIP permits a robust instance optimal decoder and therefore a

tractable compressive ICA scheme. The other main contribution of this chapter is the pro-

posal of two distinctively different algorithms in the form of an alternating steepest descent

(ASD) and iterative projected gradient (IPG) method which are shown to be robust and effi-

cient at estimating the parameters of the ICA model. Through extensive simulations on both

synthetic and real data, we empirically show the specific phase transition between unsuccessful

and successful ICA estimation as a function of the sketch size and demonstrate that the order

of compression asserted from the RIP theory is realised through the empirical results.
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Chapter 4: Compressive Learning for Semi-Parametric Models

In this chapter, we reformulate the original compressive learning framework in [1, 6] to explic-

itly cater for the unique class of semi-parametric models. One of the unique characteristics of

semi-parametric models is that they are not fully parametrized. As a result, we leverage some

intermediate space of statistics that allow identifiability of the semi-parametric model. How-

ever, the dimensionality of the finite intermediate space can result in a compressive learning

scheme that quickly becomes infeasible due to the required sketch size. The main contribu-

tion of this chapter is the reformulation of the existing compressive learning framework and to

provide a case study between the models of ICA and GPCA, demonstrating when compressive

semi-parametric can fail and succeed.

Chapter 5: A Sketching Framework for Single Photon Counting Lidar

Single photon counting light detection and ranging (lidar) is a prominent depth imaging tool

used extensively in the automobile, defense and agriculture industries. A major data transfer

bottleneck arises on the lidar device when either the number of photons detected per pixel is

large or the time-stamp resolution is fine, which is becoming more apparent due to the major

advances in hardware capabilities. The major contribution of this chapter is the development of

a robust compressive time-of-flight framework that circumvents the data transfer bottleneck of

modern lidar devices whilst achieving efficient and accurate depth estimation. A mixture model

consisting of both signal and background photon components is utilised in the framework. It

is demonstrated on both synthetic and real datasets that the size of the sketch needs only to be

of the order of the number of surfaces in the scene. In most cases, there is only 1 surface and

therefore the compression realised in comparison to existing techniques is substantial. Another

main contribution of this chapter explores the loss of information incurred by taking a sketch

of a certain size. It is shown that even at low signal-to-background ratios (SBR), only a modest

sketch size is required to incur negligible information loss.

Chapter 6: Robust Detection and Real-Time Processing of Sketched Single-Photon Count-

ing Lidar

Detecting the presence of an object or surface for each pixel in a scene is important for many

downstream tasks and can also further reduce the computational and memory load by omitting

non-informative peaks (e.g. pixels with no surface present) from further processing. However,

existing techniques typically scale at bestO(T log T ), where T is the temporal resolution of the
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system. This can become extremely slow for devices that permit high temporal resolution. The

first main contribution of this chapter is to extend the compressive lidar framework to enable

accurate detection based solely on the compact representation sketch. It is demonstrated on

both synthetic and real data that the accuracy, measured in terms of probability of detection

(PD) and probability of false alarm (PFA), is competitive with the state-of-art, while exhibiting

a computation complexity of O(m), which is at a fraction of the cost of the state-of-the-art.

Our second main contribution of this chapter is to extend the initial sketched lidar reconstruction

algorithm proposed in Chapter 5 by designing a plug and play multi-pixel denoiser algorithm

that exploits the spatial correlation of neighbouring pixels to improve the reconstruction per-

formance. It is demonstrated on real and synthetic data that the proposed sketched multi-pixel

denoiser is robust to both low photon counts and low SBR scenes. Importantly, it is highlighted

that one can easily develop sketched versions of other existing and future lidar denoisers by em-

ploying a plug and play format of replacing the standard data fidelity term by a specific sketch

based cost function.

1.1.4 List of Publications

This thesis is based on the following peer-reviewed publications, preprints and patents during

my PhD studies:

Chapter 3

• Michael P. Sheehan, Madeleine S. Kotzagiannidis, and Mike E. Davies. “Compressive

Independent Component Analysis.” 2019 27th European Signal Processing Conference

(EUSIPCO). IEEE, 2019.

• Michael P. Sheehan, and Mike E. Davies.“Compressive Independent Analysis: Theory

and Algorithms.” Information and Inference: A Journal of the IMA, 2022

Chapter 4

• Michael P. Sheehan*, Antoine Gonon*, and Mike E. Davies.“Compressive Learning for

Semi-Parametric Models.” 2019, arXiv preprint arXiv:1910.10024 (2019). * The authors

have contributed equally to the paper.
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Chapter 5

• Michael P. Sheehan, Julián Tachella, and Mike E. Davies.“A Sketching Framework for

Reduced Data Transfer in Photon Counting Lidar.” 2021 Transactions on Computational

Imaging, IEEE 2021.

• Mike E. Davies, Michael P. Sheehan, Julián Tachella, (2022) Sketching Technique for

Reduced Data Transfer, International Patent Application No. PCT/GB2022/050263

Chapter 6

• Michael P. Sheehan, Julián Tachella, and Mike E. Davies. “Surface Detection for

Sketched Single Photon Lidar.” 2021 29th European Signal Processing Conference (EU-

SIPCO). IEEE, 2021.

• Julián Tachella, Michael P. Sheehan, and Mike E. Davies. “Sketched RT3D: How to re-

construct billions of photons per second.” International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE 2022.
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Chapter 2
Background

In this chapter, we will present an overview on parameter inference and compressive learning

that we will build upon in the four technical chapters of this thesis. This will begin in Sec-

tion 2.1 where a description of various forms of parameter estimation are provided, including

probability density estimation and distribution-free learning. The role of empirical character-

istic function estimation as a parameter inference tool will be detailed in Section 2.1.3, which

will be later used in Chapter 5 and 6 to build a compact representation of the lidar data. The

class of semi-parametric models will be detailed in Section 2.1.4 where we exploit their unique

structure to develop a compressive learning framework for semi-parametric models in Chapter

4. In Section 2.1.6 we present the learning task of independent component analysis and demon-

strate that it belongs to the class of semi-parametric models, which we will use in Chapter 3 to

construct a compressive independent component analysis scheme that includes both practical

algorithms and theoretical results.

Next, we present some key properties of estimators in Section 2.2, that will be used to design

practical algorithms and analyse the proposed methods in this thesis. The notion of a bias

estimator will be described in Section 2.2.1, which will be used to design a sampling scheme in

Chapter 5 that produces unbiased estimates of the lidar parameters. The role of efficiency will

be detailed in Section 2.2.3, which we will later use in both Chapter 3 and 5 to analyse the loss

of information incurred by computing a compact representation of the data. The central limit

theorem will also be introduced in Section 2.2.2, which will be leveraged extensively in Part II

to design both a estimation and detection algorithm for single photon lidar.

The fundamentals of compressive learning will be provided in Section 2.3 that we build upon

throughout the technical chapters. Section 2.3.1 provides a review of the well-established field

of compressive sensing which provides inspiration to much of the principles of compressive

learning that will be introduced in Section 2.3.2. In addition, many of the theoretical tools

and algorithms that will be presented in Section 2.3.1 will be utilised in Chapters 3 and 4

due to the inherent structure of semi-parametric models. A review of existing compressive
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learning methods is presented in Section 2.3.3 and the main advantages and disadvantages of

compressive learning are discussed in Section 2.3.4.

A review on other methods that tackle the complexities associated with large scale learning is

presented in Section 2.4. The techniques of sub-sampling, dimensionality reduction and linear

sketches are introduced and compared to the compressive learning method, where we highlight

their main limitations.

Finally, we provide a description of single photon counting lidar in Section 2.5 and detail the

data transfer bottleneck inherent in many modern day lidar devices in Section 2.5.1. In Chapter

5, we will develop a sketching framework for reduced data transfer that reduces the compu-

tational and data transfer complexities associated with high resolution, high frame rate lidar

devices without sacrificing the quality of the reconstructed images.

2.1 Parameter Inference

The goal of compressive learning and therefore this thesis is to provide a solution to large-scale

inference problems in an efficient manner that reduces computational and memory complexi-

ties. In Chapter 1, the notion of a learning model f that attempts to describe a specific learning

task from a given set of observations was broadly introduced. In this section, we make these

definitions explicit and introduce the specific class of learning models we will be considering

throughout the later chapters of this thesis.

There are 3 main components to any learning task, namely, data, a learning machine and a

measure of discrepancy. Each component, as defined below, will allow us to define the goal of

statistical learning.

Data

To learn a model for a given task, one must have realisations from the true data generating

distribution. Let X denote the finite set of data points

X := {xi ∈ X | i = 1, . . . , N} , (2.1)
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where the data belongs to some signal space X ⊆ Rd. As discussed in Chapter 1, a dataset

is typically concatenated into a matrix X ∈ Rd×N where the number of columns N and the

rows d define the length and dimensionality of the dataset, respectively. In statistical learning

theory [7] it is assumed that the samples xi are independent and identically distributed (i.i.d)

realisations of some unknown data generating distribution P0 ∈ P (X ):

x1,x2, . . . ,xN
i.i.d∼ P0, (2.2)

where P (X ) denotes all possible probability distributions over X .

Learning Machine

The next main component to a learning task is the choice of learning machine. A learning

machine implements a class of models f(x, θ) parameterized by a set of parameters θ ∈ Θ

where Θ ⊆ Rp denotes the parameter set [7]. For shorthand, we denote fθ(x) = f(x, θ). Each

model defines the map

fθ : X 7→ Y (2.3)

to an output space Y . Depending on the learning task, the space Y could be, for example,

Y = Rk (regression), Y = {1, 2, . . . , C} (classification) or Y = {0, 1} (detection). This thesis

is primarily interested in learning machines that describe either a class of probability densities

or semi-parametric models which will be described shortly in this section.

Loss Functions

Once an appropiate model is chosen, it is typically fitted to the finite set of data X so that

an estimate of the model’s parameters θ can be calculated. To do so, practitioners leverage

loss functions that establish a metric between the model fθ and the data X. A loss function is

defined as

l : Θ× X 7→ R : (θ,x) −→ l (θ,x) , (2.4)

where × denotes the Cartesian product. Later in this section, some loss functions that are

specific to this thesis will be introduced.
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Given a loss function l and an unknown data generating distribution P0, the underlying goal of

statistical learning is to minimize the associated risk function R : Θ × P0 7→ R to recover an

optimal set of parameters θ∗, such that

θ∗ := arg min
θ∈Θ
R (θ,P0) := arg min

θ∈Θ
Ex∼P0

l (θ,x) , (2.5)

where Ex∼P0
denotes the expectation over the true data distribution P0.

Empirical Risk Minimization

In practice, we do not know the true data generating distribution P0 and we only have ac-

cess to the finite number of samples X = {x1,x2, . . . ,xN}. However, any dataset X can be

represented by its associated empirical distribution

PN :=
1

N

N∑
i=1

δxi , (2.6)

where δx denotes the Dirac measure located at the point x. Replacing Pθ by its empirical

counterpart PN in Eqn 2.5, we get the associated empirical risk minimization

θ̂ := arg min
θ∈Θ
R (θ,PN ) = arg min

θ∈Θ

1

N

N∑
i=1

l(θ,xi). (2.7)

This thesis concerns a particular class of learning machines. Chapters 5 and 6 utilise learning

machines that define classes of probability densities, while Chapters 3 and 4 focus primarily

on distribution-free semi-parametric models. We first define probability densities, however for

further details on a host of different learning models see [8, 9].

2.1.1 Probability Density Fitting

A large class of learning models are parametrized directly by a probability density function

(PDF). A PDF, denoted by P(x, θ), is a function1 whose value at any given sample x can

be interpreted as the likelihood that the sample was drawn from the associated probability

distribution. A PDF has the following key properties:

1The learning model described in Section 2.1 is equal to f(x, θ) = P(x, θ). However, we make the notation
distinct to emphasis that the model is a density function.
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• 0 ≤ Pθ(x) ≤ 1,

•
∫
X Pθ(x)dx = 1.

A popular example of a probabilistic model is that of a mixture model, which can be used to

represent the presence of subpopulations within an overall population. Mixture models play an

important role in Part II of this thesis where they are used to model the depth of surfaces in a

lidar scene (see Section 2.5). A mixture model of K distributions is defined as

P (x; θ) =
K∑
k=1

αkPk(x; θk), (2.8)

where
∑K

k=1 αk = 1 and Pk(x, θk) ∈ P (X ) denotes the probability distribution of the kth

mixture parameterized by θk. The parameters of the whole mixture model are denoted by

θ = (α1, . . . , αK , θ1, . . . , θK). In many mixture models, each of the k distributions Pk reduces

to the same class of distributions such that P replaces Pk for each k in Eqn 2.8 for some

consistent distribution P . An instance of this is the Gaussian mixture model

P (x; θ) =
K∑
k=1

αkN (x;µk,Σk) , (2.9)

whereN (x;µ,Σ) denotes the multivariate Gaussian distribution overX parametrized by θk =

(µk,Σk). As will be discussed in Section 2.3.3, Gaussian mixture models were one of the first

learning models to be developed into a compressive learning scheme.

In general, given a dataset X, one can infer the parameters θ of a probability distribution using

several well-established techniques. The most classic is maximum likelihood estimation.

2.1.2 Maximum Likelihood Estimation

A traditional form of probability density fitting is maximum likelihood estimation (MLE). MLE

attempts to estimate the true parameter θ0 by maximizing the likelihood that the set of param-

eters generated the observations x1,x2, . . . ,xN . Formally, the likelihood L(X; θ) is defined

as

L(X; θ) :=

N∏
i=1

P(xi; θ). (2.10)
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In many scenarios, minimizing the log-likelihood LL(θ; X) := logL(X; θ) defined as

LL(X; θ) :=
N∑
i=1

logP(xi; θ) (2.11)

is much easier in practice. The estimate θ̂ that minimizes the (log) likelihood function is called

the maximum likelihood estimate. Notably, maximising Eqn 2.11 is equivalent to minimizing

the empirical risk function in Eqn 2.7 where the loss function is set as l(θ,x) = − logPθ(x).

For the Gaussian mixture model defined in Eqn 2.9, the log-likelihood function reduces to

LL(X; θ) =
N∑
i=1

log

(
K∑
k=1

αkN (xi;µk,Σk)

)
, (2.12)

which can be solved using the specific EM algorithm (see [10]).

One of the main disadvantages of maximum likelihood estimation (MLE) is that in some cases

the likelihood function in Eqn 2.11 might not have a closed form solution nor a computationally

tractable approximation. If that is the case, practitioners often resort to other probability density

fitting techniques, including generalized method of moments.

2.1.3 Generalized Method of Moments

Generalized method of moments (GeMM) is an alternative form of parametric statistical infer-

ence where one estimates the parameters θ by matching a collection of generalized moments

with an empirical counterpart computed over the observed samples x1,x2, . . . ,xN . Given a

non-linear function h : Rd 7→ Cm, then we define the expectation constraint of GeMM as

Ex∼Pθ0h(x; θ) = 0. (2.13)

The non-linear function is chosen to ensure the parameters are identifiable i.e.

Ex∼Pθ0h(x; θ) = 0 if and only if θ = θ0. (2.14)

The GeMM estimator is typically obtained by minimizing a quadratic loss of empirical discrep-
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ancy with respect to θ to try impose the moment constraints of Eqn 2.13. Let us define

hN (X; θ) :=
1

N

N∑
i=1

h(xi; θ), (2.15)

then a GeMM estimate classically takes the form

θ̂ := arg min
θ

hN (X; θ)TWhN (X; θ) (2.16)

where W ∈ Cm×m is a symmetric positive definite (PD) weighting matrix that may depend on

θ. It will discussed in Section 2.3 that generalised method of moments is similar to the concept

of sketching, albeit with a fundamentally different goal.

2.1.3.1 Empirical Characteristic Function Estimation

Empirical characteristic function (ECF) is a specific class of GeMM that we build upon in

Chapters 5 and 6 to construct a compact representation of the data. ECF has the particular

separable form of h:

h(x; θ) = Φ(x) − Ex∼PθΦ(x), (2.17)

where Φ(x) =
[
eiωTj x

]
j=1:m

and ωj are a discrete set of frequencies sampled from some law

Λ(ω). They receive significant interest as the non-linear term is equal to the characteristic

function in expectation i.e.

ΨPθ(ω) := Ex∼PθΦ(x) (2.18)

for the frequencies ω. The characteristic function has some unique and appealing properties,

for instance, the characteristic function exists for all distributions and often has a closed form

expression. The characteristic function captures all the information of the probability distribu-

tion, providing a one-to-one correspondence to the space of probability distributions. More-

over, under mild conditions, the characteristic function decays in frequency, i.e. ΨPθ(ω) → 0

as ω →∞.

2.1.4 Semi-Parametric Learning

So far we have considered parametric models P(x; θ) that are parametrized fully by θ that is

a vector in p-dimensional Euclidean space, i.e. Θ ⊆ Rp. In many learning tasks, however,
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parametric models may be too restrictive as they require strong assumptions which may not be

readily known. Often practitioners resort to non-parametric techniques, for instance k nearest

neighbours, support vector machines and kernel regression (see [8]), that do not specify the

model structure (i.e. a fixed number of parameters) a-priori and therefore the parameter set Θ

is allowed to grow depending on the data. In contrast to parametric methods, the set of possible

values of the parameter θ is a subset of some possibly infinite dimensional space V , such that

Θ ⊆ V [11].

In this thesis, the class of semi-parametric models are considered. A semi-parametric model

consists of both parametric and non-parametric terms. In this instance, the parameter set Θ is a

subset of the cross product of both a finite and possibly infinite dimensional space [11, 12]:

Θ ⊆ Rp × V. (2.19)

Initially, it may seem that the class of semi-parametric models includes non-parametric models,

however, it is often the case in semi-parametric learning that we are only interested in the finite

dimensional component of θ. The possibly infinite dimensional component of θ that belongs to

V is often referred to as the nuisance parameter [12].

In the following sections we consider two semi-parametric models, namely, principal com-

ponent analysis (PCA) and independent component analysis (ICA) which are built upon in

Chapters 3 and 4.

2.1.5 Principal Component Analysis

Principal component analysis (PCA) is a classic method in statistics, feature extraction and data

compression where the goal is to project the data X on to an orthogonal coordinate system in

which the basis vectors best describe the variability of the data.

Formally, PCA consists in finding the linear subspace of a fixed dimension K < d that best

fits the data X in the least squares sense. Assuming the data is centred, the goal of PCA is

to find the K-dimensional orthogonal basis vectors (named principal vectors) p1, . . . ,pK that

maximises
K∑
k=1

N∑
i=1

|pTk xi|2. (2.20)
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There are many methods to finding the K principal vectors (see [8]). One of the most popular

techniques consists of finding the K principal eigenvectors of the empirical covariance matrix

ΣN = 1
N

∑
i=1 xix

T
i via the eigendecomposition:

ΣN ' PΠPT (2.21)

where the columns p1, . . . ,pK of P are the K principal eigenvectors and the diagonal entries

of Π are the corresponding eigenvalues.

In this instance, the principal vectors p1, . . . ,pK correspond to the parametric components of

Eqn 2.19 whilst the diagonal matrix Π represents the nuisance parameters defined in Eqn 2.19.

It is therefore straightforward to see that PCA can be defined as a semi-parametric model.

2.1.6 Independent Component Analysis

Independent component analysis (ICA) is used frequently in the machine learning and signal

processing communities to identify latent variables that are mutually independent to one an-

other. It can be seen as an extension to PCA due to the assumption of independence between

the latent variables which is stronger than the uncorrelated constraint in PCA.

To formulate the ICA problem, consider a data point x = (x1, x2, . . . , xd)
T , then the problem

of ICA concerns finding a mixing matrix M ∈ Rd×n such that

x = Ms, (2.22)

where s = (s1, s2, . . . , sn)T and the components si are statistically independent:

P(s1, s2, . . . , sn) =
n∏
i=1

Pi(si). (2.23)

The following ambiguities in the ICA model in Eqn 2.22 hold:

• As both s and M are unknown, any scalar multiplier in one of the independent com-

ponents sj can always be cancelled by dividing the corresponding column in M by the

same scalar.

• The order of the independent components and the corresponding columns in M can freely
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change.

As a result, the mixing matrix M and the independent components s are only identifiable up to

scaling and permutation ambiguities.

Prewhitening

A useful preprocessing strategy in ICA is to first whiten the observed variables x via a linear

transformation

z = Vx, (2.24)

such that the new vector z has identity covariance matrix. One popular method of whitening is

to use the eigendecomposition of the covariance matrix (i.e. Ex∼PxxT as in Eqn 2.21 and set

V = Π−
1
2 PT . From Eqn 2.22 and 2.24 we have

z = Π−
1
2 PTMs

= Qs.
(2.25)

Whitening has two main advantages: (1) it handles the scenario when there are more mixing

components than independent components d > n as one can discard the d− n smallest eigen-

values, (2) the matrix Q ∈ Rn×n in Eqn 2.25 is necessarily orthogonal and contains n(n−1)/2

degrees of freedom. The whitening matrix V is not unique and any orthogonal rotation of V

will also define a whitening matrix [13]. For the sake of presentation, we will subsequently con-

sider the whitened version of the data for the remainder of this section and the corresponding

whitened ICA equation

z = Qs. (2.26)

There are many techniques and methods in the literature to solve the ICA problem. The sim-

plest method is to assume the distributional form of each of the independent components Pi(si)
and then solve the ICA problem through a maximum likelihood approach [14]. In practice, the

distributions are not known a-priori so therefore in most methods the distributions are left un-

specified. The unknown distributions Pi can be considered as the nuisance parameters of the

semi-parametric model in Eqn 2.22, whilst the mixing matrix M corresponds to the finite para-

metric component. In Chapter 3, we develop a compressive learning framework for cumulant

based ICA, therefore in this section we focus on such methods. For the interested reader, see
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[13] for a exhaustive exposition on various ICA methods.

Cumulant Based ICA

Tensorial or cumulant based methods are a group of techniques used to solve the ICA problem

that consist of using high order cumulant tensors. Tensors can be considered as a generalization

of matrices or linear operators to higher order arrays. For instance, a 1st order tensor is a vector

and a 2nd order tensor is a matrix. We denote a Kth order tensor by T K ∈ RI1×I2×···×IK ,

where the dimension of the tensors kth mode is denoted by Ik.

A cumulant tensor is a symmetric tensor whose components are functions of higher order mo-

ments of a random vector. Let X K denote the Kth order cumulant tensor of a random variable

x ∈ Rd, then its first four cumulant are defined [15] as

X 1
i =E[xi]

X 2
ij =E[xixj ]

X 3
ijk =E[xixjxk]

X 4
ijkl =E[xixjxkxl]− E[xixj ]E[xkxl]− E[xixk]E[xjxl]− E[xixl]E[xjxk].

(2.27)

Given the whitened ICA model in Eqn 2.26 equating z to s, then the following multilinear

property holds for their associated cumulant tensors:

Z K = SK ×1 Q×2 Q×3 · · · ×K Q, (2.28)

where ×j represents the j-mode tensor-matrix product and SK represents the Kth order cu-

mulant tensor of the independent components [15]. In Chapter 3, we will only consider 4th

order cumulant tensors (e.g. K = 4) and for the sake of simplified notation we shall drop the

superscript in Eqn 2.28 for the rest of the discussion.

Formally, we can denote by C ⊂ Rn×n×n×n the space of 4th order cumulant tensors which

accounts for the symmetry in Eqn 2.27 and has a maximum of
(
n+3

4

)
unique entries (degrees of

freedom) [16]. The diagonal entries Zijkl (ijkl = iiii) are the auto-cumulants of the whitened

ICA data z, while the off-diagonal entries Zijkl (ijkl 6= iiii) are the cross-cumulants. An

important property of cumulants is that if the variables are statistically independent then, as

seen by Eqn 2.27, the cross-cumulants vanish to 0 resulting in a strictly diagonal cumulant
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tensor. In other words, independence implies diagonality. It is shown in [17] that under mild

conditions on the ICA model in Eqn 2.26 the converse is also true, i.e. diagonality implies

independence. Once the data is whitened, the cumulant based ICA problem reduces to finding

a linear transformation QT such that the resulting cumulant tensor

S = Z ×1 QT ×2 QT ×3 QT ×4 QT (2.29)

is strictly diagonal.

The expected cumulant tensor Z is typically not known owing to finite data length approxima-

tions and non-Gaussian additive noise [18] and so in general Z cannot be fully diagonalized

by a linear transform. As a result, contrast functions are used to approximately diagonalize Z

and maximize the independence of the system.

Contrast Functions

Comon [19] proposed the use of contrast functions as a solution to tractably measure indepen-

dence even when the independent components are left distribution-free. A contrast function

% : P (X ) 7→ R is a mapping from the space of distributions to the real line and can be thought

of as a tractable approximation of mutual information. For a function % to be a contrast function

it must be both permutation and scale invariant, due to the ICA ambiguities, as well as being

maximum if and only if components are statistically independent. Comon [19] proposed vari-

ous cumulant based contrast functions that are Edgeworth expansions of information theoretic

measures such as negative mutual information, maximum likelihood and negentropy. In Sec-

tion 3.4, we utilise contrast functions as a measure of independence as part of our compressive

ICA algorithms.

2.2 Estimation Theory

In Section 2.1, we described how parametric and semi-parametric models can be used to

solve a learning task and different density estimation methods, for instance MLE and GeMM,

were introduced. In this section, we discuss some of the key concepts of statistical infer-

ence and properties of an estimator θ̂. Many of these properties, for instance bias and effi-

ciency, will be built upon in the latter chapters to analyse the proposed methods. As before, let
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x1,x2, . . . ,xN
i.i.d∼ P0 be N i.i.d samples of an overarching probability distribution P0 that

is parametrized by a set of true parameters θ0 ∈ Θ ⊆ Rp. Below we state some fundamental

definitions of estimators.

2.2.1 Bias and Consistency

Definition 1 (Consistency). An estimate θ̂ is said to be consistent over theN samples x1, . . . ,xN

if and only if for all ε > 0

lim
N→∞

Pr
(
|θ0 − θ̂| > ε

)
= 0. (2.30)

In other words, a consistent estimator is an estimator that’s sampling distribution becomes

increasingly concentrated around the true parameter θ0 as the sample size N grows. Another

important notion is the bias of an estimator.

Definition 2 (Bias). The bias of an estimator is defined as

Biasθ0(θ̂) := Ex∼P θ̂ − θ0. (2.31)

If Biasθ0(θ̂) = 0 then the estimator is said to be unbiased.

An unbiased estimator is one that in expectation equals the true parameter.

Initially, consistency and unbiasedness look similar, however an estimator can be consistent

and biased while another estimator can be inconsistent yet unbiased. Take for instance an i.i.d

sample x1, . . . ,xN ∼ N (µ,Σ) and choose θ̂ = xN as the estimator for the true mean µ. Then

by definition, Ex∼PxN = µ, however the estimator θ̂ doesn’t converge towards a single value

as N →∞ therefore θ̂ is unbiased yet inconsistent.

Under certain technical conditions, for instance a compact parameter space Θ and model identi-

fiability, both the MLE and GeMM estimators discussed in Section 2.1.2 and 2.1.3, respectively,

are consistent.

2.2.2 Central Limit Theorem

The central limit theorem (CLT) is a fundamental result in statistics and is built upon in Chapter

5 and 6 to develop the algorithms that will be proposed. It states that under certain conditions
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the sum of i.i.d random variables converges to a Gaussian distribution. Let x1, . . . ,xN be N

i.i.d random variables and let x̄ = 1
N

∑N
i=1 xi, then formally the CLT states that

√
N(x̄− µ)

dist−−→ N (0,Σ) (2.32)

where µ and Σ denote the mean vector and covariance matrix of the random variables and dist−−→

denotes asymptotic convergence towards the CDF.

2.2.3 Efficiency

It may not be sufficient for an estimator to be consistent or unbiased as we may want θ̂ to

converge to the true parameter θ0 within a small amount of data. Such a performance can be

measured by the efficiency of the estimator. Cramér and Rao proved a lower bound, named the

Cramér-Rao lower bound (CRLB), that provides the optimal deviation in terms of variance that

one can expect given an estimator θ̂. Specifically, the CRLB states [20] that for a unbiased2

estimator

Cov
(
θ̂
)

= Σθ ≥ I(θ)−1, (2.33)

where I(θ) ∈ Rp×p is the Fisher information matrix that has the entries

[I(θ)]ij := N Ex∼P

[(
∂ logP(x, θ)

∂θi

∂ logP(x, θ)

∂θj

)]
. (2.34)

In Eqn 2.33, the symbol ≥ refers to the matrix Σθ − I(θ)−1 being semi-positive definite. The

efficiency of an estimator is a measure of how close an estimator is towards its CRLB. If an

estimator θ̂ hits the CRLB (i.e. Σθ = I(θ)−1) then it is said to be fully efficient.

For the k = 1 case, the efficiency of an estimator θ̂ can be calculated by the ratio

e(θ̂) =
1/Iθ

var
(
θ̂
) , (2.35)

where 0 ≤ e(θ̂) ≤ 1 such that e(θ̂) = 1 results in a full efficient estimator. For an arbitrary

parameter size p, the efficiency can be calculated using some discrepancy between Σθ and Iθ
which determines the loss of information incurred by using that estimator [21].

2There are similar results that give a CRLB for a biased estimator, see for example [21]
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It is known that fully efficient estimators are rare and only exist if Θ defines an exponential

family [21]. However, an estimator θ̂ is said to be asymptotically efficient if

lim
N→∞

Σ = I−1
θ . (2.36)

Figure 2.1 illustrates an example of an asymptotically efficient estimator.

Figure 2.1: An asymptotically efficient estimator achieves the CRLB as N becomes large.

Under certain conditions, a MLE estimator, as discussed in Section 2.1.2, can be shown to be

asymptotically efficient [21]. Furthermore, it can shown that a GeMM estimator is the most

optimally efficient if the weighting matrix W is chosen such that [22, 23]

W ∝ Ω−1
θ (2.37)

where Ωθ := EX∼P
[
hθ(X; θ)hθ(X; θ)T

]
is the covariance matrix of the non-linear function

hθ.

2.2.4 Sufficiency

Summary statistics are used to summarize a dataset X ∈ Rd×N in order to describe features of

the data as simply as possible. The feature could be for example, the centre, deviation or shape

of the data. For instance, one could take the empirical mean µ̂ = 1
N

∑N
i=1 xi or the empirical
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covariance Σ̂ = 1
N−1

∑N
i=1(xi − µ̂)(xi − µ̂)T to best summarize the data. Doing so would be

an efficient manner of communicating the nature of the data and acts as a form of compression

within its own right. If one was trying to fit a Gaussian distribution N (µ,Σ) to the dataset,

then the empirical mean µ̂ and covariance Σ̂ would be sufficient in terms of retaining all the

information needed to fit the model to the data. However, in general, simple summary statistics

like the mean and covariance are not sufficient to fit an arbitrary distribution.

Sufficiency is an important notion in statistics and, as we will see in Section 2.3.2, is very related

to the concept of forming a compact sketch. In its simplest form, a statistic is sufficient with

respect to a family of distributions (parametric model) if no other statistic from the data would

provide further information needed to estimate the parameters θ0. The most trivial sufficient

statistic of the data set X is itself X. The Fisher–Neyman factorization theorem formalizes the

idea of sufficiency [20]. Let T (X) be a function over the individual samples x that computes

a statistic (e.g. the empirical mean T (X) = 1
N

∑N
i=1 xi). Then T (X) is called a sufficient

statistic associated to the distribution P(X, θ) if and only if non-negative functions gθ and hX

can be found such that the density function can be decomposed as

P(X, θ) = hX (X)gθ (T (X)) . (2.38)

In other words, the parameters of the distribution only interact with the data through the suf-

ficient statistic T (X). In fact, given any injective function λ then the statistic defined by the

map λ (T (X)) is also a sufficient statistic. Furthermore, a sufficient statistic T (X) is a minimal

sufficient statistic if, for any other sufficient statistic T ′(X), T (X) is a function of T ′(X):

T (X) = λ
(
T ′(X)

)
. (2.39)

From a geometric perspective, this is equivalent to the maximum reduction without loss of

information.

The Pitman-Koopman-Darmois theorem [24] states that sufficient statistics with bounded di-

mensionality exist only for distributions that belong to the exponential family. In other words,

the size of the sufficient statistic T (X) increases as the sample sizeN grows for non-exponential

distributions. In the next section, we discuss the notion of compressive learning which attempts

to construct approximate sufficient statistics that are of a fixed size relative to the size of the

dataset.
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2.3 Compressive Learning

In this section, the idea of compressive learning is introduced that is built upon in the follow-

ing technical chapters. As discussed at the beginning of this chapter, the inspiration behind

compressive learning originates from the field of compressive sensing where the foundations

of theory and algorithm design are utilised in the principles of compressive learning in Sec-

tion 2.3.2 as well as most of the following technical chapters. Details of the main concepts of

compressive sensing are therefore first introduced below in Section 2.3.1 including the role of

randomness, theoretical gaurantees and popular compressive sensing algorithms.

2.3.1 Compressive Sensing

Compressive sensing (CS) was developed in the early 2000s and introduced in the seminal

papers of Candès et al. and Donoho [25, 26, 27]. The idea is to exploit the natural sparsity

of signals to significantly reduce the sampling rate below the fundamental Shannon-Nyquist

threshold rate and save on the complexities associate with sensing.

Let A ∈ Rm×d be linear measurement operator, then the standard CS problem can be defined

as

y = Ax0 + e, (2.40)

where the goal is to recover the original signal x0 ∈ Rd from a set of measurements y ∈ Rm

that have been corrupted by some noise e ∈ Rm. In CS the measurement operator A is often

dimension reducing (i.e. m < d) therefore the number of measurements is typically smaller

than the signal dimension. In such a case, the recovery of x0 from limited measurements is

theoretically ill-posed, even in the noiseless case. To make the problem defined in Eqn 2.40

well-posed and tractable, one must introduce regularity assumptions, for instance sparsity, on

the signal set.

Role of Sparsity

Recovery of the true signal in Eqn 2.40 is possible if the true signal is sparse, meaning only a

few elements of the signal are non-zero. Many signals of interest are indeed sparse within some

appropiate domain or basis, for instance, natural images are sparse in the wavelet domain due
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to the strong correlation between neighbouring pixels. Formally, a signal x ∈ Rd is k-sparse if

‖x‖0 ≤ k, (2.41)

where ‖·‖0 := |Supp(x)| denotes the `0-norm which counts the number of non-zero elements

of x. For simplicity, we assume that the signal x is sparse in its canonical basis of Rd.

As it will be shown later in this section, a signal x0 can be recovered if we assume it (ap-

proximately) belongs to a low-dimensional model set Sθ. In the case of standard CS, the

low-dimensional model set can be defined as

Sθ = Sk := {x | ‖x‖0 ≤ k} . (2.42)

Role of Randomness

Given the true signal x0 ∈ Sk is k-sparse, a key question is how can one design measurement

operators A that can recover the true signal x0? Candès and Tao introduced an important tool

in CS called the restricted isometry property (RIP) that, if satisfied, ensures the measurement

operator A provides a stable embedding [28] for signals in the model set.

Definition 3 (Restricted Isometry property). A measurement matrix A ∈ Rm×d satisfies the

RIP on a set Sk with constant δ if ∀x,x′ ∈ Sk

(1− δ)‖x− x′‖22 ≤ ‖A(x− x′)‖22 ≤ (1 + δ)‖x− x′‖22. (2.43)

From a geometric perspective, as demonstrated in Figure 2.2, the RIP ensures that the measure-

ment operator preserves pointwise distances between members of the model set.

Do linear measurement operators that satisfy the RIP exist? Interestingly, they exist for a class

of operators that are randomly distributed, i.e. Aij ∼ Λ, where the distributing law Λ satisfies

the following concentration inequalities:

EAij∼Λ

(
‖Ax‖2

)
= ‖x‖2, (2.44)

and

Pr
(
|‖Ax‖2 − ‖x‖2| ≥ ε‖x‖2

)
≤ 2e−dc0 (2.45)
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for a constant c0 depending on ε. Under suitable additional conditions on m and k, many sim-

ple distributions satisfy these concentration inequalities, including subgaussian and symmetric

Bernoulli distributions. In standard CS, it is shown in [29] (see Theorem 1.4) that measure-

ment operators that are randomly generated from the Gaussian distribution Aij ∼ N (0,m−
1
2 )

satisfy the RIP in Eqn 2.43 with high probability provided that

m ≥ Ck log

(
d

k

)
(2.46)

for some constant C. Next, we detail some classical recovery algorithms in the CS literature

which we build upon in later chapters.

Figure 2.2: Schematic of the restricted isometry property (left) and the instance optimal de-
coder property (right).

Recovery Algorithms

Theoretically, one could recover the k-sparse signal x0 by solving the following `0 optimization

problem

x̂ = arg min
x

‖y −Ax‖2 s.t ‖x‖0 ≤ k. (2.47)

Intuitively, Eqn 2.47 would return the k-sparse vector x that minimises the measurement error

‖y − Ax‖2. However, it is well known that the `0 optimization problem in Eqn 2.47 is N-P

hard due to the combinatorics involved in checking the support of x ∈ Rd for large d [30].
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Many algorithms have been designed to solve the CS problem in Eqn 2.47. Here we provide

details of convex relaxation methods and greedy approaches. The greedy approach of iterative

projected gradient is of particular interest as it is the main inspiration behind the compressive

ICA algorithm in Chapter 3.

Convex relaxation of Eqn 2.47 can be achieved by replacing the `0 constraint with an `1 con-

straint, resulting in the following `1 optimization problem:

x̂ = arg min
x

‖y −Ax‖2 s.t ‖x‖1 ≤ k′. (2.48)

The `1-norm induces sparse solutions as shown in Figure 2.3. Under the form of Eqn 2.48, the

problem is known as the LASSO but it is equivalent to other optimization problems such as

basis pursuit denoising or constrained `1 minimization [31]. As Eqn 2.48 is convex, is it both

tractable and efficient to solve.

Figure 2.3: `p norms for p = 1, 2 in 2D. The red line represents the linear constraints induced
by the observations. A solution of the `p problem occurs when the linear constraints intersects
with the `p ball. The `1 problem induces a sparse solution i.e. the intersection occurs on the
axis.

Greedy algorithms are also used to solve the standard CS problem in Eqn 2.47. The term greedy

is used in the sense that these methods make the locally optimal choice at each iteration of

the algorithm. Iterative projected gradient (IPG) is a popular constrained optimization method

which enforces the regularity assumptions imposed by the model set Sθ by projecting the object

on to the model set Sθ after each subsequent gradient step [32]. An IPG scheme can be defined
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by the following recursive steps:

Iterative Projected Gradient−Initialize x0 ∈ Rd

For j = 0, 1, 2, ...,K Gradient Step: xj+
1
2 = xj + µj∇xl

Projection Step: xj+1 = PSθ

(
xj+

1
2

)

where ∇xl denotes the gradient of the loss function respect to x and where PSθ defines the

(orthogonal) projection operator defined as

PSθ (x∗) ∈ arg min
x∈Sθ

‖x∗ − x‖. (2.49)

By orthogonal we refer to the projection operator PSθ projecting the point x∗ on to the point

on the model set that is closest with respect to some norm ‖·‖. For the case of k-sparse vectors,

Blumensath et al. [33] proposed the iterative hard thresholding (IHT) algorithm that projects

x∗ onto the k-sparse model set Sk by thresholding the d− k smallest absolute entries of x∗ to

zero.

Orthogonal matching pursuit is another instance of a greedy algorithm that is used frequently in

CS. At each iteration, the OMP algorithm selects the columns of A which are most correlated

to the current residual error rj = xj − x. The column is then added into the support set. At

each iteration, the algorithm updates the residual rj by projecting the measurements y onto

the linear subspace spanned by the columns currently selected in the support set. Compared to

other greedy algorithms, OMP is simple and fast as it only requires k iterations to approximate

a k-sparse signal. See [34] for a thorough exposition on greedy algorithms used in CS.

Generalization to Low-Dimensional Spaces

Compressive sensing began with roots situated in sparsity. However, CS can be applied to

other signals that are assumed to reside in some low-dimensional model set Sθ. For example,

low-rank matrix recovery and the related work of matrix completion can be formulated as a CS

problem:

X̂ = arg min
X∈Sr

‖y −A (X)‖, (2.50)
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where the measurement operator A : Rd×d 7→ Rm is defined as A (·) := Avec (·), where vec

denotes the vectorization operator. In this instance, the low-dimensional model set3 is defined

as

Sθ = Sr := {X | rank (X) ≤ r} . (2.51)

Similar to the LASSO problem in Eqn 2.48, the low-rank matrix recovery problem can be

solved via the following optimization problem:

X̂ = arg min
X∈Sr

‖y −A (X)‖22 s.t ‖X‖∗ ≤ r′. (2.52)

where ‖·‖∗ denotes the nuclear norm which acts a tractable surrogate used to minimize the rank

of a matrix. Random matrices that satisfy the concentration inequalities in Eqn 2.44 and Eqn

2.45 satisfy the RIP over the model set Sr of rank-r matrices provided that [35]

m ≥ Crd. (2.53)

As a result, substantial compression can be attained if the rank r � d.

CS has also been applied to signals that belong to other generic low-dimensional spaces includ-

ing manifolds [36]. In most cases, the size of the projected space m needs only to scale with

the dimensionality of the normalized secant set of Sθ, defined as

N (Sθ −Sθ) :=

{
x1 − x2

‖x1 − x2‖
| x1 6= x2 ∈ Sθ

}
, (2.54)

such that

m & dim (N (Sθ −Sθ)) (2.55)

for some measure of dimensionality dim. One classical measure of dimensionality is that of the

upper-box counting dimension (UBCD) denoted dimB that is defined as

dimB := lim
ε→0

sup log [CN (Sθ, ‖·‖, ε)] / log [1/ε] . (2.56)

Here CN (Sθ, ‖·‖, ε) defines the covering number of the normalized secant set that defines

the minimum number of closed balls of radius ε, with respect to the norm ‖·‖, with centres

in N (Sθ −Sθ) that are needed to cover N (Sθ −Sθ) [31, 37]. The set of centres that cover

3For simplicity we assume the matrices are square, however this still holds for rectangular matrices X ∈ Rd1×d2 .
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N (Sθ −Sθ) is called the ε-net [31]. In many well-behaved cases, the UBCD of the normalized

secant set is twice that of the model set Sθ [37]. The notion of covering numbers and ε nets

will be built open in Chapter 3 when developing our main theoretical result. We next provide

theoretical gaurantees on recovering a signal that belongs to generic low-dimensional model set

Sθ.

Robust Decoding

A decoder ∆ is an algorithm, such as the ones discussed previously, that approximately solves

the CS problem associated with a low-dimensional model set Sθ. Formally, the decoder ∆ :(
Rm,Rm × Rd

)
7→ Rd recovers an estimate x̂ such that

x̂ = ∆ (y,A) . (2.57)

The ultimate goal of CS is to recover an estimate x̂ from (noisy) measurements y that are

approximately close to the true signal x0. Bourrier et al. [38] established a connection between

the lower RIP (i.e. the LHS of Eqn 2.43) and the existence of a so-called instance optimal

decoder ∆ such that the decoder estimate x̂ = ∆ (y,A) satisfies the following instance optimal

property (IOP):

‖x̂− x0‖ ≤ αd (x0,Sθ) + β‖e‖ (2.58)

for some norm ‖·‖, constants α, β ≥ 0 and where d (x,Sθ) denotes the distance between x

and the model set Sθ defined as

d (x,Sθ) := inf
xSθ
∈Sθ

d(x,xSθ), (2.59)

for some distance metric d. Fundamentally, the IOP states that the error of the instance optimal

decoder is bounded by the modelling error d (x0,Sθ) and the measurement error e. Further-

more, the IOP shows that the error caused by both model mismatch and sampling error has

controlled amplification as of result of using the measurement operator A.

It is shown in [38] that if the measurement operator A satisfies the lower RIP for the model set

Sθ with constant (1− δ), then the decoder defined by

∆ (y,A) = arg min
x∈Sθ

‖y −Ax‖ (2.60)
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satisfies the IOP in Eqn 2.58 for the measurement operator A and the model set Sθ with con-

stants α = 1 and β = 2(1−δ)−1. Subsequently, the pair (A,∆) provide a tractable CS scheme

given that A satisfies the RIP on the low-dimensional model set Sθ as demonstrated by Figure

2.2. This result forms the basis of the main information preservation theorem of compressive

ICA introduced in Chapter 3.

2.3.2 Principles of Compressive Learning

By setting out the disciplines that inspired compressive learning in Sections 2.1.1 and 2.3.1, it

is now possible to introduce the main principles of compressive learning which are then built

upon in the following chapters. The core principles of compressive learning can be summarized

by the schematic in Figure 2.4 where the compressive learning process is split into 2 phases,

namely, the sketching and learning phase. We begin this section by setting out the goal of

compressive learning and discussing in detail the initial sketching phase.

aggregate

Figure 2.4: The core principles of compressive learning split into the sketching phase and the
learning phase.

2.3.2.1 Sketching Phase

The original compressive learning (CL) framework was developed in [6, 39] by Gribonval,

Keriven and coauthors with the goal of estimating the parameters θ0 of some true probability

distributionP0 ∈ P(X ) from only limited measurements. The main inspiration was to general-
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ize the CS framework, discussed in Section 2.3.1, by compressing any distribution P ∈ P(X )

via a linear measurement operator A : P(X ) 7→ Cm. As will become clear, the compressed

representation A(P), or so-called sketch, of the probability distribution P can enable substan-

tial reductions in the complexities associated with parameter inference such as memory and

computation as discussed in Section 2.1.

The linear measurement operator A : P(X ) 7→ Cm, which in the context of compressive

learning we call a sketching operator, is defined as

A (P) := Ex∼PΦ(x) (2.61)

where Φ : X 7→ Cm is a non-linear feature function associated with the sketching operator

A. The resulting sketch y = A(P) can interpreted as a collection of generalized moments of

the probability distribution P . It is important to notice that, although the feature function Φ

associated with the sketch is a non-linear, the sketching operator A is in fact linear over the

space of probability distributions, for instance

A (αP1 + (1− α)P2) = αA (P1) + (1− α)A (P2) . (2.62)

for P1,P2 ∈ P(X ) and α ∈ R.

As discussed in Section 2.1.1, one does not have access to the true probability distribution but

to a finite set of i.i.d observations x1, . . . ,xN
i.i.d∼ P0. The empirical sketch, denoted by yN is

then computed as

yN := A (PN ) =
1

N

N∑
i=1

Φ(xi). (2.63)

In comparison to the CS problem in Eqn 2.40, the goal of CL is to recover the true distribution

P0 from

yN = A (P0) + e (2.64)

where the error e := A (P0) −A (PN ) converges to zero as N tends to infinity by the law of

large numbers.

The empirical sketch yN can be computed extremely efficiently over the dataset X as only a
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single pass of each observation is required and the dataset does not need to be stored in memory

thereafter. Furthermore, as yN is simply an empirical average, the computation of the sketch is

easily parallelizable and is very suited to both data streams and distributed learning (see [40]).

In Chapter 5, it will be shown that these properties make a sketch extremely appealing when

constructing a compact representation of a lidar dataset on chip. As will be discussed next, all

that is required to estimate the parameters of the probability distribution is the compact sketch.

Fundamentally, the size of the sketchm does not scale with the dimensions of the dataset X, but

is instead driven by the complexity or dimensionality of the parameter space Θ associated with

the probability distribution of interest. We again draw the analogy back to CS in Section 2.3.1

whereby the number of measurements required scales with the underlying sparsity of the true

signal x0. From a parameter inference perspective, the sketch can be interpreted as constructing

an approximate sufficient statistic to the probability distribution as the size of the sketch m is

set fixed and is independent of the length N of the dataset. We next turn our attention to the

learning stage of CL as illustrated in Figure 2.4.

2.3.2.2 Learning Phase

Once the sketch is computed as in Eqn 2.63, one must learn the parameters of the distribution

solely from the empirical sketch yN . To that end, we minimize a task specific cost function

C(θ,yN ) to infer an estimate θ̃ such that

θ̃ := arg min
θ∈Θ

C(θ,yN ). (2.65)

The cost function C(θ,yN ) acts as a surrogate to the risk function R (θ,P0), discussed in

Section 2.1, to the extent that the sketch estimate θ̃ is close to the ERM estimate θ̂ in some

sense. In many compressive learning schemes (see Section 2.3.3), the cost function reduces

to some distance between the empirical sketch yN and the associated (expected) sketch, for

instance

θ̃ = arg min
P∈Sθ

‖yN −A (P)‖, (2.66)

for some norm ‖·‖. This is reminiscent of the signal recovery problem of CS in Eqn 2.40

where we seek to recover a sparse signal from limited measurements. In a compressive sensing

light one can introduce regularity assumptions to make Eqn 2.66 well-posed. These regularity
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assumptions come in the form of a low-dimensional model set that solutions to the learning

task lie on or a close to. Formally, a model set Sθ of a learning task is defined as

Sθ := {P ∈ P (X ) | ∃θ ∈ Θ,R (θ,P) = 0} . (2.67)

In other words, the model set defines the set containing all distributions over P (X ) for which

zero risk is achievable.

Similar to CS, one can design a decoder ∆ that exploits the structural assumptions of the model

set that takes as inputs the empirical sketch yN and the sketching operator A and recovers the

parameters θ of the model, e.g.

θ̃ = ∆ (yN ,A) .

2.3.2.3 Sketch Design

Up until now, the specific design of a sketch has not be discussed. Gribonval et al. [1, 6]

proposed the use of random Fourier features (RFF) where the feature function is defined as:

Φ(x) =
1√
m

[
eiωtjx

]
j=1:m

(2.68)

where ω1, . . . , ωm are m frequencies sampled i.i.d from some distributing law Λ. RFFs have

the favourable property that in expectation they are equal to the characteristic function:

A (P) = Ex∼PΦ(x) =
1√
m

[ΨP(ωj)]j=1:m . (2.69)

As discussed in Section 2.1.3.1, characteristic functions exist for all distributions and in many

cases they have a closed form well-behaved expression, making the optimization problem in

Eqn 2.66 particularly tractable.

Remark 1. When using RFF based sketching operators, CL is similar to ECF estimation which

was introduced in Section 2.1.3.1. However, CL is distinctively different in its broader goal:

ECF aims to estimate parameters θ of a distribution when the likelihood is unavailable, while

CL attempts to estimate θ by building, in theory, the most compact representation of the data as

possible. Nonetheless, we can leverage well-established theory and algorithms from the ECF

literature to better understand RFF based CL.

35



Background

It turns out that the RFF sketching operator in Eqn 2.69 is very related to finite kernel approx-

imations and kernel mean embedding of distributions. Before we draw the connection, let us

briefly introduce the definitions of reproducing kernel Hilbert spaces and kernels.

A kernel κ : X × X 7→ C defines a similarity measure between points x,x′ ∈ X . The

Moore-Aronszojn [41] theorem states that a positive definite4 (PD) kernel κ is associated to a

unique Hilbert space Hκ that satisfies the following properties: for any x ∈ X the function

κ(x, ·) belong toHκ, and the kernel satisfies the reproducing property ∀f ∈ Hκ,∀x ∈ X then

f(x) = 〈f(·), κ(x, ·)〉Hκ . The space Hκ is referred to as the reproducing kernel Hilbert space

(RKHS) and 〈 〉Hκ denotes the inner product defined in Hκ. We refer the reader to [42] for a

comprehensive review on kernels and RKHS.

In [1, 6], the authors proposed constructing the RFF sketch in Eqn 2.68 by sampling the fre-

quencies from a Gaussian distribution Λ = N (0, σ−2Id). The inner product 〈Φ(x),Φ(x′)〉 '

exp
(
−‖x−x′‖22

2σ2

)
approximates a Gaussian kernel. In general, to design an appropiate sam-

pling distribution Λ, one can leverage Bochner’s theorem [43] that allows one to write any PD

translation invariant kernel (i.e. κ(x,x′) = κ(x − x′)) as the inverse Fourier transform of a

probability distribution i.e.

κ(x− x′) =

∫
Rd
eiωT (x−x′) dΛ(ω) = Eω∼Λe

iωT (x−x′). (2.70)

A direct consequence of Bochner’s theorem is that the inner product of the RFF denoted

κΦ(x′,x) = 〈Φ(x),Φ(x)〉 approaches the true kernel in expectation. Given an appropiate

kernel, one can design a sampling strategy by sampling the frequencies from the Fourier trans-

form of the kernel Λ. In general, the choice of kernel is often a difficult task in itself and may

require cross validation techniques. In Chapter 5, we use both a random sampling scheme as

described above as well as deterministic sampling scheme to construct a sketch of the lidar data.

The RFF sketching operator defined in Eqn 2.69 is also deeply related to kernel mean embed-

dings of distributions. The kernel mean embedding denoted by µP : P (X ) 7→ Hκ, defined

as

µP(·) :=

∫
X
κ(x, ·) dP (X ) = Ex∼P κ(x, ·) (2.71)

provides a map from the space of distributions to the RKHS associated with the PD kernel κ. Of

4A positive definite kernel is one which the associated kernel Gram matrix Gij = κ(xi,xj) is positive definite
(see [42]).
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particular interest is the class of characteristic kernels which are PD and have the extra property

that the kernel mean embedding µP is injective, that is to say, there is a one-to-oneness between

the space of distributions and the RKHS. The injectiveness allows us to define a metric over the

RKHS that measures the distance between distributions P ,Q ∈ P (X ):

MMD (Hκ,P ,Q)2 := ‖µP(·)− µQ(·)‖2Hκ . (2.72)

The distance, denoted by MMD, is called the maximum mean discrepancy and can be expressed

explicitly [44] in terms of the associated kernel κ:

MMD (Hκ,P ,Q)2 = Ex∼P
x′∼P

κ(x,x′) − 2Ex∼P
y∼Q

κ(x,y) + Ey∼Q
y′∼Q

κ(y,y′). (2.73)

Interestingly, using Bochner’s theorem from Eqn 2.70, we can also express the MMD in the

Fourier domain using the characteristic functions of the distribution P ,Q, denoted ΨP and

ΨQ, respectively:

MMD (Hκ,P ,Q)2 =

∫
|ΨP(ω)−ΨQ(ω)|2 dΛ(ω). (2.74)

As a result, the RFF sketch in Eqn 2.68 can be interpreted as a finite-dimensional approximation

of the kernel mean embedding in Eqn 2.71.

Aside from the choice of feature function, the number of frequencies drawn, and therefore

the size of the sketch m, plays a critical role in the construction of the sketch. Ideally, one

would like m be large enough to capture enough salient information required to estimate the

parameters θ of the model. A general principle stemming from the CS framework in Section

2.3.1 states that the size of the sketch needs to be approximately m = O (|Sθ|). For the case

of CL, the dimensionality of the model set equates to the size of the parameter space Θ i.e. the

number of parameters p. To that end, we typically require m & p. However, it will be shown in

this thesis that the efficiency (see Section 2.2.3), and therefore the loss of information incurred

by the sketch estimator θ̃ is determined by the size of m.
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2.3.2.4 Learning Guarantees of Compressive Learning

In a similar nature to CS, we seek a sketching operator A that is stable to both sampling noise

and modelling error. The lower RIP, as introduced in Section 2.3.1, is also a principal tool in

CL. In order to measure the distance between probability distributions with respect to a learning

task, we introduce the risk induced metric ‖·‖R that is defined as

‖P −Q‖R := sup
θ∈Θ
|R (θ,P)−R (θ,Q)|. (2.75)

The lower RIP in CL therefore states that for some constant δ ≥ 0 and for P ,Q ∈ Sθ

(1− δ)‖P −Q‖2R ≤ ‖A (P)−A (Q)‖22. (2.76)

In other words, the lower RIP states that an appropiate sketching operator preserves the relative

distance between distributions with respect to a risk induced metric. Gribonval et al. [1, 6]

proved that if a sketching operator A satisfies the lower RIP in Eqn 2.76 then the excess risk is

controlled. For instance, with high probability

R
(
θ̃,P0

)
−R (θ∗,P0) ≤ d (P0,Sθ) + β‖yN −A (P0)‖2 (2.77)

for some constant β and where θ∗ denotes the minimizer of the true risk and d (P0,Sθ) denotes

some distance from P0 to the nearest point on the model set. Note that if the sketching operator

satisfies the lower RIP then the excess risk is bounded by modelling error and sampling noise.

Remark 2. The initial CL guarantees assume that the model P0 is parametric. However, in

many cases, for instance semi-parametric models, the model is left only partially specified and

is typically identified through some non-parametric statistic of the data (see Section 2.1.4). In

Chapter 4, we elaborate on the difficulties of building a CL scheme for semi-parametric models.

2.3.3 Existing Compressive Learning Models

Keriven et al. [45] pioneered the fist CL models that centred around the task of mixture mod-

elling. Recall from Eqn 2.8, that a mixture model P (x; θ) is defined as

P (x; θ) =
K∑
k=1

αkPk (x; θk) (2.78)
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where Pk denotes the probability distribution of the kth mixture parameterized by θk. Equa-

tion 2.78 promotes a low-dimensional model set by restricting a priori a maximum of K mix-

tures that can model the data. Keriven considered both the K-means mixture model, where

Pk(x; θk) = δck and θk = ck, as well as the Gaussian mixture model where Pk(x; θk) =

N (µk,Σk) and θk = (µk,Σk)
5. The authors proposed using RFFs as introduced in Eqn 2.68

to form the sketch. Advantageously, the expected sketch is equal to the linear combination of

each mixtures characteristic function, i.e.

Ex∼PΦ(x) = ΨP(ω) =

K∑
k=1

αkΨPk(ω) (2.79)

due to the linearity of characteristic functions. The CL cost function reduces to

θ̃ := arg min
θ∈Θ

‖yN −
K∑
k=1

αkΨPk(ω)‖22. (2.80)

Conveniently, the characteristic functions are known in advance where Ψδc(ω) = eiωT c and

ΨN (ω) = eiωTµ− 1
2
ωTΣω are the characteristic functions for the Dirac and Gaussian distri-

bution, respectively. In [46], the authors proposed the CLOMP algorithm which is a greedy,

matching pursuit inspired algorithm (see Section 2.3.1) which iteratively extends the support of

the parameter set by choosing at each step the atom which is most correlated with the residual

error. It can be shown [1] that a sketch of size m & K2d satisfies the CL lower RIP in Eqn

2.76.

Aside from compressive mixture models, Gribonval et al. introduced a compressive PCA

scheme in [6] which has strong connections to low-rank matrix recovery. Recall from Sec-

tion 2.1.5 that the PCA model attempts to find a K-dimensional linear subspace that describes

the maximal variance of the data. The PCA problem can be solved by finding the K largest

eigenvalues associated to the covariance matrix Σθ = Ex∼PxxT . The model set Sθ is defined

as

Sθ = {Σθ | rank (Σθ) ≤ K} (2.81)

which enforces the low-dimension regularity assumptions. In this instance, Gribonval [6] pro-

5Keriven considered the case when the covariance matrices were isotropic e.g. Σk = σ2
kId
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posed the sketching operator defined by

yN = A (Σθ) = Avec (Σθ) =
1

N

N∑
i=1

〈aj ,xixTi 〉j=1:m (2.82)

where aj is the jth column of a random matrix A. The CL cost function reduces down

Σ̃ := arg min
Σ∈Sθ

‖yN −A (Σ)‖22 (2.83)

which can solved using the nuclear norm formulation of the low-rank matrix recovery in Section

2.3.1. It can be shown that a sketch of size m & Kd is sufficient to satisfy the lower RIP.

Remark 3. As introduced in Section 2.1.5, the PCA model is semi-parametric due to the fact

the distributional form x ∼ P is typically left unspecified. By its very nature, we leverage the

covariance statistic Σθ to identify the parameters θ of the PCA model. As a result, the CL PCA

model reduces to a finite dimensional compressive sensing problem. In Chapter 4, we develop

the concept of semi-parametric compressive learning further.

2.3.4 Advantages and Disadvantages of CL

Compressive learning partially addresses some of the challenges of large-scale learning. Below

we state some of the unique advantages and disadvantages of CL.

• The salient information required to infer the parameters θ of a model can be typically cap-

tured by a sketch of size m = O(k). Crucially, the size of the sketch only scales linearly

with respect to the complexity of the learning task and, fundamentally, is independent of

the dimensions of a dataset X.

• The sketching operator A is linear with respect to the probability distribution one is

attempting to recover. As a result, the sketch is tremendously parallelizable, for instance,

one can aggregate local sketches from decentralized devices or servers to form a global

sketch. This can significantly reduce the data transfer requirements of sending batches

of high dimensional data. Moreover, the linearity of the sketching operator allows one to

compute the sketch on the fly in real time which is important in the context of streaming

data as we will see in Part II of the thesis.

• The parameters θ of the model are inferred solely from the sketch and therefore poten-
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tially sensitive data does not need to be transferred or stored locally where it is most

vulnerable to malicious attacks. Moreover, due to the random construction of the sketch,

it produces a natural encryption of the data. The privacy of the sketch can be further in-

creased by adding i.i.d noise to the sketch in its construction, where the level of variance

of noise determining the overall privacy level. See the works of Chatalic et al. [47] for

the detailed works on the privacy gaurantees of compressive learning.

• The parameters of the model are optimised by minimizing a task-specific compressive

learning cost function that acts as a proxy to the risk. As long as the sketching operator

is chosen appropriately, such that it satisfies the RIP condition, then CL is robust with

respect to modelling error and sampling noise at recovering a estimate θ̃ that exhibits a

controlled level of excess risk.

• Depending on the distribution or model P that one is trying to recover, the expected

sketch A(P) = Ex∼PΦ(x) may not have a closed form expression. This can be quite

problematic when attempting to minimise the cost function in Eqn 2.65 as defining the

gradient with respect to the parameters θ would be difficult.

• As part of a compressive learning algorithm, we are required to promote the regularity

assumptions of the model set Sθ to accurately recover an estimate of the true parameters.

This often requires either a tractable regularizer or a projection operator, as discussed in

Section 2.3.1, which may be difficult or intractable to implement. This will be discussed

in more detail in Chapter 3, where we develop a compressive ICA algorithm.

2.4 Large Scale Learning

In recent years, both the length of the datasets N and the size d have substantially increased

due part to the advances in technology (i.e. more sensors) and the emergence of automated

processes that can record increasingly amounts of data. It is commonplace to have datasets X

where N ∼ millions and d ∼ thousands requiring up to terrabytes of storage memory. The size

of such large datasets can cause severe challenges as O(Nd) space complexity is required on

local RAM while the computational complexity can equate to days/weeks of runtime. To com-

bat the complexities associated with large scale learning, many methods have been proposed

to approximate the dataset in some particular manner. Although not exhaustive, the current

approaches can be grouped into 3 main categories: sub-sampling, projections and sketches,

41



Background

depicted in Figure 2.5.

Coresets
Random Sampling
Nystrom Method

Random Projections
PCA
Manifold Learning

Count-min Sketch
Linear Sketches
Streaming
CL (Section 2.3.2)

Figure 2.5: The three main approaches used to tackle the issues surrounding large scale learn-
ing.

In this section, the aforementioned groups of methods will be introduced while discussing their

advantages and limitations.

2.4.1 Sub-Sampling

Sub-sampling is a class of methods that attempts to reduce the complexities of memory and/or

computation associated with the length of the data N . The principal idea is to form a subset

X′ ∈ Rd×N ′ of the original data X such that

X′ := {x1,x2, . . . ,xN ′} , x ∈ Rd, (2.84)

where N ′ ≤ N . Sub-sampling methods can be categorized into adaptive and non-adaptive

schemes with respect to the data.
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Non-adaptive Sub-sampling

Non-adaptive sub-sampling techniques are typically simple and cheap methods that are used to

form a subset X′ of the data. By non-adaptive, we refer to the host of sub-sampling techniques

that don’t change their behaviour relative to different datasets. Random sampling is the simplest

non-adaptive sub-sampling method that draws a sample of size N ′ from X by repeating the

following steps N ′ times:

Random Sub-Sampling−For j = 0, 1, 2, ..., N ′ 1) Produce a random number from 1 to N: rj ∼ Λ(N)

2) Obtain the rth
j item in X (i.e. xrj ) and add it to the sub-sample X′

Many random distributions Λ(N) have been proposed, however the most established is uniform

sampling such that r ∼ U(1, N) where U(a, b) is the discrete uniform distribution defined over

the interval (a, b). Once a sample is drawn, one can either replace the sample back into the

population, in this case X, or sample without replacement. However, for large N and small N ′

the difference between the two diminishes as the probability of drawing the same integer more

than once is relatively low. As random sampling is a naive non-adaptive form of sub-sampling,

there is a risk that important information is discarded during the sampling process. This is a

particular concern in classification tasks where there are unrepresented groups (i.e. unbalanced

classes). Poisson sampling and stratified sampling can be used in this scenario to give a larger

weight to certain classes or partitions of the data to increase the probability of sampling.

Coresets

In recent years, more advanced sub-sampling techniques have been developed which are data

dependent: of these is coresets. Coresets optimally find a subset X′ of a dataset X by optimising

over a certain measure associated to the set [48]. Formally, a subset X′ is called an ε-coreset of

X with respect to a measure function µ if

(1− ε)µ
(
X′
)
≤ µ (X) . (2.85)
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Coresets are usually task specific and are therefore heavily reliant to the measure µ that is used.

They have had success in the tasks of clustering including k-means [40]. One of the major

limitations with coresets is that to form a ε-coreset, the size of the coreset must scale with

N ′ = O (1/ε) . (2.86)

Moreover, in practice coresets are limited to so-called faithful measures, e.g. diameter, width

and smallest enclosing ball, as the computation complexity of computing the coreset only has a

linear dependency in N . However, non-faithful measures typically exhibit a larger polynomial

dependency in N making their use impractical.

Nyström Method

The Nyström method is a popular sub-sampling technique used primarily in kernel methods

such as support vector machines, kernel regression and kernel PCA (see [42]). Typically in

kernel methods, a Gram matrix G ∈ CN×N , defined as Gij = κ(xi,xj), associated with the

data matrix X ∈ Rd×N has to be stored and computed resulting in a memory and computational

cost of O
(
N2
)

and O
(
N3
)
, respectively. For large N this quickly becomes infeasible. Let

I denote the set of indices that correspond to N ′ sampled columns of G. Then the Nyström

method [49, 50] attempts to find an approximate Gram matrix G̃ such that

G̃ := GIG
−1
I,IG

T
I (2.87)

where GI ∈ RN×N ′ is the matrix containing the sampled columns of G and GI,I ∈ RN ′×N ′

is a submatrix of G obtained by further subsampling the rows of GI . As a result, the space

and computational complexity is reduced to O (NN ′) and O
(
NN ′2

)
, respectively, as one

does not need to store the original kernel Gram matrix. The Nyström method can be seen as an

adaptive low-rank approximation of the Gram matrix, and therefore the number of samples N ′

required is related to the rank r of G.

In practice, the rank of the Gram matrix is far less than the length of the dataset (i.e. r � N ),

therefore the compression achieved by the Nyström method can be substantial, as reported on

real datasets in [49].

A major drawback with all sub-sampling techniques is that they do not tackle the complexities
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associated with size of the data d. Machine learning tasks can therefore remain infeasible if d

is significantly large.

2.4.2 Dimensionality Reduction

Dimensionality reductions are used frequently to reduce the complexities associated with the

size of the data d. The idea revolves around mapping the data to a smaller dimensional space

via a map Φ : Rd 7→ Rd′ where d′ ≤ d. Dimensionality reduction can be grouped into random

or structured projections.

Random Projections

The Johnson-Lindenstrauss (J-L) lemma stated below is an important result that is closely re-

lated to compressive sensing (see Section 2.3.1).

Lemma 1 (Johnson-Lindenstrauss Lemma [51]). Let d′ ≥ O
(
ε−2 logN

)
be an integer. For

every set X of N points on Rd, there exists a linear mapping Φ : Rd 7→ Rd′ such that for all

x1,x2 ∈ X

(1− ε)‖x1 − x2‖2 ≤ ‖Φ(x1)− Φ(x2)‖2 ≤ (1 + ε)‖x1 − x2‖2. (2.88)

Importantly, without any prior knowledge of the data, the J-L lemma states that there exists

a linear function Φ : Rd 7→ Rd′ that satisfies the RIP condition (see Section 2.3.1) provided

d′ & ε−2 logN . Although the J-L lemma is an existence result, it has been shown [52] that

maps consisting of random matrices i.e.

Φ(x) = Ax for A ∈ Rd
′×d ∼ Λ (2.89)

satisfy the J-L lemma. Of those is the subgaussian matrix that was introduced in Eqn 2.3.1.

However, in practice, fast Johnson Lindenstrauss transforms (FJLT) are used as a computation-

ally efficient alternative [53]. FJLTs are constructed by the product of simple matrices that are

computationally quick to compute, for example Hadamard and sparse matrices. The computa-

tional complexity can be shown to reduce from O(dd′) to O(d log d′) by replacing the dense

subgaussian matrices with a FJLT.
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Structured Projections

Structured projections are an alternative dimensionality reduction tool that, in contrast to ran-

dom projections, are data-dependent. PCA, as introduced in Section 2.1.5, is a linear structured

projection that is widely used as a preprocessing tool to reduce the dimensions of the data.

PCA projects the data onto a linear subspace that represents the maximal variance of the data.

In many cases, a high proportion of the data’s variance is captured within the first few principal

components (we often observe an exponential decay in practice). Substantial compression can

therefore be attained by projecting the data subspace spanned by the first d′ principal vectors.

Other linear subspace learning models, for example ICA, linear discriminant analysis (LDA)

and canonical correlation analysis can also be recast as a dimensionality reduction technique,

however, they are used less ofen in practice.

Non-linear structured projections are an alternative approach, used particularly for complex

data, to reduce size of the feature space d. Kernel PCA can be used by generalising standard

PCA to non-linear dimension reduction by projecting the data to non-linear subspaces of maxi-

mal variance. Locally linear embedding (LLE) is another approach that seeks a low dimension

projection that preserves local neighbourhood distance of the data with respect to some mea-

sure. The idea is to capture the possible manifold structure of the data. Other manifold learning

based dimensionality reduction include isomaps, t-SNE and autoencoder networks. See [54]

for further details on non-linear projections that are used in dimensionality reduction. In gen-

eral, non-linear based approaches to dimensionality reduction can exhibit a high computational

complexity and in some instances may be more challenging to solve than the original machine

learning task.

Both random and structured projections only partially alleviate the complexities of fitting a

model to some large dataset X as the lengthN of the dataset remains unaltered. Dimensionality

reduction techniques are therefore only feasible in certain scenarios when the length of the data

is fairly moderate.

2.4.3 Sketching

In the world of drawing, the method of sketching serves as a simple, quickly made illustration

that records what the artist perceives as important in the scene. Sketching from a learning

perspective is no different. Although the term sketching can vary in definition depending on
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the field, it shares the core value of computing a sketch that is a fixed size representation of a

dataset X that is built specifically for a particular model or task. In this thesis, a sketch y ∈ Cm

is defined as

y = F (X) ∈ Cm (2.90)

for some operator F .

Historically, sketches stemmed from the field of approximate query processing (AQP) where

short descriptors of a large dataset were constructed such that they could approximately answer

certain queries [40]. For instance, the count-min sketch [55] serves the purpose of detecting

items in a database that frequently appear, named heavy hitters. However, the biggest driver

behind recent sketch development is that they are particularly easy to update. This is important

in AQP as relational databases are constantly being updated with a stream of data and therefore

a sketch must be efficient to update so that the answer to a query can remain accurate. For that

reason, the class of linear sketches are of particular interest. Linear sketches have the additional

property that

y = F (X) =
N∑
i=1

Φ̃(xi) (2.91)

for some linear function Φ̃ : Rd 7→ Cm. As the sketch update requires only an operation

followed by a summation, they are extremely amenable to the streaming context where compu-

tational runtime is paramount. Furthermore, a global sketch can be easily constructed through

the aggregation of local sketches making linear sketches easily adaptable to distributed learning

where a model is fitted over multiple decentralized devices or servers.

Sketches are not just reserved for relational databases. Tropp et al. showed in [56] that lin-

ear sketches can be used to approximate low-rank matrices, that are too large to be stored in

memory, in the streaming context. In many large scale scientific simulations [57], including

climate forecasting, fluid dynamics and aircraft design, a low-rank matrix H ∈ RN×d can be

decomposed into a sequence

H = H1 + H2 + H3 + . . .

where each innovation Hi is assumed to be low-rank (or have other redundancies like sparsity

or structure). In many scenarios, the innovation Hi is processed and then discarded due to

memory constraints. In [56], the authors used FJLTs as part of the linear sketch such that

47



Background

Φ̃(x) = Ax. Due to the linearity of the sketch, one can form a sketch of H by taking recursive

sketches of each innovation Hi e.g.

y = F (H) = Φ̃(H1) + Φ̃(H2) + Φ̃(H2) + . . .

The resulting sketch y can be then used to recover a low-rank matrix to approximate H, as

discussed in Section 2.3.1. One of the disadvantages of this method is that one might not

know a priori the approximate rank of the matrix H so selecting an appropiate sketch size m

can be difficult. Moreover, several passes of the data may be required to reduce the low-rank

approximation error.

Compressive learning, as introduced in Section 2.3.2, falls under the category of sketching.

However, there is a subtle yet important difference compared to the (linear) sketching tech-

niques discussed in this section. The compressive learning sketch defined in Eqn 2.61 is linear

over the space of distributions P(X ) but typically non-linear over the data. In contrast, the

sketches defined in this section are linear over the dataset.

2.5 Single Photon Counting Lidar

In Part II of this thesis, we will apply the ideas of CL introduced in Section 2.3.2 to the depth

imaging modality of single photon light detection and ranging (lidar) that currently suffers from

generating an excess of data. As will be discussed shortly in this section, the excess of data

causes a data transfer bottleneck on lidar devices which can lead to suboptimal depth images.

Below we state the fundamentals and challenges of single photon lidar that are built upon in

PArt II.

Single photon lidar has emerged as an important depth imaging technique prevalent in the de-

fense [58], forestry [59] and automobile industries [60, 61]. In contrast to other depth imaging

modalities, lidar has the advantage of offering very high depth resolution even at long range

scenes using low power, eye safe lasers. At the core of the technique is the ability of emitting

light pulses and detecting each single photon as it arrives, thereby obtaining a depth estimate

by measuring the round-trip time of individual photons for each pixel in the scene.

Figure 2.7 depicts a schematic of a typical time-correlated single photon counting (TCSPC)

lidar system. A laser emits a pulse wave of photons to a scene that triggers the system clock
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Figure 2.6: Single photon lidar: a laser is directed at a pixel in a scene which consists of a
semi-transparent camouflage netting with a human stood behind. The recorded photons pro-
duce a TCSPC histogram that exhibits 2 peaks of varying intensity for the camouflage surface
(1) and human (2), as well as spurious photon detections from ambient sources like the sun (3).

where a single photon avalanche diode (SPAD) is used to detect individual photons. Specif-

ically, the SPAD consists of a reverse-biased photodiode which, in the presence of a photon,

induces an avalanche of electrical charge carriers that are directly detectable as a digital signal.

A time-to-digital converter (TDC) then converts the signal to a digital time-stamp that updates a

timing statistic in an online manner. Here the timing statistic terminology refers to the various

traditional methods that are used to collect and store the time-stamps. The most commonly

used timing statistic is that of a TCSPC histogram, as depicted in Figure 2.6, that clusters the

time delay between emitted light pulses and detected photons into time bins discretized over the

whole clock cycle period for each pixel in the scene. Due to the presence of ambient sources,

a proportion of the photons originate from either the signal (e.g. object or surface) or back-

ground sources (e.g. light emanating from the sun). The number of counts per time histogram

bin provides information on the depth and reflectivity of a particular pixel in the field of view.

The presence of a peak in the histogram typically indicates an object or surface is within the

range of the lidar device, and, using the speed of light, one can convert the specific location of

the time peak to a depth reading. If the material is semi-transparent, for example water, glass

or camouflage, or the laser footprint is large then multiple peaks with different intensities may
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Figure 2.7: A schematic of a typical lidar pixel where either one or multiple SPADs and TDCs
are used.

exist within a single pixel as demonstrated in Figure 2.6. If the number of photons detected are

low, for example in a photon starved regime, then it is more efficient from a space complexity

perspective to collect a timing statistic of each individual time-stamp for each pixel in the field

of view.

Given a timing statistic, the depth image restoration task reduces down to inferring the positions

and intensities of the peaks in the timing statistic for each pixel in the field of view. Let τ denote

the physical time-stamp such that the discretized time-stamp is denoted t = τ
∆τ . Then, for an

arbitrary pixel, the photon count at discretized time-stamp t = 0, 1, . . . , T − 1 can be modelled

as a Poisson distribution [62, 63]:

ytk |(r, b, tk) ∼ P(rh(t− tk) + b), (2.92)

where r ≥ 0 denotes the reflectivity of the detected surface, h(·) is the impulse response of

the system, b defines the level of background photons and tk denotes the location of the kth

surface in the pixel. The number of discretized time-stamp bins over the range of interest is

denoted by T . For simplicity, here we assume that the integral of the impulse response H =∑T−1
t=0 h(t) is constant. If the lidar system is in free running mode where multiple acquisitions

of a surface/object are obtained, then the interval [0, 1, . . . , T − 1] can be thought of as circular

in the sense that time-stamp T is equivalent to the time-stamp 0.

Alternatively, one can instead model the time of arrival of the pth photon detected for a single
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pixel in the scene. We assume there are K distinct reflecting surfaces within the pixel, where

αk and α0 denote the probability that the detected photon originated from the kth surface and

background sources, respectively. Furthermore, it is assumed that for a single pixel, a total of

N photons are detected during the whole acquisition window of the lidar device . Let xp ∈

{0, 1, . . . , T − 1} denote the time-stamp of the pth photon where 1 ≤ p ≤ N , then xp can be

described by a mixture distribution [64]

P(xp|α0, ..., αK , t1, ..., tK) =
K∑
k=1

αkPs(xp|tk) + α0Pb(xp), (2.93)

where
∑K

k=0 αk = 1. The distribution of the photons originating from the signal and back-

ground are defined by the distribution Ps(xp|t) = h(xp − t)/H and the uniform distribution

Pb(xp) = 1/T over [0, 1, . . . , T −1] , respectively. Often in practice, the signal distribution Ps
is modelled either using a discretized Gaussian distribution over the interval [0, 1, . . . , T − 1]

or through the data driven impulse function which is calculated through experiments.

2.5.1 Data Transfer Bottleneck

The development of high rate, high resolution, low power ToF image sensors is challenging

due to the large data volumes required. This causes a major data processing bottleneck on the

device when either the number of photons per pixelN is large, the time resolution, ∆τ , is fine or

the spatial resolution is high, as the space requirement, power consumption and computational

burden of the depth reconstruction algorithms scale with these parameters [3].

Various existing methods have attempted to tackle the trade-off between depth resolution and

computational/space complexities. A number of papers [65, 66, 67, 68, 69] propose methods to

address the trade-off between depth resolution and the complexities associated with the TCSPC

histogram. Henderson et al. [65] propose a method that employs a gated procedure to coarsely

bin the detected photons, whilst Ren et al. [66] develop a sliding window approach to achieve

high resolution depth. Walker et al. [67] calculate the depth directly from the photon time-

stamps. However in all of these approaches, the approximations formed on-chip compromise

the depth resolution of the image. Della Rocca et al. [68, 69] proposes to only collect the

histograms of photon detections when there is a significant change of activity. This method

reduces the data-transfer, as it is only required during specific moments in time. Similarly,

Hutchings et al. [70] propose a method of discarding photon detections based on activity.
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However, these methods can potentially remain idle when there is a small change in activity,

and can also suffer from a loss of temporal resolution due to coarse histogram binning. Zhang et

al. [71] propose a method of reducing the transfer of photon detections by performing a coarse

to fine approximation of the ToF data. At each scale, a coarse histogram is constructed with a

limited number of bins. Multiple histograms of increasing resolution have to be formed, hence

the method has an increased total acquisition time and can also suffer from a loss of temporal

resolution. In [72], Rapp et al. proposed a subtractive dithering for SPAD arrays that increases

depth resolution without increasing the overall time-stamp resolution.

Compressive sensing strategies (see Section 2.3.1) have been successfully applied to lidar

[73, 74], focusing on compressing the information across pixels. Kadambi et al. [73] propose

to exploit the sparsity of natural scenes in some representation domain (e.g. wavelet transform)

to reduce signal acquisition. The depth accuracy is limited by the level of amplitude noise and

decay of the impulse response and is therefore limited to the case of one surface per pixel. Fur-

thermore, the proposed method still requires large amounts of single-photon counting data to

be transferred off-chip and therefore does not tackle the inherent data transfer bottleneck. In a

similar vein, Halimi et al. [74] propose an adaptive sampling strategy that is scene dependent.

By building up regions of interest and data driven depth maps in an iterative manner, they ef-

ficiently choose suitable scan positions to reduce acquisition time by up to 8 times in certain

scenarios. However, the method relies on building TCSPC histograms and solving a maximiza-

tion problem at each iteration of their adaptive algorithm. The method therefore has limitations

for real-time processing especially when the amount of single-photon counting data is large.

These compressive sensing based methods perform compression within the spatial domain and

not throughout the depth domain and can therefore still suffer from data-transfer bottlenecks.

Another approach to reduce the data transfer of the information needed to reconstruct the lidar

image is to compress the data on-chip. As highlighted in [75], standard low-level data compres-

sion methods can be used to compress the data on-chip, however these methods can only offer

up to a modest 50% data reduction and in some cases involve significant on-chip computation

or there are limitations with respect to on-chip storage.

As discussed, the methods proposed to date do not tackle the data-transfer bottleneck without

sacrificing depth resolution for compression and therefore the resulting depth reconstruction

is sub-optimal. In Chapter 5, we will show that a compressive learning approach can vastly

reduce the complexities associated with lidar imaging by constructing a sketch of the time-of-

52



Background

flight data such that it retains all the information needed to efficiently infer the parameters θ of

the lidar observation model. Fundamentally, the size of the sketch needs only to be of the order

of the number of objects or surfaces in the scene. As lidar scenes typically consist of K = 0, 1

or 2 surfaces at most, the size of the compression attained by introducing a compressive learning

approach to single photon counting lidar can be substantial as will be demonstrated.
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Part One: New Models
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Chapter 3
Compressive Independent Component

Analysis

3.1 Introduction

The field of CL is still in its infancy with only a handful of developed schemes that cover

compressive mixture models and compressive PCA. In this chapter, we look at the ICA model

through the compressive learning lens and establish a compressive ICA framework that includes

both practical algorithms and theoretical guarantees. The learning task of ICA was introduced

in Section 2.1.6 where, in general, the distributional form of the independent components are

left unspecified. To the same extent as PCA, the ICA model is typically defined in a semi-

parametric manner. However, as is the case for PCA, a particular statistic of the data permits

identifiability of the ICA parameters, i.e. the mixing matrix M ∈ Rd×n, up-to scaling and

permutation ambiguities. As discussed in Section 2.1.6, this particular statistic comes in the

form of the kurtosis cumulant tensor X ∈ C ⊂ Rn×n×n×n associated with the data X. As

such, given that the number of independent components is denoted by n and the length of the

data is denoted by the usual N , then the memory complexities of ICA typically scale with

O
(
Nd+ n2

)
or O

(
n4
)

depending on the particular class of ICA algorithm that is used. One

can easily see that for large N or n, the memory demands of classical ICA methods quickly

becomes infeasible. In this chapter, we show that the solutions to the cumulant based ICA

model has particular structure and redundancies that induce a low-dimensional model set Sθ

that resides in the space of cumulant tensors, i.e. Sθ ⊂ C. To that end, we show that it is

possible to compute a sketch of the data cumulants which has size m & n2 such that it en-

codes sufficient salient information to enable accurate inference of the ICA model parameters.

Subsequently, the proposed compressive ICA scheme leads to orders of magnitude memory

compression compared to existing ICA methods.

This chapter makes the following contributions:

• Focusing on the cumulant based ICA approach, we establish a low-dimensional model set
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that resides in the larger cumulant space. We show that a sketch of size m & 2n(n+ 1),

computed using sub-Gaussian measurements, satisfies a RIP on the model set Sθ with

high probability. Furthermore, the RIP induces information preservation guarantees on

the recovered cumulant tensor that shows the error between an arbitrary cumulant tensor

and the recovered cumulant tensor is bounded linearly by modelling error and sampling

noise. This establishes the existence of a robust decoder that, coupled with the sketching

operator, forms a tractable compressive ICA scheme.

• In general, we do not have access to the true expected cumulant tensor but instead an

approximation of the cumulant tensor formed by the finite samples. We establish an

upper bound on the finite sampling error between the sketch of the expected cumulant

tensor and the sketch of the approximated cumulant tensor. It is shown that the sampling

error reduces as a function of the number of samples N .

• Two inherently different compressive ICA algorithms are proposed. The first algorithm

is inspired by the greedy IPG schemes introduced in Section 2.3.1, where we design both

a projection operator as well as a proxy projection operator that projects the updated

tensor onto the model set Sθ at each iteration. The proxy projection operator is shown in

practice to be robust to the non-convex landscape of the compressive ICA cost function.

The second algorithm is an alternative steepest descent scheme that, in contrast to the

IPG scheme, employs Riemannian optimization to optimize directly on the model set

Sθ.

• As part of the empirical results, we show that in practice a sharp phase transition, between

successful and unsuccessful parameter estimation, occurs as the sketch size m grows.

The region at which the transition transpires provides a pragmatic lower bound on the

size of the sketch which one can use in practice. Furthermore, it is shown that this

pragmatic lower bound coincides with the size of the sketch required to satisfy the RIP

result. The loss of information incurred by taking a sketch of the ICA cumulants is

demonstrated by comparing the statistical efficiency between the ICA estimates inferred

by our compressive ICA algorithms and by existing algorithms that make use of the full

data available.

This chapter is based of the work in [76] that appeared in the IEEE EUSIPCO conference 2019

and [77] that will appear at Information and Inference: A Journal of the IMA. The rest of this

56



Compressive Independent Component Analysis

chapter is organised as follows: In Section 3.2 the principles of compressive ICA are estab-

lished were the low-dimensional model set is explicitly defined. In Section 3.3 we present and

prove our main theoretical results of the chapter including the compressive ICA RIP, informa-

tion preservation guarantees as well as finite sample effects. Two compressive ICA algorithms

are proposed in Section 3.4 where the advantages and limitations are discussed. The empirical

results including the phase transition, loss of information incurred by taking a sketch and ex-

periments on real-world data are demonstrated in 3.5. Finally, we end the chapter in Section

3.6 with some concluding remarks.

3.2 Compressive Learning Principles for Cumulant ICA

In this section, the low-dimensional ICA model set Sθ that forms the basis of the compressive

ICA framework is established. For convenience, let us recall some of the details of ICA that

were introduced thoroughly in Section 2.1.6. Let x ∈ Rd be a data point assumed to be zero

mean, then the ICA model attempts to find a linear transformation M ∈ Rd×n such that

x = Ms, (3.1)

where the individual entries or components of s are statistically independent, for example

P(s) =
∏n
i=1 Pi(si). As discussed in Section 2.1.6, prewhitening is a popular preprocess-

ing trick. The process involves finding the matrix V ∈ Rn×d such that

z = Vx = VMs, (3.2)

where z ∈ Rn has identity covariance matrix (uncorrelated). Prewhitening also handles the sce-

nario when there is more mixtures than sources, i.e. d > n, by identifying the zero eigenvectors

of the original data x (see Section 2.1.6). The matrix Q := VM to be estimated is necessarily

orthogonal . For the sake of presentation, we will subsequently consider the whitened version

of the data for the remainder of this section and the corresponding whitened ICA equation

z = Qs. (3.3)

However, in Section 3.3.3, we propose 2 equivalent sketching frameworks that can incorporate

both prewhitened and unwhitened data.
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Cumulant or tensorial based ICA methods are of particular interest in this chapter. Given the

model in Eqn 3.3 equating z to s, then the following multilinear property holds for their asso-

ciated 4th order cumulant tensors

Z = S ×1 Q×2 Q×3 Q×4 Q (3.4)

where ×j denotes the j-mode tensor-matrix product. The cumulant tensor S related to the

independent components s is strictly diagonal due to the properties of cumulants defined in

Eqn 2.27, i.e. Sijkl = 0 for all ijkl 6= iiii. Subsequently, we can state the cumulant based

ICA model set:

Sθ := {Z | Z = S ×1 Q×2 Q×3 Q×4 Q, S ∈ D, Q ∈ O(n)} , (3.5)

where O(n) denotes the group of n × n orthogonal matrices and D ⊂ C is the set of diagonal

cumulant tensors defined by

D := {S | Sijkl = 0 ∀ijkl 6= iiii and |Siiii| ≥ εS } . (3.6)

Here, we have the additional requirement1 that each diagonal cumulant is greater than or equal

to a small constant εS > 0. Notably, any cumulant tensor Z ∈ Sθ maximises any contrast

function and hence minimises the associated theoretic measure and expected risk. The cumulant

based ICA model set Sθ is itself a low-dimensional space residing in the space of cumulant

tensors C. Specifically, Sθ can be described as the image of the product set of the set of n× n

orthogonal matrices O(n) and the set of diagonal cumulant tensors D. We can therefore initially

count the degrees of freedom of the model set Sθ:

• D - A maximum of n degrees of freedom on the leading diagonal.

• O(n) - A maximum of n(n−1)
2 degrees of freedom [78].

In total, the model set has n(n+1)
2 degrees of freedom. In comparison, the space of 4th order

cumulant tensors C, in which the model set resides, has q :=
(
n+3

4

)
≈ O(n4) degrees of

freedom. As the model set is of low complexity, in principle one could form a sketch of the

1A standard requirement in ICA is that at maximum one diagonal cumulant Siiii can be zero which arises from
the ICA assumption that at maximum one source signal si is Gaussian [13]. Here we have the slightly stronger
assumption that all source signals are nongaussian and have nonzero kurtosis.
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4th order cumulant tensor Z and estimate the parameters of the ICA model up to the usual

ambiguities solely from the sketch. The sketch of the 4th order cumulant tensor Z is defined

by

yw = A (Z ) , (3.7)

where w denotes that the sketch is acting on the whitened data z. The computation of the sketch

is very related to the sketching method of compressive PCA scheme discussed in Section 2.3.3.

Akin to compressive PCA, the sketching operator A acts on the finite dimensional space of

4th order cumulant tensors instead of the infinite dimensional probability space which is left

unspecified due to the semi-parametric nature of the ICA model. The ICA sketch defined

in Eqn 3.7 draws strong connections to finite dimensional compressive sensing (see Section

2.3.1) where limited (random) measurements of a finite dimensional sparse vector are taken to

reduce the sampling rate. As introduced in Eqn 2.43, the restricted isometry property (RIP) is a

fundamental tool that is used to show that a sketching operatorA stably embeds elements of the

model set into a compressive domain Rm, provided that the sketch dimension m is of sufficient

size. In the case of compressive ICA, ∀Z1,Z2 ∈ SH and an RIP constant δ ∈ (0, 1), then

(1− δ)‖Z1 −Z2‖2F ≤ ‖A(Z1 −Z2)‖22 ≤ (1 + δ)‖Z1 −Z2‖2F (3.8)

provided that the sketch sizem is of sufficient dimension and where ‖·‖F denotes the Frobenius

norm. In many cases, the sketch sizem is sufficient to be of the order of the degrees of freedom

of the model set. In Section 2.3.1, it was discussed that if the lower RIP (LRIP) holds for a given

sketching operator A, e.g. the left side of Eqn 3.8, then there exists a robust decoder ∆ that

recovers a signal from the model set in a stable manner with respect to noise and signals that

lie close to the model set. Moreover, it is proved in [38] that if the LRIP holds for the sketching

operator A on the model set Sθ then the decoder ∆ can be the constrained `2 optimization, for

instance

∆ (yw,A) ∈ min
Z ∈Sθ

‖yw −A(Z )‖2. (3.9)

In principle, if the RIP can be proved for a sketching operatorA on the ICA model set Sθ, then

we have an optimization strategy for solving the compressive ICA problem.
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3.3 Compressive Independent Component Analysis Theory

We begin by explicitly defining the sketching operator A : C 7→ Rm as

A(Z ) = Avec(Z ), (3.10)

where A ∈ Rm×q and vec denotes the vectorization operator. Here we assume A is some

random measurement matrix where the entries Aij are sampled according to some distributing

law, Aij ∼ Λ. In this chapter, we consider two randomized linear dimension reduction maps,

namely the Gaussian map and the subsampled randomized Hadamard transform (SRHT) stated

below. The compressive ICA (CICA) RIP, our main result stated in Theorem 1, is proved

using the Gaussian map, however fast Johnson-Lindenstrauss transforms (FJLT), for instance

the SRHT, still work in practice as will be discussed in Section 3.5.

3.3.0.1 Gaussian Maps

For convenience, we recall the traditional randomized linear dimension reduction map of Gaus-

sian matrices. The Gaussian matrix A ∈ Rm×q has entries that follow

Aij ∼ N
(

0,m−
1
2

)
. (3.11)

Gaussian maps typically requireO(mq) in memory as well as exhibiting a computational com-

plexity of O (mq).

3.3.0.2 Subsampled Randomized Hadamard Transform

The SRHT is an instance of a FJLT that approximates the properties of the full Gaussian map

[79]. Here A ∈ Rm×q is defined as

A =

√
q

m
RHD, (3.12)

where

• D ∈ Rq×q is a diagonal matrix whose elements are independent random signs {1,−1};

• H ∈ Rq×q is a normalised Walsh-Hadamard matrix that is scaled by p−
1
2 so it is an
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orthogonal matrix;

• R ∈ Rm×q is a matrix consisting of a subset ofm randomly sampled rows from the q×q

identity matrix.

The SRHT is particularly cheaper to compute and store in comparison to the Gaussian map. As

we do not explicitly store H, the SRHT only requires O (m+ q) in memory [80]. In addition,

the computational complexity of computing the sketch reduces to O (q log(m)) in comparison

to using the Gaussian map [53, 80]. Below we state our main theoretical result of the chapter.

Theorem 1 (Compressive ICA RIP). Denote by A the Gaussian map sketching operator de-

fined in Eqn 3.11. Then ∀Z1,Z2 ∈ Sθ, the sketching operator A satisfies the RIP in Eqn 3.8

with constant δ ∈ (0, 1) and probability 1− ξ provided that

m ≥ C

δ2
max

{
2n(n+ 1) log(C0), log

(
6

ξ

)}
, (3.13)

where C = C(ξ) > 0 is a constant dependent on ξ and C0 = C0(εS ) > 0 is constant that is

dependent on εS defined in Lemma 2.

The proof of Theorem 1 is detailed in Section 3.3.1.

Corollary 1 (Information Preservation). Let Z ∗ ∈ C be an arbitrary 4th order cumulant

tensor and denote yw = A (Z ∗) + e where e ∈ Rm is some additive noise. Furthermore,

let Z̃ := ∆ (yw,A) denote the solution to Eqn 3.9. Given that A satisfies the RIP in Theorem

1, then with probability 1− ξ

‖Z ∗ − Z̃ ‖F ≤ min
Z ∈Sθ

(
2‖Z ∗ −Z ‖F +

2√
1− δ

‖A vec (Z ∗ −Z )‖2
)

+
2√

1− δ
‖e‖2 + ν,

(3.14)

where 0 < ν ≤ 1 is a small positive constant.

Proof. Given the LRIP in Theorem 1, we use Theorem 7 in [38] to obtain our result.

The proof of Theorem 1 uses covering numbers and ε-nets of the normalized secant set of Sθ

that were partially introduced in Section 2.3.1. For convenience, we recall the definitions below.

61



Compressive Independent Component Analysis

Definition 4 (Secant Set). The secant set of a set Sθ is defined as

Sθ −Sθ := {Y = Z1 −Z2 | Z1,Z2 ∈ Sθ} . (3.15)

Definition 5 (Normalised Secant Set). The normalized secant set N (Sθ −Sθ) of a set Sθ is

defined as

N (Sθ −Sθ) := {Y /‖Y ‖F | Y ∈ (Sθ −Sθ) \ {0}} , (3.16)

where 0 defines the zero tensor.

Definition 6. (Covering number) Let ε > 0. The covering number, denoted CN(Sθ, ‖·‖, ε), of

a set Sθ is the minimum number of closed balls of radius ε, with respect to the norm ‖·‖, with

centres in Sθ needed to cover Sθ. The set of centres of these balls is a minimal ε-net for Sθ.

Lemma 2 (Covering number of N (Sθ −Sθ)). The covering number of N (Sθ −Sθ) with

respect to the Frobenius norm ‖·‖F is

CN (N (Sθ −Sθ) , ‖·‖F , ε) ≤
(
C0

ε

)2n(n+1)

, (3.17)

where C0 = C0(εS ) > 0 is some constant.

Proof. See Appendix 3.

Definition 7. (Upper box counting dimension) The upper box counting dimension of a set S is

defined as

dimB(S) := lim sup
ε→0

log[CN (S, ‖·‖, ε)]/ log[1/ε]. (3.18)

3.3.1 Proof of Theorem 1

Proof. To prove a RIP exists for the ICA model set Sθ using the sketching operator A de-

fined in Eqn 3.10, we follow a similar line of argument to [35, 81] by using an ε-covering of

N (Sθ −Sθ) to extend the concentration results of the random Gaussian matrix A uniformally

over the whole low-dimensional set. Specifically, we use the Recipe framework proposed by

Puy et al. [37], to formulate the compressive ICA RIP proof. The proof is separated by showing

that the following assumptions hold:

(A1) The normalised secant set, denoted N (Sθ −Sθ), has finite upper-box counting dimen-

sion dimB (N (Sθ −Sθ)) which is strictly bounded by s ≥ 1, dimB (N (Sθ −Sθ)) < s

62



Compressive Independent Component Analysis

(A2) The sketching operator A satisfies the concentration inequalities defined in Eqns 2.44

and 2.45 [37].

We begin with Assumption (A1). Using Lemma 2 and the definition of the upper box counting

dimension in Definition 7, it can be seen that dimB (N (Sθ −Sθ)) ≤ 2n(n + 1), so for any

s > 2n(n+1) Assumption (A1) is satisfied. To prove Assumption (A2), we have the following

definition.

Definition 8. (Subgaussian random variable) A subgaussian random variable X is a random

variable that satisfies

(E|X|t)1/t ≤ C1

√
t for all t ≥ 1, (3.19)

with C1 > 0. The subgaussian norm of X , denoted by ‖X‖Ψ2 is the smallest C1 for which the

last property holds, i.e.,

‖X‖Ψ2 := supt≥1

{
t−1/2(E|X|t)1/t)

}
. (3.20)

Let Ai denote the ith row of the random Gaussian matrix A. Then we use the fact [82, 37] that

‖AT
i vec (Z )‖Ψ2 ≤ D‖Z ‖F (3.21)

for all Z ∈ C, where D > 0 is an absolute constant. Therefore Assumption A2 is satisfied.

Finally, using Theorem 8 of [37], we get the desired RIP result in Theorem 1.

3.3.2 Finite Sample Effects

In practice, the sketch is constructed from a finite set of data {zi}Ni=1 such that

yw
N =

1

N

N∑
i=1

Φw (zi) , (3.22)

where Φw(·) is the feature function discussed in Section 2.3 acting on the whitened data z. For

compressive ICA we can explicitly define the feature function, acting on the whitened data, as

Φw
j (z) = 〈Aj , z

⊗4〉F , (3.23)
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for j = 1, . . . ,m, where Aj ∈ Rq are the rows of a Gaussian matrix A and 〈·〉 denotes the

Frobenius inner product. Furthermore, for shorthand we denote z⊗
4

= z⊗ z⊗ z⊗ z. In other

words, the feature function is taking random quartics of the data point z. Note that the empirical

sketch yw
N is equivalent to yw

N = A
(
Ẑ
)

, as specified in Eqn 2.63, where Ẑ is the finite data

approximation of the 4th order cumulant tensor Z defined by

Ẑ 4
ijkl =

1

N

N∑
p=1

zpi z
p
j z
p
kz
p
l −

1

N2

N∑
p=1

zpi z
p
j

N∑
p=1

zpkz
p
l −

1

N2

N∑
p=1

zpi z
p
k

N∑
p=1

zpj z
p
l

− 1

N2

N∑
p=1

zpi z
p
l

N∑
p=1

zpj z
p
k,

(3.24)

where zpi denotes the ith element of the pth finite sample. In this case, the error e defined in

Theorem 1 can be attributed to the finite sample effects of approximating the true 4th order

cumulant tensor Z from finite data. We now state our final result of this section.

Theorem 2 (Finite Sample Effects). Let A (Z ) = A vec (Z ) denote the sketching operator

where Aij ∼ N
(

0,m−
1
2

)
. Furthermore, let the independent components s have bounded

support such that ‖S ‖F ≤ R. Given that Ẑ is the finite approximation 4th order cumulant

tensors computed from the random draw of finite samples z1, . . . , zN , then with probability at

least 1− ρ− ξ

‖A (Z )−A(Ẑ )‖2 ≤
CR

(
1 +

√
2 log(1/ρ)

)
√
N

. (3.25)

Proof. See Appendix 3.A.2.

3.3.3 Discussion on Unwhitened Data

The results in this section are all based on proving a RIP on the model set Sθ defined in Eqn

3.5, where it is assumed the data x has been prewhitened to reduce the ICA model to z = Qs

as discussed in Section 2.1.6. The prewhitening stage removes some of the degrees of freedom

within the ICA inference task as it is necessary to estimate an orthogonal mixing matrix Q.

In some sketching cases, we may only see the data once, for example in the streaming context

[57], and therefore prewhitening may not be possible. The fact that we are now estimating an

arbitrary mixing matrix M instead of an orthogonal mixing matrix Q increases the degrees of

freedom from n(n+1)
2 to n(n+ 1). As a result, we must sketch the unwhitened moment tensor
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X such that

yu = A (X ) , (3.26)

where A(·) = A vec(·) and A ∈ Rm×q is a random matrix as defined in Eqn 3.10. Here u

denotes that the sketch is acting on the unwhitened data x. In addition, the feature function

Φu(·) for the unwhitened data can be defined as

Φu(x) =

〈Aj ,x
⊗4〉F

x⊗
2

 , (3.27)

for j = 1, . . . ,m, where Aj ∈ Rq are the rows of the matrix A. Note that the feature function

for the unwhitened data now includes quadratic moments, as well as random quartic moments,

that are needed to estimate the mixing matrix M which has extra degrees of freedom. One

could further reduce the size of the unwhitened sketch by either computing random quadratic

moments or simply removing the symmetries of the second order moments, however the re-

duction in complexity is minimal. Recall from Eqn 2.24 that the mixing matrix M has the

following decomposition [18]

M = V−1Q (3.28)

where V = Π−
1
2 PT is computed via the eigendecomposition of the covariance matrix E[xxT ]

(see Section 2.1.5). In Section 3.4.2, we develop a CICA algorithm that specifically handles

unwhitened data.

3.4 CICA Algorithms

In this section we propose two distinct compressive ICA algorithms to estimate the mixing

matrix M for both the whitened and unwhitened case.

3.4.1 Iterative Projection Gradient

In Section 2.3.1 we introduced the Iterative projection gradient (IPG) descent algorithm. IPG

is a popular optimization scheme which enforces low-dimensional structure e.g. sparsity, rank,

etc, by projecting the object of interest onto the model set Sθ after each subsequent gradient

step. For the case of compressive ICA, we seek an orthogonal projection on to the ICA model

set Sθ. Formally, we can define an orthogonal projection operator PSθ : C 7→ Sθ of a 4th
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order cumulant tensor Z ∗ as

PSθ (Z ∗) ∈ arg min
Z ∈Sθ

‖Z ∗ −Z ‖F . (3.29)

In other words, PSθ projects the object Z ∗ ∈ C onto the element in the model set that is of

minimum distance w.r.t the Frobenius norm. In practice, it is often difficult to find a projection

operator that is both orthogonal and tractable in terms of computation. In [83, 84], Cardoso

showed that the ICA model set Sθ is a subset of R ∩ L where R is the set of rank-n tensors

defined as

R := {Z ∈ R | rank(Z̄) = n}, (3.30)

where Z̄ ∈ Rn2×n2
is the matrix formed by rearranging the elements of the tensor Z into a

n2 × n2 Hermitian matrix and where rank defines the standard matrix rank [83]. Moreover, L

is the set of super-symmetric tensors defined by

L := {Z ∈ L | Zperm(ijkl) = Zijkl} (3.31)

where perm defines all permutations of the index ijkl. In fact, Cardoso proved in [84] that

locally the converse is true, for instance within some neighbourhood of Z the following holds:

R ∩ L ⊆ Sθ. (3.32)

Therefore, within some neighbourhood of Z ∗, projecting onto the ICA model set Sθ is equiv-

alent to projecting onto R ∩ L. Cadzow proved in [85] that alternate projections onto R and L

is guaranteed to converge onto the intersection2 R ∩ L. Fundamentally, the projections onto R

(rank-n approximation) and L (averaging over permutations), denoted by PR and PL respec-

tively, are both simple to compute and are orthogonal. Alternate orthogonal projections onto R

and L ensures a stable projection onto R ∩ L [85] which results in a projection onto the ICA

model set Sθ. Formally, we define the projection PSθ below in Algorithm 1. In practice, Al-

gorithm 1 converges to below a small tolerance in very few iterations (∼ 10 iterations). We can

now state our full CICA IPG algorithm detailed in Algorithm 2. Here the step size µj is com-

puted optimally to guarantee convergence [32, 33], A∗ denotes the adjoint sketching operator

and β is a fixed shrinking step size parameter. The practicalities and computational complexity

2In general, rank forcing destroys symmetry while symmetrization destroys the rank-n property, therefore alter-
nate projections are needed until convergence.
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of the algorithm will be deferred until Section 3.4.3.2.

Algorithm 1 PSθ : Projection onto ICA Model Set

Require: Cumulant tensor Z ∗ ∈ C
while Not Converged do

Project onto R: Z 1 = PR(Z ) (Matricize Z into a n2 × n2 Hermitian matrix and take
a rank-n approximation using truncated SVD)

Project onto L: Z 2 = PL(Z 1) (Average across all permutations of perm(ijkl) for all
indices ijkl)
end while
Output: Z ∈ Sθ

Algorithm 2 CICAIPG : Iterative Projection Gradient Descent Compressive ICA

Require: Initialisation Z 0, tolerance ε and shrinking parameter β.
while ‖yw −A

(
Z j
)
‖22 > ε do

Compute µj =
‖A∗

(
yw −A

(
Z j
))
‖2F

‖yw −A
(
Z j
)
‖22

while ‖yw −A
(
Z j+1

)
‖22 > ‖yw −A

(
Z j
)
‖22 do

µj ← βµj

Z j+ 1
2 ← Z j + µjA∗

(
yw −A

(
Z j
))

Z j+1 ← PSθ

(
Z j+ 1

2

)
end while

end while
Output: Z ∈ ∆ (yw,A)

3.4.2 Unwhitened IPG

It was discussed in Section 3.3.3 that it is often convenient, from an online processing point of

view, to directly sketch the unwhitened data x and its associated cumulant tensor X . Using the

properties of the matrix-tensor product [15], it can be seen that

A vec (X ) = AV̄−1 vec (Z ) , (3.33)

where V̄ := V ⊗ V ⊗ V ⊗ V ∈ Rd4×n4
. As defined in Eqn 3.27, the unwhitened feature

function Φu includes the second order moment of x, namely x⊗
2
. The empirical sketch ŷu

N

therefore includes the sample covariance Σ̂ := 1
N

∑N
i=1 x⊗

2

i , which can be used to estimate

an approximation of V, denoted V̂, by using the eigenvalue decomposition of Σ̂ [19] at the

beginning of Algorithm 2. By denoting ˆ̄V := V̂⊗ V̂⊗ V̂⊗ V̂, the gradient step in Algorithm
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2 can be replaced by

Z j+ 1
2 = Z j + µjA

T
(
yu −A ˆ̄V

−1
vec
(
Z j
))
, (3.34)

as well as the associated step size µj and stopping criteria. As a result, the CICA IPG algorithm

proceeds as normal by employing the original projection PSθ . For the scenario when there

are much more mixed signals than independent components, i.e d � n, the unwhitened IPG

algorithm can become expensive to run due to the matrix multiplication AV̄−1.

3.4.3 Alternating Steepest Descent

The second proposed algorithm comes in the form of an alternating steepest descent (ASD)

scheme that is inherently different from the IPG method previously discussed. To see why, it is

insightful to rewrite Eqn 3.9 in terms of the elements of the product set D and O(n):

min
QTQ=I

S∈D

F (S ,Q) = ‖yw −A(S ×1 Q×2 Q×3 Q×4 Q)‖22, (3.35)

where we have used the multilinear property discussed in Eqn 2.28. As the optimization prob-

lem is now explicitly defined by the mixing matrix Q and a sparse diagonal tensor S , it is suf-

ficient to optimise with respect to these parameters in an alternating steepest descent scheme.

This approach contrasts the IPG scheme, as once we initialise the mixing matrix Q and the

diagonal cumulant tensor S appropriately, then we can optimise directly on the model set Sθ.

We can initially state the ASD steps:

1. S ∗ = minS∈D F (S ,Q)

2. Q∗ = minQTQ=I F (S ∗,Q)

Note that the diagonal cumulant tensor S ∈ D can be simply reformulated as an n sparse

vector with known support, therefore one can perform element-wise differentiation on the n

entries Siiii for i = 1 : n. The second step requires more attention as we have the constraint

QTQ = I (i.e. Q ∈ O(n)). The set of n × n orthogonal matrices is an instance of a Stiefel

manifold [86], therefore F is minimized directly on the Stiefel manifold.
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3.4.3.1 Stiefel Manifold Optimisation

Given a feasible matrix Q and the gradient ∇QF =
(
∂F (S ,Q)
∂Qij

)
, define a skew-symmetric

matrix B as

B = ∇QFQT −Q(∇QF )T . (3.36)

The update on the Stiefel manifold is determined by the Crank-Nicholson scheme [87] denoted

Y (τ) = Q− τ

2
B(Q + Y (τ)) (3.37)

where Y (τ) = (I + τ
2B)−1(I − τ

2B)Q. The matrix (I + τ
2B)−1(I − τ

2B) is referred to as the

Cayley transform [86] of B. The descent curve Y (τ) has the following useful features

• Y (τ) is smooth on τ

• Y (0) = Q

• Y (τ)TY (τ) = QTQ for all τ ∈ R.

As a result, we perform a steepest descent on Q with line search along the descent curve Y (τ)

with respect to τ . For more details on optimisation methods constrained to the Stiefel manifold

refer to [86]. We can now state our second proposed CICA algorithm in Algorithm 3.

Algorithm 3 CICAASD : Alternating Steepest Descent Compressive ICA

Require: Initialisation Z 0 = S 0 ×1 Q0 ×2 Q0 ×3 Q0 ×4 Q0, tolerance ε and step size µ.
while ‖yw −A

(
Zj

)
‖22 > ε do

S j+1 = S j + µ∇SF
(
S j ,Qj

)
while Perform line search do

Y (τ) = Q− τ
2B (Q + Y (τ))

Qt+1 ← Y (τ∗)
end while
Z j+1 ← S j+1 ×1 Qj+1 ×2 Qj+1 ×3 Qj+1 ×4 Qj+1

end while

3.4.3.2 Practicalities

We start by stating the computational complexity of each proposed CICA algorithm. Here

we assume that a fast SRHT, as discussed in 3.3.0.2, is used to compute the sketch. For the

IPG scheme, the symmetry projection PL costs O(n4) flops through averaging along all index
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permutations. A rank-r approximation of a general matrix X ∈ Rm×n costs O(r2(n + m))

flops [88], therefore the rank projection operator PR costs a total of O(n4) flops. The gradient

step in Algorithm 2 costs a total of O(q log(m)) flops due to the use of the sketching operator

A(Z j) at each iteration which results in the IPG algorithm therefore having a total cost of

O(q log(m) + n4)) flops. In the second proposed ASD algorithm, the gradient step in terms

of the diagonal tensor in Algorithm 3, again has a cost of O(q log(m)) flops. The line search

Y (τ) costs a total of O(n3) flops [86] resulting in the ASD algorithm having a computational

complexity ofO(q log(m)+n3). Note that both proposed CICA algorithms have computational

complexity that is independent of the length of the data N which can be extremely large for

modern day applications.

As is the case for the general ICA problem, the compressive ICA optimisation problem is non-

convex and both algorithms proposed may be prone to converging to local minima. As a result,

we consider the option of possible restarts at random initialisations to obtain a good solution.

We also consider a proxy projection operator that employs a Jacobi diagonalisation, popular

in many ICA algorithms (see for example [19, 89]), followed by a hard thresholding operator

that forces the off-diagonal elements ijkl 6= iiii to zero. The Jacobi diagonalisation consists of

maximising a contrast function with respect to the matrix Q via consecutive Givens rotations.

Here we consider the contrast function [19]:

%(Q) =
n∑
i=1

(
Z ×1 QT ×2 QT ×3 QT ×4 QT

)2

iiii
. (3.38)

The resulting Jacobi scheme produces an approximately diagonalised 4th order cumulant ten-

sor and therefore we apply a hard thresholding operator by forcing the off-diagonals to zero.

This procedure projects the updated cumulant tensor onto a point on the model set Sθ at each

iteration and therefore acts as a proxy projector. We have observed in practice that this proxy

projection operator is less sensitive to the non-convex landscape of the optimization problem,

which could be explained by the robustness of Given’s rotations [19], hence multiple restarts

are rarely required. The proxy projection operator, which we denote by P̂Sθ , costs O(n4)

flops for the Given’s rotation scheme to approximately diagonalise the cumulant tensor [19],

and O(n4 − n) flops for the thresholding of the cross-cumulants. Therefore in total the proxy

IPG algorithm has approximately the same computational complexity as our previous IPG algo-

rithm. Furthermore, Given’s rotations can be used to define a block coordinate descent scheme

over O(n) to further reduce the computational complexity (see for instance [90]), however we
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leave implementation of such a scheme for future work.

3.5 Empirical Results

3.5.1 Phase Transition

Phase transitions are an integral part of analysis that is used frequently in the compressive

sensing literature to show a sharp change in the probability of successful reconstruction of the

low-dimensional object as the sketch size m increases [91]. The location at which the phase

transition occurs can provide a tight bound on the required sketch size needed given the number

of independent components n and further consolidates the theoretical bound of the RIP derived

in Section 3.3. To set up the phase transition experiment, we constructed the expected cumulant

tensor S of n Laplacian sources and transformed the tensor with an orthogonal mixing matrix

M using the multilinear property in Eqn 2.28, resulting in an expected cumulant tensor Z . For

each number of independent components n, 250 Monte Carlo simulations on the mixing matrix

M were executed for increasing sketch size m between 2 and 700. A successful reconstruction

was determined if the Amari error3 [92] between the true mixing matrix M and the estimated

mixing matrix M̂, defined by

dA(M, M̂) =
1

2n

n∑
i=1

(∑n
j=1|bij |

maxj |bij |
− 1

)
+

1

2n

n∑
j=1

(∑n
i=1|bij |

maxi|bij |
− 1

)
, (3.39)

was smaller than dA(M, M̂) ≤ 10−6, where bij = (MM̂−1)ij . The probability of successful

reconstruction was given by the number of successful reconstructions within the 250 Monte-

Carlo tests. We use the IPG version of the CICA algorithm for these results, although the ASD

version provides nearly exactly the same results. It is insightful to begin by fixing the number

of sources, here n = 8, to highlight the sharp transition as shown in Figure 3.1. We highlight

some important bounds including the multiples of 2 and 4 times the dimension of the model

set Sθ, depicted by the orange lines. For comparison, the dimension of the space of cumulant

tensors C, in other words the size of the cumulant tensor, is shown by the red line. The phase

transition occurs in between 2 and 4 times the model set dimension indicating that choosing

m ≥ 2n(n + 1) would be sufficient in successfully inferring the mixing matrix with high

3The Amari error is used widely in the ICA literature as it is both scale and permutation invariant, which are the
two inherent ambiguities of ICA inference.
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probability.

Figure 3.2 generalises the single phase transition result for the number of independent compo-

nents varying between n = 2 and n = 10. Once again, the important bounds of the model set

dimension (green), 2 and 4 multiples of the model set dimension (orange) and the dimension

of the space of cumulant tensors (red) are shown. Figure 3.2 explicitly shows that the phase

transition empirically occurs within the location of m = n(n + 1) and m = 2n(n + 1) and

provides us with a tight practical lower bound of m ≥ 2n(n + 1) on the sketch size for suc-

cessful inference of the mixing matrix with high probability. Recall that in Theorem 1, the RIP

holds when m & 2n(n+ 1). The location of the phase transition in the empirical results there-

fore further consolidates the theoretical result. For a given number of independent components

n, the ratio between the upper orange line (4 times the model set dimension) and the red line

(space of cumulant tensor dimension) provides a realistic compression rate in comparison to

using the whole cumulant tensor of which many ICA techniques use. Importantly, as the num-

ber of independent components increases the ratio between these two lines decreases, resulting

in further compression.

0 50 100 150 200 250 300 350
0

0.25

0.5

0.75

1

Sketch Size Success Prob.

Cumulant Space Dim.

4x Model Set Dim.

2x Model Set Dim.

Model Set Dim.

Legend

Figure 3.1: A phase transition between unsuccessful and successful mixing matrix inference as
the sketch size m increases and the number of independent components is fixed at n = 8.

3.5.2 Statistical Efficiency

As was shown in Section 3.5.1, the potential compression rates of sketching the cumulant ten-

sor are high which can lead to a significantly reduced memory requirement. In this section

we numerically analyse the trade-off between the sketch size and the loss of information. The
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Figure 3.2: A phase transition between unsuccessful and successful mixing matrix inference as
the sketch size m and the number of independent components n increases.

statistical efficiency of an estimator is a measure of the variability or quality of an unbiased

estimator [20]. In Section 2.2.3 we introduced the the Cramér-Rao bound that provides a lower

bound on the variability of an estimator and gives a best case scenario. For fair comparison,

here we instead use the variability of an estimator inferred by an algorithm that explicitly makes

use of the cumulant information to estimate the information loss of our proposed CICA algo-

rithm. As such, we use Comon’s ICA algorithm, detailed in [19], that minimizes a kurtosis

based contrast function using a sequence of Given’s rotations on pairwise cumulants as the

approximate full data bound (e.g. no compression). We could have equivalently used the well-

known Joint Approximation Diagonalization of Eigen-matrices (JADE) algorithm [89] or any

other cumulant based ICA algorithm as the approximate bound, which gives similar results. To

this end, we make use of the relative efficiency, defined as

e(M1,M2) =
var (dA(Mθ,M1))

var (dA(Mθ,M2))
, (3.40)

where dA(·, ·) is the Amari Error defined in Eqn 3.39 and Mθ is the true mixing matrix. De-

noting MFD and MCICA as the mixing matrix estimates of Comon’s ICA algorithm (full data)

and the proposed CICA algorithm, respectively, we expect 0 ≤ e (MFD,MCICA) ≤ 1 as the

Comon algorithm exhibits no compression and makes use of the full cumulant tensor available.

As the relative efficiency e (MFD,MCICA) approaches 1, the sketch estimate becomes more

statistically efficient. We perform our efficiency test on n = 6 independent components of

signal length N = 1000. The signal length does not affect the results as the dependence of N
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drops out of the relative efficiency measure, for example see [76].

Figure 3.3: (a) Student’s t distribution (ν = 3) (b) Laplace distribution (µ = 0, b = 1) (c)
continuous uniform distribution (a = −

√
3, b =

√
3) (d) mixture of 2 Laplaces (µ1, µ2 =

−1, 1 b1 = b2 = 1) (e) symmetric bimodal mixture of Gaussians (µ1, µ2 = −1, 1 σ1 = σ2 =
0.15) (f) asymmetric unimodal mixture of Gaussians (µ1, µ2 = −0.7, 0.5 σ1 = σ2 = 0.5)

For each of the 100 Monte-Carlo simulations, the n = 6 independent components are randomly

sampled [93] from a range of distributions with unique characteristics that are shown in Figure

3.3. The true mixing matrix Mθ was sampled once and fixed throughout. For each sketch size

m, 100 simulations were executed where the mixing matrix was estimated and the Amari error

was calculated. The variance of the Amari errors was compared with the full data counterpart

and plotted as the relative efficiency in Figure 3.4. Figure 3.4 shows the relative efficiency

as the sketch size m increases. As m increases the relative efficiency approaches 1 (i.e. as

statistically efficient as using the full cumulant tensor with no compression). It is evident that

there is a trade-off between the rate of compression and the statistical efficiency, for instance,

the smaller the sketch size the greater the loss of statistical efficiency. This is to be expected as

the harsher you compress the data the more loss of information you experience. Nonetheless,

the tradeoff is controlled, for example, a sketch of size m = 100 has a drop of around 40% of

efficiency.

74



Compressive Independent Component Analysis

60 70 80 90 100 110 120 130
0

0.2

0.4

0.6

0.8

1

Figure 3.4: The relative efficiency of the full data cumulant tensor (Comon’s ICA) and sketch
mixing matrix estimates for increasing sketch size m.

3.5.3 Cylinder Velocity Field

We next analyse and compare the proposed CICA scheme on a dataset consisting of a flow

field around a cylinder obstruction as depicted in Figure 3.5. Using ICA, one can obtain a

model that describes the fluctuations of the streamwise velocity field around its mean value as a

function of time. Details of the experimental set up can be seen in [94, 95]. The dataset is of size

X ∈ R100×14400 consisting of 14400 spatial locations over 100 time intervals. Here we compare

our proposed CICA scheme with the well-known fast ICA algorithm [96], as well the JADE

[89] and Comon algorithm [19] which, like the proposed CICA scheme, are cumulant based.

An initial prewhitening stage inferred the prewhiten matrix V ∈ R8×14400. Each algorithm

then estimated the Q ∈ R8×8, resulting in a mixing matrix estimate M = V−1Q. For the

proposed CICA scheme, the IPG version was used with a SRHT matrix A, however ASD

version produces similar reconstructions. Figure 3.6 shows the 8 independent components

which describe the fluctuations of the streamwise velocity around the cylinder obtained by Fast

ICA, JADE, Comon and CICA, respectively. For our proposed CICA algorithm, a sketch of size

m = 114 is used. Visually comparing the reconstructions, one can see that the CICA algorithm

performs competitively with negligible artifacts present. In addition, the CICA scheme achieves

a compression rate of approximately 3 in comparison to the other cumulant based ICA methods

discussed.

Next, we compare the effect of the sketch size on the resulting reconstructions. A sketch size

of m = 72, 108 and 144 are considered with the reconstructions shown in Figure 3.7. For
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Figure 3.5: The figure shows the velocity field around a cylinder for a fixed point in time.

m = 108, the sketch is of sufficient size to successfully identify the unique fluctuations of the

velocity field, however, due to the harsher compression rate some notable artefacts are present.

For example, in the first and third fluctuations there are some oscillating type artifacts which can

be attributed to the higher frequencies in the system. Furthermore, the sketch of size m = 72

fails to identity the main fluctuations of the velocity field.

3.6 Concluding Remarks

In this chapter, a low-dimensional model set was shown to exist for the cumulant based ICA

problem. It was demonstrated theoretically that a RIP exists for the ICA model using Gaus-

sian maps provided the sketch size was set proportionally to the model set dimensions, which

in turn induced the existence of an instance optimal decoder. The theoretical results were

empirically validated by showing the location of a sharp phase transition between a state of

unsuccessful inference to a state of successful inference of the ICA mixing matrix as the sketch

size increased. By considering optimising on the ambient cumulant tensor space or directly on

the low-dimensional model set, we proposed two inherently different CICA algorithms. Us-

ing both synthetic and real data, we analysed the robustness of the proposed CICA algorithms

and highlighted the effect of choosing the sketch size m. Furthermore, the particular branch

of compressive learning was discussed that consists of sketching distribution free models (e.g.

PCA, ICA) that leverage some intermediary statistic space, here the space of cumulant tensors,
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Figure 3.6: From left to right the dominant fluctuations of the streamwise velocity field. From
top to bottom the Fast ICA, JADE, Comon and CICA reconstructions.
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Figure 3.7: The figure shows the effect of the sketch size on the reconstruction of the fluctua-
tions. From top to bottom a sketch size of m = 144, 108 and 72.

to form the sketch. This poses some interesting open questions that we attempt to answer in

Chapter 4 on how to design a sketch given other distribution free models and how the low-

dimension nature of the model set manifests itself structurally, in terms of sparsity, low rank,

etc. to construct a practical sketching decoder.
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3.A Appendix

3.A.1 Proof of Lemma 2

To prove Lemma 2, we use a similar line of argument to Clarkson in [97] by splitting the

normalized secant set into the set of short and long secants parametrized by a distance η. First

we state an important lemma on covering the model set intersected with the unit sphere in Rn̄,

where n̄ = n4, denoted by ¯̄Sθ := Sθ∩Sn̄−1 (e.g. ‖Z ‖F = 1), that will used later in the proof.

Lemma 3 (Covering number of ¯̄Sθ). The covering number of ¯̄Sθ with respect to the Frobenius

norm ‖·‖F is

CN
(

¯̄Sθ, ‖·‖F , ε
)
≤
(

6

ε

)n(n+1)

(3.41)

Proof. Recall that Z ∈ ¯̄Sθ has the decomposition Z = S ×1 Q×2 Q×3 Q×4 Q such that

‖Z ‖F = 1 where S ∈ D and Q ∈ O(n). As the Frobenius norm is rotationally invariant then

the following holds ‖Z ‖F = ‖S ‖F = 1 for all Z ∈ ¯̄Sθ. Our argument constructs an ε-net

for ¯̄Sθ by covering the sets D and O(n) respectively. As ‖Z ‖F = 1 =⇒ ‖S ‖F = 1, it is

sufficient to consider ¯̄D := D ∩ Sn−1. Then we take ¯̄D to be an ε/2- net for ¯̄D. As ¯̄D is a n

dimensional subspace, then

CN
(

¯̄D, ‖·‖F , ε/2
)
≤
(6

ε

)n
.

Next, we cover the set of n×n orthogonal matrices denoted O(n). We follow a similar argument

to [81, 35] by letting Q(n) := {Y ∈ Rn×n : ‖Y‖1,2 ≤ 1}, where

‖Y‖1,2 = max
i
‖Y(:, i)‖2 (3.42)

is the maximum column norm of a matrix Y. It is straightforward to see that O(n) ⊂ Q(n)

since the columns of an orthogonal matrix are unit normed. It can be seen in [35] that an ε/2-net

O(n), denoted by O(n), has a covering number

CN(O(n), ‖·‖1,2, ε/2) ≤
(6

ε

)n2

.

Now let ¯̄Sθ := {S ×1 Q×2 Q×3 Q×4 Q : S ∈ ¯̄D,Q ∈ O(n)}, and remark that
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CN
( ¯̄Sθ, ‖·‖F , ε

)
≤ CN

( ¯̄D, ‖·‖F , ε/2
)

CN
(
O(n), ‖·‖1,2, ε/2

)
≤
(6

ε

)n(n+1)
.

It remains to show that for all Z ∈ ¯̄Sθ there exists Z ∈ ¯̄Sθ such that ‖Z −Z ‖F ≤ ε.

Fix Z ∈ ¯̄Sθ and note the decomposition Z = S ×1 Q×2 Q×3 Q×4 Q. Then there exists

Z = S ×1 Q×2 Q×3 Q×4 Q ∈ ¯̄Sθ with S ∈ ¯̄D and Q ∈ O(n) obeying ‖S −S ‖F ≤ ε/2

and ‖Q−Q‖1,2 ≤ ε/2. This gives

‖Z −Z ‖F = ‖S ×1 Q×2 Q×3 Q×4 Q−S ×1 Q×2 Q×3 Q×4 Q‖F

= ‖S ×1 Q×2 Q×3 Q×4 Q + (S ×1 Q×2 Q×3 Q×4 Q

−S ×1 Q×2 Q×3 Q×4 Q)−S ×1 Q×2 Q×3 Q×4 Q‖F

= ‖S ×1 (Q−Q)×2 (Q−Q)×3 (Q−Q)×4 (Q−Q)

+ (S −S )×1 Q×2 Q×3 Q×4 Q‖F

≤ ‖S ×1 (Q−Q)×2 (Q−Q)×3 (Q−Q)×4 (Q−Q)‖F

+ ‖(S −S )×1 Q×2 Q×3 Q×4 Q‖F

The first part of the last line gives

‖S ×1 · · · ×4 (Q−Q)‖F = ‖vec (S ×1 (Q−Q)×2 (Q−Q)×3 (Q−Q)×4 (Q−Q))‖2

= ‖(Q−Q)⊗ (Q−Q)⊗ (Q−Q)⊗ (Q−Q)vec(S )‖2

≤ ‖(Q−Q)⊗ (Q−Q)⊗ (Q−Q)⊗ (Q−Q)‖2‖S ‖F

= ‖(Q−Q)‖42

≤ ‖(Q−Q)‖41,2

≤ (ε/2)4

≤ ε/2

From line 1 to 2, the identity on pages [477-478] of [98] was used. From line 2 to 3 we have used

the Cauchy-Schwarz inequality, from line 3 to 4 we have used the equality ‖A⊗B‖ = ‖A‖‖B‖
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and from line 4 to 5 we have used the identity in [81]. Finally, notice that as Q is orthogonal

‖(S −S )×1 Q×2 Q×3 Q×4 Q‖F = ‖(S −S )‖F = ε/2. (3.43)

Therefore

‖Z −Z ‖F ≤ ε/2 + ε/2 = ε (3.44)

Continuing, we let Ω := O(n)×D define the product set between the set of n× n orthogonal

matrices O(n) and the set of super symmetric cumulant tensors defined in Eqn 2.29 and define

the map f : Ω 7→ Sθ by

f(u) = S ×1 Q×2 Q×3 Q×4 Q, (3.45)

for all u := (Q,S ) ∈ Ω. Let Z = f(u) be the tensor corresponding to the image of the map

f . It is insightful to decompose the normalised secant set N (Sθ −Sθ) into the set of long and

short secants parametrised by some distance η [97]. The set of long secants of Sθ is defined as

Nη (Sθ −Sθ) :=

{
Z1 −Z2

‖Z1 −Z2‖F

∣∣∣ Z1,Z2 ∈ Sθ, ‖Z1 −Z2‖F > η

}
. (3.46)

Furthermore, the set of short secants Nc
η (Sθ −Sθ) = N (Sθ −Sθ) \ Nη (Sθ −Sθ) is the

complement to the set of long secants defined by

Nc
η (Sθ −Sθ) :=

{
Z1 −Z2

‖Z1 −Z2‖F

∣∣∣ Z1 6= Z2 ∈ Sθ, ‖Z1 −Z2‖F ≤ η
}
. (3.47)

Remark 4. As the model set Sθ is conic (see Lemma 9), it is sufficient to cover the normalised

secant set of S̄θ := Sθ ∩ B1(0), where B1(0) denotes the unit Frobenius ball centred at 0,

since we have N (Sθ −Sθ) = N
(
S̄θ − S̄θ

)
.

As a result we can decompose the normalised secant set as follows

N (Sθ −Sθ) = N
(
S̄θ − S̄θ

)
= Nη

(
S̄θ − S̄θ

)
∪Nc

η

(
S̄θ − S̄θ

)
⊆ Nη

(
S̄θ − S̄θ

)
∪Nc

η

(
S̄θ − ¯̄Sθ

)
,

(3.48)
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We begin by covering the set of long secants Nη

(
S̄θ − S̄θ

)
.

Lemma 4 (Long Secants Covering Number). Let S̄θ be an εγ-cover for S̄θ. Then N (S̄θ − S̄θ)

is an ε-cover for N4γ

(
S̄θ − S̄θ

)
with associated covering number of

CN
(
N4γ

(
S̄θ − S̄θ

)
, ‖·‖F εγ

)
≤
(

6

εγ

)2n(n+1)

. (3.49)

Proof. Lemma 4.1 in [97] states that if S̄θ is a generalised εγ- cover of S̄θ, then N (S̄θ − S̄θ)

is a generalised ε-cover for N4γ

(
S̄θ − S̄θ

)
. Using the covering number of ¯̄Sθ from Lemma 3

we get the result.

Continuing, we cover the set of short secants. We begin by stating some preliminary lemmas.

Lemma 5 (Taylor Approximation Error). Let f : Ω 7→ Sθ be defined as in Eqn 3.45 and

let Dfu define the first order differential of f evaluated at the point u. Further assume that

‖S ‖F ≤ R. Then ∀u, u′ ∈ Ω, ‖u− u′‖ ≤ 2ε0, we have

∥∥f(u)− f(u′)−DfTu′(u− u′)
∥∥
F
≤ C1

∥∥u− u′∥∥2

2
, (3.50)

where C1 = n2(n+ 1)2 max {3R, 1}

Proof. w.l.o.g consider the vectorized function f̃(u) := vec(f(u)) such that

f̃(u) =vec (S ×1 Q×2 Q×3 Q×4 Q)

=Q⊗Q⊗Q⊗Q vec (S ) .

Using Taylor’s theorem [99, p. 110] of f̃ evaluated at the point u′ ∈ Ω, we get

∥∥∥f̃(u)− f̃(u′)−Df̃Tu′(u− u′)
∥∥∥

2
≤ 1

2

∥∥∥(u− u′)THf̃ξ(u− u′)
∥∥∥

2
. (3.51)

where Df̃u and Hf̃u denote the Jacobian and Hessian of f̃ evaluated at u and ξ = λu + (1 −

λ)u′ ∈ Ω, for λ ∈ (0, 1), denotes a point on the line segment between u and u′. For shorthand
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let h = u− u′, and denote the integer T := n(n+1)
2 , we then have

∥∥∥hTHf̃ξh∥∥∥
2

=

∥∥∥∥∥∥
T∑
i=1

T∑
j=1

hihj
∂2f̃

∂ui∂uj
(ξ)

∥∥∥∥∥∥
2

≤ T 2 max
i,j

∥∥∥∥∥hihj ∂2f̃

∂ui∂uj
(ξ)

∥∥∥∥∥
2

≤ T 2

(
max
i
|hi|
)2

max
i,j

∥∥∥∥∥ ∂2f̃

∂ui∂uj
(ξ)

∥∥∥∥∥
2

= T 2‖h‖2∞max
i,j

∥∥∥∥∥ ∂2f̃

∂ui∂uj
(ξ)

∥∥∥∥∥
2

≤ T 2‖h‖22 max
i,j

∥∥∥∥∥ ∂2f̃

∂ui∂uj
(ξ)

∥∥∥∥∥
2

,

where hi = (ui − u′i). w.l.o.g let ξ = (Q,S ), we have that

max
i,j

∥∥∥∥∥ ∂2f̃

∂ui∂uj
(ξ)

∥∥∥∥∥
2

= max


1©

max
i,j,k,`

∥∥∥∥∥ ∂2f̃

∂Qij∂Qkl
(ξ)

∥∥∥∥∥
2

,

2©

max
i,j,k

∥∥∥∥∥ ∂2f̃

∂Qij∂Skkkk
(ξ)

∥∥∥∥∥
2

,

3©

max
i,j

∥∥∥∥∥ ∂2f̃

∂Siiii∂Sjjjj
(ξ)

∥∥∥∥∥
2


(3.52)

1© It can be seen that (see Section 3.A.5)

∂2f̃

∂Qij∂Qk`
(ξ) = Πijk`vec (S ) , (3.53)

where

Πijk` = Eij ⊗Ek` ⊗Q⊗Q + Eij ⊗Q⊗Ek` ⊗Q + Eij ⊗Q⊗Q⊗Ek`

+ Ek` ⊗Eij ⊗Q⊗Q + Q⊗Eij ⊗Ek` ⊗Q + Q⊗Eij ⊗Q⊗Ek`

+ Ek` ⊗Q⊗Eij ⊗Q + Q⊗Ek` ⊗Eij ⊗Q + Q⊗Q⊗Eij ⊗Ek`

+ Ek` ⊗Q⊗Q⊗Eij + Q⊗Ek` ⊗Q⊗Eij + Q⊗Q⊗Ek` ⊗Eij

and the matrix Eij = eie
T
j , where ei is the ith unit basis vector. Using the properties of
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the Kronecker product and the triangle inequality we get∥∥∥∥∥ ∂2f̃

∂Qij∂Qkl
(ξ)

∥∥∥∥∥
2

≤ 12
∥∥Eij

∥∥
2

∥∥∥Ekl
∥∥∥

2
‖Q‖22 ‖S ‖F

= 12 ‖S ‖F .

Assuming that the diagonal tensor has bounded support ‖S ‖2 ≤ R, then it follows that

max
i,j,k,`

∥∥∥∥∥ ∂2f̃

∂Qij∂Qkl
(ξ)

∥∥∥∥∥
2

≤ 12R. (3.54)

2© It can be seen that (see Section 3.A.5)

∂2f̃

∂Qij∂Skkkk
(ξ) = Γijek, (3.55)

where and

Γij = Eij ⊗Q⊗Q⊗Q + Q⊗Eij ⊗Q⊗Q

+ Q⊗Q⊗Eij ⊗Q + Q⊗Q⊗Q⊗Eij .

Similarly to 1©, we get

max
i,j,k

∥∥∥∥∥ ∂2f̃

∂Qij∂Skkkk
(ξ)

∥∥∥∥∥
2

≤ 4 (3.56)

3© It can be easily shown that
∂2f̃

∂Siiii∂Sjjjj
(ξ) = 0, (3.57)

therefore

max
i,j

∥∥∥∥∥ ∂2f̃

∂Siiii∂Sjjjj
(ξ)

∥∥∥∥∥
2

= 0. (3.58)

It therefore follows that

max
i,j

∥∥∥∥∥ ∂2f̃

∂ui∂uj
(ξ)

∥∥∥∥∥
2

= max {12R, 4} , (3.59)
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and,

∥∥∥f̃(u)− f̃(u′)−Df̃Tu′(u− u′)
∥∥∥

2
≤ n2(n+ 1)2 max {3R, 1}

∥∥u− u′∥∥2

2
. (3.60)

Lemma 6 (Bounded Curvature). Let f : Ω 7→ Sθ be defined as in Eqn 3.45 and let Dfu define

the first order differential of f evaluated at the point u. Further assume that ‖S ‖F ≤ R. Then

∀u, u′ ∈ Ω, ‖u− u′‖ ≤ 2ε0, we have

‖Dfu −Dfu′‖F ≤ C2

∥∥u− u′∥∥
2
, (3.61)

where C2 = 2C1

Proof. Using the mean value theorem [99], it can be shown that,

∥∥∥Df̃u − Df̃u′
∥∥∥

2
≤
∥∥∥Hf̃Tξ (u− u′)

∥∥∥
2

(3.62)

for some ξ = λu + (1 − λ)u′ ∈ Ω, for λ ∈ (0, 1). Then using the same argument as in the

proof of Lemma 5, it can easily shown that

∥∥∥Df̃u − Df̃u′
∥∥∥

2
≤ 2C1

∥∥u− u′∥∥
2
, (3.63)

giving C2 = 2C1.

Lemma 7 (Bounded Gradient). Let f : Ω 7→ Sθ be defined as in Eqn 3.45 and let Dfu define

the first order differential of f evaluated at the point u. Further assume, as in Eqn 2.29, that

|Siiii| ≥ εS (> 0) ∀i. Then ∀u ∈ Ω

∥∥∥Df †u∥∥∥
F
≤ C3, (3.64)

where C3 = 2εS

Proof. Similar to Lemma 5, we consider the vectorized function f̃(u) := vec (f(u)) w.l.o.g. It

can be seen that the 1st order differential (see Section 3.A.4) has the following decomposition

Df̃(u) =

[
∂f̃

∂Q
(u),

∂f̃

∂S
(u)

]
, (3.65)
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where
∂f̃

∂Qij
(u) = Γij vec (S ) . (3.66)

Furthermore, the partial derivative with respect to the super symmetric cumulant tensor S is

defined as

∂f̃

∂S
(u) = Q̄.

where Q̄ := Q⊗Q⊗Q⊗Q. Equivalently, Eqn 3.64 can be rewritten as

min
‖∆u‖=1

∥∥∥Df̃ (u)T ∆u
∥∥∥

2
≥ C3, (3.67)

where ∆u = (∆Q,∆S ). We therefore have

∥∥∥Df̃(u)T∆u
∥∥∥2

2
=

∥∥∥∥∥ ∂f̃∂Q
(u)T∆Q

∥∥∥∥∥
2

F

+

∥∥∥∥∥ ∂f̃∂S
(u)T∆S

∥∥∥∥∥
2

2

=

n∑
i=1

n∑
j=1

∥∥∥∥∥ ∂f̃

∂Qij
(u)T∆Qij

∥∥∥∥∥
2

F

+

∥∥∥∥∥ ∂f̃∂S
(u)T∆S

∥∥∥∥∥
2

2

= (?).

As f is equivariant in Q, we can set Q = In w.l.o.g. As a result Q̄ = I and Γij reduces to

Γij = Eij ⊗ In ⊗ In ⊗ In + In ⊗Eij ⊗ In ⊗ In

+ In ⊗ In ⊗Eij ⊗ In + In ⊗ In ⊗ In ⊗Eij .

For shorthand, let vec (T ) = Γab vec (S ) and noting that Eab = eae
T
b , we have
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Tijk` =

n∑
p=1

(
Eab
ip IjpIkpI`p + IipE

ab
jpIkpI`p + IipIjpE

ab
kpI`p + IipIjpIkpE

ab
`p

)
Spppp

=
n∑
p=1

(δaiδbpδjpδkpδ`p + δipδajδbpδkpδ`p + δipδjpδakδbpδ`p + δipδjpδkpδa`δbp) Spppp

=
n∑
p=1

(δaiδjpδkpδ`p + δipδajδkpδ`p + δipδjpδakδ`p + δipδjpδkpδa`) δbpSpppp

= (δaiδjbδkbδ`b + δibδajδkbδ`b + δibδjbδakδ`b + δibδjbδkbδa`) Sbbbb.

Subsequently, we have that

∥∥∥Γab vec (S ) ∆Qab

∥∥∥2

F
=

n∑
i,j,k,`=1

|(δaiδjbδkbδ`b + δibδajδkbδ`b + δibδjbδakδ`b + δibδjbδkbδa`) Sbbbb∆Qab|2 .

It can be easily shown that for a = b

∥∥∥Γbb vec (S ) ∆Qbb

∥∥∥2

F
= 16 |Sbbbb∆Qbb|2 ,

and for a 6= b

∥∥∥Γab vec (S ) ∆Qab

∥∥∥2

F
= 4 |Sbbbb∆Qab|2 .
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We therefore have

(?) =
∑
i=j

∥∥∥∥∥ ∂f̃

∂Qii
(u)T∆Qii

∥∥∥∥∥
2

F

+
∑
i 6=j

∥∥∥∥∥ ∂f̃

∂Qij
(u)T∆Qij

∥∥∥∥∥
2

F

+ ‖∆S ‖22

= 16
∑
i=j

|Siiii|2 |∆Qii|2 + 4
∑
i 6=j
|Siiii|2 |∆Qij |2 + ‖∆S ‖22

≥ 4
∑
i,j

|Siiii|2 |∆Qij |2 + ‖∆S ‖22

= (?)

Now assume that |Siiii| ≥ εS for all i, therefore

(?) ≥ 4ε2S ‖∆Q‖2F + ‖∆S ‖22

≥ 4ε2S ‖∆u‖
2
2 .

In the last line, we assume w.l.o.g that 4ε2S ≤ 1. We have therefore proved that

min
‖∆u‖=1

∥∥∥Df̃ (u)T ∆u
∥∥∥

2
≥ 2εS , (3.68)

yielding C3 := 2εS .

We have the following lemma to cover the set of short secants.

Lemma 8 (Short Secants Covering Number). Let Ω′ = {ui} be an ε- cover for Ω′ = O(n) ×

(D ∩B1(0)) and considering the following:

1.
∥∥f(u)− f(u′)−DfTu′(u− u′)

∥∥ ≤ C1 ‖u− u′‖2 (Taylor approximation Lemma 5)

2. ‖Dfu −Dfu′‖ ≤ C2 ‖u− u′‖ (bounded curvature Lemma 6)

3.
∥∥∥Df †u∥∥∥ ≤ C3 (bounded gradient Lemma 7),

where f : Ω 7→ Sθ is defined in Eqn. 3.45 and Dfu defines the first order differential of f

evaluated at the point u. Then given ui ∈ Ω, ∀u, u′ ∈ Bε0(ui) and ‖Z −Z ′‖ ≤ η, where

Z = f(u) and Z ′ = f(u′), we have∥∥∥∥ Z −Z ′

‖Z −Z ′‖
−DfTui

u− u′

‖Z −Z ′‖

∥∥∥∥ ≤ C4ε0. (3.69)
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where C4 := C3(2C1 + C2).

Proof.

∥∥Z −Z ′ −DfTui(u− u
′)
∥∥ =

∥∥∥f(u)− f(u′)−DfTu (u− u′) + (Dfu −Dfui)
T (u− u′)∥∥∥

≤
∥∥f(u)− f(u′)−DfTu (u− u′)

∥∥+
∥∥∥(Dfu −Dfui)

T (u− u′)∥∥∥
≤ C1

∥∥u− u′∥∥2
+ C2 ‖u− ui‖

∥∥u− u′∥∥
= (?)

Given that u, u′ ∈ Bε0(ui), we have that ‖u− ui‖ ≤ ε0 and ‖u− u′‖ ≤ 2ε0. Therefore

(?) ≤ 2C1ε0
∥∥u− u′∥∥+ C2ε0

∥∥u− u′∥∥
= (2C1 + C2)ε0

∥∥u− u′∥∥ .
Now dividing by ‖Z −Z ′‖ gives:∥∥∥∥ Z −Z ′

‖Z −Z ′‖
−DfTui

u− u′

‖Z −Z ′‖

∥∥∥∥ ≤ (2C1 + C2)
‖u− u′‖
‖Z −Z ′‖

≤ C3(2C1 + C2).

In the last line, we have used the fact that bounded (inverse) gradient implies Lipschitzness.

As a result, the set of bounded tangent vectors, defined by

V :=

{
DfTui

u− u′

‖Z −Z ′‖
| ∀ui ∈ Ω

}
(3.70)

forms a generalized ε-cover for Nc
η

(
S̄θ − ¯̄Sθ

)
with covering number (see Lemma 4.3 of [97])

CN (V , ‖·‖F , ε) ≤ C4 CN
(

¯̄Sθ, ‖·‖F , ε0
)(3

ε

)n(n+1)
2

≤ C4

(
6

ε0

)n(n+1)(3

ε

)n(n+1)
2

.
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From Eqn 3.48, we can bound the covering number of the normalized secant set:

CN (N (Sθ −Sθ) , ‖·‖F , ε) ≤ CN
(
Nη

(
S̄θ − S̄θ

)
, ‖·‖F , ε

)
+ CN

(
Nc
η

(
S̄θ − ¯̄Sθ

)
, ‖·‖F , ε

)
≤
(

6

γε

)2n(n+1)

+ C4

(
6

ε0

)n(n+1)(3

ε

)n(n+1)
2

≤
(

6

γε

)2n(n+1)

+ C4

(
6

ε0

)n(n+1)(3

ε

)n(n+1)

=

(
6

γε

)2n(n+1)

+ C4

(
18

ε0ε

)n(n+1)

= (?).

Note that by definition ε0 ≤ η (= 4γ), therefore γ ≥ ε0
4 . As a result

(?) ≤ C4

((
24

ε0ε

)2n(n+1)

+

(
24

ε0ε

)n(n+1)
)

≤
(

48C4

ε0ε

)2n(n+1)

≤
(
C0

ε

)2n(n+1)

where C0 = 48C4
ε0

.

3.A.2 Proof of Theorem 2

Proof. First, note that as the Frobenius norm is rotationally invariant we have that

‖Z ‖F = ‖S ×1 Q×2 · · · ×4 Q‖F = ‖S ‖F ≤ R.

As Ẑ is an empirical average of the true expected cumulant tensor Z , we can use a version

of the vectorial Hoeffding’s inequality in Lemma 4 of [100] that states with probability at least

1− ρ on the random draw of z1, . . . , zN that

‖Ẑ −Z ‖F ≤
R
(

1 +
√

2 log(1/ρ)
)

√
N

. (3.71)

Next, we can use the boundedness property of random Gaussian measurements [101]. First, let
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e = vec
(
Ẑ −Z

)
denote the finite approximation error from above. Then the boundedness

property of subgaussian matrices (see Definition 6.2 in [101]) states with probability at least

1− ξ on the sampling of A, that

‖Ae‖2 ≤ C‖e‖2 (3.72)

for some constant C > 0.

Combining the two equations, we get with probability at least (1 − ρ)(1 − ξ) ≥ 1 − ρ − ξ on

the drawing of both A and z1, . . . , zN that

‖A (Z )−A(Ẑ )‖2 ≤
CR

(
1 +

√
2 log(1/ρ)

)
√
N

. (3.73)

3.A.3 Conic Properties

Definition 9 (Conic Set). A set S is conic if for all x ∈ S the positive scalar multiple αx ∈ S

for α > 0.

Lemma 9. The ICA model set Sθ is conic

Proof. Let Z ∈ Sθ have decomposition Z = S ×1 Q ×2 Q ×3 Q ×4 Q. For any scalar

α > 0 we show that αZ ∈ Sθ:

αZ =α (S ×1 Q×2 Q×3 Q×4 Q)

= (αS )×1 Q×2 Q×3 Q×4 Q.

As positive scalar multiplication does not change the support of S then αS ∈ D. Let Ŝ :=

αS , then

αZ = Ŝ ×1 Q×2 Q×3 Q×4 Q, (3.74)

and therefore αZ ∈ Sθ for all α > 0.
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3.A.4 1st Order Differential

Define f̃(u) = Q⊗Q⊗Q⊗Q vec (S ), where u = (Q,S ). We can decompose the 1st order

differential as

Df̃(u) =

[
∂f̃

∂Q
(u),

∂f̃

∂S
(u)

]
. (3.75)

We begin with the left hand side of the equation above. Recall Q̄ = Q⊗Q⊗Q⊗Q, then

Γij =
∂Q̄

∂Qij

= Eij ⊗Q⊗Q⊗Q + Q⊗Eij ⊗Q⊗Q

+ Q⊗Q⊗Eij ⊗Q + Q⊗⊗Q⊗Q⊗Eij .

We therefore have that
∂f̃

∂Qij
(u) = Γij vec (S ) . (3.76)

Recalling that Sijkl = 0 for all ijkl 6= iiii, we therefore have that

∂f̃

∂Skkkk
(u) = Q̄ek̂,

where k̂ is the equivalent vectorised position of index kkkk.

3.A.5 Second Order Differential

We begin by decomposing the 2nd order differential into

Hf̃(u) =


∂2f̃

∂Q∂Q
(u) ,

∂2f̃

∂Q∂S
(u)

∂2f̃

∂Q∂S
(u) ,

∂2f̃

∂S ∂S
(u)

 . (3.77)
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Firstly, given

Πijk` =
∂2Q̄

∂Qij∂Qk`

= Eij ⊗ Ek` ⊗Q⊗Q + Eij ⊗Q⊗ Ek` ⊗Q + Eij ⊗Q⊗Q⊗ Ek`

+ Ek` ⊗Eij ⊗Q⊗Q + Q⊗Eij ⊗ Ek` ⊗Q + Q⊗Eij ⊗Q⊗ Ek`

+ Ek` ⊗Q⊗Eij ⊗Q + Q⊗ Ek` ⊗Eij ⊗Q + Q⊗Q⊗Eij ⊗ Ek`

+ Ek` ⊗Q⊗Q⊗Eij + Q⊗ Ek` ⊗Q⊗Eij + Q⊗Q⊗ Ek` ⊗Eij

we therefore have that
∂2f̃

∂Q∂Q
(u) = Πijk` vec (S ) . (3.78)

Secondly, it should be straightforward to see that

∂2f̃

∂Q∂S
(u) = Γijek̂. (3.79)

Finally, we have that
∂2f̃

∂Siiii∂Sjjjj
= 0n4×1, (3.80)

where 0n4×1 is zero vector of length n4 × 1.
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Chapter 4
Compressive Learning for

Semi-Parametric Models

4.1 Introduction

In the previous chapter, we built a compressive learning framework for ICA that enables sub-

stantial compression compared to existing ICA algorithms. As the ICA is typically left distri-

bution free, it was showed that one could exploit particular structure of the data’s cumulants

to firstly construct a dimensionality reducing sketch and, secondly, design tractable recovery

algorithms. ICA is part of the wider class of semi-parametric models that were introduced in

Section 2.1.4 that share the inherent characteristic of only being partially parametrized. The

overriding consequence is that the conventional sketch, that maps from the space of distribu-

tions, A : P (X ) 7→ Cm defined in Eqn 2.61, is difficult to design. As is the case for both

the compressive PCA and ICA models introduced in Section 2.3.3 and 3.2, respectively, one

must leverage some intermediary statistic that permits identifiability of the model to build the

associated sketch.

The compressive learning framework originally developed by Gribonval et al. in [1, 6] and

discussed in Section 2.3 was designed primarily for parametric models and assumes the exis-

tence of a sketching operator A that maps from the space of distributions P (X ). As such, it

does not provide a straightforward blueprint to help design both practical sketches and tractable

algorithms. In this chapter, we reformulate the existing compressive learning framework to ex-

plicitly cater for semi-parametric models. The resulting reformulation enables practitioners to

identify and potentially exploit the properties of semi-parametric models to help build efficient

compressive learning schemes.

Below we highlight the main contributions of this chapter.

• By taking into account the unique characteristics of semi-parametric models, we reformu-

late the existing compressive learning framework to cater explicitly for such distribution-

free models. In the reformulation, the sketch A maps not from the space of distribution
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but some intermediate statistic space. As a result, the decoder recovers an object from the

intermediate statistic space that achieves minimum expect risk with respect to the model.

• A compressive generalized PCA scheme is introduced and, utilizing the reformulated

framework, we examine and compare it to the compressive ICA scheme developed in

Chapter 3 demonstrating when compression is and is not attainable. In this particular

case study, the reformulated compressive learning framework identifies when efficient

compressive learning is possible with respect to the dimensions of the model which might

not have been as easily detected by the existing formulation.

• We highlight the unique theoretical and practical advantages and disadvantages of build-

ing a compressive learning scheme for a semi-parametric model in comparison to a fully

parametrized model. For instance, as we leverage some intermediate finite statistic to

construct our sketch, the compressive learning problem typically reduces to a general-

ized finite dimensional compressive sensing problem. One can therefore leverage the

long-establish theory and techniques of compressive sensing to help develop theoretical

gaurantees and tractable decoders.

The rest of this chapter is organized as follows: In Section 4.2 we highlight the unique charac-

teristics of semi-parametric models that are not explicitly catered for in the existing compressive

learning framework. Section 4.3 reformulates the original compressive learning framework to

be explicit in the construction of a compressive semi-parametric scheme. In Section 4.4, we

provide a case study on when compressive semi-parametric learning succeeds and fails by in-

troducing a compressive generalized PCA scheme and comparing attainable compression with

the CICA scheme introduced in Chapter 3. A discussion of the advantages and disadvantages of

compressive semi-parametric learning are detailed in Section 4.5 and then conclude the chapter

in Section 4.6 with some final remarks.

4.2 Motivation

Figure 4.1 depicts a schematic of the original compressive learning framework proposed in [1].

For convenience, we recall the main properties of the framework, however see Section 2.3 for
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Figure 4.1: A schematic diagram detailing the original compressive learning framework pro-
posed in [1].

a detailed discussion. One typically designs a sketching operator A : P (X ) 7→ Cm such that

y = A (P) = Ex∼PΦ (x) . (4.1)

However, owing to finite data sample we form an empirical sketch

yN = A (PN ) =
1

N

N∑
i=1

Φ (xi) . (4.2)

Hence, given an empirical sketch yN , the goal is to recover the parameters of the distribution

via decoder, for example

θ̃ ∈ ∆ (yN ,A) . (4.3)

Typically, the decoder is made tractable by assuming some regularity assumptions to the set of

solutions of the learning task. Such assumptions are formalised via the model set of the learning

problem which is defined by

Sθ = {P ∈ P (X ) | ∃θ ∈ Θ,R (θ,P) = 0} . (4.4)

In other words, we restrict the set of solutions to distributions that achieve zero expected risk.
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As shown in Section 2.3, the cost function associated with the compressive learning model

typically reduces to

Pθ̃ = arg min
P∈Sθ

‖yN −A (P)‖22. (4.5)

The decoder in Eqn 4.5 assumes the existence of some distributional form of the model. How-

ever, in the case of semi-parametric learning tasks the model is not fully parameterized.

4.2.1 Topology of Semi-Parametric Models

Semi-parametric models form an interesting class of models which are used extensively in

machine and statistical learning tasks. In its crudest form, a semi-parametric model is one that

has no parametric constraints on the data distribution but is identifiable via a particular set of

statistics of the data distribution. A semi-parametric model can be formally described by θ,

together with a function g ∈ G, such that the model is specified by the set P (X ) ,Θ,G and the

parametrization given by [11]:

(θ, g) 7→ P(θ,g) for (θ, g) ∈ Θ× G. (4.6)

In most cases, the function g is not known a-priori nor is it sufficiently smooth to approxi-

mate [11]. Subsequently, gaining explicit access to the space of distributions is intractable.

In many instances, one can use some particular set of statistics to both identify and solve the

semi-parametric task. This is demonstrated in PCA and ICA where the covariance matrix and

cumulant tensor of the data can be used to identify each model, respectively. Throughout this

chapter we will term such statistics, which are used to solve the semi-parametric problem, as

identifiable statistics.

Let ΣP denote an identifiable statistic associated with an arbitrary semi-parametric model. An

equivalence exists between distributions in the model set and the set of identifiable statistics

which we denote by S (X ). Formally, let ∼ be the equivalence relation defined by

P ∼ Q iff ΣP = ΣQ (4.7)

for P ,Q ∈ Sθ. Due to the equivalence relation, there exists a many-to-one mapping defined
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by

ϑ : P (X ) 7→ S (X ) (4.8)

that maps the equivalence classes in the space of distributions P (X ) to a single point in the

set S (X ). Figure 4.2, illustrates the equivalence class structure of semi-parametric models and

the mapping ϑ to the set of identifiable statistics S (X ).

Figure 4.2: A schematic diagram of the probability equivalence class whereby many distribu-
tions collapse down to one point on the intermediary set of statistics.

Due to the equivalence class structure that is inherent in semi-parametric models, we lose the

luxury of injectivity between θ 7→ P that exists for parametric models. As a result, a single

distribution cannot straightforwardly be encoded by a sketch and then subsequently recovered

via a decoder.

4.3 Compressive Learning Framework for Semi-Parametric Mod-

els

To reformulate the original compressive learning framework, we assume the existence of an

identifiable statistic ΣP ∈ S (X ) calculated over the data X that can be utilized to identify

and estimate the parameters of the semi-parametric model and can therefore be used to define a

risk function. To start, we define the risk function over each equivalence class. This is possible

when there exists a map ϑ : P (X ) 7→ S (X ) satisfying

R (P , θ) = R (ϑ (P) , θ) . (4.9)

As a consequence of Eqn 4.9, the parametrization of the probability distribution is not always

required as it often suffices to have a parametrization of the statistic set S (X ). In accordance,
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we can define the semi-parametric sketch as

A (ΣP) = A (ϑ (P)) = Ex∼ϑ(P)Φ (x) (4.10)

where A : S (X ) 7→ Cm defines the semi-parametric sketching operator.

The difference between the sketching operator defined in Eqn 4.10 and the original sketching

operator in Eqn 2.61 may look at first sight quite subtle. However, notice that the sketching

operator A is now an operator acting over the space of identifiable statistics S (X ) instead of

the space of probability distributions P (X ). Moreover, the space of identifiable statistics is

typically finite dimensional which is in contrast to the infinite dimensional probability space.

Remark 5. Eqn 4.10 shows that the sketch is equal to the expectation of a feature function

with respect to the equivalence class of distributions. However, in practice we typically don’t

have access to either P or ϑ (P) and therefore computing Ex∼ϑ(P)Φ (x) is difficult and often

intractable. As will be shown in Section 4.4, we exploit structural redundancies of the set of

identifiable statistics S (X ) to construct a tractable inference scheme.

Owing to finite data samples, we define the empirical sketch yN as the sketch computed over

the finite sample statistic approximation ΣN , for example

yN = A (ΣN ) =
1

N

N∑
i=1

Φ (xi) . (4.11)

Due to the law of large numbers, the finite approximated statistic approaches the true statistic,

i.e. limN→∞ΣN = ΣP .

Provided a sketch has been computed, one must recover the sketched object to enable the es-

timation of the models parameters θ. However, in the case of compressive semi-parametric

learning, the object of interest is a finite dimensional statistic ΣP instead of a parametrized dis-

tribution P . In general, the regularity assumptions of the model set Sθ manifest into structural

redundancies of the statistic ΣP . For example, recall the compressive PCA scheme detailed in

Section 2.3.3, whereby the model set is defined as

Sk = {P | rank (Cx) ≤ K} . (4.12)

In other words, the set of distributions that are supported on aK-dimensional orthonormal basis
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induces the rank of the second order moment statistic ΣP = Cx to be at most rankK. Similarly,

we demonstrated in Chapter 3 that solutions to the ICA learning task admit a cumulant tensor

ΣP = Z that exhibits a sparse tensor decomposition. In such circumstances, one can design

decoders ∆ that recover a estimate Σ̃P by exploiting structural redundancies, i.e.

Σ̃P ∈ ∆ (yN ,A) . (4.13)

Figure 4.3 details the newly formulated compressive learning framework for semi-parametric

models.

 

Figure 4.3: A schematic diagram detailing the reformulated compressive learning framework
for semi-parametric models.

4.4 When Does Compressive Semi-Parametric Learning Work? -

A Case Study

In this Section, we provide a case study between two compressive semi-parametric schemes

that either succeed or fail to lead to substantial compression with respect to the full data X.

First, we introduce the compressive generalized principal component analysis model.
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4.4.1 Compressive Generalized Principal Component Analysis

We analyse a compressive subspace clustering scheme1 through the lens of the reformulated

compressive learning framework proposed in Section 4.3. First, we briefly detail the fundamen-

tal concepts of subspace clustering and refer the interested reader to [103, 104] for a thorough

exposition. The subspace clustering problem consists of finding the best union of subspaces

that fits a given dataset. Let us denote by x1,x2, . . . ,xN ∈ Rd the finite dataset, then subspace

clustering attempts to find n subspaces Si ⊂ Rd for i = 1, . . . , n where the dimension of each

subspace is denoted by dim (Si) = di. To make the learning task well-posed, we assume that

the number of subspaces and the associated dimensions are known in advance. The task of

subspace clustering can be seen of as an n-mixture model with data sampled from n unknown

probability distributions Pi. It is therefore straightforward to see that subspace clustering falls

within the class of semi-parametric models described in Section 4.3. Figure 4.4 depicts an ex-

ample of a set of data points that lie on the union of a plane (d1 = 2) and 2 lines (d2 = d3 = 1)

sampled from n = 3 unknown probability distributions. Subsequently, the model set to the

subspace clustering problem can be defined as

Sθ :=

{
P =

∑
i

αiPhi | rank(ΣPhi ) ≤ di,
∑
i

αi = 1 and αi > 0

}
. (4.14)

The subspace clustering problem has previously been solved through a generalised principle

component analysis (GPCA) approach [103]. Consider the specific case where the data are

distributed according to a union of two planes in R3, each one with normal vector bi ∈ R3.

The union of two planes can be expressed as a set of points [104] such that

p(x) = (bT1 x)(bT2 x) = 0. (4.15)

This equation can be reduced to the equation of a conic of the form

c1x
2
1 + c2x1x2 + c3x1x3 + c4x

2
2 + c5x2x3 + c6x

2
3 = 0. (4.16)

More generally, data drawn from the union of n d − 1 subspaces of Rd can be represented by

1This section is based on the paper [102]. It should be noted that the compressive GPCA scheme was proposed
by Antoine Gonon in an internship circa 2018.
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Figure 4.4: A set of data points in R3 drawn from a mixture of three distributions that supported
on the plane P1 (d1 = 2), the line L1 (d2 = 1) and the line L2 (d3 = 1).

the polynomial of the form

p(x) = (bT1 x)(bT2 x) . . . (bTnx) = 0, (4.17)

where the vector bi ∈ Rd is orthogonal to the corresponding subspace Si. This polynomial

is of degree n in x and can be written as cT νn(x) where c is the vector of coefficients and

νn(x) is the Veronese embedding containing all the distinct monomials of degree n in x. The

embedded point νn(x) belong to RD where

D :=

(
n+ d− 1

d− 1

)
≤ dn. (4.18)

In the case of noiseless data, the vector of coefficients c of each polynomial can be computed

from

[p(x1), . . . , p(xN )] = cT [νn(x1), . . . , νn(xN )] := cTV = 0 (4.19)

and the number of polynomials is simply the dimension of the null space of VT . The rela-

tionship between the number of subspaces n, their dimension di, the number of polynomi-
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als and therefore the null space dimension of V involves the theory of Hilbert functions (see

[105, 106]). Without going into details, we assume in this chapter that the specific makeup of

the subspaces, for instance n and di, directly characterises the dimension of the null space of

V. Indeed, computing the null space of V can be easily deduced by finding the eigendecom-

position of the correlation matrix Cν ∈ RD×D of the embedded data:

Cν := Ex∼Pνn(x)νn(x)T ≈ 1

N
VVT . (4.20)

Once the coefficients c have been determined, we can retrieve each normal vector bi directly

from c. This can be done by taking the derivatives of the polynomials at a data point x. In the

case of n subspaces, we have p(x) = (bT1 x) . . . (bTnx) and ∇p(x) ∼ bi if x ∈ Si. Using this

result, we can obtain a set of all normal vectors to Si from the derivatives of all the polynomials

at x ∈ Si. This allows us to obtain a basis Ui for Si. If we knew a data point x for each

subspace, we can recursively retrieve a basis Ui for each subspace Si. See [104] for more

details.

The correlation matrix of the Veronese embeddings in Eqn 4.20 defines the identifiable statistic

ΣP associated to the subspace clustering model2 and we can therefore apply the compressive

semi-parametric framework to it. As expected, the framework motivates us to seek structural

assumptions of the statistic set S (X ) ⊂ RD×D. In the situation of GPCA, the correlation has

rank R between 1 and D depending on the geometric makeup of the subspaces as discussed

above. In certain cases, the rank of the correlation matrix is small and therefore the degrees

of freedom are far less than the dimensions of the statistic set. In such situations, we know

that only O(DR) measurements are needed to recover Cν and therefore it is sufficient to take

m = O(DR) rank-one projections of Cν to enable stable recovery [108]. The compressive

GPCA algorithm reduces to a low-rank matrix recovery algorithm as discussed in Section 2.3.1

and therefore can be defined by the encoding-decoding pair (∆,A):

2The Veronese correlation matrix is not the only identifiable statistic of the subspace clustering problem. For
example one could add the assumption that each of the subspaces are Gaussian distributed and therefore reduce
the problem to a mixture of probabilistic PCA model. Here one could as easily use the ECF of the model as the
identifiable statistic. However, this would reduce the problem to a restrictive parametric one. See [107] for more
details.
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A : Cν ∈ RD×D 7→ (trace(aia
T
i Cν))1≤i≤m ∈ Cm

∆(yN ,A) = arg minC‖y −A (C)‖2 s.t ‖C‖∗ ≤ R
(4.21)

4.4.2 Comparison

In this section, we present a short case study on when compressive semi-parametric learning

succeeds and when it does not by comparing the compressive ICA scheme introduced in Chap-

ter 3 and the compressive GPCA method that was introduced in Section 4.4.1. Both learning

tasks are semi-parametric and follow the reformulated compressive learning framework set out

in Section 4.3 due to their reliance on an identifiable statistic ΣP to infer the parameters θ

of the model. When does compressive semi-parametric learning actually work? To quantify

this, we compare the size of the sketch m with the size of the full data matrix O(Nd) as the

complexities associated with inference rely on these dimensions.

Recall from Chapter 3 that in the compressive ICA scheme, a sketch of size O(n2) suffices to

accurately infer the parameters of the ICA model where n is the number of independent com-

ponents. For simplicity let’s assume the scenario where n = d. Then compression is achieved

if and only if O
(
d2
)
≤ O (Nd). Subsequently, compressive semi-parametric learning attains

compression when

d . N. (4.22)

It is straightforward to see that, in the vast majority of cases, the compressive ICA scheme leads

to substantial compression.

Next we focus on the compressive GPCA scheme introduced in Section 4.4.1. The sketch is

of size O (DR) which depends on the rank R of the correlation matrix ΣP ∈ RD×D. We

therefore require

DR . Nd (4.23)

for compression to be attainable. To contextualise Eqn 4.23, let the rank R = αD for 0 < α ≤

1 and from Eqn 4.18 note that D ≤ dn. Then it can be seen that compression is achieved when

α . Nd−2n+1. (4.24)

In comparison to Eqn 4.22, it is not as abundantly clear when a compressive GPCA scheme
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would lead to compression with respect to using the full data. To illustrate in real terms when

compression is possible, we compute the compression ratio DR
Nd for a fixed signal length of

N = 100000 and vary the feature dimension d and the number of subspaces n. Figure 4.5

demonstrates the regions of attainable compression for different values of rank R = αD for

α = 0.05 and α = 0.8 which represent a low-rank and high-rank correlation matrix, respec-

tively. The size of the sketch is set at m = 2αD2 as recommended in the low-rank matrix

recovery literature [35, 109]. A compression ratio of DR
Nd ≥ 1 indicates the sketch achieves no

compression. Even for a moderately large data length of N = 100000, one can see that the

compressive GPCA scheme achieves compression in comparison to the full data matrix X for

only relatively modest sizes of n and d. Consequently, compressive semi-parametric learning

does not always achieve reductions in complexity.
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Figure 4.5: The compression ratio DR
Nd for compressive GPCA for a rank of R = 0.05D (top)

and R = 0.8D (bottom).

4.5 Discussion

In Section 4.4, we demonstrated that compressive semi-parametric learning does not always

achieve compression, depending on the learning task. This is due in part to the reliance of

an identifiable statistic that allows the parameters of the model to be estimated as presented
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in the reformulated compressive learning framework in Section 4.3. In the case of GPCA, we

leverage the correlation matrix of the Veronese embeddings Cν ∈ RD×D where D has an

exponential dependency on the model set’s dimensions d and n. The regularity assumptions of

the GPCA model set in Eqn 4.4 manifest structurally as a low-rank Veronese correlation matrix,

therefore the sketch size exhibits a similar exponential dependency, i.e. m = O
(
αD2

)
, and

subsequently compression is only attained for modest sized model dimensions. In some cases,

a semi-parametric model may not admit a finite dimensional identifiable statistic, which makes

forming a compressive scheme very difficult.

On the other hand, we have observed successful semi-parametric learning schemes in the form

of compressive PCA, as discussed in Section 2.3.3, and compressive ICA that was introduced

in Chapter 3. The former method leverages the space of covariance matrices Cx ∈ Rd×d to

infer the PCA model parameters and requires only a sketch of size m = O (Kd) where K is

the number of subspaces (i.e. the rank of the covariance matrix). The latter method utilizes the

set of 4th order cumulant tensors Z ∈ C and requires only a sketch of size m = O
(
n2
)
, In

both instances, the sketch has only a quadratic dependency on the model’s dimensions. Table

4.1 summarises the properties of the PCA, ICA and GPCA models that have been discussed

in this thesis. In its current formulation, the success of a compressive semi-parametric model

hinges on the existence of an identifiable statistic that has a structure and degrees of freedom

that scale in a reasonable manner with respect to the model set dimensions. From a geometric

perspective, we seek

dim (S (X )) = O (dim (Sθ)) . (4.25)

In other words, the dimension of the identifiable statistic space should be of the order of the

dimension of the model set.

Semi-Parametric Compressive Learning Models
Model Stat. Hypothesis Identifiable Statistic Structural Redundancy Sketch Size

PCA
Data lies on a K-dim.
orthogonal subspace

Covariance matrix Cx Low rank - K O(Kd)

ICA
Data is a mixture
of n independent components

Cumulant tensor Sparse tensor decomp. O(n2)

GPCA
Data lies on a union of n
subspaces of dim. di

Veronese Correlation
matrix Cν

Low rank - R O(RD)

Table 4.1: A summary of the current semi-parametric compressive learning models and their
properties.

That being said, a compressive semi-parametric scheme exhibits some favourable advantages
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compared to its parametric counterpart. The main one being that the identifiable statistic acts

as an intermediary sketch in its own right by forming a map from an infinite dimensional prob-

ability space to a typically finite dimensional statistic space S (X ) as depicted in Figure 4.6.

Thereby, the compressive learning task reduces to a finite dimensional compressive sensing

problem (see Section 2.3.1) where we can use a host of long-established tools to design tractable

decoders and prove theoretical results, for example the restricted isometry property. Moreover,

instead of designing intricate parametric sketching operators like RFFs which may require cross

validation tuning, one can use very general randomized linear algebra techniques, for example

subgaussian matrices or fast JL transforms, to build simple semi-parametric sketching opera-

tors.

  

Parametric Compressive Learning Semi-Parametric Compressive Learning

 

 
  

 
 

Figure 4.6: A schematic diagram of parametric compressive learning (left) and semi-
parametric compressive learning (right).

4.6 Concluding Remarks

In this chapter, we proposed a reformulation of the original compressive learning framework

that caters explicitly for the class of semi-parametric models. By leveraging an identifiable

statistic associated with the semi-parametric model, we demonstrated that the compressive

learning task reduces down to a finite compressive sensing problem where we instead attempt

to sketch and then subsequently recover a statistic which has particular structure. We analysed

the compressive subspace problem through the lens of the reformulated framework which high-

lighted that there may be instances where the summary statistic cannot always be effectively

sketched. However there are also instances (e.g. compressive ICA) where the summary statistic

can be effectively sketched, leading to significant compression. Future directions of research

on compressive semi-parametric learning are discussed further in Chapter 7.
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Chapter 5
A Sketching Framework for Single

Photon Counting Lidar

5.1 Introduction

Part I of this thesis concentrated on the theory and design of new compressive learning models

specifically for the class of semi-parametric learning. Here in Part II, we focus on the appli-

cations of compressive learning, in particular, 3D depth imaging. As introduced in Section

2.5, single-photon counting lidar is an important tool in 3D depth imaging that can offer high

temporal resolution over long range scenes. At the core of the technique is the ability to emit

a pulse of light at a target using eye-safe lasers and then subsequently record the time-stamp

of each individual photon that is detected by the single photon avalanche diode (SPAD). Over

several clock cycles, a time correlated single photon counting (TCSPC) histogram is accumu-

lated for each pixel in the field of view. An example of a TCSPC histogram for a given pixel

is depicted in the left hand side of Figure 5.1 which counts the number of photons detected

per histogram bin of time-interval ∆τ , where τ denotes the physical time-stamp over a given

acquisition time. In general, a peak in the histogram implies the presence of a surface or object

in the line of sight. Using the speed of light, we can simply convert the timing location of the

peak(s) to determine the distance from the lidar device to the target.

In recent years, the rapid development of high rate, high resolution, low power ToF image

sensors has caused a severe data transfer and processing bottleneck within the lidar device as a

high resolution TCSPC histogram needs to be stored on chip or transferred off-chip for posterior

depth estimation and other downstream tasks. As an example, take a high rate, high resolution

lidar device capable of imaging a scene containing 256×256 pixels at a frame rate of 30 frames

per second (fps). Then assuming the clock cycle of the laser (see Section 1.5) is discretized over

T = 2000 time-stamp intervals where each TCSPC histogram is of 16 bit precision, then the

lidar device would require a data transfer rate of 7.8 GB per second. Many techniques have been

proposed to tackle the data transfer bottleneck of modern day lidar devices (see Section 2.5).
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One of the most prominent of those is that of coarse binning which pools together adjacent time-

stamp bins to form a coarse TCSPC histogram which requires less memory than the original

TCSPC histogram (we delay formal definition until Section 5.3.3). The right hand side of

Figure 5.1 shows an original TCSPC histogram coarsely binned into 50 timing bins. However,

the compression achieved by coarse binning comes at the cost of losing the fine-grain temporal

resolution provided by the original TCSPC histogram. Figure 5.2 demonstrates the loss of

resolution incurred by estimating the depth and intensity parameters of the lidar observation

model when estimated using the coarser histogram of 50 bins. As a consequence, the method

of coarse binning forms a trade-off between compression and temporal resolution which is also

inherent in the proposed schemes discussed in Section 2.5.

Figure 5.1: An original zoomed in (around the target) TCSPC histogram with T = 4613 bins
(left) and the coarse version of 50 bins (right)

In this chapter, we propose a novel solution to this bottleneck of existing lidar techniques by

calculating an on-the-fly sketch based on samples of the characteristic function of the ToF

model. The size of the sketch scales with the degrees of freedom of the ToF model (i.e. number

of objects in depth) and not with the number of photons or the fineness of the time resolution,

without sacrificing precision in depth. The sketch can be computed for each incoming photon

in an online fashion, only requiring a minimal amount of additional computation which can be

performed efficiently on-chip. The sketch can be shown to capture all the salient information of

the histogram, including the ability to explicitly remove background light or dark count effects,

in a compact and data-efficient form, suitable for both on-chip processing or off-chip post

processing. Furthermore, we develop a compressive lidar image reconstruction algorithm which
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Figure 5.2: The ground truth 3D depth image of a polystyrene head (left) and reconstruction
using 50 coarse bins (right). The coarse binning method suffers from the staircase effect.

has computational complexity dependent only on the size of the sketch. Our proposed method

paves the way for high accuracy 3D imaging at fast frame rates with low power consumption.

In summary the main contributions of the chapter are as follows:

• We propose a principled approach for compressing time-of-flight information in an online

fashion without the requirement to form a histogram and without compromising depth

resolution.

• A compressive single-photon lidar algorithm, named sketched maximum likelihood esti-

mation (SMLE), is proposed which does not scale with either the number of photons or

the time-stamp resolution in terms of space and time complexity.

• The statistical efficiency, given a compression rate (or sketch size), is quantified for dif-

ferent single-photon lidar scenarios, showing that only limited measurements of the char-

acteristic function are needed to achieve negligible information loss.

• We analyse the performance of our proposed SMLE algorithm on both real and synthetic

datasets and demonstrate the compression attained over other competitive techniques.

This chapter is based of the work in [110] that appeared in the IEEE Transactions on Compu-

tational Imaging. The remainder of the work is organized as follows. In Section 5.2 we detail

the construction of the sketch using two different sampling schemes and we further demon-

strate how our sketched lidar approach can be implemented in an online processing manner.

In Section 5.3 we detail our proposed compressive single-photon reconstruction algorithm that
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has computational complexity which scales with the sketch size m as well as quantifying the

statistical efficiency of the estimated parameters θ. Results of the compressive lidar framework

are analysed on both synthetic and real datasets in Section 5.4. Section 5.5 finally summarizes

the chapter with some concluding remarks.

5.2 Sketched Lidar

We start this section with a warm up example to highlight the potential of using a sketch for

single-photon lidar and to motivate the design of the sketch sampling procedure which will

be discussed in Section 5.2.2. Before we do so, let’s recall the lidar observation model from

Section 2.5 where we assume there are K distinct reflecting surfaces within a given pixel.

Denote by αk and α0 the probability that the detected photon originated from the kth surface

and background sources, respectively and assume that for a single pixel, a total of N photons

are detected during the whole acquisition window of the lidar device. Moreover, let τ denote the

physical time-stamp such that the discretized time-stamp is denoted t = τ
∆τ . The time-stamp

xp of the pth photon where 1 ≤ p ≤ N can therefore be described by a mixture distribution

[64]

P(xp|α0, ..., αK , t1, ..., tK) =
K∑
k=1

αkPs(xp|tk) + α0Pb(xp), (5.1)

where tk denotes the discretized time-stamp of kth surface, αk denotes probability that the

detected photon originated from the kth surface and α0 denotes the probability that the detected

photon originated from background sources. In addition,
∑K

k=0 αk = 1. The distribution of the

photons originating from the signal and background are defined by the distribution Ps(xp|t) =

h(xp − t)/H and the uniform distribution Pb(xp) = 1/T over [0, 1, . . . , T − 1] , respectively.

Recall that h denotes the impulse response function of the system that can either be modelled

or approximated via data-driven techniques and H =
∑T−1

t=0 h(t) denotes the integral of the

impulse response over the whole clock cycle.

5.2.1 Compressing Single Depth Data

In the absence of photons originating from background sources and the presence of a single

surface or object, the sample mean of all the photon time-stamps (Φ(x) = x) is the simplest

summary statistic for estimating a single location parameter t1. This only holds in the noiseless
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case as the sample mean estimate is heavily biased toward the centre of the histogram when

background photons are detected.

Suppose, we instead observe the cosine and sine of each photon count xwith angular frequency

ω = 2π
T , namely

Φ(x) =

cos
(

2πx
T

)
sin
(

2πx
T

)
 , (5.2)

and denote yN the real valued sketch of size 2 (m = 1) computed over the dataset X as in Eqn

2.63. It is possible to recover an estimate of the single depth location parameter t1 directly from

the sketch via the trigonometric sample mean

t̂1 =
T

2π
phase


N∑
j=1

cos

(
2πxj
T

)
+ i

N∑
j=1

sin

(
2πxj
T

) (5.3)

where phase denotes the phasor angle. As the background photons are distributed uniformly

over the interval [0, T − 1] (Pb(x) = 1
T ), the expected moment of the photons originating

from background sources is zero, Ex∼PbΦ(x) = 0. The resulting estimate of the single depth

parameter t̂1 is therefore an unbiased estimator (see Definition 2) of the location parameter t1.

The estimator in Eqn 5.3 coincides with the circular mean estimator detailed in [111]. Here the

circular mean requires the first (non-zero) frequency.

We summarise the above using a simulated example, where a pixel of T = 1000 histogram

bins with a detection point1 signal-to-background ratio (SBR), defined as 1−α0
α0

, of 1 and a

total of N = 600 photons is simulated, where the time-stamp of each photon is denoted by

X = {xi}Ni=1. The data was simulated using a Gaussian impulse response function with σ = 15

and a true position at time-stamp t1 = 320. Computing the sketch yN using the moment func-

tion from Eqn 5.2 and the associated circular mean estimate in Eqn 5.3, we obtain the sketch

estimate t̂cm = 323.3 and the sample mean estimate of t̂ = 434.1. The TCSPC histogram

along with both the circular and standard mean estimates as well as the location parameter t1

are shown in Figure 5.3 where it is evident that the circular mean estimate does not suffer from

the noise bias inherent in the sample mean.

Importantly, the sketch formed using the moment in Eqn 5.2 is equivalent to the complex valued

1Throughout the thesis, we consider the detection point SBR and not the raw sensor SBR which can be much
lower in practice [112]
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Figure 5.3: The TCSPC histogram with t1 = 320. The circular mean estimate (yellow) and the
standard mean estimate (red) superimposed.

ECF sketch (see Section 2.3.2.3)

yN =
1

N

N∑
j=1

eiωxj ∈ C, (5.4)

sampled at the point ω = 2π
T and decoupled into both its real and imaginary components. In

other words, we sample the empirical characteristic function (ECF) at the frequency ω = 2π
T .

For the observation model defined in Eqn 5.1 and given a discrete impulse response function h,

the characteristic function of the observation model is defined as

ΨP(ω) =
K∑
k=1

αkΨPs(ω) + α0ΨPb(ω)

=

K∑
k=1

αkĥ(ω)eiωtk + α0DT−1
2

(ω)

(5.5)

whereDn(ω) = sin((n+1/2)ω)
2π sin(ω/2) is the Dirichlet kernel function [113] and ĥ denotes the (discrete)

Fourier transform of the impulse response function h. Straightaway, we see why the choice

ω = 2π
T leads to an unbiased estimator: as DT−1

2
(ω) = 0, the characteristic function ΨP is

sampled at a point where the background photon’s component (i.e. the noise) is zero. In fact,

the estimate t̂1 in Eqn 5.3 is the optimal estimator to the compressive ECF sketch detailed in

Eqn 2.16 (see Appendix 5.A).

Principally, we only need to store and transfer 2 values to accurately estimate the depth location

of the object or surface, without the requirement to recourse to the original photon time-stamped
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data. For the remainder of this section, we generalize the approach of forming a sketch of

arbitrary size and sampling the ECF at multiple frequencies [ωi]
m
i=1. This will enable us to

obtain statistically efficient estimates for the single surface case and to solve more complex

lidar scenes including several surfaces with varying intensities where more salient information

of the observation model is required.

5.2.2 Sampling the ECF

Recall that the observation model in Eqn 5.1 is discretized over the interval [0, T − 1] which

we can consider to be a sufficient sampling if the distribution in Eqn 5.1 is approximately

bandlimited. As a result, the characteristic function ΨP(ω) has a finite basis characterized by

the set of frequencies {
2πj

T

∣∣∣∣ j = 0, 1, . . . , T − 1

}
. (5.6)

We can generalise the approach from Section 5.2.1 by sampling multiple frequencies from

the finite basis in order to construct the ECF sketch. As is the case for the circular mean,

the frequencies ω = 2πj
T for j = 1, 2, . . . , T − 1 correspond to the zeros in the Dirichlet

kernel function associated with the background pdf Pb. We can therefore construct a sketch

of arbitrary dimension m that is also blind to photons originating from background sources

by avoiding the zero frequency ω = 0 of the finite basis. As a result, we define the set of

orthogonal frequencies by

Ω :=

{
ωj =

2πj

T

∣∣∣∣ j = 1, 2, . . . , T − 1

}
. (5.7)

We coin this set the orthogonal frequencies as it defines regions over the interval of the ob-

servation model’s characteristic function where the signal’s contribution is orthogonal to the

background’s contribution.

In order to construct a sketch, we are ultimately interested in retaining sufficient salient in-

formation of the characteristic function ΨP such that we can identify and estimate the unique

location and intensity parameters θ of the observation model P(x; θ) defined in Eqn 5.1. It

was discussed in Section 2.1.3.1 that the CF of a probability distribution decays in frequency,

i.e. ΨP(ω) → 0 as ω → ∞. Furthermore, as the observation model is discretized over the

interval, we assume that the characteristic function of the observation model is approximately

band-limited. A natural sampling scheme would therefore be to sample the first m frequencies
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of the orthogonal frequencies Ω to capture the maximum energy of the CF. In other words, we

could truncate the CF of the observation model whilst avoiding the zero frequency.

Alternatively, in [1, 114], provable guarantees for estimating mixture of Gaussian models have

been provided, under certain conditions based on random sampling (see Section 2.3.1) of the

CF. It is understood that the higher frequencies of the CF may provide further information to

help discriminate distributions that are close in probability space. Moreover, if the CF decays

slowly in frequency then the energy of the CF will be spread more throughout the set of orthog-

onal frequencies. We therefore provide an alternative sampling scheme whereby we randomly

sample the set of orthogonal frequencies with respect to some sampling law Λ. In a similar de-

sign to the frequency sampling pattern proposed in [46], we sample the orthogonal frequencies

by

(ω1, ω2, . . . , ωm) ∼ Λĥ, (5.8)

where Λĥ ∝ ĥ. To formalize, we consider the following sampling schemes in order to construct

our ECF sketches:

1. Truncated Orthogonal Sampling: Sample the first m frequencies i.e. j = 1, 2, . . . ,m

from Ω.

2. Random Orthogonal Sampling: Sample the set of frequencies randomly, governed by the

distributing law Λĥ.

Depending on the circumstances of the lidar device we might expect one or the other sampling

scheme to perform better.

5.2.3 Practical Hardware Considerations

As it was discussed in Section 2.3.4, one of the major advantages of forming a sketch yN

is that it is naturally amenable to online processing. Recall that for an arbitrary pixel in the

scene, the resulting sketch that can be transferred off-chip is yN = 1
N

∑N
i=1 Φ(xi). Algorithm

4 demonstrates how the sketch for a given pixel is updated in real time during an acquisition

window whereN photons are detected by the SPAD array. For each photon arrival xj during the

acquisition window, an intermediate sketch is accumulated as well as an integer counter. Once

the acquisition window is over, the resulting sketch is transferred off-chip for post-processing.
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Algorithm 4 Sketch Online Processing

Initialisation: yN = 0, N = 0
while Acquisition Window do

if New Photon Arrival xj then
yN ←− yN + Φ(xj)
N ←− N + 1

end if
end while
yN ←− yN/N

Ensure: The sketch yN is transferred off-chip for post-processing.

This is very beneficial as all that is needed to be stored on-chip is the sketch yN of size 2m and

an integer counter. As such, forming the sketch in an online processing manner, as in Algorithm

4, circumvents the need to compute and store a large histogram or store each individual photon

time-stamp. Algorithm 4 is a similar to the NEWMA algorithm proposed by Keriven in [115]

that efficiently computed the sketch in an online fashion. It should be noted that no further

hardware is required to form the sketch and existing lidar devices can be easily adapted to

implement our proposed technique.

The computation of the sketch itself requires the calculation of the Fourier features

(i.e. cos(2πωj/T ) and sin(2πωj/T )) which would have to be computed in real time for each

time-stamp. However, various efficient logic-based schemes already exist for performing such

computations [116] based on either the classic CORDIC algorithms or polynomial approxima-

tions. Alternatively, in [117], Schellekens et al. show that in principle one can also replace

the Fourier features by alternative periodic functions (e.g. square waves or triangle waves) in

conjunction with random dithering. Subsequently, we will assume that we have access to suf-

ficiently accurate sketch values for the remainder of the chapter and leave analysis of sketches

constructed with limited fixed precision to Section 5.4.4.

5.3 Sketched Lidar Reconstruction

5.3.1 Statistical Estimation

Once the ECF sketch is constructed using either sampling scheme, we must estimate the pa-

rameters θ of the observation model P(x; θ) solely from the sketch yN . In general, there is no

closed form expression to estimate θ from the sketch of arbitrary size in contrast to the circular

mean estimate in Eqn 5.3. It can be shown [118] that a complex valued ECF sketch yN of size
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m, computed over a finite dataset X = {x1, . . . , xN}, satisfies the central limit theorem (see

Section 2.2.2). Formally, a sketch yN ∈ Cm converges asymptotically to a Gaussian random

variable

yN
dist−−→ N

(
[ΨP(ωj)]

m
j=1 , N

−1Σθ

)
, (5.9)

where Σθ ∈ Cm×m is a circulant matrix that has entries (Σθ)ij = ΨP(ωi−ωj)−ΨP(ωi)ΨP(−ωj)

for i, j = 1, 2, . . . ,m. The asymptotic normality result in Eqn 5.9 naturally leads to a sketch

maximum likelihood estimation (SMLE) algorithm that consists of minimising the following

arg min
θ

m

2
log det(Σθ) +N(yN − yθ)

TΣ−1
θ (yN − yθ), (5.10)

where for convenience we denote yθ = [ΨP(ωj)]
m
j=1. For an observation model consisting of

K surfaces and a general impulse response function h, recall that

yθ =

[
K∑
k=1

αkĥ(ωj)e
iωjtk

]m
j=1

(5.11)

and θ = (α0, α1, . . . , αK , t1, . . . , tK). Note that we have dropped the Dirichlet kernel function

in Eqn 5.5 on the assumption that we are using one of the proposed sampling schemes. Min-

imising Eqn 5.10 is approximately equivalent2 to minimising the compressive GeMM objective

function

θ̂ = arg min
θ
‖yN − Ex∼PΦ(x)‖2W, (5.12)

with the weighting function chosen to be W = Σ−1
θ . The weighting matrix W = Σ−1

θ is

asymptotically optimal in the sense that it minimises the variance of the estimator θ̂ from the

sketch yN [23] (see Section 2.1).

In practice Σθ is θ dependent as it is a function of the underlying parameters θ that are to be es-

timated. There are various well established methods in the GeMM and ECF literature [22, 23]

that tackle the difficulty of approximating Σθ and estimating θ simultaneously. In [119], they

use the K-L method which iteratively estimates Σθ and θ in a two stage procedure by fixing and

updating one at a time. One can exploit the circulant structure of Σθ to compute the inversion

W = Σ−1
θ in a computation complexity of O (m logm). Some particular methods [120] fix

Σθ after only a few iterations of the K-L approach to reduce the computational complexity of

2Note that we have dropped the log det(Σθ) term from Eqn 5.1 as in practice it has a negligible affect on the
optimization landscape.
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the algorithm, although this typically comes at the cost of introducing sample bias [121]. Occa-

sionally, the covariance matrix is set throughout to be the identity, Σθ = I , reducing Eqn 5.10 to

a standard least squares optimization and a computational complexity of O (m), however this

generally results in a less statistically efficient estimator θ̂ [22]. In this chapter, we estimate Σθ

and θ simultaneously at each iteration. This approach is commonly referred to as Continuous

Updating Estimator (CUE) [120] and obtains estimates that do not produce sample bias like the

two-step K-L approach [121] and can often lead to more statistically efficient estimators [22].

However, the SMLE method is not restricted to the CUE and in certain situations practitioners

may choose to sacrifice unbiased and efficiently optimal estimators for a reduced computational

complexity by considering the other methods discussed.

The optimisation problem in Eqn 5.10 is also typically non convex and can suffer from spurious

local minima. For the case when there is only a single surface, we initialise the SMLE algo-

rithm using the analytic circular mean solution in Eqn 5.3 with minimal added computational

overhead. From our experience with synthetic and real data, the circular mean estimate gen-

erally initialises the SMLE algorithm within the basin of the global minima, hence the issues

associated with non-convex optimization are circumvented. For the case of multiple surfaces,

we form a coarse uniform grid across [0, T − 1]K and initialise at the smallest SMLE loss.

Remark 6. In the orthogonal sampling scheme, one could alternatively zero-pad the sketch,

perform an inverse FFT (iFFT) and find the maximum peak to estimate the depth position of the

surface. However, this approach is fundamentally different to that of the orthogonal truncated

sketch as the iFFT method is simply a low pass approximation of the TCSPC histogram whereas

the proposed SMLE algorithm performs nonlinear parameter fitting. As a result, the iFFT

method will be particularly inaccurate at distinguishing between closely spaced reflectors. In

contrast to the proposed sketched lidar acquisition, the iFFT method does not take into account

the particular nature of the IRF and achieves poor depth accuracy in the presence of a non-

symmetric IRF (see Appendix 5.C). Furthermore, the iFFT approach requires O(T ) off-chip

memory complexity in comparison to O(m) of our proposed SMLE algorithm.

5.3.2 Central Limit Theorem

One of the main advantages of the SMLE lidar approach from Eqn 5.9 is that even at low photon

levels (i.e. small N ), the SMLE estimates quickly follow the central limit theorem (CLT) (see

Section 2.2.2) and provide a good approximation of its expectation. In contrast, the TCSPC
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histogram used for many estimation methods, discussed in Section 2.5, is a poor approximation

to its expectation as each time-stamp bin t has only a small number of photons. Thus efficient

processing of the full histogram data requires careful consideration of the underlying Poisson

statistics [122]. This is illustrated in Figure 5.4 which shows four separate histograms of the

error (t̂ − t1) for increasing photon count N , along with the asymptotic Gaussian distribution

from Eqn 5.9. The estimate t̂was obtained from a real valued sketch of size 2 (m = 1) using the

circular mean estimate in Eqn 5.3. The simulated data was the same as the motivation example

in Section 5.2.1 where a Gaussian IRF with σ = 15 was used. The SBR was set at 1 and the

total number of time-stamps was T = 1000. The total photon count varied from N = 10

to N = 10000 increasing by a factor of 10 each time. For each photon count, we estimated

the location parameter t1 a total of 1000 times where the data X = {xi}mi=1 was simulated

independently for each trial.

Even at extremely low photon counts of N = 10, the error (t̂ − t1) can be reasonably ap-

proximated by a Gaussian random variable centred around 0. This suggests that the estimate t̂

quickly satisfies the CLT with respect to the photon count N . Further analysis of the proposed

SMLE algorithm in the photon starved regime can be seen in Appendix 5.B. In the large pho-

ton regime (N = 10000), the estimation error is concentrated tightly around zero and mostly

contained within 5 time-stamps. These results suggest that the sketched lidar CLT results of

Eqn 5.9 hold even for low photons levels, hence the SMLE loss in Eqn 5.10 is a well-justified

loss to minimise. A further potential benefit from this asymptotic normality is that it permits

us to directly use plug-and-play Gaussian denoising algorithms to further improve the imaging

performance [3, 123] which will be demonstrated in Chapter 6.

5.3.3 Statistical Efficiency

In this section, we calculate the theoretical statistical efficiency of the sketched lidar estimates,

θ, that parametrize the observation model P(x; θ) in Eqn 5.1, and compare them with the

estimates obtained using the full data (i.e. no compression) using the relative error percentage.

The relative error percentage, which will be defined later, is a key metric allowing us to quantify

the relative loss of information given a sketch of sizem from a statistical point of view. For sake

of fair comparison to existing hardware implemented methods in the literature, the results and

figures presented represent a sketch of size 2m where the real and imaginary components of the

complex ECF sketch are stacked on top of each other to form an equivalent sketch consisting
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Figure 5.4: Histograms of the estimation error (t̂ − t1) for increasing photon count N where
the sketched lidar estimate (circular mean) is denoted by t̂. The expected error distribution in
Eqn 5.9 is depicted in red.

of 2m real valued measurements.

It was discussed in Section 2.2.3 that the statistical efficiency is a measure of the variability or

quality of an unbiased estimator θ̂ [20]. The Cramér-Rao bound gives a lower bound on the

mean squared error of θ̂ [21] and therefore provides a best case scenario on the variability of

the parameter estimates. Given the observation model P(x; θ) and the corresponding Fisher

information matrix (FIM), defined here as

Idata(θ) := NE

[(
∂ logP(x; θ)

∂θ

)2]
, (5.13)

then the optimal Cramér-Rao mean squared error, in terms of the full data, is defined as

RMSEN :=

√√√√ 2K∑
k=1

[Idata(θ)−1]{kk}. (5.14)

Equivalently, we can compute the FIM for the sketched case using the normality result stated

in Eqn 5.9, where the FIM of a multivariate Gaussian distribution [21] is defined as

(
Isketch(θ)

)
ij

:= N
∂yθ
∂θi

Σ−1
θ0

∂yθ
∂θj

, (5.15)

where yθ is the expected sketch defined in Eqn 5.11. Similarly, we define the optimal sketched
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Cramér-Rao mean squared error as

RMSEm :=

√√√√ 2K∑
k=1

[Isketch(θ)−1]{kk}. (5.16)

To quantify the statistical efficiency of an estimate obtained from a real valued sketch of size

2m, we use the relative error percentage (REP) metric which compares the optimal sketch root

mean squared error RMSEm with the corresponding full data root mean squared error RMSEN ,

defined by

REP := 100

(
RMSEm − RMSEN

RMSEN

)
. (5.17)

Notably, the FIM of the sketched statistic in Eqn 5.15 scales with N , hence the REP metric

is independent of the photon count. We compare the statistical efficiency of the sketched lidar

estimates to the alternative compression technique of coarse binning [65] discussed at the start

of this chapter in Section 5.1. The coarse binning approach can be seen to be equivalent to

constructing a summary statistic

z̃n =

N∑
i=1

{
1[(j−1)∆m̃,j∆m̃](xi)

}m̃
j=1

, (5.18)

where ∆m̃ =
⌈
T
m̃

⌉
denotes the down-sampling factor, m̃ denotes the number of measurements

equivalent to the real-valued sketch size (i.e. m̃ = 2m) and 1[ti,ti+∆m̃](x) is the indicator

function defined as

1[(j−1)∆m̃,j∆m̃](x) :=

1 if x ∈
[
(j − 1)∆m̃, j∆m̃

)
,

0 Otherwise.
(5.19)

Once the coarse binning sketch has been constructed, traditional estimation methods, for e.g

cross correlation [124] or expectation maximization [10], can be employed to estimate the

parameters of the observation model.

Lidar scenes typically have only 0, 1 or 2 reflectors in the scene, although in some specific

applications, for example airborne lidar [125], tree-canopy foliage can return K > 2 reflectors.

Our proposed method can handle greater number of reflections, however in the following ex-

periments we only consider the typical case where K = 1, 2. Moreover, we choose the setting

of the lidar scene (e.g. binning resolution, peak location, intensity) to best replicate a realistic
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Figure 5.5: The CF (top) of a short (blue solid) and long (red dashed) tailed impulse response
function (bottom).

setting as seen in Section 5.4.3. In each experiment, we consider two different impulse response

functions (IRF), exhibiting both a short and long-tail. Figure 5.5 depicts the contrasting IRFs

and the magnitude of their corresponding characteristic functions, ΨPs(ω) = ĥ(ω)eiωt. We

evaluate the statistical efficiency of the sketched and coarse binning estimate using the REP as

a function of the number of real measurements 2m and examine both the random and truncated

orthogonal sampling schemes discussed in Section 5.2.2.

5.3.3.1 One Surface

We first evaluate the REP for a single peak case positioned at t1 = 430, a window size of

T = 1000. We consider both low and high background photon count levels, where the SBR

was set at 10 and 1, respectively. Figure 5.6 shows the REP metric as a function of the number of

real measurements 2m for the truncated orthogonal (blue), random orthogonal (red) and coarse

binning (orange) compression techniques, where the high (SBR=10) and low (SBR=1) back-

ground photon levels are denoted by a solid and dashed line, respectively. The top and bottom

plots depict the short and long-tailed IRF, accordingly. We first observe that both sketched lidar

sampling schemes approach a REP of 0% as the real measurements increase and only a modest

number of measurements is needed to obtain a low REP. In contrast, the coarse binning ap-

proach exhibits a slow convergence REP and remains high throughout the measurement range.

Importantly, we see that the different sketch sampling schemes outperform each other depend-

ing on the tail of the IRF and hence the rate of decay of the CF. For instance, the truncated

scheme produces a lower REP for the short-tailed IRF, while the random sampling scheme
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achieves a quicker convergence and a significantly lower REP throughout the measurement

range for the long-tailed IRF. This can be explained by Figure 5.5, the CF of the short-tailed

IRF has the majority of its energy contained within the first few (m = 10) frequencies, while

the CF of the long-tailed IRF has its energy spread more throughout its frequency.
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Figure 5.6: The REP as a function of the number of real measurements (2m) for a single peak
lidar scene.

5.3.3.2 Two Surfaces

We now evaluate the REP for a two peak case positioned at (t1, t2) = (320, 570), a window size

of T = 1000. The intensity of the two peaks is given by 75% and 25%, respectively, simulating

an object that is positioned behind a semi-transparent surface. We simulate both low and high

background levels, where the SBR was again set at 10 and 1, respectively. Figure 5.7 shows the

REP metric as a function of the number of real measurements 2m for the truncated orthogonal

(blue), random orthogonal (red) and coarse binning (orange) compression techniques, where the

high (SBR=10) and low (SBR=1) background photon levels are denoted by a solid and dashed

line, respectively. The top and bottom plots depict the short and long-tailed IRF, accordingly.

We see the same pattern as the single surface case where the REP remains high for the coarse

binning compression technique while, in contrast, the sketched lidar converges towards a rel-
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atively low REP in a modest number of measurements. We again observe that the truncated

scheme performs best on a fast decaying CF, while the random sampling scheme outperforms

the truncated counterpart when there is a slow decaying CF. The doubling of the dimension

of the parameter θ by estimating two peaks and intensities, does not have a significant impact

on the required number of measurements needed to achieve a relatively low REP. For instance

in the high SBR (solid) scenario, the truncated orthogonal sampling scheme requires 20 real

measurements (m = 10) to achieve a REP less than 1% for the unimodal case compared with

a requirement of 24 real measurements (m = 12) to achieve the same level of REP for the

bimodal case. These theoretical results on the statistical efficiency of the lidar sketch show that

only a moderate sketch size is needed to achieve negligible loss of information. The results are

based on the asymptotic normality property discussed in Eqn 5.9, and we have seen in Section

5.4.2 that in practice this normality result holds even for small photon counts of N = 10.
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Figure 5.7: The REP as a function of the number of real measurements (2m) for a lidar scene
with 2 surfaces.

In coarse binning, it can be beneficial to broaden the impulse response (while keeping laser

power constant) such that it covers more than a single coarse bin. This strategy can achieve

(coarse) sub-bin resolution (see for example [126]). Furthermore, Gyongy et al. [126] proposed
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an algorithm that estimates the depth position continuously under the restricted assumption of

a Gaussian IRF, in contrast to quantization limited cross correlation [124]. We further compare

our proposed sketched lidar method to the wide pulse width coarse binning and algorithm used

in [126] for a range of SBR values. In the simulation, the photon count was set at N = 100

and a Gaussian IRF was used. For the wide pulse width, we replicate the lidar device by setting

σ1 = 0.4. To compare with the narrow pulse width settings, we set σ2 = 5. In both scenarios,

a total of 2m = 16 coarse bins are used. For our proposed SMLE algorithm, we compare the

same compression be taking a (real-valued) sketch of size 16 (m = 8). We evaluate the depth

estimation over SBR values ranging between 10−1 to 102 for 250 Monte-Carlo simulations.

The coarse binning CRB is calculated where the best pulse width has been optimally selected

for each SBR level.

Figure 5.8: Comparison of the RMSE achieved by wide and narrow Gaussian pulse width
coarse binning to our proposed SMLE algorithm.

As shown in Figure 5.8, the coarse sub-bin resolution can indeed improve the resolution with

respect to coarse binning in large SBR regimes, but it still falls significantly behind the reso-

lution obtained using the narrowest IRF with a fine scale time-stamp of our proposed sketch

method. For instance, at an SBR of 0.23 the wide pulse width achieves a RMSE of 264.6 bins

compared to 31.1 and 4.5 bins for the narrow pulse width coarse binning and SMLE, respec-

tively. As the pulse width optimised algorithm in [126] only exhibits significant improvement

in the high SBR scenario and is restricted to a Gaussian IRF, we do not consider it further in

the chapter.
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5.4 Experiments

5.4.1 Experimental set up

In this section, we evaluate our compressive lidar framework on synthetic and real data with

increasingly complex scenes. Our method is compared with classical algorithms working on

the full data space (i.e. no compression) namely cross correlation [124] and expectation max-

imization (EM) [10]. Moreover, we also compare our results to the alternative compression

technique of coarse binning [65] discussed in Section 5.1 and Eqn 5.18. Both the cross cor-

relation and EM algorithms estimate the location parameters using the full data and therefore

the results obtained from these methods set a benchmark to the estimation accuracy when no

compression takes place. For sake of fair comparison, we use the real valued sketch in all the

subsequent results, such that the number of real measurements is equivalent to 2m.

5.4.1.1 Processing

Restoration of depth imaging of single-photon lidar consists of estimating a 3D point cloud

from a lidar data cube containing the number of photons Ni,j,t in pixel (i, j) at time-stamp

t, where i = 1, 2, . . . , Nr, j = 1, 2 . . . , Nc and t = 0, 1, . . . , T − 1. We denote the average

photon count for each pixel by N̄ and process each pixel (i, j) of the data cube and estimate the

true location and intensity parameter, denoted t1 and α, respectively. The intensity of a point

in pixel (i, j) of the point cloud is calculated by the number of photons in the pixel multiplied

by the proportion of the signal i.e. αk
∑T−1

t=0 Ni,j,t. A data driven impulse response is given for

each dataset and we can obtain the characteristic function of the IRF by using Eqn 5.5.

5.4.1.2 Evaluation Metrics

Two different error metrics are used to evaluate the performance of our proposed sketched lidar

framework. We consider the root mean squared error (RMSE) between the reconstructed image

and the ground truth. Given that ti,j,k is the location of the kth peak in pixel (i, j) and t̂i,j,k the

estimated counterpart, then the root mean squared error of the reconstructed image is

RMSE :=

√√√√ 1

KNrNc

Nr∑
i=1

Nc∑
j=1

K∑
k=1

(
ti,j,k − t̂i,j,k

)2
. (5.20)
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Moreover, we also use the mean absolute error metric defined as

MAE :=
1

KNrNc

Nr∑
i=1

Nc∑
j=1

K∑
k=1

|ti,j,k − t̂i,j,k|. (5.21)

The compression of both the sketched lidar and coarse binning approach is measured in terms

of the dimension reduction achieved by the statistic with respect to the raw TCSPC data and

is quantified by the metric max{2m
T ,

2m
N }, which is dependent on the dimensions, T and N ,

of the lidar scene and where the number of real measurements (2m) is used for sake of fair

comparison.

5.4.2 Synthetic Data

We evaluate the sketched lidar framework on a synthetic dataset simulating a pixel in a scene

which consists of a single peak response. We chose the parameters that best replicated a realistic

lidar scene and that were akin to the real datasets which will be discussed in later in Section

5.4.3. Therefore, we set the binning resolution at T = 250, and impulse response was generated

with a true Gaussian function where σ = 5. We ran a Monte-Carlo simulation with 1000 trials

to evaluate and compare the performance of our sketched lidar framework for photon counts

N ∈ (100, 1000) with varying SBR levels and number of real measurements 2m. For each

trial, we uniformly chose t1 ∼ U(0, 249), and estimated t̂ for the sketched lidar approach, the

iFFT method discussed in Section 5.3 as well the alternative compression technique of coarse

binning. As a reference, we computed the cross correlation estimate as well as estimating the

maximum peak of the full histogram which represent the estimates over the full data (i.e. no

compression). We varied the total number of real measurements between 2 (m = 1) and 50

(m = 25) and increased the SBR ratio from 10−2 to 102 on a log-scale. Here we only show

the results for the truncated orthogonal sampling scheme but we observed in practice that the

alternative random orthogonal sampling scheme produces similar results.

Figures 5.9 and 5.10 show the contour plots of the RMSE level of 10∆τ (left) and 2∆τ (right)

(i.e. 10 and 2 time-intervals) for both N = 100 and N = 1000, respectively. The sketched li-

dar (solid blue), coarse binning (orange) and the iFFT (red) methods are depicted alongside the

full data approaches of cross correlation (XCORR) (solid black) and maximum peak estimation

(green). As discussed in Section 5.3.3, the full data (dashed black) and the sketched (dashed

blue) Cramér-Rao bound are given as reference and define the lower bound to the contour plot.
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Figure 5.9: RMSE level set contour plots for varying SBR levels and number of real measure-
ments 2m for a photon count of N = 100. The RMSE level are 10∆τ (left) and 2∆τ (right).
The legend is defined for both plots.

Both the sketched lidar and iFFT approach converge quickly towards the full data estimate of

cross correlation within 10 real measurements for both RMSE level sets and photon counts. In

contrast, the coarse binning approach needs approximately 30 real measurements to achieve a

similar performance as our sketched lidar method in achieving a RMSE of 10∆τ . Moreover,

coarse binning does not attain an RMSE of 2∆τ for 2m ≤ 50 hence does not appear in the

right subplot of Figure 5.9. It can be seen for a larger number of real measurements, the iFFT

approach begins to diverge. This is because for larger number of measurements, the iFFT pro-

duces a less smooth linear approximation of the histogram and therefore it is more challenging

to estimate the depth position.

Figures 5.11 and 5.12 show the 95% of peaks detected within the level sets of 10∆τ (left) and

3∆τ (right). Our proposed sketch method achieves the same estimation performance as the full

data XCORR approach within approximately 12 real measurements (m = 6) for all varying

SBR ratios and photon counts. In contrast, the coarse binning approach requires approximately

45 real measurements, equating to a modest compression of 0.25, to achieve 95% of detections

within 10∆τ . Furthermore, the coarse binning method could not achieve 95% of detections

within 3∆τ for all the real measurements considered. These initial results on synthetic lidar

data for a range of different SBR ratios and photon counts highlight the clear trade-off between

compression and loss of temporal resolution for the coarse binning approach. In contrast, our

proposed sketched lidar method overcomes the trade-off between compression and loss of res-

olution and only requires a very modest sketch size to achieve the same estimation performance
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Figure 5.10: RMSE level set contour plots for varying SBR levels and number of real measure-
ments 2m for a photon count of N = 1000. The RMSE level are 10∆τ (left) and 2∆τ (right).
The legend is defined for both plots.

as cross correlation using the whole data.

5.4.3 Real Data

In this section we evaluate our sketched lidar framework on two real datasets of increasing com-

plexity. Namely, a polystyrene head imaged at Heriot-Watt University [63, 127] which consists

mostly of a single peak, and a scene where two humans are standing behind a camouflage net,

depicted in [128, 3], which contains of 2 objects per pixel with varying intensity.

5.4.3.1 Polystyrene Head

The first scene consists of a polystyrene head placed 40 meters away from the lidar device.

The data cube has width and height of 141 pixels, Nr = Nc = 141 and a total of T = 4613

time-stamps. A total acquisition time of 100 milliseconds was used for each pixel resulting in

an average photon count of N̄ = 337 with an SBR of approximately 6.82. The vast majority of

pixels consist of a single peak, although there are a minority of pixels around the borders of the

head that consist of two peaks. The parameter set to be estimated for each pixel is θ = (t, α)

of dimension 2. We compare our results with the ground truth obtained from the experiment as

well as the full data algorithm of XCORR and the coarse binning compression technique. As

XCORR uses the maximum likelihood estimation of a single peak, we assume each pixel has

one surface for the sake of comparison. As a result, we set the SMLE algorithm to estimate
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Figure 5.11: RMSE level set contour plots for varying SBR levels and number of real measure-
ments 2m for a photon count of N = 100 for detecting 95% of peaks within the level sets of
10∆τ (left) and 3∆τ (right). The legend is defined for both plots.

a single peak, however in practice we can use detection algorithms, for instance the sketch-

based detection scheme proposed in Chapter 6, to detect the number of surfaces present before

estimation. The coarse binning approach is computed using cross correlation once the data

cube is down-sampled.

The data driven impulse response function and its corresponding CF obtained from Eqn 5.5,

are shown in Figure 5.13. We only present the results for the truncated orthogonal sampling

scheme, from Section 5.2.2, but we observed in practice that the alternative random orthogonal

sampling scheme produces similar results. We initialise the sketched lidar algorithm using the

analytic circular mean solution in Eqn 5.3.

Figure 5.14 shows the reconstructed images of the sketched lidar, coarse binning and XCORR

approaches, as well as the ground truth image. We first notice that our sketched lidar method

sufficiently reconstructs the polystyrene head scene for all sketch sizes, even for the circular

mean estimate (m = 1) in (a). In contrast, the coarse binning approach fails for all correspond-

ing measurements m̃ with significant staircase artifacts arising. Figure 5.15 shows the RMSE,

in comparison to the ground truth, as a function of the number of real measurements (2m).

Here we omit the small proportion of pixels that consist of two peaks from the RMSE calcula-

tion for sake of fair comparison with the existing methods that can only estimate a single peak.

We observe that our sketched lidar method produces a smaller RMSE as the measurement size

increases and achieves a smaller RMSE than the LMF approach for larger measurements. In
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Figure 5.12: RMSE level set contour plots for varying SBR levels and number of real measure-
ments 2m for a photon count of N = 100 for detecting 95% of peaks within the level sets of
10∆τ (left) and 3∆τ (right). The legend is defined for both plots.

Figure 5.13: The CF (bottom) of the data driven impulse response function (top) of the
polystyrene head dataset.

comparison, the coarse binning method obtain estimates that produce a large RMSE consis-

tently throughout. As such, this suggests that our sketched lidar approach does not compro-

mise reduced resolution in favour of compression which is very apparent in the coarse binning

method.

5.4.3.2 Humans Behind Camouflage

The second scene consists of two humans standing behind a camouflage net approximately 320

metres away from the lidar device. Further details can be found of the scene in [128, 129].

The data cube has width and height of 32 pixels, Nr = Nc = 32 and a total of T = 153
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Figure 5.15: The RMSE as a function of the number of real measurements (2m) for the
polystyrene head dataset.

time-stamps. A total acquisition time of 5.6 milliseconds was used for each pixel resulting in

an average photon count of N̄ = 871 with an approximate SBR of 2.35. The vast majority of

pixels have 2 surfaces (the camouflage net and a human) where the net (first peak) accounts for

the biggest intensity. The parameter set to be estimated for each pixel is θ = (t1, t2, α1, α2)

of dimension 4. We compare our results with the full data EM algorithm as well as the coarse

binning compression technique. For this experiment, the coarse binning algorithm uses the

EM estimate once the data cube has been down-sampled as the cross correlation algorithm is

only applicable to single peak cases. Due to the lack of a ground truth, we compare the recon-

structions of the camouflage scene to the full data EM algorithm reconstruction and equate the

relevant compression of both the sketched lidar framework and the coarse binning technique.

The data driven impulse response function h and its corresponding CF obtained from Eqn 5.5,

are shown in Figure 5.16. Again, we only present the results for the truncated orthogonal

sampling scheme, from Section 5.2.2, but we observed in practice that the alternative random

orthogonal sampling scheme produces similar results. We uniformly sampled 10 starting points

for each of peak t1 and t2 and initialised with the smallest sketched cost value from Eqn 5.10.

Figure 5.17 shows the reconstructed images of the sketched lidar, coarse binning and EM al-

gorithm methods. Evidently, the reconstruction of our sketched lidar approach becomes better

as the number of real measurements (2m) increases, for instance the torso of the human posi-

tioned near 600 cm has greater clarity in sketch size 20 compared to sketch size 4 where more

spurious peaks are detected. However, the sketched lidar reconstruction for m = 2 is still

sufficient in comparison to the EM reconstruction in (g), while in contrast the coarse binning

method fails to reconstruct either human for the corresponding number of measurements. The

coarse binning method once again suffers from the stair case effect as seen by the lack of width
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Figure 5.16: The CF (bottom) of the data driven impulse response function (top) of the cam-
ouflage dataset.

of the first human standing at position 200 cm in (f). Furthermore, the compression due to the

coarse binning results in poor depth accuracy as seen by the position of the camouflage net in

reconstruction (b) which has a disparity of approximately 120 cm in comparison to the EM re-

construction. Once again, this suggests that our sketched lidar approach does not compromise

reduced resolution in favour of compression which is apparent in the coarse binning method.
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Figure 5.14: The face dataset lidar reconstructions of the sketched lidar and coarse binning
method for the real valued measurement size 2, 8, 20. Both the cross correlation (XCORR)
reconstruction and the ground truth image are given for comparison.
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Sketched Lidar Coarse Binning
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Figure 5.17: The camouflage dataset lidar reconstructions of the sketched lidar and coarse
binning method for the real valued measurement size (2m) of 2, 8, 20. Both the cross correlation
(XCORR) reconstruction and the ground truth image are given for comparison.
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5.4.4 Wordlength Considerations

In Section 5.4.3, each individual entry of the sketch has a standard 32 bit precision. In practice,

however, the logic within the lidar device (see Section 2.5) that constructs the sketches may

constrain the level of precision one can work with. Here we analyse the quality of reconstruction

depending on the the level of fixed precision for each individual entry of the sketch. We consider

32 (standard), 16, 12, 8 and 4 bit precision that is signed as the sketch values can be both positive

and negative. Denoting by b the level of precision, we divide the bit budget into 1 sign bit, b/2

integer bits and b/2− 1 fractional bits.

Figure 5.18: The reconstructions of the polystyrene head dataset for a sketch of size m = 2, 5
and 10 where each sketch entry has a precision of 32, 16, 12, 8 and 4 bits.

Figure 5.18 shows the reconstructions for a sketch of size m = 2, 5 and 10 where each sketch

value has either a 32, 16, 12, 8 or 4 bit precision. Furthermore, Figure 5.19 shows the mean ab-

solute error (MAE) of each sketch size for the associated entry-wise bit precision. Additionally,

Figure 5.20 shows the total wordlength of the whole sketch such that we can compare like for

like wordlengths. The results indicate that the the reduction of fixed precision effects smaller

sized sketches to a larger extent. Notably, for the 12 bit precision reconstructions, the sketch of

size m = 2 achieves a far worse reconstruction compared to its m = 5 and m = 10 counter-

parts. Interestingly, a sketch of sizem = 2 with 32 bit precision achieves nearly the same MAE

as a sketch of size m = 10 with 12 bit precision. However, for smaller SBR and photon count
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values, a sketch of size m = 2 with 32 bit precision may incur a larger reconstruction error.

Overall, the results show that for a sketch of size greater than m = 2, one can safely work with

a reduced 12 bit precision without incurring significant loss of reconstruction quality.

In this section, we only consider the quantization of the overall bits used in the original sketch

of Eqn 5.11. However, in [117] Schellekens et al. consider an asymmetric approach where the

sketch feature function is different at the sketching phase to the learning phase to accommodate

more hardware efficient sketch implementations. In this scenario, an additional random dither

is added to the data before the sketch phase. It is shown that the additional dither ensures

the asymmetric CL optimization procedure is not impacted by the quantization. We leave the

implementation of additional dither to the sketched lidar framework for future work.
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Figure 5.19: Mean absolute error of the reconstructions for a sketch of size m = 2, 5 and 10
for individual sketch entries of 4,8,12,16 and 32 bit precision.

0100200300400500600700

Total Sketch Wordlength (Bits)

0

20

40

60

80

100

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

Figure 5.20: Mean absolute error of the reconstructions for a sketch of size m = 2, 5 and 10
for the total wordlength of the whole sketch.
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5.5 Concluding Remarks

In this chapter, we proposed a novel sketching solution to handle the major data processing bot-

tleneck of single-photon lidar caused by the fine resolution of modern high rate, high resolution

ToF image sensors. Our approach involved sampling the characteristic function of the obser-

vation model to form online statistics that have dimensionality proportional to the number of

parameters of the model. Furthermore, we developed an efficient sketching algorithm, inspired

by ECF estimation techniques, which has space and time complexity that fundamentally scales

with the size of the sketch m, and is independent of both photon count and depth resolution.

Two sampling schemes are proposed that sample in regions of the characteristic function that

are blind to photons originating from background sources. As a result, our method obtains

estimates of the location and intensity parameters that are unbiased. Our novel sketch based

acquisition removes the trade-off between depth resolution and data transfer complexity that

is apparent in existing methods. Here we have only considered a simple pixel-wise depth es-

timate method in the form of the sketched MLE. However in the next chapter we demonstrate

that it is straightforward to incorporate the sketched statistics into more sophisticated state-of-

the-art multipixel reconstruction algorithms, such as the real-time 3D algorithm in [3] due to

the Gaussian nature of the sketch statistics seen in Section 5.3.2.

5.A Deriving the Circular Mean Estimate From the ECF Estima-

tion

Given a single frequency ω ∈ R, we can define the sketch as zN = 1
N

∑N
j=1 e

iωxj and the goal

is to solve:

θ̂ = arg min
θ

(zn −ΨP(ω))2. (5.22)

Clearly, Eqn 5.22 is minimised when ΨP(ω) = zn and equating the real and complex compo-

nents we get:
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αe
(ωt)2

2 cos(ωt)− (1− α)DT−1
2

(ω) =
1

N

N∑
j=1

cos(ωxj) (5.23)

αe
(ωt)2

2 sin(ωt) =
1

N

N∑
j=1

sin(ωxj). (5.24)

Notably, we can optimally choose the frequency to be ω = 2π
T resulting in DT−1

2
(ω) = 0 and

thereby ensure the characteristic function is sampled in a region where the background noise is

not present. Consequently, dividing (28) by (29) we get

αe
( 2πt
T

)2

2 cos
(

2πt
T

)
αe

( 2πt
T

)2

2 sin
(

2πt
T

) =

∑N
j=1 cos(ωxj)∑N
j=1 sin(ωxj)

, (5.25)

resulting in an optimal estimate of

θ∗ =
T

2π
phase


N∑
j=1

cos

(
2πxj
T

)
+ i

N∑
j=1

sin

(
2πxj
T

) (5.26)

5.B Photon Starved Regime

We evaluate the performance of our proposed sketched lidar method in the photon starved

regime in comparison to transferring the photon time-stamps directly off-chip and estimating

the depth of the surface. For fair comparison, we let 2m = N for each photon count N in

the photon starved regime. Both the cross correlation and maximum peak estimate the depth

location using the full photon count. Here we simulate a pixel of a lidar scene with a time

window of T = 100 using a Gaussian IRF with pulse width σ = 0.03T for photon counts

N = [1, 3, 5 . . . , 15] and SBR varying between 0.01 and 100. For each photon count and

SBR pair, 1000 Monte-Carlo simulations were executed with randomly chosen depth position

t0 ∈ [1, 2, . . . , T ] and the RMSE was calculated.

Furthermore, we use the RMSE ratio between the sketched lidar and cross correlation depth

estimation, defined as

R =
RMSEsketch

RMSEXCORR
, (5.27)

where RMSEsketch and RMSEXCORR denote the RMSE of the sketched lidar and cross corre-
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Figure 5.21: Sketched Lidar performs comparatively well (in terms of RMSE) compared with
the full data approaches of cross correlation (XCORR) and maximum peak estimation in the
photon starved regime.

lation estimation, respectively. An R > 1, indicates that the cross correlation achieves on

average a smaller RMSE than sketched lidar. Similarly an R < 1, indicates the sketched lidar

estimation achieves on average a smaller RMSE than cross correlation approach. Figures 5.21

and 5.22 show that the proposed sketched lidar approach does not suffer from a drop in estima-

tion performance in both the photon starved regime and in the case of extremely low SBR in

comparison with the cross correlation that estimates the depth using all the detected photons.

5.C Comparison to the iFFT approach

In Section 5.4.2, we compared our proposed sketched lidar approach to the iFFT approach. The

iFFT approach cannot incorporate information about the impulse response function while in

the sketched lidar method the impulse response function is integrated throughout. To demon-

strate this, we compare the performance of the sketched lidar and iFFT techniques for the non-

Gaussian asymmetric IRF used in Section 5.4.3.1 (See Figure 5.13). For a signal-to-background

ratio varying between 0.1-100 and a photon count ranging between 10-1000, a pixel from a lidar

scene was simulated with randomly chosen depth position between 1, . . . , T . A total of 1000

Monte-Carlo experiments were simulated for each SBR/photon count value with the RMSE

recorded. For fair comparison we include an asymmetric correction for the iFFT approach to

offset the bias of the asymmetric impulse response function. In Figure 5.23, the ratio between
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Figure 5.22: Comparison of the depth reconstruction of sketched lidar and cross correlation
(XCORR) using the RMSE ratio R for varying SBR levels and photon counts in the photon
starved regime. Sketched Lidar performs favourably compared to XCORR for the majority of
SBR values.

the RMSE of the sketch results and the RMSE of the iFFT estimation, for e.g.:

R =
RMSEsketch

RMSEiFFT
(5.28)

is displayed for m = 2.

The improvement using the sketched lidar method over the iFFT approach is apparent. For the

majority of the SBR/photon count pairs the sketched lidar method achieves approximately half

the RMSE of that of the iFFT approach, highlighting the lack of information of the IRF the

iFFT approach has incorporated into its depth estimation.

s
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Figure 5.23: Comparison of the depth reconstruction of sketched lidar and the iFFT method
using the RMSE ratio R for varying SBR levels and photon counts for a non-Gaussian asym-
metric IRF. Sketched Lidar performs equally or favourably to iFFT for all SBR and photon
count pairs.
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Chapter 6
Robust Detection and Real-Time

Processing of Sketched Single-Photon
Counting Lidar

6.1 Introduction

In the last chapter, we developed a compressive learning framework for single-photon counting

lidar that vastly reduced the volume of data needed to be transferred. The main aim was to

set out the fundamentals of forming a sketch of the time-of-flight data that contained sufficient

information to estimate the parameters of the lidar observation model. In this chapter, we extend

the framework to include (i) a robust surface detection algorithm that detects the presence of a

surface solely from the sketch, and (ii) a sketched real-time 3D algorithm which incorporates

powerful point cloud denoisers that produces spatially regularized reconstructions.

A crucial aspect to a lidar pipeline is pixelwise detection of surfaces. Surface detection is often

used to reduce both the data transfer and computational complexities of processing large point

clouds. Regions of a scene may contain pixels that have no surface or object present. This is

often the case in outdoor 3D imaging applications where the target may represent only a subset

of the pixels. Removing the proportion of the pixels that contain zero surfaces prior to estima-

tion can significantly reduce the complexities associated with data transfer and computation.

However, current state-of-the-art surface detection algorithms have computational complexity

that scales at best with O (T log T ) where T is the number of temporal bins in the TCSPC

histogram. In this chapter, we propose a sketch-based surface detection algorithm that detects

the presence of a surface or object solely from the sketch, leading to a reduced computational

complexity of O(m).

Due to the spatial regularity of natural scenes, the parameters of the lidar observation model

admit strong correlation in neighbouring pixels. This prior knowledge is exploited by several

3D reconstruction algorithms to improve the reconstruction quality over simple pixelwise depth
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estimation methods. However, most of these state-of-the-art reconstruction algorithms have

computational and memory complexity proportional to either the number of recorded photons

or the depth resolution. This complexity hinders their real-time deployment on modern lidar

arrays (see Section 2.5) which acquire potentially billions of photons per second. Using the

framework set out in Chapter 5, we show that it is possible to modify these existing algorithms

to require only the sketch. As a result, we can design high quality reconstruction algorithms

that have computational and memory complexities that are proportional to the size of the sketch.

Below we state the main contributions of this chapter.

• We propose a robust surface detection algorithm that forms a statistical hypothesis test

directly on the computed sketch and exhibits a computational complexity of O(m). We

again exploit the spatial correlation of natural scenes by incorporating a total variation

(TV) regularizer that promotes a more homogeneous detection map of present targets and

reduces the detection of spurious non-informative peaks.

• We propose a sketched real-time 3D (SRT3D) reconstruction algorithm that exploits the

spatial correlation of natural scenes to improve the reconstruction quality compared to

the original pixelwise sketched lidar algorithm introduced in Chapter 5.

• Using both real and synthetic datasets, we compare the point cloud estimation qual-

ity with other 3D reconstruction algorithms and demonstrate that our proposed SRT3D

method is robust to challenging low SBR, low photon count scenes and achieves recon-

structions that are competitive with the state-of-the-art.

This chapter is based of the surface detection work in [130] that appeared in the IEEE EUSIPCO

conference 2021 and the multipixel sketched lidar work [131] that appeared at IEEE ICASSP

conference 2022. The rest of the chapter is organized as follows. In Section 6.2, the sketch-

based surface detection algorithm is proposed and we evaluate its robustness in challenging

low SBR, low photon regimes using synthetic and real datasets. In Section 6.3 we introduce

the SRT3D algorithm and analyse the reconstruction performance on both synthetic and real

datasets. In Section 6.4, we finalize the chapter with some concluding remarks.
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6.2 Pixelwise Surface Detection

This chapter begins with surface detection which is a crucial aspect of any lidar pipeline. If

there are no objects present in the line-of-sight of the lidar device (e.g. outdoor setting), the

recorded pixels will only consist of photon detections corresponding to background illumina-

tion which equates toK = 0 and α0 = 1 in Eqn 2.93. Figure 6.1 depicts a TCSPC histogram of

a pixel that contains only background sources. Detecting and discarding pixels without peaks

can avoid estimating non-existing surfaces, while reducing the computational load of posterior

depth estimation. Figure 6.2 demonstrates a 3D image of a face with a corresponding detection

map which shows if a surface is present or not in each pixel. In this example, 58% of pix-

els originate from background sources and can be discarded before posterior depth estimation

reducing the overall complexities of processing.

0 500 1000 1500 2000 2500
0

1

2

3

4

Figure 6.1: A TCSPC histogram of a pixel containing no informative surface peak.

Figure 6.2: A 3D image of a face (left) with its associated pixelwise surface detection map
(right).
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Several existing surface detection algorithms [2, 132, 3] form a decision rule based on reject-

ing or accepting a hypothesis on a candidate observation model. By H0, we define the null

hypothesis by

H0 : P(x) = Pb(x) (6.1)

and the alternative hypothesis H1 by

H1 : P(x) 6= Pb(x) (6.2)

In other words, the null hypothesis states that the observation model is equal to the distribution

of background sources.

When a TCSPC histogram approach is used, the decision rule in Eqn 6.1 is equivalent to testing

if the photons are distributed according to a homogeneous Poisson process. Under the inter-

arrival time, the statistic ∆x = xi+1 − xi is distributed according to an exponential random

variable with parameter N/T , i.e.,

∆x ∼ E
(
N

T

)
:=

N

T
e−

N
T

∆x, (6.3)

where E denotes the exponential distribution. Hence, a standard test consists of computing the

Kolmogorov-Smirnov (K-S) statistic using the empirical inter-arrival time distribution [133].

However, this test has important drawbacks. First, the statistic requires storing all the time-

stamps, scaling linearly in the number of collected photons N or histogram size T . Secondly,

the test cannot account for the discrete nature of the time-stamps collected by the TCSPC

device.

An alternative method amenable to discrete time-stamps consists in checking whether the pho-

ton count in all Tr ≤ T bins of a coarse histogram have a mean close to N/Tr (the expected

number of photons under H0), using a χ-squared test. In this setting, if Tr is small, small peaks

can be hidden in the coarse depth resolution, hindering the detection and posterior depth esti-

mation performance. On the other hand, if Tr is too large, a small number of photons per bin

would depart significantly from the Gaussianity assumption of the χ-squared test, degrading the

performance of the method. This trade-off is shown in the experiments in Section 6.2.3. State-

of-the-art techniques in lidar detection, which we compare to in Section 6.2.3, use a Bayesian

approach by asserting priors onto the background levels and employ a decision rule similar to

Eqn 6.1. However, the computational complexity scales at best withO (T log T ) and the whole
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histogram is required in memory.

6.2.1 Sketch-Based Detection Algorithm

Here we propose a sketch-based detection scheme based solely on the compact sketch. First

note that due to the one to one correspondence between probability distributions and their cor-

responding characteristic functions (see Section 2.1.3.1), the hypothesis test in Eqn 6.1 can be

equivalently defined by the null hypothesis H ′0

H ′0 : ΨP(ω) = ΨPb(ω) (6.4)

and the alternative hypothesis H ′1

H ′1 : ΨP(ω) 6= ΨPb(ω). (6.5)

Next, recall from Section 5.3 that a sketch converges to a Gaussian distribution

yN
dist−−→ N

(
yθ, N

−1Σθ

)
(6.6)

where for convenience we denote yθ = [ΨP(ωj)]
m
j=1 and we recall Σθ ∈ Cm×m has entries

(Σθ)ij = ΨP(ωi − ωj) − ΨP(ωi)ΨP(−ωj) for i, j = 1, 2, . . . ,m. Denote by D2 the test

statistic defined by

D2 := N(yN − yθ)
TΣ−1

θ (yN − yθ), (6.7)

then it can be seen [134, 135] that the test statistic D2 follows a χ-squared distribution:

D2 dist−−→ χ2
ν (6.8)

with ν = m−p degrees of freedom where p is the number of parameters of the lidar observation

model P . Under the null hypothesis H ′0, it can easily be seen from Eqn 6.6 that yθ = 0m and

Σθ = Im where 0m and Im denote the m dimensional zero vector and the m × m identity

matrix, respectively. Hence, the test statistic D2 simply reduces to

D2 = ‖yN‖22. (6.9)
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Under the null hypothesis, the lidar observation model (P = Pb(xp) = 1/T ) has p = 0

parameters, therefore D2 follows a χ-squared distribution with ν = m degrees of freedom.

One can therefore reject the null hypothesis H ′0 at significance level β if D2 > z̄β where z̄β

is the upper β-percentile of the χ2
m distribution [135]. A summary of the sketch-based surface

detection scheme is detailed in Algorithm 5. Importantly, the decision rule is based solely on

the sketch of size m. This is significant as (i) the full data of the TCSPC histogram is not

required in the computation and can be discarded from memory (ii) the squared test statistic

can be computed in O(m).

Algorithm 5 Pixelwise Sketch-based Surface Detection Algorithm

Require: Sketch yN , significance level β.
Compute test statistic D2 = ‖yN‖22.
Compute upper β- percentile of χ2

m distribution z̄β .
if D2 > z̄β then

Reject H ′0 at significance level β and detect presence of a surface.
else

Accept H ′0.
end if

In some practical settings, the distribution of background photons Pb might not be exactly con-

stant. This is often attributed to the so-called pile-up phenomenon whereby the dead-time of the

SPAD is too slow to process successive photon detection events, and therefore the background

noise becomes non-constant [136]. In these cases, the test statistic D2 can be easily modified

to account for a data-driven P̂b, using background photons collected in a calibration step,

ŷN = EP̂b{Φ(xi)}. (6.10)

The test statistic is then D2 := ‖yN − ŷN‖22. It is worth noting that the data-driven test can

also be interpreted as a random features version of the maximum mean discrepancy [137] as

discussed in Section 2.3.2.3.

6.2.2 Spatial Regularization

Neighbouring pixels in a lidar scene typically exhibit the same number of surfaces owing to

spatial correlation. Exploiting the inherent spatial correlation in typical lidar scenes can further

reduce the occurrence of false positives. In [132], Tachella et al. proposed a total variation

(TV) based spatial regularization that created a more homogeneous map of the present targets.
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Here we include a similar spatial regularization based on the goodness-of-fit. Formally, the TV

based spatial regularization is defined by the map

v̂ := H0/1

(
arg min

v
‖v − u‖22 + τ‖v‖TV

)
(6.11)

where the input imageu contains the χ-squared statisticD2 of pixel (i, j), ‖·‖TV is the isotropic

TV operator, τ is a user-defined regularization parameter andH1/0 is a hard-thresholding oper-

ator which assigns 1 to positive inputs and 0 otherwise. In Section 6.2.3, it is demonstrated that

the added spatial regularization can help remove a proportion of false positive alarms producing

a more homogeneous detection map.

6.2.3 Empirical Results

In this section, we evaluate the sketch-based detection scheme on both real and synthetic data.

First, we analyse the effect of the signal-to-background ratio (SBR), defined by SBR= α/(1−

α), and the photon count N on both the true positive and false alarm rate, using a Gaussian

impulse response with standard deviation σ = T/100, for T = 5000. Figure 6.4 shows a map

of the empirical probability of detecting a single peak for various SBRs and photon counts for

the proposed sketch-based detection. Even for moderately high SBR, for example SBR= 1,

the detection scheme only requires approximately 20 photons to achieve high probability of

detecting a single peak. Figure 6.3 shows the SBR/photon count level-curves for a true positive

rate of 95% for various sketch sizes and full-data approaches. For the full-data approach, a

χ2 test was constructed on the true observation model in Eqn 2.93 where adjacent bins were

concatenated to maximise the power of the hypothesis test. For reference, we also include the

K-S test discussed in Section 6.2 which is equivalently performed on the full data (see [133]

for details). For each test the significance level was set at β = 0.05. Figure 6.5 depicts the

empirical probability of false alarm (PFA) as a function of the photon count for various sketch

sizes and for the aforementioned full data hypothesis tests.

Next, we compare the proposed sketch-based detection algorithm with the χ2 test on the full

data observation model as well as the two detection methods proposed by Tachella et al. in

[132], using a real lidar dataset consisting of a polystyrene head measured at a stand-off distance

of 325 metres. The dataset is different from the polystyrene dataset from the empirical results of

Section 5.4 and Section 6.3.1 as the scene was captured outdoors resulting in pixels containing
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Figure 6.3: Detection performance of the sketch-based method for sketch sizes ofm = 3, 5, 10,
the coarse histogram test for histograms of size Tr = 10, 50, 100, and the full data K-S test.
The graphs correspond to a detection probability of 95%.

no targets as well as exhibiting a smaller SBR. See details of the dataset in [2]. The dataset

consists of 200× 200 pixels with T = 2700 histogram bins per pixel and an approximate SBR

of 0.29. Figure 6.6 shows the detection maps for two different per-pixel acquisition times (30

ms and 3 ms) corresponding to an average photon count of 900 and 90 photons, respectively.

The sketch size was set atm = 5 and the significance level was set at 0.05 and 0.2 for the 30 ms

and 3 ms acquisition times, respectively. Also included is the proposed sketch-based method

with spatial TV regularization as discussed in Section 6.2.2. The PD and the PFA for each

acquisition time are shown in Table 6.1 for each detection scheme. The PD and PFA for both

the sketch and sketch plus TV regularization are depicted in Figure 6.7 for increasing sketch

size m.

The results show that on both synthetic and real datasets the sketch-based detection scheme

achieves a similar, or better, PD/PFA trade-off than the full data χ2 detection test. In fact the

sketch-based detection scheme achieves a far lower PFA than the full data χ2 detection for

both acquisition times. In comparison to the state-of-the-art results by Tachella et al [132], the

sketch and sketch plus TV regularization produce a depth map that is competitive. For instance,

for the longer acquisition window of 30ms, the sketch plus TV achieves a PD and PFA trade-

off of (96.6%, 0.9%) compared with the TV regularized version of [132] that achieves a similar

tradeoff of (98.4%, 3.5%). Notably, the methods of Tachella et al. exhibit a computational com-

plexity of O(T log T ) compared to our sketch-based approach that scales with O(m) where,
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Figure 6.4: Empirical probability of detection for the proposed sketch-based detection scheme
using a sketch size m = 10.

PD % PFA %
30ms 3ms 30ms 3ms

Tachella et al. 98.5 82.3 0.7 6.5
Tachella et al. (TV) 98.4 93.7 3.5 1.1
K-S Test (Full Data) 100 49.9 99.3 6.9
Hist. (50 Bins) 97.5 77.6 8.8 19.9
Sketch 95.4 77.2 1.4 14.4
Sketch + TV 96.6 88.1 0.9 0.5

Table 6.1: Probabilities of detection (PD) and probabilities of false alarm (PFA) for the pro-
posed sketch-based detection schemes and other detection algorithms. The sketch size is set at
m = 5 and the full data χ2 test was chosen using 50 adjacent bins to optimise the PD/PFA
trade-off.

in this example, T = 2700 and m = 5 respectively. Furthermore, as discussed in Section 6.2,

the full data K-S test struggles to account for the discrete nature of the time-stamps and detects

a surface for nearly all pixels in the scene for the longer 30ms acquisition time.

6.2.4 Discussion

Throughout the whole of Section 6.2, we focus on the hypothesis test in Eqn 6.1 that is based

on if there is or isn’t a surface present for a given pixel as this is of particular importance for

downstream lidar tasks. However, recall that the circular mean solution in Eqn 5.3 provides a

closed form expression for the parameters of single peak observation model (e.g. K = 1). In
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Figure 6.5: Probability of false alarm of the sketch-based method for sketch sizes of m =
3, 5, 10, the coarse histogram test for histograms of size Tr = 10, 50, 100, and the full data K-S
test.

Figure 6.6: Detection maps of the polystyrene dataset [2] for the proposed sketch and sketch
plus TV detection schemes in comparison with other non-compression detection techniques.

many lidar scenes, pixels containing onlyK = 1 surfaces form a substantial subset of the whole

field of view. As the circular mean can be computed in closed form, it has a computational

complexity ofO(1). By detecting pixels containingK = 1 surfaces, one can instantly estimate

the associated parameters using the circular mean solution without having to resort to using

one of the sketch estimation algorithms we have proposed so far in this thesis, thereby reducing

the computational complexity of processing the point cloud further. Subsequently, the second

hypothesis test can be defined by

H̃0 : ΨP(ω) = αΨPs(ω) + (1− α)ΨPb(ω) (6.12)
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Figure 6.7: Empirical probabilities of detection (top) and false alarm (bottom) for the evalu-
ated detection methods using the polystyrene head dataset.

and the alternative hypothesis H̃1 by

H̃1 : ΨP(ω) 6= αΨPs(ω) + (1− α)ΨPb(ω) (6.13)

In this instance, the test statistic D2 can computed as in Eqn 6.7 and follows a χ-squared

distribution with ν = m − 2 degrees of freedom due to the p = 2 parameters (i.e. α, t) of the

null hypothesis observation model. Moreover, it is shown in [134, 135] that one only needs a

consistent estimator (see Definition 1) of the true lidar observation parameters θ to form the test,

for instance the circular mean estimate which can be computed in O(1). As a result, as long as

one has a consistent estimate of θ, the hypothesis test is not sensitive to how it is initialised. We

leave implementation of this extended hypothesis test to future work.

6.3 Multipixel Sketched Lidar

In Chapter 5, we proposed a sketched lidar framework for single-photon counting lidar which

focused on per pixel depth estimation. Due to the spatial regularity of natural scenes, parameters

in neighbouring pixels are generally strongly correlated. This prior knowledge is exploited by

several 3D reconstruction algorithms [138, 63, 139, 140, 123, 141, 127] to improve the quality

with respect to simple pixelwise depth estimation. Recall from Section 5.4.1.1 that single-

photon lidar devices acquire an array of Nr × Nc pixels. By encompassing all the parameters

in a scene into θ = (θ1,1, . . . , θNr,Nc), then most algorithms solve the following optimization
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problem [61]

arg min
θ

Nr,Nc∑
i,j

fzi,j (θi,j) + R(θ) (6.14)

where zi,j denotes the observed histogram at the (i, j)th pixel, fzi,j (θi,j) are per-pixel data

fidelity terms (negative log-likelihood of the ToF list or histogram observation models (see

Section 2.5)), and R(θ) is a spatial regularization term which encodes the prior information

about the spatial regularity of typical scenes. There has been significant efforts dedicated to the

design of powerful regularizations R(θ). The RT3D algorithm [3] exploits the plug-and-play

framework [142] together with a fast computer-graphics point cloud denoiser to design a reg-

ularizer that can capture the geometry of complex scenes while also simultaneously selecting

K ≥ 1 surfaces per pixel. However, existing algorithms (including RT3D) require multiple

evaluations of the data fidelity terms, and thus suffer from large memory requirements and a

computational complexity which is at least linear in the number of photon detections or his-

togram bins [3].

In this chapter, we propose to replace the histogram-based loss in Eqn 6.14 for the more com-

pact sketch cost function in Eqn 5.10, while leveraging the spatial regularization penalty of

existing methods. The proposed objective can be expressed as

arg min
θ

Nr,Nc∑
i,j

Ni,j‖yi,j −Ψθi,j‖
2
Wi,j

+ R(θ) (6.15)

where yi,j is the sketch associated with the (i, j)th pixel. The number of detected photons

Ni,j controls the trade-off between the data-fidelity and regularization terms. As the number of

detected photons increases, the data fidelity term dominates Eqn 6.15, which tends to the non-

regularized problem in Eqn 5.10. In order to perform real-time reconstruction with an arbitrary

number of photon detections, we propose a sketched version of the RT3D algorithm, which we

name SRT3D. The proposed algorithm replaces the histogram-based likelihood of RT3D for

the sketched loss of Eqn 6.15.

6.3.1 Experiments

We evaluate the proposed SRT3D algorithm on the two real datasets considered in Section 5.4:

a polystyrene head at a distance of 40 metres [63] and a scene with two people walking behind

a camouflage net at a distance of 320 metres [3]. We compare the proposed method with 3 other
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algorithms: traditional cross-correlation [143] (XCORR), the pixelwise SMLE reconstruction

proposed in Chapter 5 which doesn’t exploit spatial regularization, and RT3D which accesses

the full fine-resolution ToF data. For reduced computational load, we set the weighting matrix

in Eqn 6.15 to the identity, i.e. Wi,j = Im for all i, j. Although this is less efficient statistically

(see Chapter 5), the gains from the spatial regularizer outweigh this loss. All the experiments

were performed using an NVIDIA RTX 3070 laptop GPU.
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Figure 6.8: Execution time of RT3D [3] and the proposed sketched SRT3D as a function of
the mean number of photons per pixel. RT3D suffers from a linear complexity, whereas SRT3D
only depends on the size of the sketch m.

Recall from Section 5.4 that the polystyrene head dataset has size of 141 × 141 pixels with

T = 4613. Most of the pixels in this scene contain exactly K = 1 surface. A ground-truth

reference was obtained using using the standard cross-correlation algorithm on the raw ToF

information (with high number of photons per pixel and high SBR). Using this reference and

the observation model in Eqn 2.92, we synthesized multiple datasets for different mean photons

per pixel n and SBR levels. Figure 6.9 shows the 3D reconstructions obtained for SBR levels of

10, 1 and 0.1. All methods perform similarly when the number of photons and SBR are large.

Notably, a sketch of size m = 5 is sufficient to provide good reconstructions. However, when

the scene contains a low number of photons or low SBR, pixelwise methods fail to provide

good reconstructions, whereas both RT3D and SRT3D provide good reconstructions. In this

challenging setting, a sketch of size m = 10 sufficiently provides a reconstruction that has the

same quality as the ones obtained in the full data case. True and false detections, depth absolute

error (DAE), and normalised intensity absolute error (IAE) (as defined in [3]) are presented in

Figure 6.10 for an SBR of 1 and different number of photons per pixel.
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Figure 6.9: 3D reconstructions obtained by the proposed sketched RT3D algorithm for different
sketch sizes m and other competing algorithms. The proposed SRT3D method incorporates
spatial regularization, providing stable reconstructions in settings with low SBR or low number
of measured photons.
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Figure 6.10: Performance of the evaluated algorithms for the polystyrene head dataset with
SBR=1.

Figure 6.8 shows the execution time of RT3D and SRT3D as a function of the mean number of

photons per pixel in the polystyrene head datasets. The GPU memory requirements of RT3D

become prohibitive if the number of observed photons is in the order of hundreds per pixel per

frame, whereas the sketched version has a complexity which is independent of the number of

photons, and can handle any number of photons in real-time. Table 6.2 shows the execution

time of SRT3D for increasing array sizes, demonstrating that the proposed method can process

up to 705 × 705 arrays at 14 frames per second on a laptop computer. The datasets were

generated by upsampling the head reference before the synthesis of photon detections.

Figure 6.11 shows the reconstructions of SRT3D and RT3D for single frame of the camouflage

dataset in [3], which is composed of 32 × 32 pixels with T = 153. Recall from Section 5.4
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m/pixels 1412 2822 4232 5642 7052

m = 5 6 12 28 55 68
m = 10 7 18 35 60 88

Table 6.2: Execution time in milliseconds for different scene sizes in pixels obtained by the
proposed sketched RT3D algorithm for a sketch size of m = 5 and m = 10, respectively.

that most of the pixels in the scene contain K = 2 surfaces, which makes the reconstruction

task more challenging. However, a sketch of size m = 10 is sufficient to provide the same

reconstruction quality as using the full 153 bins. Although the original fine resolution T is not

large, the execution time of SRT3D for m = 10 was 12 ms, whereas for RT3D it was 20 ms.

Figure 6.11: Reconstruction of the scene in [3] with 2 surfaces per pixel by the original RT3D
and its sketched version. Using a sketch size of only m = 10 is enough to provide the same
reconstruction quality.

6.4 Concluding Remarks

In this chapter, we developed the sketched lidar framework introduced in Chapter 5 to include

both a robust surface detection algorithm based solely on the sketch and proposed a real-time

sketched implementation that incorporated powerful regularizers R(θ). While our results fo-

cused on a sketched version of the RT3D algorithm [3], the ideas presented here can be used

to develop sketched versions of other existing regularized lidar methods by simply replacing

the data fidelity term fzi,j in Eqn 6.14 by the sketch cost function term in Eqn 5.10. Further-

more, we developed a detection scheme based solely on a compact representation sketch that

is robust in detecting the presence of a surface for each pixel in the lidar scene. As a result,

pixels consisting of non-existing surfaces can be discarded from memory reducing the overall

computational and memory load of transferring and reconstructing a lidar scene. Moreover, it is

shown that only a minimal sized sketched is required to achieve a high probability of detection
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on both synthetic and real datasets, achieving a better PD/PFA trade-off than the corresponding

χ-squared test on the original histogram data.
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Chapter 7
Conclusion and Future Perspectives

7.1 Conclusions

In this work, the ultimate goal was to develop the compressive learning framework in [1, 6] by

introducing new models and applications. From our extensive theory and algorithmic designs in

Part I, to the development of a robust sketching framework to reduce the data transfer bottleneck

of modern lidar device in Part II, we believe this has been demonstrated.

In Chapter 3, we developed a compressive ICA scheme that consisted of both theory and prac-

tical algorithms. At the core of the scheme is the existence of a low dimensional model set

induced by the solutions to the cumulant based ICA problem. The solutions of the model set

admitted a sparse tensor decomposition that we exploited to form a dimension reducing sketch

and to develop both an iterative projected gradient and alternating steepest descent version of

the compressive ICA algorithm. It was shown through theory and consolidated by phase tran-

sition experiments that a sketch of order O(n2) is of sufficient size to retain enough salient

information to accurately estimate the parameters of the ICA model. The compressive ICA

scheme leads to substantial memory as existing cumulant based ICA methods require in mem-

ory either the full data matrix or the 4th order cumulant tensor of size O(Nd) and O(n4),

respectively.

The ICA model belongs to the larger class of semi-parametric models where their correspond-

ing parameters are typically identified through a set of statistics associated with the data. In

Chapter 4, we reformulated the existing CL framework to cater specifically for the inherent

structure and topology admitted by semi-parametric models. The reformulation enables a clear

blueprint in designing future compressive learning schemes for semi-parametric models and

establishes early on if, or when, compression can be attained with respect to the model’s under-

lying dimensionality. Through the use of a case study, we highlighted that a compressive GPCA

scheme cannot always enable efficient compression in comparison to using the full data as the

identifiable statistic (i.e. the correlation matrix of the Veronese embeddings) scales exponen-

tially with the model set dimensions. Two key conclusions were drawn from this chapter: (1)
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in its current form, by leveraging identifiable statistics, we can reduce the compressive learning

problem down to a finite dimensional compressive sensing setting that is often easier to solve,

and (2) the reliance on an identifiable statistic can be the poison as well as the medicine as it

may not always exist for a given semi-parametric model, and if it does it may have a size that

does not scale favourably with the model’s underlying dimensions.

In Part II of the thesis, a sketching framework for reduced data transfer in modern day lidar

devices was developed that circumvented the compression-resolution trade-off that is inherent

in existing methods. The key conclusion of Chapter 5 was that the size of the sketch needed only

to scale with the number of surfaces in the field of view and was fundamentally independent

of both the temporal resolution and the photon count. As most scenes consist of K = 0, 1

or 2 surfaces, enormous compression was achieved with only negligible loss of information as

demonstrated on both synthetic and real datasets. In contrast to the sampling schemes proposed

in [6], we designed a deterministic sampling strategy that sampled the first m frequencies that

were blind to the background noise.

In Chapter 6, the sketched lidar framework was extended by designing a plug and play multi

pixel denoiser algorithm that was robust to both low SBR and small photon counts. Importantly,

by replacing the data fidelity term in Eqn 6.14 with the sketch cost function term in Eqn 5.10 in

state-of-the-art multi pixel denoisers, one can easily develop sketched versions of other exist-

ing and future regularized methods. Furthermore, a surface detection algorithm was proposed

in Chapter 6 that was based solely on the sketch and admitted a computational complexity of

O(m) compared with existing schemes that had a complexity ofO(T log T ), enabling substan-

tial computational and memory complexity compression. Several key conclusions were drawn

from Chapter 6. The first being that sketches not only provide sufficient information for infer-

ence but they also allow for robust detection even at small sketch sizes. Secondly, the flexibility

of the sketched lidar framework was demonstrated by substituting the compressive lidar cost

function for the data fidelity term in the full data lidar denoisers. Incorporating well-established

denoisers or regularizers of a learning task provides a possible avenue for future compressive

learning implementation where the sparsity of the model set may not be fully understood.
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7.2 Future Perspectives

The work presented in this thesis aimed to address a small amount of the gaps in compressive

learning literature and intended on developing both new models and applications. Many inter-

esting and challenging problems arose throughout the duration of the PhD studies. In this final

section, some key open problems and possible future directions will be detailed.

7.2.1 Efficient One-Stage Compressive ICA

In Section 3.4.2, a one-stage compressive ICA approach was proposed that enabled parameter

estimation without an initial prewhitening stage by modifying the existing 2 stage compressive

ICA scheme. This is of particular interest in streaming applications where we might be limited

to one instance of the data making a prewhitening stage impossible. However, a major limitation

of our one-stage compressive ICA algorithm is requiring the calculation of AV̄−1 vec (X ) at

each iteration of the algorithm. Recall that V̄ := V ⊗V ⊗V ⊗V ∈ Rn4×d4 , where V is the

whitening matrix which can be estimated through the second order moments of the unwhitened

sketch. For d ≈ n, the extra computation does not substantially increase the complexity of the

whole compressive ICA algorithm. However, in some cases the number of mixed components

is much larger than the number of independent components, i.e. d � n, and the prewhitening

stage acts as a form of dimensionality reduction in its own right. In this case, the polynomial

dependency on d makes our current one-stage particularly slow for large d. In future work,

we wish to develop a one-stage compressive ICA algorithm that is cheaper and efficient to run.

This would require further exploration of the structure induced by the solutions of unwhitened

4th order moments so that we can design specific projection operators.

7.2.2 Alternative Compressive Semi-Parametric Learning

In Chapter 4, we reformulated the existing compressive framework so that it generalizes to

semi-parametric models. However, a key limitation, as discussed earlier in this chapter, is the

reliance of an identifiable statistic which may not be either readily available or scale favourably

with the underlying dimensions of the model. An important line of research would be to explore

other ways of forming a semi-parametric sketch that does not require some identifiable statistic.

For instance, one could possibly sketch the equivalence class of distributions and design suitable

decoders that enable accurate parameter estimation.
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7.2.3 Compressive Transfer Learning

One of the main limitations of the current compressive learning approach is that the design

of a sketch is heavily dependent on the task or model of interest where the construction of the

sketching operator is highly non-trivial. In many cases, a given dataset is used to query multiple

tasks and build several models. This would require a sketch to be designed and computed for

each individual task. A future direction of research would be to design multitask sketches that

can be computed once and be used for several tasks.

7.2.4 On-Chip Implementation of Sketched Lidar

In Chapter 5, we extensively tested our sketched lidar framework on several real datasets. How-

ever, the SMLE algorithm was executed on prerecorded photon counting data where traditional

TCSPC histograms in Section 5.1 were converted to raw photon time-stamps. A large body

of research needs to be undertaken to bridge the gap between simulations and practical im-

plementation of the sketching approach within an FPGA on the lidar device. A significant

challenge is the computation of the sinusoidal functions within the sketch. It is known that

such functions are often expensive to compute from a logic resource point of view. In Section

5.2.3, we briefly discussed various efficient logic-based schemes for constructing the sketch

on-chip. Schellekens et al. showed that in principle one can replace the sinusoidal functions

of the sketch by alternative periodic functions (e.g. square waves or triangle waves) in con-

junction with random dithering. Another possible research direction would be to consider finite

approximations of the sinusoidal functions using classic CORDIC algorithms which build the

approximation within a user-defined number of iterations [116]. Exploring implementations of

these approximations in a hardware setting is crucial and we believe that an efficient on-chip

sketch computation could lead to an overall reduction in logic resources compared to existing

TCSPC histogram methods.

Another important consideration of implementing the sketched lidar approach on-chip is defin-

ing the level of precision used for computing the sketch. In Section 5.4.4 we constructed

sketches of different size and various wordlengths and then analysed the quality of recon-

struction. Interestingly, one could achieve good reconstructions by computing either a small

sketch with high precision or a larger sketch with small precision. However, in this specific

experiment, the dataset had a slightly large SBR of 6.82 and a moderate sized photon count. A

future research direction would be to explore theoretically how different sketch sizes of various
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wordlengths are effected by challenging conditions of low SBR and limited photon counts.

7.2.5 Complex Lidar Scenarios

In Part II, we assume that the background noise is constant over all time-intervals (i.e. Pb(x) =

1
T ). However, in some practical settings the background may not be constant due to adverse

weather conditions for example fog or snow. In Section 5.2.2, we developed sampling schemes

that were essentially blind to uniform background noise. If we were to modify the lidar ob-

servation model in Eqn 5.1 to account for a non-constant background, then future work should

explore if a different sampling scheme is needed to ensure that we sample in regions where the

non-constant background is minimal.

A changing pulse width is another open-problem in the lidar community. The temporal re-

sponse of a signal may not always be consistent due to the material or position of the target

and the imaging conditions. Surfaces or objects are usually assumed to be opaque and approx-

imately normal to the laser of the lidar device so that the reflected temporal response does not

change across the captured scene. However, due to oblique angled surfaces, especially at long

distances, the pulse of the signal may broaden and the shape of the pulse profile will vary across

the measured pixels. Range-walk is a similar phenomena that occurs when capturing surfaces

that are very reflective (e.g. retro-reflective materials). In this instance, the pulse width of the

signal becomes extremely narrow (converges towards a Dirac delta function). In both scenar-

ios, the effects of a changing pulse width can result in biased depth estimates of the scene.

Although these problems are orthogonal to sketched lidar as a whole and affect existing meth-

ods to similar extents, a future line of research would tackle these problems and demonstrate

that the sketched lidar framework is flexible to build these complexities into the true observa-

tion model. An immediate example of this is to compensate for broadening pulse width by

replacing the constant IRF function h in Eqn 5.1 by a non-constant IRF hb defined as

hb(t) ∝
T∑
j=1

h(j) exp

(
− (t− j)2

2(b− 1)2

)
(7.1)

where b ∈ R+ is an extra parameter that determines the broadening of pulse width. Notice

that the non-constant IRF function is simply the existing constant IRF function convoluted with

a Gaussian centred at 0 with standard deviation b − 1. Due to the well-known convolution
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theorem the resulting characteristic function of the signal model is simply

ΨPs(ω) = ĥ(ω)e−
1
2

(b−1)2ω2
eiωt. (7.2)

One can simply modify the sketched algorithms in Chapter 5 and 6 to incorporate the additional

parameter b that is to be estimated.

7.2.6 Extensions to Other Photon Counting Imaging Modalities

Single photon counting techniques are not confined to single wavelength lidar and play an

important role in other imaging domains. The closest relation is multi-spectral lidar imaging

that gathers measurements of a scene at several spectral bands, making it possible to distinguish

distinct materials in the field of view. In many existing multi-spectral approaches, a TCSPC

histogram is obtained for each wavelength used. However, for many wavelengths, the memory

and data transfer requirements quickly become infeasible using classic techniques. Recent

approaches [144] attempt to integrate multiple wavelengths into a single histogram to reduce

the overall complexities and size of the dataset acquired. A future line of research would be

to develop a sketched multi-spectral method. Initially, one could construct a sketch for each

wavelength and estimate the parameters of each spectral band in parallel. Another approach

would be be to form a single sketch for all wavelengths, however one would need to explore if

the decoder would be well-posed.

Aside from lidar, fluorescence-lifetime imaging microscopy (FLIM) is a well-established imag-

ing technique in microscopy that attempts to distinguish the unique molecular environment of

fluorophores to provide high-resolution images of living samples. A fluorophore that has been

excited by a photon will drop to a ground state via a certain decay path quantified by a decay

parameter τ . By recording the detected photons after excitement of a sample, we can estimate

the specific decay rates of the fluorophore. Let x be the delay time of a photon, then a FLIM

signal model [145] can be described by an exponential mixture model:

Ps(x) =

K∑
k=1

I0e
− x
τk (7.3)

where I0 is the intensity at time t = 0 and τk are the lifetimes of the K fluorophores. Similar

to single-photon counting lidar, FLIM techniques also suffer from a data-transfer bottleneck. A
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Conclusion and Future Perspectives

future direction of research would be to modify the framework set out in Chapter 5 to develop a

compressive FLIM model. As the exponential distribution has a closed-form and well-behaved

characteristic function, we could simply leverage the ECF sketches as used in Chapter 5. How-

ever, as the tails of the distributions provide important information on the decay rate of the

fluorophores, it would be key to explore the role of random ECF sampling and the size of the

sketches required to accurately estimate the decay rates.
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