

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Preconditioned Iterative
Methods for Optimal

Control Problems with
Time-Dependent PDEs as

Constraints

Santolo Leveque

Doctor of Philosophy

University of Edinburgh

2022

Declaration

I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text.

(Santolo Leveque)

2

Acknowledgements

The first person I would like to thank is my supervisor, John Pearson. I am
grateful to him for introducing me to the interesting field of PDE-constrained
optimization, but also for his support during my studies. Thanks to his comments
and suggestions, I have been able to write this thesis and the journal papers it
is based on. Working with him has allowed me to grow as a student, but, more
than that, as a researcher in the field of numerical linear algebra. I have really
appreciated the freedom he gave me in carrying out my research, synonymous of
his trust in my skills.

I would like to thank Spyros Pougkakiotis, with whom I had the pleasure
to work. He has been a constant source of inspiration for his commitment to
research and for his insights into mathematical optimization. I would also like to
thank Jacek Gondzio for his encouragement in the last years, especially at the
early stage of my project.

I would like to thank the School of Mathematics at the University of Edin-
burgh for funding my PhD studies. I am also very grateful to the organizers of the
workshop Beyond the Discrete: Iterative Methods from the Continuum Perspec-
tive and of the Autumn School on Optimal Control and Optimization with PDEs
for their financial support that helped me to develop my research. I would like
also to acknowledge the Society for Industrial and Applied Mathematics (SIAM)
for the SIAM Student Travel Award that allowed me to participate at the SIAM
Conference on Applied Linear Algebra 2021 (LA21).

I am grateful to many friends and colleagues at the School of Mathemat-
ics, in particular within the Applied and Computational Mathematics and the
Optimization and Operational Research groups, for creating such a stimulating
environment. A special thank goes also to Filippo, Ivona, Jonna, Michael, Nagisa,
and Yvonne, with whom I was able to ease into my life as a PhD student.

As we went through some restrictions due to the COVID pandemic, I have
really appreciated to have people to talk to and to share my worries with during
the lockdowns that took place. For this reason, I would like to thank my former
flatmates Chris, Enrique, Hannah, Jenny, Kelly, and Rhys for their support and
for all the laughs we had together. As I have enjoyed the time with my flatmates
indoors, I appreciated even more the easening of the restrictions, for I have been
able to spend more of my time with my friends Alex, Luca, and Pushpi. All of
our dinners together, the picnics, the walks, the small birthday parties, and more
generally all the time spent together made me believe as if we were not living
during a pandemic. But more than that, I have really appreciated finding such
good people as them, that really care for their friends.

3

I believe that a separate place should be given to all my closest friends and
to my family. For all the laughs, the jokes, the good times, and the encouraging
words, I would like to thank all my friends Angelo, Ciccio, Dario, Marco, Tore,
and Umberto. Despite the (long) time away from one another and despite the
(many) kilometers between us, it has always seemed as if we never departed from
one another. Here, I would like to thank also my parents, my brother, and my
sister, whose support has helped me in completing my PhD studies. Their words
and their love have always been pushing me towards my goals. I would not be
here without them.

Last, I would greatly acknowledge my girlfriend Natalia (“Finally”, she would
say), who has been supportive to (and bearing, if one wants to make jokes in
Italian) me in the last two and a bit years. The time we spent together has been
a crescendo, and I have never thought to find a partner that fits as she does in my
life. I would like to thank her for all her support and love, knowing that she will
always be my source of inspiration. After all, the turning point of my research
began right after we started dating!

4

Abstract

In this work, we study fast and robust solvers for optimal control problems with
Partial Differential Equations (PDEs) as constraints. Specifically, we devise pre-
conditioned iterative methods for time-dependent PDE-constrained optimization
problems, usually when a higher-order discretization method in time is employed
as opposed to most previous solvers. We also consider the control of stationary
problems arising in fluid dynamics, as well as that of unsteady Fractional Differ-
ential Equations (FDEs). The preconditioners we derive are employed within an
appropriate Krylov subspace method.

The first key contribution of this thesis involves the study of fast and robust
preconditioned iterative solution strategies for the all-at-once solution of optimal
control problems with time-dependent PDEs as constraints, when a higher-order
discretization method in time is employed. In fact, as opposed to most work in
preconditioning this class of problems, where a (first-order accurate) backward
Euler method is used for the discretization of the time derivative, we employ a
(second-order accurate) Crank–Nicolson method in time. By applying a care-
fully tailored invertible transformation, we symmetrize the system obtained, and
then derive a preconditioner for the resulting matrix. We prove optimality of the
preconditioner through bounds on the eigenvalues, and test our solver against a
widely-used preconditioner for the linear system arising from a backward Euler
discretization. These theoretical and numerical results demonstrate the effective-
ness and robustness of our solver with respect to mesh-sizes and regularization
parameter. Then, the optimal preconditioner so derived is generalized from the
heat control problem to time-dependent convection–diffusion control with Crank–
Nicolson discretization in time. Again, we prove optimality of the approximations
of the main blocks of the preconditioner through bounds on the eigenvalues, and,
through a range of numerical experiments, show the effectiveness and robustness
of our approach with respect to all the parameters involved in the problem.

For the next substantial contribution of this work, we focus our attention on
the control of problems arising in fluid dynamics, specifically, the Stokes and the
Navier–Stokes equations. We firstly derive fast and effective preconditioned itera-
tive methods for the stationary and time-dependent Stokes control problems, then
generalize those methods to the case of the corresponding Navier–Stokes control
problems when employing an Oseen approximation to the non-linear term. The
key ingredients of the solvers are a saddle-point type approximation for the linear
systems, an inner iteration for the p1, 1q-block accelerated by a preconditioner for
convection–diffusion control problems, and an approximation to the Schur com-
plement based on a potent commutator argument applied to an appropriate block

5

matrix. Through a range of numerical experiments, we show the effectiveness of
our approximations, and observe their considerable parameter-robustness.

The final chapter of this work is devoted to the derivation of efficient and ro-
bust solvers for convex quadratic FDE-constrained optimization problems, with
box constraints on the state and/or control variables. By employing an Alternat-
ing Direction Method of Multipliers for solving the non-linear problem, one can
separate the equality from the inequality constraints, solving the equality con-
straints and then updating the current approximation of the solutions. In order
to solve the equality constraints, a preconditioner based on multilevel circulant
matrices is derived, and then employed within an appropriate preconditioned
Krylov subspace method. Numerical results show the efficiency and scalability of
the strategy, with the cost of the overall process being proportional to N̄ log N̄ ,
where N̄ is the dimension of the problem under examination. Moreover, the strat-
egy presented allows the storage of a highly dense system, due to the memory
required being proportional to N̄ .

6

Lay Summary

Optimal control problems often arise in industrial and real-life applications. In
particular, this class of problems often concerns finding the “work” that should
act on a given physical system in order to obtain a desired outcome, with a cost
that is minimal.

A simple example of an optimal control problem is given by the control of the
temperature in a room. For instance, suppose during winter one wishes to keep
the temperature of a room around 200C. In order to obtain this, one may turn on
the heating for the whole day. However, this choice may impact one’s finances,
therefore one wishes to find a solution to this problem in a more efficient way.
This can be done by solving an optimal control problem, in which the model
drives the temperature of the room towards a desired one while reducing the
energy provided to the room for the heating. Other examples are given by the
control of the flow of a fluid in a pipe, the separation of some chemicals, or the
modification of the atmospheric conditions of some system.

As one can infer from our surroundings, many real-world processes are evo-
lutionary, meaning that they depend on the time. Therefore, one can expect
that a large class of optimal control problems are modeled using time-dependent
equations. Of late, a great effort has been devoted to the solution of this class of
problems. However, optimal control problems (either steady or time-dependent)
do not in general have a closed form solution, therefore numerical methods are
employed in order to find an approximation of it. This in turn requires the so-
lution of a (sequence of) system(s) of linear equations. Although direct methods
can be employed as a black-box for the solution of the resulting linear systems,
they can suffer from memory limitations, in particular when finding an accurate
solution of time-dependent problems. As an alternative, one can employ iterative
methods in order to find (approximations of) the solutions of the corresponding
linear systems to be solved. These methods are quite cheap to apply, and usually
do not suffer from memory limitations. However, the convergence of this class of
methods is often determined by the conditioning of the system to be solved. For
this reason, one introduces a preconditioner in order to produce a better condi-
tioning of the linear system considered and therefore to speed up the convergence
of the method.

In this thesis, we delevop fast and robust solvers for the numerical solution
of optimal control problems. Specifically, this work focuses on the development
of suitable preconditioners for the linear systems arising from a range of optimal
control problems. For a large part of this thesis, we focus our study on time-
dependent problems, and we also consider time-independent systems.

7

Contents

Abstract 6

0 Introduction 11

1 Optimal Control Problems with PDEs as Constraints 16
1.1 Introduction to Optimal Control of PDEs 17

1.1.1 Applications . 21
1.2 Finite Element Method . 22
1.3 First-Order Optimality Conditions 25

1.3.1 Optimize-Then-Discretize Approach 26
1.3.2 Discretize-Then-Optimize Approach 33

1.4 State and/or Control Constrained Problems 36
1.4.1 Active Set Method . 38
1.4.2 Primal-Dual Active Set Method with a Moreau–Yosida Reg-

ularization . 40
1.4.3 Primal-Dual Interior Point Methods 41

2 Iterative Solvers for Linear Systems of Equations 45
2.1 Notation . 46
2.2 Simple Iteration . 47

2.2.1 Uzawa Iteration . 48
2.3 Relaxation Methods . 50
2.4 Chebyshev Semi-Iteration . 52
2.5 Multigrid Methods . 55
2.6 Preconditioned Krylov Subspace Methods 57
2.7 Preconditioned Conjugate Gradient Method 60
2.8 Preconditioned MINRES . 65
2.9 Preconditioned GMRES and Flexible GMRES 67
2.10 Preconditioning 2-by-2 Block Matrices 71
2.11 Matching Strategy . 73

2.11.1 Preconditioning for the Poisson Control Problem 76

3 Preconditioning the Heat Control Problem with Crank–Nicolson
Discretization in Time 80
3.1 Problem Formulation . 81
3.2 First-Order Optimality Conditions and Discretizations in Time . . 82

3.2.1 Backward Euler Discretization 84

8

3.2.2 Crank–Nicolson Discretization and Symmetrization of the
System . 85

3.3 Preconditioning Approach . 91
3.3.1 Approximation of the p1, 1q-Block 92
3.3.2 Approximation of Schur Complement 92

3.4 Numerical Results . 97
3.5 Summary and Comments . 102

4 Preconditioning Time-Dependent Convection–Diffusion Control
Problems with Crank–Nicolson Discretization in Time 104
4.1 Problem Formulation . 105

4.1.1 Discretization Matrices and Stabilization 106
4.2 First-Order Optimality Conditions and Discretization in Time . . 109
4.3 Preconditioning Approach . 112

4.3.1 Approximation of Schur Complement 113
4.4 Numerical Results . 116
4.5 Summary . 118

5 Preconditioning Stationary and Instationary Stokes Control Prob-
lems 120
5.1 Problem Formulation . 121

5.1.1 Discretization Matrices . 122
5.2 Preconditioning Forward Stationary Stokes Equations 123
5.3 Block Commutator Argument . 124
5.4 First-Order Optimality Conditions and Discretization in Time . . 125

5.4.1 Stationary Stokes Control 126
5.4.2 Instationary Stokes Control 127

5.5 Preconditioning Approach . 132
5.5.1 Approximation of the p1, 1q-Block 133
5.5.2 Approximation of Schur Complement 135

5.6 Numerical Results . 139
5.6.1 Stationary Stokes Control 140
5.6.2 Instationary Stokes Control 140

5.7 Summary and Comments . 144

6 Preconditioning Stationary and Instationary Navier–Stokes Con-
trol Problems 148
6.1 Problem Formulation . 150

6.1.1 Non-Linear Iteration and Discretization Matrices 151
6.2 Preconditioning Forward Stationary Navier–Stokes Equations . . . 153
6.3 First-Order Optimality Conditions and Discretization in Time . . 154

6.3.1 Stationary Navier–Stokes Control 155
6.3.2 Instationary Navier–Stokes Control 157

6.4 Preconditioning Approach . 166
6.4.1 Approximation of the p1, 1q-Block 166
6.4.2 Approximation of Schur Complement 171

6.5 Numerical Results . 175

9

6.5.1 Stationary Navier–Stokes Control 175
6.5.2 Instationary Navier–Stokes Control 177

6.6 Summary and Comments . 181

7 Preconditioning Fractional Differential Equation Constrained Op-
timization Problems 184
7.1 Fractional Calculus . 185

7.1.1 Fractional Integral . 185
7.1.2 Fractional Derivative . 186

7.2 Discretizing a Fractional Derivative 189
7.3 Preconditioners for FDEs . 191
7.4 Optimal Control of FDEs . 195

7.4.1 Discretize-Then-Optimize Approach 196
7.5 Alternating Direction Method of Multipliers 198
7.6 Preconditioning Approach . 201
7.7 Numerical Results . 202

7.7.1 Box Constraints on the State v 203
7.7.2 Box Constraints on the Control u 204
7.7.3 Box Constraints on Both Variables 205

7.8 Summary . 207

8 Conclusion 208

A An Overview of the GLT Theory 211

10

Chapter 0

Introduction

“Ho un foglio bianco
Per volare alto lo macchio
Come l’ala di un albatro
Per la città della China
Mi metto in viaggio (da bravo)
Pellegrinaggio
Ma non a Santiago
Vado a China Town”

[“I have a white sheet
To fly high I stain it
Like the wing of an albatross
To China Town
I get on the road (as a good boy)
Pilgrimage
But not to Santiago
I am going to China Town”]

– Caparezza, China Town1

For centuries, scientists have been using differential operators in order to
model reality. In fact, many physical processes, from mechanics to dynamics,
from biology to economics, from engineering to chemistry, passing through con-
tinuum mechanics and thermodynamics, can be described by the relation of some
physical quantities with a differential operator. For instance, one can model the
evolution of an epidemic through the SIR model (on the topic of the ongoing
coronavirus pandemic). In addition, thanks to the advances in scientific comput-
ing and in numerical analysis, scientists have also been focusing on the numerical
solution of such models. In particular, many researchers have been working on
the development of robust and efficient linear solvers for the discretizations of the
differential operator analysed. A particular class of differential operators is given
by Partial Differential Equations (PDEs), which relate a physical quantity to its

1This song was inspired by Malevič’s Black Square, and is a declaration of the author’s love
for writing (indeed, China is the Italian word for Indian ink). Broadly speaking, the song may
also refer to mathematicians (or scientists in general), as they know quite well how to “stain a
sheet”.

11

partial derivatives.
As above, PDEs are very suitable for describing the physics of real-life prob-

lems. However, rather than only determining the realisation of a physical process,
one may be interested in modifying a given physical quantity. For instance, this
could represent the act of modifying the flow of a liquid in a pipe. Alternatively,
one may wish to keep the temperature of a room close enough to a given desired
temperature. This type of problems falls into the category of inverse problems.
Indeed, one wishes to find what type of “work” should act on the physical mech-
anism in order to obtain their stated objective. Specifically, one wishes to control
the physics in some sense. The class of problems so described is referred to as
PDE-constrained optimization problems. Coming back to the example of keeping
the temperature of a room close to a desired one, this problem can be described
by the optimal control of the heat equation, or simply heat control.

As we will see in the following chapter, PDE-constrained optimization prob-
lems are very well suited for describing the act of modifying a given physical
system, and arise quite often in industrial applications. In recent years, many
researchers have devoted their effort to devise methods for the numerical solution
of the optimal control of PDEs. This thesis is the result of one such effort. Specif-
ically, our study focuses on the development of parameter-robust preconditioned
iterative methods for the solution of optimal control problems with PDEs as con-
straints. For a large part of this thesis, we consider time-dependent PDEs as
constraints, but we also study stationary problems on occasions. In addition, we
consider also the optimal control of Fractional Differential Equations (FDEs) as
constraints, with additional algebraic (box) constraints imposed on the variables.
The contents of this thesis can be summarized as follows.

In Chapter 1, we introduce the type of problems considered in this thesis, that
is optimal control problems with differential operators as constraints. Then, we
describe the strategies employed for obtaining the optimality conditions that a
solution of the problem has to satisfy, namely the optimize-then-discretize and the
discretize-then-optimize approaches. Finally, we describe some of the methods
employed to obtain a numerical solution of an optimal control problem with
differential operators as constraints, with additional algebraic constraints on the
variables. All of these approaches lead to discretized systems of linear equations.

In Chapter 2, we give an overview of a number of iterative methods used for the
solution of (very large) linear systems of equations. Among those, we mainly focus
on Krylov subspace methods, as they require only matrix–vector or vector–vector
operations at each iteration. Since the convergence of those methods depends
(but not only) on the distribution of the eigenvalues, a preconditioned version of
the Krylov subspace methods is usually employed in practice. The latter leads
us towards the theory of saddle-point systems, and the introduction of optimal
preconditioners for linear systems with a saddle-point type of structure. As we
will be mentioning quite often in this work, the “ideal” preconditioners are never
applied in practice, as the cost of applying their inverse operator is almost as
costly as inverting the original system. For this reason, one would rather find
easy-to-invert approximation of the main blocks of the preconditioners considered.
This is the “philosophy” that we will adopt for the rest of this work. In particular,
we look for suitable approximations of the Schur complements of each system,

12

that are optimal with respect to all the parameters involved in the problem,
meaning that the eigenvalues of the preconditioned Schur complement are (in
the best case) clustered in a region of the complex plane independently of the
parameters involved, or that the linear solver converges in a (roughly) constant
number of iterations.

The first novel contribution that we present in this work is the optimal pre-
conditioner for the heat control problem when applying the Crank–Nicolson dis-
cretization in time, which we discuss in Chapter 3. We would like to note that the
Crank–Nicolson method may refer to either the implicit midpoint rule or to the
implicit trapezoidal rule. In general, these two methods are not equivalent when
applied to non-linear problems for instance. For the rest of this work, we will
refer to the implicit trapezoidal method as the Crank–Nicolson method. By em-
ploying an optimize-then-discretize strategy, we derive the first-order optimality
conditions of the heat control problem. Those conditions are given by a coupled
system of linear PDEs, one moving forward in time, the other backward. Most
of the previous work in preconditioning for the control of time-dependent PDEs
is based on a (first-order accurate) backward Euler discretization for the time
variable. However, in this work we employ a (second-order accurate) Crank–
Nicolson method in time, which leads to a (non-symmetric) system with much
more complex structure. We apply a tailored invertible transformation, and sym-
metrize the system so obtained. From here, we employ saddle-point theory to
devise an optimal preconditioner for the system under examination. The key
components of this preconditioner are an accurate mass matrix approximation,
a good approximation of the Schur complement based on a matching strategy,
and an appropriate multigrid process to apply this latter approximation – these
are constructed using our work in transforming the linear system. We prove the
optimality of our approximation of the Schur complement through bounds on the
eigenvalues that are independent of any parameters within the problem setup.
This optimality of the preconditioner is also observed in the numerical results, as
the iterative solver is able to reach a prescribed accuracy in a constant number of
iterations. In addition, the numerical results show the substantial speed-up ob-
tained by employing our strategy compared to the state-of-the-art preconditioned
backward Euler method.

In Chapter 4, the optimal preconditioner that we derive for heat control prob-
lems with Crank–Nicolson in time is extended to the control of the time-dependent
(stabilized) convection–diffusion equation. By employing a similar strategy as for
heat control, one is able to symmetrize the discrete optimality conditions. Again,
by exploiting the transformation used for the symmetrization of the linear sys-
tem, we are able to derive an optimal preconditioner for the problem considered.
In this case, the optimality of the Schur complement approximation is guaranteed
only under a suitable assumption. Numerical results show the efficiency of the
preconditioner, as the linear solver requires a constant number of iterations for
reaching convergence.

The second major contribution of this work is that of devising robust pre-
conditioners for the control of viscous fluid flow, which is the topic of Chapter 5
and Chapter 6. For those problems, the constraints are the (linear) incompress-
ible Stokes equations, or the (non-linear) incompressible Navier–Stokes equations,

13

that we consider in both the stationary and time-dependent settings. For the
time-dependent problems, we employ both backward Euler or Crank–Nicolson as
alternatives for discretizing the time derivative. Again, by adopting an optimize-
then-discretize approach, we derive the first-order optimality conditions that a
critical point has to satisfy. Since the conditions for the Navier–Stokes control
problems are given by a system of non-linear PDEs, we adopt a linearization
for deriving an approximation to a critical point. Specifically, we employ an
Oseen linearization of the convection term. Then, by discretizing the optimal-
ity conditions, we are faced with systems with saddle-point type of structure.
The leading block of these systems can be considered, in the stationary case,
as the discrete optimality conditions of an incompressible Poisson or station-
ary convection–diffusion control problem, and, in the time-dependent case, as
the discrete optimality conditions of an incompressible heat or time-dependent
convection–diffusion control problem. Thanks to this structure, we employ op-
timal preconditioners for Poisson control, heat control, or (stationary or time-
dependent) convection–diffusion control problems within a suitable Krylov solver
in order to approximately invert the p1, 1q-block. For the Stokes control problem,
we observe that the inverse operator of the p1, 1q-block can also be applied by
employing a fixed number of Uzawa iterations. For Stokes and Navier–Stokes
control problems, the most complex task in order to find robust preconditioners
is to approximate the Schur complement arising from each discretized problem.
We do so by applying a block commutator argument to a suitable block matrix.
The preconditioners so derived are robust and efficient, showing only a mild de-
pendence on the regularization parameter β and on the viscosity ν (the latter
only for Navier–Stokes control problems). In addition, the CPU times scale lin-
early with the problem size, aside from the multigrid routine employed. Finally,
the flexibility of the block commutator argument allows us to solve the problems
in both the stationary and time-dependent settings, and to apply both backward
Euler or Crank–Nicolson in time for instationary problems. To our knowledge, no
existing preconditioner offers similar flexibility and parameter-robustness when
solving Stokes and Navier–Stokes control problems.

The last novel contribution of this work is that of devising robust and efficient
preconditioned iterative methods for the optimal control of FDEs with additional
algebraic constraints on the state and the control variables, for FDEs defined on
spatial domains of dimension at least one, and also in time. This is discussed in
Chapter 7. For this class of problems, we employ a discretize-then-optimize strat-
egy, which leads to a convex quadratic programming problem. In order to find
an approximation of the solution, we employ the Alternating Direction Method of
Multipliers (ADMM), which allows us to separate inequality from equality con-
straints. The latter are then solved by employing a multilevel circulant-based
preconditioner within a suitable Krylov subspace solver. Then, we update the
remaining solutions, and iterate the process until convergence. The proposed
preconditioner is proved to be optimal with respect to the mesh-size, and can
be readily generalized to the case of FDE-constrained optimization problems in
higher dimensions. Numerical results show the efficiency of our approach, with
the CPU time scaling as N̄ log N̄ and storage cost of order N̄ , where N̄ is the
dimension of the grid used.

14

The work of this thesis has resulted in the following publications:

� Leveque S., Pearson J. W.: Fast iterative solver for the optimal control of
time-dependent PDEs with Crank–Nicolson discretization in time, Numer.
Linear Algebra Appl. 29, e2419, 2022 (Ref. [100]);

� Leveque S., Pearson J. W.: Parameter-Robust Preconditioning for Oseen
Iteration Applied to Stationary and Instationary Navier–Stokes Control, to
appear in SIAM J. Sci. Comput., arXiv:2108.00282 (Ref. [101]);

� Leveque S., Pearson J. W.: Parameter-Robust Preconditioning for Unsteady
Stokes Control Problems, PAMM 21, e202100131, 2021 (Ref. [99]);

� Pougkakiotis S., Pearson J. W., Leveque S., Gondzio J.: Fast Solution Meth-
ods for Convex Quadratic Optimization of Fractional Differential Equations,
SIAM J. Matrix Anal. Appl. 41, 1443–1476, 2020 (Ref. [146]).

Chapter 3 and Chapter 4 are based on [100]. Chapter 5 is based on [99] and
on some of the work in [101]. Chapter 6 is based on some of the work in [101].
Finally, Chapter 7 is based on the work in [146].

15

Chapter 1

Optimal Control Problems with
PDEs as Constraints

“Hast thou, spirit,
Perform’d to point the tempest that I bade thee?”

– William Shakespeare, The Tempest

As one can imply from the title, the major topic of this work is the design of
preconditioned iterative methods for time-dependent PDE-constrained optimiza-
tion problems. Although the expression “iterative methods” is mentioned first,
we leave their description to the next chapter, and focus here on a mathematical
formulation of the problems under examination, that is optimal control problems
with differential equations as constraints.

As we described in Chapter 0, PDE-constrained optimization problems are
very suitable models for describing the act of modifying a given physical system
(like Prospero modifying the elements at will). Due to this property, problems
of this type often arise in industrial and real-life applications. For instance, the
control of the heat equation can describe the heating of a tissue during a medical
treatment or of a substance during a chemical process; in addition, in a chemical
process one could control the separation of immiscible fluids, whose physics is
governed by phase field equations. Alternatively, one could optimize the shape of
an object to obtain a desired physical outcome (such as the shape of a wing in
an airplane to avoid turbulence). Finally, one could control the motion of fluid
flows, or modify the atmospheric conditions of some system.

In the following, we will introduce the mathematical formulation for a general
PDE-constrained optimization problem, and show how to obtain a solution. The
latter has to satisfy some conditions, that may vary depending on whether we
are solving the problem in the Hilbert space, or are solving it only on a finite-
dimensional subset. In the former case, we have to introduce some “differentiation
rule” that will lead to the optimality conditions, that then have to be discretized;
in the second case, we have to decide the subset of points on which we want
to approximately solve the problem by discretizing the PDE, and then deriv-
ing optimality conditions by mean of classical optimization theorems. These two
ways of action lead to two different strategies, namely the optimize-then-discretize
strategy (we solve the problem in the Hilbert space and then discretize the condi-

16

tions derived), and the discretize-then-optimize strategy (we discretize the PDE
we want to optimize, and then derive optimality conditions).

Since in both the strategies we will need a discretization, we will first intro-
duce the finite element method. The numerical solution obtained by this class of
methods is typically defined by a projection: the PDE has to be satisfied only
on a subset of the Hilbert space. This subset is chosen a priori by the type
of elements one wants to adopt, and will influence the resulting approximation
properties of the method. Finite element discretization usually leads to systems
of linear equations that are very large and very sparse if one desires a highly
accurate solution, but, as mentioned above, we will leave the solution strategies
for those systems as the main topic of the next chapter.

1.1 Introduction to Optimal Control of PDEs

In the following, we introduce the mathematical formulation of the problem under
examination, namely optimal control problems with PDEs as constraints. We
refer to [86, 104, 175] for a detailed discussion of these problems.

Given a domain Ω Ă Rd, with d P N, let us suppose we can relate some obser-
vation (or state) v to the physics acting inside the domain through a differential
operator D, that is, we can write a relation of the type

Dv “ f,

f being the force function representing the physics acting on Ω. Clearly, for
the problem to be well posed we need some boundary conditions on v. These
conditions can be given as Dirichlet conditions

v “ gD on BΩD,

on part of the boundary, that is, we know the value of the function v on BΩD, or
as Neumann conditions

Bv

B~n
“ gN on BΩN ,

on part of the boundary, with
Bv

B~n
the (outward) normal derivative of v on BΩN ,

that is, we know the flux of v through BΩN . The portion of the boundary BΩD

and BΩN are such that BΩ “ BΩD Y BΩN and BΩD X BΩN “ H. The conditions
on v presented here are not the only possibility, as one could also impose Robin
boundary conditions.

In addition, if the differential operator D involves time derivatives, we require
some additional information on v (and on some of its partial derivatives with
respect to the time variable) at the initial time t0; for instance, if D is a parabolic
differential operator defined on Ω ˆ pt0, tf q, with t0 and tf the initial and final
time respectively, an initial condition

vpx, t0q “ v0pxq in Ω

17

has to be given to define a suitable PDE-constrained optimization problem.
For most of the following work, we will be dealing with a differential operator

D represented by (a system of) PDEs. We refer the interested reader to [46] for
an introduction and a thorough analysis of (forward) PDEs.

Once the physics is modelled by the differential operator D subject to appro-
priate boundary or initial conditions, the state v will be (uniquely, if the operator
D is linear) defined. However, one may be interested in obtaining a state v with
a particular shape or value; for instance, given a body to heat one wishes to have
an average given temperature. In practice, one wishes to obtain a state v “close
enough” in some sense to a desired state vd. Since we are interested in modifying
the physics, we introduce a control u in the formulation of the differential oper-
ator. The problem so described can be formulated as an optimization problem
whose constraints are the differential operator D and its associated (boundary or
initial) conditions. This formulation is classified as the optimal control of PDEs
or a PDE-constrained optimization problem.

As for many optimization problems, the optimal control of PDEs concerns the
minimization of a cost functional Jpv, uq that takes into account how close is the
state v to our desired state vd. In the following, the cost functional Jpv, uq will
contain (a multiple of) the squared L2pΩq-norm of the difference between v and
vd, that is }v ´ vd}

2
L2pΩq.

As mentioned above, in an optimal control problem involving PDEs the cost
functional Jpv, uq is subject to the differential operator D and its boundary or
initial conditions, which take also into account the action of the control u. De-
pending on how we introduce the control u, we may have different types of optimal
control problems of PDEs. Although the main results obtained in this work re-
late to distributed control problems with PDEs as contraints (the control is acting
on the whole domain), below we also introduce another type of control, namely
the boundary control problem (as one can easily understand from the name, the
control lives only on some part of the boundary). Other types of control are of
course possible, but we will limit our exposition to those two. For instance, one
could apply the control u only on part of the domain, obtaining in this way a
subdomain control problem.

Let us introduce first the distributed optimal control of PDEs. In this case,
the control u is defined on the whole domain Ω, and introduced in the differential
equation as

Dv “ u` f in Ω;

again, the equation above is a constraint with respect to which we minimize our
cost functional Jpv, uq.

On the other hand, rather than introducing the control in the whole domain
one could introduce the control only on the (Dirichlet) boundary, obtaining in
this way the optimal boundary control problems of PDEs. The latter is defined
as the minimization of Jpv, uq subject to

$

’

&

’

%

Dv “ f in Ω,
v “ u` gD on BΩD,
Bv

B~n
“ gN on BΩN .

18

Similarly, one could introduce the control only on the Neumann boundary, ob-
taining a Neumann boundary control problem. The latter is defined as the min-
imization of Jpv, uq subject to

$

’

&

’

%

Dv “ f in Ω,
v “ gD on BΩD,
Bv

B~n
“ u` gN on BΩN .

In addition, given a subset Ωsub Ă Ω, the subdomain control problem is defined
as the minimization of Jpv, uq subject to

$

’

’

’

’

&

’

’

’

’

%

Dv “
"

u` f

f

in Ωsub,

in Ω zΩsub,

v “ gD on BΩD,
Bv

B~n
“ gN on BΩN .

As one can understand from the description so far, optimal control problems
of PDEs fall within the class of inverse problems. As these problems may be
ill-posed, one adds a cost term in the cost functional Jpv, uq in order to ensure
the existence of a solution. In the following, we will introduce a Tikhonov reg-
ularization for the problem under examination; this is defined as a multiple of
the squared L2pΩq-norm of the control u. Specifically, in the following we will
consider

Jpv, uq “
1

2
}v ´ vd}

2
L2pΩq `

β

2
}u}2L2pΩq (1.1)

as cost functional to minimize; here, the value β ą 0 is referred to as regularization
parameter. From the point of view of the physics, if we look at the term }u}2L2pΩq

as the energy that we introduce into the system for modifing the state v, the
parameter β can be viewed as a “trade-off” between how close we want to drive
v to our desired state vd, and the cost can afford in order to achieve it. We
would like to note that other cost functionals can be considered; for instance, one
could replace the L2pΩq-norm with the L1pΩq-norm in order to promote sparsity
of the solutions. In addition, in the case of subdomain control problems the cost
functional Jpv, uq has to take into account that the control u is defined only on
a subset Ωsub of the whole domain Ω; this is done by replacing the term }u}2L2pΩq

with }u}2L2pΩsubq
.

We can finally formulate the structure of the problems we will be studying for
the rest of this work. The distributed optimal control problem of PDE is defined
as

min
v,u

Jpv, uq (1.2)

subject to
$

’

&

’

%

Dv “ u` f in Ω,
v “ gD on BΩD,
Bv

B~n
“ gN on BΩN ,

(1.3)

19

with Jpv, uq defined as in (1.1). It is worth mentioning that, depending on the
differential operator D, other conditions on v may be given; for instance, if D is a
parabolic differential operator, the constraints (1.3) of the problem will take into
account the initial condition on the state v, while the boundary conditions have
to be satisfied over BΩˆ pt0, tf q.

In the formulation (1.2)–(1.3), the constraints take into account only the
physics of the problem under examination, namely the differential operator D.
However, as we are adding the control to the system, it may happen, for instance,
that we have some technological limitation on the control we may apply, or we
may be interested in a state v that is bounded in a certain region of the domain
Ω. For this reason, problems of the type (1.2)–(1.3) can also take into account
algebraic constraints on the state and/or the control variables. The formulation
of these problems is the same as in (1.2)–(1.3), but the constraints (1.3) also
include bounds of the type

vmin ď v ď vmax, umin ď u ď umax, (1.4)

where vmin, vmax, umin, and umax could be constants or functions. Optimal control
problems of PDEs with additional algebraic constraints on the state or the con-
trol variables are more complex to solve than the corresponding “unconstrained”
problems, as to find an approximation of the solution we need to employ a non-
linear iteration within the solver, even when the rest of the problem is linear.
For most of this thesis, we will be dealing only with problems of the type (1.2)–
(1.3), and will consider the constraints on the variables (1.4) only in the last main
chapter.

As we are interested in the numerical solution of optimal control problems
with PDEs as constraints, below we are going to describe two strategies for de-
riving such an approximation, that is, the optimize-then-discretize strategy, and
the discretize-then-optimize strategy. As for both the approaches we need to dis-
cretize a system of PDEs, in the next section we are going to introduce a widely
used discretization method for PDEs, namely the finite element method.

Before moving on with our exposition, we would like to introduce two PDE-
constrained optimization problems that will be considered below, namely, the
distributed Poisson control and the distributed (stationary) Navier–Stokes con-
trol problems. While devising robust solvers for the numerical solution of the
distributed (stationary and instationary) Navier–Stokes control problem will be
one of the final goals of this thesis, the distributed Poisson control problem will
be introduced only as a “proof of concept” to illustrate the main ideas presented
in the background sections.

Given a spatial domain Ω Ă Rd, d P N, a regularization parameter β ą 0, and
a desired state vd, the distributed Poisson control problem is defined as

min
v,u

1

2
}v ´ vd}

2
L2pΩq `

β

2
}u}2L2pΩq (1.5)

20

subject to the Poisson equation

"

´∇2v “ u` f in Ω,
v “ g on BΩ,

(1.6)

where we have imposed only Dirichlet boundary conditions. Problem (1.5)–(1.6)
can represent, for instance, a body heated by electromagnetic induction or by
microwaves (optimal stationary heat source), see, for example, [175, Section 2.8.2].

As we will describe more in detail in Chapter 6, the Navier–Stokes equations
describe the motion of an incompressible viscous fluid. Given a spatial domain
Ω Ă Rd, with d “ 2, 3, a regularization parameter β ą 0, and a desired state ~vd
defined over d dimensions, the distributed control of the stationary Navier–Stokes
equations is defined as

min
~v,~u

1

2
}~v ´ ~vd}

2
L2pΩq `

β

2
}~u}2L2pΩq

subject to
$

&

%

´ν∇2~v ` ~v ¨∇~v `∇p “ ~u` ~f in Ω,
´∇ ¨ ~v “ 0 in Ω,
~v “ ~g on BΩ,

where the parameter ν ą 0 is the viscosity of the fluid, with ~v representing the
velocity of the fluid and p the kinematic pressure; the velocity ~v and the control
~u are vector functions, while the pressure p is a scalar function. Note that the
fluid is Newtonian and has constant density. The main difference between this
problem and the previous one lies in the non-linear term ~v ¨∇~v, which requires
(as we will see) a careful treatment for the numerical solution of the problem.

1.1.1 Applications

We would like to conclude this section with some further motivation for the study
of the numerical solutions of optimal control problems with PDEs as constraints.
For further overviews of the applications of PDE-constrained optimization prob-
lems in science and engineering, we refer the reader to [74, 133].

Problems of the type (1.2)–(1.3) arise very naturally in industrial and real-life
applications. The classical example is given by the control of the heat equa-
tion, describing the heating of a tissue during a medical treatment or a chemical
in an industrial process. Another important application of distributed PDE-
constrained optimization problems in industrial processes is given by the control
of the Navier–Stokes equations introduced above, see, for instance, [72]. We
survey some additional applications below.

In [37], the authors employ PDE-constrained optimization to image denoising
problems. More specifically, the authors solve a bilevel optimization problem
defined as a minimization of a functional whose constraints are other minimization
problems. The functional takes into account the discrepancies between a set of
noisy images and the corresponding true image, as well as some weights of the
different noise models considered. The minimization problems that represent the

21

constraints involve non-smooth PDEs that take into account the noise, and the
total variation of the given images. The choice of introducing the total variation
in the constraints is made to accurately preserving the edges within the images.

In [85], the authors devise a Newton method for solving the optimal design
of semiconductor devices; the latter is formulated as the minimization of a cost
functional subject to the drift-diffusion model for semiconductor devices.

In [160], the authors study model predictive control of the cooling process
during wine fermentation. The problem is formulated as the minimization of a
cost functional that takes into account for the energy consumption during the
cooling process, while driving the sugar consumption towards a desired sugar
reduction process, with the state variable being the solution of an ordinary dif-
ferential equation (ODE); an initial condition on the state variable and additional
constraints on the differential states and parameter are also imposed.

Other practical examples of PDE-constrained optimization problems include
shape optimization problems [1, 126, 148], medical imaging and tomography [5,
33, 93], mathematical finance [20, 42], reaction–diffusion control for chemical
processes [10, 71], the Monge–Kantorovich mass transfer problem [3, 14], and
flow control in porous media [47, 76, 171].

1.2 Finite Element Method

In this section we introduce a widely used numerical method for the solution of
differential equations, namely the finite element method. For a more comprehen-
sive discussion on the finite element method, we refer the reader to [26, 44, 149].

Starting from the weak formulation of the differential operator under exam-
ination, the finite element method constructs a bilinear form (on real spaces),
which is then employed as an inner product in an appropriate space. Then, the
method selects a subspace and imposes the inner product of the numerical error
and any element of the subspace to be 0, that is to say, the method imposes
the numerical error and the chosen subspace to be mutually orthogonal. The
subspace is usually determined by basis functions, defined on the elements of
the constructed mesh in the domain. Finally, the orthogonality condition of the
numerical error and the subspace results in a system of linear equations that has
to be solved.

In order to better explain how the finite element method works, given a domain
Ω Ă Rd, we consider the (forward) Poisson equation with Dirichlet boundary
conditions

"

´∇2v “ f in Ω,
v “ g on BΩ,

(1.7)

with f and g given functions. We first introduce the space L2pΩq of square-
integrable functions in R with domain in Ω, that is

L2
pΩq :“

"

v :

ż

Ω

|v|2dΩ ă 8

*

.

22

The solutions of the problem (1.7) are usually sought in the space

V :“

v P H1
pΩq | v “ g on BΩ

(

,

where H1pΩq is the Sobolev space of square-integrable functions in R with square-
integrable weak derivatives, namely

H1
pΩq :“

"

v P L2
pΩq :

Bv

Bx1

,
Bv

Bx2

, . . . ,
Bv

Bxd
P L2

pΩq

*

,

with x “ px1, x2, . . . , xdq P Ω. Finally, we introduce the space of Sobolev functions
with zero trace on the boundary BΩ

V0 :“ H1
0pΩq “

v P H1
pΩq | v “ 0 on BΩ

(

.

Then, the weak formulation of (1.7) reads as:
Find v P V such that

ż

Ω

∇v ¨∇w dΩ “

ż

Ω

fw dΩ for all w P V0. (1.8)

The weak formulation introduces the (bi)linear form ap¨, ¨q : H1pΩqˆH1pΩq Ñ
R defined as

apv, wq “ p∇v,∇wq,

where p¨, ¨q is the L2-inner product on Ω. Defining also the linear functional
`p¨q : H1pΩq Ñ R as `pwq “ pf, wq, we can rewrite (1.8) as

ap∇v,∇wq “ `pwq for all w P V0.

As we are looking for a numerical appoximation of v, we select a finite-
dimensional subspace Vh of V . In order to define a generic element of V , we
consider an nx-dimensional subspace of test functions V0,h of V0; we suppose
that tφ1, φ2, . . . , φnxu is a basis for V0,h. Since the solution we are looking for
is required to be equal to g on the boundary, we introduce also the functions
tφnx`1, φnx`2, . . . , φnx`nBu, with nB P N. Then, the subspace Vh is defined to be

Vh :“ span tφ1, φ2, . . . , φnxu `
nx`nB
ÿ

i“nx`1

viφi,

where the coefficients vi are chosen such that the function
řnx`nB
i“nx`1 viφi interpo-

lates the boundary data; the functions tφ1, φ2, . . . , φnxu in the previous expres-
sion are called trial functions. In practice, the function v is approximated by the
function vh :“

řnx
i“1 viφi `

řnx`nB
i“nx`1 viφi. From here, since the function g is fixed,

we can say that the approximation vh is uniquely determinined by the vector
v :“ rv1, v2, . . . , vnxs

J.
As we mentioned above, the finite element method typically imposes some

orthogonality condition between the numerical error eh “ v ´ vh and an appro-
priate subspace through a bilinear form. Specifically, we impose that the error eh

23

and the subspace Vh,0 are orthogonal with respect to the inner product induced
by the bilinear form ap¨, ¨q, that is, we impose that

apeh, whq “ 0 for all wh P V0,h.

The previous expression can be rewritten as

apvh, whq “ `pwhq for all wh P V0,h, (1.9)

by substituting the expression eh “ v ´ vh and noting that apv, whq “ `pwhq for
all wh P V0,h. As each element of V0,h is a linear combination of the elements of
the basis tφ1, φ2, . . . , φnxu, we need to impose the expression (1.9) only on each
φi, for i “ 1, 2, . . . , nx. Further, since vh :“

řnx
i“1 viφi `

řnx`nB
i“nx`1 viφi, equation

(1.9) results into a linear system to solve for finding the vector v; specifically,
(1.9) can be rewritten as

a
´

řnx
i“1 viφi, φl

¯

“ `pφlq ´ a
´

řnx`nB
i“nx`1 viφi, φl

¯

for l “ 1, 2, . . . , nx,

or equivalently
Kv “ f̂ ,

with

K “ tki,lu
nx
i,l“1, ki,l“

ż

Ω

∇φi ¨∇φl dΩ,

f̂ “ tf̂iu
nx
i“1, f̂i“

ż

Ω

fφi dΩ´
nx`nB
ÿ

l“nx`1

vl

ż

Ω

∇φl ¨∇φi dΩ.

Note that the formulation derived here holds if only Dirichlet boundary conditions
are imposed; if within the problem formulation Neumann boundary conditions
have to be satisfied, extra terms will arise in the right-hand side from those
conditions.

The matrix K is generally referred to as a stiffness matrix, and is symmetric
positive definite (unless only Neumann boundary conditions are imposed, in which
case it is symmetric positive semi-definite). The symmetry easily follows from
the definition. In order to prove that it is positive definite, we suppose that the
basis functions are continuous and bounded, and follow the working in [44, p. 17]:
letting 0 ‰ v P Rnx , and setting vh :“

řnx
i“1 viφi, we have

vJKv “
nx
ÿ

i“1

nx
ÿ

l“1

vi

ˆ
ż

Ω

∇φi ¨∇φl dΩ

˙

vl

“

ż

Ω

˜

nx
ÿ

i“1

vi∇φi

¸

¨

˜

nx
ÿ

l“1

vl∇φl

¸

dΩ

“

ż

Ω

p∇vh ¨∇vhq dΩ

“ }∇vh}2L2pΩq ě 0,

24

where we have used that
řnx
i“1 vi∇φi “ ∇vh. So, K is at least semi-definite; in

addition, from the previous expression we have vJKv “ 0 if and only if ∇vh “ 0,
that is, if and only if vh is constant. From vh P V0,h, we have that vh is continuous
in Ω and it is zero on the boundary BΩ, which implies that vh “ 0 in Ω. Finally,
the latter implies v “ 0.

As we have described the method so far, in order to find a numerical solution
for (1.7), from a subspace V0,h of the space V0 (that contains the solutions of the
PDE with zero trace on the boundary) we consider a subspace Vh of V such that

Vh “ V0,h ` ĝ,

with ĝ a given function that interpolates the boundary data. A finite element
method constructed in this way is referred to as Galerkin (or more precisely
Bubnov–Galerkin) method. In general, one can choose different basis for the
subspaces V0,h and Vh, that is to say, test functions and trial functions can be
different; the resulting finite element method is referred to as a Petrov–Galerkin
method. In the following, we will employ both type of methods. It is worth
mentioning that also other approaches can be used; for instance in [102] the au-
thors employ the finite difference method for discretizing the (spatial) differential
operator for solving the optimal control of the heat equation.

1.3 First-Order Optimality Conditions

In this section, we present the strategies one can adopt in order to find a numerical
solution of a general PDE-constrained optimization problem of the form (1.2)–
(1.3). This solution has to satisfy some first-order optimality conditions, known
also as Karush–Kuhn–Tucker (KKT) conditions.

As a generic solution of (1.2)–(1.3) lies in an infinite-dimensional Hilbert
space, and since the differential operator D is defined on such a space, it is clear
that in order to find a numerical solution we will have to discretize the problem
at some point. From here, we are given the choice of either take the optimization
step first and then apply the discretization, or the other way around. Specifi-
cally, we can choose to derive first-order necessary optimality conditions for the
problem in the Hilbert space first and then discretize the conditions obtained
(optimize-then-discretize strategy), or to discretize the cost functional and the
constraint first and then derive the first-order necessary optimality conditions for
the discrete optimization probled obtained (discretize-then-optimize strategy). In
general, the optimize-then-discretize and the discretize-then-optimize strategies
may produce different outcomes, see for example [35]. For most of this thesis,
we will adopt the optimize-then-discretize strategy, empoying the discretize-then-
optimize approach only in Chapter 7.

Before proceeding with the presentation of the two strategies, we wish to
emphasize that the optimility conditions we will derive below are only necessary,
that is, a solution of the problem (1.2)–(1.3) has to satisfy them. Although for
most of this work those conditions will be also sufficient (as the PDEs we will
consider are linear), this is not always the case; for instance, in Chapter 6 we

25

will consider the optimal control of the non-linear Navier–Stokes equations. In
case the differential operator (1.3) is non-linear, one may also consider second-
order optimality conditions in order to understand if the critical point found is a
minimum for the cost functional (1.2). As in this thesis we are only interested in
deriving optimal preconditioners for the problem under examination, we will not
be deeply concerned as to whether the critical point is a minimum or not, and
refer to it as the numerical solution of the problem.

We will now describe the optimize-then-discretize and the discretize-then-
optimize strategies. For the sake of exposition, we will only consider the cost
functional Jpv, uq as defined in (1.1), and we will suppose that the Neumann
boundary is empty, that is to say BΩD “ BΩ. In addition, we will employ the
Poisson control problem (1.5)–(1.6) as a simple example to explain the ideas
below, deriving the discretized optimality conditions for both the optimize-then-
discretize and the discretize-then-optimize strategies.

1.3.1 Optimize-Then-Discretize Approach

We will introduce the optimize-then-discretize strategy in this section. As we are
seeking optimality conditions in Hilbert spaces, we need to define a differentiation
rule that generalizes the classical one on vector spaces to functionals. For more
details on this strategy, see for instance [175, Chapter 2].

Let be X1 and X2 Banach spaces endowed with norms } ¨ }X1 and } ¨ }X2

respectively; further, let be U a nonempty open subset of X1, and F : U Ñ X2.
Given u P U , w P X1, and % ą 0 such that u` %w P U , if the limit

δFpu,wq :“ lim
%Ñ0`

1

%
pFpu` %wq ´ Fpuqq

exists in X2, then it is called the directional derivative of F at u in the direction
w. If this limit exists for all w P X1, then the map

δFpu, ¨q : w P X1 Ñ δFpu,wq P X2

is called the first variation of F at u. Supposing that the first variation δFpu, ¨q
at u P U exists, if it is a bounded linear operator, then F is said to be Gâteaux
differentiable at u, and this linear operator is called the Gâteaux derivative of
F at u, see for instance [103]. We say that F is Gâteaux differentiable if F is
Gâteaux differentiable at every u P U .

Another important notion of derivatives in Banach spaces is the Fréchet
derivative. The mapping F is said to be Fréchet differentiable at u if there
exists a bounded linear operator dF : X1 Ñ X2 such that, for every w P X1 for
which u` w P U , we have

}Fpu` wq ´ Fpuq ´ dFw}X2

}w}X1

Ñ 0 as }w}X1 Ñ 0.

The operator dF is called the Fréchet derivative of F at u. If in addition F is
Fréchet differentiable at every u P U , then F is said to be Fréchet differentiable.

26

The Fréchet derivative will be the main tool for deriving the first-order op-
timality conditions for the problems we will consider in this thesis; specifically,
we will derive the KKT conditions for the following distributed control problem
with PDEs as constraints:

min
v,u

Jpv, uq “
1

2
}v ´ vd}

2
L2pΩq `

β

2
}u}2L2pΩq

subject to
"

Dv “ u` f in Ω,
v “ g on BΩ.

We will employ the formal Lagrangian technique for deriving the optimality
conditions. In this case, we will introduce the adjoint variable or Lagrange multi-
plier ζ (split into interior and Dirichlet components ζΩ and ζBΩ respectively) and
consider the continuous Lagrangian

Lpv, u, ζΩ, ζBΩq :“
1

2
}v ´ vd}

2
L2pΩq `

β

2
}u}2L2pΩq ` pDv ´ u´ f, ζΩq

`

ż

BΩ

pv ´ gqζBΩ ds,

where again p¨, ¨q is the L2-inner product on Ω. In our derivation, we will assume
that the Banach spaces X1 and X2 are defined over R. Then, the first-order
optimality conditions read as

$

’

&

’

%

dvLpv, u, ζΩ, ζBΩqw “ 0,

duLpv, u, ζΩ, ζBΩqw “ 0,

dζLpv, u, ζΩ, ζBΩqw “ 0,

(1.10)

for all w P X1, where dvL, duL, and dζL are the Fréchet derivatives of the
Lagrangian L with respect to v, u, and ζ respectively. In the previous system, the
first, the second, and the third equation are called the adjoint equation, gradient
equation, and state equation respectively.

As we will see in the following, the first-order optimality conditions (1.10) are
a system of coupled PDEs. For the problems we are going to study, it can be
rewritten as

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

#

v ´ vd `D˚ζΩ “ 0 in Ω,

ζBΩ “ 0 on BΩ,

βu´ ζ “ 0 in Ω,
#

Dv ´ u´ f “ 0 in Ω,

v ´ g “ 0 on BΩ,

where D˚ is the adjoint differential operator of D. Below, we use the Poisson
control problem as an example and show how the system above is derived.

It is worth noting that we can eliminate the gradient equation βu´ ζ “ 0 for
all the problems we are going to consider. This is because the control u is applied

27

within the differential operator directly, with no means of another operator U ; in
the latter case, in fact, we would have read the gradient equation as

βu´ duUζ “ 0 in Ω, (1.11)

with duU the Fréchet derivative of U with respect to u.
As above, the first-order optimality conditions (1.10) are a coupled system

of PDEs; as one could imagine, we then need to take the discretization step, so
that we may obtain an approximation of the solution by solving the resulting
linear system. Thus, letting M´1

1 D and M´1
2 D˚ (for appropriate M1 and M2)

be suitable discretizations of D and D˚ respectively, a solution of the problem
(1.2)–(1.3), with Jpv, uq defined as in (1.1), has to satisfy the following

$

’

&

’

%

Mvv ´ vd `D˚ζ “ 0,

βMuu´Mζζ “ 0,

Dv ´Muu´ f “ 0,

for appropriate Mv, Mu, and Mζ ; the vectors v, vd, u, ζ, and f contain the
numerical approximation of v, vd, u, ζ, and f respectively, with the vectors v and
ζ also taking into account the boundary conditions on v and ζ.

In order to explain in detail the optimize-then-discretize strategy, we now con-
sider the distributed Poisson control problem (1.5)–(1.6), with Ω Ă Rd bounded.
As a first step, we have to consider the continuous Lagrangian associated to this
problem, and then write the Fréchet derivatives with respect to each variable.
The Lagrangian is given by

Lpv, u, ζΩ, ζBΩq :“
1

2
}v ´ vd}

2
L2pΩq `

β

2
}u}2L2pΩq ` p´∇2v ´ u´ f, ζΩq

`

ż

BΩ

pv ´ gqζBΩ ds.

One of the Banach spaces we will be working in clearly is the Hilbert space L2pΩq;
in fact, for all the problems considered in this work we have that L : L2pΩq Ñ R.
In particular, the state, the control, and the adjoint variables lie in a subset of
L2pΩq. Specifically, for the Poisson control problem the state v belongs to H1pΩq,
as it is required to solve the Poisson equation (1.6) in a weak sense. The space
to which ζ belongs will be derived below. Finally, the space to which u belongs
to is L2pΩq.

We now have to consider the Fréchet derivative of L with respect to all the
variables. We start with the Fréchet derivative with respect to u, ζΩ, and ζBΩ, as
these are the easiest ones to work with.

In order to write the Fréchet derivative of Lpv, u, ζΩ, ζBΩq with respect to u, we
will not split the adjoint variable ζ into interior and boundary components. From
the definition of the Fréchet derivative, we have to consider a generic direction

28

w P L2pΩq, and then consider the difference

Lpv, u` w, ζΩ, ζBΩq ´ Lpv, u, ζΩ, ζBΩq “
β

2

´

}u` w}2L2pΩq ´ }u}
2
L2pΩq

¯

´ pw, ζq.

The first term in the previous expression can be rewritten as

}u` w}2L2pΩq ´ }u}
2
L2pΩq “

ż

Ω

|u` w|2 d Ω´

ż

Ω

|u|2 d Ω

“

ż

Ω

|u|2 d Ω`

ż

Ω

|w|2 d Ω` 2pu,wq ´

ż

Ω

|u|2 d Ω

“

ż

Ω

|w|2 d Ω` 2pu,wq.

The latter expression leads to

Lpv, u` w, ζΩ, ζBΩq ´ Lpv, u, ζΩ, ζBΩq “
β

2

ˆ
ż

Ω

|w|2 d Ω` 2pu,wq

˙

´ pw, ζq

. “
β

2

ż

Ω

|w|2 d Ω` pβu´ ζ, wq

“
β

2
}w}2L2pΩq ` pβu´ ζ, wq,

due to the symmetry of the L2pΩq-inner product. If we write

duLpv, u, ζΩ, ζBΩqw “ pβu´ ζ, wq,

we clearly have

|Lpv, u` w, ζΩ, ζBΩq ´ Lpv, u, ζΩ, ζBΩq ´ duLpv, u, ζΩ, ζBΩqw|

}w}L2pΩq

“
β

2
}w}L2pΩq,

which tends to 0 as }w}L2pΩq Ñ 0. Since the functional duLpv, u, ζΩ, ζBΩqw
so defined is bounded and linear, we have that it is the Fréchet derivative of
Lpv, u, ζΩ, ζBΩq with respect to u.

As we wish that
duLpv, u, ζΩ, ζBΩqw “ 0,

for all w P L2pΩq, we can infer that, in a strong sense,

βu´ ζ “ 0 in Ω.

We have derived in this way the gradient equation in (1.10). From here it is clear
how we could obtain the expression (1.11) in case the control u is applied by
mean of another operator U .

Working in a similar way, we can write the Fréchet derivative of the Lagrangian
Lpv, u, ζΩ, ζBΩq with respect to ζ; in this case, we will be splitting the adjoint in
the interior component ζΩ and boundary component ζBΩ.

29

Taking wΩ P L
2pΩq, if we proceed as above we have that

dζΩLpv, u, ζΩ, ζBΩqwΩ “ p´∇2v ´ u´ f, wΩq

is the Fréchet derivative of Lpv, u, ζΩ, ζBΩq with respect to ζΩ. In addition, by
taking wBΩ P L

2pBΩq we have that

dζBΩLpv, u, ζΩ, ζBΩqwBΩ “

ż

BΩ

pv ´ gqwBΩ ds

is the Fréchet derivative of Lpv, u, ζΩ, ζBΩq with respect to ζBΩ. Since we want

dζΩLpv, u, ζΩ, ζBΩqwΩ “ 0
dζBΩLpv, u, ζΩ, ζBΩqwBΩ “ 0

for all wΩ P L
2pΩq and wBΩ P L

2pBΩq, in a strong sense we require that

"

´∇2v “ f ` u in Ω,
v “ g on BΩ,

which is the state equation in (1.10). Note that in this way we have recovered
the constraints (1.6).

We only have to derive the adjoint equation now. This is given by setting the
Fréchet derivative of Lpv, u, ζΩ, ζBΩq with respect to v equal to 0. In order to do
so, we take w P H1pΩq and consider the difference

Lpv ` w, u, ζΩ, ζBΩq ´ Lpv, u, ζΩ, ζBΩq “
1

2

´

}v ` w ´ vd}
2
L2pΩq ´ }v ´ vd}

2
L2pΩq

¯

` p´∇2w, ζΩq `

ż

BΩ

wζBΩ ds;

here, we made the choice of w P H1pΩq to allow the expression p´∇2w, ζΩq to
have a suitable meaning. Proceeding as for the derivative with respect to u, we
obtain

}v ` w ´ vd}
2
L2pΩq ´ }v ´ vd}

2
L2pΩq “

ż

Ω

|w|2 dΩ` 2pv ´ vd, wq.

If we then write

dvLpv, u, ζΩ, ζBΩqw “ pv ´ vd, wq ` p´∇2w, ζΩq `

ż

BΩ

wζBΩ ds,

we have2

|Lpv ` w, u, ζΩ, ζBΩq ´ Lpv, u, ζΩ, ζBΩq ´ dvLpv, u, ζΩ, ζBΩqw|

}w}H1pΩq

ď
1

2
}w}H1pΩq,

which tends to 0 as }w}H1pΩq Ñ 0. In addition, dvLpv, u, ζΩ, ζBΩqw is bounded,

2Note that }w}2L2pΩq ď }w}
2
H1pΩq.

30

and from here we establish that it is the Fréchet derivative of Lpv, u, ζΩ, ζBΩq with
respect to v.

Once we have found the expression for dvLpv, u, ζΩ, ζBΩqw, we have to impose
it equal to 0 for all w P H1pΩq; we will impose it by analysing different cases.
Before doing so, we revrite

dvLpv, u, ζΩ, ζBΩqw “ pv ´ vd, wq ` p´∇2w, ζΩq `

ż

BΩ

wζBΩ ds

“ pv ´ vd, wq ` p´∇2ζΩ, wq ´

ż

BΩ

Bw

B~n
ζΩ ds

`

ż

BΩ

BζΩ

B~n
w ds`

ż

BΩ

wζBΩ ds

by employing the Divergence Theorem3. The previous expression has to be 0 for

all w P H1pΩq, in particular for all w P C80 pΩq with
Bw

B~n
“ 0 on BΩ, where C80 pΩq

is the class of infinitely differentiable functions equal to 0 on the boundary BΩ.
This choice implies that

dvLpv, u, ζΩ, ζBΩqw “ pv ´ vd ´∇2ζΩ, wq “ 0,

which, since w P C80 pΩq and C80 pΩq is dense in L2pΩq, in a strong sense may be
rewritten as

v ´ vd ´∇2ζΩ “ 0.

If we now choose w P C80 pΩq with w “ 0 on BΩ and let
Bw

B~n
vary, we can derive

that

dvLpv, u, ζΩ, ζBΩqw “

ż

BΩ

Bw

B~n
ζΩ ds “ 0

has to be satisfied for all such w, and therefore we have

ζΩ “ 0 on BΩ.

Finally, if we choose w P C80 pΩq with
Bw

B~n
“ 0 on BΩ and let w vary, we have

dvLpv, u, ζΩ, ζBΩqw “

ż

BΩ

ˆ

ζBΩ `
BζΩ

B~n

˙

w ds “ 0

has to hold for all such w, implying that

ζBΩ `
BζΩ

B~n
“ 0 on BΩ.

We can now write the adjoint equation in (1.10) as

"

´∇2ζ ` v “ vd in Ω,
ζ “ 0 on BΩ,

3Note that ´ζΩ∇2w `∇ ¨ pζΩ∇wq “ ∇ζΩ ¨∇w “ ´w∇2ζΩ `∇ ¨ pw∇ζΩq.

31

from which is clear that the adjoint variable ζ has to belong to H1
0pΩq.

The first-order necessary conditions for the Poisson control problem read as

$

’

’

’

’

’

&

’

’

’

’

’

%

"

v ´∇2ζ “ vd
ζ “ 0

in Ω,
on BΩ,

βu´ ζ “ 0 in Ω,
"

´∇2v ´ u “ f
v “ g

in Ω,
on BΩ.

(1.12)

We now have to discretize these equations. Before doing so, we wish to mention
that, although the derivation of the optimality conditions above is the most rigor-
ous one, in general it is not easy to write the Fréchet derivative of the Lagrangian
of a PDE-constrained optimization problem, as this requires a strong knowledge
of functional analysis and experience in matching the operators; indeed, one has
to properly choose the Banach spaces, has to derive the adjoint equation, and
has to find the correct space where the adjoint variables exist.

In order to discretize the first-order optimality conditions so derived, we will
employ finite elements, and choose the same basis tφ1, φ2, . . . , φnxu for the state v,
the control u, and the adjoint ζ. Although in principle one could choose different
bases for each variable, it is often preferable to use the same basis for all of them
for this example, as this will result in a system of convenient structure for which
we can eliminate the control variable a priori. With this choice of the basis, the
weak formulation of (1.12) reads as:

Find v P V , u P V0, and ζ P V0 such that

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ż

Ω

vw dΩ`

ż

Ω

∇ζ ¨∇w dΩ “

ż

Ω

vdw dΩ for all w P V0,

ż

Ω

βuw dΩ´

ż

Ω

ζw dΩ “ 0 for all w P V0,

ż

Ω

∇v ¨∇w dΩ´

ż

Ω

uw dΩ “

ż

Ω

fw dΩ for all w P V0.

If we introduce also the functions tφnx`1, φnx`2, . . . , φnx`nBu for interpolating
the function g on BΩ, we are looking for approximations

v «
nx
ÿ

i“1

viφi `
nx`nB
ÿ

i“nx`1

viφi, u «
nx
ÿ

i“1

uiφi, ζ «
nx
ÿ

i“1

ζiφi.

Then, working as in Section 1.2, the discrete version of the weak formulation
above is given by

$

’

&

’

%

Mv `Kζ “ v̂d,

βMu´Mζ “ 0,

Kv ´Mu “ f̂ ,

where the vectors v, u, and ζ contain the numerical approximation of v, u, and
ζ respectively, with v̂d and f̂ suitable discretizations of the desired state vd and

32

of the force function f ; note that v̂d and f̂ also contain information about the
boundary conditions on v. The matrix K in the system above is the stiffness
matrix derived in Section 1.2, while the matrix M is the so called mass matrix,
defined as

M “ tmi,lu
nx
i,l“1, mi,l“

ż

Ω

φiφl dΩ,

and it is symmetric positive definite.
From the discrete gradient equation βMu ´Mζ “ 0, we can eliminate the

control variable, and rewrite the discrete optimality conditions as

$

&

%

Mv `Kζ “ v̂d,

Kv ´
1

β
Mζ “ f̂ .

(1.13)

For the rest of this thesis, we will be devising numerical methods for the solution
of systems with this general structure, that lead to systems that are said to be of
saddle-point type. In the following chapter, we will introduce strategies for solving
this type of systems, and show numerically how those strategies are efficient and
robust.

1.3.2 Discretize-Then-Optimize Approach

We are going now to describe the discretize-then-optimize strategy. As opposed
to the previous strategy, we are first going to discretize the problem, by projecting
it onto a finite-dimensional subspace of the space containing the solutions; the
resulting minimization problem will be then analysed as a classical optimization
problem in Rn, with n P N being the dimension of the subspace considered. The
first-order optimality conditions will be then derived by making use of classical
constrained optimization theory, see for instance [119].

Let consider again the PDE-constrained optimization problem with Dirichlet
boundary conditions

min
v,u

Jpv, uq “
1

2
}v ´ vd}

2
L2pΩq `

β

2
}u}2L2pΩq

subject to
"

Dv “ f ` u in Ω,
v “ g on BΩ.

The first thing to do with this strategy is discretize the problem. We will do so
by employing finite elements.

Let tφiu
nv
i“1 and tϕiu

nu
i“1 be finite element bases for the spaces containing the

state v and the control u respectively. We are looking for approximations of the
form

v «
nv
ÿ

i“1

viφi `
nv`nB
ÿ

i“nv`1

viφi, u «
nu
ÿ

i“1

uiϕi,

with tφnv`1, φnv`2, . . . , φnv`nBu interpolating the function g on BΩ. In the first
part of this section, we will consider different bases for the state v and the control

33

u, but, as we mentioned for the optimize-then-discretize strategy, it is possible to
employ the same finite element bases, and in the second part of this section we
will show how this will lead to convenient structure of the discretized system, as
we may eliminate the gradient equation a priori.

Using the finite element bases above, we may discretize the PDE as follows:

Dvv “ f̂ `Mv,uu,

where Dv is the discretized operator D in the finite element basis for v, and the
matrix Mv,u P Rnvˆnu is given by

Mv,u “ tm
v,u
i,l u, mv,u

i,l “

ż

Ω

φiϕl dΩ.

Note also that the vector f̂ contains information about the boundary conditions.
In addition, if vd is the vector containing a suitable discretization of the desired
state vd, we can rewrite the discrete cost functional Jhpv,uq as

Jhpv,uq “
1

2
pv ´ vdq

JMvpv ´ vdq `
β

2
uJMuu,

where Mv is the mass matrix in the finite element basis for v, and Mu is the mass
matrix in the finite element basis for u, that is

Mv “ tm
v
i,lu

nv
i,l“1, mv

i,l“

ż

Ω

φiφl dΩ,

Mu “ tm
u
i,lu

nu
i,l“1, mu

i,l“

ż

Ω

ϕiϕl dΩ.

Finally, the discretized problem we want to solve reads as

min
v,u

Jhpv,uq “ min
v,u

1

2
pv ´ vdq

JMvpv ´ vdq `
β

2
uJMuu (1.14)

subject to
Dvv “ f̂ `Mv,uu. (1.15)

In order to write the first-order optimality conditions, we introduce the adjoint
variable ζ, and consider the (discrete) Lagrangian

Lhpv,u, ζq “
1

2
pv ´ vdq

JMvpv ´ vdq `
β

2
uJMuu` ζ

J
pDvv ´Mv,uu´ f̂q.

Then, a critical point pv˚,u˚, ζ˚q of (1.14)–(1.15) has to satisfy the following
conditions

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

BLh
Bv
pv˚,u˚, ζ˚q “ 0,

BLh
Bu

pv˚,u˚, ζ˚q “ 0,

BLh
Bζ
pv˚,u˚, ζ˚q “ 0.

34

The previous conditions can be rewritten in term of a linear system as

$

’

&

’

%

Mvv `DJ
v ζ “Mvvd,

βMuu´M
J
v,uζ “ 0,

Dvv ´Mv,uu “ f̂ .

From the previous system, we immediately realize that choosing the same
finite element basis for the state v and the control u will allow us to eliminate
the gradient equation βMuu ´ MJ

v,uζ “ 0, since in this case we have Mv,u “

MJ
v,u “ Mu (which is square). As for the optimize-then-discretize strategy, we

may eliminate the gradient equation only because the control u is applied within
the differential operator directly, with no means of another operator U . On the
other hand, if one employs different finite element basis for the state v and the
control u, we have that the matrix Mv,u is rectangular. In this case it is preferable
to avoid eliminating the gradient equation βMuu ´MJ

v,uζ “ 0 (unless applying
the inverse operator of the matrix Mu is cheap and feasible), as this would lead
to the following system:

$

&

%

Mvv `DJ
v ζ “Mvvd,

Dvv ´
1

β
Mv,uM

´1
u MJ

v,uζ “ f̂ .

In practice, if we eliminate the gradient equation we would have to work with
the matrix Mv,uM

´1
u MJ

v,u, which is not desirable from the linear algebra point of
view.

We will give now an example of the first-order optimality conditions de-
rived from the discretize-then-optimize strategy. We will consider again the
Poisson control problem (1.5)–(1.6), and employ the same finite element basis
tφ1, φ2, . . . , φnxu for both the state v and the control u.

The discrete version of (1.5)–(1.6) reads as

min
v,u

1

2
pv ´ vdq

JMpv ´ vdq `
β

2
uJMu

subject to
Kv “ f̂ `Mu,

where K and M are the stiffness and mass matrices in the chosen finite element
bases, respectively, and the vector f̂ takes into account the boundary condition
on v.

By introducing the adjoint variable ζ and proceeding as above, we derive that
a critical point has to satisfy the following conditions:

$

’

&

’

%

Mv `Kζ “Mvd,

βMu´Mζ “ 0,

Kv ´Mu “ f̂ ,

35

where we have used the symmetry of K and M . Equivalently, since we can
eliminate the gradient equation a priori, a solution of (1.5)–(1.6) has to satisfy
the system

$

&

%

Mv `Kζ “Mvd,

Kv ´
1

β
Mζ “ f̂ .

It is interesting to note the similarities between the previous system derived by
a discretize-then-optimize strategy with the system (1.13) derived employing an
optimize-then-discretize strategy. Despite the fact that the two strategies give
the same results for Poisson control, one should not jump to the conclusion that
this is always true. In fact, in the following chapters we will have to make a
choice between the two strategies described so far.

Either by applying an optimize-then-discretize strategy or a discretize-then-
optimize approach, in order to find a numerical solution of the PDE-constrained
optimization problem under examination we have to solve a (very large) linear
system. The following chapter will be devoted to present the numerical methods
employed in the rest of this thesis to obtain a numerical solution of the problems
we will be tackling. As an example, we will present an optimal solver for the
Poisson control problem, and will show how methods of this type are important
for the problems under examination.

1.4 State and/or Control Constrained Problems

We would like to spend some time discussing the resolution of distributed PDE-
constrained optimization problems with additional algebraic bounds on the state
and/or the control variables. In this case, the problem formulation is given by
(1.2)–(1.4); we suppose that vmin ă vmax and umin ă umax. The additional bound
constraints make the problem more difficult to solve than the “unconstrained”
problem, as we need to run a non-linear process in order to obtain an approximate
solution, even if the PDE constraints are linear. In addition, the solutions may
have some regularity issue, as we specify in the following. In order to simplify the
exposition, we limit ourself to the case of the discretize-then-optimize strategy.
Here and below, we employ the same notation as in Section 1.3.2.

Let us suppose we want to solve the problem (1.2)–(1.4). Adopting the same
finite element bases as in Section 1.3.2, the discrete version of the problem under
examination is given by

min
v,u

Jhpv,uq “
1

2
pv ´ vdq

JMvpv ´ vdq `
β

2
uJMuu (1.16)

subject to
$

’

&

’

%

Dvv “ f̂ `Mv,uu,

vmin ď v ď vmax,

umin ď u ď umax,

(1.17)

where the relation ď has to be satisfied componentwise, with vmin, vmax, umin,

36

and umax being the vectors containing the numerical approximations of vmin, vmax,
umin, and umax respectively. Note that (1.16)–(1.17) is a quadratic programming
(QP) problem.

We can now derive the first-order optimality conditions for this case by intro-
ducing the adjoint variable ζ and the Lagrange multipliers

λ “ pλv,min,λv,max,λu,min,λu,maxq.

By employing a Lagrangian technique as above, the KKT conditions read as [119,
Section 12.3]

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Mvv `DJ
v ζ ´ λv,min ` λv,max “Mvvd,

βMuu´M
J
v,uζ ´ λu,min ` λu,max “ 0,

Dvv ´Mv,uu “ f̂ ,

vmin ď v ď vmax, umin ď u ď umax,

λv,min ě 0, λv,max ě 0,

λu,min ě 0, λu,max ě 0,

λJv,minpv ´ vminq “ 0, λJv,maxpvmax ´ vq “ 0,

λJu,minpu´ uminq “ 0, λJu,maxpumax ´ uq “ 0.

(1.18)

From the previous conditions, it is clear that the inequality constraints on
the state and the control variables (with the consequential introduction of the
Lagrange multipliers) make the problem more difficult to solve, as the state,
the gradient, and the adjoint equations have to take into account the influence
of the Lagrange multipliers λ. In addition, a critical point pv˚,u˚, ζ˚,λ˚q for
the discrete minimization problem (1.16)–(1.17) has to satisfy the dual feasibility
conditions

λv,min ě 0, λv,max ě 0, λu,min ě 0, λu,max ě 0, (1.19)

and the complementarity conditions

λJv,minpv ´ vminq “ 0, λJv,maxpvmax ´ vq “ 0,

λJu,minpu´ uminq “ 0, λJu,maxpumax ´ uq “ 0.
(1.20)

Note that, since each component of the vectors above is non-negative for the
bounds on each variable, the previous conditions are equivalent to

pλv,minqipv ´ vminqi “ 0, pλv,maxqipvmax ´ vqi “ 0,

pλu,minqipu´ uminqi “ 0, pλu,maxqipumax ´ uqi “ 0.

Due to their non-linearity, the latter complementarity conditions represent
the hardest part to be satisfied in the KKT conditions (1.18). In the literature,
various numerical techniques have been devised in order to solve problems of the
form (1.18). Below, we will briefly introduce the most widely used methods for
PDE-constrained optimization problems, while referring to [119] for a detailed
description of the techniques below as well as other methods for solving convex

37

optimization problems.

1.4.1 Active Set Method

We start by introducing the active set method for convex quadratic programming.
For an overview on this method, see [119, Section 16.5].

Within an active set method for convex QP, the constraints are split into
two disjoint sets: the constraints that belong to the active set Iact, and the
constraints that belong to the inactive set Iinact. The active set is defined as the
set of the indices of the constraints that are satisfied as equality at the current
approximation of the solution; note that the indices of the equality constraints
are always contained in the active set. On the other hand, the inactive set is
defined as the complement of the active set in the set of all indices.

The knowledge of the active set I˚act at the solution of an optimization problem
is of great importance; for instance, in linear programming, one can recover the
optimal point by knowing the active set at the solution, as one needs to solve the
equality constraints only for the indices in this set. From here, the idea behind
an active set method is easy to explain: a method of this type tries to construct
the active set I˚act at the solution of a minimization problem of the type (1.16)–

(1.17) starting from an approximation rIact. Specifically, given the active set rIact,
the method decides which constraints have to be active and which ones have to
be inactive by looking at the dual feasibility conditions (1.19): any constraints
related to a Lagrange multiplier that is negative become inactive at the next
iteration of the method, and is removed from the active set.

Once the update of the active set is defined, the algorithm is quite straight-
forward to write: given an approximation rIact of the active set at the optimal
point, the method solves a quadratic subproblem of (1.16)–(1.17), in which only

the constraints with indices in the active set rIact are considered; then, the method
construct the active set for the next iteration. This process is repeated until some
stopping criterion is satisfied.

In order to present the algorithm for (1.16)–(1.17), we decompose the active

set rIact as
rIact “ rIv,´act Y

rIv,`act Y
rIu,´act Y

rIu,`act ,

where rIv,´act , rIv,`act , rIu,´act , and rIu,`act are the indices of the constraints for which
v “ vmin, v “ vmax, u “ umin, and u “ umax respectively. In addition, we denote
with rIinact the current inactive set, which is decomposed as

rIinact “ rIv,´inact Y
rIv,`inact Y

rIu,´inact Y
rIu,`inact,

where rIv,´inact,
rIv,`inact,

rIu,´inact, and rIu,`inact are the indices of the constraints for which v ‰
vmin, v ‰ vmax, u ‰ umin, and u ‰ umax respectively. Then, it is straightforward
to see that the KKT conditions of the quadratic subproblem that are solved at

38

each iteration are

$

’

&

’

%

Mvv
pkq `DJ

v ζ
pkq ´ λ

pkq
v,min ` λ

pkq
v,max “Mvvd,

βMuu
pkq ´MJ

v,uζ
pkq ´ λ

pkq
u,min ` λ

pkq
u,max “ 0,

Dvv
pkq ´Mv,uu

pkq “ f̂ ,

(1.21)

with the i-th components of vpkq, upkq, λ
pkq
v,min, λ

pkq
v,max, λ

pkq
u,min, and λ

pkq
u,max given by

pvpkqqi “ pvminqi for i P rIv,´act , pvpkqqi “ pvmaxqi for i P rIv,`act ,

pupkqqi “ puminqi for i P rIu,´act , pupkqqi “ pumaxqi for i P rIu,`act ,

pλ
pkq
v,minqi “ 0 for i P rIv,´inact, pλ

pkq
v,maxqi “ 0 for i P rIv,`inact,

pλ
pkq
u,minqi “ 0 for i P rIu,´inact, pλ

pkq
u,maxqi “ 0 for i P rIu,`inact.

(1.22)

Once the solutions vpkq, ζpkq, upkq, λ
pkq
v,min, λ

pkq
v,max, λ

pkq
u,min, and λ

pkq
u,max of (1.21)–

(1.22) are obtained, the algorithm checks that the Lagrange multipliers are all
non-negative. If one of the Lagrange multipliers is negative, the method evalu-
ate the new active set at the current solution. It is worth noting that, if one of
the Lagrange multiplier related to a lower bound is non-zero, then the Lagrange
multiplier related to the corresponding upper bound is zero, and the other way
around. This can be understood from the complementarity conditions (1.20).
Suppose in fact that pλv,minqi is non-zero, for some i, for instance; then, in or-
der for the complementarity conditions (1.20) to be satisfied it has to hold that
pv ´ vminqi “ 0, and consequently pλv,maxqi “ 0 for pvmax ´ vminqi ‰ 0. From
here, we can introduce the Lagrange multipliers λv and λu, one for each of the
corresponding variable, as follows:

λv “ λv,max ´ λv,min, λu “ λu,max ´ λu,min. (1.23)

Then, we can rewrite the first two equations in (1.21) as follows:

#

Mvv
pkq `DJ

v ζ
pkq ` λ

pkq
v “Mvvd,

βMuu
pkq ´MJ

v,uζ
pkq ` λ

pkq
u “ 0.

The active sets are then updated by looking at which constraints are active and
then looking at the the sign of the corresponding Lagrange multipliers pλ

pkq
v qi and

pλ
pkq
u qi. This process is repeated until the current active sets are invariant (that is

they remain the same between two iterations). The pseudocode of the algorithm
for the active set method is given in Algorithm 1.

Although active set methods have proven to be efficient when solving QP
problems, when dealing with optimal control of PDEs with additional constraints
on the state and/or the control variables those methods have some drawbacks.
Specifically, when solving a state-constrained optimal control problem, one can
derive from the optimize-then-discretize strategy that the Lagrange multiplier
corresponding to the bounds on the state is only a Borel measure (see, for instance,
[29]). Below, we are going to introduce a strategy in order to overcome this issue.

39

Algorithm 1 Active Set Method for Convex QP

Choose vp0q, up0q

Find the active set rIp0qact at vp0q, up0q

for k “ 1 until convergence, do
Solve (1.21)–(1.22) for vpkq, ζpkq, upkq, λ

pkq
v , and λ

pkq
u

Update the active set rIpkqact

Test for convergence: if rIpkqact “
rIpk´1q

act , then stop
end for

1.4.2 Primal-Dual Active Set Method with a Moreau–
Yosida Regularization

As we mentioned above, when solving state-constrained optimal control problems,
the Lagrange multiplier arising from the optimize-then-discretize strategy is only
a Borel measure. Consequently, optimization algorithms have to be adapted
in order to deal with those problems. In particular, regularization techniques
have been employed in order to overcome the regularity issue of the Lagrange
multiplier. In this section, we introduce a primal-dual active set method for
solving PDE-constrained optimization problems with additional constraints on
the state and/or the control variables. Here, we follow the discussion in [81].

Primal-dual active set method are usually employed in conjunction with a
Moreau–Yosida regularization. The latter allows one to impose the inequality
constraints as a nondifferentiable convex function. This function is then employed
as a measure to derive the active set at the current iteration.

Suppose we want to solve a problem of the type (1.16)–(1.17). Then, given a
constant c ą 0, the inequality constraints

vmin ď v ď vmax, umin ď u ď umax,

can be equivalently expressed as

λv “ maxp0,λv ` cpv ´ vmaxqq `minp0,λv ` cpv ´ vminqq,

λu “ maxp0,λu ` cpu´ umaxqq `minp0,λu ` cpu´ uminqq,

where the Lagrange multipliers λv and λu are defined as in (1.23), with the
max and the min operator considered componentwise. The conditions above can
be derived by employing Moreau–Yosida approximations to nonsmooth convex
functions, see [89]. In addition, they can be employed for devising the primal-
dual active set method. In fact, we can define the following active sets:

rIv,´act “

!

i | pλ
pkq
v ` cpvpkq ´ vminqqi ă 0

)

,

rIv,`act “

!

i | pλ
pkq
v ` cpvpkq ´ vmaxqqi ą 0

)

,

rIu,´act “

!

i | pλ
pkq
u ` cpupkq ´ uminqqi ă 0

)

,

rIu,`act “

!

i | pλ
pkq
u ` cpupkq ´ umaxqqi ą 0

)

,

(1.24)

40

and at each iteration solve (1.21)–(1.22) with this definition of active sets. Then,
the new active sets are constructed through (1.24). Finally, this process is re-
peated until the current active sets are invariant. A pseudocode of the primal-dual
active set method so described is given in Algorithm 2.

Algorithm 2 Primal-Dual Active Set Method for PDE-Constrained Optimiza-
tion Problems

Choose vp0q, up0q

Find the active set rIp0qact at vp0q, up0q through (1.24)
for k “ 1 until convergence, do

Solve (1.21)–(1.22) for vpkq, ζpkq, upkq, λ
pkq
v , and λ

pkq
u

Update the active set rIpkqact through (1.24)

Test for convergence: if rIpkqact “
rIpk´1q

act , then stop
end for

The primal-dual active set method described so far has been derived in [81] for
the discretize-then-optimize strategy only when (upper) bounds on the control
variable are imposed. In this case, the method has been proved to be convergent,
and in addition it has been proved to be equivalent to a semismooth Newton
method.

Although we followed a discretize-then-optimize strategy, the primal-dual ac-
tive set method arises naturally from an optimize-then-discretize approach with
a Moreau–Yosida regularization technique, see [19, 45, 81]. Also in this case,
the primal-dual active set method can be considered as a semismooth Newton
method, see [81, 90].

1.4.3 Primal-Dual Interior Point Methods

In this section, we introduce interior point methods (IPMs) for solving QP prob-
lems of the type (1.16)–(1.17). For an overview of interior point methods for
convex QP, see [119, Section 16.6]. For a survey on interior point methods, we
recommend [65].

As we mentioned above, the most difficult part of the KKT conditions (1.18)
to be solved are the complementarity conditions (1.20). Active set methods try
to solve those conditions by dividing the set of the indices into active and in-
active sets, and then forcing either the Lagrange multiplier to be zero or the
corresponding inequality constraint to be satisfied with equality.

Here, we are going to present a different approach for obtaining a solution of
(1.18): the complementarity conditions (1.20) are not imposed to be zero, but
rather we solve some perturbed conditions. Interior point methods impose those
perturbed conditions by replacing the inequality constraints with a logarithmic
barrier penalty function, then deriving the first-order optimality conditions of the
resulting problem. Due to their non-linearity, the KKT conditions so obtained
are then solved by a Newton method, and the new approximation of the critical
point is updated in such a way that it is not “too far away” from the central path.

Let consider the QP given in (1.16)–(1.17). Given the barrier term ε ą 0, we
can introduce a logarithmic barrier penalty function for each inequality constraint

41

in the problem, and consider the Lagrangian

LIPM
h pv,u, ζq “

1

2
pv ´ vdq

JMvpv ´ vdq `
β

2
uJMuu` ζ

J
pDvv ´Mv,uu´ f̂q

´ ε
ÿ

i

log pv ´ vminqi ´ ε
ÿ

i

log pvmax ´ vqi

´ ε
ÿ

i

log pu´ uminqi ´ ε
ÿ

i

log pumax ´ uqi.

If we set

pzv,minqi “ ε{pv ´ vminqi, pzv,maxqi “ ε{pvmax ´ vqi,

pzu,minqi “ ε{pu´ uminqi, pzu,maxqi “ ε{pumax ´ uqi,

then, the first-order optimality conditions read as

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Mvv ´Mvvd `DJ
v ζ ´ zv,min ` zv,max “ 0,

βMuu´M
J
v,uζ ´ zu,min ` zu,max “ 0,

Dvv ´Mv,uu´ f̂ “ 0,

VminZv,min1v “ ε1v, VmaxZv,max1v “ ε1v,

UminZu,min1u “ ε1u, UmaxZu,max1u “ ε1u,

vmin ď v ď vmax, umin ď u ď umax,

zv,min ě 0, zv,max ě 0,

zu,min ě 0, zu,max ě 0,

(1.25)

where 1v and 1u are the vectors of the same size as v and u, respectively, with all
entries equal to one. Here, Vmin, Vmax, Umin, and Umax are the diagonal matrices
containing the entries of v´vmin, vmax´v, u´umin, and umax´u, respectively,
while Zv,min, Zv,max, Zu,min, and Zu,max are the diagonal matrices containing the
entries of zv,min, zv,max, zu,min, and zu,max, respectively.

From (1.25), we can see that an interior point method does not solve the
complementarity conditions (1.20) exactly, but rather the following perturbations:

pzv,minqipv ´ vminqi “ ε, pzv,maxqipvmax ´ vqi “ ε,

pzu,minqipu´ uminqi “ ε, pzu,maxqipumax ´ uqi “ ε.
(1.26)

The complementarity conditions above are (clearly, although mildly) non-linear.
For this reason, in order to find a solution of (1.25), IPMs employ a Newton

method: starting from approximations vpkq, upkq, ζpkq, z
pkq
v,min, z

pkq
v,max, z

pkq
u,min, and

z
pkq
u,max of the solutions v, u, ζ, zv,min, zv,max, zu,min, and zu,max, respectively, IPMs

move in the Newton direction pδvpkq, δupkq, δζpkq, δz
pkq
v,min, δz

pkq
v,max, δz

pkq
u,min, δz

pkq
u,maxq

up to a point that satisfies the inequality constraints in (1.25). The Newton

42

direction is determined by the solution of the following Newton system

»

—

—

—

—

—

—

—

—

—

–

Mv 0 DJ
v ´Iv Iv 0 0

0 βMu ´MJ
v,u 0 0 ´Iu Iu

Dv ´Mv,u 0 0 0 0 0

Z
pkq
v,min 0 0 V

pkq
min 0 0 0

´Z
pkq
v,max 0 0 0 V

pkq
max 0 0

0 Z
pkq
u,min 0 0 0 U

pkq
min 0

0 ´Z
pkq
u,max 0 0 0 0 U

pkq
max

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

δvpkq

δupkq

δζpkq

δz
pkq
v,min

δz
pkq
v,max

δz
pkq
u,min

δz
pkq
u,max

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

r
pkq
1

r
pkq
2

r
pkq
3

r
pkq
4

r
pkq
5

r
pkq
6

r
pkq
7

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where V
pkq

min, V
pkq

max, U
pkq
min, U

pkq
max, Z

pkq
v,min, Z

pkq
v,max, Z

pkq
u,min, and Z

pkq
u,max are the diagonal

matrices containing the current approximations of the solutions, with the vectors
r
pkq
i , i “ 1, 2, . . . , 7 taking into account for the non-linear residuals. Specifically,

we have
r
pkq
1 “Mvvd ´Mvv

pkq ´DJ
v ζ

pkq ` z
pkq
v,min ´ z

pkq
v,max,

r
pkq
2 “ ´βMuu

pkq `MJ
v,uζ

pkq ` z
pkq
u,min ´ z

pkq
u,max,

r
pkq
3 “ f̂ ´Dvv

pkq `Mv,uu
pkq,

r
pkq
4 “ ε1v ´ V

pkq
minZ

pkq
v,min1v,

r
pkq
5 “ ε1v ´ V

pkq
maxZ

pkq
v,max1v,

r
pkq
6 “ ε1u ´U

pkq
minZ

pkq
u,min1u,

r
pkq
7 “ ε1u ´U

pkq
maxZ

pkq
u,max1u.

Once the method solves the system above, IPMs move in the Newton direction
until the inequality constraints in (1.25) are no longer satisfied. Specifically,
introducing the stepsize ᾱP and ᾱD as

ᾱP “ max

α |vmin ď v
pkq ` αδvpkq ď vmax ^ umin ď u

pkq ` αδupkq ď umax

(

,

ᾱD “ max
!

α | z
pkq
v,min ` αδz

pkq
v,min ě 0 ^ z

pkq
v,max ` αδz

pkq
v,max ě 0^

z
pkq
u,min ` αδz

pkq
u,min ě 0 ^ z

pkq
u,max ` αδz

pkq
u,max ě 0

)

,

the new approximation of the solution is given by the following:

»

—

—

—

—

—

—

—

—

—

–

vpk`1q

upk`1q

ζpk`1q

z
pk`1q
v,min

z
pk`1q
v,max

z
pk`1q
u,min

z
pk`1q
u,max

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

vpkq ` αPδv
pkq

upkq ` αPδu
pkq

ζpkq ` αDδζ
pkq

z
pkq
v,min ` αDδz

pkq
v,min

z
pkq
v,max ` αDδz

pkq
v,max

z
pkq
u,min ` αDδz

pkq
u,min

z
pkq
u,max ` αDδz

pkq
u,max

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where αP “ α0ᾱP and αD “ α0ᾱD. Here, the parameter α0 ą 0 is a positive
parameter that is chosen in such a way that the new iterate is not “too close” to
the boundary (for example, αD “ 0.995), that is to say, the new iterate is still
in the interior of the feasible region defined by the constraints in (1.25). From
here, we can clearly understand the reason behind the name of the method.

43

At the next step, the barrier parameter ε is reduced by a factor of ε̄ P p0, 1q,
in such a way that, in the limit, the sequence will converge to a solution of (1.18).
Of course, IPMs do not run until the critical point is reached, but rather stop
when some reduction on the primal feasibility, dual feasibility, and optimality
tolerance is reached.

As we mention, the name IPMs is assigned as the method evaluates at each
iteration a point that is in the interior of the feasible region. The constraints that
determine how much the current iterate is in the interior of the feasible region
are of course the perturbed complementarity conditions (1.26). In particular,
the smaller the parameter ε will be, the closer the iterate will be to the bound
constraints. For this reason, the choice of the barrier parameter is critical for
the method to progress smoothly. At the beginning of the non-linear process,
the values ε is chosen large enough to allow centrality (that is, the iterate stays
away from the bound constraints); then, the barrier parameter is driven towards
zero, allowing the method to converge to the optimal solution. We would like
to note that, for every barrier parameter ε ą 0, the KKT conditions (1.25) of a
convex QP problem have a unique solutions v˚, u˚, ζ˚, z˚v,min, z˚v,max, z˚u,min, and
z˚u,max that satisfy the inequality constraints in (1.25) strictly. The family of these
solutions (that clearly depend on the barrier parameter ε) is called the central
path. Convergence of IPMs can be derived providing each iterate stays close to
the central path. The latter is ensured by letting the error on the perturbed
complementarity conditions (1.26) (measured in some norm of the residual) to be
small.

Interior point methods have proven to be a useful tool for solving PDE-
constrained optmization problems with additional constraints on the state and/or
control variables, especially when advanced numerical linear algebra techniques
are employed for the solution of the resulting Newton systems. The majority of
the works in the literature employ IPMs in conjunction with the discretize-then-
optimize strategy, see, for instance, [18, 134, 135, 137]. We also refer to [18] for
a comparison between IPMs and a primal-dual active-set method with Moreau–
Yosida regularization. Finally, for a description of interior point methods when an
optimize-then-discretize strategy is employed, we point out [161, 177, 183, 184].

44

Chapter 2

Iterative Solvers for Linear
Systems of Equations

“Every day is a new day. It is better to be lucky. But I would
rather be exact. Then when luck comes you are ready.”

– Ernest Hemingway, The Old Man and the Sea

The goal of this thesis is the developement of parameter-robust algorithms to
solve linear systems arising from PDE-constrained optimization problems. The
two “schools of thought” related to the numerical solution of linear systems are
so-called direct methods, and iterative methods.

On one hand, methods that belong to the first class employ some factoriza-
tion of the matrix involved as a product of “easier to invert” matrices, and then
subsequently solve the linear systems so derived in order to obtain the exact
(numerical) solution. Direct methods are quite robust, and the precision of the
solution depends mainly on the condition number of the matrix, apart from the
machine precision εmac; however, when solving very large problems the computa-
tional cost can be prohibitive, and computers can easily run out of memory.

On the other hand, methods belonging to the second class of iterative methods
produce a sequence of numerical approximations of the exact solution in such a
way that the numerical residual is ideally reduced as the iteration progresses,
thus converging to the exact (numerical) solution in the limit (provided that
the system is non-singular). At each iteration, these types of methods perform
only matrix–vector and vector–vector operations, therefore they are quite cheap
to apply; in addition, as long as matrices and vectors can be stored, running
out of memory is much less frequent. Finally, iterative methods can produce
solutions accurate up to machine precision, although for ill-conditioned problems
convergence can be slow.

As the systems considered in this thesis are very large and direct methods
suffer from computer memory limitations, in the following description we will
focus on iterative methods (apologies, Hemingway: although we want to be exact
in our exposition, our methods would rather be iterative).

45

2.1 Notation

In the following, the matrix In̄ will represent the identity matrix in Rn̄ˆn̄, for
some n̄ P N. Given a matrix A P RnAˆnA for some nA P N, we will write A ą 0
(respectively, A ľ 0) to say that the matrix A is symmetric positive definite
(respectively, symmetric positive semi-definite), meaning that its eigenvalues are
real and positive (respectively, real and non-negative). We will indicate with λpAq
the set of eigenvalues of A. Further, we will denote with ρpAq the spectral radius
of the matrix A, defined as

ρpAq “ max t|λ| : λ P λpAqu .

Given two matrices A “ rai,ls P Rn1ˆn2 and Ā P Rn3ˆn4 , with n1, n2, n3, n4 P N,
we will denote with A b Ā the Kronecker product of A and Ā, defined as the
following block matrix:

Ab Ā “

»

—

–

a1,1Ā . . . a1,n2Ā
...

. . .
...

an1,1Ā . . . an1,n2Ā

fi

ffi

fl

.

Note that Ab Ā P Rn1n3ˆn2n4 .
For the rest of this thesis we are concerned with the fast solution of linear

systems of the form
Ax “ b, (2.1)

where A P RnAˆnA is a square, non-singular matrix, and b P RnA is a generic
column vector, for some nA P N; we say that x is the (numerical) solution of
the linear system. For general linear systems, the matrix A has no particular
structure; however, for the problems considered in this thesis, the structure of
the matrix A is very specific, and it will be exploited when deriving our solvers.
For this reason, we may split the matrix A into m̄ ˆ m̄ blocks, with m̄ P N, as
follows:

A “

»

—

–

A1,1 . . . A1,m̄
...

. . .
...

Am̄,1 . . . Am̄,m̄

fi

ffi

fl

, (2.2)

where Ai,l P Rniˆnl , i, l “ 1, . . . , m̄; the sizes of each block ni and nl are such that
řm̄
i“1 ni “ nA. We emphasize here the case of m̄ “ 2: in this case, it is often

possible to derive optimal iterative methods, that require in fact a (roughly) fixed
number of iterations for obtaining convergence up to a given tolerance. For those
methods, supposing that the matrix A is sparse, the computational time ideally
scales linearly with the size of the system. As a particular case with m̄ “ 2, we
will frequently consider the following block matrix:

A “
„

Φ ΨJ

Ψ ´Θ

, (2.3)

with Θ ľ 0; a matrix A with this structure is said to be of saddle-point type. In

46

this case, we split the right-hand side as well as the solution vectors as

b “

„

b1

b2

, x “

„

x1

x2

.

2.2 Simple Iteration

Many basic iterative methods fall within the class of the simple iteration. The
latter can be described as follow. Given the linear system (2.1) with A as in (2.2),
we first define the splitting A “ P ´N such that P is invertible; then, given an
initial guess xp0q, we define the iterate

Pxpjq “ Nxpj´1q
` b, j “ 1, 2, . . . (2.4)

Note that if xpjq “ x for some j, then xpj`1q “ x.
As we will see, the choice of the matrix P is very important not only for the

convergence of the method, but above all to ensure its fast convergence. From
(2.4), it is clear that, in order to find the new iterate xpjq, we need to solve a
system with P ; thus, the matrix P has to be chosen in such a way that it is
“easy” to apply its inverse to a generic vector, or at least it is not as expensive
as inverting A. For instance, one can take P to be the diagonal of A, obtaining
in this way the Jacobi iteration; alternatively, one can decide to take the lower
triangular part of A, obtaining the Gauss–Seidel iteration.

Aside from the computational cost per iteration, the matrix P determines how
fast the error drops per iteration, and therefore the convergence of the method.
To see this, we first rewrite (2.4) as

xpjq “ pInA ´ P´1Aqxpj´1q
` P´1b. (2.5)

The matrix InA ´ P´1A is referred to as iteration matrix. We also rewrite (2.1)
as

x “ pInA ´ P´1Aqx` P´1b. (2.6)

Denoting with epjq “ x´xpjq the error at the j-th iteration, and subtracting (2.5)
from (2.6), we obtain

epjq “ pInA ´ P´1Aqepj´1q
“ . . . “ pInA ´ P´1Aqjep0q. (2.7)

Then, we can derive

}epjq} ď }pInA ´ P´1Aqj} }ep0q}, (2.8)

where } ¨ } here denotes a vector norm, with a matrix norm induced from a
corresponding vector norm defined as

}A} “ sup
}x}“1

}Ax}.

It can be proved that the simple iteration (2.4) converges to the true solution

47

x for every initial guess xp0q if and only if [68, Lemma 2.1.1]

lim
jÑ8

}pInA ´ P´1Aqj} “ 0.

In an equivalent way, the simple iteration (2.4) is convergent if and only if the
spectral radius ρpInA ´ P´1Aq ă 1, as we have [68, Corollary 1.3.1]

ρpInA ´ P´1Aq “ lim
jÑ8

}pInA ´ P´1Aqj}.

From here, we observe that the choice of the splitting is essential for the conver-
gence of the method; besides, from (2.8) we understand that with an appropriate
choice of the matrix P the error can drop quickly. The few notions presented
here can be said to be the most basic idea of preconditioning, which represents
the main topic of this thesis. In fact, in the following we will be concerned about
finding a matrix P that is spectrally equivalent to the matrix A (that is to say,
the eigenvalues of the matrix P´1A are clustered in a region of the complex
plane), with the further property that it is cheap to apply its inverse to a generic
vector; in such a way, the iterative process shall converge, and the error or the
residual will drop fast enough, with the overall cost depending mainly on matrix–
vector and vector–vector operations. A matrix P that presents these properties
is usually refered to as a preconditioner.

Different choices of the splitting will give different methods, with different
convergence properties. For example, for the matrix A defined in (2.2), with the
choices

PJ “

»

—

–

A1,1 0
. . .

0 Am̄,m̄

fi

ffi

fl

, PGS “

»

—

–

A1,1 0
...

. . .

Am̄,1 . . . Am̄,m̄

fi

ffi

fl

one would obtain the (block-)Jacobi iteration or the (block-)Gauss–Seidel iter-
ation, respectively. As above, if each block is a scalar, we obtain the classical
Jacobi or Gauss–Seidel methods, and in this case we will denote the splitting as
PJ and PGS, respectively. More complex methods arise with different choices of
P . In the following section we will introduce one of them: the Uzawa iteration.

2.2.1 Uzawa Iteration

Suppose we want to employ a simple iteration to solve (2.1), with A given in
(2.3). We will suppose that Φ ą 0; we also recall that Θ ľ 0. Let us consider the
following splitting

PU “

„

Φ 0
Ψ ´αI

,

where I is the identity matrix of appropriate dimension, and α is a parameter to
be determined in order to achieve fast convergence. This choice of the splitting
defines the Uzawa method [6, 52], whose iterate is defined as in Algorithm 3,

given some initial guess x
p0q
1 , x

p0q
2 .

48

Algorithm 3 Uzawa algorithm

Choose x
p0q
1 , x

p0q
2

for j “ 1 until convergence, do
Solve Φx

pjq
1 “ b1 ´ΨJx

pj´1q
2

Compute x
pjq
2 “ x

pj´1q
2 ` 1

α

´

Ψx
pjq
1 ´Θx

pj´1q
2 ´ b2

¯

end for

If from Algorithm 3 we substitute the expression of x
pjq
1 into x

pjq
2 , we obtain

x
pjq
2 “ x

pj´1q
2 `

1

α

´

ΨΦ´1b1 ´ Sx
pj´1q
2 ´ b2

¯

,

where S “ ΨΦ´1ΨJ ` Θ is the (negative) Schur complement of the matrix A.
Having a good knowledge of the spectrum of S is of fundamental importance
for tuning the parameter α, as the correct choice of the latter will result in fast
convergence of the method. In fact, supposing that λpSq P rλmin, λmaxs, it can be
proved that the optimal value of α is pλmin ` λmaxq{2 [43].

From Algorithm 3, it is clear that, for any given α, the bulk of the work
involves solving a system with the matrix Φ. For many problems, a solve for
the p1, 1q-block Φ can be quite expensive (if feasible and no run out of memory
occurs); for this reason, we prefer to consider a solve with some (easily invertible)

approximation pΦ of Φ. The splitting in this case is given by

PIU “

„

pΦ 0
Ψ ´αI

,

while the corresponding iterate is defined as in Algorithm 4. This method is
referred to as inexact Uzawa, and it has been proved to be convergent provided
that the approximation pΦ of Φ is good enough (we refer to [43] for a detailed
justification).

Algorithm 4 Inexact Uzawa algorithm

Choose x
p0q
1 , x

p0q
2

for j “ 1 until convergence, do

x
pjq
1 “ x

pj´1q
1 ` pΦ´1

´

b1 ´ Φx
pj´1q
1 ´ΨJx

pj´1q
2

¯

x
pjq
2 “ x

pj´1q
2 ` 1

α

´

Ψx
pjq
1 ´Θx

pj´1q
2 ´ b2

¯

end for

As noted above, a suitable choice of α will result in fast convergence of the
method; this choice can be made by knowing the spectrum of the Schur comple-
ment S, but in many applications this is not often practical. However, we can
speed up the convergence of the method by finding an approximation pS of the
Schur complement S. As for the p1, 1q-block, we would like the matrix pS to be

49

easily invertible. With this in mind, we consider the splitting

PPU “

„

Φ 0

Ψ ´pS

,

and define the simple iteration as in Algorithm 5; the resulting method is re-
ferred to as preconditioned Uzawa. Note that we have absorbed the parameter α
within our approximation pS. As for the inexact Uzawa method, assuming that
pS approximates well the Schur complement S, one can derive convergence of the
method [43].

Algorithm 5 Preconditioned Uzawa algorithm

Choose x
p0q
1 , x

p0q
2

for j “ 1 until convergence, do
Solve Φx

pjq
1 “ b1 ´ΨJx

pj´1q
2

Compute x
pjq
2 “ x

pj´1q
2 ` pS´1

´

Ψx
pjq
1 ´Θx

pj´1q
2 ´ b2

¯

end for

Even in this case, inverting the matrix Φ results in the most expensive com-
putational task; for this reason, an inexact version of the preconditioned Uzawa
algorithm has been widely studied, see [24, 43, 189]. The inexact version of
Algorithm 5 is defined by the splitting

PIPU “

«

pΦ 0

Ψ ´pS

ff

.

In this case, we write the simple iteration as in Algorithm 6. Inexact precon-
ditioned Uzawa has been proved to be convergent, with the error per-iteration
depending on the spectral properties of the matrices pΦ´1Φ and pS´1S, see [24, 43,
189] and [151, Section 4.1].

Algorithm 6 Inexact preconditioned Uzawa algorithm

Choose x
p0q
1 , x

p0q
2

for j “ 1 until convergence, do

x
pjq
1 “ x

pj´1q
1 ` pΦ´1

´

b1 ´ Φx
pj´1q
1 ´ΨJx

pj´1q
2

¯

x
pjq
2 “ x

pj´1q
2 ` pS´1

´

Ψx
pjq
1 ´Θx

pj´1q
2 ´ b2

¯

end for

2.3 Relaxation Methods

Let us consider again the simple iteration (2.4). Defining the residual rpjq “
b´Axpjq, we can rewrite (2.5) as

xpjq “ xpj´1q
` P´1rpj´1q.

50

We note that, from the definition of the residual, we have Aepjq “ rpjq. As
done for the Uzawa iteration, we can introduce a splitting Pα depending on
some parameter α in order to accelerate convergence, and consider the following
iteration

xpjq “ xpj´1q
` P´1

α rpj´1q.

A method of this type is called a relaxation method. As in Section 2.2, we choose
Pα in such a way that it is easy to apply its inverse to a vector, but it also
approximates A in some sense. For instance, if we make the cheapest choice
Pα “ 1

α
InA , we obtain

xpjq “ xpj´1q
` αrpj´1q,

which is called the Richardson iteration [154]. As in (2.7), the error at each step
is given by

epjq “ pInA ´ αAq epj´1q,

which implies
}epjq} ď }InA ´ αA} }epj´1q

},

with } ¨ } again defining a generic vector norm with corresponding induced matrix
norm defined as above. If we suppose that }InA ´ αA} ă 1, then the method
converges. It is not easy to find an optimal value for α, as the convergence
depends on the vector norm we are considering, and in general this would require
some a priori information about the spectrum of A. Let us suppose that in fact
the matrix A is symmetric positive definite, with eigenvalues λi, i “ 1, 2, . . . , nA,
and we want to minimize the error in the 2-norm. Then, we have }InA ´ αA}2 “
maxi |1´ αλi|. Denoting with λmax and λmin the maximum and the minimum
eigenvalue of A respectively, we have }InA´αA}2 ă 1 provided that 0 ă α ă 2

λmax
.

Further, the optimal choice of α is given by

α “
2

λmax ` λmin

. (2.9)

Adopting this choice of α, we have that

}InA ´ αA}2 “ 1´
2

κ` 1
“
κ´ 1

κ` 1
,

with κ “ λmax

λmin
the condition number of A, due to A ą 0.

Other choices of Pα are possible. For instance, we can take Pα “ 1
α
PJ to be

a multiple of the diagonal of the matrix A. In this case, if we choose α “ 1, we
obtain the classical Jacobi iteration, while with different values we obtain the so
called relaxed Jacobi iteration. If A ą 0, proceding as above we can derive that
the optimal value for α is given by (2.9), with λmax and λmin the maximum and

the minimum eigenvalue of the matrix P ´1

J A.
In a similar way, we can employ a relaxed version of the Gauss–Seidel iteration.

In this case, we take Pα “ αPGS`p1´αqPJ; this splitting defines the method of
Successive Over Relaxation (SOR). As for the relaxed Jacobi method, if α “ 1 we
obtain the classical Gauss–Seidel iteration. Note that in this case the iteration
matrix is not symmetric. If we suppose that the matrix A is symmetric, we

51

can modify the SOR method in order to make the iteration matrix symmetric, by

making the choice Pα “ 1
2´α

`

αPGS ` p1´ αqPJ

˘

pαPJq
´1

`

αPGS ` p1´ αqPJ

˘J
.

This method is called the Symmetric Successive Over Relaxation (SSOR) method.
For more information on those methods, see, for example, [62] or [178].

2.4 Chebyshev Semi-Iteration

Another way to accelerate the convergence of the simple iteration is employing
Chebyshev polynomials. Let consider again the simple interation (2.4), and sup-
pose we have generated the iterates xp0q, xp1q, . . . , xpjq. We seek an improvement
of the current solution xpjq of the form

x
pjq
cheb “

j
ÿ

i“0

c
pjq
i xpiq, (2.10)

with the coefficients c
pjq
i , i “ 0, 1, . . . , j to be determined. Associated to those

coefficients, we will considering the polynomial

pjpzq “
j
ÿ

i“0

c
pjq
i zi P Πj,

with Πj the space of polynomials of degree at most j. As noted in Section 2.2, if
the initial guess xp0q is equal to the exact solution x, then xpiq “ x for all i. Then,
it would be reasonable to have also x

pjq
cheb “ x. For this to happen, we require

that pjp1q “ 1. With this choice of pjpzq, from (2.7) we can now write the error
as

x´ x
pjq
cheb “

j
ÿ

i“0

c
pjq
i px´ xpiqq “

j
ÿ

i“0

c
pjq
i pInA ´ P´1Aqi ep0q “ pjpGq ep0q,

with G “ InA ´ P´1A. By taking the norm in the expression above, we obtain

}x´ x
pjq
cheb} ď }pjpGq} }e

p0q
};

thus, we can have a reduction in the error if we find a polynomial pjpzq of degree
at most j such that pjp1q “ 1 and it minimizes the norm }pjpGq}.

For simplifying the analysis, we will suppose that we want to minimize the
2-norm } ¨ }2 and that the matrix G is symmetric. Since G is symmetric, we can
write G “ QΛQJ, with Q an orthogonal matrix (its columns form an orthonormal
basis in RnA), and Λ “ diagpλ1, λ2, . . . , λnAq a diagonal matrix whose entries are
the eigenvalues of G. We first suppose that

´1 ă a ď λnA ď . . . ď λ2 ď λ1 ď b ă 1,

where a and b are known estimates. From the orthogonality of Q, we have that

Gi “ pQΛQJqi “ QΛiQJ,

52

that in turns implies

pjpGq “
j
ÿ

i“0

c
pjq
i QΛiQJ “ QpjpΛqQ

J,

where pjpΛq “ diagppjpλ1q, pjpλ2q, . . . , pjpλnAqq. Using again the orthogonality of
Q and recalling that we are minimizing the 2-norm, we can write

}pjpGq}2 “ }QpjpΛqQJ}2 “ }pjpΛq}2 “ max
λiPλpGq

|pjpλiq| ď max
aďλďb

|pjpλq|.

From here, the degree j polynomial we are looking for has also the convenient
property that the maximum absolute value it attains in the interval ra, bs is mini-
mal, and it is such that pjp1q “ 1. This polynomial is proved to be the Chebyshev
polynomial (of the first kind) of degree j, scaled by an appropriate factor [108,
Corollary 3.4B].

The Chebyshev polynomial Tjpzq (of the first kind) is a polynomial in z of
degree j, defined for z P r´1, 1s as

Tjpzq “ cos jθ, where z “ cos θ.

The above formula defines a polynomial of degree j in cos θ, and, by employing
the trigonometric identity

cos jθ ` cos pj ´ 2qθ “ 2 cos θ cos pj ´ 1qθ,

can be shown to satisfy the following recurrence relation:

Tjpzq “ 2zTj´1pzq ´ Tj´2pzq, j “ 2, 3, . . . (2.11)

with the initial conditions T0pzq “ 1 and T1pzq “ z. We can also define Chebyshev
polynomials on a general interval rā, b̄s, by making use of the affine transformation

s “
2z ´ pā` b̄q

b̄´ ā
,

and defining the scaled Chebyshev polynomial of degree j (of the first kind) as

T jpzq “ Tjpsq.

Note the special case of rā, b̄s ” r0, 1s, for which we have s “ 2z´1 and we obtain
the so called shifted Chebyshev polynomial of the first kind.

For our analysis, as it is not always true that the eigenvalues of G lie in
the interval r´1, 1s, we consider the shifted and scaled Chebyshev polynomial of
degree j:

pTjpzq :“
Tjp

2z´pa`bq
b´a

q

Tjp
2´pa`bq
b´a

q
.

53

With this choice of pjpλq, we have pjp1q “ 1 and

max
aďλďb

|pjpλq| “
1∣∣Tjp2´pa`bq
b´a

q
∣∣ ,

and therefore the larger the value of 2´pa`bq
b´a

is, the faster the convergence of the
iterative method will be. This choice of pjpλq defines the Chebyshev semi-iterative
method [63, 64]. Supposing that G is symmetric (that is equivalent to say that
the matrix P´1A is symmetric), it can be proved that the reduction of the error
at the j-th iteration is given by

}x´ x
pjq
cheb}2 ď 2

ˆ?
κ´ 1

?
κ` 1

˙j

}x´ xp0q}2,

where κ is the condition number of P´1A, see [151, Section 3.1.4].
As we have defined the process so far, at each iteration j we need to evaluate

the coefficients of the Chebyshev polynomial pTjpzq, and then evaluate the new

approximation x
pjq
cheb defined in (2.10), and it is clear that this way of proceeding is

not efficient as we would have to store all the approximations xpiq, i “ 0, 1, . . . , j.
Fortunately, it is possible to derive a three-term recurrence formula by exploiting
(2.11); the more efficient algorithm derived is given in Algorithm 7, supposing
that λpGq P ra, bs, as presented in [115, Section 5.8].

Algorithm 7 Chebyshev semi-iteration to solve Ax “ b

Given lower and upper bounds a and b for the spectrum λpGq
Choose xp0q, set xp´1q “ 0
ω0 “ 0, ω “ 2´pa`bq

b´a

for j “ 0 until convergence, do
if j “ 1 then

ωj`1 “ p1´
1

2ω2 q
´1

else
ωj`1 “ p1´

ω2
j

4ω2 q
´1

end if
Solve Pzpjq “ b´Ax

pjq
cheb

x
pj`1q
cheb “ ωj`1

´

2
2´pa`bq

zpjq ` x
pjq
cheb ´ x

pj´1q
cheb

¯

` x
pj´1q
cheb

end for

The analysis carried out so far was assuming that the iteration matrix G
is symmetric. In [106, 107], the Chebyshev semi-iteration has been extended
also to non-symmetric matrices, provided that convex hull containing all the
eigenvalues is known. For more information on Chebyshev semi-iteration, see
[62, Section 11.2.8] and [178, Chapter 5].

As it should be clear now, for the method to be effective we need good knowl-
edge of the spectrum of the iteration matrix. Although this is sometimes difficult
to accomplish, in some special cases the Chebyshev semi-iteration is well suited.
In fact, as described in [181], the Chebyshev semi-iteration is a linear method,

54

meaning that the polynomial pjpzq adopted at each iteration j is independent
of the right hand side vector b and the initial guess xp0q. This, together with
the fast convergence property derived from a good knowledge of the spectrum
of the iteration matrix G, makes the Chebyshev semi-iteration a potent part of
the preconditioners for the problems considered in this thesis. In particular, the
Chebyshev semi-iteration will be used below for accelerating the convergence of
the relaxed Jacobi applied for inverting mass matrices, with P corresponding to
the diagonal of the mass matrix. In fact, in [179] the author provided lower and
upper bounds of the spectrum of the Jacobi iteration matrix applied to mass
matrices arising from any finite element method; those values have been proved
to be independent of the mesh size, and depend only on the type of element em-
ployed. For instance, for Q1 finite elements mass matrices in 2D it results that
λpGq P r1

4
, 9

4
s; this information may be utilized to pre-specify a and b within the

Chebyshev semi-iterative scheme.

2.5 Multigrid Methods

In the previous sections we have introduced the simple iteration and its accel-
eration for solving linear systems of the type (2.1). In order to work effectively,
those methods require, apart from the matrix A being invertible and in some
cases symmetric, some knowledge of the spectrum of (the whole, or some blocks
of) the iteration matrix pInA´P´1Aq. In this section, we introduce another class
of methods that fall within the category of iterative methods for linear systems,
and that will be frequently used in the following chapters for approximating some
blocks of our systems: Multigrid (MG) methods. For a more detailed discussion
on multigrid techniques, we refer the reader to [27, 75, 185].

Multigrid methods works quite well as iterative methods in their own right,
but in general require that the linear system being solved is sparse, an assump-
tion that we will make for the rest of this section. Despite this very desirable
property, the potential of these methods for solving sparse linear systems also lies
in their use as preconditioners. When designed correctly, multigrid methods can
be used as “black-box” preconditioners, and in general require no prior knowl-
edge on the spectrum of the iteration matrix. In fact, multigrid is based more on
the “geometry” defined by the matrix A rather than its spectrum: the method
constructs, as the name suggests, a sequence of (hierarchical) grids in order to
evaluate an approximation of the solution. Here, we put the word geometry be-
tween quotation marks, as we refer to the grid (or, more appropriately, the graph)
represented by the matrix A. The idea of constructing this hierarchy of grids is
based on the observation that a few steps of a simple iteration are capable of
reducing only the high-frequency components of the solution error; thus, in order
to reduce the low-frequency errors, one projects the current error onto a coarser
grid, and then applies again a simple iteration. This process is repeated up to a
grid coarse enough to allow a direct solver to determine the error on this level.
Finally, one projects the solution so obtained back from the coarsest to the finest
grid, and updates the solution on each grid.

The main components of a multigrid routine are a (pre- and post-)smoothing

55

operator, a prolongation operator, and a restriction operator. The smoothing
operator is usually given by a (fixed number of steps of a) simple iteration, like
Jacobi, Gauss–Seidel, or their relaxation; as mentioned above, it is employed
to reduce the high-frequency components of the error. Although the smoothing
operator is fairly ubiquitous in multigrid methods, what really defines such a
routine is the way one projects the error onto the coarser grids (restriction), and
then how the solution is recovered on the finer grid (prolongation). From here,
one can see restriction and prolongation as one being the adjoint operator of the
other; in fact, usually the matrix R that defines the restriction is chosen to be
the transpose of the matrix P that defines the projection. Of course, different
choices are possible, but the main multigrid routines (included the ones used in
this work) set R “ PJ, so we will focus our description on this choice.

In order to define the multigrid scheme we need to define the prolongation
P . This is done by selecting the nodes that will form the coarse grid from a
given fine grid. A possible approach is to exploit the geometry of the grid under
examination, decide which nodes will become part of the coarse grid, and then
appropriately weight each node. This approach defines a Geometric Multigrid
(GMG) method, and it was devised for solving linear systems arising from the
discretization of a differential operator [25]. Although the implementation of
GMG can be quite straightforward for simple problems on structured grids, the
main drawback of this method is that it requires a detailed knowledge of the
domain, and this is difficult to obtain for general problems. For instance, for
industrial problems the domain can be very complex, with internal boundaries,
and unstructured meshes are usually employed. Therefore, of late much research
has moved to devising multigrid techniques that overcome these issues, while still
keeping the convenient properties of multigrid schemes; this led to the design of
Algebraic Multigrid (AMG) routines.

Algebraic multigrid methods construct a sequence of grids based only on some
properties of the entries of the matrix A; specifically, given the unknowns xi they
find the subset of unknowns txlu that are strongly connected to it, as in, for
instance, [22, 121]:

Ci “

"

k̄ ‰ i | ´ ai,k̄ ě ϑmax
ai,lă0

´ai,l

*

,

with 0 ă ϑ ď 1. From here, the routine chooses which nodes have to be taken
out from the coarse level and which have to be saved based on the influence (that
is, the weight) one node has on the others. This approach has the advantage of
not requiring any information on the geometry of the domain, and may also be
applied to solving systems that are not a discretization of a differential operator.
However, as for most multigrid methods, the routine requires the matrix A to be
sparse; in addition, in order to define which nodes are strongly connected to the
others, the matrix A often has to be (“close” to) an M -matrix, see, for instance,
[22, 118, 122]. A matrix A is said to be an M -matrix if all the diagonal entries
are positive, all the off-diagonal entries are non-positive, it is invertible, and all
the entries of its inverse A´1 are positive [156, Definition 1.30].

Once we have defined the smoothing, the prolongation, and the restriction

56

operators, we can rewrite the overall process in terms of a simple iteration, defined
by the following iteration matrix in the case of two grid levels:

T “ pInA ´ P´1
smoothAq

slpInA ´ PA´1
c PJAqpInA ´ pPJsmoothq

´1Aqsr ,

where Psmooth is the smoothing operator employed, P is the prolongation operator,
and Ac “ PJAP is the coarse grid matrix; note that we allow here a different
number of steps sr and sl for the pre- and post-smoothing operators. The simple
iteration above is known as 2-grid scheme [44, Section 2.5], and can be generalized
to more grid levels.

In the following chapters, we will employ algebraic multigrid methods as black-
box preconditioners for specific matrix blocks; in particular, we will apply a
fixed number of V-cycles of the HSL MI20 solver [22] or of the AGMG routine
[118, 121, 122, 123]. Roughly speaking, a V-cycle is defined as the application
of the iteration matrix T until a coarsest grid level lc is reached, on which the
matrix Ac is solved exactly. More precisely, starting from the whole matrix A, the
algorithm applies the smoothing operator on the current error, then constructs
the prolongation and the restriction operators, projects the error on the coarser
grid, and applies the 2-grid scheme to the matrix Ac defined above. This process
is repeated until the coarsest grid level lc is reached, on which an exact solve is
performed. After this, the algorithm recovers the solution on each of the finer
grid by applying the prolongation and the smoothing operator. A pseudocode is
given in Algorithm 8.

Algorithm 8 Multigrid V-cycle to solve Ax “ b, with smoother Psmooth

function x “VCycle(A,b,x, level)
for i “ 1, . . . , sr do

x “ pInA ´ pPJsmoothq
´1Aqx´ pPJsmoothq

´1b
end for
if level “ lc then

Solve Ax “ b
else

r “ PJpb´Axq
Ac “ PJAP
e “VCycle(Ac, r, e, level ` 1)
x “ x` Pe

end if
for i “ 1, . . . , sl do

x “ pInA ´ P´1
smoothAqx´ P´1

smoothb
end for

2.6 Preconditioned Krylov Subspace Methods

The iterative methods presented so far in this chapter construct a sequence of
approximations xp0q, xp1q, . . . to the solution x of a linear system, by applying a

57

specific (iteration) matrix to the current residual rpjq, then updating the iterate
xpjq until convergence is achieved. This can happen quite quickly if we choose
the iteration matrix appropriately. However, having good spectral information
on the iteration matrix is not always possible, and in fact the method could
also diverge sometimes. In this section, we introduce another class of methods:
the (preconditioned) Krylov subspace methods, that will allow us to have reliable
guarantees of convergence for a number of problems.

One early method discovered belonging to this class was the Conjugate Gra-
dient (CG) method, devised by Hestenes and Stiefel [80] in 1952 for solving a
linear system (2.1) with A ą 0. This method, first used as a direct method, was
proved to converge (in exact arithmetic) in no more than nA steps. Despite this
appealing property, only in the 1970s was the Conjugate Gradient method con-
ceived as an iterative method, and from then the research moved to extend the
method to more general cases, leading to the discovery of the Minimal Residual
(MINRES) method [128], the Generalized Minimal Residual (GMRES) method
[157], and the BiConjugate Gradient (BiCG) method [51], just to name a few. As
the speed of convergence often depends on the eigenvalue/eigenvector properties
of the matrix A, a preconditioned version of all those methods has been devised,
in order to accelerate the iterative process. In the following, we will introduce
the general formulation of a Krylov subspace method, that will then be specified
based on the properties of the matrix A considered. For a more comprehensive
discussion on Krylov subspace methods, on which we base the discussion below,
see, for example, [68, 156], or the survey [54].

Let suppose we want to solve the system (2.1), with A invertible. Given an
initial guess xp0q of the solution x, a Krylov subspace method construct a sequence

xpjq
(

of approximations of x, such that

xpjq P xp0q `KjpA, rp0qq,

where KjpA, rp0qq “ span

rp0q,Arp0q, . . . ,Aj´1rp0q
(

is the Krylov subspace gener-

ated by A and rp0q; with the previous expression we mean that

xpjq ´ xp0q P KjpA, rp0qq.

From the definition of the Krylov subspace KjpA, rp0qq, the residual rpjq at the
j-th iterate can be rewritten as

rpjq “ b´Axpjq “ pj´1pAqrp0q,

where pj´1pzq is a polynomial of degree j ´ 1 such that pj´1p0q “ 1.
As we seek a good approximation xpjq of the solution x, we wish that the

residual is “small” in some sense; in fact, one condition the iterate xpjq may be
required to satisfy is minimizing the residual rpjq in some norm } ¨ }:

}rpjq} “ min
x̂Pxp0q`KjpA,rp0qq

}b´Ax̂}

“ min
pj´1pzqPΠj´1,pj´1p0q“1

}pj´1pAqrp0q}, (2.12)

58

where, as above, Πj´1 is the space of polynomials of degree at most j ´ 1. We
would like to mention that the choice of the norm } ¨ } characterizes the Krylov
subspace method. For instance, the Conjugate Gradient method minimizes the
residual in the A´1-norm. On the other hand, the class of Minimal Residual
methods (like MINRES or GMRES) minimizes the residual in the Euclidean
norm. Another required property for the residual rpjq to hold is to be orthogonal
to some subspace Wj of dimension j:

wJrpjq “ 0, @w P Wj. (2.13)

Different choices of Wj produce different Krylov subspace methods. From (2.13),
Krylov subspace methods fall within the class of projection methods for solving
linear systems of equations.

From (2.12), we can derive

}rpjq} ď min
pj´1pzqPΠj´1,pj´1p0q“1

}pj´1pAq} }rp0q}, (2.14)

finding again a min–max problem as in Section 2.4. However, in this case the
problem has no explicit solution, as the polynomial pj´1pzq is chosen to satisfy
(2.12), which is clearly dependent not only on the matrix A, but also on the
initial residual rp0q: starting from a different initial guess x̄p0q, in fact, causes the
polynomial pj´1pzq to be different. In a similar way, changing the right hand side
b̄ but starting from the same xp0q will give a different polynomial pj´1pzq. From
here, we can deduce that any Krylov subspace method is a non-linear process, as
opposed to the other methods presented so far.

For general A, if we want to find xpjq P xp0q`KjpA, rp0qq we need to construct a
basis for the space KjpA, rp0qq; the latter is done by employing an Arnoldi process,
and will lead to the GMRES algorithm. As at each iteration we need to construct
an orthonormal basis of increasing dimension, we expect the method to be more
expensive as the process moves forward. However, practical implementations
make use of a restart parameter j̄, giving an upper bound for the dimension of
the basis sought: if the computed solution found after j̄ iterations does not satisfy
the given convergence criterion, this approximation of the solution is employed as
initial guess for the algorithm. Besides, there are special cases in which the new
approximation xpjq can be constructed by a short-term recurrence formula, as for
the Chebyshev semi-iteration method. In particular, if the matrix A is symmetric,
we can derive a three-term recurrence formula by employing a Lanczos process;
this will lead to the MINRES algorithm. If we suppose also that the matrix A is
positive definite, the process is simplified even more to a two-term recurrence; in
this case, we obtain the CG algorithm.

Since the reduction of the residual at the j-th iterate (2.14) for a Krylov
subspace method depends on the norm of a polynomial in A, we may expect
that, as for in Section 2.4, the convergence properties of the method depends
on the spectrum of A. As this matrix may be ill-conditioned, usually Krylov
methods are considered in their preconditioned version. In this case, given an
appropriate preconditioner P , the Krylov subspace within which we seek the
approximation xpjq is of the form xp0q`KjpP´1A, rp0qq. For some of these methods,

59

the preconditioner P has not only to be easily invertible and spectrally equivalent
to A, but also needs to be symmetric positive definite, in order for the norm in
(2.12) to be well defined.

In the following sections, we are going to introduce the mostly known Krylov
methods, namely, CG, MINRES, and GMRES, in their preconditioned version.
For the GMRES method, we also introduce its flexible implementation.

2.7 Preconditioned Conjugate Gradient Method

In this section we introduce the Conjugate Gradient method [80] for solving
symmetric positive definite linear systems.

Let suppose that the matrix A in (2.1) is symmetric positive definite; in
particular, the matrix A is invertible. We can then consider the A-norm, defined
for any z P RnA as

}z}A “
?

zJA z.

In addition, since A ą 0, the same holds for A´1, and we can analogously consider
the norm } ¨ }A´1 . Then, the Conjugate Gradient method produces a sequence of
approximations xpjq that minimize the residual rpjq in the A´1-norm, namely

}rpjq}A´1 “ min
x̂Pxp0q`KjpA,rp0qq

}b´Ax̂}A´1 .

Recalling that
rpjq “ b´Axpjq “ Apx´ xpjqq “ Aepjq,

the Conjugate Gradient iterate can be defined equivalently as a sequence of ap-
proximations xpjq that minimize the error epjq in the A-norm. In fact, we have

}rpjq}A´1 “ min
x̂Pxp0q`KjpA,rp0qq

}b´Ax̂}A´1

“ min
x̂Pxp0q`KjpA,rp0qq

a

pb´Ax̂qJA´1pb´Ax̂q

“ min
x̂Pxp0q`KjpA,rp0qq

?
eJA e

“ }epjq}A.

If we evaluate explicitly }e}2A, we obtain

}e}2A “ px´ x̂qJApx´ x̂q

“ xJAx` x̂JA x̂´ xJA x̂´ x̂JAx

“ x̂JA x̂` xJb´ bJx̂´ x̂Jb

“ x̂JA x̂´ 2x̂Jb` xJb.

Then, defining the quadratic function

φpx̂q “
1

2
x̂JA x̂´ x̂Jb,

60

we have }e}2A “ 2φpx̂q ` c, with c “ xJb a given constant. Therefore, it is clear
that minimizing }e}A is equivalent to minimizing the function φpx̂q, and, since
∇φpx̂q “ Ax̂´b, if x̄ is the minimizer of φpx̂q, then x̄ “ x due to the invertibility
of A.

Given xpj´1q an approximation of x, we are then looking for a vector xpjq “
xpj´1q ` αj´1s

pj´1q that improves our cost functional φpxpj´1qq. The vector spj´1q

is called the search direction, while the parameter αj´1 is chosen to be the
optimal step-length in this direction. The latter can be easily computed, for
one has to minimize the cost functional φpx̂q in the one-dimensional subspace
xpj´1q ` span

spj´1q
(

; in fact, the optimal value for α is obtained by imposing
the condition

d

dα
φpxpj´1q

` αspj´1q
q “ 0,

that leads to

αj´1 “
pspj´1qqJrpj´1q

pspj´1qqJA spj´1q
. (2.15)

Now that we have the optimal step-length αj´1, we need to find the direction
spj´1q along which we should search for the new iterate xpjq. As the negative
gradient ´∇φpxpj´1qq “ rpj´1q is a direction pointing towards the minimizer of
the functional φpx̂q, one is tempted to choose spj´1q “ rpj´1q for all j. This choice
of search directions gives the Steepest Descent method [119, Chapter 2], and it is
easy to see that at step j the error epjq and the residual rpj´1q are A-conjugate, that
is, pepjqqJA rpj´1q “ 0 for all j, which implies that the residual rpjq is orthogonal
to the residual rpj´1q. However, the latter is not true for all the previous residuals,

and indeed the vectors

rpiq
(j

i“0
may be linearly dependent, with the consequence

of slow convergence of the method. Therefore, we are looking for a smarter choice
of the search directions in order to obtain faster convergence properties.

In order to find the search directions spj´1q, we will make use of one funda-

mental property of symmetric positive definite matrices: given a set

spiq
(j´1

i“0
of

non-zero vectors which are mutually A-conjugate (that is, pspiqqJA splq “ 0, for
all i ‰ l), then they are linearly independent vectors. With this in mind, we
may construct vectors

spjq
(

which are mutually A-conjugate and span the whole
space RnA in nA iterations, thus obtaining a good approximation of the solution
in fewer steps. In addition, we will require a condition of the type (2.13) on the
residual rpjq to hold; specifically, we will impose that the j-th residual is orthog-
onal to Wj “ span

rp0q, rp1q, . . . , rpj´1q
(

. In order to ensure A-conjugacy and
orthogonality, we will employ a Lanczos process, that will require us to impose
those properties only on two subsequent search directions and residuals, due to
the matrix A being symmetric positive definite.

Since we are looking for an approximation of the type xpjq “ xpj´1q`αj´1s
pj´1q,

it is clear that xpjq belongs to xp0q ` span

sp0q, sp1q, . . . , spj´1q
(

. From the obser-

vation above, we thus look for vectors

spiq
(j´1

i“0
that are mutually A-conjugate;

in addition, we require that the choice of the search direction spj´1q results in a

residual rpjq that is orthogonal to all previous residuals

rpiq
(j´1

i“0
. For these two

61

conditions to hold, we look for a search direction

spj´1q
“ rpj´1q

` βj´1s
pj´2q, (2.16)

where βj´1 is chosen such that spj´1q and spj´2q are A-conjugate; we note that
with this choice of search direction spj´1q P span

rp0q, rp1q, . . . , rpj´1q
(

. In order

to ensure the A-conjugacy of the vectors spj´1q and spj´2q, we take

βj´1 “ ´
prpj´1qqJA spj´2q

pspj´2qqJA spj´2q
. (2.17)

From xpjq “ xpj´1q`αj´1s
pj´1q, we see that rpjq “ rpj´1q´αj´1A spj´1q, and, since

we want prpjqqJrpj´1q “ 0, we require

αj´1 “
prpj´1qqJrpj´1q

prpj´1qqJA spj´1q
.

The previous expression can be simplified as

αj´1 “
prpj´1qqJrpj´1q

prpj´1q ` βj´1spj´2qqJA spj´1q
“

prpj´1qqJrpj´1q

pspj´1qqJA spj´1q
, (2.18)

due to spj´1q and spj´2q being A-conjugate. Note that this values of αj´1 is the
same as in (2.15) with spj´1q replaced by rpj´1q; however, as rpj´1q is orthogonal to
Wj´1 “ span

rp0q, rp1q, . . . , rpj´2q
(

, and since we have spj´2q P Wj´1, from (2.16)
the two expressions are the same. Thus, the steplength αj´1 defined in (2.18) is
optimal.

In order to also simplify the expression (2.17) for βj´1, from

rpj´1q
“ rpj´2q

´ αj´2A spj´2q

we derive

´A spj´2q
“

1

αj´2

prpj´1q
´ rpj´2q

q.

By employing the orthogonality property prpj´1qqJrpj´2q “ 0 together with (2.18),
we finally obtain the following expression for βj´1:

βj´1 “
prpj´1qqJrpj´1q

prpj´2qqJrpj´2q
.

The algorithm so derived is the Conjugate Gradient Method originally pre-
sented by Hestenes and Stiefel in [80]; the pseudocode is given in Algorithm 9.
With this definition of xpjq and of spjq, it can be proved [174, Theorem 38.1] that

span

sp0q, sp1q, . . . , spj´1q
(

“ span

rp0q, rp1q, . . . , rpj´1q
(

“ span

rp0q,Arp0q, . . . ,Aj´1rp0q
(

,

implying that the iterate xpjq belongs to the Krylov subspace xp0q ` KjpA, rp0qq.

62

In addition, the search directions are mutually A-conjugate, with the residuals
being mutually orthogonal, see [156, Section 6.7] and [174, Theorem 38.1].

Algorithm 9 Conjugate Gradient Method to solve Ax “ b, with A ą 0

Choose xp0q

Compute rp0q “ b´Axp0q

Set sp0q “ rp0q

for j “ 1 until convergence, do

αj´1 “
prpj´1qqJrpj´1q

pspj´1qqJA spj´1q

xpjq “ xpj´1q ` αj´1s
pj´1q

rpjq “ rpj´1q ´ αj´1A spj´1q

Test for convergence

βj “
prpjqqJrpjq

prpj´1qqJrpj´1q

spjq “ rpjq ` βjs
pj´1q

end for

As xpjq P xp0q `KjpA, rp0qq, we can rewrite the error epjq as

epjq “ ep0q ` pj´1pAqrp0q,

for some polynomial pj´1pzq of degree at most j´1 such that pj´1p0q “ 1. Writing
rp0q “ Aep0q, we then obtain

epjq “ qjpAqep0q,

with qjpzq a polynomial of degree at most j such that qjp0q “ 1. Recalling
that at each step CG minimizes the residual rpjq in the A´1-norm, and that
this is equivalent to minimizing the error epjq in the A-norm, we can rewrite the
reduction in the residual (2.12) as

}rpjq}A´1 “ }epjq}A “ min
qjpzqPΠj ,qjp0q“1

}qjpAqep0q}A,

where Πj is the space of polynomials of degree at most j. If we expand the error
ep0q in terms of the orthonormal eigenvectors tv1,v2, . . . ,vnAu of A, we have
ep0q “

řnA
i“1 civi, and thus we can derive the following estimate for the error:

}epjq}A “ min
qjpzqPΠj ,qjp0q“1

›

›

›

›

›

qjpAq
nA
ÿ

i“1

civi

›

›

›

›

›

A

“ min
qjpzqPΠj ,qjp0q“1

›

›

›

›

›

nA
ÿ

i“1

ciqjpλiqvi

›

›

›

›

›

A

ď min
qjpzqPΠj ,qjp0q“1

›

›

›

›

›

max
i
|qjpλiq|

nA
ÿ

i“1

civi

›

›

›

›

›

A

. (2.19)

Before moving on the error estimate, it is worth noting that from the previous
expression we can see that Conjugate Gradient will converge at most in nA it-

63

erations, see [174, Theorem 38.4]. In fact, supposing that the matrix A has nA
different eigenvalues λ1, λ2, . . . , λnA , we can consider the polynomial

qnApzq “
nA
ź

i“1

ˆ

1´
z

λi

˙

,

that will be zero on the set of the eigenvalues, and as a consequence the error
epnAq will be zero.

From (2.19), we can write

}epjq}A ď min
qjpzqPΠj ,qjp0q“1

max
aďλďb

|qjpλq| }e
p0q
}A,

with ra, bs the interval containing the eigenvalues of the matrix A. A similar term
was found in Section 2.4 when deriving the error for the Chebyshev semi-iterative
method, and we were able to find an upper bound by employing the Chebyshev
polynomials. In fact, it can be proved [174, Theorem 38.5] that the reduction of
the error at the j-th iteration is given by

}epjq}A ď 2

ˆ?
κ´ 1

?
κ` 1

˙j

}ep0q}A, (2.20)

with κ the condition number of the matrix A.

Algorithm 10 Preconditioned Conjugate Gradient Method to solve Ax “ b,
with A ą 0 and preconditioner P ą 0

Choose xp0q

Compute rp0q “ b´Axp0q

Solve Pzp0q “ rp0q

Set sp0q “ zp0q

for j “ 1 until convergence, do

αj´1 “
pzpj´1qqJrpj´1q

pspj´1qqJA spj´1q

xpjq “ xpj´1q ` αj´1s
pj´1q

rpjq “ rpj´1q ´ αj´1A spj´1q

Test for convergence
Solve Pzpjq “ rpjq

βj “
pzpjqqJrpjq

pzpj´1qqJrpj´1q

spjq “ zpjq ` βjs
pj´1q

end for

From (2.20), one may observe that the convergence rate of CG can be poor
when applied to an ill-conditioned matrix A. However, the rate (2.20) is only a
worst-case scenario: in fact, supposing that the matrix A has only two different
eigenvalues λ1 and λ2, from (2.19) with q2pzq “ p1´z{λ1qp1´z{λ2q we can imply
that the error is zero after only two iterations. In general, one may experience also
fast convergence in practice when the eigenvalues of A are clustered around some
values. However, this is not always the case; for this reason, a preconditioner

64

P is generally employed for the purpose of obtaining fast convergence. As we
mentioned in Section 2.6, this preconditioner P has to be easily invertible and
ideally spectrally equivalent to A. In addition, as we want to preserve symmetry
and positive definiteness, the preconditioner P needs to be symmetric positive
definite. In fact, in this case we can write P “ HHJ, and the preconditioned
system is equivalent to

H´1AH´Jx̄ “ H´1b,

where x̄ “ HJx. As H´1AH´J is symmetric positive definite, we can employ
CG to solve the previous system. However, practical implementations of Precon-
ditioned Conjugate Gradients do not require one to solve with the matrix H, but
rather to solve with P . The pseudocode for Preconditioned Conjugate Gradient
is given in Algorithm 10.

Comparing Algorithm 9 with its preconditioned version in Algorithm 10, we
observe that the only computational difference is the solve with P at each itera-
tion. From here, it is clear the reason why the preconditioner P has to be easy
to invert. As we will discuss in Section 2.10, in general, rather than solving with
P , we will require an approximation of its inverse operation on a generic vector.

2.8 Preconditioned MINRES

In the previous section we discussed the Conjugate Gradient method for solving
linear systems of equations. As we saw, the power of CG lies in the two-term
recurrence formula for the search directions, that ensures orthogonality of the
residuals and A-conjugacy of the search directions. The main drawback of the
method is that A is required to be symmetric positive definite. In this section
we introduce a generalization of CG to symmetric (possibly indefinite) matrices
discovered by Paige and Saunders [128], that is MINRES.

Let suppose that the matrix A in (2.1) is symmetric and invertible. Given
an initial guess xp0q, we iteratively find an approximation xpjq of x within the
subspace xp0q ` KjpA, rp0qq. As opposed to CG, in this case we cannot consider
the A-norm, as the matrix A may be indefinite. For this reason, at each iteration
the residual rpjq will be minimized in the Euclidean norm

}rpjq}2 “ min
pj´1pzqPΠj´1,pj´1p0q“1

}pj´1pAqrp0q}2.

As for CG, we want to span RnA in (at most) nA iterations by constructing a
basis for the space. Since the matrix A is symmetric, this can be done again
by employing the short-term recurrence formula of a Lanczos process; however,
as opposed to CG, in this case the formula is given by the following three-term
recurrence:

γi`1q
pi`1q

“ Aqpiq ´ δiq
piq
´ γiq

pi´1q, (2.21)

setting qp1q “ rp0q

}rp0q}2
, for i “ 1, 2, . . . , j ´ 1, where δi “ pqpiqqJAqpiq, and γi`1

is such that }qpi`1q}2 “ 1. The vectors

qp1q,qp2q, . . . ,qpjq
(

so derived are an

orthonormal basis for KjpA, rp0qq; in addition, equation (2.21) can be rewritten

65

as
AQj “ Qj`1

pHj, (2.22)

where Qj “ rq
p1q,qp2q, . . . ,qpjqs is orthogonal, and pHj “

„

Hj

γj`1ej

. Here, Hj “

tridiagpγi, δi, γi`1q is a tridiagonal matrix, and ej is the j-th vector of the standard
basis in Rj. It is worth noting that the matrix Hj is tridiagonal due to the
symmetry of A being preserved by the Lanczos process. Since xpjq P xp0q `
KjpA, rp0qq, with this notation we can rewrite

xpjq “ xp0q `Qjz
pjq,

for some vector zpjq P Rj. From the previous expression, we can write

}rpjq}2 “ }b´Axpjq}2

“ }rp0q ´AQjz
pjq
}2

“ }rp0q ´Qj`1
pHjz

pjq
}2

“ }}rp0q}2 e1 ´ pHjz
pjq
}2,

the last equality holding due to Qj`1 being orthogonal. Finally, recalling the
minimization property of the j-th residual, the iterate xpjq is the solution of the
following least squares problem:

}rpjq}2 “ min
zpjq

}}rp0q}2 e1 ´ pHjz
pjq
}2,

that is solved by employing Givens rotations within a QR factorization. A pseu-
docode for the MINRES method is found in Algorithm 11. It is worth noting
that the MINRES algorithm performs a few more operations per iteration than
the Conjugate Gradient method.

As for CG, we can specify the reduction of the residual (2.14) as follows:

}rpjq}2 ď min
pjpzqPΠj ,pjp0q“1

max
λPr´a1,´b1sYra2,b2s

|pjpλq| }r
p0q
}2.

Here, as the matrix may be indefinite, we split the interval ra, bs containing the
eigenvalues of A in a positive and a negative part, and suppose that the spectrum
of A is contained in the union r´a1,´b1s Y ra2, b2s of two intervals of the same
length, that is, a1 ´ b1 “ b2 ´ a2, with a1, a2, b1, b2 ą 0. Then, it is possible to
prove (see [44, Theorem 4.14] and [164]) the following reduction on the residual
after 2j steps of MINRES:

}rp2jq}2 ď 2

ˆ
?
a1b2 ´

?
a2b1

?
a1b2 `

?
a2b1

˙j

}rp0q}2. (2.23)

From the bound above, it is clear that a substantial reduction in the residual may
be obtained only every other iteration; this in turn produces the typical plots of
the behavior of the residual obtained from numerical experiments: in fact, one
can clearly see a staircasing effect.

66

Algorithm 11 MINRES Method to solve Ax “ b, with A symmetric

qp0q “ 0, wp0q “ 0, wp1q “ 0
Choose xp0q

Compute qp1q “ b´Axp0q

Set γ1 “ }q
p1q}2

Set η “ γ1, s0 “ s1 “ 0, c0 “ c1 “ 1
for j “ 1 until convergence, do

qpjq “ qpjq

γj

δj “ pq
pjqqJAqpjq

qpj`1q “ Aqpjq ´ δjq
pjq ´ γjq

pj´1q

γj`1 “ }q
pj`1q}2

α0 “ cjδj ´ cj´1sjγj

α1 “

b

α2
0 ` γ

2
j`1

α2 “ sjδj ` cj´1cjγj
α3 “ sj´1γj
cj`1 “

α0

α1
, sj`1 “

γj`1

α1

wpj`1q “ 1
α1
pqpjq ´ α3w

pj´1q ´ α2w
pjqq

xpjq “ xpj´1q ` cj`1ηw
pj`1q

η “ ´sj`1η
Test for convergence

end for

As for CG, it is clear that convergence depends mainly on the spectrum of the
matrix A; for this reason, in order to obtain faster convergence, a preconditioned
version of MINRES has been devised. Since we want to preserve the symmetry of
the system, we have to employ again a symmetric positive definite preconditioner
P ; the algorithm so derived is given in Algorithm 12.

For the preconditioned MINRES algorithm with preconditioner P , it can be
shown that the residual rpjq is reduced in the P´1-norm, see [44, Section 4.1].
Further, a similar result to (2.23) can be derived, supposing that the eigenvalues
of the preconditioned matrix P´1A lie in the union r´a1,´b1sYra2, b2s of intervals
of same length, being a1, a2, b1, b2 ą 0 as above, see [44, Theorem 4.14].

2.9 Preconditioned GMRES and Flexible GM-

RES

As we noted in the previous section, the difference in computations between CG
and MINRES is minimal, with the latter performing only a few more vector–
vector operations. The reason behind this is that both are based on a Lanczos
process, which allows to construct an orthonormal basis for the eigenspace of a
symmetric matrix A. The generalization of this process to non-symmetric ma-
trices is called the Arnoldi method: starting from an arbitrary vector qp0q, the
method produces a sequence of orthonormal vector qp1q,qp2q, . . . ,qpjq by mak-
ing use of the modified Gram–Schmidt process. From here, we can already see

67

Algorithm 12 Preconditioned MINRES Method to solve Ax “ b, with A sym-
metric and preconditioner P ą 0

qp0q “ 0, wp0q “ 0, wp1q “ 0
Choose xp0q

Compute qp1q “ b´Axp0q

Solve Pzp1q “ qp1q

Set γ1 “
a

pzp1qqJqp1q

Set η “ γ1, s0 “ s1 “ 0, c0 “ c1 “ 1
for j “ 1 until convergence, do

zpjq “ zpjq

γj

δj “ pz
pjqqJA zpjq

qpj`1q “ Aqpjq ´
δj
γj

qpjq ´
γj
γj´1

qpj´1q

Solve Pzpj`1q “ qpj`1q

γj`1 “
a

pzpj`1qqJqpj`1q

α0 “ cjδj ´ cj´1sjγj

α1 “

b

α2
0 ` γ

2
j`1

α2 “ sjδj ` cj´1cjγj
α3 “ sj´1γj
cj`1 “

α0

α1
, sj`1 “

γj`1

α1

wpj`1q “ 1
α1
pzpjq ´ α3w

pj´1q ´ α2w
pjqq

xpjq “ xpj´1q ` cj`1ηw
pj`1q

η “ ´sj`1η
Test for convergence

end for

what is lost when solving a generic system, as we cannot employ any short-term
recurrence formula for constructing the basis.

Let suppose that the matrix A in (2.1) is invertible but not symmetric. By
starting from an initial guess xp0q, we construct a sequence xpjq of approximations
of the solution x that belong to the j-th Krylov subspace KjpA, rp0qq. Since the
matrix A is not symmetric, as for MINRES we have to impose the minimization
property of the residual rpjq in the Euclidean norm:

}rpjq}2 “ min
pj´1pzqPΠj´1,pj´1p0q“1

}pj´1pAqrp0q}2.

In addition, we can generalize (see [156, Proposition 6.5]) the formula (2.22) for
A in terms of the orthonormal basis

qp1q,qp2q, . . . ,qpjq
(

as

AQj “ Qj`1
pHj,

where as above Qj “ rq
p1q,qp2q, . . . ,qpjqs, and pHj “

„

Hj

hj`1,jq
pj`1q

, with Hj “

rhi,ls, and hi,l “ pqplq qJAqpiq. Note that now the matrix Hj is properly an
upper Hessenberg matrix, as the matrix A is no longer symmetric. Since at each

68

iteration we are minimizing the residual, we can write

}rpjq}2 “ }b´Axpjq}2

“ }rp0q ´AQjz
pjq
}2

“ }rp0q ´Qj`1
pHjz

pjq
}2

“ }}rp0q}2 e1 ´ pHjz
pjq
}2,

using the orthogonality of Qj`1. Again, we have to solve a least squares problem,
which is done by employing a Givens rotation within a QR factorization. The
resulting method is the GMRES method derived by Saad and Schultz [157].

As for CG and MINRES, it is possible to prove an upper bound for the
reduction of the residual; however, the derivation of this estimate for GMRES is
not as straightforward as for CG and MINRES, and indeed no neat expression of
the type (2.20) or (2.23) can be obtained unless A is normal. In fact, supposing
that A is diagonalizable with eigendecomposition A “ QΛQ´1, we can rewrite

}rpjq}2 “ min
pj´1pzqPΠj´1,pj´1p0q“1

}pj´1pAqrp0q}2

ď min
pj´1pzqPΠj´1,pj´1p0q“1

}pj´1pAq}2 }rp0q}2

“ min
pj´1pzqPΠj´1,pj´1p0q“1

}Qpj´1pΛqQ
´1
}2 }r

p0q
}2

ď κpQq min
pj´1pzqPΠj´1,pj´1p0q“1

max
λiPλpAq

|pj´1pλiq| }r
p0q
}2, (2.24)

with κpQq “ }Q}2 }Q
´1}2 the condition number of Q, see [174, Theorem 35.2] or

[156, Proposition 6.32].
From the previous expression, we can infer that also for GMRES the con-

vergence of the method can be aided by a clustered eigenvalue distribution of
the matrix considered; for this reason, it is useful to consider a preconditioned
GMRES when solving general linear systems. We would like to note that the
convergence of GMRES is not determined only by a clustered eigenvalue distri-
bution, as the upper bound in (2.24) depends on the condition number of Q (thus,
from how far the matrix A is from normality). In fact, one can show that any
non-increasing sequence describes the reduction of the residual at each iteration
of the GMRES method applied to solve a linear system; in addition, the matrix
can be constructed with any eigenvalue distribution, see [69].

In this case, as we are not concerned anymore with symmetry, the precondi-
tioner P can itself be non-symmetric. A pseudocode for the GMRES algorithm
with right preconditioning is given in Algorithm 13. Clearly, the computational
cost of the algorithm grows as the iterations increase, as at each iteration we have
to evaluate an orthonormal basis for the current Krylov subspace by the Arnoldi
process. In order to save on computational time, GMRES is often restarted after
a fixed number of iterations j̄: if the test for convergence is not satisfied after j̄

iterations, the approximation xpj̄q becomes the initial guess xp0q of the following
cycle. The resulting method is called GMRES(j̄) or GMRES with restart.

As formulated in Algorithm 13, the preconditioner P is fixed at every iteration.

69

Algorithm 13 Preconditioned GMRES Method to solve Ax “ b, with right
preconditioner P

Choose xp0q

Compute rp0q “ b´Axp0q

Set β0 “ }r
p0q}2

Set qp1q “ rp0q

β0

for j “ 1 until convergence, do
Solve Pzpjq “ qpjq

w
pj`1q
1 “ Azpjq

for i “ 1, 2, . . . , j do
hi,j “ pw

pj`1q
i qJqpiq

w
pj`1q
i`1 “ w

pj`1q
i ´ hi,jq

piq

end for
hj`1,j “ }w

pj`1q
j`1 }2

qpj`1q “ wpj`1qj`1

hj`1,j

Find spjq that minimizes βj “ }β0e1 ´ pHjs
pjq}2

Test for convergence
end for
Qj “ rq

p1q,qp2q, . . . ,qpjqs
Solve Pzpjq “ Qjs

pjq

xpjq “ xp0q ` zpjq

In terms of numerics, this means that, in order to approximate P´1, we have to
employ a fixed number of a linear iterations per GMRES step; in particular, it is
not possible to employ GMRES (or any other Krylov subspace method) within
GMRES as it is. This question led researches to developing a flexible version
of Krylov subspace methods, that allows the user to modify the preconditioner
P at each iteration. As a consequence, one can employ any Krylov subspace
method within a flexible Krylov subspace method. In the following, we will
employ the flexible version of GMRES (FGMRES) derived by Saad in [155]. The
algorithm is given in Algorithm 14. By comparing Algorithm 14 with Algorithm
13, one can see that the computational cost per iteration is essentially the same,
with the additional storage of the vectors zpiq, i “ 1, 2, . . . , j. However, when
breakdown occurs in FGMRES (i.e., hj`1,j “ 0) we are not assured anymore
that the approximate solution xpjq is exact; in fact, for the latter to be true, one
needs the additional assumption of the matrix Hj being non-singular, see [155,
Proposition 2.2]. A restarted version of this algorithm is also possible, and indeed
will be used in the following chapters.

For more discussion about convergence of GMRES, see, for instance, [68,
Section 3.2]; for an approximation of the upper bound in (2.24), see, for instance,
[155, Section 6.11.4]. For a more comprehensive analysis on flexible, inner–outer
Krylov subspace methods, we highlight the text [165].

70

Algorithm 14 Flexible GMRES Method to solve Ax “ b, with variable right
preconditioner Ppjq

Choose xp0q

Compute rp0q “ b´Axp0q

Set β0 “ }r
p0q}2

Set qp1q “ rp0q

β0

for j “ 1 until convergence, do
Solve Ppjqzpjq “ qpjq

w
pj`1q
1 “ Azpjq

for i “ 1, 2, . . . , j do
hi,j “ pw

pj`1q
i qJqpiq

w
pj`1q
i`1 “ w

pj`1q
i ´ hi,jq

piq

end for
hj`1,j “ }w

pj`1q
j`1 }2

qpj`1q “ wpj`1qj`1

hj`1,j

Find spjq that minimizes βj “ }β0e1 ´ pHjs
pjq}2

Test for convergence
end for
Zj “ rz

p1q, zp2q, . . . , zpjqs
xpjq “ xp0q ` Zjs

pjq

2.10 Preconditioning 2-by-2 Block Matrices

So far we have emphasized the importance of finding a suitable approximation P
of a matrix A in order to obtain fast convergence of our iterative method. The
approximation P has to be found in such a way that it is spectrally equivalent to A
(meaning that the eigenvalues of the matrix P´1A are clustered in a region of the
complex plane), with the further property that P has to be cheaper to invert than
A. If P has those properties, we say that P is a good preconditioner for A. In this
thesis, we study preconditioners for linear systems arising from PDE-constrained
optimization problems; in this setting, the matrix A will present a structure that
will be exploited in order to find an optimal preconditioner, namely, it will be of
saddle-point type. This section will be thus devoted to preconditioners for general
non-symmetric 2-by-2 block matrices, then specifying the preconditioners for the
class of saddle-point matrices.

Given an invertible system of the form

A “
„

Φ Ψ1

Ψ2 ´Θ

(2.25)

with Φ invertible, a good candidate for a preconditioner is the block triangular
matrix:

P1 “

„

Φ 0
Ψ2 ´S

, (2.26)

with S “ Θ`Ψ2Φ´1Ψ1 the negative Schur complement of A. Indeed, if S is also

71

invertible, it can be proved that λpP´1
1 Aq “ t1u, see [88, 117]. The latter can be

easily derived, as we have

P´1
1 “

„

Φ´1 0
S´1Ψ2Φ´1 ´S´1

,

which implies that

P´1
1 A “

„

I Φ´1Ψ1

0 I

,

where I is the identity matrix of appropriate dimension. As clearly P´1
1 A is a

block-triangular matrix, we can imply that the eigenvalues of P´1
1 A are given by

the eigenvalues of the blocks on its diagonal, that is, we have λpP´1
1 Aq “ t1u.

Note that the preconditioned matrix P´1
1 A is not diagonalizable.

Although in this thesis we will not employ it, it is worth mentioning that the
authors in [88, 117] also analysed a preconditioner similar to P1, that is

P2 “

„

Φ 0
Ψ2 S

; (2.27)

note that the only difference is the sign in front of S. With this choice of the
preconditioner, it can be proved that λpP´1

2 Aq “ t˘1u, see [88, 117]. The latter
can be derived by employing a similar argument as above. Note that, since both
the preconditioners P1 and P2 are non-symmetric, the matrices P´1

1 A and P´1
2 A

will be non-symmetric as well.
From the spectral analysis presented above, it is clear that P1 and P2 given in

(2.26) and (2.27) respectively could work very well as a preconditioner for general
non-symmetric matrices; the question we want to address now is if we can adapt
this analysis to the case the matrix A is of saddle-point type (note that in this
case we have Ψ :“ Ψ2 “ ΨJ

1). Suppose thus that the system we have to solve is
given as in (2.3), with Θ ľ 0; suppose also that Φ ą 0. Consider the following
block diagonal matrix:

P3 “

„

Φ 0
0 S

(2.28)

as a preconditioner, with S “ Θ ` ΨΦ´1ΨJ; then, supposing also that S ą 0, it
is possible to prove that (see [9, 164] and [130, Theorem 4])

λpP´1
3 Aq P

„

´1,
1´

?
5

2

Y

„

1,
1`

?
5

2

. (2.29)

We note that if Θ “ 0 the result above simplifies to λpP´1
3 Aq “

!

1, 1˘
?

5
2

)

, see

[97, 117]. Finally, due to Φ and S being symmetric positive definite we derive
P3 ą 0, which in turn implies that the matrix P´1

3 A is similar to a symmetric

matrix, namely, it is similar to P´1{2
3 AP´1{2

3 .
The previous analysis tells us that, if we want to solve a general non-symmetric

system A, ideal preconditioners are given by P1 and P2 defined as in (2.26) and
(2.27) respectively; if we also suppose that A is of saddle-point type, with Φ ą 0,

72

another ideal preconditioner is given by P3 defined in (2.28). In fact, as described
in [88], supposing that A is invertible, when employing the preconditioners P1 or
P2 an appropriate iterative method should converge in at most two iterations (in
exact arithmetic), as the preconditioned matrix P´1

1 A has only one as an eigen-
value, but it is not diagonalizable (as we showed above), while the preconditioned
matrix P´1

2 A has two distinct eigenvalues. On the other hand, supposing that A
is invertible and Θ “ 0, when employing the preconditioner P3 an appropriate it-
erative method should converge in at most three iterations (in exact arithmetic);
besides, if Θ ľ 0, from (2.29) we have that the eigenvalues are clustered in two
(small) intervals, independently of any parameter involved in the system. Clearly,
as the optimal preconditioner we are looking for has also the property of being
cheap to invert, we do not want to apply the inverse of Pi, i “ 1, 2, 3, as de-
fined in (2.26), (2.27), and (2.28) respectively, as the computational cost would
be comparable to that of applying the inverse of A. In particular, applying S´1

would be problematic, as even when Φ and Θ are sparse S is generally dense. For
this reason, optimal preconditioners are given by suitable approximations pPi of
Pi, for i “ 1, 2, 3, or, more precisely, a cheap application of the effect of pP´1

i on
a generic vector. Specifically, the optimal preconditioners that will be studied in
this thesis will have the form

pP1 “

«

pΦ 0

Ψ2 ´pS

ff

, pP3 “

«

pΦ 0

0 pS

ff

, (2.30)

where pΦ and pS are “easy-to-invert” approximations of the matrices Φ and S
respectively. As the approximation pS is usually more difficult to find, we will
introduce in the following section a technique that will result in optimal approx-
imations of the Schur complement for a number of problems considered in this
thesis.

For more information on the numerical solution of saddle-point systems, see
the survey [17]; for more insight on preconditioning, see the surveys [16], [136],
and [180].

2.11 Matching Strategy

Suppose we want to solve a system given as in (2.3). In the previous section we
presented ideal preconditioners to adopt in order to obtain fast convergence of
our iterative method. The common feature of each preconditioner is the applica-
tion of the inverse operators of the the p1, 1q-block Φ and the Schur complement
S; however, in order to obtain optimal preconditioners, we will rather consider
easy-to-invert approximations pΦ and pS of Φ and S respectively. As noted above,
the more difficult to find is an approximation pS of S that will result in robust con-
vergence with respect to every parameter of the problem; in fact, in the problem
we will consider in this thesis the Schur complement S will depend not only on
the discretization parameter(s) of space (and time) variables h (and τ), but also
on a regularization parameter β within the problem set-up (and, for more com-
plex problems, also on other parameters). Therefore, in this section we introduce

73

the matching strategy for deriving our approximation pS. This technique was first
derived in [140], and has been proved to be powerful in deriving approximations
of the Schur complement of linear systems arising from optimal control of PDEs.

Let be A given as in (2.3). In the following analysis, we will suppose that

Φ ą 0 and Θ ľ 0. From this assumption, we can write that Φ
1
2 and Θ

1
2 exist;

note that Φ
1
2 ą 0 is unique and Θ

1
2 ľ 0. Consider now the Schur complement

S “ Θ ` ΨΦ´1ΨJ, and suppose that S ą 0. From the previous expression and
from our assumptions on Φ and Θ, the Schur complement S is the sum of two
symmetric positive semi-definite matrices, namely, ΨΦ´1ΨJ and Θ. As we do not
want to construct the matrix S and the approximation we are looking for has to
be easy to invert, we will be considering the following matrix:

pS “ pΨ` pΛqΦ´1
pΨ` pΛqJ « S (2.31)

as an approximation, with the matrix pΛ such that pS ‘captures’ both terms of S.
As the term ΨΦ´1ΨJ already appears in the definition (2.31) of pS, we wish that

the matrix pΛ is such that
pΛΦ´1

pΛJ “ Θ. (2.32)

Noting that
Φ´1 “ Φ´

1
2 Φ´

1
2 “ Φ´

1
2 pΦ´

1
2 qJ,

Θ “ Θ
1
2 Θ

1
2 “ Θ

1
2 pΘ

1
2 qJ,

we can rewrite (2.32) as

pΛΦ´
1
2 ppΛΦ´

1
2 q
J
“ Θ

1
2 pΘ

1
2 q
J;

finally, we want that the matrix pΛ is such that

pΛΦ´
1
2 “ Θ

1
2 ,

that is
pΛ “ Θ

1
2 Φ

1
2 . (2.33)

We emphasize here that the choice of introducing pΛJ in the definition (2.31) of pS

has been made only to keep the approximation symmetric; note also that pS ą 0
(if Ψ` pΛ has full rank, which will be the case for the settings in which we apply
this approximation).

Now that we have an explicit expression for our approximation, we would like
to understand how potent it is, that is, we want to study the spectrum of the
matrix pS´1S. Since the matrices S and pS are both symmetric positive definite,
we may use the (generalized) Rayleigh quotient in order to find upper and lower

bounds for the eigenvalues of the matrix pS´1S, as done in [141], for instance. Let

be λ an eigenvalue of pS´1S with x the corresponding eigenvector; then

pS´1Sx “ λx ñ Sx “ λpSx ñ λ “
xJSx

xJ pSx
“: R.

Thus upper and lower bounds for R will be also upper and lower bounds for the

74

eigenvalues of pS´1S respectively. Before starting our analysis, we rewrite the
generalized Rayleigh quotient R as

R :“
xJSx

xJ pSx
“

aJa` bJb

aJa` bJb` aJb` bJa
,

where a “ pΨΦ´
1
2 qJx and b “ pΘ

1
2 qJx. Since S ą 0 and pS ą 0, we have

R ě
1

2
ô aJa` bJb ě

1

2

`

aJa` bJb` aJb` bJa
˘

ô
1

2

`

aJa` bJb´ aJb´ bJa
˘

ě 0

ô
1

2
pa´ bqJ pa´ bq ě 0,

which is clearly satisfied since pa´ bqJ pa´ bq “ }a´ b}2.
We have then proved the following theorem:

Theorem 1. Let A be defined as in (2.3). Let be S the Schur complement of

A, and let be pS be defined as in (2.31), with pΛ defined in (2.32). If S and pS
are symmetric positive definite, then 1

2
is a lower bound for the eigenvalues of the

matrix pS´1S.

From Theorem 1, we have that the minimum eigenvalue of the matrix pS´1S is
bounded away from zero. However, this is usually not enough to ensure effective
convergence of an iterative solver, as the convergence process depends on the
whole spectrum of the matrix, and if we have that the upper bound on the
eigenvalues is, for instance, of order Op104q the process may struggle to converge
in few iterations. We are therefore interested in finding also an upper bound
for the spectrum of the matrix pS´1S. In order to do so, we need a further
assumption on the matrix pΛ; specifically, we have to assume that the mixed term
pΛΦ´1ΨJ ` ΨΦ´1

pΛJ is positive semi-definite. Under this assumption, we can
derive

aJb` bJa ě 0 ô aJa` bJb` aJb` bJa ě aJa` bJb

ô R ď 1.

Note that, if pΛΦ´1ΨJ ` ΨΦ´1
pΛJ is not positive semi-definite, the upper bound

will be greater than 1; in particular, the more the matrix pΛΦ´1ΨJ `ΨΦ´1
pΛJ is

indefinite, the greater the upper bound will be. From here, the spectral properties
of pΛΦ´1ΨJ `ΨΦ´1

pΛJ represent a way to measure the approximation adopted.
We have then proved the following theorem:

Theorem 2. Let A be defined as in (2.3). Let be S the Schur complement of

A, and let be pS be defined as in (2.31), with pΛ defined in (2.32). If S and pS

are symmetric positive definite, and the matrix pΛΦ´1ΨJ ` ΨΦ´1
pΛJ is positive

semi-definite, then 1 is an upper bound for the eigenvalues of the matrix pS´1S.

Under the assumption that the mixed term pΛΦ´1ΨJ ` ΨΦ´1
pΛJ is positive

semi-definite, we have that the matrix pS defined in (2.31), with pΛ defined in

75

(2.32), is an optimal approximation of the Schur complement S. In fact, the

spectrum of the matrix pS´1S is clustered in the interval r1
2
, 1s, independently

of any parameter involved in the problem under examination. For this reason,
we will adopt the matching strategy for devising optimal preconditioners for the
problem considered in this thesis. As the p1, 1q- and the p2, 2q-blocks of the system
under examination will satisfy the assumptions in Theorem 1 and Theorem 2, in
the following working of this thesis one key concern will be proving that the mixed
term pΛΦ´1ΨJ `ΨΦ´1

pΛJ is positive semi-definite.
We would like to mention that the approximation pS defined in (2.31) can be

generalized also to non-symmetric matrices. Suppose in fact that we want to solve
a system with A defined as in (2.25). Then, supposing that Φ ą 0 and Θ ľ 0, we
would like to use as an approximation of the Schur complement S “ Θ`Ψ2Φ´1Ψ1

the matrix
pS “ pΨ1 ` pΛ1qΦ

´1
pΨ2 ` pΛ2q,

with pΛ1 and pΛ2 such that
pΛ1Φ´1

pΛ2 “ Θ.

Although this type of approximation gives more freedom as to the choice of the
matrices pΛ1 and pΛ2, finding bounds on the eigenvalue becomes a more complex
task as, due to S and pS being non-symmetric, the eigenvalues of the matrix pS´1S
will in general be complex.

In order to show how the proposed approximation works within a precondi-
tioner of the form (2.26) or of the form (2.28), in the following section we will
show some numerical results for the Poisson control problem.

2.11.1 Preconditioning for the Poisson Control Problem

Let us consider the distributed Poisson control problem (1.5)–(1.6). By em-
ploying finite elements with the same finite element basis used for the state v
and the control u, after either applying an optimize-then-discretize strategy or a
discretize-then-optimize approach, one has to solve the saddle-point system given
in (1.13).

As discussed above, optimal preconditioners are the block triangular and block
diagonal matrices P1 and P3 defined in (2.26) and (2.28) respectively. In the case
of solving the discrete optimality conditions (1.13) of the Poisson control problem,
they read as follows:

P1 “

„

M 0
K ´SPC

, P3 “

„

M 0
0 SPC

,

with SPC “ KM´1K ` 1
β
M the Schur complement of the system under exam-

ination, with M and K the mass and the stiffness matrix in the chosen finite
element basis. Note that SPC is symmetric positive definite. Again, rather than
using the matrices above as a preconditioner, we are looking for approximations
of the relevant blocks M and SPC. We first find an approximation of the p1, 1q-
block M , then employ the matching strategy to devise an approximation of SPC,
as done in [140].

76

As discussed in Section 2.4, a cheap and effective way of approximately apply-
ing the inverse of a mass matrix to a generic vector is employing the Chebyshev
semi-iterative method. More specifically, our approximation of M is given by Mc,
with Mc a fixed number of steps of Chebyshev semi-iteration applied to M .

Let us now focus on finding an approximation pSPC of SPC. From the conve-
nient structure of SPC, we employ the matching strategy described above in order
to do so. We can easily derive that the approximation we seek is given by

pSPC “ pK ` pΛPCqM
´1
pK ` pΛPCq,

where, by employing (2.33) and recalling that M ą 0, the matrix pΛPC is given by

pΛPC “
1
?
β
M

1
2M

1
2 “

1
?
β
M.

Note that in the expression above we exploited the symmetry of K and M . Note
also that pSPC is symmetric positive definite.

In order to understand how good the approximation pSPC is, we need to study
the spectrum of the preconditioned Schur complement pS´1

PCSPC. We will employ
Theorem 1 and Theorem 2 to find lower and upper bounds for the spectrum of
pS´1

PCSPC.

Since both SPC and pSPC are symmetric positive definite, from Theorem 1 we
have that 1

2
is a lower bound for the eigenvalues of pS´1

PCSPC. In order to find an
upper bound, we need to consider the mixed term 1?

β
K ` 1?

β
K “ 2?

β
K, which

is clearly symmetric positive semi-definite in general (e.g., Neumann boundary
conditions). Therefore, from Theorem 2 we infer that 1 is an upper bound for

the eigenvalues of the matrix pS´1
PCSPC. Finally, we have that λppS´1

PCSPCq P r
1
2
, 1s.

We can now write the approximation of the preconditioners P1 and P3 as

pP1 “

„

Mc 0

K ´pSPC

, pP3 “

„

Mc 0

0 pSPC

,

with Mc and pSPC defined as above. The preconditioners pP1 and pP3 are optimal,
as the approximation of the relevant blocks is independent of any parameter
involved in the problem, including the mesh-size. Therefore, we expect a suitable
preconditioned iterative method to converge in a (roughly) constant number of
iterations. However, we would like to recall that for GMRES the convergence
is not determined only by a clustered eigenvalues distribution, as we discussed
above. In order to show the robustness of the solver, we will consider a simple
numerical example.

Let consider the Poisson control problem defined in (1.5)–(1.6) with d “ 2,
Ω “ p´1, 1q2, f “ 0. Suppose the boundary condition is given by

vpx1, x2q “ 1, px1, x2q P BΩ,

77

and the desired state is given by

vdpx1, x2q “ cos
´πx1

2

¯

cos
´πx2

2

¯

` 1.

We implement a finite element method, using Q1 basis functions for state, control,
and adjoint variables. In all our tests, we consider a (spatial) uniform grid of
mesh-size h “ 21´l, with l the level of grid refinement. When approximating
the p1, 1q-block, we apply 20 steps of Chebyshev semi-iteration to M . For the

approximation of the Schur complement, we approximate K ` pΛPC with 2 V-
cycles of the HSL MI20 algebraic multigrid solver [22]. We employ MATLAB’s

preconditioned GMRES in conjuction with the preconditioner pP1 defined above,
and also employ preconditioned MINRES with the preconditioner pP3 defined
above. We run the solvers until a tolerance of 10´6 on the relative residual is
reached. The iteration count for all tests presented starts from 0. In Table 2.1 we
report the results for preconditioned GMRES, while in Table 2.2 we report the
results for preconditioned MINRES. All tests are run on MATLAB R2018b, using
a 1.70GHz Intel quad-core i5 processor and 8 GB RAM on an Ubuntu 18.04.1
LTS operating system.

Table 2.1: Poisson control problem: GMRES iterations required, with precondi-
tioner pP1, for a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4

l it CPU it CPU it CPU it CPU it CPU

3 5 0.036 6 0.033 7 0.032 7 0.045 6 0.041
4 5 0.033 6 0.042 7 0.043 7 0.045 7 0.041
5 5 0.062 6 0.065 6 0.080 7 0.070 7 0.069
6 4 0.17 5 0.17 6 0.19 6 0.19 7 0.21
7 4 1.00 5 0.78 5 0.68 6 0.86 6 0.91
8 4 2.06 4 2.41 5 2.73 5 2.69 6 1.95

Table 2.2: Poisson control problem: MINRES iterations required, with precondi-
tioner pP3, for a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4

l it CPU it CPU it CPU it CPU it CPU

3 8 0.015 10 0.014 13 0.020 15 0.021 16 0.035
4 10 0.023 12 0.027 14 0.027 18 0.033 19 0.034
5 10 0.041 12 0.048 15 0.060 18 0.074 21 0.083
6 10 0.15 12 0.17 15 0.21 18 0.26 21 0.29
7 10 0.63 12 0.77 15 0.90 18 1.08 21 1.24
8 10 2.78 12 3.27 15 4.09 18 4.78 21 5.57

78

As shown in Tables 2.1–2.2, the preconditioners derived in this section behave
robustly with respect to all the parameters involved in the problems. In fact, the
number of iterations required for both solvers is parameter-robust, with precondi-
tioned GMRES converging in at most 7 iterations, while preconditioned MINRES
converges in at most 21 iterations. Further, the CPU times scale linearly with
the problem size.

As we will see in the following chapters, the preconditioning techniques de-
scribed above will be very useful for deriving robust solvers for the more complex
PDE-constrained optimization problems considered in this work.

79

Chapter 3

Preconditioning the Heat Control
Problem with Crank–Nicolson
Discretization in Time

“When the student is ready, the teacher will appear.”
– Proverb

Starting from this chapter, we will be deriving and describing the main con-
tributions of this thesis, namely parameter-robust preconditioning techniques for
distributed optimal control problems with time-dependent PDEs as constraints
(although in Chapter 5 and Chapter 6 we will also be dealing with stationary
problems). We begin with the easiest in this class of problems, that is, the op-
timal control of the heat equation, or simply heat control. The content of this
chapter is based on some of the work in [100].

Due to the complex structure and high dimensionality of time-dependent
PDE-constrained optimization problems when an accurate discrete solution is
sought, preconditioned iterative solvers have been employed for the ‘all-at-once’
resolution of such formulations, see for example [152, 162] for early work in this
direction. It is worth noting that the all-at-once approach suffers of memory
limitations, as one has to store global-in-time solutions. In particular, for very
fine discretizations it may be prohibitive to even store the right-hand side of the
linear system to be solved. For this reason, an alternative approach may be em-
ploying a gradient-type method, that solves simpler problems until an accurate
enough solution is found, see for instance [67, 78]. An alternative approach may
be employing a low-rank approximation of the problem to solve, see for example
[40, 166, 167, 168]. For an overview of other possible approaches, we refer the
reader to [36, 86].

When preconditioners are sought for certain time-dependent problems, it is of-
ten preferable to apply a (first-order accurate) backward Euler method in time, as
this not only avoids restrictions on the time step τ , but also leads to particularly
convenient structures within the matrix and facilitates effective preconditioning;
see [139] for a mesh- and β-robust preconditioner for the heat control problem,
and [40, 138, 167, 169, 186] for applications to different problems. While the
natural choice τ “ Oph2q would be required to keep the approximation order

80

proportional to h2, with h the mesh-size in space, this would lead to problems of
huge magnitude. The question we wish to investigate here is whether applying
a higher-order Crank–Nicolson method in time is beneficial, due to the reduced
number of time steps (which in turn leads to a reduced dimension of the linear
system) required to obtain a similar discretization error. The challenge here is
that the much more complex structure of the resulting linear system makes pre-
conditioning a highly non-trivial task, so a more sophisticated numerical method
and preconditioning strategy need to be devised to achieve fast and robust con-
vergence of the iterative solver.

This chapter is structured as follows. In Section 3.1 we introduce the prob-
lems we consider, arising from the heat control formulation. In Section 3.2 we
describe the linear systems obtained upon discretization of the first-order opti-
mality conditions, and in particular demonstrate a suitable transformation which
allows symmetrization of the linear system obtained from the Crank–Nicolson
method. This enables us to apply a symmetric iterative solver such as MINRES
[128], which is highly desirable from the perspective of proving convergence of
the iterative method. In Section 3.3 we derive our proposed new preconditioner,
using saddle-point theory along with suitable approximations of the p1, 1q-block
and Schur complement, and provide eigenvalue results for the preconditioned lin-
ear system. In Section 3.4 we benchmark our method against the widely-used
backward Euler method, coupled with the preconditioner derived in [139], and
demonstrate our new preconditioner’s efficiency and robustness with respect to
all parameters involved in the heat control problem.

3.1 Problem Formulation

As above, in this chapter we consider the fast and robust numerical solution
of time-dependent PDE-constrained optimization problems. In particular, we
examine distributed heat control problems of the form:

min
v,u

Jpv, uq “
1

2

ż tf

0

ż

Ω

|vpx, tq ´ vdpx, tq|
2 dΩdt`

β

2

ż tf

0

ż

Ω

|upx, tq|2 dΩdt (3.1)

subject to
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Bv

Bt
´∇2v “ u` fpx, tq in Ωˆ p0, tf q,

vpx, tq “ gDpx, tq on BΩD ˆ p0, tf q,

Bv

B~n
px, tq “ gNpx, tq on BΩN ˆ p0, tf q,

vpx, 0q “ v0pxq in Ω,

(3.2)

where the variables v, vd, and u are the state, desired state, and control variables,
respectively, and β ą 0 is a regularization parameter. The problem is solved
on a spatial domain Ω Ă Rd, d P t1, 2, 3u, up to a final time tf ą 0, that is
px, tq P Ω ˆ p0, tf q. In addition, the boundary is such that BΩ “ BΩD Y BΩN ,

BΩD X BΩN “ H. Here
Bv

B~n
px, tq represents the (outward) normal derivative of v

81

on BΩN . The functions f, gD, gN , and v0 are known.
This problem provides a valuable benchmark of our method against widely-

used preconditioned iterative solution with a backward Euler method in time
[139]. For simplicity the working of this chapter considers Dirichlet boundary
conditions, that is BΩD “ BΩ, but we note that our method can be readily gener-
alized to heat control problems with Neumann and mixed boundary conditions.

3.2 First-Order Optimality Conditions and Dis-

cretizations in Time

We now describe the strategy used for obtaining an approximate solution of (3.1)–
(3.2). We apply an all-at-once approach coupled with the optimize-then-discretize
scheme, in which the continuous Lagrangian is used to arrive at first-order op-
timality conditions, which are then discretized. Introducing the adjoint variable
(or Lagrange multiplier) ζ, we consider the Lagrangian associated to (3.1)–(3.2)
as in [139]. Then, by deriving the Karush–Kuhn–Tucker (KKT) conditions, the
solution of (3.1)–(3.2) satisfies:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bv

Bt
´∇2v “

1

β
ζ ` f in Ωˆ p0, tf q

vpx, tq “ gpx, tq on BΩˆ p0, tf q

vpx, 0q “ v0pxq in Ω

,

/

/

/

/

.

/

/

/

/

-

state

equation

´
Bζ

Bt
´∇2ζ “ vd ´ v in Ωˆ p0, tf q

ζpx, tq “ 0 on BΩˆ p0, tf q

ζpx, tf q “ 0 in Ω

,

/

/

/

.

/

/

/

-

adjoint

equation

(3.3)

where we have substituted the gradient equation βu´ ζ “ 0 into the state equa-
tion.

Before moving on with our exposition, we would like to devote some attention
to the derivation of the KKT conditions above. Specifically, we would like to
show how the initial time condition on the state variable v becomes a final time
condition on the adjoint variable ζ. The state and the gradient equations can be
derived similarly as in Section 1.3.1.

As in Section 1.3.1, we introduce an adjoint variable for each constraint in
(3.2) and consider the Lagrangian associated to (3.1)–(3.2)

Lpv, u, ζΩ, ζBΩ, ζ0q :“
1

2

ż tf

0

}vpx, tq ´ vdpx, tq}
2
L2pΩqdt`

β

2

ż tf

0

}upx, tq}2L2pΩqdt

`

ż tf

0

ˆ

Bv

Bt
´∇2v ´ u´ f, ζΩ

˙

dt`

ż tf

0

ż

BΩ

pv ´ gqζBΩdsdt

`

ż

Ω

pvpx, 0q ´ v0qζ0dΩ,

82

where p¨, ¨q is the L2-inner product in Ω. As we are interested in deriving the
adjoint equation, we will consider only the Fréchet derivative of L with respect
to v. In particular, we consider a generic direction w in an appropriate Hilbert
space and then write the Fréchet derivative of the term

ż tf

0

ˆ

Bpv ` wq

Bt
, ζΩ

˙

dt.

Integrating
Bw

Bt
by parts with respect to t, one can write

ż tf

0

ˆ

Bpv ` wq

Bt
, ζΩ

˙

dt “

ż tf

0

ˆ

Bv

Bt
, ζΩ

˙

dt´

ż tf

0

ˆ

w,
BζΩ

Bt

˙

dt

` pwpx, tf q, ζΩpx, tf qq ´ pwpx, 0q, ζΩpx, 0qq.

Then, following the strategy employed in Section 1.3.1, one can easily derive
that the Fréchet derviative of L with respect to v is given by

dvLpv, u, ζΩ, ζBΩ, ζ0q “

ż tf

0

ˆ

v ´ vd ´
BζΩ

Bt
´∇2ζΩ, w

˙

dt`

ż tf

0

ż

BΩ

ζBΩw dsdt

´

ż tf

0

ż

BΩ

Bw

B~n
ζΩ dsdt`

ż tf

0

ż

BΩ

BζΩ

B~n
w dsdt

` pζΩpx, tf q, wpx, tf qq ´ pζΩpx, 0q, wpx, 0qq ` pζ0, wq.

Setting the above expression equal to zero and choosing w appropriately as in
Section 1.3.1, one can easily obtain the adjoint equation as defined in (3.3). In
particular, the L2-inner product pζΩpx, tf q, wpx, tf qq has to be zero for all direc-
tions w, implying that ζΩpx, tf q “ 0, that is, we have derived the final condition
on the adjoint ζ in (3.3). Finally, as done for the Poisson control problem in
Section 1.3.1, one can derive that, on the boundary BΩ, the normal derivative of
the adjoint variable ζΩ is equal to ´ζBΩ, and that its initial condition ζΩpx, 0q is
equal to ζ0. For this reason, we may only consider one adjoint variable ζ for the
whole problem.

Problem (3.3) is a coupled system of (time-dependent) PDEs, consisting of a
forward PDE combined with a backward problem for the adjoint. Due to this
structure, when trying to find numerical approximation of the solution, an A–
stable method is usually applied for discretizing the time derivative, since this
will allow the user to choose any time step. In particular, the time step may
be independent of the spatial mesh-size. Further, in order to obtain a consistent
system of linear equations, both functions v and ζ are approximated at the same
time points.

We now introduce methods for approximating the time derivative when solving
(3.3), and describe the resulting linear systems, starting with the widely-used
backward Euler method in Section 3.2.1, followed by the Crank–Nicolson method
in Section 3.2.2. For the remainder of the chapter, we discretize the interval p0, tf q

into nt subintervals of length τ “
tf
nt

, and we use the notation vn « vpx, tnq,
ζn « ζpx, tnq for our approximations for all x P Ω, with tn “ nτ . Further, we will

83

employ the same finite element basis tφiu
nx
i“1 for the state v, the control u, and

the adjoint ζ, with nx P N.

3.2.1 Backward Euler Discretization

Many widely-used preconditioned iterative methods for the solution of time-
dependent PDE-constrained optimization problems of type (3.1)–(3.2) involve
a backward Euler discretization for the time variable [40, 138, 139, 167, 169, 186].
Applying this scheme gives the following system of equations:

$

’

’

’

’

’

&

’

’

’

’

’

%

τMvn ` L
BEζn ´Mζn`1 “ τMvnd , n “ 0, 1, ..., nt ´ 1,

ζnt “ 0,

v0 “ v
0,

´Mvn ` L
BEvn`1 ´

τ

β
Mζn`1 “ τfn`1, n “ 0, 1, ..., nt ´ 1,

where LBE “ τK `M , v0 is the discretization of the initial condition for v, and

fn “ tfni u
nx
i“1, fni “

ż

Ω

fpx, tnqφi dΩ . (3.4)

Here, K and M are the stiffness and mass matrix in the chosen finite element
basis, respectively. With this notation, we obtain the following (symmetric) linear
system:

«

ΦBE pΨBEqJ

ΨBE ´ΘBE

ff«

v̄

ζ̄

ff

“

«

bBE
1

bBE
2

ff

, (3.5)

where

ΦBE “

»

—

—

—

–

τM
. . .

τM
0

fi

ffi

ffi

ffi

fl

, ΨBE “

»

—

—

—

–

LBE

´M LBE

.

´M LBE

fi

ffi

ffi

ffi

fl

,

ΘBE “

»

—

—

—

–

0
τ
β
M

. . .
τ
β
M

fi

ffi

ffi

ffi

fl

,
v̄ “

“

pv0q
J pv1q

J . . . pvntq
J
‰J
,

ζ̄ “
“

pζ0q
J pζ1q

J . . . pζntq
J
‰J
,

(3.6)

and the right-hand side vectors bBE
1 and bBE

2 take into account the initial and
final-time conditions on v and ζ, as well as information from the desired state vd
and the force function f . Note that we have symmetrized the system by replacing
the discretized initial and final-time conditions with

pLBE
q
Jζnt “ 0, LBEv0 “ LBEv0.

The structure of the previous system is very convenient from the point of view of
numerical linear algebra because it facilitates effective preconditioning.

84

3.2.2 Crank–Nicolson Discretization and Symmetrization
of the System

Despite the convenient structure of the linear system arising from the backward
Euler method, the essential drawback is that the method is only first-order ac-
curate in time. For instance, if a second-order accurate method is used for the
spatial discretization, the numerical error is of order Opτq ` Oph2q, given suffi-
cient smoothness properties of the solution. Therefore, it is reasonable to choose
τ “ Oph2q. However, this leads to a large number of time-steps and hence ma-
trix blocks within the discretized problem, which will result in a linear system of
huge dimension, and hence an extremely high CPU time required for its solution.
In recent years, a significant effort has been invested in improving the accu-
racy of the discretized solution of time dependent PDE-constrained optimization
problems involving the backward Euler method: see [73] for an application of
deferred correction to time-dependent PDE-constrained optimization problems,
[40, 166, 167, 168] for low-rank tensor approaches to speed up the convergence
of backward Euler, [84] for a multigrid technique applied to optimal flow control
problems, and [187] for a preconditioned iterative solver for problem of the type
(3.1)–(3.2) that uses a reduction in dimensionality of the arising system.

We also highlight recent works in which higher-order time discretizations are
considered. For example, in [67] the authors derive a parallel-in-time algorithm
coupled with a gradient-based method, using a Lobatto IIIA scheme in the time
variable, and in [40] the authors note that their low-rank method can also be
adapted to the Crank–Nicolson approach. We also point out [102], in which the
authors employ a leapfrog finite difference scheme in time for solving parabolic
optimal control problems, prove that second-order convergence is achieved and
that the method is unconditionally stable, then derive a parameter-robust multi-
grid solver for the discretized system. Other valuable approaches for addressing
time-dependent PDE-constrained optimization problems include multiple shoot-
ing methods [78], parareal schemes [105, 109], and ideas from instantaneous con-
trol [34, 83]. However, to the best of our knowledge, the crucial question of
preconditioning PDE-constrained optimization methods by exploiting the precise
matrix structures arising from higher-order discretization schemes in time has not
been resolved, perhaps due to the increased complexity in the structure of the
linear systems, an issue pointed out in [84] for instance. In this work, we aim to
reduce the dimensionality of the system which needs to be solved in order to ob-
tain a fixed accuracy for certain time-dependent PDE-constrained optimization
problems, by devising a fast and effective preconditioner for the linear system
arising from a Crank–Nicolson discretization, and hence reducing the number of
time-steps which need to be taken.

Remark 1. We note here that both backward Euler and Crank–Nicolson are un-
conditionally A–stable, that is, no restriction on τ and h is required. There are
often other stability properties to consider when selecting an appropriate time-
stepping scheme: for instance Crank–Nicolson, as opposed to backward Euler, is
not L–stable, which is an important consideration when applying long-range in-
tegrations. For instance, in fluid dynamics one may be interested in integrating

85

the problem until the physics reaches a steady state. In this work, we do not ad-
dress specific questions about stability properties of the two methods, but rather
whether it is possible, in principle, to take advantage of a higher-order discretiza-
tion scheme in the time variable for increasing the rate of convergence of solvers
for the optimal control of time-dependent PDEs. It is likely that our proposed
method could be extended to time-stepping methods that achieve even faster con-
vergence than Crank–Nicolson, including L–stable methods. We highlight the ref-
erence [7], which considers the question of preconditioning linear systems arising
from L–stable methods for forward evolutionary PDEs.

Remark 2. We also note that, in order for Crank–Nicolson to achieve a provably
second-order convergence rate, we require the state v and the adjoint variable ζ
in (3.3) to have sufficient smoothness. Therefore, in the following discussion, we
allow the assumptions of regularity and the results in [4, Sec. 3] to hold for the
problem considered.

Considering again (3.3), we now employ the Crank–Nicolson method for dis-
cretizing the time derivative. Denoting

L` “
τ

2
K `M, L´ “

τ

2
K ´M, M̄ “

τ

2
M, M̄β “

τ

2β
M,

we have that the numerical solution of (3.3) satisfies

#

M̄ pvn ` vn`1q ` L
`ζn ` L

´ζn`1 “ M̄
`

vnd ` v
n`1
d

˘

,

L´vn ` L
`vn`1 ´ M̄β pζn ` ζn`1q “ τ

2
pfn ` fn`1q ,

for n “ 0, 1, ..., nt´1, with Mζnt “ 0 and Mv0 “Mv0 an appropriate discretiza-
tion of the final and initial conditions on ζ and v, and fn defined as in (3.4). In
matrix form, we write

«

Ā11 Ā12

Ā21 Ā22

ff«

v̄

ζ̄

ff

“

«

b̄1

b̄2

ff

, (3.7)

where the vectors v̄ and ζ̄ are the numerical solution for the state and adjoint
variables, and as before the right-hand side accounts for the initial and final-time
conditions on v and ζ, as well as the desired state vd and force function f . The
matrices Āil, i, l “ 1, 2, are given by

Ā11 “

»

—

—

—

–

M̄ M̄
.

M̄ M̄
0

fi

ffi

ffi

ffi

fl

, Ā12 “

»

—

—

—

–

L` L´

.

L` L´

M

fi

ffi

ffi

ffi

fl

,

Ā21 “

»

—

—

—

–

M
L´ L`

.

L´ L`

fi

ffi

ffi

ffi

fl

, Ā22 “ ´

»

—

—

—

–

0
M̄β M̄β

.

M̄β M̄β

fi

ffi

ffi

ffi

fl

.

86

We immediately realize that the matrices Ā11 and Ā22 are not symmetric, and
therefore no iterative method for symmetric matrices, such as MINRES, may be
applied to (3.7). We therefore wish to apply a transformation to (3.7) to convert
it to a symmetric system. We partition the matrix in (3.7) as

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

M̄ M̄ L` L´ 0

0 M̄ M̄ L` L´

.

M̄ M̄ L` L´

0 M

M 0

L´ L` ´M̄β ´M̄β 0

L´ L` ´M̄β ´M̄β

.

L´ L` ´M̄β ´M̄β

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then if we eliminate the initial and final-time conditions on v and ζ, we can
rewrite

«

A11 A12

A21 ´A22

ff

loooooooomoooooooon

A

«

v

ζ

ff

“

«

b1

b2

ff

,
(3.8)

with the vectors v, ζ, b1, b2 modified accordingly, and the matrices Ail, i, l “ 1, 2,
given by

A11 “

»

—

—

—

–

M̄
M̄ M̄

.

M̄ M̄

fi

ffi

ffi

ffi

fl

, A12 “

»

—

—

—

–

L` L´

.

L` L´

L`

fi

ffi

ffi

ffi

fl

, (3.9)

A21 “

»

—

—

—

–

L`

L´ L`

.

L´ L`

fi

ffi

ffi

ffi

fl

loooooooooooooomoooooooooooooon

“AJ12

, A22 “

»

—

—

—

–

M̄β M̄β

.

M̄β M̄β

M̄β

fi

ffi

ffi

ffi

fl

. (3.10)

In order to symmetrize the system, we now apply the following linear trans-
formation:

T “

«

T1 0

0 T2

ff

, (3.11)

87

where

T1 “

»

—

—

—

–

Inx Inx
.

Inx Inx
Inx

fi

ffi

ffi

ffi

fl

, T2 “

»

—

—

—

–

Inx
Inx Inx

.

Inx Inx

fi

ffi

ffi

ffi

fl

loooooooooooooomoooooooooooooon

“TJ1

, (3.12)

with T1, T2 P Rpntnxqˆpntnxq, and Inx P Rnxˆnx denoting the identity matrix. Then,

T

«

A11 A12

A21 A22

ff«

v

ζ

ff

“

«

Φ ΨJ

Ψ ´Θ

ff

loooooomoooooon

A

«

v

ζ

ff

“ T

«

b1

b2

ff

, (3.13)

where

Φ “ T1A11 “

»

—

—

—

–

2M̄ M̄

M̄
.
. . . 2M̄ M̄

M̄ M̄

fi

ffi

ffi

ffi

fl

, Θ “ T2A22 “

»

—

—

—

–

M̄β M̄β

M̄β 2M̄β
. . .

. M̄β

M̄β 2M̄β

fi

ffi

ffi

ffi

fl

.

Note that the matrix Φ resembles a P1 Galerkin mass matrix; this is probably a
coincidence. Furthermore, it holds that

Ψ “ T2A21 “

»

—

—

—

—

—

–

L`

τK L`

L´ τK L`

.

L´ τK L`

fi

ffi

ffi

ffi

ffi

ffi

fl

“ pT1A12q
J.

We have thus transformed (3.7) to a symmetric system using matrices T1, T2

which are easy and cheap to apply. Further, we may easily apply their inverses
to a vector using only a sequence of block updates. We also highlight the further
properties that

Φ “ T1ΦDT
J
1 , Θ “ T2ΘDT

J
2 , (3.14)

where

ΦD “

»

—

–

M̄
. . .

M̄

fi

ffi

fl

, ΘD “

»

—

–

M̄β

. . .

M̄β

fi

ffi

fl

, (3.15)

so we may work with the matrices Φ and Θ cheaply, using T1, T2, ΦD, ΘD.
Further, since both ΦD and ΘD are symmetric positive definite, the same holds
for Φ and Θ.

Therefore, in order to find an approximate solution to (3.3), we may now
consider the saddle-point system (3.13), to which we can apply a preconditioned
Krylov subspace method for symmetric indefinite matrices, such as MINRES.

88

Remark 3. It is worth noting that, for a fixed number of intervals nt in time, the
cost of a matrix–vector multiplication with the Crank–Nicolson system is slightly
more costly than that of backward Euler. Note first that the system (3.7) (without
applying the linear transformation T) is more dense than (3.5), as the p1, 1q- and
the p2, 2q-blocks are block bidiagonal. This will imply a marginally higher cost
per iteration of the preconditioned Krylov subspace method for Crank–Nicolson,
which increases if we apply also the linear transformation T . However, as we
will see in the numerical results, the overall cost per iteration remains linear in
the number of unknowns, as the p1, 1q- and p2, 2q-blocks of the Crank–Nicolson
system are sparse and the matrices T1, T2, T´1

1 , T´1
2 are cheap to apply. Clearly,

in our numerical results we do not consider the same number of time-steps for
both backward Euler and Crank–Nicolson methods, as the latter should require far
fewer steps for the same accuracy.

The work outlined here is based on an optimize-then-discretize approach, with
the Crank–Nicolson scheme applied in time for the discretization. This led to a
non-symmetric system to be solved. We would like to mention that the sym-
metrization of such a system outlined above may be avoided if one employs a
discretize-then-optimize approach coupled with a Crank–Nicolson discretization
in time. In fact, in this case the linear system to be solved would be symmetric
from the start, as we show here. Discretizing the cost functional (3.1) with the
trapezoidal rule and the heat equation (3.2) with a Crank–Nicolson method in
time, one has to solve the following QP problem:

min
v,u

Jhpv,uq “
1

2
pv ´ vdq

J
qΦDpv ´ vdq `

β

2
uJqΦDu (3.16)

subject to
A21v “ f ` A11u, (3.17)

with v0 “ v0 an appropriate discretization of the initial condition on v. Here,
vd and f are an appropriate discretization of the desired state vd and the force
function f , respectively, A11 and A21 are defined as in (3.9)–(3.10), and

qΦD “

»

—

—

—

—

—

–

M̄
2M̄

. . .

2M̄
M̄

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Then, the first-order optimality conditions of (3.16)–(3.17) read as follows:

$

’

’

&

’

’

%

qΦDv ` A
J
21ζ “ b̌1,

β qΦDu´ A
J
11ζ “ 0,

A21v ´ A11u “ b̌2,

(3.18)

where the vectors b̌1 and b̌2 account for the boundary and initial conditions on v,
as well as information from the force function f and the desired state vd. Clearly,

89

the system above is symmetric. In addition, it is worth noting that some of the
blocks of the system (3.18) share a similar structure to the ones in (3.8). With
this in mind, one may adapt the preconditioning strategy described below for
deriving a preconditioner for the system (3.18). We will come back to this in the
following.

Before deriving the proposed preconditioner for the system (3.13), we would
like to spend some words on the transformations T1 and T2 defined in (3.12).
These transformations are (up to a factor of 2) averaging values at different
time levels, and arise from the time-stepping scheme that we are employing.
Specifically, we have that

A11 “ qT2 bM, A22 “
1

β
qT1 bM,

where

qT1 “

»

—

—

—

—

–

τ
2

τ
2

.
τ
2

τ
2
τ
2

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

–

τ
. . .

τ
τ

fi

ffi

ffi

ffi

fl

loooooooooomoooooooooon

“:Φτ

»

—

—

—

—

–

1
2

1
2

.
1
2

1
2
1
2

fi

ffi

ffi

ffi

ffi

fl

looooooooooomooooooooooon

“:Tstep

,

qT2“ qTJ1 “

»

—

—

—

—

–

τ
2
τ
2

τ
2

.
τ
2

τ
2

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

–

τ
. . .

τ
τ

fi

ffi

ffi

ffi

fl

»

—

—

—

—

–

1
2
1
2

1
2

.
1
2

1
2

fi

ffi

ffi

ffi

ffi

fl

.

(3.19)

Note that the matrix Φτ contains the time-steps adopted, while the matrix Tstep

contains the weights of the time-stepping scheme employed. In order to sym-
metrize the blocks A11 and A22 we first find transformations that symmetrize the
matrices qT2 and qT1 respectively. Such transformations are clearly given by Tstep

and TJstep, respectively. Then, since the matrix M is symmetric and due to the
properties of the Kronecker product, it is easy to see that the transformations

Tstep b Inx “
1

2
T1, TJstep b Inx “

1

2
T2

symmetrize the blocks A11 and A22, respectively. It is worth noting that due
to the time-symmetry in the Crank–Nicolson scheme we can simplify the sought
linear transformations by multiplying the above expressions by 2. In addition,
from the expressions of qT1 and qT2 in (3.19), we can clearly see that the strategy
described above can be applied also if we employ a non-constant time-steps in the
discretization, as the matrices T1 and T2 defined in (3.12) will still symmetrize
the system (3.8). Finally, since the matrix Tstep contains the weights of the time-
stepping scheme employed, we can see how the strategy described above may be
extended to linear multistep methods other than Crank–Nicolson.

90

3.3 Preconditioning Approach

In this section we describe an optimal preconditioner for the system (3.13), by
making use of saddle-point theory as well as suitable approximations for the
blocks of the matrix A.

As we discussed in Section 2.10, a good candidate for a preconditioner for
an invertible system of the form (3.13), with invertible Φ, is the block diagonal
matrix P3 defined in (2.28). However, the preconditioner P3 defined in (2.28) is
not practical, as we noted in Section 2.10. For this reason, we wish to find a
suitable approximation pP3 of P3, with

pP3 “

«

pΦ 0

0 pS

ff

,

or, more precisely, a cheap application of the effect of pP´1
3 on a generic vector.

In the following section we commence by finding a good approximation of the
inverse of the matrix Φ, then in Section 3.3.2 we describe the approach used for
approximating the Schur complement S.

Since we will benchmark our new preconditioning strategy against the pre-
conditioner derived in [139] for heat control after applying the optimize-then-
discretize approach with backward Euler time-stepping, we briefly describe the
preconditioner for the system (3.5), itself also a saddle-point system. In this case
the p1, 1q-block ΦBE, defined in (3.6), is not invertible; a good preconditioner is
found to be

pPBE
3 “

«

pΦBE 0

0 pSBE

ff

,

where

pΦBE
“

»

—

—

—

–

τM
. . .

τM
ξτM

fi

ffi

ffi

ffi

fl

, pSBE
“ pΨBE

`xMBE
qppΦBE

q
´1
pΨBE

`xMBE
q
J,

(3.20)
with

xMBE
“

τ
?
β

»

—

—

—

—

—

–

0
M

. . .

M
?
ξM

fi

ffi

ffi

ffi

ffi

ffi

fl

. (3.21)

Here, 0 ă ξ ! 1 is chosen such that the (invertible) matrix pΦBE is ‘close enough’ to
the matrix ΦBE in some sense. The p1, 1q-block is approximated by a ‘perturbed’

matrix pΦBE, whose inverse is then applied within the matrix pSBE. A term of the
form (3.21) is justified in Section 3.3.2.

Before devising a preconditioner for the linear system (3.13), we mention
it is possible to precondition the non-symmetric system (3.8). Naturally, we

91

would need to apply a non-symmetric Krylov solver, such as GMRES [157], in
which case we could employ as an ‘ideal’ preconditioner the matrix P1 defined in
(2.26). Although the forthcoming strategies to approximate the relevant blocks
of the preconditioner may be adapted to this case, it is not possible to prove
similar bounds on the eigenvalues as the one described in Theorem 5, nor could
convergence of the iterative method be described solely using the distribution
of the eigenvalues. For this reason, we focus our analysis on the symmetric
preconditioner P3 defined in (2.28).

3.3.1 Approximation of the p1, 1q-Block

We now focus on devising a preconditioner for the linear system (3.13), arising
from a Crank–Nicolson discretization, starting with a cheap and effective ap-
proximation of the matrix Φ. We recall from (3.14) that Φ can be written as
Φ “ T1ΦDT

J
1 , with ΦD defined as in (3.15). We observe that ΦD is a block di-

agonal matrix with each diagonal block a multiple of M . Therefore, in order to
obtain a cheap approximation for Φ, we require a suitable way to approximate
the inverse of a mass matrix. As discussed in [63, 64, 181] and in Section 2.4,
the Chebyshev semi-iterative method represents a cheap and effective way to do
this. From the discussion above, a good approximation of Φ is therefore given by
pΦ “ T1

pΦDT
J
1 , with

pΦD “
τ

2

»

—

–

Mc

. . .

Mc

fi

ffi

fl

,

where Mc denotes a fixed number of steps (20, in our tests) of Chebyshev semi-
iteration applied to M . Further, since T1 and T2 “ TJ1 are (block) upper- and
lower-triangular matrices respectively, we use simple (backward/forward) block
updates in order to apply their inverse operations.

It is trivial to prove the following, on the effectiveness of our approximation
of Φ:

Lemma 1. The minimum (maximum) eigenvalue of pΦ´1Φ is bounded below
(above) by the minimum (maximum) eigenvalue of M´1

c M .

3.3.2 Approximation of Schur Complement

We now find a suitable approximation for the Schur complement S of (3.13).
Recalling how the matrices Φ, Ψ, and Θ can be written as linear transformations
involving the matrices T1 and T2, we first rewrite S in the following way:

S “ T2ΘDT
J
2 ` T2A21pT1ΦDT

J
1 q
´1AJ21T

J
2 “ T2

“

ΘD `ΨDΦ´1
D ΨJ

D

‰

TJ2 , (3.22)

where we set
ΨD “ A21T

´1
2 . (3.23)

92

It is hence clear that if we find a symmetric positive definite approximation rSint

of
Sint “ ΘD `ΨDΦ´1

D ΨJ
D, (3.24)

then pS :“ T2
rSintT

J
2 is a symmetric positive definite approximation of S. We may

therefore use the (generalized) Rayleigh quotient in order to find upper and lower

bounds for the eigenvalues of the matrix pS´1S as follows. Let λ be an eigenvalue
of pS´1S with x the corresponding eigenvector; then

pS´1Sx “ λx ñ Sx “ λpSx ñ λ “
xJSx

xJ pSx
“

rxJSintrx

rxJ rSintrx
, (3.25)

where we set rx “ TJ2 x ‰ 0 and use (3.22) together with the definition of pS. Thus

upper and lower bounds for the eigenvalues of pS´1S are given by the maximum
and the minimum eigenvalues of rS´1

intSint, respectively.
From (3.22), and due to the convenient structure of the matrices ΦD and ΘD

in (3.15), we can devise an approximation rSint of Sint using the matching strategy
discussed in [139, 142] and in Section 2.11 as follows. We seek an approximation:

rSint “ pA21 ` xMqΦ´1
pA21 ` xMqJ « Sint (3.26)

such that rSint ‘captures’ both terms of Sint, namely ΘD and ΨDΦ´1
D ΨJ

D (noting
that A21Φ´1AJ21 “ ΨDΦ´1

D ΨJ
D). We therefore wish that

xMΦ´1
xMJ

“

”

xMpTJ1 q
´1
ı

Φ´1
D

”

T´1
1

xMJ
ı

“ ΘD. (3.27)

Using the definitions of ΘD and ΦD from (3.15), we obtain that for this to hold

the matrix xMpTJ1 q
´1 is given by

MD :“ xMpTJ1 q
´1
“

τ

2
?
β

»

—

–

M
. . .

M

fi

ffi

fl

, (3.28)

and therefore

xM “
τ

2
?
β

»

—

—

—

–

M
M M

.

M M

fi

ffi

ffi

ffi

fl

. (3.29)

Finally, our approximation of S is given by

pS “ T2pA21 ` xMqΦ´1
pA21 ` xMqJTJ2 “ pA21 ` xMqΦ´1

D pA21 ` xMqJ, (3.30)

with xM as defined in (3.29), and the two expressions are equivalent since T2

commutes with both A21 and xM . To understand the effectiveness of this approx-
imation, we recall (3.25), telling us that we only need to study the spectrum of

93

the matrix rS´1
intSint. We next rewrite rSint as follows:

rSint “ pA21 ` xMqΦ´1
pA21 ` xMqJ

“ xMΦ´1
xM J

` A21Φ´1AJ21 `
xMΦ´1AJ21 ` A21Φ´1

xM J

“ ΘD `ΨDΦ´1
D ΨJ

D `MDΦ´1
D ΨJ

D `ΨDΦ´1
D MJ

D

“ Sint `MDΦ´1
D ΨJ

D `ΨDΦ´1
D MJ

D , (3.31)

where we have used (3.27), (3.14), (3.23), and (3.28) in turn.

Since Sint and rSint are symmetric positive definite, we again consider the
generalized Rayleigh quotient:

R :“
xJSintx

xJ rSintx
“

aJa` bJb

aJa` bJb` aJb` bJa
, (3.32)

where a “ pΨDΦ
´1{2
D qJx and b “ pΘ

1{2
D q

Jx, noting from (3.15) and (3.28) that

Θ
1{2
D “ MDΦ

´1{2
D . Working as in Section 2.11, since Φ ą 0 and Θ ą 0, for

Theorem 1 we have R ě
1

2
.

In order to find an upper bound for the Rayleigh quotient (3.32), we return
to (3.31). Noting that

MDΦ´1
D “

1
?
β

»

—

–

I
. . .

I

fi

ffi

fl

,

we can rewrite
rSint “ Sint `

1
?
β

`

ΨJ
D `ΨD

˘

.

Following the reasoning in [139] and the reasoning in Theorem 2, we can prove
that R ď 1; from (3.32), this holds if

aJb` bJa“ xJ
`

MDΦ´1
D ΨJ

D `ΨDΦ´1
D MJ

D

˘

x “
1
?
β

xJ
`

ΨJ
D `ΨD

˘

x

“
1
?
β

zJ
`

AJ21T2 ` T
J
2 A21

˘

z ě 0 ,

where the last line uses (3.23) and sets z “ T´1
2 x. Therefore, we wish to show

that the matrix X “ AJ21T2 ` TJ2 A21 is positive semi-definite. We easily obtain
that

X “
τ

2

»

—

—

—

—

–

2rL rL

rL
.
. . . 2rL rL

rL rL

fi

ffi

ffi

ffi

ffi

fl

loooooooooooomoooooooooooon

“: rL

`

»

—

—

—

–

0
. . .

0
2M

fi

ffi

ffi

ffi

fl

looooooooooomooooooooooon

“: ĂM

,

94

with rL “ K `KJ “ 2K since K is symmetric. Furthermore, since K is positive
definite in this case, rL is also positive definite. Moreover, it is clear that

zJ rL z ě 0 ^ zJ ĂM z ě 0 ñ zJX z ě 0. (3.33)

We now use the following classical result on Kronecker products (see [98,

Theorem 13.12], for instance) to show that rL is positive definite:

Theorem 3. Let X1 P Rn1ˆn1 have eigenvalues λi, i “ 1, 2, . . . , n1, and let
X2 P Rn2ˆn2 have eigenvalues µl, l “ 1, 2, . . . , n2. Then, the n1n2 eigenvalues of
X1 bX2 are

λ1µ1, . . . , λ1µn2 , λ2µ1, . . . , λ2µn2 , . . . , λn1µn2 .

Moreover, if x1,x2, . . . ,xm1 are linearly independent right eigenvectors of X1 cor-
responding to λ1, λ2, . . . , λm1, m1 ď n1, and z1, z2, . . . , zm2 are linearly indepen-
dent right eigenvectors of X2 corresponding to µ1, µ2, . . . , µm2, m2 ď n2, then
xibzl P Rn1n2 are linearly independent right eigenvectors of X1bX2 correspond-
ing to λiµl, i “ 1, 2, . . . ,m1, l “ 1, 2, . . . ,m2.

Since both rL and

T “

»

—

—

—

–

2 1

1
.
. . . 2 1

1 1

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 1
.

1 1
1

fi

ffi

ffi

ffi

fl

»

—

—

—

–

1
1 1

.

1 1

fi

ffi

ffi

ffi

fl

“ T J1 T1

are symmetric positive definite (since T1 has full rank), Theorem 3 gives that
rL “ T b rL is symmetric positive definite. Since ĂM is clearly symmetric positive
semi-definite, we infer from (3.33) that X is symmetric positive definite, and
hence that

aJb` bJa ě 0,

with a and b as defined above. Finally, for Theorem 2 the last inequality guar-
antees that the Rayleigh quotient R in (3.32) satisfies R ď 1.

We have hence proved the following result:

Theorem 4. Let Sint and rSint be defined as in (3.24) and (3.26) respectively, with

the matrices ΦD, ΨD, ΘD, A21, Φ, xM defined as in (3.15), (3.23), (3.10), (3.14),
and (3.29). Then:

λprS´1
intSintq P

„

1

2
, 1

.

In Figure 3.1 we report the eigenvalue distribution of rS´1
intSint for a range of

values of β, for a particular Dirichlet test problem.
Further, using Theorem 4 and (3.25), we can prove the following:

Theorem 5. Let S and pS be defined as in (3.22) and (3.30), with the matrices
defined as in Theorem 4, and T1, T2 as in (3.12). Then:

λppS´1Sq P

„

1

2
, 1

.

95

Figure 3.1: Eigenvalues of rS´1
intSint for β “ 10´j, j “ 2, 4, with d “ 2 (x “

rx1, x2s
J) and tf “ 2, employing Q1 finite elements on an evenly spaced space–

time grid p´1, 1q2 ˆ p0, 2q with τ “ h “ 1
8
.

Remark 4. We note that no assumption has been made on the grid structure,
meaning that the bounds in Theorem 4 and in Theorem 5 still hold in case of non-
uniform meshes. In addition, the preconditioner above can be easily generalized
when Neumann or mixed boundary conditions are imposed.

By Theorem 5, the matrix pS in (3.30) is an effective approximation of the
Schur complement S defined in (3.22). We highlight that solving (exactly) a sys-

tem involving the matrix pS is costly, so we look for a cheap approximation of the
effect of pS´1 on a generic vector. From (3.30), it is clear that the bulk of the work

involves approximately applying the inverse of A21 ` xM and its transpose. From
(3.10) and (3.29), we have that A21 ` xM is block-lower triangular, and a cheap
application of its inverse on a vector is given by block-forward substitution, with
each block diagonal approximated using a fixed number of V-cycles of a multigrid
routine, for example. The matrix pA21 ` xMqJ can be handled analogously using
block-backward substitution.

Before showing the robustness of the proposed preconditioner, we would like
to spend some words on the linear system (3.18) arising from a discretize-then-
optimize approach. In matrix form, we rewrite system (3.18) as

»

—

–

qΦD 0 AJ21

0 β qΦD ´AJ11

A21 ´A11 0

fi

ffi

fl

»

–

v
u
ζ

fi

fl “

»

–

b̌1

0

b̌2

fi

fl ,

which presents a saddle-point structure. In this case, an optimal preconditioner
is given by

qP3 “

»

—

–

qΦD 0 0

0 β qΦD 0

0 0 qS

fi

ffi

fl

,

96

where

qS “ A21
qΦ´1
D AJ21 ` A11pβ qΦDq

´1AJ11

“ A21
qΦ´1
D AJ21 `

1

2β
T2

»

—

—

—

—

—

–

2M̄
M̄

. . .

M̄
2M̄

fi

ffi

ffi

ffi

ffi

ffi

fl

TJ2

“ A21
qΦ´1
D AJ21 ` T2

»

—

—

—

—

—

–

2M̄β

M̄β

. . .

M̄β

2M̄β

fi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooooooooooomoooooooooooooooooooon

qΘD

TJ2 .

Then, we can rewrite
qS “ T2pqΘD ` qΨD

qΦ´1
D
qΨJ
DqT

J
2 ,

with qΨD “ T´1
2 A21. From here, we can see that the strategy described above

may be extended also to the case of the discretize-then-optimize approach. Of
course, one should prove the optimality of such a preconditioner, which we do
not address here. However, supposing that the derived preconditioner is optimal,
one could also apply the discretize-then-optimize strategy to the problems we will
consider in the following chapters.

3.4 Numerical Results

We now provide numerical evidence of the effectiveness of our preconditioning
strategy. Below, we show how this preconditioner results in more rapid conver-
gence than the state-of-the-art backward Euler solver with the existing precondi-
tioner of [139], for the heat control problem.

In all our tests we consider only Dirichlet boundary conditions (i.e., BΩN “

H), but we emphasize again that the method is easily generalized to Neumann
and mixed boundary conditions. We implement a finite element method, using Q1

basis functions for state, control, and adjoint variables. As discussed in Section
3.3.1, when approximating the p1, 1q-block it is trivial to invert both matrices T1

and T2 “ TJ1 , and we apply 20 steps of Chebyshev semi-iteration to each mass
matrix on the diagonal of ΦD. For the approximation of the Schur complement,
we employ block-forward and block-backward substitution to solve for the matrix
A21`xM and its transpose, and approximate each block on the diagonal with 3 V-
cycles of an appropriate multigrid routine, unless otherwise stated. Specifically,
we employ the HSL MI20 solver [22] for approximating each block diagonal. The
iteration count for all tests presented starts from 0. All tests are run on MATLAB
R2018b, using a 1.70GHz Intel quad-core i5 processor and 8 GB RAM on an
Ubuntu 18.04.1 LTS operating system.

97

We benchmark our method against the backward Euler method coupled with
the bespoke, mesh- and β-independent preconditioner derived in [139], for the
heat control problem (3.1)–(3.2). Here, d “ 2 (so x “ rx1, x2s

J), Ω “ p´1, 1q2,
tf “ 2, f “ 0, and

vdpx1, x2, tq “ 1`

„ˆ

2

π2β
`
π2

2

˙

etf `

ˆ

1´
2

p2` π2qβ
´
π2

2

˙

et

spx1, x2q,

where spx1, x2q “ cos pπx1

2
q cos pπx2

2
q. The analytic solutions to this problem are:

vpx1, x2, tq “ 1`

ˆ

2

π2β
etf ´

2

p2` π2qβ
et
˙

spx1, x2q,

ζpx1, x2, tq “ pe
tf ´ etq spx1, x2q,

with initial condition v0 and Dirichlet boundary condition g obtained from this
v.

In our first tests, we consider a (spatial) uniform grid of mesh-size h “ 21´l,
with l the level of grid refinement, and set τ “ h2 for the backward Euler scheme
and τ “ h for Crank–Nicolson, motivated by the predicted convergence rates of
these methods. We test both schemes with a range of values of h and β, running
preconditioned MINRES to a tolerance of 10´6 on the relative residual norm. We
take ξ “ 10´3 in (3.20)–(3.21) for the backward Euler implementation. Tables
3.1–3.3 present the number of MINRES iterations it required by each method
for a range of β, the CPU time taken in seconds, and the relative errors verror and
ζerror (in the scaled vector `8-norm) obtained for the state and adjoint variables.
Specifically, for the state variable we define

verror “
|vi ´ v

sol
i |

|v sol
i |

, with i “ arg max
i

|vi ´ v
sol
i |,

with vi and v sol
i the entries of the computed solution v and the (discretized)

exact solution for v; in the same way we define the error for the adjoint variable.
In Table 3.4 we report the degrees of freedom for each problem solved, together
with the average time per iteration required to apply the inverses of the p1, 1q-
block and the Schur complement within the preconditioners employed for the two
methods, for β “ 10´3. We emphasize that we obtain similar results for the other
two values of β, so for the sake of brevity we do not report these. Further, in
order to show that our new preconditioner does not require a constant mesh-size,
we also test our solver on a piecewise-uniform Shishkin mesh [95] with transition
points 0.5 and ´0.6 on the two spatial axes. We report in Table 3.5 the resulting
MINRES iterations and CPU times; here, for level of grid refinement l, 2l´1

mesh points on each axis are either side of the transition point. We note that
for this particular example we apply 5 V-cycles whenever a multigrid routine is
required, in order to allow for the additional difficulty for the multigrid solver
with a non-uniform grid.

4: means that the solver ran out of memory.

98

Table 3.1: Heat control problem: MINRES iterations, CPU times, and resulting
relative errors in v and ζ, for β “ 10´2.

Backward Euler Crank–Nicolson
l it CPU verror ζerror it CPU verror ζerror

3 22 0.71 2.8907e-2 9.3751e-3 17 0.16 6.1670e-3 9.8782e-3
4 23 4.57 1.4472e-3 2.3445e-3 20 0.47 1.3137e-3 2.2102e-3
5 23 39.2 3.6034e-4 5.8555e-4 20 2.18 3.2492e-4 5.4963e-4
6 24 536 9.0050e-5 1.4634e-4 20 14.2 8.1064e-5 1.3721e-4
7 :4 – – – 20 116 2.0278e-5 3.4425e-5
8 : – – – 20 1038 5.0895e-6 8.5887e-6

Table 3.2: Heat control problem: MINRES iterations, CPU times, and resulting
relative errors in v and ζ, for β “ 10´3.

Backward Euler Crank–Nicolson
l it CPU verror ζerror it CPU verror ζerror

3 25 0.79 1.3769e-2 1.3732e-2 18 0.16 9.6046e-4 1.5371e-2
4 24 4.57 2.3059e-3 3.4227e-3 20 0.53 1.9959e-4 3.5192e-3
5 25 42.5 5.0815e-4 8.5306e-4 21 2.29 3.7307e-5 8.0235e-4
6 27 597 1.2430e-4 2.1314e-4 21 14.8 9.2697e-6 2.0067e-4
7 : – – – 21 121 2.4974e-6 5.0395e-5
8 : – – – 21 1089 8.3046e-7 1.2632e-5

Table 3.3: Heat control problem: MINRES iterations, CPU times, and resulting
relative errors in v and ζ, for β “ 10´4.

Backward Euler Crank–Nicolson
l it CPU verror ζerror it CPU verror ζerror

3 18 0.67 1.0649e-2 1.4138e-2 16 0.16 6.2442e-4 1.6239e-2
4 24 6.12 1.0727e-3 3.5073e-3 19 0.55 2.2555e-4 3.5765e-3
5 26 47.0 1.7096e-4 8.7596e-4 22 2.44 5.6915e-5 8.7154e-4
6 23 513 4.0696e-5 2.1973e-4 22 15.6 1.4861e-5 2.1171e-4
7 : – – – 22 127 4.0217e-6 5.2142e-5
8 : – – – 22 1139 2.6336e-7 1.3867e-5

We see from Tables 3.1–3.3 that the Crank–Nicolson approach with our new
preconditioner achieves more accurate solutions than the backward Euler method,
in lower CPU time. Comparing the results for grid refinement l “ 4, 5, 6, that is,
for h “ 2´3, 2´4, 2´5, this can occur in orders of magnitude lower CPU time for
the tests presented here. This is clear because the size of the system required to

99

Table 3.4: Heat control problem: degrees of freedom (DoF) and (average) CPU
times required for inverting the two blocks of the preconditioners, for β “ 10´3.

Backward Euler Crank–Nicolson

l DoF CPU pΦBE CPU pSBE DoF CPU pΦ CPU pS

3 3234 0.0011 0.028 784 0.00038 0.0075
4 58,050 0.0091 0.16 7200 0.0013 0.023
5 985,986 0.12 1.40 61,504 0.0078 0.088
6 16,264,962 1.78 17.8 508,032 0.059 0.56
7 264,289,794 – – 4,129,024 0.49 4.31
8 4,261,608,450 – – 33,292,800 5.33 37.7

Table 3.5: Heat control problem: MINRES iterations and CPU times with non-
uniform grid, for a range of l and β.

β
10´2 10´3 10´4

l it CPU it CPU it CPU

4 20 0.76 21 0.85 19 0.88
5 20 4.15 21 4.25 22 4.83
6 20 28.1 21 29.2 22 30.6
7 20 223 21 234 22 245
8 20 1946 24 2324 23 2232

obtain a fixed accuracy should grow like Oph´4q for backward Euler as opposed
to Oph´3q for Crank–Nicolson, and the effectiveness of our new preconditioner
allows this to materialize in terms of CPU time. For instance, with this Ω and tf ,
the choice h “ 2´5 leads to a (Schur complement) system of dimension 8, 132, 481
for backward Euler and 254, 016 for Crank–Nicolson, with the total number of
degrees of freedom being 16, 264, 962 for backward Euler and 508, 032 for Crank–
Nicolson; as our preconditioner is optimal for all values of β, h, and τ , this leads
to a substantial speed-up. Further, our preconditioned Crank–Nicolson approach
is also able to obtain a solution for levels of refinement (e.g., l “ 7) for which
preconditioned backward Euler runs out of memory. From Table 3.4 it is also
possible to understand the reason behind the latter: with our choice of τ for
level of refinement l “ 7, the total number of degrees of freedom is 264, 289, 794;
thus, simply storing the right-hand side vector requires approximately 2 GB of
memory. We would like to note that, in order to overcome the running out of
memory, one can exploit the Kronecker structure of the linear system arising
from either a backward Euler or a Crank–Nicolson discretization, and employ a
low-rank approximation of the problem, see for example [40, 166, 167, 168].

As expected, due to the bounds in Lemma 1 and Theorem 5 being independent

100

of h, τ , and β, the number of MINRES iterations in Tables 3.1–3.3 for the Crank–
Nicolson method are roughly constant. Further, we can clearly see that the cost
per MINRES iteration (as well as for the overall process) scales linearly with the
problem size. This is also evident from Table 3.4, which shows the average time
required to apply the preconditioner for Crank–Nicolson is linear in problem size.
The second-order convergence of Crank–Nicolson is evident from Tables 3.1–3.3,
until the MINRES tolerance causes slight pollution of the discretized solution
(note verror for l “ 8 in Table 3.2 in particular). From Table 3.5 we also note the
robustness of the preconditioner for a non-uniform grid.

We emphasize the importance of the choice of the multigrid routine to approx-
imate the diagonal blocks of A21`xM and its transpose. To demonstrate that our
choice is appropriate, we compared the iteration numbers in Tables 3.1–3.3 with
those obtained by applying the approximate inverses of each diagonal block of
A21`xM and its transpose using MATLAB’s backslash routine, running the tests
for the coarsest levels of refinement l “ 3, 4, 5; we report the results in Table 3.6.
We verified that the number of MINRES iterations for reaching convergence was
the same as shown in Table 3.1–3.3, up to a difference of at most one iteration
(only for l “ 3 and backward Euler). This shows that the choice of 3 V-cycles of
the HSL MI20 solver is optimal, as it resembles an “exact” solution closely enough.
We also compared the results in Table 3.2 (for β “ 10´3) with those obtained
using 5 V-cycles of the AGMG algebraic multigrid routine [118, 121, 122, 123], for
all levels of refinement l. We report the number of MINRES iterations required
when employing 5 V-cycles of the AGMG algebraic multigrid routine in Table
3.7. The numbers of iterations is the same for all levels of refinement, apart from
the backward Euler system with l “ 3 which requires one more MINRES iter-
ation using AGMG, and the Crank–Nicolson system with l “ 8 which requires
three more iterations. This shows that AGMG is also a viable choice of multigrid
routine provided more V-cycles are applied, however we elect to use 3 V-cycles
of the HSL MI20 routine to achieve a more computationally efficient solver.

Table 3.6: Heat control problem: MINRES iterations, employing MATLAB’s
backslash for applying the approximate inverses of each diagonal block of A21`
xM and its transpose, for a range of β.

Backward Euler Crank–Nicolson
β β

10´2 10´3 10´4 10´2 10´3 10´4

l it it it it it it

3 22 26 17 17 18 16
4 23 24 24 20 20 19
5 23 25 26 20 21 22

Finally, we comment on the issue of potential parallelism. Examining (3.20),

the p1, 1q-block pΦBE of the backward Euler preconditioner (as opposed to the

Schur complement approximation pSBE) affords an embarrassingly parallel imple-

101

Table 3.7: Heat control problem: MINRES iterations, employing 5 V-cycles of the
AGMG multigrid routine for applying the approximate inverses of each diagonal
block of A21 ` xM and its transpose, for β “ 10´3.

Backward Euler Crank–Nicolson
l it it

3 26 18
4 24 20
5 25 21
6 27 21
7 : 21
8 : 24

mentation, that could in principle alter the balance of complexity between the
two approaches shown in Tables 3.1–3.3. However, as we can see from Table 3.4,
the average cost per iteration for (approximately) inverting pΦBE is negligible, in
fact an order of magnitude lower in CPU time than the cost of (approximately)

inverting pSBE. Therefore, even with a “parallel” implementation of the backward
Euler solver, our preconditioner for the Crank–Nicolson method would outper-
form it. We also point out that, if a parallel implementation of pSBE is possible,
this could be adapted to the Crank–Nicolson system, as the structure of pS is sim-
ilar to pSBE. A parallel implementation of pΦ may also be carried out, by suitably
permuting T1 and T2 and applying their inverse operations in parallel.

We can therefore conclude that the Crank–Nicolson method, coupled with our
new preconditioner, is significantly more potent that the widely-used precondi-
tioned backward Euler method for all values of β.

3.5 Summary and Comments

In this chapter, we have applied an optimize-then-discretize strategy to tackle the
optimal control of time-dependent PDEs, coupled with a Crank–Nicolson scheme
in time. We have devised an invertible linear transformation that symmetrizes
the resulting linear system, and derived a new, fast, and robust preconditioner
for the saddle-point matrix, which possesses a complex structure. We have also
proved that the Schur complement approximation used is optimal with respect
to all parameters involved through bounds on the eigenvalues, and therefore that
the preconditioner is optimal and scales linearly in CPU time with respect to
matrix dimension. Finally, we have presented numerical results to demonstrate
the effectiveness and speed of our preconditioned Crank–Nicolson method. In the
following chapters, we will build on the strategy described here to tackle more
complex problems.

Before moving on in our exposition, we would like to spend some words on
the strategy presented in this chapter. Specifically, we would like to comment
on the choice of eliminating the initial and the final time conditions on the state

102

and the adjoint variables. With this choice, rather than considering the system
in (3.7), we have been working on the linear system defined in (3.8), and, by
applying a suitable invertible transformation, we were able to transform it into
the symmetric matrix (3.13).

We want to highlight here that it is possible to apply a transformation similar
to (3.11) and transform the system (3.7) into a symmetric one. In fact, by
applying the linear transformation

qT “

„

T2 0
0 T1

to the system (3.7), we can still obtain a symmetric matrix. However, in this case
the preconditioner we derive employing the matching strategy will not be optimal
anymore, as we are not able to derive bounds as in Theorem 5. In particular, the
upper bounds will not hold any more, as the corresponding mixed term will be
indefinite. In addition, by employing the transformation qT , the Schur complement
approximation that one derives by employing the matching strategy will not be so
easy to invert, as the approximation requires one to solve for a block tridiagonal
matrix and its transpose, as well as multiplying with block diagonal matrix. In
practice, not only we would lose optimality of the preconditioner, but we would
also have to solve for a more complex Schur complement! This shows how a small
change in perspective could lead to an impressive improvement of the solver. In
addition, we would like to mention that the change in perspective we described
above was not immediate, but a result of considerate thought. In practice, we
needed to “get ready” before “seeing” this strategy. And now the reader is also
able to understand the meaning of the inspirational quote at the beginning of the
chapter.

103

Chapter 4

Preconditioning Time-Dependent
Convection–Diffusion Control
Problems with Crank–Nicolson
Discretization in Time

“-Chello che è stato è stato, basta! Ricomincio da tre!
-Da zero!
-Eh?
-Da zero! Ricominci da zero!
-Nossignore, ricomincio da... cioè, tre cose me so’ riuscite dint’
’a vita, pecché aggia perdere pure chelle? Che aggia ricomincia’
da zero?! Da tre!”

[“-What’s past is past, enough! I’m starting over from three!
-From zero!
-Eh?
-From zero! You’re starting over from zero!
-No, I’m starting over from... I mean, three things I succeeded
in in my life, why should I lose these too? Should I start over
from zero?! From three!”]

– Massimo Troisi, Ricomincio da tre

In the previous chapter, we derived an optimal preconditioner for the heat
control problem when a Crank–Nicolson discretization is employed for approxi-
mating the time derivative. We want now to build on the advances achieved for
the heat control problem, and generalize the preconditioner derived in Section
3.3 to more complex problems (quoting the inspirational quote above, we are
“starting over from Chapter 3”). A natural extension of the heat control prob-
lem includes also a convection term in the PDE under examination: in this case,
the problem we want to tackle is the time-dependent convection–diffusion control
problem. The content of this chapter is based on some of the work in [100].

This chapter is structured as follows. In Section 4.1 we introduce the problem
we consider, that is time-dependent convection–diffusion control, and outline the
matrices arising upon discretization of such a problem as well as a stabilization

104

technique used for convection–diffusion control. In Section 4.2 we describe the
linear systems obtained upon discretization of the first-order optimality condi-
tions, and employ the linear transformation (3.11) which allows symmetrization
of the linear system obtained from the Crank–Nicolson method. As for the heat
control problem, this enables us to apply the symmetric iterative solver MINRES
[128], which is highly desirable from the perspective of proving convergence of
the iterative method. In Section 4.3 we extend the results of the preconditioner
derived in Chapter 3 to time-dependent convection–diffusion control problems,
using saddle-point theory along with suitable approximations of the p1, 1q-block
and Schur complement, and provide eigenvalue results for the preconditioned
linear system. In Section 4.4 we demonstrate our new preconditioner’s efficiency
and robustness with respect to all parameters involved in the convection–diffusion
control problem.

4.1 Problem Formulation

As above, in this chapter we consider the fast and robust numerical solution
of time-dependent PDE-constrained optimization problems. In particular, we
examine distributed convection–diffusion control problems of the form:

min
v,u

Jpv, uq “
1

2

ż tf

0

ż

Ω

|vpx, tq ´ vdpx, tq|
2 dΩdt`

β

2

ż tf

0

ż

Ω

|upx, tq|2 dΩdt (4.1)

subject to

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Bv

Bt
´ ε∇2v `w ¨∇v “ u` fpx, tq in Ωˆ p0, tf q,

vpx, tq “ gDpx, tq on BΩD ˆ p0, tf q,

Bv

B~n
px, tq “ gNpx, tq on BΩN ˆ p0, tf q,

vpx, 0q “ v0pxq in Ω,

(4.2)

where the variables v, vd, and u are the state, desired state, and control variables,
respectively, β ą 0 is a regularization parameter, ε ą 0 is the diffusion coefficient,
and w is a divergence-free wind (or flow) vector (i.e., ∇ ¨w “ 0). The problem
is solved on a spatial domain Ω Ă Rd, d P t1, 2, 3u, with boundary such that
BΩ “ BΩD Y BΩN , BΩD X BΩN “ H, up to a final time tf ą 0, that is px, tq P

Ωˆp0, tf q. Here
Bv

B~n
px, tq represents the (outward) normal derivative of v on BΩN .

The functions f, gD, gN , and v0 are known.
In (4.2), the term ´ε∇2v denotes the diffusive element, and the term w ¨

∇v represents convection. In physical (real-world) problems, as pointed out for
example in [44, Ch. 6], convection typically plays a more significant physical role
than diffusion. In particular, defining the Péclet number as Pe “ Le}w}{ε, where
Le denotes the characteristic length for the domain Ω, we have that Pe " 1 for
many practical problems. However this in turn makes the problem more difficult
to solve [44, 150] as the solution procedure will need to be robust with respect to

105

the direction of the wind w and any boundary or internal layers that form. The
presence of boundary or internal layers is also an issue that we have to deal with
when discretizing the convection–diffusion differential operator. Indeed, when
solving a convection–diffusion problem, a stabilization procedure is often utilized
in order to ‘capture’ all the layers.

4.1.1 Discretization Matrices and Stabilization

To illustrate the matrices involved in the finite element discretizations of the
optimal control problem under examination, consider a standard Galerkin finite
element discretization for the (steady-state) convection–diffusion problem:

´ε∇2v `w ¨∇v “ u` fpxq in Ω . (4.3)

Letting tφiu
nx
i“1 be the same finite element basis functions for v and u, then we

would like to find approximations vpxq «
řnx
i“1 viφi, upxq «

řnx
i“1 uiφi. We recall

that for control problems of the form (4.1)–(4.2) it is possible to choose different
bases for v and u, but it is often preferable to use the same finite element basis
functions for both the state and the control, and we do so here to obtain a system
of convenient structure, as we will eliminate the control variable a priori. Letting
the vectors v “ tviu

nx
i“1, u “ tuiu

nx
i“1, a discretized version of (4.3) is

Lv :“ pεK `N `Wwqv “Mu` f ,

where K and M are the stiffness and mass matrix in the chosen finite element
basis, respectively, and

N “ tnilu
nx
i,l“1, nil “

ż

Ω

pw ¨∇φlqφi dΩ ,

f “ tfiu
nx
i“1, fi “

ż

Ω

fφi dΩ ,

and the matrix Ww denotes a possible stabilization matrix for the convection
operator; here, the subscript denotes the dependence on the wind w. Note that
these definitions exclude the effects of the boundary conditions: for instance, if
non-zero Dirichlet conditions are present extra terms will appear in f relating
to these, and the appropriate dimensions of the matrices will depend on the
structure of the boundary conditions. We recall that K is generally referred to as
a stiffness matrix, and is symmetric positive definite (unless BΩD “ H in which
case it is symmetric positive semi-definite), and M is referred to as a mass matrix,
which is symmetric positive definite. The matrix N is skew-symmetric (meaning
N ` NJ “ 0) in the case of Dirichlet problems; otherwise we obtain that [44,
Sec. 6.5]

nil ` nli “

ż

BΩN

φiφlw ¨ n ds ,

using the Divergence Theorem, where n denotes the (outer) unit normal vector.
In this latter case the spectral properties of the matrix H :“ N `NJ, which can

106

be indefinite, will be useful for our subsequent analysis. Defining the boundary
mass matrix MBΩN “ tm

BΩN
il u

nx
i,l“1, where mBΩN

il “
ş

BΩN
φiφl ds, and letting c “

maxx }w}, we may write

yJpH ` cMBΩN qy “
nx
ÿ

i“1

nx
ÿ

l“1

yi

„
ż

BΩN

pw ¨ n` cqφiφl ds

yl

“

ż

BΩN

pw ¨ n` cq y2 ds ě 0

for any 0 ‰ y P Rnx , where we set y :“
řnx
i“1 yiφi. Therefore,

H ľ ´cMBΩN , (4.4)

where the notation Υ1 ľ Υ2 means Υ1´Υ2 is positive semi-definite. This obser-
vation will be useful when discussing our approach for problems with Neumann
or mixed boundary conditions.

Concerning the stabilization scheme used for solving the forward convection–
diffusion problem, a popular stabilized finite element method is the Streamline
Upwind Petrov–Galerkin (SUPG) method [87]. This stabilization method mod-
ifies the right-hand side f , aside from adding a further matrix arising in the
discretization of the differential operator. In fact, for the forward problem the
stabilization is defined as

Ww “ twilu
nx
i,l“1, wil “ δ

ż

Ω

pw ¨∇φiqpw ¨∇φlqdΩ´εδ
ÿ

m

ż

∆m

p∇2φiqpw ¨∇φlqdΩ ,

where ∆m is the m-th element in our finite element discretization, while the
right-hand side f is defined as

f “ tfiu
nx
i“1, fi “

ż

Ω

fφi dΩ` δ

ż

Ω

fw ¨∇φi dΩ .

Here, the parameter δ ą 0 is called the stabilization parameter. The SUPG
method has been proven to have order of convergence of Oph3{2q in the stream-
line diffusion norm5 in the case of the forward convection–diffusion equation
when using bilinear finite elements for instance [44, Ch. 6]. However, as pointed
out in [35, 79], applying this scheme to the (steady-state) control problem gives
rise to extra difficulties. Specifically, in [35] it has been shown that applying the
scheme to the control problem with the discretize-then-optimize strategy leads
to symmetric discrete equations in which the discrete adjoint problem is not a
consistent discretization of the continuous adjoint problem, whereas the optimize-
then-discretize approach gives rise to a different, non-symmetric discretized sys-
tem which therefore does not possess the structure of a discrete optimization
problem. Further, in [79] the authors prove that the order of convergence of the
SUPG method applied to the control problem is only linear in the presence of
boundary layers. In this work, we thus employ the adjoint-consistent Local Pro-

5The streamline diffusion norm is defined as }v}sd :“ pε}∇v}2 ` δ}w ¨∇v}2q1{2.

107

jection Stabilization (LPS) approach described in [11, 12, 23, 141], for which the
discretization and optimization steps commute in the stationary case. Further,
these stabilized finite elements leads to an order of convergence of Oph3{2q for
the L2-error [12], which is optimal on general quasi-uniform meshes for the for-
ward problem, see, e.g., [188]. Before describing the LPS formulation in detail,
we mention that the strategy described in this work can be employed with any
stabilized finite element method for which the stabilization of the adjoint of the
convection operator is equal to the adjoint of the stabilization applied to the
forward operator, that is to say W´w “ pWwq

J. In the LPS formulation, the
stabilization matrix Ww is defined as

Ww “ twilu
nx
i,l“1, wil “ δ

ż

Ω

rw¨∇φi´πhpw¨∇φiqsrw¨∇φl´πhpw¨∇φlqsdΩ. (4.5)

Here, δ ą 0 denotes a stabilization parameter, and πh is an orthogonal projection
operator. From (4.5), the matrix Ww can be viewed as a shifted discrete diffusion
operator associated with the streamline direction defined by w. It is symmetric
and positive semi-definite, as shown by following the working in [44, p. 17]: letting
0 ‰ y P Rnx , and setting πih “ πhpw ¨ ∇φiq, y :“

řnx
i“1 yiφi, rπ :“

řnx
i“1 viπ

i
h, we

have

yJWwy “ δ
nx
ÿ

i“1

nx
ÿ

l“1

yi

„
ż

Ω

rw ¨∇φi ´ πihsrw ¨∇φl ´ π l
hs dΩ

yl

“ δ

ż

Ω

pw ¨∇y ´ rπq pw ¨∇y ´ rπq dΩ “ δ }w ¨∇y ´ rπ}2L2pΩq ě 0,

where we have used that
řnx
i“1 yi∇φi “ ∇y.

For the convergence of the method, we require πh to be an L2-orthogonal (dis-
continuous) projection operator defined on patches of the domain Ω that satisfies
the approximation and stability properties specified in [12], where by a patch we
mean the union of elements of our finite element discretization; the projection
operator πh is left free to be discontinuous on the edges of the patches. In our
implementation we will make use of Q1 elements, so the domain is divided into
patches consisting of 2 elements in each dimension. To ensure the aforementioned
properties are satisfied, as in [11] we define πh as

πhpqq|P “
1

|P|

ż

P

q dP, @q P L2
pΩq, (4.6)

where πhpqq|P is the restriction of πhpqq to the patch P, and |P| is the (Lebesgue)
measure of the patch. We refer again to [12] for the theoretical proof of the
convergence of this method with this definition of the local projection operator.
In order to simplify the notation we note that, from the definition (4.5) ofWw with
the choice of (4.6) as local projection operator, it results that Ww “ pWwq

J “

108

W´w “: W . As in [44, p. 253], we choose δ locally on each patch Pm as δm, with

δm “

$

’

&

’

%

hm
2}wm}

ˆ

1´
1

Pem

˙

if Pem ą 1,

0 if Pem ď 1,

where }wm} is the (vector) `2-norm of the wind at the patch centroid, hm is a
measure of the patch length in the direction of the wind, and Pem “ }wm}hm{p2εq
is the patch Péclet number.

We observe that, with this (non-constant) choice of δ, the matrix W is still
positive semi-definite. To prove this, it is sufficient to define πi,mh “ πhpw ¨∇φiq|Pm
and rπm :“

řnx
i“1 yiπ

i,m
h locally on each patch and then proceed as above, obtaining

yJWy “
ÿ

m

δm}w ¨∇y ´ rπm}
2
L2pPmq

ě 0.

The spectral properties of the matrices K, M , and W (whether Dirichlet, Neu-
mann or mixed boundary conditions are imposed) will be useful later, when
discussing the optimality of our preconditioning approach.

Informed by the definitions of this section, we make the following assumption
when carrying out the theoretical analysis in the remainder of this chapter, and
later discuss how our methodology could be applied if the assumption is relaxed:

Assumption 1. We assume w is such that w ¨ n “ 0 on BΩN . In case a pure
Dirichlet problem (i.e., BΩN “ H) is solved, we remove this restriction on the
wind w.

When Assumption 1 holds, the matrix H “ 0. There are a number of wind
vectors w that satisfy the property above on the whole of BΩ, see for example
the well-known ‘recirculating wind’ example described in [44, p. 240].

4.2 First-Order Optimality Conditions and Dis-

cretization in Time

We now describe the strategy used for obtaining an approximate solution of (4.1)–
(4.2). We apply an all-at-once approach coupled with the optimize-then-discretize
scheme, in which the continuous Lagrangian is used to arrive at first-order opti-
mality conditions, which are then discretized. For simplicity the working of this
section considers Dirichlet boundary conditions, that is BΩD “ BΩ, but it may be
readily extended to problems where BΩD Ă BΩ. Introducing the adjoint variable
ζ, we consider the Lagrangian associated to (4.1)–(4.2) as in [12]. Then, by de-
riving the Karush–Kuhn–Tucker conditions, the solution of (4.1)–(4.2) satisfies

109

(see, for instance, [12] for stationary convection–diffusion control):

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bv

Bt
´ ε∇2v `w ¨∇v “ 1

β
ζ ` f in Ωˆ p0, tf q

vpx, tq “ gpx, tq on BΩˆ p0, tf q

vpx, 0q “ v0pxq in Ω

,

/

/

/

/

.

/

/

/

/

-

state

equation

´
Bζ

Bt
´ ε∇2ζ ´w ¨∇ζ “ vd ´ v in Ωˆ p0, tf q

ζpx, tq “ 0 on BΩˆ p0, tf q

ζpx, tf q “ 0 in Ω

,

/

/

/

.

/

/

/

-

adjoint

equation

(4.7)

where we have substituted the gradient equation βu´ ζ “ 0 into the state equa-
tion.

Problem (4.7) is a coupled system of (time-dependent) PDEs, consisting of
a forward PDE combined with a backward problem for the adjoint. As done
in Chapter 3, we will employ a Crank–Nicolson discretization for approximating
the time derivative, since this will allow the user to choose a time step that
is independent of the spatial mesh-size. Again, in order to obtain a consistent
system of linear equations, both functions v and ζ are approximated at the same
time points. For the remainder of the chapter, we discretize the interval p0, tf q

into nt subintervals of length τ “
tf
nt

, and we use the notation vn « vpx, tnq,
ζn « ζpx, tnq for our approximations for all x P Ω, with tn “ nτ .

Considering again (4.7), we now employ the Crank–Nicolson method for dis-
cretizing the time derivative. Denoting

L` “
τ

2
L`M, L´ “

τ

2
L´M, M̄ “

τ

2
M, M̄β “

τ

2β
M,

we have that the numerical solution of (4.7) satisfies

$

’

&

’

%

M̄ pvn ` vn`1q ` pL
`
q
Jζn ` pL

´
q
Jζn`1 “ M̄

`

vnd ` v
n`1
d

˘

,

L´vn ` L
`vn`1 ´ M̄β pζn ` ζn`1q “

τ

2

`

fn ` fn`1
˘

,

for n “ 0, 1, ..., nt´1, with Mζnt “ 0 and Mv0 “Mv0 appropriate discretizations
of the final and initial conditions on ζ and v, and fn defined as in (3.4). In matrix
form, we write

«

Ā11 Ā12

Ā21 Ā22

ff«

v̄

ζ̄

ff

“

«

b̄1

b̄2

ff

, (4.8)

where the vectors v̄ and ζ̄ are the numerical solution for the state and adjoint
variables, and as before the right-hand side accounts for the initial and final-time
conditions on v and ζ, as well as the desired state vd and force function f . The

110

matrices Āij, i, j “ 1, 2, are given by

Ā11 “

»

—

—

—

–

M̄ M̄
.

M̄ M̄
0

fi

ffi

ffi

ffi

fl

, Ā12 “

»

—

—

—

–

pL`qJ pL´qJ

.

pL`qJ pL´qJ

M

fi

ffi

ffi

ffi

fl

,

Ā21 “

»

—

—

—

–

M
L´ L`

.

L´ L`

fi

ffi

ffi

ffi

fl

, Ā22 “ ´

»

—

—

—

–

0
M̄β M̄β

.

M̄β M̄β

fi

ffi

ffi

ffi

fl

.

As done in Section 3.2.2 for the heat control problem, if we eliminate the
initial and final-time conditions on v and ζ, we can rewrite

«

A11 A12

A21 ´A22

ff

loooooooomoooooooon

A

«

v

ζ

ff

“

«

b1

b2

ff

,

with the vectors v, ζ, b1, b2 modified accordingly, and the matrices Aij, i, j “ 1, 2,
given by

A11 “

»

—

—

—

–

M̄
M̄ M̄

.

M̄ M̄

fi

ffi

ffi

ffi

fl

, A12 “

»

—

—

—

–

pL`qJ pL´qJ

.

pL`qJ pL´qJ

pL`qJ

fi

ffi

ffi

ffi

fl

,

A21 “

»

—

—

—

–

L`

L´ L`

.

L´ L`

fi

ffi

ffi

ffi

fl

loooooooooooooomoooooooooooooon

“AJ12

, A22 “

»

—

—

—

–

M̄β M̄β

.

M̄β M̄β

M̄β

fi

ffi

ffi

ffi

fl

. (4.9)

In order to symmetrize the system, we now apply the linear transformation
T defined as in (3.11), with T1, T2 P Rpntnxqˆpntnxq defined as in (3.12). Then,

T

«

A11 A12

A21 A22

ff«

v

ζ

ff

“

«

Φ ΨJ

Ψ ´Θ

ff

loooooomoooooon

A

«

v

ζ

ff

“ T

«

b1

b2

ff

, (4.10)

where

Φ “ T1A11 “

»

—

—

—

–

2M̄ M̄

M̄
.
. . . 2M̄ M̄

M̄ M̄

fi

ffi

ffi

ffi

fl

, Θ “ T2A22 “

»

—

—

—

–

M̄β M̄β

M̄β 2M̄β
. . .

. M̄β

M̄β 2M̄β

fi

ffi

ffi

ffi

fl

.

111

Furthermore, it holds that

Ψ “ T2A21 “

»

—

—

—

—

—

–

L`

τL L`

L´ τL L`

.

L´ τL L`

fi

ffi

ffi

ffi

ffi

ffi

fl

“ pT1A12q
J.

As for the heat control problem, we have transformed (4.8) to a symmetric system
using matrices T1, T2 which are easy and computationally cheap to apply. Further,
we may easily apply their inverses to a vector using only a sequence of block
updates. Finally, we can rewrite the p1, 1q- and the p2, 2q-blocks of the matrix A
as in (3.14), with ΦD and ΘD defined as in (3.15). We recall that, in this way,
we can work with the matrices Φ and Θ cheaply, using T1, T2, ΦD, ΘD, and that,
since both ΦD and ΘD are symmetric positive definite, the same holds for Φ and
Θ.

Therefore, in order to find an approximate solution to (4.7), we may now
consider the saddle-point system (4.10), to which we can apply a preconditioned
Krylov subspace method for symmetric indefinite matrices, such as MINRES.

4.3 Preconditioning Approach

In this section we describe an optimal preconditoner for the system (4.10), by
making use of saddle-point theory as well as suitable approximations for the
blocks of the matrix A. The preconditioner we derive is a natural extension of
the one for heat control problems derived in Section 3.3.

As we discussed in Section 2.10, given an invertible system of the form (4.10),
with invertible Φ, one may use the block diagonal matrix P3 defined in (2.28) as a
preconditioner. However, as we noted in Section 2.10, the computational cost for
applying the inverse of P3 would be comparable to that of applying the inverse
of A. For this reason, we wish to find a suitable approximation pP3 of P3, with

pP3 “

«

pΦ 0

0 pS

ff

,

or, more precisely, a cheap application of the effect of pP´1
3 on a generic vector.

As we described in Section 3.3.1, a good approximation of Φ is given by
pΦ “ T1

pΦDT
J
1 , with

pΦD “
τ

2

»

—

–

Mc

. . .

Mc

fi

ffi

fl

,

where Mc denotes a fixed number of steps (20, in our tests) of Chebyshev semi-
iteration applied to M . We thus need only to find an approximation to the Schur
complement S. We will do so by extending the strategy described in Section 3.3.2
for the heat control problem.

112

4.3.1 Approximation of Schur Complement

We now find a suitable approximation for the Schur complement S of (4.10). In
the forthcoming theory, we assume that Assumption 1 holds, and later discuss
the case where this is relaxed. Note that the approximation we derive below is
a generalization of the Schur complement approximation derived in Section 3.3.2
for heat control.

As done in Section 3.3.2, we rewrite the matrices Φ, Ψ, and Θ in terms of T1

and T2, obtaining the following expression for S:

S “ T2ΘDT
J
2 ` T2A21pT1ΦDT

J
1 q
´1AJ21T

J
2 “ T2

“

ΘD `ΨDΦ´1
D ΨJ

D

‰

TJ2 , (4.11)

where we set
ΨD “ A21T

´1
2 . (4.12)

As for the heat control problem, if we find a symmetric positive definite approx-
imation rSint of

Sint “ ΘD `ΨDΦ´1
D ΨJ

D, (4.13)

then pS :“ T2
rSintT

J
2 is a symmetric positive definite approximation of S. Then,

we can derive upper and lower bounds for the eigenvalues of the matrix pS´1S by
employing the (generalized) Rayleigh quotient (3.25), as done in Section 3.3.2.

As for heat control, we can exploit the structure of the matrices ΦD and
ΘD in (3.15), and apply the matching strategy to (4.13) in order to find an

approximation rSint of Sint. We seek an approximation:

rSint “ pA21 ` xMqΦ´1
pA21 ` xMqJ « Sint (4.14)

such that
xMΦ´1

xMJ
“

”

xMpTJ1 q
´1
ı

Φ´1
D

”

T´1
1

xMJ
ı

“ ΘD.

Following the work in Section 3.3.2, for this to hold the matrix xM is given by

xM “
τ

2
?
β

»

—

—

—

–

M
M M

.

M M

fi

ffi

ffi

ffi

fl

. (4.15)

Finally, our approximation of S is given by

pS “ T2pA21 ` xMqΦ´1
pA21 ` xMqJTJ2 “ pA21 ` xMqΦ´1

D pA21 ` xMqJ, (4.16)

with xM as defined in (4.15), and the two expressions are equivalent since T2

commutes with both A21 and xM . To understand the effectiveness of this approx-
imation, we again follow the work in Section 3.3.2, and study the spectrum of the
matrix rS´1

intSint. We first rewrite rSint as follows, as in (3.31):

rSint “ Sint `MDΦ´1
D ΨJ

D `ΨDΦ´1
D MJ

D .

113

Then, we consider the generalized Rayleigh quotient:

R :“
xJSintx

xJ rSintx
“

aJa` bJb

aJa` bJb` aJb` bJa
, (4.17)

where a “ pΨDΦ
´1{2
D qJx and b “ pΘ

1{2
D q

Jx. Working as in Section 2.11, since

Φ ą 0 and Θ ą 0, for Theorem 1 we have R ě
1

2
.

In order to find an upper bound for the Rayleigh quotient (4.17), we again
note that

rSint “ Sint `
1
?
β

`

ΨJ
D `ΨD

˘

.

Then, following the reasoning in [139] and the reasoning from the proof of Theo-
rem 2, we can prove that R ď 1. From (4.17), this holds if

aJb` bJa“
1
?
β

zJ
`

AJ21T2 ` T
J
2 A21

˘

z ě 0 ,

where we set z “ T´1
2 x. Therefore, we wish to show that the matrix X “

AJ21T2 ` T
J
2 A21 is positive semi-definite. We easily obtain that

X “
τ

2

»

—

—

—

—

–

2rL rL

rL
.
. . . 2rL rL

rL rL

fi

ffi

ffi

ffi

ffi

fl

loooooooooooomoooooooooooon

“: rL

`

»

—

—

—

–

0
. . .

0
2M

fi

ffi

ffi

ffi

fl

looooooooooomooooooooooon

“: ĂM

,

with rL “ L ` LJ “ 2pεK `W q since both K and W are symmetric, and N is
skew-symmetric due to Assumption 1. Furthermore, since K is positive definite
in this case, with W positive semi-definite, rL is also positive definite. Therefore,
by observing that also the matrix T as defined as in Section 3.3.2 is symmetric
positive definite, and by employing Theorem 3, we can infer that rL “ T b rL is
symmetric positive definite. Again, the matrix ĂM is clearly symmetric positive
semi-definite. Finally, from rL ą 0 and ĂM ľ 0 we can imply that X ą 0, and
therefore

aJb` bJa ě 0,

with a and b as defined above. Finally, the last inequality guarantees that the
Rayleigh quotient R in (4.17) satisfies R ď 1.

We have hence proved the following result:

Theorem 6. Let Sint and rSint be defined as in (4.13) and (4.14) respectively, with

the matrices ΦD, ΨD, ΘD, A21, Φ, xM defined as in (3.15), (4.12), (4.9), (3.14),
and (4.15). Then, given Assumption 1:

λprS´1
intSintq P

„

1

2
, 1

.

114

In Figure 4.1 we report the eigenvalue distribution of rS´1
intSint for a range

of values of β with diffusion coefficient ε “ 1
100

, for a particular Dirichlet test
problem.

Figure 4.1: Eigenvalues of rS´1
intSint for β “ 10´j, j “ 2, 3, 4, 5, with ε “ 1

100
,

w “ r2x2p1 ´ x2
1q, ´ 2x1p1 ´ x2

2qs
J (where x “ rx1, x2s

J), employing Q1 finite
elements on an evenly spaced space–time grid p´1, 1q2 ˆ p0, 2q with τ “ h “ 1

8
.

Further, using Theorem 6 and the Rayleigh quotient (3.25), we can prove the
following:

Theorem 7. Let S and pS be defined as in (4.11) and (4.16), with the matrices
defined as in Theorem 6, and T1, T2 as in (3.12). Then, given Assumption 1:

λppS´1Sq P

„

1

2
, 1

.

Remark 5. As for Theorems 4 and 5 in Chapter 3, no assumption has been made
on the grid, meaning that the bounds in Theorem 6 and in Theorem 7 still hold
in case of non-uniform meshes. We also highlight that Theorem 6 and Theorem
7 hold if no stabilization is applied to the convection–diffusion control problem.

As we noted at the beginning of this section, the Schur complement approxi-
mation derived here is a generalization of the Schur complement approximation
derived in Section 3.3.2 for heat control. As for the Schur complement approxi-
mation derived in the previous chapter, from Theorem 7 we can imply that the
matrix pS in (4.16) is an effective approximation of the Schur complement S de-
fined in (4.11). Again, we do not solve exactly a system involving the matrix
pS, but rather employ a cheap approximation of the effect of pS´1 on a generic
vector. The latter is done as for heat control: since the bulk of the work involves
approximately applying the inverse of A21 ` xM and pA21 ` xMqJ, we employ
block-forward and block-backward substitution, respectively, with each block di-
agonal approximated using a fixed number of V-cycles of a multigrid routine, for
example.

Remark 6. Let us now briefly discuss the applicability of our method if Assump-
tion 1 does not hold, that is w ¨ n ‰ 0 on a portion of BΩN . As above, this

115

results in the matrix N not being skew-symmetric. Therefore, assuming (non-
trivially) a discretization of the adjoint operator has been performed such that
one is examining a symmetric linear system, from (4.4) we can derive that

rL “ 2pεK `W q `H ľ 2pεK `W q ´ cMBΩN ,

so a sufficient condition for the matrix rL to be positive semi-definite is that 2pεK`

W q ľ cMBΩN . Even if the matrix rL were not positive semi-definite, one could
also argue that the upper bound on the eigenvalues in Theorem 6 (and hence that
of Theorem 7) would be only slightly larger than 1 for moderate }w} and large
diffusion coefficient ε, as the contribution (in terms of eigenvalues) of the matrix

H to rL is no greater than that of the (very sparse) mass matrix on BΩN multiplied
by }w}. If the discretization of the adjoint operator is such that the resulting linear
system is not symmetric, we would need to apply a non-symmetric Krylov solver
such as GMRES [157], potentially in conjunction with a preconditioner of the
form (2.26) for A.

4.4 Numerical Results

We now provide numerical evidence of the effectiveness of our preconditioning
strategy, showing the robustness of our solver with respect to all the parameters
involved, for the time-dependent convection–diffusion control problem.

In all our tests we consider only Dirichlet boundary conditions (i.e., BΩN “

H), but we emphasize again that the method is easily generalized to Neumann and
mixed boundary conditions (with the caveats previously outlined for convection–
diffusion control). We employ Q1 finite elements for state, control, and adjoint
variables. As discussed in Section 4.3, when approximating the p1, 1q-block we
employ (backward and forward) block updates for inverting T1 and T2 “ TJ1 , and
apply 20 steps of Chebyshev semi-iteration to each mass matrix on the diagonal
of ΦD. Regarding the approximation of the Schur complement, as we did for
heat control, in order to approximately apply the inverse operator of A21 ` xM
and its transpose we employ block-forward and block-backward substitution, re-
spectively, with each block on the diagonal approximated with 3 V-cycles of an
appropriate multigrid routine. For this problem, we employ the AGMG alge-
braic multigrid routine [118, 121, 122, 123], as AGMG is particularly well suited
to convection-driven problems [121]. The iteration count for all tests presented
starts from 0. All tests are run on MATLAB R2018b, using a 1.70GHz Intel
quad-core i5 processor and 8 GB RAM on an Ubuntu 18.04.1 LTS operating
system.

We consider a convection–diffusion control problem of the type (4.1)–(4.2),
with d “ 2, Ω “ p´1, 1q2, tf “ 2, f “ 0, and wind w “ r2x2p1´ x2

1q, ´ 2x1p1´
x2

2qs
J. The initial condition on the state v is given by

vpx1, x2, 0q “

"

1 if x1 “ 1,
0 otherwise.

116

Setting BΩ1 :“ t1uˆ r´1, 1s and BΩ2 “ BΩzBΩ1, the boundary condition is given
by

vpx1, x2, tq “

"

1 on BΩ1 ˆ p0, tf q,
0 on BΩ2 ˆ p0, tf q.

Finally, the desired state is given by

vdpx1, x2, tq “ e´10p1´x1q.

We run preconditioned MINRES to a tolerance of 10´6, constructing a (spatial)
uniform grid of mesh-size h “ 21´l at level l, and setting τ “ h in all the tests
presented. In Figure 4.2–4.3 we show the numerical solutions for the state v and
adjoint variable ζ at time t “ 1, for β “ 10´2 and l “ 5, with both ε “ 1

20

and ε “ 1
100

. In Tables 4.1–4.3 we report the number of iterations it required
for achieving convergence together with the elapsed CPU time taken in seconds,
with values of ε “ 1

20
, 1

100
, and 1

500
, for a range of l and β. Finally, for the

total size of the systems solved, we refer the reader to the column concerning the
Crank–Nicolson discretization in Table 3.4.

Table 4.1: Convection–diffusion control problem: MINRES iterations and CPU
times with ε “ 1

20
, for a range of l and β.

β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU

3 22 0.16 24 0.14 25 0.17 21 0.10 15 0.08 10 0.05
4 22 0.82 25 1.25 26 1.07 24 1.01 19 0.76 13 0.55
5 20 1.89 25 2.20 26 1.37 26 1.38 23 3.12 17 5.81
6 22 6.75 23 6.99 25 7.59 26 7.91 26 8.06 24 7.41
7 24 64.7 24 64.4 25 66.9 25 67.1 26 68.9 26 68.9
8 24 787 24 775 26 848 25 801 25 550 26 571

Table 4.2: Convection–diffusion control problem: MINRES iterations and CPU
times with ε “ 1

100
, for a range of l and β.

β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU

3 23 0.14 26 0.12 23 0.10 21 0.10 15 0.10 10 0.06
4 25 0.84 26 1.14 26 1.05 25 1.04 21 0.86 15 0.63
5 24 3.68 27 3.87 26 3.78 26 3.34 23 7.01 18 5.53
6 24 14.6 25 15.2 26 14.3 26 13.4 26 19.1 22 58.8
7 23 105 25 112 26 129 26 109 26 107 25 175
8 22 647 25 783 25 791 27 705 26 705 26 652

117

Table 4.3: Convection–diffusion control problem: MINRES iterations and CPU
times with ε “ 1

500
, for a range of l and β.

β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU

3 23 0.10 26 0.17 23 0.15 21 0.09 15 0.08 10 0.09
4 25 1.06 26 1.08 26 1.05 25 1.02 21 0.90 15 0.61
5 25 4.04 27 4.26 27 3.88 26 4.01 25 7.54 19 5.63
6 26 17.5 27 18.7 27 18.6 27 17.1 27 28.1 22 58.5
7 26 146 27 150 27 148 27 146 25 141 25 299
8 26 1174 27 1179 27 1164 27 1087 27 1010 25 1251

As can be seen from Tables 4.1–4.3, our new preconditioner is highly effective
and robust, leading to convergence for all tests in at most 27 iterations. For
β “ 10´5 or 10´6, and larger values h, convergence is achieved in a lower number
of iterations: this is not surprising as for these values the Schur complement is
spectrally ‘close’ to a mass matrix, making the problem easier to solve. Apart
from this, we notice that the number of iterations is independent of the parameters
involved. In addition, the CPU time scales approximately linearly with problem
size: as we refine the grid, the number of degrees of freedom increases by a factor
of 8, and so do (roughly) the CPU times. We therefore deduce that our method
is a potent one for the resolution of time-dependent convection–diffusion control
problems, a class of problems which consists of substantial numerical difficulties.
The number of iterations required to solve these problems is independent of mesh-
size h, regularization parameter β, and diffusion coefficient ε.

Figure 4.2: Convection–diffusion control problem: Numerical solutions for state
and adjoint variables at time t “ 1, with ε “ 1

20
, β “ 10´2, and l “ 5.

(a) State v (b) Adjoint variable ζ

4.5 Summary

In this chapter, we have applied an optimize-then-discretize strategy to tackle
the optimal control of the time-dependent convection–diffusion equation, coupled

118

Figure 4.3: Convection–diffusion control problem: Numerical solutions for state
and adjoint variables at time t “ 1, with ε “ 1

100
, β “ 10´2, and l “ 5.

(a) State v (b) Adjoint variable ζ

with a Crank–Nicolson scheme in time. After eliminating the initial and final time
conditions for the state and adjoint variables, we employed an invertible linear
transformation that symmetrized the resulting linear system. The latter was
used for deriving a new, fast, and robust preconditioner for the resulting saddle-
point matrix, which possesses a complex structure. We also proved that the
Schur complement approximation used is optimal with respect to all parameters
involved through bounds on the eigenvalues. Finally, numerical results showed
the optimality of our preconditioned Crank–Nicolson method, as the number of
iterations required to reach a prescribed accuracy is roughly constant.

119

Chapter 5

Preconditioning Stationary and
Instationary Stokes Control
Problems

“Humankind cannot gain anything without first giving something
in return. To obtain, something of equal value must be lost. That
is Alchemy’s First Law of Equivalent Exchange. In those days,
we really believed that to be the world’s one, and only, truth.”

– Hiromu Arakawa, Fullmetal Alchemist

As we mentioned in the first chapters, one of the goals of this work is devising
robust and efficient preconditioners for the distributed control of incompressible
viscous fluid flow problems, which will be the topic of the following two chapters.
We begin here with the distributed control of the Stokes equations, in both the
stationary and instationary case, leaving the control of the Navier–Stokes equa-
tions to the following chapter. The content of this chapter is based on some of
the work in [99, 101].

An example of a highly challenging problem attracting significant attention
of late is the (distributed) control of incompressible viscous fluid flow problems.
For such control problems, the constraints may be the (non-linear) incompress-
ible Navier–Stokes equations or, in the limiting case of viscous flow, the (lin-
ear) incompressible Stokes equations. The study of the incompressible Stokes
control problems is of particular interest per se in saddle-point theory (e.g.,
[8, 96, 153, 170, 190]), but also from a practical point of view, as the numerical
solutions to those problems can be used as a starting point for the linearization
of the corresponding incompressible Navier–Stokes control problems. In addi-
tion, robust and efficient preconditioners for the incompressible Stokes control
problems may be “adjusted” and “tailored” in order to solve the incompressible
Navier–Stokes control problems. For this reason, in this chapter we consider the
control of the incompressible Stokes equations, in both the stationary and in-
stationary settings. Our aim is to devise robust and efficient preconditioners for
those type of problems, which may be then generalized to the corresponding in-
compressible Navier–Stokes control problems. In particular, in the following two
chapters, we utilize a commutator argument for a block matrix in conjunction

120

with saddle-point theory in order to derive robust preconditioners for the optimal
control of the incompressible Stokes and Navier–Stokes equations, in both the sta-
tionary and instationary settings. For instationary problems our approach leads
to potent preconditioners when either the backward Euler or Crank–Nicolson
scheme is used in the time variable.

This chapter is structured as follows. In Section 5.1, we define the prob-
lems that we examine, that is the stationary and instationary Stokes control
problems; we then outline the linear systems arising upon discretization of the
forward problem. In Section 5.2, we introduce the preconditioner for the forward
stationary Stokes equation in combination with the commutator argument pre-
sented in [164]; the latter will then be generalized in Section 5.3 when multiple
differential operators are involved in the system of equations. In Section 5.4,
we derive the first-order optimality conditions of the control problems and their
discretization. In Section 5.5, we present our suggested preconditioners, and in
particular the commutator argument applied to the Schur complements arising
from the control problems. Then, in Section 5.6 we provide numerical results
that show the robustness and efficiency of our approach.

5.1 Problem Formulation

In this chapter we derive fast and robust preconditioned iterative methods for
the distributed control of incompressible fluid flow, in the limiting case of viscous
flow; in this case, the physics is described by the (stationary or instationary)
incompressible Stokes equations. The corresponding distributed control problem
is defined as a minimization of a least-squares cost functional subject to the PDEs.

Specifically, given a spatial domain Ω Ă Rd, d P t2, 3u, the stationary Stokes
control problem we consider is

min
~v,~u

JSp~v, ~uq “
1

2

ż

Ω

|~vpxq ´ ~vdpxq|
2 dΩ`

β

2

ż

Ω

|~upxq|2 dΩ (5.1)

subject to
$

&

%

´∇2~v `∇p “ ~u` ~fpxq in Ω,

´∇ ¨ ~vpxq “ 0 in Ω,

~vpxq “ ~gpxq on BΩ,

(5.2)

where the state variables ~v and p denote velocity and pressure respectively, ~vd is
the desired state (velocity), and ~u is the control variable; it is worth mentioning

that ~v, ~u, ~f , and ~g are vector functions (in Rd), whereas p is a scalar function.

Further, β ą 0 is a regularization parameter. The functions ~f and ~g are known.
Similarly, the control of the instationary Stokes equations is defined as

min
~v,~u

JIp~v, ~uq “
1

2

ż tf

0

ż

Ω

|~vpx, tq ´~vdpx, tq|
2 dΩ dt`

β

2

ż tf

0

ż

Ω

|~upx, tq|2 dΩ dt, (5.3)

121

given also a final time tf ą 0, subject to

$

’

’

’

&

’

’

’

%

B~v
Bt
´∇2~v `∇p “ ~u` ~fpx, tq in Ωˆ p0, tf q,

´∇ ¨ ~vpx, tq “ 0 in Ωˆ p0, tf q,

~vpx, tq “ ~gpx, tq on BΩˆ p0, tf q,

~vpx, 0q “ ~v0pxq in Ω,

(5.4)

using the same notation as above. As for the stationary case, the functions ~f and
~g are known; the initial condition ~v0 is also given. In the following, we typically
assume that ~v0 is solenoidal, i.e. ∇ ¨ ~v0 “ 0, while adapting our strategy to the
general case when possible.

Many parameter-robust preconditioners for the optimal control of the station-
ary incompressible Stokes equations have been derived in the literature (see, e.g.,
[153, 170, 190]); however, less progress has been made towards the parameter-
robust solution of instationary Stokes control problems, except in the time-
periodic setting [8, 96]. Below, we derive a preconditioner that will also result in
a robust solver for the general formulation of the instationary distributed Stokes
control problem.

5.1.1 Discretization Matrices

To introduce the discretization matrices, we consider the stationary Stokes equa-
tions:

"

´∇2~v `∇p “ ~u` ~fpxq in Ω,
´∇ ¨ ~vpxq “ 0 in Ω,

(5.5)

with ~v “ ~g on BΩ. First, we introduce the weak formulation of (5.5) as follows.
Let V :“ t~v P H1pΩqd | ~v “ ~g on BΩu, V0 :“ t~v P H1pΩqd | ~v “ ~0 on BΩu, and
Q :“ L2pΩq, with H1pΩqd the Sobolev space of square-integrable functions in Rd

with square-integrable weak derivatives; then, the weak formulation reads as:
Find ~v P V and p P Q such that

"

p∇~v,∇~wq ´ pp,∇ ¨ ~wq “ p~u, ~wq ` p~f, ~wq for all ~w P V0,
´pq,∇ ¨ ~v q “ 0 for all q P Q,

(5.6)

where p¨, ¨q is the L2-inner product on Ω.

Then, letting t~φiu
nv
i“1 and tψiu

np
i“1 be inf–sup stable finite element basis func-

tions, we seek approximations ~vpxq «
řnv
i“1 vi

~φi, ~upxq «
řnv
i“1 ui

~φi, ppxq «
řnp
i“1 piψi. Denoting the vectors v “ tviu

nv
i“1, u “ tuiu

nv
i“1, p “ tpiu

np
i“1, a dis-

cretized version of (5.6) is:

"

K v `BJp “ Mu` f ,
B v “ 0,

(5.7)

122

where

K “ tkilu
nv
i,l“1, kil“

ż

Ω

∇~φi : ∇~φl, M “ tmilu
nv
i,l“1, mil“

ż

Ω

~φi ¨ ~φl,

B “ tbilu
l“1,...,nv
i“1,...,np

, bil“´

ż

Ω

ψi∇ ¨ ~φl, f “ tfiu
nv
i“1, fi“

ż

Ω

~f ¨ ~φi.

The matrix K is generally referred to as a (vector-)stiffness matrix, and the matrix
M is referred to as a (vector-)mass matrix ; both the matrices are symmetric
positive definite. The matrix B is referred to as the (negative) divergence matrix.

In the following, we will employ inf–sup stable Taylor–Hood Q2–Q1 finite
elements in the spatial dimensions. This approach leads to a block diagonal
vector-mass matrix M. Of late, some research has been devoted to non-standard
Lagrange finite elements, which lead to mass matrices on the velocity space that
have not necessarily a block diagonal structure, see for instance [48, 49, 50].

5.2 Preconditioning Forward Stationary Stokes

Equations

In this section we introduce an optimal preconditioner for the forward Stokes
equations. This preconditioner (first derived in [164]) consists of a symmetric
positive definite 2-by-2 block matrix, within which the approximation for the
p2, 2q-block can be considered as a special case of the commutator argument
derived in [92] for the forward stationary Navier–Stokes equations.

As discussed in Section 2.10, an optimal preconditioner for the matrix arising
from (5.7) is given by the symmetric positive definite matrix P3 defined in (2.28),
with Φ “ K and S “ BK´1BJ. As we have repeatedly mentioned so far, we
do not apply the inverse operator of each of the two blocks of P3, but rather
find approximations pΦ and pS for Φ and S, respectively. As discussed in [44,

Section 4.2], an efficient preconditioner is given by the matrix pP3 defined in (2.30),

with pΦ being the approximation of K using a multigrid routine, for example, and
pS being the (scalar) mass matrix Mp “ rpψi, ψlqs in the pressure finite element
space. Again, rather than solving for Mp, we approximate it by taking its diagonal

[164], or by applying Chebyshev semi-iteration [181]. The preconditioner pP3 so
defined is robust with respect to the mesh-size h. Indeed, by employing stable
finite elements and assuming boundedness of the matrix B, it is possible to prove
that the non-zero eigenvalues of the preconditioned Schur complement M´1

p S
lie in the interval rγ2

l , γ
2
us, see, for instance, [44, Section 4.2] and [182], where

γl is the inf–sup constant, and γu is the boundedness constant. Due to this
property, the approximation of the Schur complement S by the pressure mass
matrix Mp has been widely used for the fast numerical solution of discrete Stokes
problems, see, for instance, [182] and references therein. Although the bounds on
the eigenvalues of M´1

p S can be derived analytically, the approximation employed
here can be considered a special case of the so called pressure convection–diffusion
preconditioner [44, pp. 365–370] (first derived in [92]) for the Schur complement
arising from the discretization of the Picard iteration applied to the forward

123

Navier–Stokes equations. Here, we adapt the strategy presented in [92] to the case
of the Stokes problem, leaving the derivation of the proper pressure convection–
diffusion preconditioner to the next chapter.

Consider the diffusion operator D “ ´∇2 defined on the velocity space as in
(5.5), and suppose the analogous operator Dp “ p´∇2qp on the pressure space is
well defined. Suppose also that the commutator

E “ D∇´∇Dp (5.8)

is small in some sense. Then, discretizing (5.8) with stable finite elements leads
to

pM´1KqM´1BJ ´M´1BJpM´1
p Kpq « 0,

where Kp “ rp∇ψi,∇ψlqs is the (scalar) stiffness matrix in the pressure finite
element space. Given invertibility of K and Kp, pre- and post-multiplying by
BK´1M and K´1

p Mp, the previous expression then gives

BM´1BJK´1
p Mp « BK´1BJ.

We still have no practical preconditioner due to the matrix BM´1BJ; however, it
can be proved that Kp « BM´1BJ for problems with enclosed flow [44, pp. 176–
177]. Finally, a good approximation of the Schur complement S “ BK´1BJ

is
pS “ KpK

´1
p Mp “Mp « S.

As we mentioned, the preconditioners we derive in this chapter make use of a
generalization of the commutator argument (5.8).

5.3 Block Commutator Argument

In this section, we generalize the pressure convection–diffusion preconditioner,
applying the commutator argument in (5.8) to the case where the differential
operators involved are to be considered vectorial differential operators, i.e.

Em̄ “ D∇m̄ ´∇m̄Dp, (5.9)

where

D “

»

—

–

D1,1 . . . D1,m̄

...
. . .

...
Dm̄,1 . . . Dm̄,m̄

fi

ffi

fl

, Dp “

»

—

–

D1,1
p . . . D1,m̄

p
...

. . .
...

Dm̄,1
p . . . Dm̄,m̄

p

fi

ffi

fl

,

for some m̄ P N. Here Di,l is a differential operator on the velocity space with Di,l
p

the corresponding differential operator on the pressure space, for i, l “ 1, 2, . . . , m̄,
and ∇m̄ “ Im̄ b∇, with Im̄ P Rm̄ˆm̄ the identity matrix. As above, we suppose
that each Di,l

p , i, l “ 1, 2, . . . , m̄, is well defined, and that the commutator Em̄ is
small in some sense. Again, after discretizing with stable finite elements we can

124

rewrite
`

M´1D
˘

M´1 ~B J
´M´1 ~B J

`

M´1
p Dp

˘

« 0, (5.10)

where M “ Im̄ bM, Mp “ Im̄ bMp, ~B “ Im̄ bB, and

D “

»

—

–

D1,1 . . . D1,m̄

...
. . .

...
Dm̄,1 . . . Dm̄,m̄

fi

ffi

fl

, Dp “

»

—

–

D1,1
p . . . D1,m̄

p
...

. . .
...

Dm̄,1
p . . . Dm̄,m̄

p

fi

ffi

fl

,

with M´1Di,l and M´1
p Di,l

p the corresponding discretizations of Di,l and Di,l
p ,

respectively. Assuming invertibility of D, and the corresponding block matrix Dp

on the pressure space, pre-multiplying (5.10) by ~BD´1M, and post-multiplying
by D´1

p Mp, gives that

~BM´1 ~B JD´1
p Mp « ~BD´1 ~B J.

Noting that ~BM´1 ~B J “ Im̄ b pBM´1BJq and recalling that Kp « BM´1BJ,
we derive the following approximation:

KpD
´1
p Mp « ~BD´1 ~B J, (5.11)

where Kp “ Im̄ b Kp. In Section 5.5.2 we employ the approach outlined here
to devise preconditioners for the discrete optimality conditions of Stokes control
problems. Those preconditioners will be then generalized to the Navier–Stokes
control problems in the next chapter.

We would like to devote some discussion to the generalized commutator argu-
ment discussed above. Although we were not able to prove any spectral property
for the approach outlined here, the numerical results reported in Section 5.6 show
the robustness of our approach. We believe (although this is only a conjecture)
that the generalized commutator argument is likely to be most effective when
each block Di,l of the matrix D is diagonally dominant. In addition, although we
consider only standard Lagrangian finite elements in this work, we believe that
the approach outlined here may also be applied to more general vector-valued
function spaces. In fact, we believe (this is another conjecture) that the general-
ized commutator argument may be related to operator preconditioning.

5.4 First-Order Optimality Conditions and Dis-

cretization in Time

We now describe the strategy used for obtaining a numerical solution of (5.1)–

(5.2) and of (5.3)–(5.4). We introduce adjoint variables ~ζ and µ and make use of
an optimize-then-discretize scheme, stating the first-order optimality conditions.
We then discretize the conditions so obtained, for both the stationary and in-
stationary Stokes control problems. For the instationary problem (5.3)–(5.4), we
consider employing both backward Euler and Crank–Nicolson schemes in time.
While only first-order accurate, backward Euler can be easily generalized to the

125

setting when the initial condition ~v0 is not solenoidal. On the other hand, Crank–
Nicolson is second-order accurate, however if ~v0 is not solenoidal pre-processing
is required in order to write the discrete optimality conditions.

We note that the optimality conditions stated below are a special case of the
ones derived in Chapter 6 for the corresponding Navier–Stokes control problems.
Indeed, the first-order optimality conditions for the Stokes control problems can
be derived from those for the Navier–Stokes control problems by neglecting the
non-linear term. For this reason, we refer the reader to Section 6.3.2 for the
derivation of the optimality conditions for the Stokes control problems.

5.4.1 Stationary Stokes Control

Introducing the adjoint velocity ~ζ and the adjoint pressure µ, we may consider
the Lagrangian associated with (5.1)–(5.2), and write the Karush–Kuhn–Tucker
conditions as:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´∇2~v `∇p “ 1
β
~ζ ` ~f in Ω

´∇ ¨ ~vpxq “ 0 in Ω
~vpxq “ ~gpxq on BΩ

,

.

-

state

equations

´∇2~ζ `∇µ “ ~vd ´ ~v in Ω

´∇ ¨ ~ζpxq “ 0 in Ω
~ζpxq “ ~0 on BΩ

,

/

.

/

-

adjoint

equations

(5.12)

where we have substituted the gradient equation β~u´ ~ζ “ 0 into the state equa-
tion.

Problem (5.12) is a coupled system of linear, stationary PDEs. In order to
find a numerical solution of (5.12), we discretize those optimality conditions by
employing finite elements. Thus, we first need to write the weak formulation of
(5.12). Letting V , V0, and Q be defined as in Section 5.1.1, this reads as:

Find ~v P V , p P Q, ~ζ P V0, and µ P Q such that

$

’

’

’

&

’

’

’

%

p∇~v,∇~wq ´ pp,∇ ¨ ~wq ´ 1
β
p~ζ, ~wq “ p~f, ~wq,

´pq,∇ ¨ ~vq “ 0,

p~v, ~wq ` p∇~ζ,∇~wq ´ pµ,∇ ¨ ~wq “ p~vd, ~wq,
´pq,∇ ¨ ~ζq “ 0,

for any ~w P V0 and q P Q.
The problem above is posed on the continuous level, so we need to discretize

it in order to obtain a numerical solution of (5.1)–(5.2). Let v “ tviu
nv
i“1, p “

tpiu
np
i“1, ζ “ tζiu

nv
i“1, µ “ tµiu

np
i“1 be the vectors containing the numerical solutions

for ~v, p, ~ζ, and µ, respectively, that is, ~v «
řnv
i“1 vi

~φi, p «
řnp
i“1 piψi,

~ζ «

126

řnv
i“1 ζi

~φi, µ «
řnp
i“1 µiψi. Then, the discrete optimality conditions read as

$

’

’

&

’

’

%

Kv `BJp´Mβζ “ f ,
Bv “ 0,

Mv `Kζ `BJµ “Mvd,
Bζ “ 0,

(5.13)

where Mβ “
1
β
M, and vd is the vector corresponding to the discretized desired

state ~vd. Note that the right-hand side may also take into account boundary
conditions (as done in our implementation).

In matrix form, we rewrite system (5.13) as

„

ΦS ΨJ
S

ΨS ´ΘS

looooooomooooooon

AS

»

—

—

–

v
ζ
µ
p

fi

ffi

ffi

fl

“

»

—

—

–

Mvd
f
0
0

fi

ffi

ffi

fl

, (5.14)

where

ΦS “

„

M K
K ´Mβ

, ΨS “

„

B 0
0 B

, ΘS “

„

0 0
0 0

. (5.15)

It is worth noting that the matrix ΦS represents the discrete optimality conditions
for a (vector) Poisson control problem derived in Section 1.3.1. This observation
will be used below when deriving our proposed preconditioner.

5.4.2 Instationary Stokes Control

We now state the KKT conditions for the instationary problem (5.3)–(5.4). As

before, introducing the adjoint variables ~ζ and µ, we consider the Lagrangian
associated to (5.3)–(5.4). Then, by deriving the KKT conditions and substituting

the gradient equation β~u ´ ~ζ “ 0 into the state equation, the solution of (5.3)–
(5.4) satisfies:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

B~v
Bt
´∇2~v `∇p “ 1

β
~ζ ` ~f in Ωˆ p0, tf q,

´∇ ¨ ~vpx, tq “ 0 in Ωˆ p0, tf q,
~vpx, tq “ ~gpx, tq on BΩˆ p0, tf q,
~vpx, 0q “ ~v0pxq in Ω,

´
B~ζ
Bt
´∇2~ζ `∇µ “ ~vd ´ ~v in Ωˆ p0, tf q,

´∇ ¨ ~ζpx, tq “ 0 in Ωˆ p0, tf q,
~ζpx, tq “ ~0 on BΩˆ p0, tf q,
~ζpx, tf q “ ~0 in Ω.

(5.16)

Problem (5.16) is a coupled system of linear, instationary PDEs. Working
as in the previous section, we first write the weak formulation of (5.16), then
discretize it.

127

We first introduce the following spaces. Let

V̄ :“ t~v P L2
p0, tf ;H1

pΩqdq | B~v
Bt
p¨, tq P L2

p0, tf ;H´1
pΩqdq for a.e. t P p0, tf q,

~v “ ~g on BΩ, ~vpx, 0q “ ~v0pxqu,

Q̄ :“ L2
p0, tf ;L

2
pΩqq,

and V̄0 be the corresponding space for the adjoint velocity. See [175, pp. 315–321]
and [86, pp. 88–95], for instance, for Navier–Stokes control in the case d “ 2.
Then, the weak formulation of (5.16) reads as:

Find ~v P V̄ , p P Q̄, ~ζ P V̄0, and µ P Q̄ such that

$

’

’

’

&

’

’

’

%

p B
Bt
~v, ~wq ` p∇~v,∇~wq ´ pp,∇ ¨ ~wq ´ 1

β
p~ζ, ~wq “ p~f, ~wq,

´pq,∇ ¨ ~v q “ 0,

´p B
Bt
~ζ, ~wq ` p∇~ζ,∇~wq ´ pµ,∇ ¨ ~wq ` p~v, ~wq “ p~vd, ~wq,

´pq,∇ ¨ ~ζ q “ 0,

(5.17)

for any ~w P V0 and q P Q.
Problem (5.17) is a coupled system of instationary diffusion equations and

divergence-free conditions. Due to this structure, we present two discretized
versions of (5.17), one making use of backward Euler time-stepping, the other
employing the Crank–Nicolson scheme. For the sake of exposition, we introduce
the matrices In̄,1, In̄,2, In̄,3, In̄,4 P Rn̄ˆn̄, with

In̄,1 “ diagp1, . . . , 1, 0q,

In̄,2 “ diagp0, 1, . . . , 1q,

In̄,4 “ In̄ ` In̄,3,

In̄,3 “

»

—

—

—

–

0 1
.

0 1
0

fi

ffi

ffi

ffi

fl

. (5.18)

Here, diag denotes a diagonal matrix with the diagonal entries stated.

Backward Euler for Instationary Stokes Control

In this section we introduce the backward Euler scheme for approximating (5.17),
and then derive the resulting linear system. We discretize the interval p0, tf q

into nt subintervals of length τ “
tf
nt

, denoting the grid points as tn “ nτ , for
n “ 0, 1, . . . , nt. We approximate all the functions on this time grid, excluding
the initial and final time points for the state and adjoint pressure, respectively.
Specifically, our approximations of the solutions are given by vn « ~vpx, tnq, ζn «
~ζpx, tnq, for n “ 0, 1, . . . , nt, and pn`1 « ppx, tn`1q, µn « µpx, tnq, for n “

0, 1, . . . , nt ´ 1, for all x P Ω. We also introduce the following finite element
matrices:

LBE
“ τK`M, M̄BE

“ τM, M̄BE
β “

τ

β
M, B̄ “ τB,

128

We then write the following discretization of (5.17):

$

’

’

’

&

’

’

’

%

M̄BEvn ` LBEζn ´Mζn`1 ` B̄
Jµn “ M̄BEvnd ,

´Mvn ` LBEvn`1 ` B̄
Jpn`1 ´ M̄BE

β ζn`1 “ τfn`1,

Bvn`1 “ 0,

Bζn “ 0,

(5.19)

for n “ 0, 1, ..., nt´ 1, with v0 “ v
0, ζnt “ 0, where v0 is the discretization of the

initial condition for ~v, and

fn`1
“ tfn`1

i u
nv
i“1 fn`1

i “ p~fpx, tn`1q, ~φiq.

We immediately realize that the system described in (5.19) is not symmet-
ric, due the initial and final time conditions v0 “ v

0 and ζnt “ 0. However, it
can be made symmetric by employing the following projections onto the space of
divergence-free functions (solenoidal projection), as done in [84] for the instation-
ary Navier–Stokes control problem, for instance. Given a vector b̄, its solenoidal
projection is defined as b, with

"

LBEb` B̄Jp̄ “ LBEb̄,
B b “ 0.

(5.20)

As the vector v0 is clearly divergence-free, the condition v0 “ v
0 is equivalent to

"

LBEv0 ` B̄
Jp0 “ LBEv0,

Bv0 “ 0.
(5.21)

Note that, if ~v0 is not incompressible, the previous solenoidal projection gives
the first backward Euler step of our discretization. Analogously, the condition
ζnt “ 0 is equivalent to

"

LBEζnt ` B̄
Jµnt “ 0,

Bζnt “ 0.

By imposing the previous projections and multiplying the incompressibility
conditions by τ , the linear system of (5.19) can be rewritten as

„

ΦBE pΨBEq
J

ΨBE ´ΘBE

loooooooooomoooooooooon

ABE

»

—

—

–

v
ζ
µ
p

fi

ffi

ffi

fl

“

»

—

—

–

b1

b2

b3

b4

fi

ffi

ffi

fl

, (5.22)

where the right-hand side accounts for the the initial and final-time conditions on
~v and ~ζ, as well as information from the desired state ~vd and the force function
~f . Further,

ΦBE “

„

MBE pLBEqJ

LBE ´MBE
β

, ΨBE “

„

BBE 0
0 BBE

, ΘBE “

„

0 0
0 0

, (5.23)

129

with MBE “ Int`1,1 b M̄BE, MBE
β “ Int`1,2 b M̄BE

β , BBE “ Int`1 b B̄, and

LBE
“

»

—

—

—

–

LBE

´M LBE

.

´M LBE

fi

ffi

ffi

ffi

fl

.

Crank–Nicolson for Instationary Stokes Control

In this section we present the linear system arising upon employing Crank–
Nicolson in time when solving (5.17). Again discretizing the interval p0, tf q

into nt subintervals of length τ “
tf
nt

, we approximate ~v and ~ζ at the time
points tn “ nτ , n “ 0, 1, . . . , nt, and use a staggered grid for p and µ, as in
[13]. Specifically, our approximations of the solutions are given by vn « ~vpx, tnq,

ζn « ~ζpx, tnq, for n “ 0, 1, . . . , nt, and pn` 1
2
« ppx, tn`

1
2
τq, µn` 1

2
« µpx, tn`

1
2
τq,

for n “ 0, 1, . . . , nt´1, for all x P Ω. Let us introduce the following finite element
matrices:

L˘ “ τ
2
K˘M, M̄CN “ τ

2
M, M̄CN

β “ τ
2β

M.

Then, the discrete optimality conditions read as follows:

$

’

’

’

&

’

’

’

%

M̄CN
pvn ` vn`1q ` L`ζn ` L´ζn`1 ` B̄

Jµn` 1
2
“ M̄CNpvnd ` v

n`1
d q,

L´vn ` L`vn`1 ` B̄
Jpn` 1

2
´ M̄CN

β pζn ` ζn`1q “
τ
2
pfn ` fn`1q,

Bvn`1 “ 0,

Bζn “ 0,

for n “ 0, 1, ..., nt ´ 1, with v0 “ v0, ζnt “ 0, and fn defined as for backward
Euler.

In matrix form, after multipling the incompressibility constraints by τ , we
write

»

—

—

–

M̄CN L̄CN
1 pB̄CN

2 qJ 0
L̄CN

2 ´M̄CN
β 0 pB̄CN

1 qJ

B̄CN
1 0 0 0
0 B̄CN

2 0 0

fi

ffi

ffi

fl

»

—

—

–

v̄
ζ̄
µ̄
p̄

fi

ffi

ffi

fl

“

»

—

—

–

b̄1

b̄2

b̄3

b̄4

fi

ffi

ffi

fl

, (5.24)

where the right-hand side accounts for the initial and final time conditions on ~v
and ~ζ, and information from ~vd and ~f . The blocks in the previous matrix are

130

given by

L̄CN
1 “

»

—

—

—

–

L` L´

.

L` L´

M

fi

ffi

ffi

ffi

fl

, L̄CN
2 “

»

—

—

—

–

M
L´ L`

.

L´ L`

fi

ffi

ffi

ffi

fl

,

B̄CN
1 “

»

—

–

0 B̄
. . .

B̄

fi

ffi

fl

, B̄CN
2 “

»

—

–

B̄
. . .

B̄ 0

fi

ffi

fl

,

and M̄CN “ pInt`1,1 ` Int`1,3q b M̄CN, M̄CN
β “ pInt`1,2 ` I

J
nt`1,3q b M̄CN

β .
The system (5.24) is clearly not symmetric; however, we work as in [100]

and in Chapter 3 in order to transform the linear system above and make it
symmetric. In fact, eliminating the initial and final-time conditions on ~v and ~ζ,
we can rewrite

»

—

—

—

–

ĂMCN p rL CNqJ p rB CNqJ 0
rL CN ´ĂMCN

β 0 p rB CNqJ

rB CN 0 0 0

0 rB CN 0 0

fi

ffi

ffi

ffi

fl

»

—

—

–

v
ζ
µ
p

fi

ffi

ffi

fl

“

»

—

—

–

b1

b2

b3

b4

fi

ffi

ffi

fl

,

with v, ζ, µ, p as well as the right-hand side modified accordingly. The matrices
ĂMCN “ IJnt,4 b M̄CN, ĂMCN

β “ Int,4 b M̄CN
β , rB CN “ Int b B̄, and

rL CN
“

»

—

—

—

–

L`

L´ L`

.

L´ L`

fi

ffi

ffi

ffi

fl

.

Using blkdiag to define a block diagonal matrix, we consider the linear transfor-
mation

T “ blkdiagpT1, T2, T3, T4q, (5.25)

where
T1 “ Int,4 b Inv , T2 “ TJ1 “ IJnt,4 b Inv ,
T3 “ IJnt,4 b Inp , T4 “ TJ3 “ Int,4 b Inp .

(5.26)

Then, we may equivalently consider the following linear system:

«

ΦCN pΨCNq
J

ΨCN ´ΘCN

ff

loooooooooomoooooooooon

ACN

»

—

—

–

v
ζ
µ
p

fi

ffi

ffi

fl

“ T

»

—

—

–

b1

b2

b3

b4

fi

ffi

ffi

fl

. (5.27)

131

Here, the matrix blocks are given by

ΦCN “

„

MCN pLCNqJ

LCN ´MCN
β

, ΨCN “

„

BCN
1 0
0 BCN

2

, ΘCN “

„

0 0
0 0

, (5.28)

with

MCN
“ T1

ĂMCN
“
`

Int,4 I
J
nt,4

˘

b M̄CN, BCN
1 “ T3

rB CN
“ IJnt,4 b B̄,

MCN
β “ T2

ĂMCN
β “

`

IJnt,4 Int,4
˘

b M̄CN
β , BCN

2 “ T4
rB CN

“ Int,4 b B̄,

and the matrix
LCN

“ T1
rL CN. (5.29)

We have thus transformed the system (5.27) into a symmetric one. We observe
that the transformations Ti, i “ 1, 2, 3, 4, as well as their inverse operations are
easy and computationally cheap to apply, as they require only a sequence of block
updates.

It is worth noting that the matrix ΦCN represents the symmetrized system for
a (vector) heat control problem derived in Section 3.2.2. In particular, as done
in Section 3.2.2 we may rewrite

MCN
“ T1MCN

D TJ1 , MCN
β “ T2MCN

D,βT
J
2 , (5.30)

where
MCN

D “ Int b M̄CN, MCN
D,β “ Int b M̄CN

β . (5.31)

We may therefore work efficiently with MCN and MCN
β , using T1, T2, MCN

D ,
MCN

D,β. Further, since both MCN
D and MCN

D,β are symmetric positive definite, the
same holds for MCN and MCN

β .
We point out that it is not straightforward to generalize the Crank–Nicolson

discretization to the case where ~v0 is not incompressible. In fact, in this case
we must also solve an appropriate solenoidal projection; however, the projection
cannot be solved along with the other equations, as our approach requires the
elimination of the initial and final conditions on ~v and ~ζ. Therefore, before
applying our solver we must solve the projection, which is of the form (5.7).

5.5 Preconditioning Approach

As the discretizations (5.14), (5.22), and (5.27) of the optimality conditions for the
problems under examination lead to matrices of the structure (2.3), we now devise
preconditioners for each system by making use of saddle-point theory. Although
the matrices considered are symmetric, it is worth noting that the p1, 1q-block of
each of them is not positive definite, but (clearly) indefinite. For this reason, we
cannot employ the block diagonal preconditioner P3 defined in (2.28), as this is

required to be positive definite, but rather employ the approximation pP1 defined
in (2.30) of the block triangular preconditioner P1. As we have to (approximately)
apply the inverse of the corresponding p1, 1q-block of each matrix analysed, we

again employ an approximation pP1 defined in (2.30). In the following, subscripts

132

refer to the corresponding matrix we are considering.

5.5.1 Approximation of the p1, 1q-Block

We now describe suitable approximations of the inverses of the p1, 1q-blocks for
the systems (5.14), (5.22), and (5.27). As each of these matrices is symmetric, we
employ two alternative strategies to approximate the inverse of the p1, 1q-block,
accelerated with the preconditioners described below. The first strategy employs
a fixed number of steps of the inexact preconditioned Uzawa iteration presented
in Section 2.2.1 [43]; on the other hand, the second strategy makes use of a fixed
number of GMRES iterations [157].

Stationary Stokes Control

Consider the p1, 1q-block ΦS defined in (5.15). As we mentioned above, this
matrix can be considered as the discretization of the optimality conditions for a
Poisson control problem in a vectorial sense. Using saddle-point theory, a suitable
preconditioner is given by

PΦ,S “

„

M 0
K ´SΦ,S

,

with SΦ,S “ Mβ `KM´1K the corresponding Schur complement. As described
in [140] and as we discussed in Section 2.11.1, an optimal preconditioner for PΦ,S

is given by

pPΦ,S “

„

Mc 0

K ´pSΦ,S

.

Here, Mc represents a fixed number of steps of the Chebyshev semi-iterative
method [63, 64, 181], and

pSΦ,S “
`

K`M?
β

˘

M´1
`

K`M?
β

˘

,

with M?
β “

1?
β
M and the block K ` M?

β approximated by the action of a

multigrid routine, for example. Following the work in [140] and Section 2.11.1, it

can be proved that λppS´1
Φ,S SΦ,Sq P

“

1
2
, 1
‰

.

Instationary Stokes Control with Backward Euler

We now derive a preconditioner for the matrix ΦBE defined in (5.23). It is worth
noting the similarities between the matrix ΦBE and the saddle-point system ob-
tained in Section 3.2.1 after discretizing the first-order optimality conditions for
heat control with backward Euler in time. In fact, as for the stationary Stokes
control problem, the matrix ΦBE can be considered as the discrete optimality
conditions of a vector heat control problem. For this reason, we will employ
the block triangular preconditioner pP1 defined in (2.30), whose diagonal blocks
are the approximations of the main blocks for the heat control problem derived
in [139] and discussed in Section 3.3. Specifically, as the matrix MBE is not

133

invertible, we seek a preconditioner of the form:

rPΦ,BE “

«

ĂMBE 0

LBE ´ rSΦ,BE

ff

,

with ĂMBE an invertible approximation of MBE, and the perturbed Schur com-

plement rSΦ,BE “ MBE
β ` LBE

`

ĂMBE
˘´1
pLBEqJ. Following the work in [139] and

the discussion in Section 3.3, a suitable approximation of MBE is given by

ĂMBE
“ blkdiagpM̄BE, . . . , M̄BE, ξM̄BE

q,

with 0 ă ξ ! 1. In addition, a good approximation for rSΦ,BE is the matrix

pSΦ,BE “
`

LBE
`MBE?

β

˘`

ĂMBE
˘´1`LBE

`MBE?
β

˘

,

with
MBE?

β “
τ
?
β
blkdiagp0,M, . . . ,M,

a

ξMq.

It is worth noting that the approximation pSΦ,BE of rSΦ,BE is optimal, as it is

possible to prove that λp pS´1
Φ,BE

rSΦ,BEq P r
1
2
, 1s, see [139]. As above, we do not

apply the inverses of LBE `MBE?
β

and its transpose exactly, but rather we apply
block substitution, with each block on the diagonal approximated by the action
of a multigrid process, for instance. Thus, a suitable approximation of the matrix
rPΦ,BE is given by

pPΦ,BE “

«

xM BE
c 0

LBE ´ pSΦ,BE

ff

, xM BE
c “ τ blkdiagpMc, . . . ,Mc, ξMcq.

Instationary Stokes Control with Crank–Nicolson

We focus now on devising a preconditioner for the matrix ΦCN defined in (5.28),
arising from a Crank–Nicolson discretization. Similarly to the backward Euler
case, this matrix can be considered as the (symmetrized) discretization of the
optimality conditions for a vector heat control problem discretized using Crank–
Nicolson in time. Again, we seek to use the block triangular matrix

PΦ,CN “

„

MCN 0
LCN ´SΦ,CN

as a preconditioner, where SΦ,CN “ MCN
β ` LCNpMCNq´1pLCNqJ. In order to

find an approximation of PΦ,CN, we follow the work in [100] and the discussion in
Section 3.3.

From (5.30)–(5.31), MCN can be written as MCN “ T1MCN
D TJ1 , with MCN

D

a block diagonal matrix with each diagonal block a multiple of M. Therefore, a
good approximation of MCN is given by

xMCN
“ T1

xMCN
D TJ1 ,

134

with xMCN
D “ τ

2
Int bMc.

Following the work in Section 3.3.2, we can use (5.30) together with (5.29) to
rewrite

SΦ,CN “ T2

“

MCN
D,β `

rLCN
`

MCN
˘´1`

rLCN
˘J‰

loooooooooooooooooooomoooooooooooooooooooon

Sint
Φ,CN

T1, (5.32)

recalling that T1 “ TJ2 . Then, we apply the matching strategy to Sint
Φ,CN as done

in Section 3.3.2, and find that a suitable approximation of Sint
Φ,CN is given by

pS int
Φ,CN “

`

rLCN
` xM

˘

T´1
2

`

MCN
D

˘´1
T´1

1

`

rLCN
` xM

˘J
,

with xM “ τ
2
?
β
IJnt,4 bM. Finally, substituting pS int

Φ,CN into (5.32) and observing

that T1 commutes with both rLCN and xM, we obtain that our approximation of
SΦ,CN is given by

pSΦ,CN “
`

rLCN
` xM

˘`

MCN
D

˘´1`
rLCN

` xM
˘J
.

As for backward Euler, we approximate the blocks rLCN ` xM and its transpose
using block substitution, with the action of a multigrid process used to apply the
inverse of each block diagonal entry inexactly.

It is worth noting that the preconditioner derived here reduces to that derived
in [100] for the heat control problem, which was proved to be optimal, and such
that the spectrum of the preconditioned Schur complement is contained in r1

2
, 1s,

see Theorem 5 in Section 3.3.2.

5.5.2 Approximation of Schur Complement

We now derive efficient approximations for each Schur complement of the systems
(5.14), (5.22), and (5.27). Since the p2, 1q- and the p1, 2q-blocks of these systems
can be considered as a (negative) vector-divergence matrix and its transpose, we
make use of the block commutator argument presented in Section 5.3.

Stationary Stokes Control

Let us consider the Schur complement SA,S “ ΨSpΦSq
´1ΨJ

S of the system (5.14),
with ΦS and ΨS defined as in (5.15). We apply the commutator argument to
Em̄ as defined in (5.9) with m̄ “ 2, with the differential operator on the velocity
space defined as

D “

„

Id ´∇2

´∇2 ´ 1
β
Id

,

and Dp the corresponding differential operator on the pressure space; here, Id
represents the identity operator. Employing stable finite elements and working
as in Section 5.3, we obtain the following expression for (5.11):

pSA,S “

„

Kp 0
0 Kp

 „

Mp Kp

Kp ´Mβ,p

´1 „
Mp 0
0 Mp

« SA,S, (5.33)

135

where we set Mβ,p “
1
β
Mp. We approximate the actions of M´1

p by a fixed number

of Chebyshev semi-iteration, and of K´1
p by the action of a multigrid routine, for

example.
Before moving to find an approximation to the Schur complements for the

instationary case, we would like to show the effectiveness of our approach for
the stationary problem. In Figure 5.1, we report the eigenvalues of the matrix
pS´1
A,SSA,S, for level of refinement l “ 5, and for some range of β, where l represents

a (spatial) uniform grid of mesh-size h “ 21´l for Q1 basis functions, and h “ 2´l

for Q2 elements, in each dimension. Here, the matrix pSA,S denotes the Schur
complement approximation derived above when “pinning” the value of one of the
nodes of the matrix Kp, for each Kp in blkdiagpKp, Kpq.

Figure 5.1: Commutator approximation for stationary Stokes control. Eigenval-
ues of pS´1

A,SSA,S, with Ω “ p´1, 1q2, for β “ 10´j, j “ 0, 2, 4, 6, and l “ 5.

We note that there is a strong cluster of eigenvalues around 0.5 and around 1.
In addition, we note that the real part of the (non-zero) eigenvalues of pS´1

A,SSA,S
are all clustered between 0.2 and 1, independently of the regularization parameter
β. We would like to mention that in Figure 5.1 we have two zero eigenvalues in
each plot, for the matrix BJ not being of full rank. Specifically, for enclosed
flow we have nullpBJq “ t1u for standard Lagrangian finite elements, where 1 is
the vector of all ones, implying that the Schur complement SA,S has exactly two
zero eigenvalues. In addition, from here we expect the Schur complements arising
from the instationary case to have a number of zero eigenvalues proportional to
the number of time steps. Specifically, the number of zero eigenvalues of SA,BE

is 2pnt ` 1q, whereas the ones of SA,CN are 2nt, where nt is the number of time
steps. Finally, we would like to note that, since both the Schur complement SA,S

136

and its approximation pSA,S are indefinite, we cannot expect the eigenvalues of
pS´1
A,SSA,S to be real.

Instationary Stokes Control with Backward Euler

We now derive an efficient approximation to the Schur complement SA,BE “

ΨBEpΦBEq
´1ΨJ

BE of (5.22). As above, we apply the commutator argument (5.9);
however, we do not consider the heat equation as part of the differential operator
D, but rather employ an operator that “mimics” the blocks of ΦBE defined in
(5.23). With this aim, we consider (5.9) with m̄ “ 2pnt ` 1q and the differential
operator:

D “

«

D1,1
BE D1,2

BE

D2,1
BE D2,2

BE

ff

,

where D1,1
BE “ τInt`1,1 b Id, D2,2

BE “ ´
τ
β
Int`1,2 b Id, and

D1,2
BE “

»

—

—

—

–

DBE ´Id
.

DBE ´Id
DBE

fi

ffi

ffi

ffi

fl

, D2,1
BE “

»

—

—

—

–

DBE

´Id DBE

.

´Id DBE

fi

ffi

ffi

ffi

fl

,

with DBE “ ´τ∇2` Id. As above, we define Dp as the corresponding differential
operator on the pressure space. Discretizing (5.9) and observing that SA,BE “

τ 2 ~B D´1 ~B J, with D the discretization of the differential operator D and ~B “

I2pnt`1q bB, we obtain the following approximation:

pSA,BE “ τ 2KBE
p

«

D1,1
p, BE D1,2

p, BE

D2,1
p, BE D2,2

p, BE

ff´1

MBE
p « SA,BE.

Here, we set

KBE
p “ I2pnt`1q bKp, MBE

p “ I2pnt`1q bMp,

D1,1
p, BE “ τInt`1,1 bMp, D2,2

p, BE “ ´
τ

β
Int`1,2 bMp,

and

D1,2
p, BE “

»

—

—

—

–

LBE
p ´Mp

.

LBE
p ´Mp

LBE
p

fi

ffi

ffi

ffi

fl

, D2,1
p, BE “

»

—

—

—

–

LBE
p

´Mp L
BE
p
.

´Mp L
BE
p

fi

ffi

ffi

ffi

fl

,

with LBE
p “ τKp `Mp. As above, M´1

p and K´1
p are approximated, for example,

by a fixed number of Chebyshev semi-iteration and by the action of a multigrid
routine, respectively.

Before moving to find an approximation to the Schur complement arising
from the application of Crank–Nicolson in time, we would like to make some

137

remarks on the differential operator D employed in the commutator argument
above. As we mentioned, rather than considering the heat equation as part
of the differential operator, we have chosen D in such a way that mimics the
blocks of ΦBE. We made this choice to address two not obvious questions, both
related to the time discretization. In fact, one may decide to employ a different
scheme to discretize the time derivative (for instance, Crank–Nicolson), and this
will lead to a linear system with different spectral properties to the one desired.
Alternatively, one can choose to discretize the time interval into n̄t subintervals,
with n̄t ‰ nt, with a similar result on the approximation obtained. In practice,
we have chosen D as a spatial differential operator that does not account for the
time discretization used. In addition, our choice of D avoids us having to impose
artificial initial and final time conditions on the pressure space. We would like
to mention that those conditions would have been imposed only in the definition
of the preconditioning operator, meaning that we would not have modified the
right-hand side of the whole system. A similar argument can be made for the
Crank–Nicolson discretization.

Instationary Stokes Control with Crank–Nicolson

As we have done for the Schur complement arising from the backward Euler
discretization, we apply the commutator argument (5.9), employing a differential
operator D that mimics the blocks of a suitable matrix. Before presenting D, we
note that the Schur complement SA,CN “ ΨCNpΦCNq

´1ΨJ
CN can be rewritten as

SA,CN “

„

T3 0
0 T4

«

rB CN 0

0 rB CN

ff«

ĂMCN p rL CNqJ

rL CN ´ĂMCN
β

ff´1 «

rB CN 0

0 rB CN

ffJ

.

We now consider (5.9) with m̄ “ 2nt and the differential operator

D “

«

D1,1
CN D1,2

CN

D2,1
CN D2,2

CN

ff

,

where D1,1
CN “

τ
2
IJnt,4 b Id, D2,2

CN “ ´
τ

2β
Int,4 b Id, and

D1,2
CN “

»

—

—

—

–

D` D´
.

D` D´
D`

fi

ffi

ffi

ffi

fl

, D2,1
CN “

»

—

—

—

–

D`
D´ D`

.

D´ D`

fi

ffi

ffi

ffi

fl

,

with D˘ “ ´ τ
2
∇2 ˘ Id. Again, we define Dp as the corresponding differential

operator on the pressure space. Proceeding as above, we then derive the following
approximation:

pSA,CN “ τ 2

„

T3 0
0 T4

KCN
p

«

D1,1
p, CN D1,2

p, CN

D2,1
p, CN D2,2

p, CN

ff´1

MCN
p « SA,CN.

138

Here, we set

KCN
p “ I2nt bKp, MCN

p “ I2nt bMp,

D1,1
p, CN “

τ

2
IJnt,4 bMp, D2,2

p, CN “ ´
τ

2β
Int,4 bMp,

and

D1,2
p, CN“

»

—

—

—

–

L`p L´p
.

L`p L´p
L`p

fi

ffi

ffi

ffi

fl

, D2,1
p, CN“

»

—

—

—

–

L`p
L´p L`p

.

L´p L`p

fi

ffi

ffi

ffi

fl

,

with L˘p “
τ
2
Kp ˘Mp.

Remark 7. To summarize, aside from matrix–vector products, the main compu-
tational work for our Crank–Nicolson preconditioner involves nt applications of
Chebyshev semi-iteration to M and 2nt multigrid processes per Uzawa or inner
GMRES iteration, in addition to 2nt applications of Chebyshev semi-iteration to
Mp and 2nt multigrid processes for Kp to approximate the Schur complement.
This is a similar computational workload as for the backward Euler precondi-
tioner, as the latter requires nt ` 1 applications of Chebyshev semi-iteration and
2pnt ` 1q applications of a multigrid process per Uzawa or inner GMRES iter-
ation, and 2pnt ` 1q approximations of Mp and Kp for the Schur complement
approximation.

5.6 Numerical Results

We now demonstrate the effectiveness of our preconditioners by presenting numer-
ical results. In all our tests, d “ 2 (that is, x “ rx1, x2s

J), and Ω “ p´1, 1q2. We
employ inf–sup stable Taylor–Hood Q2–Q1 finite elements in the spatial dimen-
sions, with level of refinement l representing a (spatial) uniform grid of mesh-size
h “ 21´l for Q1 basis functions, and h “ 2´l for Q2 elements, in each dimension.

As our preconditioners are non-symmetric and require an inner solve for the
p1, 1q-block, for the outer solver we apply flexible GMRES [155] restarted every
10 iterations, up to a tolerance 10´6 on the relative residual (unless otherwise
stated). Our implementation is based on the flexible GMRES routine in the
TT-Toolbox [127]. As we mentioned, we can approximately invert the p1, 1q-
block by employing a fixed number of Uzawa or GMRES iterations. Although
the preconditioner derived above for the p1, 1q-block of stationary Stokes control
can be employed within an Uzawa iteration, we report only results when using
GMRES, and apply both methods only in the instationary case. Specifically, to
apply the approximate inverse of the p1, 1q-block, we take 5 iterations of GMRES
(or Uzawa when specified). We employ the GMRES routine implemented in
MATLAB. We apply 20 steps of Chebyshev semi-iteration to mass matrices (on
the velocity or pressure space); we use 4 V-cycles of the AGMG routine [118, 121,
122, 123] to approximate other matrices constructed on the velocity space, while

139

employing 2 V-cycles (with 2 symmetric Gauss–Seidel iterations for pre-/post-
smoothing) of the HSL MI20 solver [22] for stiffness matrices on the pressure space
within our Schur complement approximation.

All tests are run on MATLAB R2018b, using a 1.70GHz Intel quad-core i5
processor and 8 GB RAM on an Ubuntu 18.04.1 LTS operating system. All CPU
times below are reported in seconds.

5.6.1 Stationary Stokes Control

We first test our solver on the stationary Stokes control problem (5.1)–(5.2). We

set ~f “ ~0, ~vd “ ~0, and

~g “

"

r1, 0sJ on BΩ1 :“ p´1, 1q ˆ t1u ,

r0, 0sJ on BΩzBΩ1.

In Table 5.1 we report the number of GMRES iterations and the elapsed CPU
time, together with the degrees of freedom for the stationary Stokes control prob-
lem considered, for different levels of refinement l, and values of β.

Table 5.1: Degrees of freedom (DoF), GMRES iterations, and CPU times for
stationary Stokes control problem, for a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l DoF it CPU it CPU it CPU it CPU it CPU it CPU it CPU

3 1062 15 0.34 18 0.41 17 0.32 16 0.31 15 0.27 13 0.09 10 0.12

4 4422 15 0.89 19 1.10 18 0.98 16 0.78 16 0.97 15 0.80 14 0.66

5 18,054 20 4.07 20 4.06 23 4.69 16 3.18 16 2.90 16 2.88 15 2.15

6 72,966 26 24.0 33 30.2 23 20.9 19 17.2 16 14.2 16 13.5 15 12.2

7 293,382 27 97.2 27 96.2 29 103 22 77.1 17 59.1 14 47.9 17 57.1

8 1,176,582 36 594 37 612 36 594 26 428 20 330 18 296 15 246

Table 5.1 demonstrates the robustness of our proposed preconditioner. The
numbers of iterations are roughly constant, showing a slight increase only for
large values of β. The CPU time scales approximately linearly with respect to
the dimension of the systems, with a marginal increase for very fine grids; in this
case we observe that the AGMG multigrid routine does not scale exactly linearly.

5.6.2 Instationary Stokes Control

We now test the robustness of our solver on the instationary Stokes control prob-
lem (5.3)–(5.4), where we set tf “ 2, ~fpx, tq “ ~0, the initial condition ~v0pxq “ ~0,
and boundary conditions

~gpx, tq “

$

&

%

rt, 0sJ on BΩ1 ˆ p0, 1q,

r1, 0sJ on BΩ1 ˆ r1, tf q,

r0, 0sJ on pBΩzBΩ1q ˆ p0, tf q.

140

We present results obtained when employing backward Euler and Crank–Nicolson
discretizations in time, when applying both Uzawa and GMRES for approximat-
ing the inverse of the p1, 1q-block of the corresponding matrices. Setting

c1 “ 1´
b

p100
49
px1 ´

1
2
qq2 ` p100

99
x2q

2,

c2 “ 1´
b

p100
49
px1 `

1
2
qq2 ` p100

99
x2q

2,

we seek the (divergence-free) desired state:

~vdpx, tq “

$

’

&

’

%

c1 cospπt
2
q rp100

99
q2x2,´p

100
49
q2px1 ´

1
2
qsJ if c1 ě 0,

c2 cospπt
2
q r´p100

99
q2x2, p

100
49
q2px1 `

1
2
qsJ if c2 ě 0,

r0, 0sJ otherwise.

Backward Euler for Instationary Stokes Control

We first report the results obtained when employing the backward Euler scheme
in time. In Table 5.2 we provide the number of GMRES iterations and the elapsed
CPU time, together with the degrees of freedom for the instationary Stokes control
problem with backward Euler in time, when GMRES is employed as the inner
solver to approximately invert the p1, 1q-block ΦBE. For this test, we choose the
time-step τ “ 0.05 (that is, nt “ 40), while the level of refinement l refers to
a spatial uniform grid constructed as above. We report the results for different
levels of refinement l and regularization parameters β. In Table 5.3 we provide
the number of GMRES iterations and the elapsed CPU time, together with the
degrees of freedom for the instationary Stokes control problem with backward
Euler applied in time, when Uzawa iteration is employed as the inner solver for
approximately inverting the p1, 1q-block ΦBE. Here, we fix the level of refinement
l “ 5, and report the results for different values of nt and β.

Table 5.2: Degrees of freedom (DoF), GMRES iterations, and CPU times for
instationary Stokes control problem with backward Euler in time, with GMRES
as the inner solver for ΦBE, and nt “ 40, for a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l DoF it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 10,086 15 5.79 16 6.10 18 6.87 17 6.44 15 5.67 14 5.34 20 7.61

3 43,542 16 14.0 18 16.0 19 15.3 16 13.8 16 12.6 16 6.07 22 13.6

4 181,302 16 36.7 19 43.5 19 42.0 17 44.7 17 43.7 17 41.1 22 49.1

5 740,214 16 155 22 211 20 191 17 160 17 150 17 150 21 156

6 2,991,606 25 1123 24 1080 23 1027 17 754 16 709 17 725 22 932

From Tables 5.2–5.3 we observe that our solvers demonstrate mesh- and
parameter-robustness, for wide variations of nt, l, and β. The CPU times scale
approximately linearly with respect to degrees of freedom, except for very fine
grids. In particular, from Table 5.2 we see that, as we refine the spatial grid,

141

Table 5.3: Degrees of freedom (DoF), GMRES iterations, and CPU times for
instationary Stokes control problem with backward Euler in time, with Uzawa as
the inner solver for ΦBE, and l “ 5, for a range of nt and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

nt DoF it CPU it CPU it CPU it CPU it CPU it CPU it CPU

10 198,594 14 26.0 15 28.3 17 31.6 17 31.5 18 31.6 21 36.6 40 60.1

20 379,134 14 51.0 15 54.0 17 60.8 17 60.5 17 56.9 18 59.3 29 80.8

40 740,214 15 103 15 103 16 110 17 115 17 107 18 113 22 116

80 1,462,374 15 201 15 202 16 213 17 223 17 213 17 211 18 187

160 2,906,694 15 375 15 377 16 400 17 421 17 426 17 411 18 370

the number of degrees of freedom increases by a factor of 4, and so do the CPU
times. In addition, from Table 5.3 we see that, as we double the number of time
steps, the number of degrees of freedom is doubled, with a similar effect on the
CPU times.

Crank–Nicolson for Instationary Stokes Control

We now test our solver when applying Crank–Nicolson in time. Here, for level
of refinement l we divide the time interval into subintervals of length 21´l and
consider a spatial uniform grid of refinement level l. Before showing the ro-
bustness of our solver by solving the problem above, we test our solver on the
instationary Stokes control problem (5.3)–(5.4), for an artificial problem with ex-
act solution. This will allow us to verify the predicted order of convergence of
the Crank–Nicolson method. We take tf “ 2, the desired state

~vdpx1, x2, tq “ 4β
“

x2

`

2p3x2
1 ´1qpx2

2 ´ 1q`3px2
1 ´ 1q2

˘

,

´ x1

`

3px2
2 ´1q2`2px2

1 ´1qp3x2
2´1q

‰̆J

` etf´t
“

20x1x
3
2 ` 2βx2

`

px2
1 ´ 1q2px2

2 ´ 7q ´ 4p3x2
1 ´ 1qpx2

2 ´ 1q ` 2
˘

,

5px4
1 ´ x

4
2q ´ 2βx1

`

px2
2 ´ 1q2px2

1 ´ 7q´4px2
1 ´ 1qp3x2

2´1q´2
˘‰J

,

and the force function

~fpx1, x2, tq “ etf´t
“

´ 20x1x
3
2 ´ 2x2px

2
1 ´ 1q2px2

2 ´ 1q,

5px4
2 ´ x

4
1q` 2x1px

2
1 ´ 1qpx2

2 ´ 1q2
‰J

`
“

2x2px
2
1 ´ 1q2px2

2 ´ 1q,´2x1px
2
1 ´ 1qpx2

2 ´ 1q2
‰J
.

The analytic solutions for this problem are:

~vpx1, x2, tq “ etf´tr20x1x
3
2, 5x

4
1 ´ 5x4

2s
J,

ppx1, x2, tq “ etf´t p60x2
1x2 ´ 20x3

2q ` constant,

~ζpx1, x2, tq “ β petf´t ´ 1q r2x2px
2
1 ´ 1q2px2

2 ´ 1q,´2x1px
2
1 ´ 1qpx2

2 ´ 1q2sJ,

µpx1, x2, tq “ βetf´tp4x1x2q ` constant,

142

with initial and boundary conditions obtained from this ~v. Here, up to a time-
dependent function the state velocity and pressure are the solutions of the (for-
ward) Stokes equations presented in [120, Section 3.1]. In Table 5.4 we report
the level of refinement l, the number of GMRES iterations6, the CPU time, and
the resulting errors for different values of β. The error is evaluated in the L8pL2q

norm, approximated for ~v as

~verr “ max
n

“

pvn ´ vsol,nq
JM pvn ´ vsol,nq

‰1{2
,

where vsol,n is the discretized exact solution for ~v at time tn. In the same way

we define the error for the adjoint velocity ~ζerr. Finally, for the total size of the
systems solved, we refer the reader to Table 5.5.

Table 5.4: GMRES iterations, CPU times, and errors for instationary Stokes
control problem, solved using Crank–Nicolson, with GMRES as the inner solver
for ΦCN, for a range of l and β.

β “ 100 β “ 10´2 β “ 10´4

l it CPU ~verr
~ζerr it CPU ~verr

~ζerr it CPU ~verr
~ζerr

2 22 0.85 4.76e-1 2.49e-1 22 0.79 5.66e-1 1.16e-1 16 0.73 8.63e0 5.45e-2

3 22 4.28 3.34e-2 5.68e-2 22 4.24 7.07e-2 3.42e-2 19 3.39 2.47e0 2.67e-2

4 23 23.9 2.25e-3 1.15e-2 24 24.1 7.35e-3 7.79e-3 20 23.2 3.73e-1 7.30e-3

5 23 200 1.74e-4 2.15e-3 27 232 6.70e-4 1.59e-3 20 162 3.84e-2 1.55e-3

6 26 2082 2.16e-5 4.00e-4 37 2960 5.97e-5 3.02e-4 23 1830 3.38e-3 3.00e-4

From the discretization errors reported in Table 5.4, we first note that the
method is converging at second-order. We experienced similar convergence be-
haviour for the pressure variables, after shifting the numerical approximation of
the pressures at each time step by the values of the corresponding numerical so-
lution at the origin of the axis at the corresponding time step; we shifted the
numerical approximation of the pressures as for enclosed flow the pressure so-
lution is only unique up to an additive constant. Secondly, we note that the
preconditioner behaves robustly with respect to the level of refinement l and the
regularization parameter β, with the number of iterations slightly increasing for
very fine grids. The elapsed CPU time scales almost exactly linearly, aside from
the AGMG multigrid routine for very fine grids.

We now report the results obtained when applying Crank–Nicolson in time,
showing the robustness of our approach by solving the problem defined at the
beginning of Section 5.6.2. In Table 5.5 we provide the number of GMRES
iterations and the elapsed CPU time, together with the degrees of freedom for the
instationary Stokes control problem with Crank–Nicolson in time, when GMRES
is employed as the inner solver for approximately inverting the p1, 1q-block ΦCN.

6For this problem we run GMRES until a relative reduction on the residual of 10´9 is
achieved, in order to clearly show the predicted second-order convergence of the time-stepping
scheme.

143

In Table 5.6 we provide the number of GMRES iterations and the elapsed CPU
time, for the instationary Stokes control problem solved using Crank–Nicolson
in time, when Uzawa iteration is employed as the inner solver for approximately
inverting the p1, 1q-block ΦCN. We again report the results for different levels
of refinement l and regularization parameters β. In Figure 5.2 we show the
numerical solutions of the state and adjoint velocities ~v and ~ζ, at time t “ 1, and
of the pressure p, at time t “ 1.0625, for β “ 10´1 and l “ 4.

Table 5.5: Degrees of freedom (DoF), GMRES iterations, and CPU times for
instationary Stokes control problem, with Crank–Nicolson in time (τ “ h), with
GMRES as the inner solver for ΦCN, for a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l DoF it CPU it! CPU it CPU it CPU it CPU it CPU it CPU

2 984 14 0.54 15 0.68 16 0.67 15 0.62 12 0.50 10 0.42 9 0.37

3 8496 15 2.89 16 3.11 17 3.28 16 2.88 15 2.69 13 1.23 10 1.36

4 70,752 16 16.5 18 18.3 19 18.7 16 18.3 16 18.4 15 16.0 13 12.6

5 577,728 16 139 19 163 20 171 19 158 16 128 15 119 15 103

6 4,669,824 22 1758 24 1915 26 2087 18 1437 17 1344 15 1149 15 1155

Table 5.6: GMRES iterations, and CPU times for instationary Stokes control
problem, with Crank–Nicolson in time (τ “ h), with Uzawa as the inner solver
for ΦCN, for a range of l and β.

β “ 100 β “ 10´2 β “ 10´4 β “ 10´6

l it CPU it CPU it CPU it CPU

2 16 0.39 18 0.46 14 0.35 10 0.31

3 16 2.20 18 2.66 17 2.11 12 1.13

4 16 11.8 18 13.0 17 14.0 15 10.6

5 15 92.0 16 98.2 17 96.4 17 82.7

6 14 806 16 918 16 911 17 940

From Tables 5.5–5.6 we observe the mesh- and parameter-robustness of our
solvers, with the CPU time scaling approximately linearly with the size of the
system, except for very fine grids. Also in this case, we observe that the AGMG
multigrid routine does not scale exactly linearly.

5.7 Summary and Comments

In this chapter, we presented mesh- and parameter-robust preconditioners for
distributed Stokes control problems, of both stationary and instationary type.
The preconditioners were based on a generalization of the pressure convection–
diffusion preconditioner, and were applied within the flexible GMRES algorithm,

144

Figure 5.2: Solution plots for the instationary Stokes control problem, for β “
10´1 and l “ 4. Top: velocity ~v at t “ 1. Bottom left: pressure p at t “ 1.0625.
Bottom right: adjoint velocity ~ζ at t “ 1.

and in the instationary setting using backward Euler and Crank–Nicolson dis-
cretizations in time. Numerical results demonstrated the versatility and effec-
tiveness of this approach when solving a range of huge-scale linear systems. In
the following chapter, we will adapt the strategy presented here to the distributed
Navier–Stokes control problems, in both the stationary and instationary settings.

Before moving on to next chapter, we would like to devote some discussion to
the approach we have outlined above regarding the commutator (5.9), and try to
link our work to the inspirational quote of this chapter. For ease of exposition,
we will consider only the stationary Stokes control problem, although some of the
following comments can also be applied to the instationary case.

Although we were not able to prove any spectral property of the matrix
pS´1
A,SSA,S due to the indefiniteness of both matrices and hence the presence of

complex eigenvalues, we showed (numerically) the robustness of our approach for
a wide class of problems. In fact, the number of iterations required to reach a
prescribed accuracy was roughly constant for the tests presented. In addition, in
Figure 5.1 we reported the eigenvalues of the matrix pS´1

A,SSA,S, for l “ 5, and for

145

some range of β. As we observed, the real part of the (non-zero) eigenvalues of
pS´1
A,SSA,S are all clustered between 0.2 and 1, independently of the regularization

parameter β. We want to mention that we obtained similar results also for dif-
ferent level of grid refinement l. For a diligent eye, the eigenvalue distributions
shown in Figure 5.1 are even more interesting: it seems that the real part of the
non-zero eigenvalues of pS´1

A,SSA,S lie in an interval whose endpoints depend on
an inf–sup constant and on a boundedness constant (as for the forward Stokes
equations). For this reason, in Figure 5.3 we report the eigenvalues of the matrix
pS´1
A,SSA,S, for β “ 10´2, together with the eigenvalues of M´1

p pBK´1BJq, for level
of refinement l “ 5. From Figure 5.3, we do believe that further investigation
would be of interest in order to understand the effectiveness of the approach de-
vised in this chapter, specifically if it is possible to prove some bounds on the real
parts of the eigenvalues of pS´1

A,SSA,S.

Figure 5.3: Commutator approximations for stationary Stokes control and sta-
tionary Stokes equations, with Ω “ p´1, 1q2. In blue, eigenvalues of pS´1

A,SSA,S, for

β “ 10´2, and l “ 5. In red, eigenvalues of M´1
p pBK´1BJq, for l “ 5.

Finally, we have a last comment on the preconditioners derived in this chapter.
As we mentioned above, we have employed GMRES as the Krylov solver due to
the preconditioners not being symmetric. However, it is worth noting that we
did so only to obtain more flexibility within the preconditioners. In fact, what
we really lost in our commutator-based approach is not the symmetry of the
preconditioners, but their positive definiteness. In order to show this, we consider
again the stationary Stokes control problem.

Let us consider the discrete optimality conditions (5.14) of the stationary
Stokes control problem. The starting point of our preconditioner was the (ideal)
block triangular matrix

P1 “

„

ΦS 0
ΨS ´SA,S

.

We then derived approximation of the p1, 1q-block ΦS and the Schur complement

SA,S. The latter lead to the approximation pSA,S defined in (5.33). We know
that the matrix Kp may be not invertible in its classical form, as it represents a
discrete (negative) Laplacian when Neumann boundary conditions are imposed.

146

Again, we suppose that Kp is invertible, for example by “pinning” the value of

one of the nodes. Then, we may write the inverse of pSA,S as follows:

pS´1
A,S “

„

Mp 0
0 Mp

´1 „
Mp Kp

Kp ´Mβ,p

 „

Kp 0
0 Kp

´1

“

„

K´1
p M´1

p

M´1
p ´K´1

β,p

,

where we set K´1
β,p “

1
β
K´1
p . From here, it is clear that the Schur complement

approximation pSA,S we found is symmetric indefinite, as it is the “inverse” of a
symmetric indefinite matrix. Recalling that also the p1, 1q-block ΦS is symmetric

indefinite, we may conclude that the block diagonal preconditioner pP3 defined as

pP3 “

„

ΦS 0

0 pSA,S

is symmetric indefinite in this setting. A similar discussion also holds for the
instationary case. In practice, in order to obtain a more flexible solver, we had
to “give in return” some other property: the positive definiteness of our precon-
ditioners.

147

Chapter 6

Preconditioning Stationary and
Instationary Navier–Stokes
Control Problems

“Tu saresti capace di piantare tutto e ricominciare la vita da
capo? E scegliere una cosa, una cosa sola e di essere fedele
a quella? Riuscire a farla diventare la ragione della tua vita,
una cosa che raccolga tutto, che diventi tutto proprio perché
è la tua fedeltà che la fa diventare infinita. Saresti capace?”

[“Would you be able to give up everything, to start life all over
again... to choose one thing, just one thing, and be faithful
to it... to make it the thing that gives meaning to your life...
something that contains everything else... that becomes ev-
erything else just because of your boundless faith in it? Could
you do that?”]

– Federico Fellini, 81⁄2

The solution strategies that we have devised so far required only a linear solver
for the discrete optimality conditions of the problem under examination, until a
specified tolerance on the relative residual is reached. We were able to use this
condition because all the problems treated in the previous chapters were char-
acterized by linear PDEs as constraints with no additional algebraic constraints
on the state and/or the control variables. As opposed to those problems, the
ones we tackle in the following two chapters will require us to run a non-linear
process, either due to the PDEs considered being non-linear, or due to additional
constraints being imposed on the variables.

In this chapter we will deal with the distributed control of the incompress-
ible Navier–Stokes equations, in both the stationary and time-dependent settings.
The incompressible Navier–Stokes equations are non-linear PDEs that describe
the motion of an incompressible, viscous Newtonian fluid flow, in case the con-
vection of the fluid plays a non-negligible role in the physics. Due to the non-
linearity involved, to find a solution linearizations of the constrained problem
need to be repeatedly solved until a sufficient reduction on the non-linear resid-
ual is achieved [82, 84, 145]. This has motivated researchers to devise solvers for

148

this type of problem which exhibit robustness with respect to all the parame-
ters involved; see [84] for a robust multigrid method applied to Newton iteration
for instationary Navier–Stokes control, for instance. Despite the recent develop-
ment of parameter-robust preconditioners for the control of the (stationary and
instationary time-periodic) Stokes equations [8, 96, 153, 190], to our knowledge
no such preconditioner has proved to be completely robust when applied to the
Navier–Stokes control problem considered below. We also point out [77] for a
preconditioned iterative solver for Stokes and Navier–Stokes boundary control
problems, and [147] for an efficient and robust preconditioning technique for in-
domain Navier–Stokes control.

A popular preconditioner for the Oseen linearization of the forward stationary
Navier–Stokes equations combines saddle-point theory with a commutator argu-
ment for approximating the Schur complement [92]. This type of preconditioner
shows only a mild dependence on the viscosity parameter, and is robust with
respect to the discretization parameter. In [132] the combination of saddle-point
theory with a commutator argument has been adapted to the control of the sta-
tionary Navier–Stokes equations; we note that a commutator argument of this
type was previously introduced in [131, 170] for the control of the stationary and
time-dependent Stokes equations.

In the following, we will employ an Oseen linearization of the Navier–Stokes
equations. The preconditioners employed for solving the discretized optimality
conditions will make use of most of the techniques presented in the previous chap-
ters. Specifically, we will make use of saddle-point theory in conjunction with the
block commutator argument presented in the previous chapter for approximating
the Schur complement of the corresponding systems, with the commutator includ-
ing also a convection term in the differential operator. In addition, the inverses
of the p1, 1q-blocks will be applied inexactly by employing an inner precondi-
tioned GMRES solver accelerated by a block triangular preconditioner. Again,
we will employ the matching strategy described in Section 2.11, and generalize
the approximations of the Schur complements of each p1, 1q-block arising from
the Stokes control problems. In practice, the preconditioners derived here can be
constructed from the preconditioners for the Stokes control problems described in
the previous chapter and (suitable) block matrices that include convection terms.

This chapter is structured as follows. In Section 6.1, we define the problems
that we examine, that is the stationary and instationary Navier–Stokes control
problems; we then present the linearization adopted in this work, and outline the
linear systems arising upon discretization of the forward problem. In Section 6.2,
we introduce a preconditioner for the forward stationary Navier–Stokes equation
in combination with the commutator argument presented in [92]. In Section
6.3, we derive the first-order optimality conditions of the control problems and
their discretization. In Section 6.4, we generalize the preconditioners derived in
the previous chapter for Stokes control problems to the corresponding Navier–
Stokes control problems, again applying a commutator argument to the Schur
complements of the linear systems being solved. Then, in Section 6.5 we provide
numerical results that show the robustness and efficiency of our approach. This
chapter is based on some of the work in [101].

149

6.1 Problem Formulation

In this chapter we derive fast and robust preconditioned iterative methods for the
distributed control of incompressible viscous fluid flow, in case of non-negligible
convection; here, the physics is described by the (stationary or instationary)
incompressible Navier–Stokes equations. The corresponding distributed control
problem is defined as a minimization of a least-squares cost functional subject to
the PDEs.

Specifically, given a spatial domain Ω Ă Rd, d P t2, 3u, the stationary Navier–
Stokes control problem we consider is

min
~v,~u

JSp~v, ~uq “
1

2

ż

Ω

|~vpxq ´ ~vdpxq|
2 dΩ`

β

2

ż

Ω

|~upxq|2 dΩ (6.1)

subject to
$

&

%

´ν∇2~v ` ~v ¨∇~v `∇p “ ~u` ~fpxq in Ω,

´∇ ¨ ~vpxq “ 0 in Ω,

~vpxq “ ~gpxq on BΩ.

(6.2)

As for the stationary Stokes control problem, ~v and p denote the (state) velocity
and the (state) pressure respectively, ~u is the control variable, ~vd is the desired
state (velocity), and β ą 0 is a regularization parameter. Further, the parameter

ν ą 0 denotes the viscosity of the fluid. Finally, the functions ~f and ~g are given.
Similarly, the control of the instationary Navier–Stokes equations is defined

as

min
~v,~u

JIp~v, ~uq “
1

2

ż tf

0

ż

Ω

|~vpx, tq ´~vdpx, tq|
2 dΩ dt`

β

2

ż tf

0

ż

Ω

|~upx, tq|2 dΩ dt, (6.3)

given also a final time tf ą 0, subject to

$

’

’

’

&

’

’

’

%

B~v
Bt
´ ν∇2~v ` ~v ¨∇~v `∇p “ ~u` ~fpx, tq in Ωˆ p0, tf q,

´∇ ¨ ~vpx, tq “ 0 in Ωˆ p0, tf q,

~vpx, tq “ ~gpx, tq on BΩˆ p0, tf q,

~vpx, 0q “ ~v0pxq in Ω,

(6.4)

using the same notation as above. The functions ~f and ~g as well as the initial
condition ~v0 are known. In the following, we employ the same strategy devised for
the time-dependent Stokes control problems described in the previous chapter.
For this reason, we assume that ∇ ¨~v0 “ 0, while generalizing our strategy to the
case of ~v0 compressible when possible.

The constraints (6.2) and (6.4) are a system of non-linear (stationary or in-
stationary) PDEs. In order to obtain a solution of the corresponding control
problem, we make use of the Oseen linearization of the non-linear term ~v ¨∇~v, as
in [145]. Note that, if the non-linear term ~v ¨∇~v is dropped in (6.2) or (6.4), with
ν “ 1, we obtain the corresponding distributed Stokes control problem defined in
Section 5.1.

150

6.1.1 Non-Linear Iteration and Discretization Matrices

To introduce the linearization adopted for the control case as well as the dis-
cretization matrices, we consider the stationary Navier–Stokes equations:

"

´ν∇2~v ` ~v ¨∇~v `∇p “ ~u` ~fpxq in Ω,
´∇ ¨ ~vpxq “ 0 in Ω,

(6.5)

with ~v “ ~g on BΩ. First, we introduce the weak formulation of (6.5) as follows.
Let V :“ t~v P H1pΩqd | ~v “ ~g on BΩu, V0 :“ t~v P H1pΩqd | ~v “ ~0 on BΩu, and
Q :“ L2pΩq, with H1pΩqd the Sobolev space of square-integrable functions in Rd

with square-integrable weak derivatives; then, the weak formulation reads as:
Find ~v P V and p P Q such that

"

νp∇~v,∇~wq ` p~v ¨∇~v, ~wq ´ pp,∇ ¨ ~wq “ p~u, ~wq ` p~f, ~wq for all ~w P V0,
´pq,∇ ¨ ~v q “ 0 for all q P Q,

(6.6)

where p¨, ¨q is the L2-inner product on Ω. The main issue in (6.6) is how to deal
with the non-linear term p~v ¨ ∇~v, ~wq. A common strategy employs the Picard
iteration, which is described as follows. Given the approximations ~v pkq P V and
ppkq P Q to ~v and p respectively, we consider the non-linear residuals:

"

~R pkq “ p~u, ~wq`p~f, ~wq ´ νp∇~v pkq,∇~wq ´ p~v pkq ¨∇~v pkq, ~wq`pppkq,∇ ¨ ~wq,
rpkq “ pq,∇ ¨ ~v pkqq, (6.7)

for any ~w P V0 and q P Q. Then, the Picard iteration is defined as [44, pp. 345–
346]:

~v pk`1q
“ ~v pkq ` ~δv

pkq
, ppk`1q

“ ppkq ` δppkq, (6.8)

where ~δv
pkq

and δppkq are the solutions of

#

νp∇ ~δv
pkq
,∇~wq ` p~v pkq ¨∇ ~δv

pkq
, ~wq ´ pδppkq,∇ ¨ ~wq “ ~R pkq,

´pq,∇ ¨ ~δv
pkq
q “ rpkq,

(6.9)

for any ~w P V0 and q P Q. Equations (6.9) are the Oseen equations for the forward
stationary Navier–Stokes equations. These are posed on the continuous level, so
in order to find a solution to (6.5) we now discretize them. Before doing so, we
note that (6.9) represents an incompressible convection–diffusion equation, with
wind vector defined by ~v pkq. Then, defining the Reynolds number as Re “ LeV e

ν
,

where Le and V e denote the characteristic length and velocity scale of the flow
respectively, it is clear that, for Re " 1, the problem is convection-dominated.
This requires us to make use of a stabilization procedure.

Letting t~φiu
nv
i“1 and tψiu

np
i“1 be inf–sup stable finite element basis functions, we

seek approximations ~vpxq «
řnv
i“1 v

pkq
i
~φi, ~upxq «

řnv
i“1 ui

~φi, ppxq «
řnp
i“1 p

pkq
i ψi.

Denoting the vectors vpkq “ tv
pkq
i u

nv
i“1, u “ tuiu

nv
i“1, ppkq “ tp

pkq
i u

np
i“1, a discretized

151

version of (6.7) is:

"

Rpkq “ Mu` f ´ Lpkq v pkq ´BJppkq,
rpkq “ ´B v pkq,

where we set Lpkq “ νK`Npkq `Wpkq, with

Npkq
“ tn

pkq
il u

nv
i,l“1, n

pkq
il “

ż

Ω

p~v pkq ¨∇~φlq ¨ ~φi,

f “ tfiu
nv
i“1, fi“

ż

Ω

~f ¨ ~φi,

and the matrix Wpkq denotes a possible stabilization matrix for the convection
operator. Here, the matrices K and M are the vector-stiffness and vector-mass
matrices, respectively, and the matrix B is the negative divergence matrix. The
matrix Npkq is referred to as a (vector-)convection matrix, and is skew-symmetric
(i.e. Npkq ` pNpkqqJ “ 0) in the artificial case that the ∇ ¨ ~v pkq “ 0. We would
like to note that this is never achieved in practice: even if one imposes the
incompressibility constraints ´pψi,∇ ¨ ~v q equal to zero for all i “ 1, 2, . . . , np,
the velocity ~v pkq is not exactly incompressible, but will be nearly so, see for
instance [70, Section 2.2.3].

Then, the Picard iterate (6.8) may be written in discrete form as

v pk`1q
“ v pkq ` δvpkq, ppk`1q

“ ppkq ` δppkq,

with δvpkq and δppkq solutions of

"

Lpkq δvpkq `BJ δppkq “ Rpkq,
B δvpkq “ rpkq.

(6.10)

Regarding the stabilization procedure applied, we note that the matrix Wpkq

represents a differential operator that is not physical, and is introduced only to
enhance coercivity (that is, increase the positivity of the real part of the eigen-
values) of the discretization, thereby allowing it to be stable. For the reasons
discussed in [100, 141], in the following we employ the Local Projection Stabi-
lization (LPS) approach described in [11, 12, 23]. We point out [110], where the
authors derive the order of convergence of one- and two-level LPS applied to the
Oseen problem. For other possible stabilizations applied to the Oseen problem,
see [28, 53, 58, 91, 173].

In the LPS formulation, the stabilization matrix Wpkq is defined as

Wpkq
“ tw

pkq
il u

nv
i,l“1, w

pkq
il “ δpkq

ż

Ω

κhp~v
pkq
¨∇~φiq ¨ κhp~v pkq ¨∇~φlq . (6.11)

Here, δpkq ą 0 denotes a stabilization parameter, and κh “ Id´ πh is the fluctua-
tion operator, with Id the identity operator and πh an L2-orthogonal (discontin-
uous) projection operator defined on patches of Ω, where by a patch we mean a
union of elements of our finite element discretization. In our implementation, the

152

domain is divided into patches consisting of two elements in each dimension. Ap-
proximation and stability properties for convergence of the method are discussed
in [12, Section 3]. We define the projection πh and the stabilization parameter
δpkq locally on each patch Pm. Specifically, as in [11] the projection is defined as

πhpqq|Pm “
1

|Pm|

ż

Pm

q dPm, @q P L2
pΩq,

where |Pm| is the (Lebesgue) measure of the patch, and as in [44, p. 253] the
stabilization parameter is taken to be

δpkqm “

$

’

&

’

%

hm

2}~v
pkq
m }

ˆ

1´
1

Pem

˙

if Pem ą 1,

0 if Pem ď 1,

where }~v
pkq
m } is the Euclidean norm of ~v pkq at the patch centroid, hm is a measure

of the patch length in the direction of the wind, and Pem “ }~v
pkq
m }hm{p2νq is the

patch Péclet number.

6.2 Preconditioning Forward Stationary Navier–

Stokes Equations

In this section we introduce a widely used preconditioner for solving the forward
stationary Navier–Stokes equations; this preconditioner makes use of saddle-point
theory in conjunction with the commutator argument derived in [92]. These will
be the main ingredients for devising our preconditioners.

As discussed in Section 2.10, since the matrix arising from (6.10) is non-
symmetric, an optimal preconditioner is given by the matrix P1 defined in (2.26),
with Φ “ Lpkq, Ψ2 “ B, and S “ BpLpkqq´1BJ. Again, we look for approx-
imations of Lpkq and S. As for the forward Stokes equation, the p1, 1q-block
Lpkq can be efficiently approximated by employing a multigrid routine, for ex-
ample. On the other hand, an approximation pS for the Schur complement S is
the so called pressure convection–diffusion preconditioner [44, pp. 365–370] (first
derived in [92]) for S. The latter is derived by mean of a commutator argument
as follows. Consider the convection–diffusion operator D “ ´ν∇2 ` ~v pkq ¨ ∇
defined on the velocity space as in (6.9), and suppose the analogous operator
Dp “ p´ν∇2`~v pkq ¨∇qp on the pressure space is well defined. Suppose also that
the commutator defined in (5.8) is small in some sense. Then, discretizing (5.8)
with stable finite elements leads to

pM´1LpkqqM´1BJ ´M´1BJpM´1
p Lpkqp q « 0,

where L
pkq
p “ νKp `N

pkq
p `W

pkq
p is the discretization of Dp in the finite element

153

basis for the pressure, with

N pkq
p “

“

p~v pkq ¨ ∇ψl, ψiq
‰

,

W pkq
p “

“

δpkqpκhp~v
pkq
¨∇ψiq, κhp~v pkq ¨∇ψlqq

‰

the (scalar) convection and stabilization matrices, respectively, in the pressure
finite element space. As above, κh “ Id ´ πh, and δpkq as well as πh are defined
as in (6.11). Here, Kp and Mp are the (scalar) mass and stiffness matrices,
respectively, in the pressure finite element space. Then, given invertibility of Lpkq

and L
pkq
p , pre- and post-multiplying by BpLpkqq´1M and pL

pkq
p q

´1Mp, the previous
expression then gives

BM´1BJpLpkqp q
´1Mp « BpLpkqq´1BJ.

The approximation above is still not practical due to presence of the matrix
BM´1BJ; however, as mentioned in Section 5.2, it can be proved that Kp «

BM´1BJ for problems with enclosed flow [44, pp. 176–177]. Finally, a good
approximation of the Schur complement S “ BpLpkqq´1BJ is

pS “ KppL
pkq
p q

´1Mp « S.

Note that in our derivation we have also included the stabilization matrices on
the velocity and the pressure space, which was not done in [92].

In the following we are going to use the generalization of the commutator
argument presented in Section 5.3 for deriving our efficient preconditioners.

6.3 First-Order Optimality Conditions and Dis-

cretization in Time

In this section, we derive the first-order optimality conditions that have to be
satisfied at a critical point of (6.1)–(6.2) and of (6.3)–(6.4). We make use of

an optimize-then-discretize scheme, and introduce the adjoint variables ~ζ and µ.
We then derive the corresponding Oseen linearized problems, for both stationary
and instationary Navier–Stokes control problems, and discretize the conditions
so obtained. As for instationary Stokes control problems, we consider employing
both backward Euler and Crank–Nicolson schemes in time. In addition, if the
initial condition ~v0 is not solenoidal, we can generalize the discretization presented
here for backward Euler, while we require a pre-processing in order to write the
Oseen iteration for the Crank–Nicolson scheme.

Remark 8. It is worth noting that, since the problems considered here are non-
linear, first-order optimality conditions are not sufficient on their own for a crit-
ical point to be a global minimizer, and indeed second-order optimality conditions
should also be tested (see [145, Proposition 2.3] and [175, Sections 4.10 & 5.7]).
However, as we are interested in deriving optimal preconditioners for Navier–
Stokes control problems, in the following we will only address the numerical solu-

154

tion of the first-order optimality conditions, and we will refer to such a solution
as a numerical solution of the problem.

6.3.1 Stationary Navier–Stokes Control

Introducing the adjoint velocity ~ζ and the adjoint pressure µ, we may consider
the Lagrangian associated with (6.1)–(6.2) as in [145], and write the Karush–
Kuhn–Tucker conditions as:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´ν∇2~v ` ~v ¨∇~v `∇p “ 1
β
~ζ ` ~f in Ω

´∇ ¨ ~vpxq “ 0 in Ω
~vpxq “ ~gpxq on BΩ

,

.

-

state

equations

´ν∇2~ζ ´ ~v ¨∇~ζ ` p∇~v qJ~ζ `∇µ “ ~vd ´ ~v in Ω

´∇ ¨ ~ζpxq “ 0 in Ω
~ζpxq “ ~0 on BΩ

,

/

.

/

-

adjoint

equations

(6.12)

where we have substituted the gradient equation β~u´ ~ζ “ 0 into the state equa-
tion.

Problem (6.12) is a coupled system of non-linear, stationary PDEs. In order to
find a numerical solution of (6.12), we need to solve a sequence of linearizations of
the system. As in [145], we solve at each step the Oseen approximation as follows.

Letting ~v pkq P V, ppkq P Q, ~ζ pkq P V0, µ
pkq P Q be the current approximations to

~v, p, ~ζ, and µ, respectively, with V, V0, Q defined as in Section 6.1.1, the Oseen
iterate is defined as

~v pk`1q “ ~v pkq ` ~δv
pkq
, ppk`1q “ ppkq ` δppkq,

~ζ pk`1q “ ~ζ pkq ` ~δζ
pkq
, µpk`1q “ µpkq ` δµpkq,

(6.13)

with ~δv
pkq

, δppkq, ~δζ
pkq

, δµpkq the solutions of the following Oseen problem:

$

’

’

’

’

&

’

’

’

’

%

νp∇ ~δv
pkq
,∇~wq`p~v pkq ¨∇ ~δv

pkq
, ~wq´pδppkq,∇ ¨ ~wq´ 1

β
p ~δζ

pkq
, ~wq “ ~R

pkq
1 ,

´pq,∇ ¨ ~δv
pkq
q “ r

pkq
1 ,

p ~δv
pkq
, ~wq`νp∇ ~δζ

pkq
,∇~wq´p~v pkq ¨∇ ~δζ

pkq
, ~wq´pδµpkq,∇ ¨ ~wq “ ~R

pkq
2 ,

´pq,∇ ¨ ~δζ
pkq
q “ r

pkq
2 ,

(6.14)

for any ~w P V0 and q P Q. The residuals ~R
pkq
1 , r

pkq
1 , ~R

pkq
2 , r

pkq
2 are given by

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

~R
pkq
1 “p~f, ~wq´νp∇~v pkq,∇~wq´p~v pkq ¨∇~v pkq, ~wq`pppkq,∇ ¨ ~wq` 1

β
p~ζ pkq, ~wq,

r
pkq
1 “pq,∇ ¨ ~v pkqq,

~R
pkq
2 “p~vd, ~wq ´ p~v

pkq, ~wq ´ νp∇~ζ pkq,∇~wq ` p~v pkq ¨∇~ζ pkq, ~wq
´pp∇~v pkq qJ~ζ pkq, ~wq ` pµpkq,∇ ¨ ~wq,

r
pkq
2 “pq,∇ ¨ ~ζ pkqq.

The Oseen problem (6.14) is posed on the continuous level, so we need to

155

discretize it in order to obtain a numerical solution of (6.1)–(6.2). Let vpkq “

tv
pkq
i u

nv
i“1, p

pkq “ tp
pkq
i u

np
i“1, ζ

pkq “ tζ
pkq
i u

nv
i“1, µ

pkq “ tµ
pkq
i u

np
i“1 be the vectors con-

taining the numerical solutions at the k-th iteration for ~v pkq, ppkq, ~ζ pkq, and µpkq,
respectively, that is, ~v pkq «

řnv
i“1 v

pkq
i
~φi, p

pkq «
řnp
i“1 p

pkq
i ψi, ~ζ

pkq «
řnv
i“1 ζ

pkq
i
~φi,

µ pkq «
řnp
i“1 µ

pkq
i ψi. Then, the (discrete) Oseen iterate is defined as

v pk`1q “ v pkq ` δv pkq, ppk`1q “ ppkq ` δppkq,
ζ pk`1q “ ζ pkq ` δζ pkq, µpk`1q “ µpkq ` δµpkq,

where
$

’

’

’

&

’

’

’

%

Lpkq δv pkq `BJ δppkq ´Mβ δζ
pkq “R

pkq
1 ,

Bδv pkq “ r
pkq
1 ,

M δv pkq ` L
pkq
adj δζ

pkq `BJδµpkq “R
pkq
2 ,

Bδζ pkq “ r
pkq
2 ,

(6.15)

with Mβ “
1
β
M, L

pkq
adj “ νK´Npkq `Wpkq, and the discrete residuals given by

$

’

’

’

&

’

’

’

%

R
pkq
1 “ f ´ Lpkq v pkq ´BJ ppkq `Mβ ζ

pkq,

r
pkq
1 “ ´Bv pkq,

R
pkq
2 “M vd ´M v pkq ´ L

pkq
adj ζ

pkq ´BJµpkq ´ ωpkq,

r
pkq
2 “ ´Bζ pkq.

Here vd is the vector corresponding to the discretized desired state ~vd, and ωpkq “
t
`

p∇~v pkqqJ~ζ pkq, ~φi
˘

u
nv
i“1. In our tests, the initial guesses vp1q and ζp1q for the non-

linear process are the state and adjoint velocity solutions of the KKT conditions
for the corresponding stationary Stokes control problem, with discretization given
by (6.15) with Lpkq “ L

pkq
adj “ K, and residuals R

pkq
1 “ f , R

pkq
2 “ M vd, r

pkq
1 “

r
pkq
2 “ 0. Note that the right-hand side may also take into account boundary

conditions (as done in our implementation).
In matrix form, we rewrite system (6.15) as

„

Φ
pkq
S ΨJ

S

ΨS ´ΘS

loooooooomoooooooon

ApkqS

»

—

—

–

δvpkq

δζpkq

δµpkq

δppkq

fi

ffi

ffi

fl

“

»

—

—

—

–

R
pkq
2

R
pkq
1

r
pkq
1

r
pkq
2

fi

ffi

ffi

ffi

fl

, (6.16)

where

Φ
pkq
S “

„

M L
pkq
adj

Lpkq ´Mβ

, ΨS “

„

B 0
0 B

, ΘS “

„

0 0
0 0

. (6.17)

The matrix ApkqS is of saddle-point type; however, since the incompressibility

constraints ∇ ¨ ~v “ 0 are not solved exactly, Φ
pkq
S is not symmetric in general. It

is worth noting that the matrix Φ
pkq
S represents the discrete optimality conditions

for a stationary (vector) convection–diffusion control problem. This observation

156

will be used when deriving our preconditioners.

6.3.2 Instationary Navier–Stokes Control

We now state the KKT conditions for the instationary problem (6.3)–(6.4). As

before, introducing the adjoint variables ~ζ and µ, we consider the Lagrangian
associated to (6.3)–(6.4) as in [175, p. 318]. Then, by deriving the KKT conditions

and substituting the gradient equation β~u ´ ~ζ “ 0 into the state equation, the
solution of (6.3)–(6.4) satisfies:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

B~v
Bt
´ ν∇2~v ` ~v ¨∇~v `∇p “ 1

β
~ζ ` ~f in Ωˆ p0, tf q,

´∇ ¨ ~vpx, tq “ 0 in Ωˆ p0, tf q,

~vpx, tq “ ~gpx, tq on BΩˆ p0, tf q,

~vpx, 0q “ ~v0pxq in Ω,

´
B~ζ
Bt
´ ν∇2~ζ ´ ~v ¨∇~ζ ` p∇~v qJ~ζ `∇µ “ ~vd ´ ~v in Ωˆ p0, tf q,

´∇ ¨ ~ζpx, tq “ 0 in Ωˆ p0, tf q,
~ζpx, tq “ ~0 on BΩˆ p0, tf q,
~ζpx, tf q “ ~0 in Ω.

(6.18)

Problem (6.18) is a coupled system of non-linear, instationary PDEs. In or-
der to find a numerical solution of (6.18), as for the stationary case we take an
Oseen linearization. Before showing the linearization adopted, we would like to
show how to derive the optimality conditions above, observing that the optimal-
ity conditions for stationary Navier–Stokes control problem can be derived from
those by neglecting the time derivative. Similarly, we can recover the first-order
optimality conditions for Stokes control by neglecting the non-linear term ~v ¨∇~v.
We will follow the work in [175, p. 318], and consider only the case of d “ 2 (that
is, Ω Ă R2).

We introduce an adjoint variable for each constraint in (6.4), and consider the
Lagrangian associated to (6.3)–(6.4)

Lp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µq “ JIp~v, ~uq

`

ż tf

0

ż

Ω

ˆ

B~v

Bt
´ ν∇2~v ` ~v ¨∇~v `∇p´ ~u´ ~f

˙

¨ ~ζΩ dΩ dt

´

ż tf

0

ż

Ω

pµ,∇ ¨ ~v q dΩ dt`

ż tf

0

ż

Ω

p~v ´ ~g q ¨ ~ζBΩ dΩ dt

`

ż

Ω

p~v ´ ~v0 q ¨
~ζ0 dΩ.

Following the work in Section 1.3.1, we may easily derive that the Fréchet
derivative of Lp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µq with respect to u leads to the gradient equa-

tion β~u ´ ~ζΩ “ 0, while the Fréchet derivatives of Lp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µq with

157

respect to ~ζΩ, µ, ~ζBΩ, and ~ζ0 lead to the state equations

$

’

’

’

&

’

’

’

%

B~v
Bt
´ ν∇2~v ` ~v ¨∇~v `∇p “ ~u` ~f in Ωˆ p0, tf q,

´∇ ¨ ~vpx, tq “ 0 in Ωˆ p0, tf q,

~vpx, tq “ ~gpx, tq on BΩˆ p0, tf q,

~vpx, 0q “ ~v0pxq in Ω.

Let us now consider the Fréchet derivative of Lp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µq with re-
spect to p. We take a generic direction q in an appropriate Hilbert space, and
then write the Fréchet derivative of the term

ż tf

0

ż

Ω

∇pp` qq ¨ ~ζΩ dΩ dt “

ż tf

0

ż

Ω

∇p ¨ ~ζΩ dΩ dt`

ż tf

0

ż

Ω

∇q ¨ ~ζΩ dΩ dt.

Applying the Divergence Theorem to the term

ż tf

0

ż

Ω

∇q ¨ ~ζΩ dΩ dt, we can write

ż tf

0

ż

Ω

∇q ¨ ~ζΩ dΩ dt “ ´

ż tf

0

ż

Ω

q∇ ¨ ~ζΩ dΩ dt`

ż tf

0

ż

BΩ

q ~ζΩ ¨ n ds dt,

where n denotes the (outer) unit normal vector. Then, one can easily derive that

the Fréchet derivative of Lp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µq with respect to p is given by

dpLp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µqq “ ´

ż tf

0

ż

Ω

q∇ ¨ ~ζΩ dΩ dt`

ż tf

0

ż

BΩ

q ~ζΩ ¨ n ds dt.

As we wish that dpLp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µqq “ 0 for any appropriate choice of q, in
particular by choosing q in C80 p0, tf ; Ωq we can infer that

´

ż tf

0

ż

Ω

q∇ ¨ ~ζΩ dΩ dt “ 0,

where C80 p0, tf ; Ωq is the class of infinitely differentiable functions on p0, tf q ˆ Ω
that are equal to 0 on the boundary BΩ. From the latter expression we recover the
incompressibility constraint on the adjoint variable ~ζ in (6.18). In addition, since
the previous expression has to be equal to 0 for any q in the appropriate Hilbert
space, from dpLp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µqq “ 0 we may also infer that ~ζΩ ¨ n “ 0.
However, we do not include the latter condition in (6.18), since as we will see (and
as we may expect from the control problems described in the previous chapters)

the adjoint variable ~ζΩ has to be 0 on BΩ, for all times t P p0, tf q.

We now have to derive the Fréchet derivative of Lp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µq with
respect to ~v, and we will analyse only two terms, as we have already derived
the Fréchet derivatives of the remaining ones in Section 3.2. We will start with
finding the Fréchet derivative of the term

ż tf

0

ż

Ω

pµ,∇ ¨ ~v q dΩ dt.

158

We take a generic direction ~w in an appropriate Hilbert space, and then consider
the quantity

ż tf

0

ż

Ω

pµ,∇ ¨ p~v ` ~wq q dΩ dt.

Then, by working as in Section 1.3.1 it is easy to prove that the Fréchet derivative
of

ştf
0

ş

Ω
pµ,∇ ¨ ~v q dΩ dt with respect to ~v is given by

ż tf

0

ż

Ω

pµ,∇ ¨ ~w q dΩ dt.

We now focus on the non-linear term
ż tf

0

ż

Ω

p~v ¨∇~v q ¨ ~ζΩ dΩ dt.

As above, we consider a generic direction ~w in an appropriate Hilbert space, and
then consider the following quantity:

ż tf

0

ż

Ω

´

p~v ` ~w q ¨∇p~v ` ~w q
¯

¨ ~ζΩ dΩ dt.

Then, by expanding the previous quantity and working as in Section 1.3.1, we
can derive that the Fréchet derivatives of

ştf
0

ş

Ω
p~v ¨∇~v q ¨ ~ζΩ dΩ dt with respect to

~v is given by

ż tf

0

ż

Ω

´

~v ¨∇~w
¯

¨ ~ζΩ dΩ dt`

ż tf

0

ż

Ω

´

~w ¨∇~v
¯

¨ ~ζΩ dΩ dt.

In order to derive the optimality conditions (6.18), we observe that

~w ¨∇~v “
„

w1
Bv1

Bx1

` w2
Bv1

Bx2

, w1
Bv2

Bx1

` w2
Bv2

Bx2

,

and therefore we have that

ż tf

0

ż

Ω

´

~w ¨∇~v
¯

¨ ~ζΩ dΩ dt “

ż tf

0

ż

Ω

2
ÿ

i,l“1

wi
Bvl
Bxi

ζΩ,l dΩ dt

“

ż tf

0

ż

Ω

`“

∇v1 ∇v2

‰

ζΩ

˘

¨ ~w dΩ dt.

In addition, we use the fact that the trilinear form

cp~v, ~w, ~ζΩ q :“

ż tf

0

ż

Ω

´

~v ¨∇~w
¯

¨ ~ζΩ dΩ dt

159

is skew-symmetric if ~ζΩ “ ~0 on BΩ7. Specifically, for this ~ζΩ we have

cp~v, ~w, ~ζΩ q “ ´cp~v, ~ζΩ, ~w q.

From here, we can rewrite the Fréchet derivatives of
ştf
0

ş

Ω
p~v ¨∇~v q ¨ ~ζΩ dΩ dt with

respect to ~v as follows:

´

ż tf

0

ż

Ω

´

~v ¨∇~ζΩ

¯

¨ ~w dΩ dt`

ż tf

0

ż

Ω

´

p∇~v qJ~ζΩ

¯

¨ ~w dΩ dt,

where ∇~v “
“

∇v1 ∇v2

‰J
. We have thus recovered the convection and the

“mixed” terms of the adjoint equation in (6.18).
Finally, we can employ the same strategy as in Section 3.2 for all the other

terms, and find out that the Fréchet derivatives of Lp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µq with
respect to ~v is given by

d~vLp~v, p, ~u, ~ζΩ, ~ζBΩ, ~ζ0, µq “

ż tf

0

ż

Ω

˜

~v ´ ~vd ´
B~ζΩ

Bt
´ ν∇2~ζΩ ´ ~v ¨∇~ζΩ

¸

¨ ~w dΩ dt

`

ż tf

0

ż

Ω

´

p∇~v qJ~ζΩ `∇µ
¯

¨ ~w dΩ dt`

ż tf

0

ż

BΩ

~ζBΩ ¨ ~w dsdt

´

ż tf

0

ż

BΩ

~ζΩ
B ~w

B~n
dsdt`

ż tf

0

ż

BΩ

B~ζΩ

B~n
~w dsdt

` p~ζΩpx, tf q, ~wpx, tf qq ´ p~ζΩpx, 0q, ~wpx, 0qq ` p~ζ0, ~wq.

Then, we can derive the optimality conditions (6.18) by setting the previous
expression equal to zero and choosing ~w appropriately, as done in Section 1.3.1
and in Section 3.2.

We can now derive the Oseen linearization for the system (6.18). Let ~v pkq P

V̄ , ppkq P Q̄, ~ζ pkq P V̄0, µ
pkq P Q̄ be the current approximation to ~v, p, ~ζ, µ, with

V̄ :“ t~v P L2
p0, tf ;H1

pΩqdq | B~v
Bt
p¨, tq P L2

p0, tf ;H´1
pΩqdq for a.e. t P p0, tf q,

~v “ ~g on BΩ, ~vpx, 0q “ ~v0pxqu,

Q̄ :“ L2
p0, tf ;L

2
pΩqq,

and V̄0 the corresponding space for the adjoint velocity (see [175, pp. 315–321]
and [86, pp. 88–95], for instance, for the case d “ 2). Then, the Oseen iterate is

of the form (6.13), with ~δv
pkq
, δppkq, ~δζ

pkq
, δµpkq the solution of:

$

’

’

’

’

&

’

’

’

’

%

p B
Bt
~δv
pkq
, ~wq`νp∇ ~δv

pkq
,∇~wq`p~vpkq ¨∇ ~δv

pkq
, ~wq´pδppkq,∇¨ ~wq´ 1

β
p ~δζ

pkq
, ~wq“ ~R

pkq
1 ,

´pq,∇ ¨ ~δv
pkq
q“r

pkq
1 ,

´p B
Bt
~δζ
pkq
, ~wq`νp∇ ~δζ

pkq
,∇~wq´p~vpkq ¨∇ ~δζ

pkq
, ~wq´pδµpkq,∇¨ ~wq`p ~δv

pkq
, ~wq“ ~R

pkq
2 ,

´pq,∇ ¨ ~δζ
pkq
q“r

pkq
2 ,

(6.19)

7We recall that ∇ ¨ ~v “ 0 to derive this.

160

for any ~w P V0 and q P Q. The residuals ~R
pkq
1 , r

pkq
1 , ~R

pkq
2 , r

pkq
2 are given by

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

~R
pkq
1 “ p~f, ~wq ´ p B

Bt
~v pkq, ~wq ´ νp∇~v pkq,∇~wq ´ p~v pkq ¨∇~v pkq, ~wq

`pppkq,∇ ¨ ~wq ` 1
β
p~ζ pkq, ~wq,

r
pkq
1 “ pq,∇ ¨ ~v pkqq,
~R
pkq
2 “ p~vd, ~wq ´ p~v

pkq, ~wq ` p B
Bt
~ζ pkq, ~wq ´ νp∇~ζ pkq,∇~wq

`p~v pkq ¨∇~ζ pkq, ~wq ´ pp∇~v pkqqJ~ζ pkq, ~wq ` pµpkq,∇ ¨ ~wq,
r
pkq
2 “ pq,∇ ¨ ~ζ pkqq.

(6.20)

Note that with this notation ~δv
pkq
px, 0q “ ~δζ

pkq
px, tf q “ ~0 in Ω, and ~δv

pkq
px, tq “

~δζ
pkq
px, tq “ ~0 on BΩˆ p0, tf q.

Equations (6.19) constitute an Oseen approximation for instationary Navier–
Stokes control, involving a coupled system of instationary convection–diffusion
equations and divergence-free conditions. In order to discretize them, we employ
either backward Euler or Crank–Nicolson in time. Further, in order to solve
(6.19) we need to choose an initial guess vp1q and ζp1q for the state and the
adjoint velocities and then iteratively solve a sequence of linearized problems. In
our tests, vp1q and ζp1q are again the (velocity) solutions of the KKT conditions
for the corresponding Stokes control problem.

We now derive the linear systems resulting from the time-stepping schemes.
In order to simplify the notations, we will employ the n̄ ˆ n̄ matrices In̄,1, In̄,2,
In̄,3, and In̄,4 defined in (5.18).

Backward Euler for Instationary Navier–Stokes Control

In this section we introduce the backward Euler scheme for approximating (6.19)–
(6.20), and then derive the resulting linear system. We discretize the interval
p0, tf q into nt subintervals of length τ “

tf
nt

, denoting the grid points as tn “ nτ ,
for n “ 0, 1, . . . , nt, and approximate all the functions as for instationary Stokes
control with backward Euler in time. Specifically, our approximations of the
solutions at the k-th step of the non-linear solver are given by v

pkq
n « ~vpx, tnq,

ζ
pkq
n « ~ζpx, tnq, for n “ 0, 1, . . . , nt, and p

pkq
n`1 « ppx, tn`1q, µ

pkq
n « µpx, tnq, for

n “ 0, 1, . . . , nt ´ 1, for all x P Ω. We also introduce the following finite element
matrices:

L
pkq
n “ τpνK`N

pkq
n `W

pkq
n q `M, T

pkq
n “ τpνK´N

pkq
n `W

pkq
n q `M,

M̄BE “ τM, M̄BE
β “ τ

β
M, B̄ “ τB,

where W
pkq
n is the stabilization matrix related to ~v

pkq
n , and N

pkq
n “ rp~v

pkq
n ¨∇~φl, ~φiqs,

with ~v
pkq
n the approximation to ~v at time tn, at the k-th Oseen iteration. Note

that the superscripts of L
pkq
0 , T

pkq
0 are superfluous, as the initial condition on ~v is

fixed; however we keep them for consistency. We then write the discrete Oseen
iterate as

v
pk`1q
n “ v

pkq
n ` δv

pkq
n , ζ

pk`1q
n “ ζ

pkq
n ` δζ

pkq
n , n “ 0, 1, . . . , nt,

p
pk`1q
n`1 “ p

pkq
n`1 ` δp

pkq
n`1, µ

pk`1q
n “ µ

pkq
n ` δµ

pkq
n , n “ 0, 1, . . . , nt ´ 1,

161

with δv
pkq
n , δζ

pkq
n , δp

pkq
n , δµ

pkq
n the solutions of the following discretization of

(6.19):

$

’

’

’

’

&

’

’

’

’

%

M̄BEδvpkqn `Tpkq
n δζ

pkq
n ´M δζ

pkq
n`1 ` B̄

Jδµpkqn “R
pkq
2,n,

´M δvpkqn ` L
pkq
n`1δv

pkq
n`1 ` B̄

Jδp
pkq
n`1 ´ M̄BE

β δζ
pkq
n`1 “R

pkq
1,n,

B δv
pkq
n`1 “ r

pkq
1,n`1,

B δζ
pkq
n “ r

pkq
2,n,

(6.21)

for n “ 0, 1, ..., nt ´ 1, with δv
pkq
0 “ 0, δζ

pkq
nt “ 0. The discretized residuals are

given by

$

’

’

’

’

&

’

’

’

’

%

R
pkq
1,n “ τfn`1 `Mv

pkq
n ´ L

pkq
n`1v

pkq
n`1 ´ B̄

Jp
pkq
n`1 ` M̄BE

β ζ
pkq
n`1,

r
pkq
1,n`1 “ ´B v

pkq
n`1,

R
pkq
2,n “ M̄BEvnd ´ M̄BEv

pkq
n ´T

pkq
n ζ

pkq
n `Mζ

pkq
n`1 ´ B̄

Jµ
pkq
n ´ τω

pkq
n ,

r
pkq
2,n “ ´B ζ

pkq
n ,

(6.22)

where fn`1 “ tp~fpx, tn`1q, ~φiqu
nv
i“1, and ω

pkq
n “ t

`

p∇~v pkqn qJ~ζ
pkq
n , ~φi

˘

u
nv
i“1, for n “

0, 1, . . . , nt ´ 1. Note that the non-linear residuals R
pkq
1,0, R

pkq
1,nt´1, R

pkq
2,0, R

pkq
2,nt´1 in

(6.22) take into account the initial and the final conditions on ~v and ~ζ.

Even if the incompressibility constraints B δv
pkq
n`1 “ 0 are solved exactly,

for n “ 0, 1, . . . , nt ´ 1, at each Oseen iteration the system described in (6.21)

is not symmetric, due the conditions δv
pkq
0 “ 0 and δζ

pkq
nt “ 0. However, we

work as for instationary Stokes control problems solved with backward Euler in
time, and employ a solenoidal projection of the form (5.20). However, within the
projection we include also a convection and a stabilization matrix. Specifically,
given a vector b̄, we define its solenoidal projection at time t “ 0 as b, with

"

L
pkq
0 b` B̄Jp̄ “ Lb̄ b̄,

B b “ 0,
(6.23)

with Lb̄ “ τpνK`Nb̄ `Wb̄ q`M, Nb̄ and Wb̄ being the vector-convection and
stabilization matrices related to b̄. Similarly, we define the solenoidal projection
of a vector b̄ at time t “ tf as the vector b solution of (6.23), with the matrix

L
pkq
0 replaced by T

pkq
nt .

We apply the previous projections to the initial and final time conditions
δv

pkq
0 “ 0 and δζ

pkq
nt “ 0. Then, by multiplying the incompressibility conditions

by τ , the linear system of (6.21) can be rewritten as

„

Φ
pkq
BE pΨBEq

J

ΨBE ´ΘBE

loooooooooomoooooooooon

ApkqBE

»

—

—

–

δvpkq

δζpkq

δµpkq

δppkq

fi

ffi

ffi

fl

“

»

—

—

—

–

b
pkq
1

b
pkq
2

b
pkq
3

b
pkq
4

fi

ffi

ffi

ffi

fl

, (6.24)

162

where the right-hand side accounts for the non-linear residual. Further,

Φ
pkq
BE “

«

MBE LBE,pkq
1

LBE,pkq
2 ´MBE

β

ff

, ΨBE “

„

BBE 0
0 BBE

, ΘBE “

„

0 0
0 0

, (6.25)

with MBE “ Int`1,1 b M̄BE, MBE
β “ Int`1,2 b M̄BE

β , BBE “ Int`1 b B̄, and

LBE,pkq
1 “

»

—

—

—

–

T
pkq
0 ´M

.

T
pkq
nt´1 ´M

T
pkq
nt

fi

ffi

ffi

ffi

fl

, LBE,pkq
2 “

»

—

—

—

–

L
pkq
0

´M L
pkq
1

.

´M L
pkq
nt

fi

ffi

ffi

ffi

fl

.

Note that, in the case of the incompressibility conditions not being solved exactly,
LBE,pkq

1 ‰ pLBE,pkq
2 qJ; however, the system is symmetric if they are solved exactly.

We note that we can relax the incompressibility assumptions on ~v0 and modify
the discretization of the Oseen problem (6.19)–(6.20) as follows. Suppose that ~v0

is not solenoidal. Then, for the first backward Euler step in (6.21) we can rewrite
(6.23) as

#

L
pkq
0 δv

pkq
0 ` B̄Jδp

pkq
0 “R

pkq
1,´1,

B δv
pkq
0 “ r

pkq
1,0 ,

where, given v̄0 as an appropriate discretization of ~v0,

#

R
pkq
1,´1 “ L0 v̄0 ´ L

pkq
0 v

pkq
0 ´ B̄Jp

pkq
0 ,

r
pkq
1,0 “ ´B v

pkq
0 .

Here, L0 “ τpνK`N0`W0q `M, where N0 and W0 are the vector-convection
and stabilization matrices related to v̄0, and the rest of the non-linear residuals
are defined as in (6.22). Note that in this case we cannot substitute Mv

pkq
0 “ Mv̄0

into the non-linear residuals as v̄0 is not incompressible. We note also that for
k “ 0 (meaning v

p0q
0 “ 0) and with ν “ 1 from the above step, with L0 “ L

p0q
0 “

τK `M, we recover the solenoidal projection (5.21) for the instationary Stokes
control problem.

Crank–Nicolson for Instationary Navier–Stokes Control

In this short section we present the linear system arising upon employing Crank–
Nicolson in time when solving (6.19)–(6.20). The starting point will again be
the discretized optimality conditions for instationary Stokes control with Crank–
Nicolson applied in time. We discretize the interval p0, tf q into nt subintervals

of length τ “
tf
nt

, and approximate ~v and ~ζ at the time points tn “ nτ , n “
0, 1, . . . , nt, employing a staggered grid for p and µ, as in [13]. Specifically, our
approximations of the solutions at the k-th non-linear iteration are given by
v
pkq
n « ~vpx, tnq, ζ

pkq
n « ~ζpx, tnq, for n “ 0, 1, . . . , nt, and p

pkq

n` 1
2

« ppx, tn `
1
2
τq,

µ
pkq

n` 1
2

« µpx, tn `
1
2
τq, for n “ 0, 1, . . . , nt ´ 1, for all x P Ω. In addition, we

163

introduce the following finite element matrices:

L
˘,pkq
n “ τ

2
pνK`N

pkq
n `W

pkq
n q ˘M, T

˘,pkq
n “ τ

2
pνK´N

pkq
n `W

pkq
n q ˘M,

M̄CN “ τ
2
M, M̄CN

β “ τ
2β

M,

with W
pkq
n , N

pkq
n defined as for backward Euler. Then the discrete Oseen iterate

is

v
pk`1q
n “ v

pkq
n ` δv

pkq
n , ζ

pk`1q
n “ ζ

pkq
n ` δζ

pkq
n , n “ 0, 1, . . . , nt,

p
pk`1q

n` 1
2

“ p
pkq

n` 1
2

` δp
pkq

n` 1
2

, µ
pk`1q

n` 1
2

“ µ
pkq

n` 1
2

` δµ
pkq

n` 1
2

, n “ 0, 1, . . . , nt ´ 1,

with δv
pkq
n , δζ

pkq
n , δp

pkq

n` 1
2

, δµ
pkq

n` 1
2

solutions of the following discretized version of

(6.19):

$

’

’

’

’

’

&

’

’

’

’

’

%

M̄CN
pδvpkqn ` δv

pkq
n`1q `T`,pkq

n δζpkqn `T
´,pkq
n`1 δζ

pkq
n`1 ` B̄

Jδµ
pkq

n` 1
2

“R
pkq
2,n,

L´,pkqn δvpkqn ` L
`,pkq
n`1 δv

pkq
n`1 ` B̄

Jδp
pkq

n` 1
2

´ M̄CN
β pδζpkqn ` δζ

pkq
n`1q “R

pkq
1,n,

Bδv
pkq
n`1 “ r

pkq
1,n`1,

Bδζ
pkq
n “ r

pkq
2,n,

for n “ 0, 1, ..., nt ´ 1, with δv
pkq
0 “ 0, δζ

pkq
nt “ 0. The discretized residuals are

given by

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

R
pkq
1,n “

τ
2
pfn ` fn`1q ´ L

´,pkq
n v

pkq
n ´ L

`,pkq
n`1 v

pkq
n`1 ´ B̄

Jp
pkq

n` 1
2

`M̄CN
β pζ

pkq
n ` ζ

pkq
n`1q,

r
pkq
1,n`1 “ ´B v

pkq
n`1,

R
pkq
2,n “ M̄CNpvnd ` v

n`1
d q ´ M̄CNpv

pkq
n ` v

pkq
n`1q ´T

`,pkq
n ζ

pkq
n

´T
´,pkq
n`1 ζ

pkq
n`1 ´ B̄

Jµ
pkq

n` 1
2

´ τ
2
pω

pkq
n ` ω

pkq
n`1q,

r
pkq
2,n “ ´B ζ

pkq
n ,

(6.26)

for n “ 0, 1, ..., nt ´ 1. Here, fn and ω
pkq
n are defined as for backward Euler, for

n “ 0, 1, . . . , nt. Note also that here the non-linear residuals R
pkq
1,0, R

pkq
1,nt´1, R

pkq
2,0,

and R
pkq
2,nt´1 in (6.26) take into account the initial and final conditions on ~v and

~ζ.
In matrix form, after multipling the incompressibility constraints by τ , we

write

»

—

—

–

M̄CN L̄CN,pkq
1 pB̄CN

2 qJ 0

L̄CN,pkq
2 ´M̄CN

β 0 pB̄CN
1 qJ

B̄CN
1 0 0 0
0 B̄CN

2 0 0

fi

ffi

ffi

fl

»

—

—

—

–

δ̄v
pkq

δ̄ζ
pkq

δ̄µ
pkq

δ̄p
pkq

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

b̄
pkq
1

b̄
pkq
2

b̄
pkq
3

b̄
pkq
4

fi

ffi

ffi

ffi

fl

, (6.27)

where δ̄v
pkq

, δ̄ζ
pkq

, δ̄µ
pkq

, δ̄p
pkq

are the k-th Oseen corrections, and the right-hand
side accounts for the non-linear residual. The blocks in the previous matrix are

164

given by

L̄CN,pkq
1 “

»

—

—

—

–

T
`,pkq
0 T

´,pkq
1
.

T
`,pkq
nt´1 T

´,pkq
nt

M

fi

ffi

ffi

ffi

fl

, L̄CN,pkq
2 “

»

—

—

—

–

M

L
´,pkq
0 L

`,pkq
1
.

L
´,pkq
nt´1 L

`,pkq
nt

fi

ffi

ffi

ffi

fl

,

B̄CN
1 “

»

—

–

0 B̄
. . .

B̄

fi

ffi

fl

, B̄CN
2 “

»

—

–

B̄
. . .

B̄ 0

fi

ffi

fl

,

and M̄CN “ pInt`1,1 ` Int`1,3q b M̄CN, M̄CN
β “ pInt`1,2 ` I

J
nt`1,3q b M̄CN

β .
As for instationary Stokes control with Crank–Nicolson in time, the system

(6.27) is not symmetric; however, we work as in [100] and in the previous chapter
in order to transform the linear system above and make it as close to symmetric
as possible. In fact, eliminating the initial and final-time conditions on ~v and ~ζ,
we can rewrite

»

—

—

—

–

ĂMCN
rL CN,pkq

1 p rB CNqJ 0
rL CN,pkq

2 ´ĂMCN
β 0 p rB CNqJ

rB CN 0 0 0

0 rB CN 0 0

fi

ffi

ffi

ffi

fl

»

—

—

–

δvpkq

δζpkq

δµpkq

δppkq

fi

ffi

ffi

fl

“

»

—

—

—

–

b
pkq
1

b
pkq
2

b
pkq
3

b
pkq
4

fi

ffi

ffi

ffi

fl

,

with δvpkq, δζpkq, δµpkq, δppkq as well as the right-hand side modified accordingly.
The matrices ĂMCN “ IJnt,4 b M̄CN, ĂMCN

β “ Int,4 b M̄CN
β , rB CN “ Int b B̄, and

rL CN,pkq
1 “

»

—

—

—

–

T
`,pkq
0 T

´,pkq
1
.

T
`,pkq
nt´2 T

´,pkq
nt´1

T
`,pkq
nt´1

fi

ffi

ffi

ffi

fl

, rL CN,pkq
2 “

»

—

—

—

–

L
`,pkq
1

L
´,pkq
1 L

`,pkq
2
.

L
´,pkq
nt´1 L

`,pkq
nt

fi

ffi

ffi

ffi

fl

.

We now consider the linear transformation T defined as in (5.25), with T1, T2,
T3, and T4 defined as in (5.26). Then, the previous system is equivalent to the
following:

«

Φ
pkq
CN pΨCNq

J

ΨCN ´ΘCN

ff

loooooooooomoooooooooon

ApkqCN

»

—

—

–

δvpkq

δζpkq

δµpkq

δppkq

fi

ffi

ffi

fl

“ T

»

—

—

—

–

b
pkq
1

b
pkq
2

b
pkq
3

b
pkq
4

fi

ffi

ffi

ffi

fl

. (6.28)

Here the matrix blocks are given by

Φ
pkq
CN “

«

MCN LCN,pkq
1

LCN,pkq
2 ´MCN

β

ff

, ΨCN “

„

BCN
1 0
0 BCN

2

, ΘCN “

„

0 0
0 0

, (6.29)

165

with

MCN
“ T1

ĂMCN
“
`

Int,4 I
J
nt,4

˘

b M̄CN, BCN
1 “ T3

rB CN
“ IJnt,4 b B̄,

MCN
β “ T2

ĂMCN
β “

`

IJnt,4 Int,4
˘

b M̄CN
β , BCN

2 “ T4
rB CN

“ Int,4 b B̄,

LCN,pkq
1 “ T1

rL CN,pkq
1 , LCN,pkq

2 “ T2
rL CN,pkq

2 . (6.30)

System (6.28) is still not symmetric in general, as LCN,pkq
1 ‰ pLCN,pkq

2 qJ due to the
mismatch of the indices for the convection terms. We recall that the transforma-
tions Ti, i “ 1, 2, 3, 4, as well as their inverse operations are easy and cheap to
apply, as they require only a sequence of block updates. In addition, the matrices
MCN and MCN

β can be rewritten as in (5.30), with MCN
D and MCN

D,β defined as in
(5.31). Finally, we recall that we may work efficiently with MCN and MCN

β , by
employing T1, T2, MCN

D , MCN
D,β, and that MCN and MCN

β are symmetric positive
definite, since the same holds for MCN

D and MCN
D,β.

As for instationary Stokes control with Crank–Nicolson applied in time, it is
not straightforward to generalize the strategy presented here to the case where ~v0

is not incompressible, as in this case we must also solve an appropriate solenoidal
projection. However, as we mentioned above, the projection cannot be solved
along with the other equations, as our approach requires the elimination of the
initial and final conditions on ~v and ~ζ. Therefore, before applying our solver we
must solve the projection to a stricter tolerance than that required for the control
problem.

6.4 Preconditioning Approach

We now devise preconditioners for the systems (6.16), (6.24), and (6.28) arising
upon discretization of the optimality conditions for the problems under examina-
tion by making use of saddle-point theory. We will generalize the preconditioners
derived in Section 5.5 for Stokes control problems. Each of the preconditioner
below is of the form pP1 as defined in (2.30): this requires us to (approximately)
apply the inverse of the corresponding p1, 1q-block of each matrix analysed; we

accelerate this process by again employing an approximation of the form pP1 as
defined in (2.30). In the following, subscripts refer to the corresponding matrix
we are considering; to simplify the notation, we drop the superscript referring to
the non-linear iterate k.

6.4.1 Approximation of the p1, 1q-Block

We now describe suitable approximations of the inverses of the p1, 1q-blocks for
the systems (6.16), (6.24), and (6.28). As noted after the discretization of the
optimality conditions, each of these matrices is not symmetric if we solve the
incompressibility constraints inexactly (for a Crank–Nicolson discretization the
block is not symmetric even if those constraints are solved exactly). We thus use
a fixed number of GMRES iterations to approximate the p1, 1q-block, accelerated
with the preconditioners described below, as opposed to Uzawa iteration for ex-

166

ample (see [43]) which may be symmetrized, and so has utility within a MINRES
solver, for instance.

Stationary Navier–Stokes Control

Consider the p1, 1q-block Φ
pkq
S defined in (6.17). This matrix can be considered

as the discretization of the optimality conditions for a stationary convection–
diffusion control problem. Using saddle-point theory, a suitable preconditioner is
given by

PΦ,S “

„

M 0
Lpkq ´SΦ,S

,

with SΦ,S “ Mβ ` LpkqM´1L
pkq
adj the corresponding Schur complement. As de-

scribed in [141], a potent preconditioner for PΦ,S (optimal in the symmetric case)
is given by

pPΦ,S “

„

Mc 0

Lpkq ´pSΦ,S

.

Here, Mc represents a fixed number of steps of the Chebyshev semi-iterative
method [63, 64, 181], and

pSΦ,S “
`

Lpkq `M?
β

˘

M´1
`

L
pkq
adj `M?

β

˘

,

with M?
β “

1?
β
M and the blocks Lpkq ` M?

β and L
pkq
adj ` M?

β approximated
by the action of a multigrid routine, for example. It is worth noting that, if
the incompressibility constraints are solved exactly, Φ

pkq
S is symmetric and the

approximation pSΦ,S of the Schur complement SΦ,S is optimal; in fact, it can be

proved that λppS´1
Φ,S SΦ,Sq P

“

1
2
, 1
‰

[141].

Instationary Navier–Stokes Control with Backward Euler

We now derive a preconditioner for the matrix Φ
pkq
BE defined in (6.25). As in

the stationary case, the matrix can be considered as the discretization of the
optimality conditions for an instationary convection–diffusion control problem
with backward Euler in time. As the matrix MBE is not invertible, we seek a
preconditioner of the form:

rPΦ,BE “

«

ĂMBE 0

LBE,pkq
2 ´ rSΦ,BE

ff

,

with ĂMBE an invertible approximation of MBE, and the perturbed Schur comple-

ment rSΦ,BE “MBE
β ` LBE,pkq

2

`

ĂMBE
˘´1LBE,pkq

1 . Since the p1, 1q-block is the same
as for instationary Stokes control with backward Euler in time, here we employ
the same approximation ĂMBE of MBE. Specifically, a suitable approximation of
MBE is given by

ĂMBE
“ blkdiagpM̄BE, . . . , M̄BE, ξM̄BE

q,

167

with 0 ă ξ ! 1. In addition, following the work in [139], we can derive that a

good approximation for rSΦ,BE is the matrix

pSΦ,BE “
`

LBE,pkq
2 `MBE?

β

˘`

ĂMBE
˘´1`LBE,pkq

1 `MBE?
β

˘

,

with
MBE?

β “
τ
?
β
blkdiagp0,M, . . . ,M,

a

ξMq.

As for the stationary case, the blocks LBE,pkq
2 `MBE?

β
and LBE,pkq

1 `MBE?
β

are not
inverted exactly, but rather we apply block-forward and block-backward substitu-
tion respectively, with each block on the diagonal approximated by the action of
a multigrid process, for instance. Finally, a suitable approximation of the matrix
rPΦ,BE is given by

pPΦ,BE “

«

xM BE
c 0

LBE,pkq
2 ´ pSΦ,BE

ff

, xM BE
c “ τ blkdiagpMc, . . . ,Mc, ξMcq.

It is worth noting that, if the incompressibility constraints are solved exactly,
the Schur complement approximation pSΦ,BE of rSΦ,BE derived here is optimal.
In fact, following the work in Chapter 3 and in Chapter 4, it is possible to
prove that λp pS´1

Φ,BE
rSΦ,BEq P r

1
2
, 1s, as follows. Suppose that the incompressibility

constraints are solved exactly. We first observe that pN
pkq
n q

J “ ´N
pkq
n , which

implies LBE,pkq
1 “ pLBE,pkq

2 qJ. Then, since both the matrices ĂMBE and MBE
β are

symmetric positive definite, from Theorem 1 we derive that 1
2

is a lower bound

for the eigenvalues of the matrix pS´1
Φ,BE

rSΦ,BE. In addition, we employ Theorem 2

in order to prove that 1 is an upper bound for the eigenvalues of pS´1
Φ,BE

rSΦ,BE. For
this to hold, it is enough to prove that the matrix

X pkq
“ LBE,pkq

2

`

ĂMBE
˘´1MBE?

β `MBE?
β

`

ĂMBE
˘´1
pLBE,pkq

2 q
J

is positive semi-definite. Recalling that M̄BE “ τM, it is easy to derive that

`

ĂMBE
˘´1MBE?

β “MBE?
β

`

ĂMBE
˘´1

“
1
?
β
blkdiagp0, Inv , . . . , Inv , p

a

ξq´1 Invq,

which implies that

X pkq
“

1
?
β

´

X pkq
1 ` X2

¯

,

with X pkq
1 “ 2τblkdiagp0, rL

pkq
1 , . . . , rL

pkq
nt´1, p

?
ξq´1

rL
pkq
nt q, where rL

pkq
n “ νK`W

pkq
n ,

168

for n “ 1, 2, . . . , nt, and

X2 “

»

—

—

—

—

—

—

–

0 0
0 2 ´1

´1
.
. . . 2 ´1

´1 2?
ξ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooooooomoooooooooooooooon

T

bM.

We observe that the matrix T can be rewritten as follows:

T “ T J1 T1 `

»

—

—

—

—

—

–

0
0

. . .

0
2?
ξ
´ 1

fi

ffi

ffi

ffi

ffi

ffi

fl

,

where

T1 “

»

—

—

—

—

—

–

0
0 1

´1
. . .
. . . 1

´1 1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

From here, we derive that the matrix T is positive semi-definite, as it is the sum of
two symmetric positive semi-definite matrices. Recalling that also M is positive
definite and employing Theorem 3, we can infer that the matrix X2 is positive
semi-definite. Similarly, since each rL

pkq
n is positive definite, for n “ 1, 2, . . . , nt,

we can also infer that the matrix X pkq
1 is positive semi-definite. Then, due to X pkq

1

and X2 being positive semi-definite we derive that the same holds for the matrix
X . Finally, the latter together with Theorem 2 implies that 1 is an upper bound
for the eigenvalues of the matrix pS´1

Φ,BE
rSΦ,BE.

Instationary Navier–Stokes Control with Crank–Nicolson

Let us consider the linear system Φ
pkq
CN defined in (6.29), arising from a Crank–

Nicolson discretization. In order to devise a preconditioner for this system, as for
the backward Euler case, we observe that this matrix can be considered as the
(symmetrized) discretization of the optimality conditions for the control of the
instationary convection–diffusion equation discretized when employing Crank–
Nicolson in time. Again, a suitable preconditioner is the block triangular matrix

PΦ,CN “

„

MCN 0

LCN,pkq
2 ´SΦ,CN

,

where SΦ,CN “MCN
β `LCN,pkq

2 pMCNq´1LCN,pkq
1 . In order to find an approximation

of PΦ,CN, we adapt the strategy used in [100] and discussed in Section 4.3.1 as

169

follows.
The p1, 1q-block MCN is the same as that arising upon discretization of the

optimality conditions for instationary Stokes control with Crank–Nicolson in time.
Therefore, we may find an approximation by working as in the previous chapter.
In fact, from (5.30)–(5.31), we can rewrite MCN as MCN “ T1MCN

D TJ1 , with MCN
D

a block diagonal matrix with each diagonal block a multiple of M. Therefore,
a good approximation of MCN is given by xMCN “ T1

xMCN
D TJ1 , with xMCN

D “
τ
2
Int bMc.

To derive an approximation of SΦ,CN, we use (5.30) together with (6.30) to
rewrite

SΦ,CN “ T2

“

MCN
D,β `

`

rLCN,pkq
2

˘`

MCN
˘´1`

T1
rLCN,pkq

1 T´1
1

˘‰

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

Sint
Φ,CN

T1, (6.31)

recalling that T1 “ TJ2 . We first seek an approximation pS int
Φ,CN for Sint

Φ,CN of the
form

pS int
Φ,CN “

`

rLCN,pkq
2 ` xM2

˘`

MCN
˘´1`

T1
rLCN,pkq

1 T´1
1 ` xM1

˘

,

such that

xM2

`

MCN
˘´1

xM1 “
`

xM2T
´1
2

˘`

MCN
D

˘´1`
T´1

1
xM1

˘

“MCN
D,β.

The previous expression is clearly satisfied with the choice

xM2T
´1
2 “ T´1

1
xM1 “

τ

2
?
β
Int bM.

Then, our approximation of S int
Φ,CN is given by

pS int
Φ,CN “

`

rLCN,pkq
2 ` xM

˘`

MCN
˘´1`

T1
rLCN,pkq

1 T´1
1 ` xM J

˘

“
`

rLCN,pkq
2 ` xM

˘

T´1
2

`

MCN
D

˘´1`
rLCN,pkq

1 T´1
1 ` T´1

1
xM J

˘

,

with xM “ τ
2
?
β
IJnt,4 bM. Finally, substituting pS int

Φ,CN into (6.31) and observing

that xM and T1 commute, we obtain that our approximation of SΦ,CN is given by

pSΦ,CN “ T2

`

rLCN,pkq
2 ` xM

˘

T´1
2

`

MCN
D

˘´1`
rLCN,pkq

1 ` xM J
˘

.

As for the backward Euler method, we apply the inverse operators of the matrices
rLCN,pkq

2 `xM and rLCN,pkq
1 `xM J inexactly by employing a block-forward and block-

backward substitution respectively, with the action of a multigrid process used
to approximately apply the inverse of each block diagonal entry.

As opposed to the previous cases, it is not possible in general to prove bounds
on eigenvalues for this preconditioner, derived for instationary Navier–Stokes con-
trol with Crank–Nicolson in time, as the Schur complement approximation pSΦ,CN

is in general non-symmetric. However, if we suppose that the velocity ~v is con-
stant in time, then the matrix T2 commutes with rLCN,pkq

2 ` xM, and the Schur
complement approximation derived here reduces to the one we derived in Section

170

4.3.1 for time-dependent convection–diffusion control problems when the Crank–
Nicolson method is applied in time. The last observation implies that the Schur
complement approximation derived here is optimal in the simplified setting of the
velocity ~v being constant in time, due to Assumption 1 trivially holding, since we
are considering enclosed flow.

6.4.2 Approximation of Schur Complement

We now derive efficient approximations for each Schur complement of the systems
(6.16), (6.24), and (6.28). As for the Stokes control problems, the p2, 1q- and the
p1, 2q-blocks of these systems can be considered as a (negative) vector-divergence
matrix and its transpose. Therefore, the starting points for our approximations
are the commutator arguments employed for Stokes control problems described in
Section 5.5.2. In addition to the Laplacian ´∇2, all the differential operators con-
sidered below will take into account also for a convection term. The discretization
of the latter will include also a stabilization matrix, aside from the convection
matrix. The latter will be quite an important component of our preconditioners,
as it will allow more robustness with respect to the viscosity ν.

Stationary Navier–Stokes Control

Let us consider the Schur complement SA,S “ ΨSpΦ
pkq
S q

´1ΨJ
S of the system (6.16),

with Φ
pkq
S and ΨS defined as in (6.17). As for stationary Stokes control, we

apply the commutator argument to Em̄ as defined in (5.9) with m̄ “ 2, with the
differential operator on the velocity space taking also into account a convection
term. Specifically, the differential operator on the velocity space is defined as

D “

„

Id ´ν∇2 ´ ~v pkq ¨∇
´ν∇2 ` ~v pkq ¨∇ ´ 1

β
Id

,

and Dp the corresponding differential operator on the pressure space; we recall
from Section 6.1.1 that Id represents the identity operator. Employing stable
finite elements and working as in Section 5.3, we obtain the following expression
for (5.11):

pSA,S “

„

Kp 0
0 Kp

«

Mp L
pkq
adj,p

L
pkq
p ´Mβ,p

ff´1
„

Mp 0
0 Mp

« SA,S,

where we set

Lpkqp “ νKp `N
pkq
p `W pkq

p , L
pkq
adj,p “ νKp ´N

pkq
p `W pkq

p ,

and Mβ,p “
1
β
Mp.

Before presenting the approximations of the Schur complements arising from
the instationary case, as we did for the stationary Stokes control problem, we
would like to show the effectiveness of our approach. In Figure 6.1, we report
the eigenvalues of the matrix pS´1

A,SSA,S, after three Oseen iterations of the test

171

problem defined in Section 6.5.1, for ν “ 1
100

and level of refinement l “ 5, and
for some range of β, where l represents a (spatial) uniform grid of mesh-size
h “ 21´l for Q1 basis functions, and h “ 2´l for Q2 elements, in each dimension.
As for the stationary Stokes control problem, we “pin” the value of one of the
nodes of the matrix Kp, for each Kp in blkdiagpKp, Kpq in the factorization of
pSA,S.

Figure 6.1: Commutator approximation for the stationary Navier–Stokes con-
trol problem defined in Section 6.5.1. Eigenvalues of pS´1

A,SSA,S after three Oseen

iterations, with Ω “ p´1, 1q2 and ν “ 1
100

, for β “ 10´j, j “ 0, 2, 4, 6, and l “ 5.

In Figure 6.1, we observe a strong cluster of eigenvalues around 0.5 and 1.
However, as opposed to the stationary Stokes control problem, the real part of the
eigenvalues of pS´1

A,SSA,S are not clustered between 0.2 and 1 for all the parameters

β. In addition, the imaginary part of the eigenvalues of pS´1
A,SSA,S depends on the

parameter β. Nonetheless, the approximation adopted seems quite effective.

Instationary Navier–Stokes Control with Backward Euler

We now consider the Schur complement SA,BE “ ΨBEpΦ
pkq
BEq

´1ΨJ
BE of (6.24), and

derive an efficient approximation by employing the commutator argument (5.9).
As we mentioned for instationary Stokes control, the differential operator D is
chosen in such a way that it mimics the blocks of a suitable matrix. In this case,
we want to mimic the blocks of Φ

pkq
BE defined in (6.25). Again, the starting point is

the commutator argument for instationary Stokes control with backward Euler in
time, with the differential operator D taking into account also a convection term.

172

Specifically, we consider (5.9) with m̄ “ 2pnt ` 1q and the differential operator:

D “

«

D1,1
BE D1,2

BE

D2,1
BE D2,2

BE

ff

,

where D1,1
BE “ τInt`1,1 b Id, D2,2

BE “ ´
τ
β
Int`1,2 b Id, and

D1,2
BE “

»

—

—

—

–

D0, adj ´Id
.

Dnt´1, adj ´Id
Dnt, adj

fi

ffi

ffi

ffi

fl

, D2,1
BE “

»

—

—

—

–

D0

´Id D1

.

´Id Dnt

fi

ffi

ffi

ffi

fl

,

with

Di “ τp´ν∇2
` ~v

pkq
i ¨∇q ` Id, Di, adj “ τp´ν∇2

´ ~v
pkq
i ¨∇q ` Id.

As above, we define Dp as the corresponding differential operator on the pressure

space. Discretizing (5.9) and observing that SA,BE “ τ 2 ~B D´1 ~B J, with D the

discretization of the differential operator D and ~B “ I2pnt`1q b B, we obtain the
following approximation:

pSA,BE “ τ 2KBE
p

«

D1,1
p, BE D1,2

p, BE

D2,1
p, BE D2,2

p, BE

ff´1

MBE
p « SA,BE.

Here, we set

KBE
p “ I2pnt`1q bKp, MBE

p “ I2pnt`1q bMp,

D1,1
p, BE “ τInt`1,1 bMp, D2,2

p, BE “ ´
τ

β
Int`1,2 bMp,

and

D1,2
p, BE “

»

—

—

—

–

T
pkq
0,p ´Mp

.

T
pkq
nt´1,p ´Mp

T
pkq
nt,p

fi

ffi

ffi

ffi

fl

, D2,1
p, BE “

»

—

—

—

–

L
pkq
0,p

´Mp L
pkq
1,p
.

´Mp L
pkq
nt,p

fi

ffi

ffi

ffi

fl

,

with

L
pkq
i,p “ τpνKp `N

pkq
i,p `W

pkq
i,p q `Mp, T

pkq
i,p “ τpνKp ´N

pkq
i,p `W

pkq
i,p q `Mp.

Instationary Navier–Stokes Control with Crank–Nicolson

Finally, we move on to finding an approximation for the Schur complement
SA,CN “ ΨCNpΦ

pkq
CNq

´1ΨJ
CN of (6.28). As we have done for the Schur comple-

ment arising from the backward Euler discretization, the starting point is the
commutator argument for the instationary Stokes control problem with Crank–

173

Nicolson in time. Again, we apply the commutator argument (5.9) to a suitable
differential operator D.

We first observe that the Schur complement SA,CN can be rewritten as

SA,CN “

„

T3 0
0 T4

«

rB CN 0

0 rB CN

ff«

ĂMCN
rL CN,pkq

1

rL CN,pkq
2 ´ĂMCN

β

ff´1 «

rB CN 0

0 rB CN

ffJ

.

Then, we consider (5.9) with m̄ “ 2nt and the differential operator

D “

«

D1,1
CN D1,2

CN

D2,1
CN D2,2

CN

ff

,

where D1,1
CN “

τ
2
IJnt,4 b Id, D2,2

CN “ ´
τ

2β
Int,4 b Id, and

D1,2
CN “

»

—

—

—

–

D`0, adj D
´
1, adj
.

D`nt´2, adj D´nt´1, adj

D`nt´1, adj

fi

ffi

ffi

ffi

fl

, D2,1
CN “

»

—

—

—

–

D`1
D´1 D`2

.

D´nt´1 D`nt

fi

ffi

ffi

ffi

fl

,

with

D˘i “
τ

2
p´ν∇2

` ~v
pkq
i ¨∇q ˘ Id, D˘i, adj “

τ

2
p´ν∇2

´ ~v
pkq
i ¨∇q ˘ Id.

Denoting with Dp the corresponding differential operator on the pressure space
and proceeding as above, we can derive the following approximation:

pSA,CN “ τ 2

„

T3 0
0 T4

KCN
p

«

D1,1
p, CN D1,2

p, CN

D2,1
p, CN D2,2

p, CN

ff´1

MCN
p « SA,CN.

Here, we set

KCN
p “ I2nt bKp, MCN

p “ I2nt bMp,

D1,1
p, CN “

τ

2
IJnt,4 bMp, D2,2

p, CN “ ´
τ

2β
Int,4 bMp,

and

D1,2
p, CN“

»

—

—

—

–

T
`,pkq
0,p T

´,pkq
1,p
.

T
`,pkq
nt´2,p T

´,pkq
nt´1,p

T
`,pkq
nt´1,p

fi

ffi

ffi

ffi

fl

, D2,1
p, CN“

»

—

—

—

–

L
`,pkq
1,p

L
´,pkq
1,p L

`,pkq
2,p
.

L
´,pkq
nt´1,p L

`,pkq
nt,p

fi

ffi

ffi

ffi

fl

,

with

L
˘,pkq
i,p “ τ

2
pνKp `N

pkq
i,p `W

pkq
i,p q ˘Mp, T

˘,pkq
i,p “ τ

2
pνKp ´N

pkq
i,p `W

pkq
i,p q ˘Mp.

174

6.5 Numerical Results

We now demonstrate the effectiveness of our preconditioners by presenting numer-
ical results. In all our tests, d “ 2 (that is, x “ rx1, x2s

J), and Ω “ p´1, 1q2. All
tests are run on MATLAB R2018b, using a 1.70GHz Intel quad-core i5 processor
and 8 GB RAM on an Ubuntu 18.04.1 LTS operating system.

As our preconditioners are non-symmetric and require an inner solve for the
p1, 1q-block, for the outer solver we apply flexible GMRES [155] restarted every
10 iterations, up to a tolerance 10´6 on the relative residual; we make this choice
as, at each step, we require the Oseen linearization to be solved to a stricter
tolerance than that of the non-linear residual reduction we wish to achieve. Our
implementation is based on the flexible GMRES routine in the TT-Toolbox [127].
To apply the approximate inverse of the p1, 1q-block, we take 5 iterations of the
GMRES routine implemented in MATLAB. We apply 20 steps of Chebyshev
semi-iteration to mass matrices (on the velocity or pressure space); we apply 4
V-cycles of the AGMG routine [118, 121, 122, 123] for other matrices constructed
on the velocity space8, while employing 2 V-cycles (with 2 symmetric Gauss–
Seidel iterations for pre-/post-smoothing) of the HSL MI20 solver [22] for stiffness
matrices on the pressure space within our Schur complement approximation.

Regarding the non-linear iteration for solving the Navier–Stokes control prob-
lem, we allow 20 Oseen iterations, specifying as a stopping criterion a reduction
of 10´5 on the (non-linear) relative residual; the initial residual is the right-hand
side of the corresponding Stokes control problem, with ν “ 1 (for the instationary
case with Crank–Nicolson, we evaluate the residual before applying T). For each
problem below, the first Oseen iterate is employed for the Stokes control solve,
whose solutions vp1q, ζp1q, pp1q, µp1q are then used as the initial guess. We use
inf–sup stable Taylor–Hood Q2–Q1 finite elements in the spatial dimensions, with
level of refinement l representing a (spatial) uniform grid of mesh-size h “ 21´l

for Q1 basis functions, and h “ 2´l for Q2 elements, in each dimension. All CPU
times below are reported in seconds.

6.5.1 Stationary Navier–Stokes Control

We first test our solver on the stationary Navier–Stokes control problem (6.1)–

(6.2). We set ~f “ ~0, ~vd “ ~0, and

~g “

"

r1, 0sJ on BΩ1 :“ p´1, 1q ˆ t1u ,

r0, 0sJ on BΩzBΩ1.

We report the average number of GMRES iterations, together with the average
CPU time per GMRES solve, for the stationary Navier–Stokes control problem
in Tables 6.1–6.3, and in Table 6.4 we state the total degrees of freedom (DoF)
together with the total number of Oseen iterations required. We provide results
for different levels of refinement l, values of β, and viscosities ν.

8Note that, since each of these blocks contains a different convection matrix, the multi-
grid routine cannot be recycled, as the prolongation and the restriction operators have to be
computed again.

175

Table 6.1: Average GMRES iterations and CPU times for stationary Navier–
Stokes control problem, for ν “ 1

20
and a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

3 21 0.40 19 0.37 15 0.24 12 0.12 11 0.17 10 0.13 9 0.13

4 22 1.14 20 1.19 18 0.92 15 0.74 12 0.44 11 0.57 10 0.52

5 24 4.81 21 4.06 20 3.62 17 2.73 15 2.37 12 1.55 12 1.59

6 26 24.2 25 22.8 20 18.0 18 16.1 17 14.1 16 12.4 13 8.43

7 31 112 25 89.6 23 83.3 20 68.6 17 57.9 16 52.0 16 50.8

8 40 665 32 526 28 457 22 360 19 304 18 281 16 257

Table 6.2: Average GMRES iterations and CPU times for stationary Navier–
Stokes control problem, for ν “ 1

100
and a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

3 38 0.79 24 0.30 13 0.20 11 0.19 11 0.18 9 0.13 9 0.14

4 31 1.84 24 1.28 18 0.96 12 0.43 11 0.61 11 0.59 10 0.50

5 29 5.47 23 4.23 20 3.23 16 2.32 12 1.60 11 1.58 11 1.64

6 31 28.0 27 23.6 22 18.5 18 14.6 15 11.1 12 8.05 11 8.14

7 32 116 27 93.6 24 83.9 20 69.6 17 58.7 15 46.7 13 35.9

8 38 627 32 528 27 437 22 351 19 298 17 276 15 236

Table 6.3: Average GMRES iterations and CPU times for stationary Navier–
Stokes control problem, for ν “ 1

500
and a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

3 77:9 1.46: 23 0.44 13 0.25 11 0.24 10 0.19 9 0.14 9 0.14

4 86: 4.18: 48: 2.02: 18 1.01 12 0.68 11 0.67 10 0.57 10 0.55

5 74 15.4 49 8.02 28 4.13 14 2.08 12 1.87 11 1.73 10 1.50

6 57 55.1 39 34.2 27 22.0 20 14.6 13 8.93 11 8.86 11 8.63

7 54 192 32 111 27 90.6 21 67.3 17 49.4 12 32.5 12 37.2

8 53 878 34 561 29 472 23 369 19 292 16 232 13 172

Tables 6.1–6.3 demonstrate the robustness of our proposed preconditioner.
The numbers of iterations show only a mild dependence on the viscosity ν, and
a slight increase only for large values of β. The CPU time scales approximately
linearly with respect to the dimension of the systems, with a marginal increase
for very fine grids; in this case we observe that the AGMG multigrid routine does

176

not scale exactly linearly. Table 6.4 shows that the number of Oseen iterations
strongly depends on the viscosity ν, as expected as the non-linear term becomes
increasingly significant for smaller ν; however, as the grid is refined the number of
outer iterations decreases. We also note that the number of linear and non-linear
iterations increases for larger values of β and coarser grids.

Table 6.4: Degrees of freedom (DoF) and number of Oseen iterations required for
stationary Navier–Stokes control problem. In each cell are the Oseen iterations
for the given l, ν, and β “ 10´j, j “ 0, 1, ..., 6.

l DoF ν “ 1
20 ν “ 1

100 ν “ 1
500

3 1062 5 5 5 5 4 4 3 13 9 7 5 4 4 3 : 20 7 5 4 4 3

4 4422 5 5 4 4 4 4 4 8 6 6 5 4 4 4 : : 9 5 4 4 4

5 18,054 4 4 4 4 4 4 3 7 5 5 4 4 4 3 16 10 8 6 4 4 3

6 72,966 4 4 4 3 3 3 3 6 4 4 4 4 4 3 11 6 5 5 4 4 3

7 293,382 4 3 3 3 3 3 3 5 4 3 3 3 3 3 8 4 4 4 4 4 3

8 1,176,582 3 3 3 3 3 3 3 4 3 3 3 3 3 3 5 3 3 3 3 3 3

6.5.2 Instationary Navier–Stokes Control

We now test our solver on the instationary Navier–Stokes control problem (6.3)–

(6.4), where we set tf “ 2, ~fpx, tq “ ~0, the initial condition ~v0pxq “ ~0, and
boundary conditions

~gpx, tq “

$

&

%

rt, 0sJ on BΩ1 ˆ p0, 1q,

r1, 0sJ on BΩ1 ˆ r1, tf q,

r0, 0sJ on pBΩzBΩ1q ˆ p0, tf q,

with BΩ1 defined as in Section 6.5.1. We present results obtained by employing
backward Euler and Crank–Nicolson discretizations in time. Setting

c1 “ 1´
b

p100
49
px1 ´

1
2
qq2 ` p100

99
x2q

2,

c2 “ 1´
b

p100
49
px1 `

1
2
qq2 ` p100

99
x2q

2,

we seek the (divergence-free) desired state:

~vdpx, tq “

$

’

&

’

%

c1 cospπt
2
q rp100

99
q2x2,´p

100
49
q2px1 ´

1
2
qsJ if c1 ě 0,

c2 cospπt
2
q r´p100

99
q2x2, p

100
49
q2px1 `

1
2
qsJ if c2 ě 0,

r0, 0sJ otherwise.
9: means that the outer (Oseen) iteration did not converge in 20 iterations. The average

number of GMRES iterations and CPU time is evaluated over the first 10 Oseen iterations.

177

Backward Euler for Instationary Navier–Stokes Control

We first report the results obtained when employing the backward Euler scheme
in time. We provide the average number of GMRES iterations together with the
average elapsed CPU time in Tables 6.5–6.7, and in Table 6.8 the total dimensions
of the systems solved and the Oseen iterations required, for different levels of
refinements l, values of β, and viscosities ν. Here, we choose the time-step
τ “ 0.05 (that is, nt “ 40), while the level of refinement l refers to a spatial
uniform grid constructed as above.

Table 6.5: Average GMRES iterations and CPU times for instationary Navier–
Stokes control problem, with backward Euler in time (τ “ 0.05), for ν “ 1

20
and

a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 17 6.74 16 6.18 13 5.24 11 4.42 11 4.11 12 4.89 20 7.75

3 18 9.36 18 9.71 16 8.6 14 9.84 12 10.1 14 10.2 22 17.5

4 19 40 19 41 18 46.2 17 42.5 15 30.2 16 41.3 24 65.1

5 19 195 20 206 19 176 17 153 17 142 17 135 24 194

6 23 1096 22 1053 20 970 18 843 17 771 18 828 25 995

Table 6.6: Average GMRES iterations and CPU times for instationary Navier–
Stokes control problem, with backward Euler in time (τ “ 0.05), for ν “ 1

100
and

a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 17 6.96 14 5.70 11 4.47 11 4.21 10 4.08 12 4.93 21 8.54

3 22 18.8 19 17.7 14 13.2 11 10.9 11 10.6 13 11.8 21 19.7

4 23 45.3 22 45.4 18 39.0 14 37.5 13 35.0 15 41.2 23 61.4

5 22 190 22 196 19 169 17 148 15 126 16 136 25 220

6 25 1153 24 1099 21 979 18 809 17 729 17 685 25 1080

As for the stationary case, Tables 6.5–6.7 show robustness of the proposed
preconditioner with respect to all the parameters involved. We note that the
number of iterations increases slightly for small viscosities and large values of β.
The elapsed CPU time scales almost linearly with the dimension of the system,
except for very fine grids. We see from Table 6.8 that the number of Oseen
iterations increases for small values of ν and large values of β when employing a
coarse grid; however, as the grid is refined, the number of non-linear iterations
decreases.

178

Table 6.7: Average GMRES iterations and CPU times for instationary Navier–
Stokes control problem, with backward Euler in time (τ “ 0.05), for ν “ 1

500
and

a range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 16: 6.66: 14: 5.55: 11: 4.43: 10: 3.92: 10 3.84 12 4.91 22 8.87

3 26: 28.9: 20: 25.4: 14 17.2 11 13.6 11 13.3 13 15.1 22 27.9

4 43: 130: 34 120 17 64.5 13 50.6 12 47.8 14 53.6 24 82.7

5 54 467 43 417 28 294 16 160 15 164 16 187 24 263

6 39 1723 35 1552 27 1209 20 842 17 742 18 830 26 1165

Table 6.8: Degrees of freedom (DoF) and number of Oseen iterations required
for instationary Navier–Stokes control problem, with backward Euler in time
(τ “ 0.05). In each cell are the Oseen iterations for the given l, ν, and β “
10´j, j“0, 1, ..., 6.

l DoF ν “ 1
20 ν “ 1

100 ν “ 1
500

2 10,086 6 6 5 5 5 5 5 15 8 6 5 5 5 5 : : : : 10 8 8

3 43,542 5 5 5 5 4 4 4 9 8 6 5 5 5 5 : : 7 6 6 6 6

4 181,302 5 5 4 4 4 4 4 6 6 6 5 5 5 5 : 14 8 6 6 6 6

5 740,214 4 4 4 4 4 3 3 5 5 5 4 4 4 4 8 8 7 5 5 5 5

6 2,991,606 4 4 4 3 3 3 3 4 4 4 4 4 3 3 6 5 5 5 4 4 4

Crank–Nicolson for Instationary Navier–Stokes Control

We now report the results obtained when applying Crank–Nicolson in time. We
report the average number of GMRES iterations together with the average elapsed
time for instationary Navier–Stokes control with Crank–Nicolson in time in Tables
6.9–6.11, and in Table 6.12 the total dimensions of the systems solved and the
numbers of Oseen iterations, for different levels of refinements l, values of β, and
viscosities ν. In addition, in Table 6.13 we report the average number of GMRES
iterations, the average elapsed time, and the number of Oseen iterations Os with
very small viscosity ν, for different levels of refinement l, and for some values of
β. Here, for level of refinement l we divide the time interval into subintervals of
length 21´l and consider a spatial uniform grid of refinement level l. In Figure
6.2 we show the numerical solutions of the state and adjoint velocities ~v and ~ζ,
at time t “ 1, and of the pressure p, at time t “ 1.0625, for ν “ 1

100
, β “ 10´1,

and l “ 4.
From Tables 6.9–6.11 we observe that the number of iterations required for

reaching a prescribed accuracy is, again, roughly constant, increasing only for
small ν and large β. The dependence on the viscosity ν is more evident from Table
6.13, as in fact the number of iterations increases also for more moderate values of
β, but remains low considering the dimensions of the systems solved. It is worth

179

Table 6.9: Average GMRES iterations and CPU times for instationary Navier–
Stokes control problem, with Crank–Nicolson in time (τ “ h), for ν “ 1

20
and a

range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 16 0.73 15 0.68 12 0.53 10 0.44 9 0.39 9 0.37 8 0.36

3 18 3.40 17 3.23 15 2.14 12 1.68 10 1.93 10 1.56 9 1.55

4 18 22.7 19 22.9 18 21.2 15 17.4 12 11.9 11 12.6 10 11.8

5 19 170 19 173 18 162 17 151 15 122 13 98.4 11 85.0

6 21 1948 21 1898 21 1848 18 1587 17 1448 15 1295 13 1022

Table 6.10: Average GMRES iterations and CPU times for instationary Navier–
Stokes control problem, with Crank–Nicolson in time (τ “ h), for ν “ 1

100
and a

range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 16 0.74 13 0.64 11 0.51 10 0.45 9 0.40 9 0.38 8 0.38

3 21 3.80 19 3.72 13 2.80 10 2.20 10 2.20 9 1.77 9 1.87

4 23 22.6 22 22.2 18 18.5 12 15.4 11 13.6 10 13.3 10 12.2

5 22 187 21 184 19 166 16 135 12 103 11 87.7 11 89.7

6 24 2141 24 2087 22 1922 18 1507 15 1272 12 973 11 913

Table 6.11: Average GMRES iterations and CPU times for instationary Navier–
Stokes control problem, with Crank–Nicolson in time (τ “ h), for ν “ 1

500
and a

range of l and β.

β “ 100 β “ 10´1 β “ 10´2 β “ 10´3 β “ 10´4 β “ 10´5 β “ 10´6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 16: 0.75: 14: 0.64: 10: 0.46: 10 0.43 9 0.40 8 0.38 8 0.37

3 26: 6.49: 20: 5.70: 13 3.78 10 2.90 9 2.60 9 2.19 9 2.19

4 47 64.6 33 53.5 17 28.2 11 20.3 10 17.7 10 15.8 9 14.6

5 54 476 44 417 28 291 15 148 11 119 11 109 10 98.2

6 44 3728 37 3140 29 2472 20 1701 14 1157 11 983 11 968

noting that the preconditioner struggles only for viscosity ν “ 1
2000

, at which
stage the problem becomes increasingly non-linear and convection-dominated. As
experienced above, the CPU time scales approximately linearly with the size of
the system, except for very fine grids. Regarding the non-linear iteration, as above
we note in Table 6.12 that the number of Oseen iterations is decreasing as the grid
is refined, while it is increasing for small values of ν and large values of β. From

180

Table 6.12: Degrees of freedom (DoF) and number of Oseen iterations required
for instationary Navier–Stokes control problem, with Crank–Nicolson in time
(τ “ h). In each cell are the Oseen iterations for the given l, ν, and β “ 10´j,
j “ 0, 1, ..., 6.

l DoF ν “ 1
20 ν “ 1

100 ν “ 1
500

2 984 6 6 6 6 5 4 3 12 7 7 7 5 4 4 : : : 10 7 5 4

3 8496 5 5 5 6 5 4 4 8 8 6 7 6 4 4 : : 7 7 7 5 4

4 70,752 4 4 4 4 4 4 3 6 6 5 5 4 4 3 18 14 6 5 6 5 4

5 577,728 4 4 4 3 3 3 3 5 4 4 4 4 4 3 9 8 6 5 4 4 3

6 4,669,824 3 3 3 3 3 3 3 4 4 4 3 3 3 3 5 5 5 4 4 3 3

Table 6.13: Average GMRES iterations, average CPU times, and number of Os-
een iterations (Os) for instationary Navier–Stokes control problem, with Crank–
Nicolson in time (τ “ h), for ν “ 1

1000
and ν “ 1

2000
, and for a range of l and

β.

ν “ 1
1000 ν “ 1

2000

β “ 10´2 β “ 10´4 β “ 10´6 β “ 10´2 β “ 10´4 β “ 10´6

l it CPU Os it CPUOs it CPUOs it CPU Os it CPUOs it CPUOs

2 11: 0.51: : 9 0.41 7 8 0.37 4 11: 0.54: : 9 0.42 7 8 0.35 4

3 14 4.19 8 10 2.72 7 9 2.26 4 14 4.38 9 9 2.79 8 9 2.31 4

4 18 37.2 8 10 18.8 7 9 15.1 4 22 45.8 8 10 19.4 8 9 15.7 4

5 32 453 8 12 148 4 10 111 3 34: 568: : 11 161 5 10 121 4

6 46 4833 6 13 1348 4 11 1046 3 77: 10505: : 13 1548 4 11 1176 3

Table 6.13 we observe that for very small viscosities (e.g., ν “ 1
2000

) the number of
Oseen iterations starts to increase for a wider range of regularization paramenters,
due to the stronger non-linearity in the problem. From here, we envisage the
utility of developing a robust solver for Newton’s method for (stationary and
instationary) Navier–Stokes control problems, which is a topic of future work and
would be likely to mitigate effects of very small viscosities on the convergence of
the outer iteration.

6.6 Summary and Comments

In this chapter, we presented mesh- and parameter-robust preconditioners for
distributed Navier–Stokes control problems, of both stationary and instationary
type, coupled with an Oseen linearization. For the instationary case, we employed
either the backward Euler or the Crank–Nicolson discretization in the time vari-
able. The preconditioners made use of most of the techniques presented so far in
this work. Specifically, we employed saddle-point theory in conjuction with the
commutator argument presented in the previous chapter for Stokes control, in

181

Figure 6.2: Solution plots for the instationary Navier–Stokes control problem, for
ν “ 1

100
, β “ 10´1, and l “ 4. Top left: velocity ~v at t “ 1. Top right: pressure

p at t “ 1.0625. Bottom: adjoint velocity ~ζ at t “ 1.

order to approximate the Schur complement of the corresponding discrete Oseen
problems. In addition, we employed well known preconditioners for convection–
diffusion control problems to accelerate the process of approximately applying
the inverse operators of the corresponding p1, 1q-block of the systems considered.
The outer preconditioners were applied within the flexible GMRES algorithm.
Numerical results demonstrated the versatility and effectiveness of this approach
when solving a range of huge-scale linear systems.

As we did at the end of the previous chapter, before moving on to the next
one we would like to devote some discussion to the technique described here.
Specifically, we would like to discuss the utility of the stabilization matrix within
our commutator argument.

In Section 6.4.2, we made use of a commutator argument for deriving effective
approximations of the Schur complements of the discrete Oseen problems consid-
ered above. The discretizations of the commutator arguments were also taking
into account a stabilization matrix, aside from the discretization of the convec-
tion term. As we mentioned, this has been done in order to give more robustness
within the preconditioners with respect to the viscosity ν. We will explain this
idea by considering the Oseen approximations of the stationary Navier–Stokes
control problem.

In order to find an approximation of a critical point for (6.1)–(6.2), we itera-
tively solved the Oseen linearization (6.14). Upon discretization, we had to solve
a sequence of saddle-point systems of the form (6.16), with the blocks defined as
in (6.17). In order to understand the importance of the stabilization matrices, for

182

now we consider the case when no stabilization is used. In this case, the system
we have to solve at each Oseen iteration is given in (6.16), with the blocks ΨS

and ΘS defined as in (6.17), and the p1, 1q-block Φ
pkq
S given by

Φ
pkq
S “

„

M νK´Npkq

νK`Npkq ´Mβ

.

Here, we suppose that if a commutator argument can be used for approxi-
mating each block of the inverse of Φ

pkq
S , then we may be able to derive that a

similar argument holds for the Schur complement SA,S of AS. In particular, let us

consider the Schur complement of Φ
pkq
S arising when no stabilization is employed.

In this case, we have

SΦ,S “ Mβ ` pνK`Npkq
qM´1

pνK´Npkq
q

“ Mβ ` ν
2KM´1K` νpNpkqM´1K´KM´1Npkq

q ´NpkqM´1Npkq.

From here, we may be able to understand the complexity of finding precondi-
tioners for Navier–Stokes control problems that are robust with respect to the
viscosity ν, as the dependence of the Schur complement SΦ,S on ν is not only
linear, but (hiddenly) quadratic. In particular, fixing the mesh-size h and letting
ν tend to 0 and β tend to infinity, we find the following approximation of the
Schur complement SΦ,S:

SΦ,S « ´NpkqM´1Npkq.

Finally, the latter approximation tells us that the commutator argument pre-
sented in this chapter may be not completely robust when fixing h and letting ν
tend to 0 and β tend to infinity. However, if we include a stabilization Wpkq when
discretizing the convection term, we can derive the following approximation of
the Schur complement SΦ,S for this parameter regime:

SΦ,S « WpkqM´1Wpkq
` pNpkqM´1Wpkq

´WpkqM´1Npkq
q ´NpkqM´1Npkq.

Now, as we mentioned above, the stabilization Wpkq is chosen to enhance coerciv-
ity of the discretization. The latter may be translated in terms of numerical linear
algebra as: the stabilization Wpkq is such that the real part of the eigenvalues of
the discretized differential operator is shifted further into the right half-plane. In
particular, the stabilization matrix we employed is positive semi-definite, and can
be considered as a shifted discrete diffusion operator associated with the stream-
line direction defined by the approximation of the velocity ~v pkq, see Section 4.1.1.
Thus, it is not so surprising that we are able to recover robustness within our
preconditioners, also for very small viscosity. Similar arguments can be made for
the control of the instationary Navier–Stokes equations, either when employing
backward Euler or Crank–Nicolson in time.

183

Chapter 7

Preconditioning Fractional
Differential Equation
Constrained Optimization
Problems

“-Non ti disunire, Fabio.
-Mi chiamano tutti Fabietto.
-È ora ca’ t’ faje chiammà Fabio. Non ti disunire.
-Ma che significa?
-L’hê cap... hê cap̀ı tu sul’. [...] Non ti disunire, Schisa. Non
ti disunire mai!”

[“-Don’t come apart, Fabio.
-Everybody calls me Fabietto.
-Well now it’s time they called you Fabio. Don’t come apart,
Fabio.
-But what does it mean?
-You hav... you have to understand it by yourself. [...] Don’t
come apart, Schisa. Don’t ever come apart!”]

– Paolo Sorrentino, È stata la mano di Dio

We are entering now the last main chapter of this work. Here, we consider
the optimal control of Fractional Differential Equations (FDEs), with additional
algebraic constraints on the state and the control variables. As opposed to the
classical derivatives treated so far, which are local operators, FDEs describe non-
local properties: given a function f defined on a domain Ω, the fractional deriva-
tive of f at a given point of Ω is related to the effects of f on the whole domain.
In particular, problems with non-local properties can frequently be modeled ac-
curately using FDEs. Among other processes, FDEs have been used to model
viscoelasticity (e.g., [94]), anomalous transport (e.g., [114]), and flow in porous
media (e.g., [15]), with applications to biology (e.g., [2]), electrochemistry (e.g.,
[124]), electrical circuits (e.g., [144]), and in finance (e.g., [159]).

As for the problems considered in the previous chapter, in order to obtain
an approximation of a solution of the problems considered here we have to run

184

a non-linear process due to the presence of the box constraints on the variables.
As opposed to all the previous chapters, in which we employed an optimize-then-
discretize approach, here we adopt a discretize-then-optimize solution strategy.
We employ this strategy here in order to avoid having to derive an infinite-
dimensional adjoint for a fractional operator. The convex quadratic optimization
problem resulting from the discretization step consists of a quadratic cost func-
tional to be minimized subject to a (very dense) system of linear equations (that
presents a very specific structure), aside from the box constraints on the state
and control variables. In order to preserve the structure of the linear system aris-
ing at each non-linear iteration, we separate inequality from equality constraints,
with the latter solved by employing an efficient and robust preconditioner within
a suitable Krylov subspace method (although we are splitting inequality from
equality constraints, in this case it is important that we “don’t come apart” so
as to preserve the structure of the latter).

This chapter is structured as follows. In Section 7.1, we introduce the notions
of fractional integrals and fractional derivatives. In Section 7.2, we describe how
to discretize a fractional derivative, and show the linear system that arises upon
discretization. Then, in Section 7.3, we describe the preconditioning technique
employed for approximating the discretization of forward FDEs. In Section 7.4,
we introduce the problem we consider in this chapter, that is, the optimal control
of FDEs with additional box constraints on the state and the control variables,
describing the strategy employed for finding an approximation of the solution in
Section 7.5. The latter is based on an Alternating Direction Method of Multipliers
(ADMM), which allows us to separate the equality from the inequality constraints,
solving the equality constraints, and then updating the current solutions. In
Section 7.6, we present the preconditioners we employ at each non-linear iteration.
Finally, in Section 7.7, we provide numerical results that show the robustness of
our approach.

This chapter is based on the work in [146], which was a joint work with Spyros
Pougkakiotis, John Pearson, and Jacek Gondzio at the University of Edinburgh.
Where the author was not involved in the work discussed, we omit detailed dis-
cussion and the paper [146] is referred to, and we provide some auxiliary results
which motivated the preconditioning strategy in Appendix A.

7.1 Fractional Calculus

In this section we introduce the notion of a fractional integral and fractional
derivative. We follow the work in [66]. For a detailed discussion on the fractional
calculus, see, for example, [116, 125, 143, 158].

7.1.1 Fractional Integral

We start our description with the Riemann–Liouville integral of a holomorphic
function f defined on the interval r0, tf s. This integral is a generalization of the

185

Cauchy formula [143, Section 2.3.1]

f p´nqptq “
1

pn´ 1q!

ż t

0

pt´ τqn´1fpτq dτ, t ą 0, n P N,

where f p´nq denotes the n-fold primitive of the function f . Following [66], we call
the previous expression Jn fptq. We note that f p´nqptq vanishes at t “ 0 with its
derivatives of order 1, 2, . . . , n ´ 1. For convention it is required that fptq is a
causal function, that is identically vanishing for t ă 0.

The way to generalize the Cauchy formula is to consider a positive number
α ą 0 (not anymore constrained to be an integer) and then find an expression
that reduces to the formula above when α is an integer. The only formal issue
with this generalization is the definition of the factorial for a general positive
number α. The natural way to do that is to consider the Gamma function. In
fact, it is well known that Γpnq “ pn ´ 1q! whenever n P N. With that in mind,
it is possible to define the fractional integral of order α as

Jα fptq :“
1

Γpαq

ż t

0

pt´ τqα´1fpτq dτ, t ą 0, α ą 0,

and for the sake of being fully comprehensive we can set J0 :“ Id, with Id the
identity operator, implying that J0 fptq “ fptq.

One may prove the following semigroup property [66]:

Jα Jγ “ Jα`γ, α, γ ě 0,

which implies the commutative property Jα Jγ “ Jγ Jα, and that the following
equality holds [66]:

Jα tγ “
Γpγ ` 1q

Γpγ ` 1` αq
tγ`α, α ą 0, γ ą ´1, t ą 0.

The above properties are clearly a generalization of the properties of the clas-
sical (integer order) integral, and the proofs are based on both the Gamma and
Beta functions [116, 125]

Γpzq “

ż 8

0

e´xxz´1 dx, Repzq ą 0,

Bpz1, z2q “

ż 1

0

p1´ xqz1´1xz2´1 dx, Repz1q, Repz2q ą 0,

where with Repzq ą 0 we place a constraint on the real part of z.

7.1.2 Fractional Derivative

Once we have defined the fractional integral of order α, it is natural to seek the
fractional derivative for a general real value of α.

186

If we denote by Dn, n P N, the classical derivative of order n, we observe that

Dn Jn “ Id, JnDn
‰ Id, n P N,

that is, Dn is a left-inverse but not a right-inverse to the corresponding integral
operator Jn. In fact, we have that

Jn Dn fptq “ fptq ´
n´1
ÿ

i“0

f piqp0`q
t i

i !
, t ą 0.

Therefore, it is reasonable to define Dα as left-inverse to Jα. Introducing
the positive integer n such that n ´ 1 ă α ď n, one can define the (left-sided
Riemann–Liouville) fractional derivative of order α as

RL
LD

α fptq “ Dn Jn´α fptq,

namely

RL
LD

α fptq :“

$

’

’

’

’

&

’

’

’

’

%

1

Γpn´ αq

dn

dtn

ż t

0

fpτq

pt´ τqα`1´n
dτ, n´ 1 ă α ă n,

dn

dtn
fptq, α “ n,

and again for completeness one may set RL
LD

0 “ J0 “ Id. From here, it is clear
that

RL
LD

α Jα “ Id, α ě 0,

and that

RL
LD

α t γ “
Γpγ ` 1q

Γpγ ` 1´ αq
tγ´α, α ą 0, γ ą ´1, t ą 0. (7.1)

Again, we find a generalization of the properties of the classical (integer order)
derivative. However, we realize that if fptq ” 1 then RL

LD
α fptq ‰ 0 if α R N. In

fact, using the expression above with γ “ 0 we obtain

RL
LD

α 1 “
t´α

Γp1´ αq
, α ě 0, t ą 0,

that is of course identically equal to zero when α P N, due to the poles of the
Gamma function at the points 0,´1,´2,

In a similar way, we can define the (right-sided Riemann–Liouville) fractional

187

derivative of order α as

RL
RD

α fptq :“

$

’

’

’

’

&

’

’

’

’

%

p´1qn

Γpn´ αq

dn

dtn

ż tf

t

fpτq

pτ ´ tqα`1´n
dτ, n´ 1 ă α ă n,

dn

dtn
fptq, α “ n.

In addition, from the right- and left-sided Riemann–Liouville fractional deriva-
tive we can define the symmetric Riesz derivative as follows [143, 158]:

RDα fptq :“
´1

2 cospαπ
2
q

´

RL
LD

α fptq `RL
R D

α fptq
¯

.

The previous expression is not defined if α “ 1, due to the cosine vanishing for
this value of α. For this reason, in the following we consider only symmetric
Riesz derivatives of order α P p1, 2s. For α ď 1, we require a different fractional
derivative, which leads us to the following definition.

We can find also another way for defining the fractional derivative, the so-
called Caputo fractional derivative of order α ą 0, defined as

Dα
˚ fptq “ Jn´αDn fptq,

with n´ 1 ă α ď n, that is

Dα
˚ fptq :“

$

’

’

’

’

&

’

’

’

’

%

1

Γpn´ αq

ż t

0

f pnqpτq

pt´ τqα`1´n
dτ, n´ 1 ă α ă n,

dn

dtn
fptq, α “ n.

The last definition is more restrictive than the previous one, since it requires
the absolute integrability of the derivative of order n. Moreover, from the two
definitions it is clear that

Dα fptq :“ Dn Jn´α fptq ‰ Jn´αDn fptq :“ Dα
˚ fptq

unless the function fptq along with its first n ´ 1 derivatives vanishes at t “ 0`

[66]. In fact, assuming that the passage of the n-derivative under the integral is
valid, we have that for n´ 1 ă α ă n and t ą 0:

Dα fptq “ Dα
˚ fptq `

n´1
ÿ

i“0

t i´α

Γpi´ α ` 1q
f piqp0`q, (7.2)

whereupon recalling (7.1) implies

Dα

˜

fptq ´
n´1
ÿ

i“0

t i

i !
f piqp0`q

¸

“ Dα
˚ fptq.

188

From here, it can be easily recognised that Dα
˚ 1 ” 0, α ą 0.

7.2 Discretizing a Fractional Derivative

In this section, we discuss how discretize a fractional derivative of general order
α ą 0. For an overview on discretizations for fractional differential equations,
see, for instance, [143, 158].

Let fptq be defined on Ω “ r0, 1s. We consider both the Riemann–Liouville
fractional derivative Dα fptq and the Caputo fractional derivative Dα

˚ fptq. In
order to find a numerical approximation of these differential operators, having
taken nt P N, we construct the grid

ti “ i τ, i “ 0, 1, . . . , nt, τ “
1

nt
.

Then, we approximate the fractional derivatives through the formula of Grünwald
and Letnikov [143]. In particular, for the Riemann–Liouville fractional derivative
we use the shifted Grünwald-Letnikov formula

Dα fptq «
1

τα

nt
ÿ

i“0

gα,i fpt´ pi´ 1qτq, (7.3)

where the coefficients gα,i are given by

gα,i “
Γpi´ αq

Γp´αqΓpi` 1q
“ p´1qi

ˆ

α

i

˙

.

These can be computed by setting gα,0 “ 1, and then using the following recur-
rence formula:

gα,i “

ˆ

1´
α ` 1

i

˙

gα,i´1,

for i “ 1, 2, . . . , nt [143]. It is possible to prove that (7.3) is first order accurate,
see [111, 112, 113].

Rewriting (7.3) in matrix form, we obtain that the discretization of the
Riemann–Liouville fractional derivative is defined by

Lα f ,

with the vector f containing the evaluations of the function f at the grid points,

189

and the matrix Lα given by

Lα “
1

τα

»

—

—

—

—

—

—

—

—

—

–

gα,1 gα,0 0

gα,2 gα,1 gα,0
. . .

...
.

...
. . . gα,1 gα,0 0

... gα,2 gα,1 gα,0
gα,nt gα,3 gα,2 gα,1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (7.4)

We observe that the matrix Lα is a Toeplitz matrix, as defined in the next section.
We now consider the Caputo fractional derivative Dα

˚ fptq of fptq. Again,
by using the Grünwald–Letnikov formula in its non-shifted form [143, 158], we
obtain the following approximation:

Dα
˚ fptq «

1

τα

nt´1
ÿ

i“0

gα,i fpt´ i τq.

As above, rewriting the previous expression in matrix form leads to the lower
triangular Toeplitz matrix Cα

Cα “
1

τα

»

—

—

—

—

—

—

–

gα,0 0

gα,1 gα,0
. . .

...
.

... gα,1 gα,0 0
gα,nt´1 . . . gα,2 gα,1 gα,0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (7.5)

We would like to note that we employ the non-shifted Grünwald–Letnikov formula
as an approximation of the Caputo fractional derivative in order to take into ac-
count the discrepancy between the Caputo and the Riemann–Liouville fractional
derivatives given in (7.2).

From (7.4) and from (7.5), we can realize that the matrices arising upon
discretization of a fractional differential operator are (usually) dense. Since we
are looking for a fine discretization in order to reduce the numerical error, one is
usually dealing with very large, and very dense linear systems (that often cannot
even be stored in computer memory). However, the discretized systems have a
structure which we may exploit: as we mentioned above, the type of matrix we
obtain upon this discretization of fractional derivatives of these types is a Toeplitz
matrix. In the following section we will introduce the definition of Toeplitz matrix,
and then generalize this notion to block-Toeplitz matrices whose blocks are again
Toeplitz matrices. Then, we will derive optimal preconditioners for those type of
matrices, and we will employ this method in the problems considered below.

190

7.3 Preconditioners for FDEs

In this section, we discuss the preconditioning techniques employed for approx-
imating the discrete fractional differential operators described above. The pre-
conditioners are derived by making use of the Generalized Locally Toeplitz (GLT)
theory. For an overview on the latter, we refer the reader to [56, 57]. In addition,
we refer the reader to Appendix A for a formal definition of the notions below.

In the following, we employ the notion of multi-index (or d-index), defined as
a row vector i P Zd with components i1, i2, . . . , id, where d P N. Below, we denote
Npiq “

śd
j“1 ij, and write i Ñ 8 to indicate that minpiq Ñ 8. In addition, any

operation involving d-indices that has no meaning in the vector space Zd will be
interpreted in a componentwise sense.

We begin with the definition of d-level matrix. Given d P N, a matrix A of di-
mension nA is a d-level matrix with level orders n1, n2, . . . , nd if nA “ n1n2 ¨ ¨ ¨nd,
and it is partitioned into n2

1 square blocks of size nA
n1

, each of which is partitioned

into n2
2 blocks of size nA

n1n2
, and so on until the last n2

d blocks of size 1.
We now give the definition of Toeplitz matrix. Given 2nA´1 numbers ai, i “

´nA`1,´nA, . . . ,´1, 0, 1, . . . , nA´2, nA´1, the matrix A of dimension nAˆnA
such that

Ai,l “ ai´l, i, l “ 1, 2, . . . , nA

is called a Toeplitz matrix, where withAi,l we have denoted the element of position
pi, lq of the matrix A. Specifically, we have

A “

»

—

—

—

–

a0 a´1 . . . a´nA`1

a1 a0
. . .

...
...

. a´1

anA´1 . . . a1 a0

fi

ffi

ffi

ffi

fl

.

From the definition, we have that a Toeplitz matrix is not necessarily square.
Then, given d P N, we can recursively define a d-level Toeplitz matrix. A

matrix A is said to be a d-level Toeplitz if it can be written as

A “ A1 b A2,

where A1 is a Toeplitz matrix, and A2 is a pd´1q-level Toeplitz matrix. From the
definition, a d-level Toeplitz matrix can be partitioned in blocks (each of which
is a pd ´ 1q-level Toeplitz matrix) that are constant along each diagonal. In the
GLT theory, it is possible to associate a d-level Toeplitz matrix A to a function
f , which is called the generating function; in this case, we say that the matrix A
is generated by f .

From the definition of d-level Toeplitz matrix we can also define another class
of matrices, namely, the d-level circulant matrices. We start with the definition
of unilevel circulant matrix, and then generalize the notion to the multilevel case.

Given nA numbers ai, i “ 0, 1, . . . , nA´1, the matrix A of dimension nAˆnA
such that

Ai,l “ api´lq mod nA , i, l “ 1, 2, . . . , nA

191

is called a circulant matrix. All circulant matrices are therefore Toeplitz, with an
additional cyclic permutation property, namely

A “

»

—

—

—

–

a0 anA´1 . . . a1

a1 a0
. . .

...
...

. anA´1

anA´1 . . . a1 a0

fi

ffi

ffi

ffi

fl

.

In addition, as for the Toeplitz case, we can define a matrix A to be a d-level
circulant matrix if it can be written as

A “ A1 b A2,

where A1 is a circulant matrix, and A2 is a pd´ 1q-level circulant matrix. As for
a d-level Toeplitz matrix, a d-level circulant matrix can be partitioned in blocks
(each of which is a pd ´ 1q-level circulant matrix) that are constant along each
diagonal with an additional cyclic permutation property. In the following, we will
employ particular circulant and d-level circulant matrices in our analysis. For this
reason, given n̄ P N we define the n̄ˆ n̄ matrix Cn̄ “ rci,ls

n̄
i,l“1, with

ci,l “

"

1 if pi´ lq mod n̄ “ 1,
0 otherwise.

In addition, given the vectors nA P Nd and j P Zd, we define the d-level circulant
matrix Cj

nA
“ Cj1

n1
Cj2
n2
¨ ¨ ¨Cjd

nd
, where Cji

ni
is the ji-th power of the matrix Cni

defined above.
Circulant and d-level circulant matrices are important classes of matrices in

relation to finding optimal preconditioners for systems arising upon discretization
of FDEs. In particular, it is possible to prove that every d-level circulant matrix A
can be written as a linear combination of the matrices Cj

nA
defined above, see [57,

Section 3.4]. As a consequence, we have that the set of all d-level circulant matrix
is a commutative ring under matrix addition and multiplication. In addition, it
is possible to prove that every d-level circulant matrix A is diagonalizable by the
discrete Fourier transform (a very important property from the point of view of
preconditioning), see [57, Section 3.4].

As we mentioned at the beginning of this section, we employ GLT theory to
motivate our preconditioners for the problems considered here. An important no-
tion in the GLT theory is that of a matrix-sequence. A (d-level) matrix-sequence
is a sequence of square matrices tAjuj (respectively, tAjuj), whose size nAj (re-
spectively, Npjq with j “ jpjq) tends to infinity as j Ñ 8.

In order to find suitable preconditioners for the systems we consider below,
we have to introduce also the notion of approximating class of sequences (a.c.s.).

Given a matrix-sequence tAjuj, a sequence of matrix-sequences tt rAj,mujum is an

approximating class of sequences for tAjuj if the difference between Aj and rAj,m
is the sum of a matrix of low rank and a matrix of small norm. A formal definition
of approximating class of sequences is given in Definition 1 in Appendix A.

As mentioned above, approximating classes of sequences are employed in order

192

to build preconditioners for the problems examined below. However, we need
some sort of “measure” in order to understand how good the preconditioners are.
For this reason, we will find useful the notion of clusters. Given a sequence of
matrices tAjuj and a subset X of the complex plane, we say that tAjuj is weakly
clustered at X if the number of the eigenvalues of Aj that are not “close enough”
to X is bounded above by the dimension nAj of Aj.

An important class of matrix sequences is a d-level GLT sequence. The se-
quences belonging to this class are such that they can be associated in a certain
sense to a measurable function κ, which is called the symbol of the sequence. A
formal definition of d-level GLT sequence is given in Definition 4 in Appendix A.

All the previous notions can be used in order to find suitable approximations
of Toeplitz and multilevel Toeplitz matrices. In particular, in the following we
are going to employ multilevel circulant preconditioners as an approximation of
multilevel Toeplitz matrices. A preconditioner of this type can be derived by
firstly finding a unilevel circulant approximation of an arbitrary unilevel Toeplitz
matrix. Given a unilevel Toeplitz matrix A P RnAˆnA , we employ the circulant
approximation proposed for the first time in [32] (also called the T. Chan precon-
ditioner for A). More specifically, we define the optimal circulant approximation
of A, as the solution of the following optimization problem:

C1pAq “ min
Cn̄ P Cn̄

}Cn̄ ´ A}F ,

where Cn̄ is the the set of all nA ˆ nA circulant matrices, and } ¨ }F the Frobenius
norm. It turns out that the previous problem admits the following closed form
solution:

ci “
pnA ´ iq ai ` i a´nA`i

n
, i P t0, 1, . . . , nA ´ 1u.

Then, we can write C1pAq “ F ˚nAΛnAFnA , where FnA is the (scaled) discrete
Fourier transform of size nA and ΛnA is a diagonal matrix containing the eigen-
values of C1pAq, which can be computed as ΛnA “ diagpFnAc1q, where c1 is the
first column of C1pAq. Other unilevel circulant approximations are possible, such
as those proposed in [30, 31, 176], however, the T. Chan preconditioner seems
(empirically) to behave better for the problem under consideration.

From the unilevel circulant preconditioner we can then find a preconditioner
for multilevel Toeplitz matrices. In fact, recalling that a d-level Toeplitz matrix
can be defined as a Kronecker product of unilevel and pd ´ 1q-level Toeplitz
matrices, we can recursively define the preconditioner of a d-level Toeplitz matrix
A “ A1 b A2 b . . .b Ad as

A « C1pA1q b C1pA2q b . . .b C1pAdq

“ pF ˚nA1
b F ˚nA2

b . . .b F ˚nAd
qΛdpFnA1

b FnA2
b . . .b FnAd q “: CdpAq,

where Λd is the following diagonal matrix:

Λd “ Λ1 b Λ2 b . . .b Λd.

The previous approximation of a d-level Toeplitz matrix will be employed in the

193

following as an optimal preconditioner for the problems considered in this chapter.
In order to show how to derive the previous expression, we consider the case

of a 2-level Toeplitz matrix A. In this case, we have

A “

»

—

—

—

—

—

—

–

A0 A´1 . . . A´m1`1 A´m1

A1 A0
. . . A´m1`1

... A1
.

...

Am1´1
. A´1

Am1 Am1´1 . . . A1 A0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where each Ai, for i “ ´m1,´m1`1, . . . ,m1´1,m1, is a unilevel Toeplitz matrix.
Then, if we employ the T. Chan preconditioner C1pAiq “ F ˚m1

ΛiFm1 in order to
approximate each block Ai, for i “ ´m1,´m1 ` 1, . . . ,m1 ´ 1,m1, we have the
following approximation:

A «

»

—

—

—

–

F ˚m1
Λ0Fm1 F ˚m1

Λ´1Fm1 . . . F ˚m1
Λ´m1Fm1

F ˚m1
Λ1Fm1

.
...

...
. F ˚m1

Λ´1Fm1

F ˚m1
Λm1Fm1 . . . F ˚m1

Λ1Fm1 F ˚m1
Λ0Fm1

fi

ffi

ffi

ffi

fl

,

or equivalently

A « pIm1 b F
˚
m1
q

»

—

—

—

–

Λ0 Λ´1 . . . Λ´m1

Λ1
.

...
...

. Λ´1

Λm1 . . . Λ1 Λ0

fi

ffi

ffi

ffi

fl

pIm1 b Fm1q,

where Im1 is the identity matrix of dimension m1. Recalling that each matrix Λi,
for i “ ´m1,´m1`1, . . . ,m1, is diagonal, we can employ a suitable permutation
P and rewrite

A « pIm1 b F
˚
m1
qPJ

»

—

—

—

–

Ā1

Ā2

. . .

Ām2

fi

ffi

ffi

ffi

fl

P pIm1 b Fm1q,

where each block Āi, for i “ 1, 2, . . . ,m2, is a unilevel Toeplitz matrix. Therefore,
by approximating again each block with the T. Chan preconditioner, we can
rewrite:

A « pIm1bF
˚
m1
qPJpIm2bF

˚
m2
q

»

—

—

—

–

Λ̄1

Λ̄2

. . .

Λ̄m2

fi

ffi

ffi

ffi

fl

pIm2bFm2qP pIm1bFm1q.

Then, by observing that pIm2 bFm2qP “ PJ pFm2 b Im2q, we derive the following

194

approximation:

A « pIm1 b F
˚
m1
qpF ˚m2

b Im2qΛpFm2 b Im2qpIm1 b Fm1q,

where Λ is a diagonal matrix obtained permuting the elements on the diagonal
of the previous approximation. Finally, observing that pFm2 b Im2qpIm1 bFm1q “

Fm2 b Fm1 , we obtain the T. Chan-based 2-level circulant approximation.
From here, by recursion one can easily generalize the previous strategy to

d-level Toeplitz matrices.
We would like to note that, although a unilevel circulant approximation of a

unilevel Toeplitz matrix is an optimal preconditioner, in the multilevel case this
is not true, see for instance [163].

7.4 Optimal Control of FDEs

In this section we introduce the optimal control of a fractional differential equa-
tion. This problem is defined by (1.2)–(1.3) where the differential operator D is
a fractional differential equation. In our study we will focus on the control of the
fractional diffusion equation [39], so our problem reads as

min
v,u

1

2

ż tf

0

ż

Ω

|v ´ vd|
2 dΩdt`

β

2

ż tf

0

ż

Ω

|u|2 dΩdt (7.6)

subject to

$

&

%

p tDα
˚ ´

x1
R D

γ1 ´
x2
R D

γ2q vpx1, x2, tq ` upx1, x2, tq “ 0 in Ωˆ p0, tf q,
vpx1, x2, tq “ gpx1, x2, tq on BΩˆ p0, tf q,
vpx1, x2, 0q “ v0px1, x2q in Ω,

(7.7)

where Ω “
ś2

i“1pai, biq Ă R2, and tf ą 0 the final time. Here, tDα
˚ is the Caputo

fractional derivative of order α, with α P p0, 1s, and xi
RD

γi is the symmetric
Riesz derivative of order γi P p1, 2s, for i “ 1, 2, with the subscripts xi denoting
the variable we are differentiating with respect to. The functions g and v0 are
known. The differential operator considered here is a specific problem, but we
devise methods that are readily generalized to more complex FDEs.

As opposed to all the previous chapters, in the problems we consider here we
also include constraints on the state and control variables. Specifically, the prob-
lems we want to solve here is given by (7.6)–(7.7), with the following additional
constraints:

"

vminpx, tq ď vpx, tq ď vmaxpx, tq,
uminpx, tq ď upx, tq ď umaxpx, tq,

(7.8)

where the functions vmin, vmax, umin, and umax are given.
Due to the presence of additional algebraic constraints on the variables, in

order to find an approximation of the solution of (7.6)–(7.8) we have to employ a
non-linear iteration. Before showing the method employed for solving the prob-
lems considered, we have to derive the discrete first-order optimality conditions,
that will be the topic of the next section. We want to mention that the problems

195

considered here are only two-dimensional in space, but it is perfectly reasonable
to consider problems in different numbers of spatial dimensions; for this reason,
we would like to emphasize that the methodology in this chapter could be readily
tailored to such problems in higher dimensions.

7.4.1 Discretize-Then-Optimize Approach

We derive now the first-order optimality conditions of the problem (7.6)–(7.8).
As opposed to the previous chapters, here we adopt a discretize-then-optimize
strategy, described in Section 1.3.2.

Let nt, nx1 , nx2 be the number of points on the time interval, the x1-axis and
the x2-axis respectively. We discretize the L2-norm using the trapezoidal rule,
the Caputo derivative with the matrix Cα in (7.5), and xi

RD
γi , i “ 1, 2, with the

matrix

LR
γi
“

´1

2 cospαπ
2
q
pLγi ` LJγiq,

with Lγi defined by (7.4). With this notation we have

x1
R D

γ1 `
x2
R D

γ2 « LR
γ1
b Inx2

` Inx1
b LR

γ2
“: Lγ1,γ2 ,

where the matrix Inxi denotes the identity matrix of size nxi , for i “ 1, 2; in
addition, we have

tDα
˚ ´

x1
R D

γ1 ´
x2
R D

γ2 « Cα b IN ´ Int b Lγ1,γ2 “: B,

where N “ nx1nx2 is the total number of points in the spatial domain. Finally,
the discrete formulation of (7.6)–(7.8) reads as

min
v,u

1

2
pv ´ vdq

JM1 pv ´ vdq `
1

2
uJM2u (7.9)

subject to
"

Bv ` u “ 0,

vmin ď v ď vmax, umin ď u ď umax,
(7.10)

where the matrices M1, M2 contain the weights of the quadrature rule, so they
are given by

M1 “

»

—

—

—

–

IN
. . .

IN
1
2
IN

fi

ffi

ffi

ffi

fl

, M2 “ βM1.

Note that we have eliminated the initial condition in our discretization, otherwise
the first diagonal-block of the matrix M1 would be multiplied by a factor of 1

2
for

the trapezoidal rule.
It is worth noting that the first-order optimality condition of the problem

196

(7.9)–(7.10) without box constraints would read in matrix form as follows:

»

–

M1 0 BJ

0 M2 IN̄
B IN̄ 0

fi

fl

»

–

v
u
ζ

fi

fl “

»

–

M1vd
0
0

fi

fl ,

where IN̄ is the identity matrix of dimension N̄ , with N̄ “ Nnt. Then, the
corresponding Schur complement reads as:

Sunc “ BM´1
1 BJ

`M´1
2 . (7.11)

We recall that, in our case, the matrix B is a 3-level Toeplitz matrix. In par-
ticular, since the matrix B is dense, the previous Schur complement will be also
dense. However, the strategy devised in Section 7.6 for the constrained problem
can be readily adapted in order to solve a system involving the Schur complement
Sunc of the unconstrained problem.

In the analysis below, we will suppose that the d-level matrices B, M1, and
M2 of dimension N̄ ˆ N̄ have a spectral norm uniformly bounded with respect
to N̄ , and are a d-level GLT sequences, with symbols κ, κ1, and κ2, respectively.
We refer the reader to Assumption 2 in Appendix A for the formal assumptions
used in [146] to prove the effectiveness of the preconditioner described below. We
would like to mention that the assumptions on the matrix B can be ensured by
multiplying the discretized FDE constraint operator by a factor depending on
grid size.

As we mentioned above, due to the algebraic constraints, in order to find an
approximate solution of the problem we have to run a non-linear process. In Sec-
tion 1.4, we discussed some techniques that can be employed for solving a problem
of the form (7.9)–(7.10). Specifically, we discussed Active Set (AS) methods and
Interior Point methods (IPMs). However, problems of the form (7.9)–(7.10) are
usually highly structured, and this structure must be exploited, given that the
problem size increases indefinitely as one refines the discretization. As we dis-
cussed in Section 1.4, at each AS iteration only a subset of the constraints (7.10)
is considered. This in turn implies that we would lose the Toeplitz structure.
In fact, any optimization method whose sub-problems arise by projecting the
variables of the problem in a subspace would face this issue.

On the other hand, IPMs deal with the inequality constraints by introducing
logarithmic barriers in the objective. Then, at every IPM iteration, one approxi-
mately solves the optimality conditions of the barrier sub-problem using a Newton
method. However, the sequence of Hessian matrices arising from the logarithmic
barriers is not a GLT sequence, see [146, Section 3]. As a consequence, the system
matrix of the optimality conditions of each barrier sub-problem, within the IPM,
will not be in the GLT class.

We therefore must consider a strategy that preserves the multilevel Toeplitz
structure in order for our preconditioning approach to be effective. The following
section will describe the strategy employed for finding a solution of (7.9)–(7.10).

197

7.5 Alternating Direction Method of Multipli-

ers

In order to overcome the previous issues, we employ an Alternating Direction
Method of Multipliers (ADMM) (originally proposed in the work [55, 60]), which
separates the equality from the inequality constraints, thus allowing us to pre-
serve the Toeplitz structure of the equality constraints in (7.10). For a more
comprehensive discussion on ADMM, we refer the reader to [21, 129]. We would
like to mention that, although we are able to preserve the structure of the prob-
lem by employing ADMM, the convergence of the method can be relatively slow
(see, e.g., [21]). In fact, one can prove linear convergence of ADMM under cer-
tain assumptions on the problem under consideration (such as strong convexity,
see [38] and the references therein). For this reason, this method is not suitable
for finding very accurate solutions. Nevertheless, a 4-digit accurate solution can
generally be found in reasonable CPU time. In addition, since the linear system
solved at each ADMM iteration is unchanged, if we find a suitable preconditioner
that exploits the problem structure, we only need to compute it once.

In order to present the ADMM algorithm, we introduce some auxiliary vari-
ables zv and zu, and rewrite (7.9)–(7.10) as follows:

min
v,u,zv ,zu

1

2
pv ´ vdq

JM1 pv ´ vdq `
1

2
uJM2u (7.12)

subject to
$

’

&

’

%

Bv ` u “ 0,

v “ zv, u “ zu,

vmin ď zv ď vmax, umin ď zu ď umax.

(7.13)

Next, we introduce the adjoint variables ζ, wv, and wu for each equality con-
straint in (7.13), and consider the following augmented Lagrangian function

Lδpv,u, zv, zu, ζ,wv,wuq “
1

2
pv ´ vdq

JM1 pv ´ vdq `
1

2
uJM2u

`ζJpBv ` uq `wJv pv ´ zvq `w
J
u pu´ zuq

`
1

2δ
p}Bv ` u}22 ` }v ´ zv}

2
2 ` }u´ zu}

2
2q,

with δ ą 0. An ADMM algorithm applied to solve problem (7.12)–(7.13) is given
in Algorithm 15. As we see from Algorithm 15, the method fixes some of the
variables and minimizes the problem only for two of them (first and second steps),
and then updates the remaining variables with a recurrence formula (third and
fourth steps). In practice, ADMM splits the problem into smaller subproblems,
solves the subproblems with respect to some of the variables, and then updates the
remaining ones. We omit further details of the algorithm. The reader is referred to
[21] for a basic proof of convergence of Algorithm 15, as well as a detailed overview
of ADMM. We should mention that the step-length ρ in Algorithm 15 plays an
important role in the convergence behavior of ADMM. In fact, convergence of
Algorithm 15 is guaranteed for any ρ P p0,

?
5`1
2
q (see [59]).

198

Algorithm 15 Alternating Direction Method of Multipliers

Choose vp0q, up0q, z
p0q
v , z

p0q
u , ζp0q, w

p0q
v , w

p0q
u

for k “ 1 until convergence, do
Solve pvpk`1q,upk`1qq “ argmin

v,u
Lδpv,u, zpkqv , z

pkq
u , ζpkq,w

pkq
v ,w

pkq
u q

Solve pz
pk`1q
v , z

pk`1q
u q “ argmin

zvPrvmin,vmaxs,

zuPrumin,umaxs

Lδpvpk`1q,upk`1q, zv, zu, ζ
pkq,w

pkq
v ,w

pkq
u q

Set ζpk`1q “ ζpkq `
ρ

δ
pBvpk`1q ` upk`1qq

Set pw
pk`1q
v ,w

pk`1q
u q “ pw

pkq
v ,w

pkq
u q `

ρ

δ

´

vpk`1q ´ z
pk`1q
v ,upk`1q ´ z

pk`1q
u

¯

end for

One can observe that the most challenging step of Algorithm 15, is that of
solving the following problem:

pvpk`1q,upk`1q
q “ argmin

v,u
Lδpv,u, zpkqv , zpkqu , ζpkq,wpkqv ,wpkqu q. (7.14)

The optimality conditions of (7.14), at iteration k, read as follows:

„

M1 `
1
δ
pBJB` IN̄q

1
δ
BJ

1
δ
B M2 `

2
δ
IN̄

 „

v
u

“

«

b̄
pkq
1

b̄
pkq
2

ff

, (7.15)

where IN̄ is the identity matrix of dimension N̄ “ Nnt, and b̄
pkq
1 and b̄

pkq
2 take

into account the non-linear residuals.
Solving the previous system directly is not a good idea in our case, since its

coefficient matrix is not expected to be cheap or convenient to work with. Instead,
we can merge the first and the third steps in Algorithm 15 to obtain a more flexible

saddle point system. More specifically, we substitute ζ “ ζpkq `
ρ

δ
pBv ` uq

into (7.15), and rewrite the optimality conditions for the first and third lines of
Algorithm 15 as follows:

»

–

ρpM1 `
1
δ
IN̄q 0 BJ

0 ρpM2 `
1
δ
IN̄q IN̄

B IN̄ ´ δ
ρ
IN̄

fi

fl

»

–

v
u
ζ

fi

fl “

»

—

–

b
pkq
1

b
pkq
2

b
pkq
3

fi

ffi

fl

, (7.16)

where as above the right-hand side accounts for the non-linear residuals. Specif-
ically, we have

b
pkq
1 “ ρpM1vd ´w

pkq
v ` 1

δ
z
pkq
v q ` p1´ ρqBJζpkq,

b
pkq
2 “ ρp´w

pkq
u ` 1

δ
z
pkq
u q ` p1´ ρqζpkq,

b
pkq
3 “ ´ δ

ρ
ζpkq.

System (7.16) presents a saddle-point structure. However, instead of employ-

199

ing the saddle-point theory described in Section 2.10, since the blocks on the
main diagonal are easy to invert (as each block on the main diagonal is a scaled
identity matrix) we rather form the normal equations, and then derive a precon-
ditioner for the system so obtained to be employed within preconditioned CG.
Specifically, pivoting the second and then the third block equation of this system,
yields:

u “
`

ρ
`

M2 `
1
δ
IN̄

˘˘´1
´

´ζ ´ ρw
pkq
u `

ρ
δ
z
pkq
u ` p1´ ρqζpkq

¯

,

ζ “
´

`

ρM2 `
ρ
δ
IN̄

˘´1
` δ

ρ
IN̄

¯´1

pBv ` b
pkq
4 q,

(7.17)

where

b
pkq
4 “

δ

ρ
ζpkq ´

ˆ

ρ

ˆ

M2 `
1

δ
IN̄

˙˙´1
´

´ρwpkqu `
ρ

δ
zpkqu ` p1´ ρqζpkq

¯

.

Then, we can write the normal equations as follows:

Sv “ ρ

ˆ

M1vd ´w
pkq
v `

1

δ
z
pkq
v

˙

` p1´ ρqBJζpkq

´BJ

ˆ

´

ρM2 `
ρ

δ
IN̄

¯´1

`
δ

ρ
IN̄

˙´1

b
pkq
4 ,

(7.18)

where the Schur complement S is given by

S “ ρ

ˆ

M1 `
1

δ
IN̄

˙

`BJ

ˆ

´

ρM2 `
ρ

δ
IN̄

¯´1

`
δ

ρ
IN̄

˙´1

B. (7.19)

By solving the system (7.18) and then updating the current approximations of u
and ζ by employing (7.17), one is able to find approximations of the solutions of
the first and third step in Algorithm 15. As the fourth step in Algorithm 15 is
trivial, the only remaining step to solve is the following minimization problem:

pzpk`1q
v , zpk`1q

u q “ argmin
zvPrvmin,vmaxs,

zuPrumin,umaxs

Lδpvpk`1q,upk`1q, zv, zu, ζ
pkq,wpkqv ,wpkqu q.

However, we would like to mention that the previous problem has a closed form
solution. More specifically, we perform the optimization by ignoring the box
constraints and then projecting the solution onto the box.

As we discussed above, the most difficult task in Algorithm 15 is solving
the normal equations (7.18). In the following, we are going to derive an optimal
preconditioner for the system to be solved at each ADMM iteration by employing
the circulant preconditioner discussed in Section 7.3.

200

7.6 Preconditioning Approach

In this section, we describe the strategy adopted in order to solve the system
(7.18), with the Schur complement S defined as in (7.19). In order to find a
preconditioner for this system, we employ GLT theory, as follows. For sake of
clarity, we avoid all the technicalities, and refer the reader to [146] for a rigorous
derivation of the proposed preconditioners.

We recall that, for the problem under examination, the matrix B is a 3-level
Toeplitz matrix. We observe that this is because the spatial domain Ω is a subset
of R2. More generally, if the spatial domain Ω is of dimension d, the matrix B
will be a pd ` 1q-level Toeplitz matrix. Then, under suitable assumption, it is
possible to find three sequences of GLT sequences

trBjuN̄
a.c.s.
ÝÝÝÑ tBuN̄ , tĂM1juN̄

a.c.s.
ÝÝÝÑ tM1uN̄ , tĂM2juN̄

a.c.s.
ÝÝÝÑ tM2uN̄ ,

with symbols trBjuN̄ „GLT κN̄ , tĂM1juN̄ „GLT κ1N̄
, tĂM2juN̄ „GLT κ2N̄

such that
κN̄ Ñ κ, κ1N̄

Ñ κ1, and κ2N̄
Ñ κ2, in measure, see [146, Proposition 3.2].

Then, given the three sequences of GLT sequences trBjuN̄ , tĂM1juN̄ , tĂM2juN̄ , we
are able to find a suitable approximation of the matrix S, as follows. Starting from
the expression of S in (7.19), we approximate each matrix in this expression with
the corresponding GLT sequences above, and obtain the following approximation
for the Schur complement S:

rS “ ρ

ˆ

ĂM1j `
1

δ
IN̄

˙

` rBJ
j

ˆ

´

ρĂM2j `
ρ

δ
IN̄

¯´1

`
δ

ρ
IN̄

˙´1

rBj. (7.20)

It is possible to prove that the approximation rS is weakly clustered at 1, and
that the eigenvalues of the matrix rS´1S lie in an interval of the form r 1

cS
, cSs,

where cS is a positive constant uniformly bounded with respect to the size of the
problem N̄ , see [146, Theorem 3.3]. From here, we can imply that, if we employ
rS as a preconditioner, the number of PCG iterations required for convergence
is independent of the grid size (but it may depend on other parameters of the
problem).

Remark 9. The previous strategy is readily tailored in order to solve FDE-
constrained optimization problems of the form (7.6)–(7.7), when no additional

box constraint are imposed. In fact, given the GLT sequences trBjuN̄ , tĂM1juN̄ ,

tĂM2juN̄ , if we substitute these sequences in place of the corresponding matrix in
(7.11), we still have a good approximation of Sunc.

It is worth noting that our assumptions hold for a wide range of problems. In
addition, it is possible to find easy-to-invert sequences trBjuN̄ , tĂM1juN̄ , tĂM2juN̄ .

As we mentioned above, for such sequences the matrix rS defined as in (7.20)

will result in a preconditioned matrix rS´1S with a weak cluster at 1. However,
in general the matrix rS may be not easy to invert nor apply. However, if we
employ as sequences of GLT sequences the multilevel circulant approximations
described in Section 7.3, then the matrix rS itself will be a multilevel circulant

201

matrix. In fact, as we mentioned above, the set of all d-level circulant matrix
is a commutative ring under the matrix addition and multiplication, and each
d-level circulant matrix is diagonalizable by the discrete Fourier transform. In
particular, by employing the discrete Fourier transform one can easily compute
matrix–vector and matrix–matrix operations involving d-level circulant matrices,
keeping the storage requirements of order OpN̄q. In fact, one has only to evaluate
and store the eigenvalues of a given d-level circulant matrix. Then, any time
one has to perform matrix–vector or matrix–matrix operations involving d-level
circulant matrices, one has only to work with the diagonal matrix containing
the eigenvalues. As the computational cost of the fast Fourier transform is of
order OpN̄ log N̄q, it is clear that the cost of applying a preconditioner based on
a d-level circulant approximation will be OpN̄ log N̄q.

We conclude this section by showing the preconditioner that will be employed
in our numerical results. As we mentioned, we employ the T. Chan preconditioner
for a given unilevel Toeplitz matrix. In addition, the matrices M1 and M2 can be
approximated by a scaled identity. Then, our approximation rS is given by (7.20),

with ĂM1j and ĂM2j given by those scaled identities, respectively, and rBj given by
the following T. Chan preconditioner for B:

C3pB̄q “ C1pCαq b IN ´ Int b
`

C1pL
R
γ1
q b Inx2

` Inx1
b C1pL

R
γ2
q
˘

“
`

Fnx1
b Fnx2

b Fnt
˘˚

ΛN̄

`

Fnx1
b Fnx2

b Fnt
˘

,

where the diagonal matrix ΛN̄ is given by

ΛN̄ “ Λα b IN ´ Int b
`

Λγ1 b Inx2
` Inx1

b Λγ2

˘

,

with Λα, Λγ1 , and Λγ2 being the diagonal matrices containing the eigenvalues of
the T. Chan approximations of the matrices Cα, LR

γ1
, and LR

γ2
, respectively.

7.7 Numerical Results

We now present numerical results that show the effectiveness of the proposed
strategy. We consider a problem of the type (7.6)–(7.8), with Ω ˆ p0, tf q “
p0, 1q2 ˆ p0, 1q. The desired state is given by

vdpx1, x2, tq “ 10 cosp10x1q sinpx1x2qp1´ e
´5t
q,

as in [39, Section 5.1], with homogeneous boundary and initial conditions. We
present results for three types of problems, that is, problems with box constraints
only on the state v, problems with box constraints only the control u, and prob-
lems with box constraints on both the variables. As expected, the last type
of problem is the most challenging one. For this reason, we focus our atten-
tion on this class of problems, and present only few experiments on problems of
the other types. For problems with box constraints, we employ the convention
that the discretized restricting functions are of the form vmax “ ´vmin “ c1 (or
umax “ ´umin “ c1), where 1 is the vector of all ones and c ą 0. For this reason,
we present only the value of the entries of vmin (umin, respectively). For all the

202

problems presented, we construct a uniform grid in space and in time, and set
nx1 “ nx2 “ nt “ n, for some n P N. The overall size of the discretized state
vector is given by N̄ “ nx1 ¨ nx2 ¨ nt “ n3. As an indicator of performance of the
numerical method, we employ the discrete L2-norm of the discrepancy between
the state and the desired state. Specifically, by applying the trapezoidal rule, we
define

trapL2pv ´ vdq « }v ´ vd}L2 .

We would like to note that the previous measure is not expected to converge to
zero. In fact, the functions v and vd are not equal on the boundary BΩ, and we
expect that the approximate discrepancy measure slightly increases as we refine
the grid.

For all the tests considered, we run the MATLAB function pcg as the linear
solver, and set the tolerance dynamically as

Krylov Tol. “ 0.05 ¨mint}Bvpkq ´ upkq}8, }v
pkq
´ zpkqv }8, }u

pkq
´ zpkqu }8, 10´4

u,

at every non-linear iteration k, presenting the average number of PCG iterations
required for reaching convergence.

Since we are only interested in showing the viability of the proposed approach,
we employ a standard 2-Block ADMM for solving problems of the form of (7.12)–
(7.13), with additional box constraints on the variables. It is worth mentioning
that various potential acceleration strategies for ADMMs have been studied in the
literature (see for example [21, 61]), and the approach presented here could also
be employed within those versions of ADMM. We choose the step-size ρ “ 1.618.
We choose the penalty parameter δ P t0.1, 0.4, 2, 10, 100u, as for those values the
method behaves reasonably well. We would like to note that one could tune
this parameter for each problem instance and obtain significantly better results.
However, as this is not practical, we restrict ourselves to a small set of possible
values. Finally, the termination criteria of the ADMM are summarized as follows:

p}Avpkq ´ upkq}8 ď 10´4
q ^ p}vpkq ´ zpkqv }8 ď 10´4

q ^ p}upkq ´ zpkqu }8 ď 10´4
q.

We would like to note that we do not require a specific tolerance for the dual
infeasibility in order to avoid unnecessary computations. Instead, we report the
dual infeasibility at the accepted optimal point.

All tests are run on MATLAB R2019a using a 2.2 GHz Intel (hexa-) core
i7 processor, run under the Windows 10 operating system. All CPU times are
reported in seconds.

7.7.1 Box Constraints on the State v

We first test our solver on problems with box constraints on the state variable,
while the control is left free, that is vmin ď v ď vmax, ´8 ď u ď 8. We report
the results in Table 7.1. All fixed parameters are provided at the title of the
respective table.

10: means that the solution coincides with the equality constrained solution; all the variables
lie strictly within the restriction bounds.

203

Table 7.1: Inequalities on the state: varying restriction bounds (with N̄ “ 503,
γ1 “ γ2 “ 1.3, α “ 0.7, β “ 10´4, δ “ 0.1).

vmin trapL2pv ´ vdq Dual Inf. PCG ADMM CPU

´7 5.60e-1:10 2.13e-3 9 75 142.31
´5 5.80e-1 3.14e-3 10 105 206.73
´3 7.88e-1 4.11e-3 10 100 193.77
´1 1.38e0 8.74e-4 10 86 173.49

From Table 7.1, we can observe the robustness of our preconditioner, as the
average number of PCG iterations is roughly constant, with the total CPU time
mainly depending on the number of ADMM iterations. Regarding the latter, we
observe that, even for very tight box constraints, the number of ADMM iterations
stays roughly the same.

7.7.2 Box Constraints on the Control u

We now focus on the case with ´8 ď v ď 8, umin ď u ď umax. By employing
similar arguments as in [41] we can prove existence of an optimal solution. We
run the method for different inequality bounds on the control u. We report the
results in Table 7.2, stating all the values of the parameters used to perform the
experiment in the respective caption.

Table 7.2: Inequalities on the control: varying restriction bounds (with N̄ “ 503,
γ1 “ γ2 “ 1.3, α “ 0.7, β “ 10´4, δ “ 0.4).

umin trapL2pv ´ vdq Dual Inf. PCG ADMM CPU

´400 5.60e-1: 8.43e-4 16 30 84.46
´300 5.65e-1 8.79e-4 19 22 72.77
´200 6.25e-1 4.39e-4 17 28 85.55
´100 8.90e-1 1.49e-4 18 65 205.69

From Table 7.2, we see that also for this case the average number of PCG
iterations is roughly constant, even when decreasing the value of umin. As a
consequence, the average CPU time is almost constant, with the overall CPU
time depending only on the number of ADMM iterations. As we can see from
Table 7.2, the number of ADMM iterations slightly depends on the lower bound
for the control u, although it stays low compared to the dimension of the problem
solved.

204

7.7.3 Box Constraints on Both Variables

Let us now consider the case where vmin ď v ď vmax, umin ď u ď umax. First, we
present the runs of the method for different inequality bounds in Table 7.3. As
one can observe from Table 7.3, the average number of PCG iterations slightly
depends on the lower bounds on the state v and the control u; nonetheless, it is
reasonably small compared to the dimension of the problems solved. In addition,
as we expected, this class of problem is the most challenging one, and we can
observe this by looking at the number of ADMM iterations, which clearly depends
on the bounds on the variables.

Table 7.3: Inequalities on both variables: varying restriction bounds (with N̄ “

503, γ1 “ γ2 “ 1.3, α “ 0.7, β “ 10´4, δ “ 0.4).

vmin umin trapL2pv ´ vdq Dual Inf. PCG ADMM CPU

´7 ´400 5.60e-1: 4.88e-3 10 36 74.20
´7 ´200 5.94e-1 2.35e-3 11 38 80.14
´4 ´350 6.45e-1 1.99e-4 18 126 412.66
´1 ´400 1.38e0 2.56e-4 19 109 377.86

Next, we test our method when varying grid size, and report the results in
Table 7.4. As one can observe in Table 7.4, the grid size does not affect the
average number of inner PCG iterations. Nevertheless, as the size of the problem
increases, we expect that also the number of ADMM iterations increases. Further-
more, we can observe the first-order convergence of the numerical method, as n is
increased. In addition, we can observe that the CPU time scales approximately
as N̄ log N̄ , as expected.

Table 7.4: Inequalities on both variables: varying grid size (with vmin “ ´4,
umin “ ´350, γ1 “ γ2 “ 1.3, α “ 0.7, β “ 10´4).

N̄ δ trapL2pv ´ vdq Dual Inf. PCG ADMM CPU

83 2 3.87e-1 5.23e-4 12 86 1.89
163 2 5.02e-1 8.68e-5 13 58 6.06
323 0.4 6.09e-1 2.94e-4 16 62 75.04
503 0.4 6.45e-1 1.99e-4 18 126 412.66
643 0.1 6.58e-1 3.34e-1 17 97 987.12
803 0.1 6.65e-1 4.31e-1 17 102 1,135.83
1003 0.1 6.70e-1 4.91e-1 17 119 2,436.17
1283 0.1 6.73e-1 3.49e-1 17 169 9,077.08

Subsequently, we test our method when varying the fractional derivative or-
ders, and present the results in Table 7.5. From Table 7.5, we can observe that,
as γ “ γ1 “ γ2 approaches 1, the constraint matrix becomes more ill-conditioned.

205

This is due to the scaling factor in the definition of the Riesz derivative (that
is, ´1

2 cosp γπ
2
q
). As a consequence, we observe an increase of the PCG iterations in

the case where γ “ 1.1. Nonetheless, the average number of PCG iterations is
reasonably small compared to the size of the problem solved. In addition, we can
see that the number of ADMM iterations is roughly constant.

Table 7.5: Inequalities on both variables: varying fractional derivative orders
(with N̄ “ 324, vmin “ ´4, umin “ ´350, β “ 10´4).

α γ δ trapL2pv ´ vdq Dual Inf. PCG ADMM CPU

0.1 1.3 0.4 6.46e-1 1.60e-4 17 126 380.75
0.3 1.3 0.4 6.46e-1 2.56e-4 17 126 385.96
0.5 1.3 0.4 5.12e-1 2.83e-4 18 126 408.47
0.9 1.3 0.4 6.44e-1 3.10e-4 19 125 419.46
0.7 1.1 0.4 6.48e-1 1.21e-3 30 100 508.59
0.7 1.5 0.1 7.79e-1 4.23e-4 15 96 275.03
0.7 1.7 0.4 1.04e0 2.46e-4 13 113 275.21
0.7 1.9 0.1 1.36e0 1.36e-3 8 108 180.85

Finally, in Table 7.6 we present the runs of our method when varying the
regularization parameter β. It is worth noting that, as β is changed, the solution
of the equality constrained problem is significantly altered. For this reason, we
adjust the inequality constraints of the problem for each value of β, in order to
ensure that the optimal solution will lie strictly within the bounds. This allows
us to compare the convergence behaviour of ADMM, for instances with different
regularization values, β.

Table 7.6: Inequalities on both variables: varying regularization (with N̄ “ 503,
α “ 0.7, γ1 “ γ2 “ 1.3).

β vmin umin δ trapL2pv ´ vdq Dual Inf. PCG ADMM CPU

10´2 ´2 ´100 0.1 1.77e-0: 1.38e-3 11 87 190.99
10´4 ´7 ´400 0.4 5.60e-1: 4.88e-3 10 36 74.20
10´6 ´9 ´2, 800 10 1.28e-1: 6.03e-4 8 47 71.13
10´8 ´9 ´4, 000 100 1.13e-1: 2.18e-4 6 32 44.70
10´10 ´9 ´4, 000 100 1.13e-1: 2.18e-4 5 32 40.77

Again, the average number of PCG iterations is roughly constant, with the
overall CPU time depending mainly on the number of ADMM iterations. It is
worth noting that, as β becomes smaller, the average number of PCG iterations
decreases. In addition, as β decreases, also the number of ADMM iterations
decreases. Again, the number of ADMM iterations slightly depends on the regu-
larization parameter, although it stays low compared to the size of the problem
being solved.

206

From the results presented in this section, we can conclude that the pro-
posed approach is sufficiently robust with respect to the problems parameters.
In fact, the number of PCG iterations required to solve each ADMM system is
small compared to the size of the problem solved, for a wide range of parameter
choices. In addition, ADMM is able to achieve a 4-digit accurate primal solu-
tion in a reasonable number of iterations, allowing us to solve a convex quadratic
optimization problem with very dense equality constraints in a reasonable time.
Finally, we believe that the method described here can be employed to solve even
more complex FDE optimization problems.

7.8 Summary

In this chapter, we considered the optimal control of FDEs, with additional box
constraints on the state and control variables. Previously, no robust solver for
this class of problems with FDEs defined in dimension d ą 1 was available, to our
knowledge. By employing a discretize-then-optimize approach, we were required
to solve a convex quadratic optimization problems with box constraints on the
variables. We proposed the use of an Alternating Direction Method of Multipli-
ers. This strategy allowed us to separate inequality from equality constraints,
solve the latter in order to obtain the current approximations of the state, the
control, and the adjoint variables, and then updating the multipliers by solving an
unconstrained problem and projecting the solutions onto the box constraints. In
this way, we preserved the structure of the equality constraints. In order to solve
the latter, which presents a multilevel Toeplitz structure, we employed the theory
of Generalized Locally Toeplitz sequences. This allowed us to find optimal pre-
conditioners based on multilevel circulant approximation. Then, we employed the
derived preconditioner within a suitable preconditioned Krylov subspace method
in order to solve the system arising at each ADMM iteration. The circulant ap-
proximation of the equality constraints allowed us to employ the discrete Fourier
transform in order to find the eigenvalues of the individual blocks of the proposed
preconditioner, thus allowing us to keep the storage requirements to order of N̄
(where N̄ is the grid size), while requiring only OpN̄ log N̄q operations for every
iteration of the Krylov solver. Numerical results showed the scalability, efficiency,
and generality of our approach.

207

Chapter 8

Conclusion

“When I was at last by myself, a drowsy sensation fell on me; but before my
eyes closed I endeavoured to reproduce the Third Dimension, and especially
the process by which a Cube is constructed through the motion of a Square.
It was not so clear as I could have wished; but I remembered that it must be
“Upward, and yet not Northward,” and I determined steadfastly to retain
these words as the clue which, if firmly grasped, could not fail to guide me to
the solution. So mechanically repeating, like a charm, the words, “Upward,
yet not Northward,” I fell into a sound refreshing sleep.”

– Edwin Abbott Abbott, Flatland: A Romance of Many Dimensions

In this thesis, we developed preconditioned iterative methods for the solu-
tion of optimal control problems with differential operators as constraints. The
majority of the problems considered above involved time-dependent PDEs as
constraints, but we also tackled the optimal control of stationary (linear and
non-linear) PDEs, as well as the optimal control of FDEs.

In order to derive the proposed preconditioners for the PDE-constrained opti-
mization problems considered in this thesis, we devised tailored, easily invertible
transformations, which allowed us to symmetrize the linear systems (or make
them as close to symmetric as possible) arising from the discretization of the
first-order optimality conditions. This strategy allowed us to employ saddle-
point theory. Starting from ideal preconditioners (for which the inverse operator
is almost as computationally expensive as solving the original system), we de-
vised suitable approximations of the main blocks. In order to approximately
invert the p1, 1q-block, we employed an inner iteration. For some of the systems,
the inner iteration required a fixed number of steps of a preconditioned iterative
method applied to a block matrix that represents the discrete optimality con-
ditions of a simpler PDE-constrained optimization problem. However, the most
complex tasks have been to devise robust approximations of the corresponding
Schur complements. In order to do so, we employed the matching strategy and
a novel block commutator argument. The resulting preconditioners were tested
on a large number of test problems, showing the robustness and the efficiency of
our approaches.

In order to derive an optimal preconditioner for the FDE-constrained opti-
mization problems with algebraic constraints on the state and/or the control

208

variables, we employed the GLT theory. Applying an ADMM to separate equal-
ity from inequality constraints, we were faced with solving a very large and dense
linear system. By exploiting the (multilevel) Toeplitz structure of the discretized
system and employing GLT theory, we were able to derive an optimal precon-
ditioner for the linear system to be solved. Then, we tested our strategy on a
wide range of problems, showing that the computaitonal cost scales as N̄ log N̄ ,
where N̄ is the dimension of the grid used. In addition, our strategy does not
suffer from excessive memory requirements, as we are able to keep the storage
requirement of order N̄ .

We expect the novel transformations, Schur complement approximations, for-
mulation of the block commutator argument, and multilevel circulant precondi-
tioning ideas could inform the efficient preconditioning of many problems beyond
those discussed in this thesis. What is left to discuss is related to future work. As
the Square in Abbott’s Flatland was wondering about (and puzzled by) the ex-
tension of the Plane to the Third Dimension, we question ourself on the possible
extensions of our work.

The problems considered in this thesis are aimed at describing real-life and
physical problems. For this reason, one can extend the strategies devised above
to problems with multiple differential operators as constraints, to problems with
different cost functionals, or to problems with additional algebraic constraints on
the variables.

As we have employed a Crank–Nicolson discretization in time for the parabolic
PDEs considered above, one may also try to devise optimal preconditioners for
time-dependent PDE- and FDE-constrained optimization problems when higher-
order discretizations in time are used. For instance, the discussion at the end
of Section 3.2.2 may be the starting point for developing preconditioned itera-
tive methods for optimal control of time-dependent PDEs when employing time-
stepping schemes other than Crank–Nicolson. In the same section we also dis-
cussed the possibility of applying the discretize-then-optimize strategy as an al-
ternative approach to the one employed in this work. We have noted that the
linear system arising from the discretize-then-optimize approach is symmetric
from the start (so no transformation is required). Further, we have noted that in
this case we may apply a similar preconditioning strategy to the one described
in Section 3.3, and that, if such a preconditioner is optimal, one may apply it to
the other problems decribed in this thesis as well. However, we did not address
this question here. For this reason, future work can be related to prove that our
strategy may be applied also to the case of a discretize-then-optimize approach,
and prove the optimality of the derived preconditioner.

As we noted above, one of the main drawback of the all-at-once approach
when solving optimal control of time-dependent PDEs is that one has to store
global-in-time solutions. For this reason, when employing very fine discretization
computers may easily run out of memory. An alternative may be exploiting the
Kronecker structure of the linear system arising upon discretization, and employ
low-rank approximations of the problem considered. For this reason, future work
may be coupling the preconditioning strategy devised in this work with a low-rank
solver for the problems we have considered above.

As in practical industrial problems it is not always possible to apply the

209

control within the whole domain, one has to introduce the control on its boundary,
resulting thus in Dirichlet or Neumann boundary control problems, or only on
a part of the domain, resulting thus in subdomain control problems. A future
study can be related to extend the optimal preconditioners derived here to the
boundary control of the Navier–Stokes equations. Regarding these equations,
we observed in Chapter 6 that, for very small viscosity, the numbers of Oseen
iterations required to reach a prescribed reduction on the non-linear residual
were increasing for a wider range of regularization parameters. For this reason,
we noted the importance of a robust and efficient solver also for the Newton
approximation of the Navier–Stokes control problems, which could be the topic
of future work. Finally, we believe that it would be of interest to investigate on
the effectiveness of the block commutator argument devised for solving the Stokes
control problems. We believe the combination of these new ideas would allow the
solution of a range of problems beyond those discussed in this thesis.

210

Appendix A

An Overview of the GLT Theory

In this Appendix, we describe some important notions employed in the GLT
theory.

We begin with some fundamental properties of d-level circulant matrices. It
is possible to prove the following theorem, the proof of which can be found in [57,
Section 3.4]:

Theorem 8. The d-level circulant matrix A admits the following expression:

A “
nA´1
ÿ

j“1

ajC
j
nA
,

with Cj
nA

defined as in Section 7.3. In addition, given c´i, c´i`1, . . . , ci P C, with

i P Nd, we have that any linear combination of the form
ři

j“´i cjC
j
nA

is a d-level
circulant matrix. Then,

i
ÿ

j“´i

cjC
j
nA
“ F ˚nA

ˆ

diag
j“0,1,...,nA´1

c

ˆ

2πj

nA

˙˙

FnA ,

where cpzq “
ři

j“´i cje
i x j, zy, with x j, zy “

řd
i“1 ji zi, and FnA “ Fn1bFn2b . . .b

Fnd is the multilevel discrete Fourier transform, with Fni denoting the unitary
discrete Fourier transform of order ni. In the previous expression, F ˚nA denotes

the inverse of the multilevel discrete Fourier transform. Moreover,
ři

j“´i cjC
j
nA

is a normal matrix whose spectrum is given by:

λ

˜

i
ÿ

j“´i

cjC
j
nA

¸

“

"

c

ˆ

2πj

nA

˙

: j “ 0,1, . . . ,nA ´ 1

*

.

As a consequence of the previous theorem, we have that the set of all d-level
circulant matrix is a commutative ring under matrix addition and multiplication.
Further, we also have that a d-level circulant matrix A is diagonalizable by the
discrete Fourier transform.

An important notion in the GLT theory is that of a matrix-sequence. A
matrix-sequence is a sequence of the form tAjuj, where j varies over some infinite

211

subset of N, Aj is a square matrix of size nAj , and nAj Ñ 8 as j Ñ 8. In
particular, a d-level matrix sequence is a sequence of the form tAjuj, where Aj

is a matrix of size Npjq ˆ Npjq, j varies over some infinite subset of N, and
j “ jpjq P Nd is such that j Ñ 8, as j Ñ 8.

An approximating class of sequences is a sequence of matrix-sequences that is
able to approximate the eigenvalues or the singular values of another given matrix-
sequence. Specifically, we have the following formal definition [57, Section 2.7]:

Definition 1. Let tAjuj be a matrix-sequence, with Aj of size nAj ˆnAj , and let

tt rAj,mujum be a sequence of matrix-sequences, with rAj,m of size nAj ˆ nAj . We

say that tt rAj,mujum is an approximating class of sequences (a.c.s.) for tAjuj if
for every m, there exists jm such that, for all j ě jm, we can write:

Aj “ rAj,m `Rj,m `Nj,m, rankpRj,mq ď cpmqdj, }Nj,m} ď ωpmq,

where jm, cpmq, and ωpmq depend only on m, and are such that:

lim
mÑ8

cpmq “ lim
mÑ8

ωm “ 0.

In that case, we write tt rAj,mujum
a.c.s.
ÝÝÝÑ tAjuj.

From the previous definition, we have that tt rAj,mujum is an approximating

class of sequences for tAjuj if the difference between Aj and rAj,m is the sum of a
matrix of low rank and a matrix of small norm.

We now introduce the definitions of clusters.

Definition 2. Let tAjuj be a sequence of matrices, with Aj of size nAjˆnAj , and
let X Ď C be a non-empty subset of C. We say that tAjuj is strongly clustered
at X (in the sense of eigenvalues) if @ε ą 0 we have:

#ti P t1, 2, . . . , nAju : λipAjq R DpX, εqu “ Op1q,

and weakly clustered at X if @ε ą 0,

#ti P t1, 2, . . . , nAju : λipAjq R DpX, εqu “ opnAjq.

Here, given ε ą 0, we denote with DpX, εq the ε-expansion of X, defined as
DpX, εq “

Ť

zPX Dpz, εq, where Dpz, εq is the the disk with center z and radius ε.
Further, with #X we denote the cardinality of a set X.

Given a function f : r0, 1sd Ñ C, we define the j-th diagonal sampling matrix
generated by f as the following nDj

ˆ nDj
diagonal matrix:

Djpfq “ diag
i“1,2,...,j

f

ˆ

i

j

˙

.

In addition, given j,m P N, g : r0, 1s Ñ C, and f P L1pr´π, πsq, we define the
1-level locally Toeplitz operator as the following nLTj ˆ nLTj matrix:

LTmj pg, fq “
`

Dmpgq b Ttj{mupfq
˘

‘Oj mod m,

212

where Dmpgq is a diagonal sampling matrix generated by g, Ttj{mupfq a Toeplitz
matrix generated by f , and Oj mod m a zero matrix. Similarly, given also j,m P

Nd, g : r0, 1sd Ñ C, and f P L1pr´π, πsdq, the d-level locally Toeplitz operator is
recursively defined as the following Npjq ˆNpjq matrix:

LTm
j pg, f1 b f2 b . . .b fdq “ LTm1,m2,...,md

j1,j2,...,jd
pgpxq, f1 b f2 b . . .b fdq.

We can now define the Locally Toeplitz sequences, that can be generalized to
define the notion of GLT sequences. This theory was originally developed in [172],
and we refer the reader to [56, 57] for a complete derivation and overview of this
class.

Definition 3. Let tAjuj be a d-level matrix-sequence, let g : r0, 1sd Ñ C be
Riemann-integrable, and let f P L1pr´π, πsdq. We say that tAjuj is a (d-level)
locally Toeplitz (LT) sequence with symbol g b f , and we write tAjuj „LT g b f ,
if:

tLTm
j pg, fquj

a.c.s.
ÝÝÝÑ tAjuj, asmÑ 8.

The previous definition can be generalized to define the Generalized Locally
Toeplitz sequences [57, Section 5.1].

Definition 4. Let a d-level matrix-sequence tAjuj, and a measurable function
κ : r0, 1sd ˆ r´π, πsd Ñ C be given. Suppose that @ε ą 0 there exists a finite

number of d-level LT sequences tA
pi,εq
j uj „LT gi,ε b fi,ε, i “ 1, 2, . . . , Nε, such that

as εÑ 0:
Nε
ÿ

i“1

gi,ε b fi,ε Ñ κ

in measure, and that
#

Nε
ÿ

i“1

A
pi,εq
j

+

j

a.c.s.
ÝÝÝÑ tAjuj.

Then tAjuj is a d-level GLT sequence with symbol κ, and we write tAjuj „GLT κ.

The above definitions were used to motivate the multilevel circulant precon-
ditioner derived in Chapter 7, and were used in [146] to prove the effectiveness of
the proposed preconditioning strategy.

In Chapter 7, we supposed the following assumptions hold true. Where the
first assumption does not hold automatically, it can be ensured by multiplying
the discretized PDE constraint by a constant depending on the mesh-sizes for a
given problem.

Assumption 2. The matrices B, M1, and M2 of dimension N̄ ˆ N̄ are such
that:

� The sequence tBuN̄ is a d-level matrix sequence with spectral norm uni-
formly bounded with respect to N̄ , i.e. there exists a constant cB such
that }B} ď cB for all N̄ . Furthermore, there exists a measurable func-
tion κ : r0, 1sd ˆ r´π, πsd Ñ C, which is the symbol of tBuN̄ , so that
tBuN̄ „GLT κ.

213

� The sequences tM1uN̄ and tM2uN̄ are two d-level matrix sequences, with
uniformly bounded spectral norms with respect to N̄ . Furthermore, there
exist two measurable functions κ1, κ2 : r0, 1sd ˆ r´π, πsd Ñ R, such that
κi ě 0, and tMiuN̄ „GLT κi, for i “ 1, 2.

214

Bibliography

[1] Abraham F., Behr M., Heinkenschloss M.: Shape Optimization in Steady
Blood Fow: A Numerical Study of Non-Newtonian Effects, Comput.
Method. Biomech. 8, 127–137, 2005

[2] Anastasio T. J.: The Fractional-Order Dynamics of Brainstem Vestibulo-
Oculomotor Neurons, Biol. Cybernet. 72, 69–79, 1994

[3] Angenent S., Haker S., Tannenbaum A.: Minimizing Flows for the Monge–
Kantorovich Problem, SIAM J. Matrix Anal. Appl. 35, 61–97, 2003

[4] Apel T., Flaig T. G.: Crank–Nicolson Schemes for Optimal Control Prob-
lems with Evolution Equations, SIAM J. Numer. Anal. 50, 1484–1512, 2012

[5] Arridge S. R.: Optical Tomography in Medical Imaging, Inverse Problems
15, R41–R93, 1999

[6] Arrow K., Hurwicz L., Uzawa H.: Studies in Nonlinear Programming, Stan-
ford University Press, 1958

[7] Axelsson O., Blaheta R., Kohut, R.: Preconditioning Methods for High-
Order Strongly Stable Time Integration Methods with an Application for a
DAE Problem, Numer. Linear Algebra Appl. 22, 930–949, 2015

[8] Axelsson O., Farouq S., Neytcheva M.: A Preconditioner for Optimal Con-
trol Problems, Constrained by Stokes Equation with a Time-Harmonic Con-
trol, J. Comp. Appl. Math. 310, 5–18, 2017

[9] Axelsson O., Neytcheva M.: Eigenvalue Estimates for Preconditioned Saddle
Point Matrices, Numer. Linear Algebra Appl. 13, 339–360, 2006

[10] Barthel W., John C., Tröltzsch F.: Optimal Boundary Control of a System
of Reaction Diffusion Equations, ZAMM 90, 966–982, 2010

[11] Becker R., Braack M.: A Finite Element Pressure Gradient Stabilization for
the Stokes Equations Based on Local Projections, Calcolo 38, 173–199, 2001

[12] Becker R., Vexler B.: Optimal Control of the Convection–Diffusion Equation
Using Stabilized Finite Element Methods, Numer. Math. 106, 349–367, 2007

[13] Bell J. B., Colella P., Glaz H. M.: A Second-Order Projection Method for
the Incompressible Navier–Stokes Equations, J. Comput. Phys. 85, 257–283,
1989

215

[14] Benamou J. D., Brenier Y.: A Computational Fluid Mechanics Solution to
the Monge–Kantorovich Mass Transfer Problem, Numer. Math. 84, 375–
393, 2000

[15] Benson D. A.: The Fractional Advection-Dispersion Equation: Development
and Application, D.Phil. Thesis, University of Nevada, 1998

[16] Benzi M.: Preconditioning Techniques for Large Linear Systems: A Survey,
J. Comput. Phys. 182, 418–477, 2002

[17] Benzi M., Golub G. H., Liesen J.: Numerical Solution of Saddle Point Prob-
lems, Acta Numerica 14, 1–137, 2005

[18] Bergounioux M., Haddou M., Hintermüller M., Kunisch, K.: A Comparison
of a Moreau–Yosida-Based Active Set Strategy and Interior Point Methods
for Constrained Optimal Control Problems, SIAM J. Optim. 11, 495–521,
2000

[19] Bergounioux M., Ito K., Kunisch K.: Primal-Dual Strategy for Constrained
Optimal Control Problems, SIAM J. Control Optim. 37, 1176–1194, 1999

[20] Bouchouev I., Isakov V.: Uniqueness, Stability and Numerical Methods for
the Inverse Problem that Arises in Financial Markets, Inverse Problems 15,
R95–R116, 1999

[21] Boyd S., Parikh N., Chu E., Peleato B., Eckstein J.: Distributed Opti-
mization and Statistical Learning via the Alternating Direction Method of
Multipliers, Found. Trends Mach. Learn. 3, 1–122, 2010

[22] Boyle J., Mihajlović M., Scott J.: HSL MI20: an Efficient AMG Precondi-
tioner for Finite Element Problems in 3D, Int. J. Numer. Meth. Eng. 82,
64–98, 2010

[23] Braack M., Burman E.: Local Projection Stabilization for the Oseen Problem
and its Interpretation as a Variational Multiscale Method, SIAM J. Numer.
Anal. 43, 2544–2566, 2006

[24] Bramble J. H., Pasciak J. E., Vassilev A. T.: Analysis of the Inexact Uzawa
Algorithm for Saddle Point Problems, SIAM J. Numer. Anal. 34, 1072–1092,
1997

[25] Brandt A.: Multi-Level Adaptive Technique (MLAT) for Fast Numerical
Solution to Boundary Value Problems, 3rd International Conference on Nu-
merical Methods in Fluid Mechanics, 82–89, Springer, 1973

[26] Brenner S. C., Scott L. R.: The Mathematical Theory of Finite Element
Methods, Springer, Berlin, 3rd Edition, 2008

[27] Briggs W. L., Emden Henson V., McCormick S. F.: A Multigrid Tutorial.
SIAM, 2nd Edition, 2000

216

[28] Brooks A. N., Hughes T. J. R.: Streamline Upwind/Petrov–Galerkin For-
mulations for Convection Dominated Flows with Particular Emphasis on
the Incompressible Navier–Stokes Equations, Comput. Methods Appl. Mech.
Eng. 32, 199–259, 1982

[29] Casas E.: Control of an Elliptic Problem with Pointwise State Constraints,
SIAM J. Control Optim. 24, 1309–1318, 1986

[30] Chan R. H., Strang G.: Toeplitz Equations by Conjugate Gradient with
Circulant Preconditioner, SIAM J. Sci. Stat. Comp. 10, 104–119, 1989

[31] Chan R. H., Wong C. K.: Best-Conditioned Circulant Preconditioners, Lin-
ear Alg. Appl. 218, 205–211, 1995

[32] Chan T. F.: An Optimal Circulant Preconditioner for Toeplitz Systems,
SIAM J. Sci. Stat. Comp. 9, 766–771, 1988

[33] Cheney M., Isaacson D., Newell J. C.: Electrical Impedance Tomography,
SIAM Review 41, 85–101, 1999

[34] Choi H., Hinze M., Kunisch, K.: Instantaneous Control of Backward-Facing
Step Flows, Appl. Numer. Math. 31, 133–158, 1999

[35] Collis S. S., Heinkenschloss M.: Analysis of the Streamline Upwind/Petrov
Galerkin Method Applied to the Solution of Optimal Control Problems, Tech-
nical Report CAAM TR02-01, Dept. of Computational and Applied Math.,
Rice University, Houston, 2002

[36] De los Reyes J. C.: Numerical PDE-Constrained Optimization, Springer,
Berlin, 2015

[37] De los Reyes J. C., Schönlieb C.-B.: Image Denoising: Learning the Noise
model Via Nonsmooth PDE-Constrained Optimization, Inverse Probl. Imag.
7, 1183–1214, 2013

[38] Deng W., Yin W.: On Global and Linear Convergence of the Generalized
Alternating Direction Method of Multipliers, J. Sci. Comp. 66, 889–916,
2016

[39] Dolgov S., Pearson J. W., Savostyanov D. V., Stoll M.: Fast Tensor Product
Solvers for Optimization Problems with Fractional Differential Equations as
Constraints, Appl. Math. Comp. 273, 604–623, 2016

[40] Dolgov S., Stoll M.: Low-Rank Solution to an Optimization Problem Con-
strained by the Navier–Stokes Equations, SIAM J. Sci. Comput. 39, A255–
A280, 2016

[41] Durastante F., Cipolla S.: Fractional PDE Constrained Optimization: Box
and Sparse Constrained Problems. In: Falcone M., Ferretti R., Grune L.,
McEneaney W. M. (eds.), Numerical Methods for Optimal Control Problems,
111–135, Springer, 2018

217

[42] Egger H., Engl H. W.: Tikhonov Regularization Applied to the Inverse Prob-
lem of Option Pricing: Convergence Analysis and Rates, Inverse Problems
21, 1027–1045, 2005

[43] Elman H. C., Golub G. H.: Inexact and Preconditioned Uzawa Algorithms
for Saddle Point Problems, SIAM J. Numer. Anal. 31, 1645–1661, 1994

[44] Elman H. C., Silvester D. J., Wathen A. J.: Finite Elements and Fast Iter-
ative Solvers: with Applications in Incompressible Fluid Dynamics, Oxford
University Press, 2nd Edition, 2014

[45] Engel M., Griebel M.: A Multigrid Method for Constrained Optimal Control
Problems, J. Comput. Appl. Math. 235, 4368–4388, 2011

[46] Evans L. C.: Partial Differential Equations, American Mathematical Soci-
ety, 2nd Edition, 2010

[47] Ewing R. E., Lin T.: A Class of Parameter Estimation Techniques for Fluid
Flow in Porous Media, Adv. Water Resources 14, 89–97, 1991

[48] Farrell P. E., Knepley M. G., Mitchell L., Wechsung F.: PCPATCH: Soft-
ware for the Topological Construction of Multigrid Relaxation Methods,
ACM Trans. Math. Softw., 47, 1–22, 2021

[49] Farrell P. E., Mitchell L., Scott L. R., Wechsung F.: Robust Multigrid Meth-
ods for Nearly Incompressible Elasticity Using Macro Elements, IMA J. Nu-
mer. Anal., 2022

[50] Farrell P. E., Mitchell L., Wechsung F.: An Augmented Lagrangian Precon-
ditioner for the 3D Stationary Incompressible Navier–Stokes Equations at
High Reynolds Number, SIAM J. Sci. Comput., 41, A3073–A3096, 2019

[51] Fletcher R.: Conjugate Gradient Methods for Indefinite Systems, Proc.
Dundee Biennial Conf. Numer. Anal., Watson G. A. (editor), Lecture Notes
in Mathematics 506, 73–89, Springer Verlag, Berlin, 1976

[52] Fortin M., Glowinski R.: Augmented Lagrangian Methods: Applications to
the Numerical Solution of Boundary Value Problems, North Holland, 1983

[53] Franca L. P., Frey S. L.: Stabilized Finite Element Methods: II. The Incom-
pressible Navier–Stokes Equations, Comput. Methods Appl. Mech. Eng. 99,
209–233, 1992

[54] Freund R. W., Golub G. H., Nachtigal N. M.: Iterative Solution of Linear
Systems, Acta Numerica 1, 57–100, 1992

[55] Gabay D., Mercier B.: A Dual Algorithm for the Solution of Nonlinear Vari-
ational Problems via Finite Element Approximation, Comp. Math. Appl. 2,
17–40, 1976

[56] Garoni C., Serra-Capizzano S.: Generalized Locally Toeplitz Sequences: The-
ory and Applications (Volume I), Springer, 2017

218

[57] Garoni C., Serra-Capizzano S.: Generalized Locally Toeplitz Sequences: The-
ory and Applications (Volume II), Springer, 2018

[58] Gelhard T., Lube G., Olshanskii M. A., Starcke J. H.: Stabilized Finite
Element Schemes with LBB-Stable Elements for Incompressible Flows, J.
Comput. Appl. Math. 177, 243–267, 2005

[59] Glowinski R.: Numerical Methods for Non-Linear Variational Problems,
Springer Series Comput. Phys., 1984

[60] Glowinski R., Marrocco A.: Sur l’Approximation, par Élements Finis
d’Ordre un, et la Résolution, par Pénalisation-Dualité, d’une Classe de
Problèms de Dirichlet non Linéares, Revue Française d’Automatique, In-
formatique, et Recherche Opérationelle 9, 41–76, 1975

[61] Goldstein T., O’Donoghue B., Setzer S., Baraniuk R.: Fast Alternating
Direction Optimization Methods, SIAM J. Imag. Sci. 7, 1588–1623, 2014

[62] Golub G. H., van Loan C. F.: Matrix Computations, The Johns Hopkins
University Press, 4th edition, 1996

[63] Golub G. H., Varga R. S.: Chebyshev Semi-Iterative Methods, Successive
Over-Relaxation Iterative Methods, and Second Order Richardson Iterative
Methods, Part I, Numer. Math. 3, 147–156, 1961

[64] Golub G. H., Varga R. S.: Chebyshev Semi-Iterative Methods, Successive
Over-Relaxation Iterative Methods, and Second Order Richardson Iterative
Methods, Part II, Numer. Math. 3, 157–168, 1961

[65] Gondzio J.: Interior Point Methods 25 Years Later, European J. Oper. Res.
218, 587–601, 2012

[66] Gorenflo R., Mainardi F.: Fractional Calculus: Integral and Differential
Equations of Fractional Order. In: Carpinteri A., Mainardi F. (eds.), Frac-
tals and Fractional Calculus in Continuum Mechanics, 223–276, Springer,
1997

[67] Götschel S., Minion M. L.: An Efficient Parallel-in-Time Method for Op-
timization with Parabolic PDEs, SIAM J. Sci. Comput. 41, C603–C626,
2019

[68] Greenbaum A.: Iterative Methods for Solving Linear Systems, SIAM,
Philadelphia, 1997

[69] Greenbaum A., Pták V., Strakoš Z.: Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal. Appl. 17, 465–469, 1996

[70] Gresho P. M., Sani R. L.: Incompressible Flow and the Finite Element
Method. Volume 1: Advection-Diffusion and Isothermal Laminar Flow, Wi-
ley, New York, 1998

219

[71] Griesse R., Volkwein S.: A Primal-Dual Active Set Strategy for Optimal
Boundary Control of a Nonlinear Reaction-Diffusion System, SIAM J. Con-
trol Optim. 44, 467–494, 2005

[72] Gunzburger M. D.: Perspectives in Flow Control and Optimization, SIAM,
2002

[73] Güttel S., Pearson J. W.: A Rational Deferred Correction Approach to
Parabolic Optimal Control Problems, IMA J. Numer. Anal. 38, 1861–1892,
2017

[74] Haber E., Hanson L.: Model Problems in PDE-Constrained Optimization,
Tech. Rep. TR-2007-09, Emory University, 2007

[75] Hackbusch W.: Multigrid Methods and Applications, Springer Series in Com-
putational Mathematics, Volume 4, Springer-Verlag, Berlin, 1985

[76] Hasan A., Foss B., Sagatun S.: Flow Control of Fluids through Porous
Media, Appl. Math. Comput. 219, 3323–3335, 2012

[77] Heidel G., Wathen A.: Preconditioning for Boundary Control Problems in
Incompressible Fluid Dynamics, Numer. Linear Algebra Appl. 26, e2218,
2019

[78] Heinkenschloss M.: A Time-Domain Decomposition Iterative Method for
the Solution of Distributed Linear Quadratic Optimal Control Problems, J.
Comput. Appl. Math. 173, 169–198, 2005

[79] Heinkenschloss M., Leykekhman D.: Local Error Estimates for SUPG So-
lutions of Advection-Dominated Elliptic Linear–Quadratic Optimal Control
Problems, SIAM J. Numer. Anal. 47, 4607–4638, 2010

[80] Hestenes M. R., Stiefel E.: Methods of Conjugate Gradients for Solving
Linear Systems, J. Res. Nat. Bur. Stand. 49, 409–436, 1952

[81] Hintermüller M., Ito K., Kunisch K.: The Primal-Dual Active Set Strategy
as a Semismooth Newton Method, SIAM J. Optim. 13, 865–888, 2002

[82] Hintermüller M., Hinze M.: A SQP-Semismooth Newton-Type Algorithm
Applied to Control of the Instationary Navier–Stokes System Subject to Con-
trol Constraints, SIAM J. Optim. 16, 1177–1200, 2006

[83] Hinze M.: Optimal and Instantaneous Control of the Instationary Navier–
Stokes Equations, Habilitation Thesis, Technische Universität Berlin, 2000

[84] Hinze M., Köster M., Turek S.: A Space–Time Multigrid Method for Op-
timal Flow Control. In: Leugering G., Engell S., Griewank A., Hinze M.,
Rannacher R., Schulz V., Ulbrich M., Ulbrich S. (eds.), Constrained Opti-
mization and Optimal Control for Partial Differential Equations, 147–170,
Springer, Basel, 2012

220

[85] Hinze M., Pinnau R.: A Second Order Approach to Optimal Semiconductor
Design, J. Optim. Th. Appl. 133, 179–200, 2007

[86] Hinze M., Pinnau R., Ulbrich M., Ulbrich S.: Optimization with PDE Con-
straints, Springer-Verlag, New York, 2008

[87] Hughes T. J. R., Brooks A.: A Multidimensional Upwind Scheme with no
Crosswind Diffusion. In: Hughes T. J. R. (ed.), Finite Element Methods for
Convection Dominated Flows, AMD 34, 19–35, ASME, New York, 1979

[88] Ipsen I. C. F.: A Note on Preconditioning Nonsymmetric Matrices, SIAM
J. Sci. Comput. 23, 1050–1051, 2001

[89] Ito K., Kunisch K.: Augmented Lagrangian Methods for Nonsmooth, Convex
Optimization in Hilbert Spaces, Nonlinear Anal. 41, 591–616, 2000

[90] Ito K., Kunisch K.: Semi-Smooth Newton Methods for State-Constrained
Optimal Control Problems, Systems Control Lett. 50, 221–228, 2003

[91] Johnson C., Saranen J.: Streamline Diffusion Methods for the Incompress-
ible Euler and Navier–Stokes Equations, Math. Comp. 47, 1–18, 1986

[92] Kay D., Loghin D., Wathen A.: A Preconditioner for the Steady-State
Navier–Stokes Equations, SIAM J. Sci. Comput. 24, 237–256, 2002

[93] Klibanov M. V., Lucas T. R.: Numerical Solution of a Parabolic Inverse
Problem in Optical Tomography Using Experimental Data, SIAM J. Appl.
Math. 59, 1763–1789, 1999

[94] Koeller R. C.: Applications of Fractional Calculus to the Theory of Vis-
coelasticity, J. Appl. Mech. 51, 299–307, 1984

[95] Kopteva N., O’Riordan E.: Shishkin Meshes in the Numerical Solution of
Singularly Perturbed Differential Equations, Int. J. Numer. Anal. Mod. 7,
393–415, 2010

[96] Krendl W., Simoncini V., Zulehner W.: Efficient Preconditioning for an
Optimal Control Problem with the Time-Periodic Stokes Equations. In: Ab-
dulle A., Deparis S., Kressner D., Nobile F., Picasso M. (eds.), Numerical
Mathematics and Advanced Applications, 479–487, Springer International
Publishing, 2015

[97] Kuznetsov Y. A.: Efficient Iterative Solvers for Elliptic Problems on Non-
matching Grids, Russ. J. Numer. Anal. Math. M. 10, 187–211, 1995

[98] Laub A. J.: Matrix Analysis for Scientists and Engineers, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, 2004

[99] Leveque S., Pearson J. W.: Parameter-Robust Preconditioning for Unsteady
Stokes Control Problems, PAMM 21, e202100131, 2021

221

[100] Leveque S., Pearson J. W.: Fast iterative solver for the optimal control of
time-dependent PDEs with Crank–Nicolson discretization in time, Numer.
Linear Algebra Appl. 29, e2419, 2022

[101] Leveque S., Pearson J. W.: Parameter-Robust Preconditioning for Oseen
Iteration Applied to Stationary and Instationary Navier–Stokes Control, to
appear in SIAM J. Sci. Comput., arXiv:2108.00282

[102] Li B., Liu J., Xiao M.: A New Multigrid Method for Unconstrained Parabolic
Optimal Control Problems, J. Comp. Appl. Math. 326, 358–373, 2017

[103] Lindenstrauss J., Preiss D.: On Fréchet Differentiability of Lipschitz Maps
between Banach Spaces, Annals of Mathematics 157, 257–288, 2003

[104] Lions J. L.: Optimal Control of Systems Governed by Partial Differential
Equations, Springer, Berlin, 1971

[105] Maday Y., Turinici G.: A Parareal in Time Procedure for the Control of
Partial Differential Equations, C. R. Math. 335, 387–392, 2002

[106] Manteuffel T. A.: The Tchebychev Iteration for Nonsymmetric Linear Sys-
tems, Numer. Math. 28, 307–327, 1977

[107] Manteuffel T. A.: Adaptive Procedure for Estimation of Parameter for the
Non-Symmetric Tchebychev Iteration, Numer. Math. 28, 187–208, 1978

[108] Mason J. C., Handscomb D. C.: Chebyshev Polynomials, CRC Press, 2003

[109] Mathew T. P., Sarkis M., Schaerer C. E.: Analysis of Block Parareal Pre-
conditioners for Parabolic Optimal Control Problems, SIAM J. Sci. Comput.
32, 1180–1200, 2010

[110] Matthies G., Tobiska L.: Local Projection Type Stabilization Applied to Inf–
Sup Stable Discretizations of the Oseen Problem, IMA J. Numer. Anal. 35,
239–269, 2015

[111] Meerschaert M., Scheffler H. P., Tadjeran C.: Finite Difference Methods
for Two-Dimensional Fractional Dispersion Equation, J. Comp. Phys. 211,
249–261, 2006

[112] Meerschaert M., Tadjeran C.: Finite Difference Approximations for Frac-
tional Advection Dispersion Equations, J. Comp. Appl. Math. 172, 65–77,
2004

[113] Meerschaert M., Tadjeran C.: Finite Difference Approximations for Two-
Sided Space-Fractional Partial Differential Equations, Appl. Num. Math.
56, 80–90, 2004

[114] Metzler R., Klafter J.: The Restaurant at the End of the Random Walk: Re-
cent Developments in the Description of Anomalous Transport by Fractional
Dynamics, J. Phys. A 37, R161–R208, 2004

222

[115] Meurant G.: Computer Solution of Large Linear Systems, North Holland,
1999

[116] Miller K. S., Ross B.: An Introduction to the Fractional Calculus and Frac-
tional Differential Equations, John Wiley & Sons, 1993

[117] Murphy M. F., Golub G. H., Wathen A. J.: A Note on Preconditioning for
Indefinite Linear Systems, SIAM J. Sci. Comput. 21, 1969–1972, 2000

[118] Napov A., Notay Y.: An Algebraic Multigrid Method with Guaranteed Con-
vergence Rate, SIAM J. Sci. Comput. 34, A1079–A1109, 2012

[119] Nocedal J., Wright S.: Numerical Optimization, Springer, New York, 2nd
Edition, 2006

[120] Norburn S., Silvester D. J.: Stabilised vs. Stable Mixed Methods for Incom-
pressible Flow, Comput. Methods Appl. Mech. Eng. 166, 131–141, 1998

[121] Notay Y.: An Aggregation-Based Algebraic Multigrid Method, Electron.
Trans. Numer. Anal. 37, 123–146, 2010

[122] Notay Y.: Aggregation-Based Algebraic Multigrid for Convection–Diffusion
Equations, SIAM J. Sci. Comput. 34, A2288–A2316, 2012

[123] Notay Y.: AGMG Software and Documentation; see http://agmg.eu/

index.html

[124] Oldham K. B., Spanier J.: The Replacement of Fick’s Laws by a Formu-
lation Involving Semidifferentiation, J. Electroanal. Chem. and Interfacial
Electrochem. 26, 331–341, 1970

[125] Oldham K. B., Spanier J.: The Fractional Calculus, Academic Press, New
York, London, 1974

[126] Orozco C. E., Ghattas O. N.: Massively Parallel Aerodynamic Shape Opti-
mization, Comput. Syst. Eng. 3, 311–320, 1992

[127] Oseledets I. V. et al.: TT-Toolbox Software; see https://github.com/

oseledets/TT-Toolbox

[128] Paige C. C., Saunders M. A.: Solution of Sparse Indefinite Systems of
Linear Equations, SIAM J. Numer. Anal. 12, 617–629, 1975

[129] Parikh N., Boyd S.: Proximal Algorithms, Found. Trends Optim. 1, 127–
239, 2014

[130] Pearson J. W.: Fast Iterative Solvers for PDE-Constrained Optimization
Problems, D.Phil. Thesis, University of Oxford, 2013

[131] Pearson J. W.: On the Development of Parameter-Robust Preconditioners
and Commutator Arguments for Solving Stokes Control Problems, Electron.
Trans. Numer. Anal. 44, 53–72, 2015

223

[132] Pearson J. W.: Preconditioned Iterative Methods for Navier–Stokes Control
Problems, J. Comput. Phys. 292, 194–207, 2015

[133] Pearson J. W.: PDE-Constrained Optimization Models for Scientific Pro-
cesses, PAMM 18, e201800253, 2018

[134] Pearson J. W., Gondzio J: Fast Interior Point Solution of Quadratic Pro-
gramming Problems Arising from PDE-Constrained Optimization, Numer.
Math. 137, 959–999, 2017

[135] Pearson J. W., Gondzio J: On Block Triangular Preconditioners for the
Interior Point Solution of PDE-Constrained Optimization Problems. In:
Bjørstad P. E., Brenner S. C., Halpern L., Kim H. H., Kornhuber R., Rah-
man T., Widlund O. B. (eds.), Domain Decomposition Methods in Science
and Engineering XXIV, 503–510, Springer, 2018

[136] Pearson J. W., Pestana J.: Preconditioners for Krylov Subspace Methods:
An Overview, GAMM-Mitteilungen 43, e202000015, 2020

[137] Pearson J. W., Porcelli M., Stoll M.: Interior-Point Methods and Precon-
ditioning for PDE-Constrained Optimization Problems Involving Sparsity
Terms, Numer. Linear Algebra Appl. 27, 2020

[138] Pearson J. W., Stoll M.: Fast Iterative Solution of Reaction–Diffusion Con-
trol Problems Arising from Chemical Processes, SIAM J. Sci. Comput. 35,
B987–B1009, 2013

[139] Pearson J. W., Stoll M., Wathen A. J.: Regularization-Robust Precondition-
ers for Time-Dependent PDE-Constrained Optimization Problems, SIAM J.
Matrix Anal. Appl. 33, 1126–1152, 2012

[140] Pearson J. W., Wathen A. J.: A New Approximation of the Schur Comple-
ment in Preconditioners for PDE-Constrained Optimization, Numer. Linear
Algebra Appl. 19, 816–829, 2012

[141] Pearson J. W., Wathen A. J.: Fast Iterative Solvers for Convection–
Diffusion Control Problems, Electron. Trans. Numer. Anal. 40, 294–310,
2013

[142] Pearson J. W., Wathen A.: Matching Schur Complement Approximations
for Certain Saddle-Point Systems. In: Dick J., Kuo F. Y., Woźniakowski H.
(eds.), Contemporary Computational Mathematics – A Celebration of the
80th Birthday of Ian Sloan, 1001–1016, Springer, 2018

[143] Podlubny I.: Fractional Differential Equations: an Introduction to Frac-
tional Derivatives, Fractional Differential Equations, to Methods of their
Solution and some of their Applications, Academic Press, 1999

[144] Podlubny I., Petráš I., Vinagre B. M., O’leary P., Dorčák L’.: Analogue
Realizations of Fractional-Order Controllers, Nonlinear Dynam. 29, 281–
296, 2002

224

[145] Pošta M., Roub́ıček T.: Optimal Control of Navier–Stokes Equations by
Oseen Approximation, Comp. Math. Appl. 53, 569–581, 2007

[146] Pougkakiotis S., Pearson J. W., Leveque S., Gondzio J.: Fast Solution Meth-
ods for Convex Quadratic Optimization of Fractional Differential Equations,
SIAM J. Matrix Anal. Appl. 41, 1443–1476, 2020

[147] Qiu Y., van Gijzen M. B., van Wingerden J.-W., Verhaegen M., Vuik
C.: Preconditioning Navier–Stokes Control Using Multilevel Sequentially
Semiseparable Matrix Computations, Numer. Linear Algebra Appl. 28,
e2349, 2021

[148] Quarteroni A., Rozza G.: Optimal Control and Shape Optimization of
Aorto-Coronaric Bypass Anastomoses, Math. Models Methods Appl. Sci.
13, 1801–1823, 2003

[149] Quarteroni A., Valli A.: Numerical Approximation of Partial Differential
Equations, Springer, Berlin, 1997

[150] Ramage A.: A Multigrid Preconditioner for Stabilised Discretisations of
Advection–Diffusion Problems, J. Comp. Appl. Math. 110, 187–203, 1999

[151] Rees T.: Preconditioning Iterative Methods for PDE Constrained Optimiza-
tion, D. Phil. Thesis, University of Oxford, 2010

[152] Rees T., Dollar H. S., Wathen A. J.: Optimal Solvers for PDE-Constrained
Optimization, SIAM J. Sci. Comput. 32, 271–298, 2010

[153] Rees T., Wathen A. J.: Preconditioning Iterative Methods for the Optimal
Control of the Stokes Equations, SIAM J. Sci. Comput. 33, 2903–2926, 2011

[154] Richardson L. F.: The Approximate Arithmetical Solution by Finite Differ-
ences of Physical Problems Involving Differential Equations, with an Appli-
cation to the Stresses in a Masonry Dam, Philos. Trans. Roy. Soc. London
Ser. A 210, 307–357, 1911

[155] Saad Y.: A Flexible Inner–Outer Preconditioned GMRES Algorithm, SIAM
J. Sci. Comput. 14, 461–469, 1993

[156] Saad Y.: Iterative Methods for Sparse Linear Systems, PWS Publishing,
Boston, 1996

[157] Saad Y., Schultz M. H.: GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Com-
put. 7, 856–869, 1986

[158] Samko S. G., Kilbas A. A., Marichev O. O. I.: Fractional Integrals and
Derivatives, Gordon and Breach Science Publishers Yverdon, 1993

[159] Scalas E., Gorenflo R., Mainardi F.: Fractional Calculus and Continuous-
Time Finance, Physica A 284, 376–384, 2000

225

[160] Schenk C., Schulz V., Rosch A., von Wallbrunn C.: Less Cooling Energy in
Wine Fermentation – A Case Study in Mathematical Modeling, Simulation
and Optimization, Food and Bioproducts Processing 103, 131–138, 2017

[161] Schiela A., Weiser M.: Superlinear Convergence of the Control Reduced
Interior Point Method for PDE Constrained Optimization, Comput. Optim.
Appl. 39, 369–393, 2008

[162] Schöberl J., Zulehner W.: Symmetric Indefinite Preconditioners for Saddle
Point Problems with Applications to PDE-Constrained Optimization Prob-
lems, SIAM J. Matrix Anal. Appl. 29, 752–773, 2007

[163] Serra-Capizzano S., Tyrtyshnikov E.: Any Circulant-Like Preconditioner
for Multilevel Matrices is Not Superlinear, SIAM J. Matrix Anal. Appl. 21,
431–439, 2000

[164] Silvester D., Wathen A.: Fast Iterative Solution of Stabilised Stokes Sys-
tems. Part II: Using General Block Preconditioners, SIAM J. Numer. Anal.
31, 1352–1367, 1994

[165] Simoncini V., Szyld D. B.: Flexible Inner-Outer Krylov Subspace Methods,
SIAM J. Numer. Anal. 40, 2219–2239, 2003

[166] Stoll M.: One-Shot Solution of a Time-Dependent Time-Periodic PDE-
Constrained Optimization Problem, IMA J. Numer. Anal. 10, 1554–1577,
2014

[167] Stoll M., Benner P., Onwunta A., Dolgov S.: Low-Rank Solvers for Unsteady
Stokes–Brinkman Optimal Control Problem with Random Data, Comput.
Methods Appl. Mech. Eng. 304, 26–54, 2016

[168] Stoll M., Breiten T.: A Low-Rank in Time Approach to PDE-Constrained
Optimization, SIAM J. Sci. Comput. 37, B1–B29, 2014

[169] Stoll M., Pearson J. W., Maini P. K.: Fast Solvers for Optimal Control
Problems from Pattern Formation, J. Comput. Phys. 304, 27–45, 2016

[170] Stoll M., Wathen A.: All-at-Once Solution of Time-Dependent Stokes Con-
trol, J. Comput. Phys. 232, 498–515, 2013

[171] Sudaryanto B., Yortsos Y. C.: Optimization of Fluid Front Dynamics in
Porous Media Using Rate Control. I. Equal Mobility Fluids, Phys. Fluids
12, 1656–1670, 2000

[172] Tilli P.: Locally Toeplitz Sequences: Spectral Properties and Applications,
Linear Alg. Appl. 278, 91–120, 1998

[173] Tobiska L., Lube G.: A Modified Streamline Diffusion Method for Solving
the Stationary Navier–Stokes Equations, Numer. Math. 59, 13–29, 1991

[174] Trefethen L. N., Bau D.: Numerical Linear Algebra, SIAM, 1997

226

[175] Tröltzsch F.: Optimal Control of Partial Differential Equations: The-
ory, Methods and Applications, Graduate Series in Mathematics, American
Mathematical Society, 2010

[176] Tyrtyshnikov E. E.: Optimal and Superoptimal Circulant Preconditioners,
SIAM J. Matrix Anal. Appl. 13, 459–473, 1992

[177] Ulbrich M., Ulbrich S.: Primal-Dual Interior-Point Methods for PDE-
Constrained Optimization, Math. Program. 117, 435–485, 2009

[178] Varga R. S.: Matrix Iterative Analysis, Prentice Hall, 1962

[179] Wathen A. J.: Realistic Eigenvalue Bounds for the Galerkin Mass Matrix,
IMA J. Numer. Anal. 7, 449–457, 1987

[180] Wathen A. J.: Preconditioning, Acta Numerica 24, 329–376, 2015

[181] Wathen A., Rees T.: Chebyshev Semi-Iteration in Preconditioning for Prob-
lems Including the Mass Matrix, Electron. Trans. Numer. Anal. 34, 125–135,
2009

[182] Wathen A., Silvester D.: Fast Iterative Solution of Stabilised Stokes Sys-
tems. Part I: Using Simple Diagonal Preconditioners, SIAM J. Numer. Anal.
30, 630–649, 1993

[183] Weiser M.: Interior Point Methods in Function Space, SIAM J. Control
Optim. 44, 1766–1786, 2005

[184] Weiser M., Schiela A.: Function Space Interior Point Methods for PDE
Constrained Optimization, PAMM 4, 43–46, 2004

[185] Wesseling P.: An Introduction to Multigrid Methods, John Wiley & Sons,
1992

[186] Yücel H., Stoll M., Benner P.: Adaptive Discontinuous Galerkin Approx-
imation of Optimal Control Problems Governed by Transient Convection–
Diffusion Equations, Electron. Trans. Numer. Anal. 48, 407–434, 2018

[187] Zeng M., Zhang G.: A New Preconditioning Strategy for Solving a Class
of Time-Dependent PDE-Constrained Optimization Problems, J. Comput.
Math. 32, 215–232, 2014

[188] Zhou G.: How Accurate is the Streamline Diffusion Finite Element
Method?, Math. Comp. 66, 31–44, 1997

[189] Zulehner W.: Analysis of Iterative Methods for Saddle Point Problems: A
Unified Approach, Math. Comp. 71, 479–505, 2001

[190] Zulehner W.: Nonstandard Norms and Robust Estimates for Saddle Point
Problems, SIAM J. Matrix Anal. Appl. 32, 536–560, 2011

227

	cover sheet.pdf
	thesis (1).pdf

