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Abstract

Greedy techniques are a well established framework aiming to reconstruct signals which

are sparse in some domain of representations. They are renowned for their relatively low

computational cost, that makes them appealing from the perspective of real time appli-

cations. Within the current work we focus on the explicit case of sparse non–negative

signals that finds applications in several aspects of daily life e.g., food analysis, haz-

ardous materials detection etc. The conventional approach to deploy this type of algo-

rithms does not employ benefits from properties that characterise natural data, such

as lower dimensional representations, underlying structures. Motivated by these prop-

erties of data we are aiming to incorporate methodologies within the domain of greedy

techniques that will boost their performance in terms of: 1) computational efficiency

and 2) signal recovery improvement (for the remainder of the thesis we will use the

term acceleration when referring to the first goal and robustness when we are referring

to the second goal). These benefits can be exploited via data aware methodologies that

arise, from the Machine Learning and Deep Learning community.

Within the current work we are aiming to establish a link among conventional

sparse non–negative signal decomposition frameworks that rely on greedy techniques

and data aware methodologies. We have explained the connection among data aware

methodologies and the challenges associated with the sparse non–negative signal decom-

positions: 1) acceleration and 2) robustness. We have also introduced the standard data

aware methodologies, which are relevant to our problem, and the theoretical properties

they have. The practical implementations of the proposed frameworks are provided

here. The main findings of the current work can be summarised as follows:

• We introduce novel algorithms, theory for the Nearest Neighbor problem.
• We accelerate a greedy algorithm for sparse non–negative signal decomposition

by incorporating our algorithms within its structure.
• We introduce a novel reformulation of greedy techniques from the perspective of

a Deep Neural Network that boosts the robustness of greedy techniques.
• We introduce the theoretical framework that fingerprints the conditions that lay

down the soil for the exact recovery of the signal.

ii



Lay Summary

Sparse signal processing is a well established framework within the signal processing

community. Its application has been proven beneficial in several aspects of daily life

e.g. Magnetic Resonance Imaging (MRI) where the time for image acquisition was

significantly reduced, which benefits the patients as well as health care economics.

Within the current work we have a particular interest for a special class of sparse signals

i.e. non–negative signals, that find applications in real life problems e.g., hazardous

materials detection, food analysis etc.

Within the literature there exist several methodologies aiming to solve the sparse

non–negative signal processing problem. The current work emphasizes on techniques

that solve the problem within a time frame suitable for real time applications. A

popular approach that meets this sort of criterion are greedy techniques. However,

the operational time required by these techniques to carry out the assigned task scales

with the size of the problem i.e. size of data stacked in system memory. Hence,

the generic framework of greedy techniques is not well suited while the size of data

increases. Moreover, these techniques are approximate i.e. given a sample that contains

a hazardous material the corresponding algorithm may not detect it. This sort of

characteristic may be fatal considering the type of applications we focus on. Within

the current work we are aiming to develop methodologies that: 1) reduce the operational

time of greedy techniques 2) improve the performance of greedy techniques in terms of

recovering the actual elements that constitute the input signal.

In recent years data aware methodologies more formally known as machine learning

and deep learning, have introduced novel solutions in many real life problems. These

sort of techniques learn to perform a particular task by using known data as an example.

Within the current work we are aiming to develop data aware methodologies that will

reduce the computational cost of greedy techniques and improve their performance in

terms of detecting the correct elements that constitute the input signal.
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Nomenclature

NNK index in Φ̂ that corresponds to the Nearest Neighbor in RK
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Φ̂ representation of Φ in RK

ŷ representation of y in RK
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Chapter 1

Introduction

1.1 Research Problem

Sparse signal processing is a framework that has been of particular interest within the

signal processing community in the last decade. There exist many signals (e.g. images,

audio etc) which are sparse with respect to a domain of representation. This type of

approaches are appealing when considering real–time applications e.g. handheld spec-

trometers or mobile phones, since they enable the development of robust methodologies

on a limited hardware topology.

The application of these methodologies has already been proven beneficial in sev-

eral ways, i.e. Magnetic Resonance Imaging (MRI) where the time for image acquisition

was significantly reduced, which benefits the patients as well as health care economics

[1]. The preliminary focus of this project is on the development of non–negative sparse

signal processing applications. The development of these applications may be beneficial

in several areas such as defense, security or food industry.

Considering the algorithmic framework upon which we can develop these appli-

cations the most popular, in terms of robustness, is the one that solves the l1–norm

minimization problem also known as the Basis Pursuit (BP) [2]. The main drawback

when considering this kind of approach as a potential strategy though is the fact that

they are characterized by a heavy computational workload.

The greedy sparse approximation algorithms are generally characterised by a low

computational cost that makes them suitable for real–time and large scale approxima-

tions. One simple greedy algorithm is Matching Pursuit (MP) [3] which builds a sparse

representation of a signal on an iterative manner. In order to compensate the disad-
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vantages of MP (e.g., a selected atom may be reselected, the representation found by

the algorithm is not the best representation using the selected atoms), the Orthogonal

Matching Pursuit (OMP) algorithm [4],[5] is introduced. OMP projects the input sig-

nal y onto the selected support set s at the expense of some extra computational cost.

This type of projection can be found by solving the following optimization problem:

x̃s “ arg min
xs

||y ´Φsxs||, (1.1)

where Φs and xs the sub–dictionary and coefficient vector accordingly with respect to

the support s.

Greedy techniques may be appealing in general given that the corresponding com-

putational cost is relatively low compared to alternative approaches such as BP, however

the computational cost scales with the number of elements M and the dimensions of

each element N . Hence, the relatively low computational workload of greedy techniques

grows along the size of the associated dictionary. Furthermore, the decomposition pro-

cess of greedy techniques heavily relies on the coherence in between the dictionary

elements. The underlying coherence between the dictionary elements is of a critical

importance given that it affects the performance of the associated algorithms in terms

of signal reconstruction.

Within the current work we are aiming to boost the performance of greedy tech-

niques in terms of: 1) acceleration i.e. reduce the corresponding computational cost

and 2) signal reconstruction. Our motivation is driven by several applications that can

benefit from this sort of approaches e.g., hazardous materials detection, food analysis

etc. A natural question that rises though is the following: Given that greedy techniques

are a well established framework, what is the new idea that the current work brings

into the agenda?

For the last decade the research community is oriented into the development of

data aware methodologies seeking for better solutions into real life problems. The main

scope of the current work is to develop frameworks that incorporate the underlying

properties that characterise natural data, e.g., lower dimensional representation, data

structure etc and upgrade the performance of greedy techniques.

Considering the framework upon which these properties may be exploited we focus

on data aware techniques that arise from the area of machine learning. In that sense,

the current work is aiming to incorporate machine learning methodologies within a well

established concept in the signal processing community, such as sparse signal processing,

with a focus on the non–negativity case. In summary, the motivation of the current
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work is to act as a bridge in between data aware techniques and traditional signal

processing.

1.2 Thesis Statements

Within the current work we are aiming to develop methodologies that can be introduced

in the standard sparse non–negative setting with an aim to improve the performance

of existing methodologies with respect to two main criteria: 1) acceleration and 2)

robustness.

Our preliminary goal is to lay down the soil for algorithms that meet the tight

criteria of real time applications. By considering this parameter as a guideline for

our work, a natural question that rises is how fast these algorithms can solve the given

problem. In other words, what is the computational workload that these methodologies

carry out?

Another critical parameter though, and given the sensitivity of the targeted ap-

plications (e.g., detection of hazardous materials, food analysis etc), is the robustness

of these methodologies. Within the current work are considering an algorithm to be

robust when it fully reconstructs the input signal. Given that the current work mainly

focus is on algorithms which are fast in terms of the computational cost, but approx-

imate with respect to the solution of the given problem, the second direction of this

project is the improvement of existing algorithms in terms of robustness i.e., improve

the true positives detection ratio and their contribution in the input signal.

The main motivation that pushes our work forward is the improvement that data

aware processes have delivered in several areas of research i.e. image processing [6],

audio processing [7] etc. Within the current work the main focus is on techniques

that exploit benefit from properties that typically characterise data such as: 1) lower

dimensional representation, and 2) underlying structure.

We here focus on data that originally live in a high dimensional space RN . Within

the term lower dimensional representation, what we actually mean is that the original

signal y P RN has a lower dimensional representation ŷ P RK which contains a relatively

similar amount of information.

From the perspective of underlying structure of the data, the main characteristic

related to sparse signal processing is coherence. In particular, from the compressive

sensing framework point of view [8], a signal may be successfully reconstructed as long

3



as it is 1) sparse in some domain of representation and 2) the dictionary Φ is incoherent.

In the ideal scenario, and considering incoherence as the main parameter of our problem,

the points φi P Φ are mutually orthogonal. This is not typically the case from a real

data perspective though. This results in a situation where the input signal may not

be successfully reconstructed and as a result the corresponding algorithm yields an

approximate solution. Within the current work we are seeking for methodologies that

improve the reconstruction performance of existing algorithms and we investigate how

these methodologies alter the underlying structure of the dictionary Φ.

1.3 Main Contributions

The current thesis introduces reformulations of the standard framework for greedy tech-

niques with a focus on sparse non–negative signal processing. Our work is motivated by

the properties that characterise natural data and can be exploited via machine learning

and deep learning techniques. Overall we address our contributions as a bridge in be-

tween data aware methods such as machine learning and traditional signal processing

techniques. More specifically the main contributions of this thesis are:

1. We introduce the theoretical framework that guarantees the acquisition of the

exact–Nearest Neighbor (NN) in lower dimensional spaces via linear embeddings.

2. An empirically fast and exact algorithm called Embedded Nearest Neighbor (E–NN)

for the general Nearest Neighbor Search (NNS) problem [9]. A theoretically ro-

bust and practically fast algorithm called Adaptive Embedded Nearest Neighbor

(AE–NN) for the general NNS. We demonstrate the benefits of following such

an approach in terms of acceleration, by incorporating the algorithms in the

structure of a non–negative sparse signal decomposition algorithm such as Fast

Non–Negative Orthogonal Matching Pursuit (FNNOMP) [10] and accelerating

the algorithm in the time domain. We extend our results to the Maximum In-

ner Search problem (MIPS) [11]. We demonstrate that our approaches benefit

from a particular property that may characterise natural signals i.e., with lower

dimensional representation.

3. Greedy techniques are a well known framework for sparse signal decomposition

in their conventional form, however the associated literature is relatively poor

when it comes to the learning version of greedy techniques. We here introduce

an unfolded version of matching pursuit for sparse non–negative signal processing

in a form of neural network [12] called Deep Matching Pursuit (DeepMP), that
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boosts the performance of greedy techniques in terms of support recovery and

signal reconstruction.

4. We introduce the theoretical framework that provides an interpretation upon

the results of DeepMP along with modifications on the standard structure of

the model that boosts its performance in terms of support–signal recovery. The

associated work has been submitted to related academic journals.

1.4 Thesis Organization

In Chapter 2, we start by making a thorough review in the general sparse signal pro-

cessing problem. The background of several decomposition algorithms in terms of

properties and theoretical guarantees is discussed in detail. We establish the link in

between sparse non–negative signal processing, and in particular greedy techniques,

with data aware methodologies. We introduce the state of the art methods from this

area related with the different aspects of the sparse recovery problem we are aiming to

tackle.

In Chapter 3 we introduce our key novelties in the standard Nearest Neighbor

problem both in theory and practice. We demonstrate the benefits, in terms of acceler-

ation, of following such approach by incorporating the developed algorithm within the

structure of FNNOMP. We compare our framework with state of the art greedy sparse

non–negative decomposition algorithms.

In Chapter 4 we reformulate a conventional sparse non–negative signal processing

algorithm by means of Deep Neural Network (DNN). We demonstrate the benefits of fol-

lowing such an approach in terms of signal recovery compared to conventional schemes.

We provide a theoretical analysis upon the conditions that the particular framework

may recover a signal exactly. We perform a comparison between our approach and

state of the art learned sparse signal decomposition frameworks.

In Chapter 5, we conclude the outcome of the current work and we point out

directions for future research.

List of Publications

1. “Accelerated Search for Non–Negative Greedy Sparse Decomposition via Dimen-

sionality Reduction” , with M. E. Davies and M. Yahgoobi in Sensor Signal Pro-

cessing for Defense (SSPD), 2019.
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2. “DeepMP for Non–Negative Sparse Decomposition”, with M. E. Davies and M.

Yahgoobi in European Signal Processing Conference, 2020.

Journal Submission: “Scalable Sparse Non-Negative Signal Processing using a

Fast and Exact Nearest Neighbor Search” , with M. E. Davies and M. Yahgoobi in

IEEE Transactions on Signal Processing.

Work in Progress: “Deep Matching Pursuit: A Deep Neural Network for Sparse

Recovery with Theoretical Guarantees”, with M. E. Davies and M. Yahgoobi.
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Chapter 2

Background

2.1 Introduction

Within the current chapter we introduce the fundamentals of sparse signal processing.

We start our analysis by drawing the link between sparse signal processing and the

Compressed Sensing (CS) model. Then, we introduce the sparse signal problem and

the limitations that arise when considering a direct approach to solve it. We will then

continue by providing an overview of existing reconstruction algorithms, the motivation

these methods rely on as well as their theoretical properties. Finally, we state the

objectives of the current work and we draw the link in between sparse non–signal

processing and data aware methodologies.

Compressive sensing can be generally described as a technique for the efficient re-

construction and acquisition of signals by solving an undetermined system of equations.

It is known for the potential to overcome the Shannon–Nyquist minimum sampling rate

theorem [13] and the limitations that arise from it, e.g., the associated rate is too high,

the vast majority of signals are not band limited, therefore the ideal rate may not be

feasible etc. The breakthrough in the CS theory took place in 2004 when it was proven

that the signals can be reconstructed by a number of measurements which is much

lower than that required by the Shannon–Nyquist theorem. This is feasible under the

following conditions: 1) sparsity, and 2) sensing matrix separability e.g., incoherence.

During the past decade CS has made a distinct impact in several applications such as

MRI [14], compressive imaging architectures [15], environmental monitoring [16].

There exist several applications in which the signals are sparse, with image and

audio based applications being among the most popular ones. Within the current
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work, we have an interest for the explicit case of sparse non–negative signals that finds

applications in several areas of daily life such as spectral and multi–spectral unmixing

[17],[18], microarray analysis [19] and Raman spectral deconvolution [20] being a few

examples of them.

Sparse signal recovery is a well established regime within the literature. Conse-

quently there exists a wide range of algorithms that fulfill such task. The main focus

of the current work is the development of algorithms that meet the tight criteria of

real time applications. Based on this guideline, we classify the existing algorithms with

respect to two basic criteria: 1) computational complexity, and 2) signal recovery.

One of the critical components upon the decomposition relies on is the dictionary

Φ. From the perspective of signal reconstruction in the vast majority of practical appli-

cations the dictionaries do not comply with the incoherence principle. The latter may

result to the degradation in the recovery performance of the corresponding algorithm.

On the other hand, the size of the problem, i.e. the dimensions M,N of the dictionary

Φ plays a key part in the overall decomposition process in terms of operational time.

In cases where the dimensions of Φ are significantly large, the overall computational

complexity and thus the operational time of the decomposition algorithm increase sig-

nificantly.

In order to overcome the impracticalities introduced by the conventional schemes

for sparse non–signal recovery, we are aiming to exploit benefits from the area of data

aware methodologies such as Machine Learning (ML). In general ML is a paradigm that

has attracted lots of attention in the last few years and finds applications in several

areas of daily life such as image–audio processing [6][7], text retrieval [21], finance

[22] etc. This is mainly due to the impressive success of a specific area of machine

learning, referring to Artificial Neural Networks (ANNs), in a wide range of real–time

applications in areas where ANNs deliver state of the art results. Within the current

work, we address Machine learning as a broad class of algorithms where ANNs are the

dominant subclass. We address the rest of the methodologies as traditional Machine

Learning (tML) where i.e. Support Vector Machines (SVM) [23], logistic regression [24],

etc are a few of them. On the other hand, when we are considering ANN methodologies

we typically refer to them as deep learning.

A natural question that rises though, is the following: What is the new approach

that data aware methodologies bring into the game from the perspective of sparse

signal recovery problem? When considering the associated computational workload as

a part of the problem, our main goal is the introduction of techniques that reduce the

size of the problem over M,N . This can be done via methodologies that fingerprint
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properties that characterise natural data such as: 1) lower dimensional representation

and 2) underlying structure. In the tML literature there exist techniques that employ

benefits from the first property (i.e., linear embeddings [25]) and techniques such as

clustering [26] that employ benefits from the second property of natural data.

Multilabel classification [27] is a well established problem in the deep learning

community. From the perspective of sparse signal processing problem it is related with

the detection of the atoms that constitute the input signal. The latter implies that

the development of a selection rule that boosts the performance in terms of atoms

identification eventually leads to an improved performance over signal recovery. In

the vast majority of cases though, DL architectures are treated as black box machines

that deliver outstanding results. Moreover, this type of architectures are in many cases

overparameterized, which results in a heavy computational workload that makes them

prohibitive from the perspective of a real–time application. A systematic approach

to overcome these drawbacks can be achieved via unfolding well understood iterative

algorithms by means of a Deep Neural Network [28]. The latter lays down the soil for

justification of the acquired results but also controls the number of parameters which are

incorporated at the decomposition process. Another approach to boost the performance

of an iterative algorithm in terms of atoms identification is the so–called preconditioning

[29] framework. The main notion upon preconditioning relies on, is the design of a

dictionary where the mutual coherence in between the associated atoms is significantly

reduced and eventually leads to an improved performance over identification of atoms.

Within the current work we are aiming to investigate the various properties and benefits

that characterise the different approaches and introduce frameworks that boost the

performance of existing algorithms in terms of signal recovery.

2.1.1 Sparse Model

Within the current section we introduce the fundamental principles of the sparse signal

processing problem. We will then discuss the limitations that arise from a computa-

tional point of view, when considering the straight forward approach as a potential

strategy to solve the problem. This is done in order to highlight the essential need for

alternative approaches to perform signal reconstruction, that rely on iterative schemes.

In the rest of the thesis, bold letters denote vectors and matrices while non–bold

ones denote scalars. Consider a set of N coefficients xpiq for i “ 1 . . . N . Denote the

vector elements xpiq as x. The vector is considered to be sparse when the number of

non–zero coefficients, denoted by k, is significantly smaller than the total number of

9



samples N . Denote the set of indices in N as the so–called “support set” s, then x is

represented as follows:

xpiq “ 0 for i R s and xpiq “ ai for i P s “ ts1, ¨ ¨ ¨ , sku,with k ! N. (2.1)

The number of nonzero coefficients is commonly denoted by ||x||0 “ k. The function

||x||0 is typically referred as the pseudonorm.

A measurement of vector x is defined as a linear combination of its elements xpiq.

The m–th measurement will be denoted by ypmq. Considering the case where M

measurements are available, they can be written in the form of a system of M linear

equations:

ypmq “
N
ÿ

j“1

φjpmqxpjq,m “ 1, 2 . . .M, M ă N, (2.2)

where φjpmq are the weighting coefficients. A representation of the system in a matrix

formulation can be written as:

»

—

—

—

—

—

–

yp1q

yp2q
...

ypMq

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

φ1p1q φ2p1q . . . φN p1q

φ1p2q φ2p2q . . . φN p2q
...

...
. . .

...

φ1pMq φ2pMq . . . φN pMq

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

xp1q

xp2q
...

xpNq

fi

ffi

ffi

ffi

ffi

ffi

fl

, (2.3)

y “ Φx.

The measurements model introduced in (2.3) describes the general concept of a lin-

ear system. From a sparse signal processing perspective though, only a few atoms

φi P Φ : i P s, actually contribute to the representation y. This results a compression

of the general measurements model that can be written as:

»

—

—

—

—

—

–

yp1q

yp2q
...

ypMq

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

φs1p1q φs2p1q . . . φskp1q

φs1p2q φs2p2q . . . φskp2q
...

...
. . .

...

φs1pMq φs2pMq . . . φskpMq

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

xs1

xs2
...

xsk

fi

ffi

ffi

ffi

ffi

ffi

fl

, (2.4)

y “ Φsxs.

Eventually, the standard problem of finding the k components that contribute to

the input signal y boils down to a system of M equations with k unknowns where

k ă M . Since the number of equations is greater than the number of unknowns, the

linear system for Φ P RMˆN , y P RM can be solved via the trivial mean squared error

10



problem as:

ε2 “ ||y ´Φsxs||
2 “ py ´Φsxsq

T py ´Φsxsq “ ||y||
2 ´ 2xTs ΦT

s y ` x
T
s ΦT

s Φsxs (2.5)

By means of derivation over the vector of unknowns, the residual error is minimized

when,
dε2

dxTs
“ ´2ΦT

s y ` 2ΦT
s Φsxs “ 0 “ą xs “ pΦ

T
s Φsq

´1ΦT
s y “ Φ:y (2.6)

2.1.2 Direct search

The system of equations introduced in (2.4) when considering a direct search approach

to recover xs requires an overall number of
`

N
k

˘

combinations of all possible non–zero

positions. Considering the pool of available solutions, the ideal one is the combination

of atoms that results in a minimum mean squared error calculated as: ε2 “ ||y´Φsxs||
2.

From a theoretical point of view, ε2 “ 0 for the true solution of the problem, i.e. the

correct combination of atoms. Nevertheless, the overall number of combinations is
`

N
k

˘

.

Moreover, the exact cardinality of the support |s| “ k is unknown for the vast majority

of problems.

For any reasonable size for N and k the overall number of combinations
`

N
k

˘

is

extremely large and therefore computationally intractable since the particular problem

is NP hard. Due to the practical limitations of the direct search, several reconstruction

algorithms have been proposed. Within the next section we will discuss the most

common approaches followed for the sparse signal recovery problem.

2.2 Sparse Signal Decomposition Algorithms

There exist several techniques proposed in the literature aiming to reconstruct a signal

that is sparse in some domain of representation. A simple but efficient type of approach

is the one that is introduced in the so–called greedy techniques. The main notion upon

the associated algorithms, is the selection of the atom that reduces the energy of the

signal the most. The most popular among these algorithms are Matching Pursuit(MP)

[3] and Orthogonal Matching Pursuit (OMP) [4][5]. Another popular approach is the

one that relaxes the sparsity condition via the l1 norm. The associated algorithm is

the one that solves the Basis Pursuit (BP) problem [2].

The current section, conducts a review on these methods and highlights the main

idea upon these approaches rely on. At an initial stage though, we will discuss the
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fundamental conditions which are necessary to recover a signal exactly.

2.2.1 Reconstruction conditions

For a vector x that is k sparse and M ě 2k the available set of measurements, the

recovery solution is unique if all the measurement subdictionaries Φ2K are nonsingular

for all the possible positions tk1, k2, . . . , k2ku and for any combination of 2k indices from

all possible measurements t0, 1, 2, . . . ,M ´ 1u. It means that rankpΦ2kq “ 2k for every

Φ2k. With respect to the aforementioned analysis, we can deduce that the solution for

a k sparse signal is unique if:

sparktΦu ą 2k,

where sparktΦu is the spark of the matrix that corresponds to the smallest number of

linearly dependent columns/rows.

For any squared matrix the corresponding determinant equals the product of the

corresponding eigenvalues dettΦ2ku “ d1d2 . . . d2k. The uniqueness condition rank(Φ2k)

can then be written as:

min
i
di ą 0

If a subdictionary Φ2k is of an order of M ˆ2k then the rank of this matrix can be

checked by considering ΦT
2kΦ2k. It means that there is no need for combinations over

measurements (to form a quadratic matrix 2k ˆ 2k from M ˆ 2k) if M ą 2k since the

rank of M ˆ 2k matrix Φ2k can be checked by calculating the rank of a 2kˆ 2k matrix

ΦT
2kΦ2k using:

rankpΦ2kq “ rankpΦT
2kΦ2kq

Let us consider a practical setting where any of the determinants det{Φ2k} or

det{ΦT
2kΦ2k}, is nearly 0. In such case, the theoretical foundation for the uniqueness

of the solution would be met. However, the analysis and potential inversion would

be highly sensitive to noisy measurements. Hence, a practical requirement is that the

determinant is not just different from zero, but that it sufficiently differs from zero so

that an inversion stability and noise robustness is achieved.

Restricted Isometric Property (RIP): From the matrix theory we know that

the norm of a matrix Φ2k satisfies:

λmin ď
||Φ2kx2k||

2
2

||x2k||
2
2

“
xT2kΦ

T
2kΦ2kx2k

xT2kx2k
ď λmax (2.7)
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where λmin is the minimum and λmax the maximum eigenvalue of the matrix ΦT
2kΦ2k,

||x||22 “ |xp0q|
2 ` . . . |xpN ´ 1q|2 is the squared l2–norm of x. The isometry property

for linear transformation matrix holds if:

||Φx||22 “ ||x||
2
2 or

||Φx||22
||x||22

“ 1

The RIP condition for matrix Φ2k holds if:

1´ δ2k ď
||Φ2kx2k||

2
2

||x2k||
2
2

ď 1` δ2k “ą p1´ δ2kq||x2k||
2
2 ď ||Φ2kx2k||

2
2 ď p1` δ2kq||x2k||

2
2

(2.8)

for any 2k–sparse vector x2k, where 0 ď δ2k ă 1 is the isometric constant [30],[31],[32].

The main idea upon the RIP condition relies on, is that it allows the dictionary

Φ to project x2k while approximately maintaining the pairwise Euclidean distances in

between the pairs of points. Considering two different k–sparse vectors x‹2k and x
1

2k,

the corresponding measurements y‹ and y
1

cannot live in the nullspace of Φ. The rule

of thumb in general is that a smaller δ2k results in an improved signal recovery. It has

been proven that in cases where Φ aligns with the RIP condition for an appropriate

δ2k, several reconstruction algorithms may recover the sparse signal from a set of noisy

measurements [33].

From equations (2.7) and (2.8) we can write:

δ2k “ maxt1´ λmin, λmax ´ 1u (2.9)

The most common definition for the isometry constant is λmax´ 1 and it is calculated

as the maximum eigenvalue of matrix ΦT
2kΦ2k ´ I. Typically, the matrix columns are

normalized. In any other case, the normalization factors should be added.

For a k–sparse vector x and a measurement matrix Φ the RIP is satisfied if the

measurement matrix satisfies the RIP for 2k–sparse vector x with 0 ď δ2k ă 1. Note

that if the RIP is satisfied then λmin ą 0. It means that all the ΦT
2kΦ2k subdictionaries

are nonsignular [34].

The RIP property for small δ2k is closer to the isometry property and introduces

an improvement on the solution stability. It can be related to the conditional number

of the matrix. The conditional number of the matrix ΦT
2kΦ2k is defined as the ratio of

its maximal and minimal eigenvalues:

condtΦT
2kΦ2ku “

λmax

λmin
(2.10)

13



.

When the subdictionary Φ2k aligns with the RIP with δ2k then:

condtΦT
2kΦ2ku ď

1` δ2k

1´ δ2k

For small values of δ2k the conditional number is very close to 1, meaning stable invert-

ibility and low sensitivity to the input noise i.e. small variations to the measurements

do not result to large deviation to the result.

Consequently, the design of the dictionary Φ is of critical importance for the sparse

recovery problem. Even though, it is generally difficult to verify the RIP condition for

dictionaries, it has been shown that matrices such as Bernoulli, Gaussian align with

the RIP condition with high probability [35].

A more practical approach to guarantee exact signal recovery is based on the

mutual coherence of the corresponding dictionary.

Incoherence condition. The mutual coherence of a given dictionary Φ is defined

as the maximum absolute value of the normalized scalar product of its two atoms:

µpΦq “ max
i‰j

|xφφφi,φφφjy|

||φφφi||2 ¨ ||φφφj ||2
,@φi, φj P Φ. (2.11)

The desired scenario is the one where the coherence is very small (i.e. the incoherence

should be very high). In the ideal case µpΦq “ 0, i.e. the coherence matrix ΦTΦ “ IN .

Nonetheless µpΦq for a known dictionary Φ with dimensions M ˆN pM ă Nq cannot

be arbitrarily small. The Welch upper bound relation holds:

µpΦq ě

d

N ´M

MpN ´ 1q
(2.12)

.

The reconstruction of a k–sparse vector x from M measurements is unique if:

k ă
1

2
p1`

1

µpΦq
q (2.13)

.

The coherence µpΦq can be used to determine the lower bound in the spark as

follows:

sparkpΦq ě p1`
1

µpΦq
q (2.14)
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If x is a solution of a system of equations y “ Φx, such that:

||X||0 “ k ă
1

2
p1`

1

µpΦq
q ď

1

2
sparkpΦq (2.15)

then x is the sparsest solution. The RIP condition can be bounded by means of µpΦq

as follows:

δ2k ď p1´ kqµpΦq. (2.16)

2.2.2 l0 norm based reconstruction

The formal approach to perform signal reconstruction, states that xs can be directly

acquired by its measurements represented by y, by finding the sparsest x that maps

onto y. Hence, by introducing the number of non–zero coefficients by means of the

l0 pseudonorm: k “ ||x||0. The optimization problem can then be formulated as in

(2.17):

x̃ :“ argmin ||x||0

y “ Φx
(2.17)

The minimization problem introduced in (2.17) can be solved in an implicit way

by a class of algorithms. For example, in specific applications we may predict the

number of components or we can estimate the position of non–zero coefficients. In such

case the computational complexity can be significantly reduced compared to the direct

search method [36],[3]. In general though, the l0 norm minimization problem is NP

hard. This results in an optimization framework where the computational workload is

rather intensive. The most common approach to fulfil such task is via an exhaustive

search. An alternative approach is the one that uses a series of smoothed objectives,

that eventually converges to l0 in the limit. This type of approach is optimized in an

iterative manner [37].

2.2.3 l0 sparse approximation

The standard l0–norm based minimization problem counts the number of non–zero co-

efficients and can be formulated as: ||x||0 “
řN
i“1 fpxiq, where,

fpxiq “

$

&

%

0 xi “ 0

1 otherwise
(2.18)
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The original minimization problem introduced in (2.17), can be relaxed by means

of Lagrangian multipliers as follows:

x̃ :“ argmin ||y ´Φx||22 ` λ
N
ÿ

i“1

fpxiq (2.19)

A popular approach that solves the problem introduced in (2.19) is the so–called

Iterative Hard Thresholding (IHT) algorithm. This sort of approach implements the

gradient descent with a thresholding operation in an iterative manner:

xk`1 “ Hpxn ´ΦT py ´Φxkq, bq (2.20)

The Hpa, bq operator is the the so–called hard–thresholding operator [38] which

sets all the elements in a below b (in terms of magnitudes) to 0, while b is the thresh-

olding constant and xk represents the estimated x at the k–iteration. IHT has been

successfully used in the compressed sensing regime [39].

2.3 l1–norm based reconstruction

As previously mentioned, the minimization of the l0 norm is an NP hard problem

that cannot be solved practically via an iterative algorithm or by means of linear

programming. In order to avoid dealing with the complexity of an NP hard problem,

such as the l0 minimization problem, alternative approaches have been followed in order

to reconstruct a sparse signal.

It has been proven, that under specific requirements, the l1–norm minimization

problem produces the same outcome as the l0–norm minimization [40][41][42][43]. The

l1 norm reconstruction problem is then formulated as introduced in (2.21). In general,

the equivalence of the l–0 norm to the l1–norm is defined by the restricted isometric

property (RIP).

x̃ :“ argmin
x

||x||1

s.t y “ Φx

(2.21)

For a k sparse vector and a dictionary Φ, the solution of the l–0 pseudo norm
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minimization problem is equivalent to (2.21) as long as:

1´ δ2K ď
||Φ2kx2k||

2
2

||x2k||
2

ď 1` δ2k (2.22)

where 0 ď δ2k ă
?

2 ´ 1 for all the submatrices of the dictionary Φ [32]. For the

l0–norm the RIP constant range was 0 ď δ2k ă 1 [34].

The optimization problem introduced in (2.21) is more formally known as the Basis

Pursuit (BP) problem and it was proposed by the authors in [2]. There exist two basic

techniques aiming to solve the BP problem. The original paper proposes interior–point

methods of linear programming. An alternative approach to that, was proposed by

the authors in [44] where BP is solved via a Block Coordinate Relaxation method. A

key characteristic of these techniques though is that they are characterised by a heavy

computational workload: “Strictly speaking BP is not an algorithm but a principle”

[45].

The problem introduced in (2.21) can be reformulated in various ways. One such

approach is the Langrangian formulation where the problem is formulated as:

fpxq “ argmin
x

||y ´Φx||22 ` λ||x||1

“ ||y||2 ´XTΦTy ´ yTΦx` xTΦTΦx` λxT signpxq

(2.23)

The solution of the optimization problem introduced in (2.23) is unique. This

result can be proven by showing the convexity of the quadratic part. The remaining

part of the cost function ||x||1 is convex and the objective function is not bounded

when ||x|| Ñ 8. Nevertheless a necessary condition to reconstruct the sparse signal

x exactly, is the uniqueness of the solution. This is satisfied in cases where the input

signal is sufficiently sparse and the dictionary Φ satisfies the so–called Exact Recovery

Condition (ERC) [46, pp31].

The particular formulation of the sparse signal reconstruction problem in (2.23)

introduces a tradeoff in between data fidelity at the minimization error y ´ Φx and

the minimization of the l1–norm which can be addressed as a form of regularisation.

The main scope of the regularization is to promote sparsity. There are many ways to

solve the stated problem with respect to the Langrangian formulation. One of the most

popular approaches is the so called Least Absolute Selection and Shrinkage Operator

(LASSO) formulation.

The LASSO formulation with the l1 norm minimization term does not have a
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Algorithm 1 Iterative Shrinkage Thresholding Algorithm.

1: Initialisation: x “ ~0, L ą largest eigenvalue of ΦTΦ
2: while k ă some fixed threshold
3: xk`1 “ softpz, θqpxk ` 1

λΦT py ´Φxkqq
4: end
5: xÐ

ř

k sk

closed form solution. It is typically solved via an iterative approach. In order to derive

such an iterative scheme a nonnegative term is hpxq with zero values as the solution

xs is added to the cost function introduced in (2.23), where hpxq is defined as:

hpxq “ px´ xsq
T pLI ´ΦTΦqpx´ xsq, (2.24)

hpxq does not change the solution of the original minimization problem. The new cost

function is then defined as:

gpxq “ fpxq ` px´ xsq
T pLI ´ΦTΦqpx´ xsq, (2.25)

where the constant L is a constant added such that the additional term is always

nonnegative [34]. This essentially means that L ą λmax, where λmax corresponds to

the largest eigenvalue of ΦTΦ. The gradient operator of gpxq then reads:

∇gpxq “ Bgpxq
BxT

“ ´2ΦTy ` 2ΦTΦx` λsignpxq ` 2pLI ´ΦTΦqpx´ xsq (2.26)

The solution ∇gpxq “ 0 then reads:

ΦTy `
λ

2
signpxq ´ pLI ´ΦTΦqxs ` Lx “ 0

“ą x`
λ

2L
signpxq “

1

L
ΦT py ´Φxsq ` xs

The associated iterative scheme is then derived as follows:

xk`1 `
λ

2
signxk`1 “

1

L
ΦT py ´Φxkq ` xk

The soft thresholding rule is then used as solution for the following equation:

x` λsignpxq “ y (2.27)
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Algorithm 2 MP

1: Initialization: s “ H, j “ 0, r0 “ y.
2: while j ă K & max(ΦTrk ą 0).

i rµ, ιs=max |ΦTrj |

ii s “ sY µ.

iii rj`1 “ rj ´Φµι

iv j Ð j ` 1

3: end

It is defined by the function soft as follows:

xi “ softpz, θq “

$

’

’

’

&

’

’

’

%

z ` θ z ă ´θ

0 if |z| ď θ

z ´ θ if z ą θ

(2.28)

or alternatively,

softpz, θq “ signpzq maxt0, |zi| ´ θiu (2.29)

The corresponding iterative scheme is the so–called Iterative Soft–Thresholding

Algorithm (ISTA) [47] as introduced in Algorithm 1. The langrangian constant λ is

used as a form of a balance term in between the data fidelity error and the l1 norm.

ηλ{L is the so–called sofmax function defined in (2.29). The thresholds θi are typically

set to θi “
λ
L , where L is commonly set to : L “ maxteigtΦTΦuu (where eig denotes

the eigenvalues of the matrix ). The standard setting for ISTA can be modified to

accelerate the convergence via the Fast ISTA (FISTA) algorithm. Note though, that

these are just a few of the approaches to solve (2.23) [47].

2.4 Greedy techniques

The class of convex optimization algorithms that solves the least squares problem, as

introduced in (2.30), is proven to yield sparse solutions with a relatively low compu-

tational cost. The most popular techniques aiming to solve the problem introduced

in (2.30) are the so–called greedy techniques. This type of techniques is known for its

simplicity and the relatively low computational cost that makes them appealing from
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the perspective of a real time application.

minimize
x

||y ´Ax||22

subject to ||x||0 “ k.
(2.30)

2.4.1 Matching Pursuit

A simple greedy algorithm is called Matching Pursuit (MP), as introduced in Algo-

rithm 2, and it was firstly proposed by the authors in [3]. MP builds the sparse

representation of a signal by iteratively adding the most correlated element of the dic-

tionary, more formally known as the atom, to the set of selected elements. MP has

drawn the attention of various research communities, i.e. in the statistics community

where it is more formally known as Projection Pursuit [48],[49] or the approximation

community where it is more formally called the Pure greedy algorithm [50].

In a finite dimensional space, MP has been proven to converge exponentially

[51],i.e. for some 0 ă β ă 1,

||rm||
2 “ ||ym ´ y||

2 ď βm,m ě 1. (2.31)

Moreover, the authors in [51] introduced the criteria that guarantee that MP will select

correct atoms within the first k iterations of the algorithm. The results introduced in the

particular work rely on the so–called stability condition. In practice the corresponding

analysis is an extension of the results for OMP introduced [45] and the so–called Exact

Recovery Condition (ERC). The ERC condition will be more thoroughly discussed

within the part of the subsection of Orthogonal Matching Pursuit (OMP).

2.4.2 Orthogonal Matching Pursuit

One of the key disadvantages of MP is that the representation found by the algorithm is

not the best representation using the selected atoms. Moreover, the algorithm, may also

reselect already selected atoms in the later iterations. In that sense, even in cases where

the dictionary Φ and the sparsity of the signal k comply with the stability condition

criteria, this means that after k iterations we may end up with an s : |s| ă k or in

other words will s not be fully recovered. As a result of the particular characteristic,

the convergence of the algorithm may slow down.

Orthogonal Matching Pursuit (OMP) algorithm was introduced to compensate

these issues [4],[5]. This is achieved via the incorporation of an orthogonalization pro-
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Algorithm 3 OMP

1: Initialization: s “ H, j “ 0, r0 “ y.
2: while j ă K & max(ΦTrk ą 0).

i rµ, ιs=max |ΦTrj |

ii s “ sY µ.

iii rj`1 “ rj ´ΦsΦ
:
sy

iv j Ð j ` 1

3: end
4: output:xs “ Φ:sy

cedure that projects the input signal y onto the support set s. Such a projection can

be found by,

x̃s :“ argmin
xs

||y ´Φsxs||, (2.32)

where Φs and xs are respectively the sub–dictionary and coefficient vector restricted

to the support s, while Φ:s is defined as in (2.33). The OMP algorithm is analytically

presented in Algorithm 3.

Φ:s “ pΦ
T
s Φsq

´1Φs (2.33)

On the other hand this type of methodology yields solutions which empirically are

in general less accurate compared to the minimization of the `1 norm [2]. However,

the authors in [45] set up the conditions that guarantee the reconstruction of the exact

signal xs within the first k iterations of the algorithm.

The main outcome of the work introduced in [45] is that for certain type of dictio-

naries, the so–called quasi–incoherent dictionaries, OMP will recover the exact signal

(or in other words no false positive will be introduced in s) under the so–called Exact

Recovery Condition (ERC) which is as follows:

max
y
||Φ:sy||1 ă 1, (2.34)

where Φ`s corresponds to the sub–dictionary of points that do not contribute in y.

Fundamentally, the ERC condition states that the sparsest representation of y is unique.

From the perspective of the iterative scheme introduced in Algorithm 3 this means

that no false positive will be introduced within the first k iterations of the algorithm

and the signal xs will be exactly recovered after k iterations. Note though that the

ERC condition holds for every signal with an k–representation provided that:

k ă
1

2
pµ´1 ` 1q (2.35)
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The bound introduced in (2.35) can be reformulated as:

k ă
1

2
p
1

µ
` 1q “ą 2k ă

1

µ
` 1 “ą 2kµ ă 1` µ “ą 2kµ´ µ ă 1 (2.36)

The ERC more generally holds whenever:

µ1pk ´ 1q ` µ1pkq ă 1 (2.37)

where µ and µ1pkq are defined in equations (2.38), (2.39) respectively:

µ “ max
i‰j

|xφφφi,φφφjy|

||φφφi||2 ¨ ||φφφj ||2
(2.38)

µ1pkq “ max
i

max
|s|“K,iRs

ÿ

jPs

|xφi, φjy| (2.39)

The function introduced in (2.39) is known as the Babel function and can be upper

bounded as follows:

µ1pkq ď kµ, (2.40)

and therefore

µ1pk ´ 1q ď pk ´ 1qµ (2.41)

(2.40)`(2.41)
“ą µ1pkq ` µ1pk ´ 1q ď kµ` pk ´ 1qµ “ 2kµ´ µ ă 1 (2.42)

Hence, the bound introduced by the Babel function as in (2.37) is a relaxation of the

bound introduced in (2.35) and with respect to the reformulation introduced in (2.36).

In order to get a more intuitive interpretation of the bound introduced in (2.35) we can

think of two hypothetical scenarios. Note that this sort of practical intuition will be

followed when we discuss about other bounds as well. We follow this type of approach

to provide a more practical understanding regarding the different bounds and their

practical limitations.

For the first hypothetical case we can assume that we are interested in an applica-

tion where more or less we know that the maximum number of contributing components

in y is k “ 3. By plugging this size of k into (2.35), we can derive that we need a dic-

tionary Φ with µ ă 0.2 to make sure that every signal with k “ 1, . . . 3, is exactly

recovered within the first k iterations of OMP.
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For the second hypothetical case we will address the whole issue the other way

around, i.e., we are given a specific dictionary Φ, hence µ is known, therefore we are

seeking to figure out the maximum level of sparsity in xs so that the signal can be

exactly recovered. Let as assume that µ “ 0.5, by plugging this quantity into (2.35)

then we have that k ă 1.5, hence the maximum level of sparsity we fully recover is

for k “ 1. The numerical examples provided here, are given in order to highlight that

these bounds hold for specific type of dictionaries. These bounds hold typically for

some k’s for the so–called quasi–incoherent dictionaries, i.e. dictionaries where the

cumulative coherence function grows slowly. Therefore, in the most commonly met

dictionaries false positives are introduced in the selection step of the algorithm and

eventually OMP yields approximate solutions.

2.4.3 OMP Implementations

From the perspective of OMP there exist several implementations that may be found in

the literature. The straight forward approach is the one that incorporates the so–called

matrix inversion lemma and constructs Φ: at each iteration of the algorithm. At itera-

tion k the particular approach requires the inversion of a kˆk matrix. When k increases,

the computational workload becomes very expensive, i.e., Opk3q. In order to bypass

the high computational workload implied by the naive approach matrix factorization

techniques have been proposed. QR factorization is among the most popular ones. By

incorporating QR factorization we reformulate the subdictionary Φs as introduced in

(2.43).

Φs “ Qs ¨Rs (2.43)

Algorithm 4 OMP via QR factorization

1: Initialization: s “ H, j “ 0, r0 “ y, ξ “ H.
2: while j ă K & max(ΦT rk ą 0).

i rµ, ιs=max |ΦT rj |

ii s “ sY µ.

iii Update Q,R factors.

iv zj “ QTj y.

v ξ Ð rzj , ξs

vi rj`1 “ rj ´Qjzj

vii j Ð j ` 1

3: end
4: xs “ R´1

s ξ
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Algorithm Complexity

Pseudoinverse MN `Mk `Mk2 ` k3

QR MN `Mk; update (step 4) k2

Table 2.1: Computational Complexity of different OMP implementations

From the perspective of an online algorithm such as OMP, the Q,R factors can be

constructed by means of the Gram–Schmidt procedure on an iterative manner. At the

k ` 1–th iteration the Q,R,R´1 are computed as follows:

Qk`1 “

”

Qk qk`1

ı

, Rk`1 “

«

Rk v

a ω

ff

, R´1
k`1 “

»

–

R´1
k ´

R´1
k v

ω

0 1
ω

fi

fl , (2.44)

where qk`1 “
ψk`1

||ψk`1||
, ψk`1 “ pI ´QkQ

T
k qφk`1,v “ QTφk`1 and ω “ ||ψk`1||.

Based on (2.43) the Moore–Penrose pseudoinverse can be reformulated as follows:

Φ:s “ pΦ
T
s Φsq

´1ΦT
s

(3.37)
“ ppQsRsq

T pQsRsqq
´1RT

sQ
T
s

QTs Qs“I|s|
“ R´1

s R
´T
s RT

sQ
T
s “ R

´1
s Q

T
s

(2.45)

In practice the QR factorization provides a simplified and computationally cheaper

approach to construct the Moore–Penrose pseudoinverse. From the practicalities of the

problem, the outcome of (2.45) simply highlights that similarly to the output for Φ:

that comes from (2.6), in cases where the support set is successfully acquired over the k

iterations, then OMP by means of QR factorization fully reconstructs xs. According to

the study conducted by the authors in [52], the implementation that incorporates the

QR factorization within the iterative procedure is the fastest among the proposed ones

for medium to large problem sizes (i.e., large N). An analytical derivation in terms of

computational complexity for the cost of the k–th iteration is provided in Table 2.1.

A possibly naive question that nevertheless occurred to the author though is the

following: Given an implementation of OMP with respect to Φ: and an implementation

of OMP with respect to the QR factorization, should we expect that the two approaches

will yield a different solution after k iterations? The output of (2.45) demonstrates that

the two approaches are equivalent when the same support s is given. So, in practice the

question is whether the two approaches yield the same s after k iterations. In order to

fingerprint the answer to this question we will perform an analysis over the iterations

of the two approaches.

Given a set of measurements y, within the first iteration of the corresponding

implementation, the two approaches will pick exactly the same candidate given that
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the selection rule: max
φiPΦ

|φTi y| is identical (similarly MP will always select the same

candidate with any OMP implementation for the first iteration). So the question is

whether they will pick the same candidate within the next iteration. In order to show

that, we have to demonstrate that within the next iteration the same residual set

of measurements r1 will be provided at the selection step of the algorithm. Assuming

that within the first iteration of the algorithm the two implementations of the algorithm

pick φ1 as a potential candidate. Then the update step of the two approaches is then

formulated as follows:

1) OMP implementation with respect to Φ::

r1 “ y ´ φ1pφ
T
1 φ1q

´1φT1 y “ y ´ φ1φ
:
1y (2.46)

2) OMP implementation with respect to the QR factorization:

r
1

1 “ y ´Q1z1, (2.47)

where z1 “ Q
T
1 y. Note that with respect to the QR factorization we have the following

relationship:

φ1 “ Q1R1 “ą φ1R
´1
1 “ Q1 (2.48)

By plugging the outcome of equation (2.48) into (2.47) the linear relationship can be

rewritten as follows:

r
1

1 “ y ´Q1z1 “ y ´ φ1R
´1
1 QT

1 y
(2.45)
“ y ´ φ1φ

:
1y (2.49)

From (2.49) and (2.46) we have that r1 “ r
1

1. So, within the second iteration of the

different implementations once again the same atom will be selected provided that their

identical selection rule is given the same set of residual measurements. By repeating

the aforementioned procedure we can show that the two implementations will result

to an identical support set and consequently to an identical reconstructed signal x. In

practice, the OMP implementation by means of the QR factorization can be addressed

as a faster implementation of the Φ: for medium to large dictionaries Φ.

A key difference of OMP, and in general any kind of algorithm that incorporates

an orthogonalization procedure, is that it converges in terms of ||y ´ ŷ|| (where y the

input signal and ŷ the reconstructed signal by the associated algorithm) within a finite

number of steps (N in case of OMP). The formulation of OMP via the QR factorization

sheds the light on this characteristic. The underlying procedure that takes place via

orthogonalization is the construction of an orthonormal basis Q. Within the j–th
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iteration of the algorithm, OMP constructs and eventually projects y onto the j–th

element of the basis. Nonetheless, a signal y P RN can be analytically expressed in any

N–orthonormal basis QN :

QN ¨Q
T
N “ IN “ Q

T
NQN , (2.50)

where IN the identity matrix.

For example, let us assume that an N–orthonormal basis is given. The projection

of y onto this basis is obtained as follows:

y
1

“ QT
N ¨ y

QTN ¨QN“IN
“ą QN ¨ y

1

“ y (2.51)

Within the N–th iteration of OMP via QR factorization the update step of the

algorithm reads:

rn`1 “ rn ´Qnzn “ y ´QNz
(2.51)
“ą rn`1 “ 0, (2.52)

Qn is the n–th element of the orthonormal basis, QN the full orthonormal basis and

z P RN . In order to draw the equivalence between equations (2.51) and (2.52) we can

address the process as follows: From the perspective of OMP the orthonormal basis

QN and eventually the coefficients that correspond to the projection of each element

of the basis expressed by y
1

are unknown. At each iteration of OMP, we add a new

orthonormal element Qj at the orthonormal matrix Q, and calculate the associated

coefficient zj which is then added at the vector z. After N iterations Q is a full

orthonormal basis and z a vector with N entries similarly to y
1

.

2.4.4 Compressive Sampling Matching Pursuit

Another variant of the MP framework is the so called Compressive Sampling Matching

Pursuit (CoSaMP) algorithm introduced in [53]. Within the particular framework a

k–sparse signal is reconstructed on an iterative manner. At the selection step of the

algorithm, the measurements of the residual vector r are projected onto the atoms of

the dictionary Φ and the 2k atoms with the highest contribution in y are selected as

potential candidates. The set of potential candidates is then expanded with respect to

the candidates selected at the preceding iteration. At the next step of the algorithm,

the pseudoinverse Φ: is constructed with respect to the extended set of candidates and

it is then projected onto the measurements y. Eventually, the k elements with the
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Algorithm 5 CoSaMP

1: Input: k,Φ,y.
2: Initialization: xÐ 0Nˆ1, r0 “ y
3: while j ă K

1. S1 Ðpositions of 2k highest values in ΦTrk

2. S2 Ð positions of nonzero coefficients in x.

3. S “ S1 Y S2

4. ΦS Ð columns from matrix A selected by set S.

5. c “ pΦT
SΦSq

´1ΦT
Sy

6. Select the k coefficients with the highest magnitudes in c and place them at
the corresponding index in x.

7. rk “ y ´Φx

8. j Ð j ` 1

4: end

highest contribution are selected as the current estimate of the sparse signal x. The

new measurements rk are then obtained by subtracting the current estimate from y,

and the process repeats until the terminating criterion is met. The overall procedure

is demonstrated in Algorithm 5.

2.4.5 Sparse Non–Negative Signal Processing

The preliminary focus of this project is on the development of non–negative sparse

signal processing applications. There are many applications for which the coefficient

vectors are not only sparse, but they are also non–negative. Spectral and multi–spectral

unmixing [17],[18], microarray analysis [19] and Raman spectral deconvolution [20] are

a few examples. The development of these applications may be beneficial in several

areas such as defense, security or food industry.

One of the characteristic cases where sparse non–negative signal processing could

be of a major interest is Raman spectroscopy. This type of technique is used to ob-

serve vibrational, rotational and other low–frequency modes in a system. The method

is widely used in several scientific disciplines such as cancer detection [54], nanotech-

nology [55] as well as in industrial applications [56], as well as in the pharmaceutical

industry [57],[58] where Raman spectroscopy is applied in order to identify pharmaceu-

tical ingredients and their polymorphic forms, but also in food safety [59] and hazardous

materials detection [60].

Even though Raman spectroscopy is a very reliable method when dealing with a
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(a) Artificial mixture (e.g. in reality it could be a cup of coffee)
composed by caffeine and sucrose.

(b) Raman Spectrometer.

Figure 2.1: a) top: An example of an input signal y that consists of caffeine and sucrose
b) bottom: a Raman Spectrometer source.

single element, the task of identifying the elements of a chemical mixture is not that

simple. From the perspective of signal processing this corresponds to signals which

are sparse in the corresponding domain of representation. Sparse signal processing

is appealing when considering real–time applications e.g., handheld spectrometers or

mobile phones, since it enables the development of robust methodologies on a limited

hardware topology.

In order to provide a deeper insight regarding the Raman spectral decomposition
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problem and draw the link with the sparse signal processing aspect of it we demonstrate

a practical example in Figure 2.1. Within the subfigure (b) we demonstrate a Raman

spectrometer, while on the left column we demonstrate 3 different spectras. Within our

disposal we have a database of Raman dictionary, where the spectra were collected and

provided by [61] where among the available samples is the digital fingerprint of caffeine

and sucrose. The corresponding digital fingerprint of each element is demonstrated in

the provided figure. We generate a synthetic mixture of these two spectras which is

a linear combination of caffeine and sucrose where the associated coefficient is set to

a “ 1 and b “ 1 accordingly.

From the perspective of a realistic scenario this could be addressed as the digital

fingerprint that corresponds to a cup of coffee where caffeine and sucrose contribute

equally. The process of spectral decomposition can then be described as follows: The

Raman spectrometer acquires the digital fingerprint of the coffee. The next task is on

one hand the detection of the atoms that contribute in the corresponding sample and

on the other hand is to estimate the contribution of each element. For the particular

part of the process there is the need for the development of a decomposition algorithm.

From the perspective of sparse signal processing, caffeine and sucrose can be ad-

dressed as atoms φ1,φ2 that belong to the dictionary Φ. The input sample of caffeine

is the signal y. In practice the digital fingerprint of φ1 and φ2 are available to the

system memory of the Raman spectrometer. The goal is then the composition of y

with respect to the elements which are available in the system memory. In practice,

the available samples are expected to consist of only a few elements from the available

database. In that sense, the given sample is considered to be sparse with respect to the

particular domain of representation.

Note though, that Raman spectrometry is one of the areas where the developed

techniques may be applied. Within the current work we are aiming to develop algo-

rithms that align within the general concept of sparse non–negative signal processing

and not explicitly with Raman spectrometry. Moreover, we are aiming to use the par-

ticular framework as a baseline to draw more general conclusions regarding the char-

acteristics of the data our techniques employ and potentially lead to an improvement

in terms of computational efficiency and robustness (e.g., structure, lower dimensional

representation etc).
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2.5 Problem formulation

The mathematical framework that demonstrates the best performance in terms of signal

recovery is the one that solves the problem by means of l1 norm minimization and the

so called Basis Pursuit algorithm which is the alternative to greedy techniques. The

main drawback when considering this kind of approach as a potential strategy though,

is the fact that they are characterized by a heavy computational workload. The class

of convex optimization algorithms that meets the time constraint criterion is the one

that solves the least squares problem, as introduced in (2.30). Essentially the original

minimization problem introduced in (2.30) is reformulated by adding a constraint that

guarantees the non–negativity of the coefficients and takes the form introduced in

(2.53).

We focus on the least squares problem and in particular techniques which satisfy

both of these criteria. The basis of fast greedy sparse approximation from the OMP

perspective relies on the QR factorization. Adopting the concept of QR factorization in

the content of Non–Negative Sparse Signal Processing is not straight forward. The main

reason is that when we develop an application for a specific type of dictionaries, i.e.

as the Raman dictionary, we do not comply with fundamental principles of CS theory

such as incoherence and restricted isometry property (RIP). As a result unwanted

atoms may be selected while decomposing the signal. Eventually this means that

we will end up acquiring negative coefficients in the place that corresponds to the

contribution of these atoms. In order to overcome these impracticalities, the authors

in [10] introduced the Fast Non–Negative Orthogonal Matching Pursuit (FNNOMP)

algorithm that guarantees that acquired coefficients are non–negative. The structure

of the FNNOMP algorithm is presented in Algorithm 7. From the perspective of the

pure greedy MP framework the variant for the Non–Negative framework is presented in

Algorithm 6. Within the literature that may serve the purpose of sparse non–negative

signal processing e.g. Non Negative OMP (NNOMP) and Non–Negative CoSamp (NN

CoSaMP). A comparative analysis in between the methods we propose here and the

aforementioned algorithms with respect to computational cost and signal reconstruction

performance is provided in Chapter 3.

The problem of sparse non–negative signal processing has many similarities with

the sparse non–negative matrix factorization problem [64](NNMF). The particular

problem can be described as follows: given a matrix X P RN ˆ D, learn the ma-

trices W P RNˆD and H P RDˆK : X “WH. For the explicit case where D “ 1 the

dimensions of the sparse non–negative signal processing and sparse NNMF are iden-

tical. In that case X can be interpreted as y, W as Φ and H as x from the sparse
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Algorithm 6 Non-Negative Matching Pursuit algorithm (NNMP)

1: initialisation: s “ H, k “ 0 and r0 “ y
2: While k ă K & maxpΦTrkq ą 0
3: sk “ 0
4: pζ, ιq Ð maxpΦTrkq
5: skrιs “ ζ
6: rk`1 Ð rk ´ ζφι
7: k Ð k ` 1
8: end
9: xÐ

ř

k sk

NNMP to the sparse non–negative signal processing perspective. However, there is a

distinct difference from the one framework to the other, i.e. W is learned while Φ is

known at the standard sparse non–negative signal processing problem. However, in

Chapter 4, we propose a framework where Φ is also learned via training. In that sense,

the corresponding methodology can be addressed as a sparse NNMF learned framework

for the explicit case where D “ 1.

minimize
x

||y ´Ax||22

subject to x ě 0.

||x||0 “ k.

(2.53)

Greedy techniques in general introduce an appealing framework in terms of com-

putational complexity, nonetheless the associated computational cost heavily depends

on the size of the problem. In particular, the corresponding computational workload is

carried out by the selection step of the algorithm (step 1 in Algorithm 7 and step 4 in

Algorithm 6 accordingly). The computational workload of the particular step can be

summarised as MN numerical operations. In that sense, the computational complexity

is associated with the dimensions M,N of Φ. As a result the computational cost scales

linearly across two parameters: 1) the cardinality N of the dictionary, 2) the dimension

of the space M that the points live in. Fundamentally, these two parameters reflect the

size of the problem.

Generally speaking OMP, MP are fast algorithms. However in several applications

where M,N are large then the associated operational workload becomes a bottleneck.

The first challenge we are willing to tackle through this work is the reduction of the

corresponding computational workload.

zj`1 ď zt “

$

&

%

min
γiă0

|xi|
|γi|

Di, γi ď 0

8, otherwise
(2.54)
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Algorithm 7 FNNOMP

1: Initialization: s “ z0 “ H, j “ 0, r0 “ y
2: while j ă K& max(ΦTrk ą 0)

1. rµ, ιs Ð sortÓpΦ
Trkq

2. pÐ 1

3. pc Ð µ

4. zc “ 0

5. while „ Terminate & p ă N

6. zt from (2.54).

7. zÐ ψTµy: ψµ “
q

||q||2
, q “ pI ´ΨΨT qφµ

8. Update based on Table I

9. end while

10. s “ sY µ

11. Update Ψ and R´1

12. zj`1 Ð rzj , zj`1s

13. rj`1 “Ð rj ´ zj`1ψj`1

14. j Ð j ` 1

3: end while
4: output: x|s Ð R´1zj

if then

0 ă z ď zt, z ą zc zj`1 Ð z, Terminate

0 ă z ď zt, z ď zc zj`1 Ð zc, pÐ pc, Terminate

z ą zc ě zt p “ p` 1,

z ě zc ą zt zj`1 Ð zc, pÐ pc, Terminate

z ą zt ą zc zc Ð zt, pc Ð p

z ă 0 Terminate

Table 2.2: Decision rules that guarantee the positivity of the coefficients

For the explicit case of sparse non–negative signals though, there is a simple but

distinct difference in between the standard OMP,MP and the non–negative OMP,MP

setting. At the selection step of the algorithm is formed as ΦTrk for the non–negativity

setting, or in other words the | ¨ | term is neglected. This is due to the fact that we are

seeking explicitly for atoms that are positively correlated with rk. The latter results

to the search of the Nearest Neighbour in between the input signal and the associated

dictionary Φ given that ||φi|| “ 1,@φi P Φ. This outcome can be demonstrated as
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follows:

min
φiPΦ

dpy,φiq “ min
φiPΦ

pdpy,φiqq
2 “ min

φiPΦ
||φi||

2 ´ 2φTi y ` ||y||
2

||φi||“1,@φiPΦ
“ min

φiPΦ
´ 2φTi y ` ||y||

2 “ 2 ¨ min
φiPΦ

¨ p´φTi ¨ yq “ max
φiPΦ

φTi y

(2.55)

The Nearest Neighbor Search (NNS) problem is a well established framework

within the Computer Science community. The most classical approaches are the ones

that accelerate the NN search via methods that arise from the traditional Machine

Learning regime and in particular clustering. In practice, these techniques are aiming

to reduce the size of the problem in terms of N . An alternative approach to clustering

is the one that embeds the dictionary in a lower dimensional space RK . From the

perspective of the problem size, this sort of approach relaxes the problem in terms of

M . However, this type of approach yields an approximate solution to NNS. Within the

current work, we are aiming to exploit benefits from the research conducted by the par-

ticular community, and incorporate methodologies that will introduce an acceleration

for greedy techniques in the non–negativity setting.

The second goal of the current work is to improve the performance of greedy

techniques in the non–negativity setting in terms of signal recovery. A critical parameter

to the that direction is the acquisition of the ground truth support set s. This essentially

means that the selection step of the associated algorithms play a critical role in the

overall performance of greedy techniques. The conventional approach followed by the

current framework is utilizing the known dictionary Φ at the selection step of the

algorithm. This results to a framework that the support recovery is highly dependent

on the underlying structure of Φ. In cases for example, where the points in Φ are

highly correlated with each other then most likely a false positive may be introduced in

s. For example, going back to the case of the synthetic mixture demonstrated before.

In the ideal case, the OMP,MP framework will detect coffee, sucrose within the first two

iterations of the algorithm. Nevertheless, there may exist elements in the dictionary

that have a very similar digital fingerprint with either of these components. In such

case, the conventional OMP,MP framework may introduce a false positive in s, i.e.

brown sugar instead of sucrose. This mistake can be critical in several applications.

For example let us address the false positive from an application related to hazardous

materials detection. In that scenario a false positive means that the selection step

detected a non explosive material and therefore the given sample does not correspond

to a dangerous substance while in practice this is not the case and we are dealing with

an explosive ingredient. In such case, the outcome of the false positive could be fatal.
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The acquisition of s is quite relevant with the so–called multilabel classification

problem in the deep learning regime. However, one of the common characteristics of

the DL models is that in many cases they are overparameterised. From the perspective

of the OMP,MP framework, overparameterization may result to significant increase in

the computational complexity of the selection step. Eventually this may result to an

increase in the computational workload compared to the standard OMP,MP framework.

Within the current work, we are aiming to incorporate methodologies from the DL

regime that will introduce a boost in the performance in the OMP,MP framework

without altering its computationally appealing structure. By doing that we are aiming

to take advantages of DL, i.e. better parameterize the model weights.

2.6 Data aware methodologies

Within the current section we review data aware methodologies that may serve the

main goals of the current work which are stated as follows: 1) acceleration and 2)

signal recovery improvement for greedy techniques. The order of presentation will take

place with respect to the order of the goals of the current project stated before.

2.6.1 Exact Nearest Neighbor search via Data structures

The nearest neighbour search is a well established problem that finds applications in

several areas such as pattern recognition [65], data mining [66], data compression [67]

etc. But many other tasks also require nearest neighbor queries, i.e. localised support

vector machines [68], reinforcement learning [69] etc. The standard setting for (NNS)

can be described as follows:

Given a space of points RM , a dictionary Φ Ă RM and a distance function: d :

RM ˆRM Ñ R, the nearest neighbor (NN) of y in Φ is defined as follows:

φNN “ arg min
φiPΦ

dpφi,yq (2.56)

The naive approach to query the NN of y in Φ is the one that carries out a linear

scan over all the data points in Φ. Given a dictionary Φ Ă RM with |Φ| “ N , the

overall computational cost required to carry out the assigned task can be summarised

as: MN numerical operations.

In order to bypass the computational workload associated with the naive–brute
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Figure 2.2: The figure demonstrates the layout of a Cover Tree for a Raman dictio-
nary of 22 atoms. The layout is constructed with respect to the nesting,covering and
separation criteria of the method.

force approach data structures have been proposed with an aim to accelerate the pro-

cess. The main goal of these approaches is to accelerate the process by fingerprinting

the underlying structure that may be present in Φ. One of the most popular, and

probably the oldest method to address such task, is the so called K–d trees. Originally

the particular approach for data living in relatively low dimensions (i.e. K “ 3) but

an extension to higher dimensions is straight forward. Generally speaking, K–d trees

can be addressed as a sort of binary tree structure where data in each node is a M

–dimensional point.

The most recent advances in the area of data structures is the introduction of the

so called Cover Tree [70] which has drawn a lot of attention in the last few years. We

will here discuss more in depth this sort of approach in order to provide a deeper insight

about the functionality of these structures overall.

The Cover Tree data structure. A cover tree T on a dataset S is a leveled

tree where each level is a cover for the level below it. Each level is assigned with an

index of integer scale i which decreases while descending over T . Let Ci represent the

set of nodes at the i–th level of T . A cover tree T on a dataset S obeys the following

invariants for all i:

• (nesting) Ci Ă Ci´1.

• (covering) For every p P Ci´1, there exists a q P Ci satisfying dpp, qq ď 2i, and

exactly one such q is a parent of p.

• (separation) For all p, q P Ci, dpp, qq ą 2i,

where p, q P Φ.
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The invariants upon T are constructed which in practice are the same as the ones

introduced in the navigating nets [71]. The only difference is related with invariant 2

where in the concept of cover trees only one parent is required instead of all possible

nodes which is the common practice in the navigating nets setting.

In order to familiarise the reader with these structures and make the transition

to the rest of the associated analysis smoother, we construct a T with respect to the

associated cover tree invariants described above and dictionary of Raman spectra with

N “ 22 and M “ 1750. The corresponding T layout is demonstrated in Figure 2.2.

Note that from the perspective of our problem, the data points are stacked column

wise in Φ hence the associated index of each node (i.e. 9) stands for the corresponding

column in Φ.

In order to understand the functionality of these methods and draw the link with

the sparse non–negative problem we can sketch an intuitive example. In particular we

are considering an input signal y : y “ a4φ4 ` a10φ10,where a4, a10 ě 0. Then within

the first iteration of the decomposition algorithm y will acquire the NN, i.e. φ10 via

the search algorithm introduced in Algorithm 8. This algorithm can be plugged in

at the selection step of the decomposition algorithm e.g. FNNOMP.

In the ideal scenario, while descending down T , the algorithm will pass from node

1 in level 0 of T , in level ´1 will make the distance computations with points living in

this particular level and then it will descend over node 8. At level ´2 it will perform

the computations only with the children of node 8 and then it will descend over node

11, the node that results to the minimum Euclidean distance, down to the bottom of

T . So, in total we will conduct an overall number of pairwise distance measurements

which can be summarised as follows: a single distance measurement with node 1 at level

0. Eight distance measurements at level ´1 with nodes: 2, 3, 5, 9, 12, 18, 21, 22. Eight

distance measurements at level ´2 with nodes: 8, 17, 18, 8, 14, 4, 7, 11. One distance

measurement with node 10 at level ´2. Overall, the search will take place with respect

to an overall number of Ξ “ 18 ă N “ 22 distance measurements. The latter can be

materialised in terms of an acceleration metric as follows:

Acceleration “
MN numerical operations

MΞ numerical operations
“
N

Ξ
“

22

18
« 1.2 (2.57)

So in practice the brute force search is 1.2 times slower or seeing it the other way

around, NN search via the Cover Tree is 1.2 times faster than brute force search. The

metric introduced in (2.57) is more formally known as the d–metric and it was first

introduced in [72]. This type of metric is used in [70] from the authors to materialise

the acceleration that the corresponding structure introduces compared to the brute
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Algorithm 8 NN search

1: Set Q8 where C8 is the root level T .
2: for i from T down to ´8(depth of the tree).

• Set Q “ tChildren(q) : q P Qiu

• Form cover set Qi´1 “ tq P Q : dpp, qq ď dpp,Qq ` 2iu.

3: Return arg minqPQ´8 dpp, qq

force search.

From the perspective of the sparse non–negative problem we address the dictionary

Φ as 2D entity where the 1st dimension M corresponds to the number of rows of Φ

while the 2nd dimension corresponds to the number of columns. Fundamentally, these

type of structures reduce the dimensions of the problem in terms of N (i.e. we do not

perform all the pairwise comparisons but with a subset Ξ Ă Φ : |Ξ| ď N). So overall,

data structures can be addressed with a dimensionality reduction technique from the

perspective of the 2D entity.

Nonetheless reduction in distance measurements implied by (2.57) is an indirect

measure of acceleration. Reduction in the number of distance computations informs us

what improvement in efficiency could be if bookkeeping and memory access costs were

greatly reduced. Due to the curse of dimensionality, it is unlikely that there exists a

general efficient solution to the exact k–NN problem [73]. A more comprehensive study

of data structures with respect to the real time domain in various datasets and dimen-

sions can be found in [74]. Within the current work we are interested in acceleration in

terms of the real time domain. The acquired results demonstrate that tree structures

are in several cases faster than the brute force search on the real–time domain in a

relatively low dimension (i.e. M ă 40).

2.6.2 Approximate Nearest Neigbhor Search: Linear Embeddings

Due to the limitations introduced by the curse of dimensionality, the research followed

an alternate direction where instead of looking for the exact NN the associated method-

ologies result in an approximate solution. This type of methodology is the one that

incorporates a linear embedding in the overall NN procedure. Addressing the overall

functionality of the particular approach from the perspective of an online algorithm,

the dictionary Φ is embedded from the high dimensional space RN to a lower dimen-

sional space RK via a linear operator f : RN Ñ RK (We denote the representation of

Φ in the lower dimensional space as Φ̂). This part of the process takes place offline.

On the other hand the query point y, is embedded in the lower dimensional space in
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an online manner. The motivation that lies upon this particular approach, is that the

brute force search performed in the lower dimensional space, i.e. KN operations, is

computationally cheaper and therefore more appealing in the real time setting.

From the perspective of the 2D entity Φ this particular approach relaxes the prob-

lem in terms of M . In order to provide an intuitive overview of the problem, we

demonstrate the size of the problem in the original problem in its 2D matrix form,

where the N spectra are stacked over the columns of Φ while each φi consists of M

coefficients. The representation Φ̂ in the lower dimensional space, is a compressed

version of the original dictionary. The number of elements N remains the same while

the coefficients for each atom are of a number K where K ă M . By following this

approach, we may reduce the computational cost but on the other hand we alter the

underlying structure of the dictionary. By that we mean, that the pairwise distances

from RN to RK are distorted. From the perspective of NN, this will lead to situations

where NNM ‰ NNK (where NN stands for the nearest neighbor and M,K the size of

the Euclidean space).

In order to provide a better understanding regarding this issue we demonstrate

an intuitive example in Figure 2.3. In particular we are considering a dictionary Φ “

tφ1,φ2,φ3,φ4,φ5,φµu. Assuming that we are given an input signal y, then NNM “ µ,

where µ holds for the index of the point in the matrix Φ. At the embedded space

though, the relative positions between the dictionary points and the representation ŷ

of the input signal in RK change. As a result NNK “ 5 in the embedded space. Hence

the particular approach yields an approximate solution to the NN problem.

Addressing the particular outcome from the perspective of an online algorithm e.g.,

FNNOMP, the particular approach could be incorporated as the selection step of the

algorithm. The standard structure of the algorithm introduces an empirical error on

the sparse non–negative signal processing problem. By incorporating an approximation

framework within the structure of FNNOMP this essentially means that we will end up

approximating the empirical error introduced by the standard form of the algorithm.

Given that this approach is appealing due to its computational simplicity, there are

two main directions that can be followed when considering replacing the selection step

of FNNOMP with such an approach: 1) introduce an upper bound at the approximation

error that the particular approach may introduce to the empirical error of FNNOMP

2) incorporate a rule that compensates the error introduced at the embedded space and

eventually results in an exact solution to the NN problem.
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Brute force search in RM

Text

Brute force search in RK

Figure 2.3: Example of a mismatch from RM to RK

2.6.3 Random Projections

One of the most classical approaches in the linear embeddings setting is Random Pro-

jections (RP). This type of methodology is simple in terms of construction and imple-

mentation. Note also, that unlike the other linear operators RP is a data oblivious

operator. The construction of associated operator does not take into account any sort

of information that can be exploited from a known dictionary, i.e. Φ. Typically the

embedding operator Q P RKˆN takes the form:

Q “
1
?
K
A, (2.58)

where the entries in A are drawn from a Gaussian distribution Np0, 1q.

Random projections are a key ingredient of the locality sensitivity hashing frame-

work that finds applications in data hiding and security applications [75],[76],[77]. From
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the perspective of the approximate NN framework random projections are used in cases

such as Spotify, a digital music dictionary where this method is used to find the ap-

proximate NN music recommendations as part of their open source system [78].

From a theoretical point of view, random projections relies on the so–called John-

son–Lindenstrauss lemma was first introduced in 1984, which is as follows [79]:

Johnson–Lindenstrauss Lemma. Let ε P p0, 1
2q. Let Φ Ă RN be a set of N

points and K “
20logN
ε2

. There exists a Lipscitz mapping: f : RN Ñ RK such thing

that @φi, φj P Φ:

p1´ εq||φi ´ φj ||
2 ď ||fpφiq ´ fpφjq|| ď p1` εq||φi ´ φj ||

2

We are also interested to know what does this bound mean in practice. For starters

we will take the upper bound for ε “ 1
2 , considering the point cloud Φ of raman data

with M “ 1507, N “ 4041, which results in the lowest bound in terms of K. By

plugging this value into the quantity K “
20logN
ε2

“ 664. What is gonna happen if we

want to have a smaller ε though? For example for ε “ 0.1? Then K « 166000 ą N .

So, in order to achieve a low distortion in the pairwise distances we end up embedding

in a space of much higher dimension than the original space.

2.6.4 Principal Component Analysis (PCA)

Principal component analysis is an unpsupervised learning method that arise from the

area of tML and is one of the most common, and most likely the oldest, dimension-

ality reduction techniques. Before moving forward and make a thorough introduction

on PCA, we will first try to answer the following question: PCA or Singular Value

Decomposition (SVD)?

Given a dictionary Φ P RMˆN , this can be decomposed by means of its singular

values as follows:

Φ “ USV T , (2.59)

where U P RNˆN an orthonormal matrix that consists of the associated eigenvectors:

UTU “ IM “ UUT . S P RMˆN a diagonal matrix where its consists of the associated

eigenvalues at the main diagonal, and V P RNˆN an orthonormal matrix:

V TV “ IN “ V ¨ V
T (2.60)
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In order to apply PCA, we apply SVD on top of the matrix ΦΦT . The latter can

be rewritten as follows:

ΦΦT (2.59)
“ USV TV STUT (2.60)

“ UΛUT , (2.61)

where Λ in practice contains the squares of the diagonal entries in S. In order to

incorporate PCA in the concept the embedding operator Q P RNˆK is a subset of U .

As it can be seen from (2.61) and (2.59) though the orthogonal matrix U is identical

in between these techniques. So whether you apply PCA or SVD in Φ, the outcome in

terms of U is going to be the same.

In contrast to random projections, PCA is a data aware deterministic technique,

i.e. the embedding operator Q is constructed with respect to the given dictionary

Φ. It is appealing due to its simplicity implementation wise and finds applications

in several areas i.e. finance [80], image compression [81]. A key characteristic from

the perspective of the NN problem, is that the corresponding operator may distort

the pairwise distances arbitrarily and the embedding is not considered to be isometric.

Unlike random projections, it is not aligned with some sort of theoretical foundation

such as the Johnsson Lindenstrauss lemma.

2.6.5 NuMax : Nuclear norm minimization with Max–norm constraints

Within the concept of data aware embedding operators, one of the most recent advances

is associated with the so–called NuMax algorithm [82]. From a general point of view,

the main idea that NuMax relies on, is the construction of an embedding operator

Q that is nearly isometric as random projections but in the same time data aware

like PCA. A key characteristic of this operator is that the associated operator may

distort the pairwise distances up to an ε. This comes in contrast with PCA where

the distances are distorted arbitrarily, while the oblivious nature of random projections

cannot leverage any special geometric structure that may characterise natural data [82].

In contrast with PCA, this data aware operator does not construct with respect to

Φ directly. The embedding operator is constructed with respect to the so called secant

set SpΦq, where:

SpΦq “ t
φi ´ φj
||φi ´ φj ||2

,φi,φj@φi,φj P Φ, i ‰ ju (2.62)

The problem of acquiring the embedding operator Q that introduces a minimal
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distortion δ in SpΦq is cast and solved as an optimization problem over the space of

Positive Semidefinite Matrices. P is defined as: P “ QTQ P RMˆM . Then rank(P )“

K. There are also the constraints such that |||Qvi||
2
2 ´ 1| “ |vTi Pvi ´ 1| is greater

than δ @vi P SpΦq. Let 1S denote the S–dimensional all ones vector, and let A denote

the linear operator that maps a symmetric matrix X to the S–dimensional vector

A : X Ñ pvTi Xviq
S
i“1. Then we obtain the linear operator Q that minimizes the

optimization problem introduced in (2.63):

minimize
PT“Pľ0

rankpP q

subject to ||ApP q ´ 1S || ď δ

(2.63)

Rank minimization is typically an non–convex and NP–hard. Therefore the au-

thors motivated by [83] introduced a nuclear norm relaxation in (2.63):

minimize
PT“Pľ0

||P ||˚

subject to ||ApPq ´ 1S || ď δ

(2.64)

In practice the NuMax problem introduced in (2.64) is solved via an algorithm that

is based on the Alternating Direction Method of Multipliers (ADMM). The user needs

to provide Φ and δ to the framework. In practice NuMax constructs a linear operator

Q that distorts all the elements in SpΦq up to δ. The latter can be demonstrated as

follows:

p1´ δq||
φi ´ φj
||φi ´ φj ||

||2 ď ||Q
φi

||φi ´ φj ||
´Q

φj
||φi ´ φj ||

|| ď p1` δq||
φi ´ φj
||φi ´ φj ||

||2 (2.65)

From the perspective of CS, the NuMax problem yields an operator Q P RMˆN that

satisfies the RIP on SpΦq with the isometry constant being equal to δ. Note though,

that similarly to PCA the particular data aware and deterministic framework does not

align with any sort of theoretical justification.

2.6.6 Sparse Signal Reconstruction: a Learning Perspective

Sparse coding has drawn a lot of attention within the deep learning community in

the last few years. This is due to the potentiality of extracting features from raw

data, especially in cases when the the basis vectors of the dictionary are learned from

unlabeled data. There exist several approaches that have been proposed to learn such

dictionary. Numerous applications of these approaches have been introduced in areas
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Figure 2.4: ISTA block representation, W , S the associated matrices and hθ the
non–linear activation function.

such as visual neuroscience [28][84], image restoration [85],[86], while they have been

also used for the extraction of features for object recognition [87],[88],[89].

A major issue with unsupervised learning methods for sparse coding is that the

associated algorithm is computationally expensive that makes its implementation pro-

hibitive from a perspective of a real time application. The authors in [90] introduced

the Learned Iterative Soft Thresholding Algorithm (LISTA), a scheme that computes

an approximation of the sparse code in a fixed time frame. Under the assumption that

the atoms of the sparse coder have been trained and they are fixed, the main idea

this method relies on is the training of a non–linear encoder that predicts the optimal

sparse code after training the network with examples of input sparse vectors paired

with the associated coefficients. After training, the network introduces a framework

with a prefixed computational complexity and can be used for the approximation of

sparse codes with a predescribed expected error.

The core idea upon this method relies on, is the unfolding of a conventional sparse

coding algorithm such as ISTA by means of a Deep Neural Network (DNN). Within

Figure 2.4 we represent a single iteration of ISTA as a system of blocks. At each iteration

of that scheme, the corresponding information passes from the blocks W P RMˆN and

S P RNˆN . Then the the vector that comes as an outcome of the addition of the

outputs from these blocks is passed through the non–linear activation function hθ,

where hθ is defined as in (2.28), in order to get the desired sparse code. The process is

repeated over the k iterations of the algorithm.

Figure 2.5: LISTA block representation
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LISTA ISTA

Decomposition parameters MN ` kN2 ` k MN `N2 ` 1

Numerical Operations for k iterations MN ` kN2 ` kN MN ` kN2 ` kN

Table 2.3: Comparison in between computational cost and decomposition parameters
in between ISTA,LISTA

By reformulating ISTA by means of deep neural network, as in Figure 2.5, we

employ benefits from the fact that for a size of k iterations–layers of the network we

operate on a framework with a fixed computational cost. Note that in practice, each

iteration of ISTA takes the form of a block in the LISTA scheme where each block

consists of layers Sk, W and hθk . On the other hand, the deep learning framework

releases the degrees of flexibility of the decomposition process given that a higher

number of parameters is incorporated in the overall procedure. In particular, instead

of utilizing a single set of parameters W , S, hθ over the k iterations a different set

of parameters Sk and θk is utilised over the blocks of the DNN. A more analytical

representation about the computational complexity and the decomposition parameters

utilized by each framework are demonstrated in Table 2.3. The latter, introduces

an improved performance of LISTA over ISTA with respect to the empirical error

introduced in (2.66).

ε “ ||x´ x‹||, (2.66)

where x the ground truth sparse code and x‹ the approximated sparse code by the

corresponding algorithm.

From a theoretical point of view, the key contribution in the LISTA framework

was introduced by the authors in [91]. In particular, for B ą 0 and s ă
p1` 1

µ̂pW q
q

2 then

the error converges as follows:

||x´ x‹|| ď sBexpp´clq, (2.67)

where l the number of layers in LISTA and µ̂pW q is defined as follows:

µ̂pW q “ max
W p:, iqTΦp:, jq

||W p:, iq||2|Φp:, jq||2
,with i ‰ j, (2.68)

where Φ the standard dictionary and W the set of weights learned from LISTA. Fun-

damentally, the bound holds for signals with a unique representation with respect to

µ̂pW q and s. In that case the signal will be exactly recovered when lÑ8. The latter

implies that for this explicit class of signals that have a unique representation an archi-

tecture with an infinite number of layers is required to fully reconstruct the signal. This

results to a scheme which is practically intractable in terms of computational workload
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and hardware resources.

The interested reader will observe that there is a strong similarity into the unique

representation of a signal in between LISTA and OMP. In particular for LISTA, this is

materialized as s ă
p1` 1

µ̂pW q
q

2 while in OMP is it defined as s ă
p1` 1

µpΦq
q

2 , where µpΦq

as in (2.38). In order to provide an interpretation of these bounds we can sketch the

following example: Let us assume that we are given a dictionary with µpΦq “ 0.2. The

bound of OMP implies that all the signals with sparsity up to |s| “ 3 can be exactly

recovered within a finite number of |s| “ 3 iterations. Let us assume that LISTA after

training has µ̂pW q “ 0.2. Then according to the associated bound, the framework

can recover the signals with a sparsity up to |s| “ 3 but for an infinite number of

layers–computations.

A learned variant of various greedy techniques (e.g., OMP, MP, etc) was proposed

by the authors in [92]. Motivated by LISTA the authors of the proposed framework

unfold the aforementioned greedy techniques by means of a neural network. In practice

this approach has many similarities with the dictionary learning regime. This is due

to the fact that over the different layers K of the network a single dictionary D is

shared , the so–called regular dictionary which is learned via training. D is also shared

in between the selection step and the update step of the framework. Essentially the

motivation of the particular work is to learn a single dictionary D that demonstrates

a better performance in terms of signal decomposition compared to the standard dic-

tionary Φ. This type of approach is relatively different from the commonly followed

approach in LISTA where the weights are not shared and therefore a higher number of

parameters is incorporated at the decomposition process. Note also, that in contrast

with LISTA the particular approach lacks any sort of theoretical justification.

2.6.7 Dictionary Preconditioning for Greedy Algorithms

From the perspective of the conventional OMP,MP framework a significant amount of

work has been conducted aiming to improve the signal recovery of the associated algo-

rithms. A key characteristic of the conducted analysis, is that the overall functionality

of the OMP,MP framework is distinguished into two basic steps: 1) sensing step 2)

reconstruction step.

The authors in [29] introduced the so–called preconditioning framework. The fun-

damental idea upon the particular framework relies on is the replacement of the sensing

step of the conventional MP,OMP framework with a different approach. By doing that,

the preconditioning framework is essentially aiming to develop a selection rule that will
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boost the performance in terms of the support recovery s that will eventually lead to

the boost in the performance in terms of xs recovery. Nevertheless, a key goal of this

approach though is to fulfill such task without increasing the computational complexity

of the original selection step which can be summarised as MN operations.

From a more practical point of view, the preconditioning framework replaces the

dictionary Φ P RMˆN with a sensing dictionary Ψ P RMˆN . Essentially, each atom

φi P Φ, with φi P R
M , is assigned to an alternative representation ψi P R

M . The main

goal of this approach is the design of a sensing matrix Ψ where the so–called cross

cumulative coherence is significantly lower than the cumulative coherence in Φ. This

sort of improvement eventually reduces the number of false positives introduced in s.

Theorem 1. Let y be a signal exactly k–sparse in Φ, i.e. y “
ř

iPI xiφi. OMP,MP

using the sensing matrix Ψ, will always select components of the true support I if:

||pΦT
I ΨIq

´1ΦT
I ΨĪq||1,1 ă 1, (2.69)

which is always satisfied if:

µ̄ψpkq ` µ̄ψpK ´ 1q ă βψ (2.70)

µ̄ψpk,Φ,Ψq “ max
i

max
|I|“k,iRI

ÿ

jPI

|xψi,φjy| (2.71)

βψpΦ,Ψq “ min
i
|xψi,φiy| (2.72)

Note from the following, the fact that this particular framework selects k ground

truth atoms does not necessarily mean that |s| “ k (i.e. a ground truth atom may

be selected twice). This is due to the fact that the residual is not orthogonal to the

previously selected ψi’s: rk M ψi : i P s “ą xrk,ψiy ‰ 0, therefore ψi may be reselected.

This comes in contrast with the conventional OMP framework where the residual vector

rk is always orthogonal to the previously selected atoms: rk K φi : i P s “ą xrk,ψiy “

0, therefore |s| “ k after k iterations.

In order to demonstrate this, we can think of the following example. 1) OMP with

Φ as the sensing matrix OMPΦ 2) OMP with Ψ as a sensing matrix OMPΨ. Let us

assume that within the first iteration the first element φ1 for OMPΦ and ψ1 is the one

with the highest contribution in the input signal y for OMPΨ. Then considering the

implementation of OMP with respect to the QR factorization the intermediate steps

are formulated as follows:
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1. Q1 “ φ1 and z1 “ φ
T
1 y

2. z1 “ φ
T
1 y

3. r1 “ y ´Q1z1 “ y ´ φ1z1

Within the next iteration we have the following relationship for OMPΦ : φT1 r1 “

φT1 py ´ φ1z1q “ φT1 y ´ φ
T
1 φ1z1

φT1 φ1“1
“ φT1 y ´ z1

from 2
“ z1 ´ z1 “ 0. Hence φ1 will

not be reselected. Within the next iteration we have the following relationship for

OMPΨ : ψT1 r1 “ ψ
T
1 py´φ1z1q “ ψ

T
1 y´ψ

T
1 φ1z1

φT1 φ1“1
“ ψT1 y´z1

from 2
“ ψT1 y´φ

T
1 y “

pφ1 ´ψ1q
Ty

φ1‰ψ1

‰ 0. Hence ψ1 may be reselected.

The problem of designing the sensing matrix Ψ for the dictionary Φ that results

to a reduction in the cumulative coherence is formulated as looking for a gram matrix

G “ ΨTΦ which has only ones in the diagonal and the diagonal elements are of an

absolute value µ “
b

N´M
MpN´1q . In practice the authors are aiming to design a sensing

dictionary that for a known M,N reaches the lower bound in terms of coherence implied

by the Welch bound introduced in (2.12). The process of the associated algorithm is

as follows: Initialization:

• G :“ tG “ ΨTΦ,Ψ P RNˆMu

• H :“ tH P RNˆN , with Hii “ 1 and |Hij | ď µ, for i ‰ ju

Then the associated algorithm acquires the sensing matrix Ψ by solving the minimiza-

tion problem introduced in

min||G´H||F s.t G P G,H P H (2.73)

This type of problems is solved via Projection Onto Convex Sets (POCS). The

associated algorithm operates on an iterative manner as introduced in Algorithm 9.

2.7 Conclusion

In this Chapter we have reviewed the mathematical model for the standard sparse

recovery problem. We discuss the mathematical formulation upon different decompo-

sition algorithms and we review them in terms of theoretical properties and computa-

tional complexity. The link between data aware methodologies and greedy techniques

for sparse non–negative signal processing is then drawn, which is the main goal of
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Algorithm 9 Preconditioning

1: Input: Φ, µmin “
b

N´M
MpN´1q

2: Initialization: G0 “ ΦTΦ.
at k–th iteration

3: Shrink: Calculate H P RNˆNwhose entries hki,j satisfy

hki,j “ softpz, θq “

$

’

&

’

%

1 of i “ j

gk´1
i,j if gk´1

i,j ď µmin

the sign ifgk´1
i,j ˆ µmin, if gk´1

i,j ą µmin

(2.74)

4: Provisional Sensing matrix: Ψk “ pHkΦ:qT .
5: Update Sensing Matrix: Multiply the matrix Ψk with the diagonal matrix containing
pφTi ψjq

´1 on the main diagonal such that the new matrix Ψk satisfies xφj ,ψjy “ 1.
6: Pseudo–Gram matrix: Compute Gk “ pΨkqTΦ.
7: if k “ K stop and output Ψ, else continue.

the current work. We present the different data aware methodologies that are related

with the different aspects of the problem we are willing to tackle. A discussion upon

the different properties of the data that these methods are aiming to exploit is also

conducted. We evaluate the different data aware methodologies with respect to two

basic criteria: 1) computational complexity, 2) theoretical properties. We highlight

the improvement that may be introduced in the sparse non–negative signal process-

ing problem with respect to two basic criteria that severely affect the performance of

real–world applications: 1) acceleration, and 2) robustness.
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Chapter 3

Fast and Exact Nearest Neighbor

Search: Lower Dimensional

Representation and Sparse Signal

Processing

3.1 Introduction

The operational time of a given algorithm is a key requirement when considering it as

a potential candidate for a real–time application. Modern times are characterised by a

significant increase on the data size which severely affects the computational complexity

of commonly used algorithms. Such an example is FNNOMP where the operational

time of the algorithm heavily relies on the selection step of the algorithm which can

be summarised as: MN operations, where N is the number of points and M the

dimensions of the Euclidean space they live in.

A common approach which is followed in order to reduce the computational com-

plexity of these methods is to reduce the computational cost from the perspective of M .

In such case the point cloud is embedded in a lower dimensional space RK : K ă M .

By doing that we are aiming to benefit from the lower computational cost that char-

acterises the brute force search in a lower dimensional space RK . The latter from the

perspective of computational cost can be be summarised as: KM operations.

In this chapter, we introduce novel algorithms for the so–called Nearest Neigh-

bor problem that bridge the gap in between approximate to exact NN algorithms. The
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chapter is organised as follows: In sections 3.1–3.4 we introduce a novel algorithm which

demonstrates the acquisition of the exact NN is feasible in terms of exact recovery as

well as acceleration. This work was published in the Senson Signal Processing for De-

fense conference 2019. Nevertheless, the algorithm is theoretically fragile given that

the associated recovery condition cannot be generalised for any unseen point. There-

fore, at the remainder of the chapter we extend our work as follows: we introduce a

theoretically robust framework that extends the theoretical foundation of embedding

overall and leads to the development of a novel and theoretically robust algorithm

for the standard NN problem. We extend our results to the Maximum Inner Prod-

uct Search problem (MIPS) as well. We demonstrate that this sort of approach may

benefit from a particular property that may characterise natural data i.e. lower dimen-

sional representations. We demonstrate the benefits of such an approach in terms of

acceleration by incorporating our algorithms to the selection of FNNOMP .

3.2 Linear Embeddings

In this section we introduce the guidelines for reducing the size of problem via a Linear

Embedding. The standard notion regarding dimensionality reduction is that by having

an input signal y P RM , the dimension of the signal is reduced via a linear operator

Q : RM Ñ RK , with K ăM , that embeds the input signal into the lower dimensional

space. The projection of the signal ŷ in RK is then computed as follows: ŷ “ QTy.

Linear embedding is a standard approach in many applications where we seek for

a low–dimensional representation of data living on a high–dimensional space. There

exist different methods to perform the embedding, e.g., principal component analysis

[93], random projections [94] etc. A common characteristic of these embeddings is

that the relevant position between dictionary elements is changed when the points

are embedded from RM to RK . In that sense, given a pair of elements φi,φc P R
M

and their representations φ̂i, φ̂c P R
K , we usually have: dpφi,φcq ‰ dpφ̂i, φ̂cq (where

dpφi,φcq “ ||φi´φc||2). For an algorithm that searches for the nearest neighbor of y in

Φ, this may lead to a situation in which NNM ‰ NNK where NN is the abbreviation for

the Nearest Neighbor and M,K corresponds to the dimensions of each euclidean space.

At this section we introduce the Embedded Nearest Neighbor (E–NN) algorithm that

under a specific condition the search in the lower dimensional space eventually yields

the nearest neighbor in the original domain. In that sense we are seeking an embedding

that yields a minimum distortion from RM Ñ RK . This aspect of the problem can be

addressed in terms of a reformulation of the Constructive Johnson–Lindenstrauss [95]

introduced in (3.1) where dpb, tq, where b, t P A Ă RM . Let Q distort the distance for
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Algorithm 10 Embedded NN (E–NN)

1: Input: Φ, Φ̂, Q, y.
2: ŷ “ Qy.
3: Form set S=

 

i : dpφ̂i, ŷq ď dpy,NNKq ` δ
(

,@φ̂i P Φ̂.
4: return arg miniPS dpy,Φiq .

at most εb,t. We then have:

p1´ εbtqdpb, tq ď dpb̂, t̂q ď p1` εbtqdpb, tq

dpz, tq ´ εbtdpb, tq ď dpb̂, t̂q ď dpb, tq ` εbtdpb, tq

dpb, tq ´ δ ď dpb̂, t̂q ď dpb, tq ` δ

(3.1)

where,

δ “ max
b,tPAĂRM

εbtdpb, tq, (3.2)

Theorem 2 .@b, t P A with a δ coming from (3.2) and @y R A with max εytdpy, tq ď

δ, the E–NN introduced in Algorithm 1 guarantees the acquisition of the exact NN.

Proof : Considering three points y, b, t where dpy, bq ď dpy, tq. Then there exist 4

characteristic cases for pairwise distances.

• The case where both distances shrink: dpŷ, b̂q ď dpy, bq, dpŷ, t̂q ď dpy, tq. Then

by incorporating (3.1) :

dpŷ, b̂q ď dpy, bq ď dpy, tq ` δ.

• The case where both distances stretch. Then from (3.1) we have:

dpŷ, b̂q ´ δ ď dpy, bq ď dpy, tq

ñ dpŷ, b̂q ď dpy, tq ` δ

• the case where dpŷ, b̂q stretches: dpy, bq ď dpŷ, b̂q, dpŷ, t̂q shrinks: dpy, tq ď

dpŷ, t̂q ` δ. Then it follows:

dpŷ, b̂q ď dpy, bq ` δ ď dpy, tq ` δ.

• The case where dpŷ, b̂q shrinks: dpŷ, b̂q ď dpy, bq, dpŷ, t̂q stretches: dpy, tq ď

dpŷ, t̂q. Then:

dpŷ, b̂q ď dpy, bq ď dpy, tq ` δ. l

The analysis provided by proof of Theorem 2 simply states that in cases where

NNM ‰ NNK , assuming that b “ NNM and t “ NNK , then dpŷ, φ̂NNM
q ď

dpy,φNNK q ` δ.
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The complexity of the E–NN introduced in Algorithm 10 varies over steps 2–4

of the algorithm. At step 2 the input signal y P RM is embedded in RK via the

linear operator Q P RKˆM . Hence the complexity of step 2 is OpKMq. At step 3

we conduct a number of N distance computations over K–dimensional vectors. The

computational cost of the corresponding operations is OpKNq. Finally, at the last step

of the algorithm we perform a number of |S| distance computations on the original

space RM . The computational cost of the step is Op|S|Mq.

As it can be derived from the analysis there are two critical parameters to benefit

from the brute force search in the lower dimensional space. The lower dimensional

representation of the dataset expressed by K and the cardinality of S on the update

step which depends on δ.

Essentially we are seeking for an embedding Q:

δ “ min
Q

max
i,c
|||Qpφi ´ φcq||2 ´ ||φi ´ φc||2|,@i, c P Φ. (3.3)

The most common approach to construct a dimension reduction is PCA. The

embedding to the K–dimensional space is simply performed by taking the K dominant

eigenvectors of the data covariance matrix. The main drawback of PCA though is that

it distorts pairwise distances arbitrarily. In that sense the distance distortion may be

significantly larger from the one pair of points to the other.

An alternative to PCA is the approach of random projections. According to the

Johnson–Lindenstrauss lemma, given any point cloud Ω in RM , there exists an em-

bedding Q of dimension K “ Oplog|Ω|q with minimal distortion of the
`

|Ω|
2

˘

pairwise

distances between the |Ω| points. This linear embedding is easy to implement in prac-

tice. We simply construct a matrix Q P RKˆM with elements drawn randomly from a

certain probability distribution. The authors in [82], introduced a deterministic frame-

work, called NuMax, that constructs linear and near–isometric embeddings for data

that live in a high–dimensional space. Given a set of training points Φ P RM , the

authors consider a secant set S (Φ) consisting of all pairwise difference vectors of Φ

that live on the unit sphere. The problem is formulated as an affine rank minimization

problem to construct Q such that the norms of all vectors in S (Φ) are preserved up to

a distortion parameter.

We aim to solve the problem introduced in Equation (3.3) empirically for dictionary

Raman spectra with M “ 1507 and N “ 4041 [61] and a dictionary of Swiss Roll data

[96] which is a synthetic machine Learning dataset of points that lie on a 2–D manifold
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Figure 3.1: The figure demonstrates the empirical cumulative distribution function
(CDF) of δ over Φ. The distortion on Φ introduced by random embeddings into Swiss
Roll is much larger than Numax and PCA hence it is not demonstrated.

but embedded in R1507. We found that the minimization problem introduced by the

NuMax algorithm yields a matrix Q P RK,M with K “ 172 for Raman while for the

Swiss Roll case K “ 3. Then we construct Q for PCA and random projections by

setting K “ 172 and K “ 3 accordingly such that we can investigate which method

serves the purpose for RK .

The performance for each method is evaluated with respect to the error distortion

function δpφi, φcq as follows:

δpφi,φcq “ |dpφi,φcq ´ dpφ̂i, φ̂cq|. (3.4)

The obtained results are demonstrated in Figure 3.1. In practice at the particular

figure we demonstrate the evaluation of the performance for each method with respect

to the optimization problem introduced in (3.3). The NuMax algorithm outperforms

PCA and random projections for the Raman dictionary. The latter indicates that a

data aware operator that focus on the preservation of pairwise distances from RM to

RK , demonstrates a better in terms of maintaining the underlying structure of the

dataset. However, the is no theoretical guarantee that the one method may outperform

the other. The latter can be validated only empirically. Moreover, the performance of

each method is data dependent, e.g. NuMax and PCA demonstrate a relatively similar
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performance for the Swiss Roll data for lower K than the Raman data.

3.2.1 The case of mixtures

Within our framework we set δ with respect to the knowledge derived from elements

that belong to an available dictionary Φ. The case of mixtures y is slightly different. In

particular, each y with sparsity (number of contributing atoms) up to j is formulated

as a linear combination of φi P Φ as follows: y “
řj
w“1 awφw.

This essentially means that there is not any particular knowledge regarding δpφi,yq.

Hence, an obvious question is whether y is consistent with the choice of δ. Given that

according to the results introduced in Figure 3.1 the Q obtained by the NuMax algo-

rithm yields the best results we perform a simulation study for y over a sparsity level

up to 5. The distortion is then evaluated according to the error distortion function

introduced in (3.4) with y taking the place of φi and ŷ the place of φ̂i accordingly. For

each j we generate a set of mixtures Y “ tymu
L
m“1 via 10000 (denoted as L) Monte

Carlo simulations. The obtained results are demonstrated in Figure 3.2. Note that

aw „ U r0, 1s and ||y||2 “ ||ŷ||2 “ 1.

The results indicate that δmax flunctuates around δlearn. We empirically observe

that the maximum pairwise distortion @φi P Φ (denoted as δlearn) exceeded only 0.003%

over the total number of simulations. Even in these cases, the algorithm acquires the

exact NN. This is happening due to the fact that the pairwise distortion is on average

much lower than δmax and a lower δ hence serves the purpose.
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Algorithm 11 E–NN on FNNOMP

1: Initialization: s “ z0 “ H, j “ 0, r0 “ y.
2: while j ă K& max(ΦTrk ą 0).

i µÐ Embedded–NN.

ii pÐ 1.

iii pc Ð µ.

iv zc “ 0

v while „ Terminate & p ă N

vi zt from (3.17).

vii zÐ ψTµ rk: ψµ “
q

||q||2
, q “ pI ´ΨΨT qφµ

viii Update based on Table 3.1

ix end while

x s “ sY µ.

xi Update Ψ and R´1

xii zk`1 Ð rzk, zk`1s

xiii rk`1 “Ð rk ´ zk`1ψk`1

xiv k Ð k ` 1

3: end while .
4: output: x|s Ð R´1zj

3.3 FNNOMP acceleration via a NNS approach

In this section we introduce an update on the structure of FNNOMP, which was in-

troduced in Algorithm 2, with respect to the algorithm introduced in Algorithm 10.

The first change in the structure takes place in the selection step of FNNOMP [10, p2]

where we replace with E–NN. At a preprocessing stage of our method we embed Φ in

RK via Q. A common phenomenon in sparse non–negative decomposition is that a

selected atom may be rejected by the non–negativity criteria introduced in Table 3.2

and with respect to equation (3.17). Consequently, we need to modify the content in

Table 3.2 compared to the original FNNOMP version. A key aspect of the changes is

the insertion of the Updated–NN algorithm, as introduced in Algorithm 3, such that

E–NN adopts on the non–negativity setting. All the changes in the overall structure of

FNNOMP are highlighted with red.

In practice U–NN can be addressed as a next NN Algorithm. In that sense anytime

that the NN acquired by E–NN and indexed by µ is rejected by the criteria introduced
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if then

0 ă z ď zt, z ą zc zj`1 Ð z, Terminate

0 ă z ď zt, z ď zc zj`1 Ð zc, pÐ pc, Terminate

z ą zc ě zt p “ p` 1, µ ÐU–NN

z ě zc ą zt zk`1 Ð zc, pÐ pc, Terminate

z ą zt ą zc zc Ð zt, pc Ð p, µ ÐU–NN

z ă 0 Terminate

Table 3.1: Non–negativity criteria FNNOMP

Algorithm 12 Updated NN

1: Input: Φ, Φ̂,y,φNNM , S.
2: S “ S´NNM .
3: Form set S1 “

 

i : dpφ̂i, ŷq ď min dpy,φNNK q ` δ
(

.
4: Form set S2 “ S1 ´ S.
5: Return arg minφiPSYS2 dpy, Sq Y dpy,S

2q .

zj`1 ď zt “

$

&

%

min
γiă0

|xi|
|γi|

Di, γi ď 0

8, otherwise
(3.5)

In Table II, the task of U–NN is the acquisition of the next closest point to y. To

do as such we need to reject µ from S. This is done in step 2 of the algorithm.

The implementation of E–NN provides U–NN with the full set of distance mea-

surements in RK and a number of distance measurements equal to |S| ´ 1 in RK since

µ is rejected in Step 2. Hence no additional distance computation is conducted in Step

3 of U–NN but a simple logical comparison that yields a new set of indices. Given

that for some of these indices the distance in RM is already available from E–NN we

introduce Step 4 in order to avoid the recomputation. We then compute the distances

for φi P S
2 and then we perform a comparison with the measurements of φi P S in

order to find the next NN in RM .

3.4 Results

In this section we evaluate the performance of the proposed algorithm with respect to

FNNOMP. Based on the results introduced in Figure 3.1 we select the Q obtained by

the NuMax algorithm as the linear operator that projects offline the dictionary Φ and

online the mixture y in RK while for the Swiss Roll we select the Q obtained by PCA.

We set δ “ 0.09 for the Raman dictionary and δ “ 0 for the Swiss Roll. We then

generate signal mixtures of varying sparsity j from the elements in Φ.
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Figure 3.3: Top of the figure: Elapsed time for each of the algorithms. Bottom: Accel-
eration over sparsity. Where Accelerationpjq “ Time FNNOMPpjq

Time E-NN FNNOMPpjq .

The obtained results demonstrated in Figure 3.3 show that E–NN FNNOMP is

generally faster than FNNOMP. In particular, for the case of Raman spectra the al-

gorithm is approximately 4.5 times faster on average compared to FNNOMP while in

case of Swiss Roll the acceleration is roughly 25 times. Given that the two datasets

have the same cardinality (i.e. |Φ| “ 4041), the reason why the algorithm is faster for

the case of Swiss Roll compared to the case of Raman spectra has to do with the fact

that K “ 172 for Raman while K “ 3 for Swiss Roll. Generally speaking, the lower

the K the higher the acceleration.

The overall performance of the algorithm though decays over sparsity for the Ra-

man spectra. Given that the computational cost at steps 1 and 2 of E–NN, the only

parameter related to the complexity that may vary over j is |S|. In order to obtain a

better understanding regarding that issue we demonstrate the average number of points
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Figure 3.4: Average points in Step 4 of E–NN over sparsity.

per iteration of the algorithm in Figure 3.4. As can be seen from the results, the task

of signal decomposition in the lower dimensional space becomes more difficult while

sparsity increases. This is obviously not the case for the search in Swiss Roll. Essen-

tially the acceleration factor remains constant. This happens because δ “ 0 hence the

update step of E–NN is unnecessary. This means that in practice we compare the im-

plementation of FNNOMP into different domains. This phenomenon may occur when

all of the points that live in RM in practice live in the same subspace RK . As it can

be seen from the Raman dictionary though this is not something to be expected in a

realistic setting.

3.5 Review on E–NN

We here introduce two algorithms: 1) An Approximate Nearest Neighbor (Ap–NN)

algorithm presented in Algorithm 13 2) and an Embedded–Nearest Neighbor algorithm

(E–NN) [9]. At Step 2 in Algorithm 13 and Algorithm 14 accordingly, the input signal

y P RM is embedded to a lower dimensional space RK via a linear operator Q : RM Ñ

RK . At Step 3, a brute force search is operated in RK in between ŷ and φ̂i @φ̂i P Φ̂,

where ŷ, φ̂i are defined as follows:

Algorithm 13 Ap-NN

1: Input: Φ̂, Q, y.
2: ŷ “ QT y.
3: NNK “ min

φiPΦ
dpŷ, φ̂iq.
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Algorithm 14 Embedded NN (E–NN)

1: Input: Φ, Φ̂, Q, y.
2: ŷ “ QT y.
3: Form set S=

 

i : dpŷ, φ̂iq ď dpy, φNNK
q ` δ

(

,@φ̂i P Φ̂.
4: return argminiPS dpy, φiq .

• ŷ “ QT y.

• φ̂i “ QTφi.

• Φ̂ “ QTΦ.

Note that NN stands for the nearest neighbor and the index M,K corresponds

to the dimension of the Euclidean space the data points live in. In practice φNNM

corresponds to the representation of the nearest neighbor point in RM while NNM

corresponds to the index of the particular point in matrix Φ (note that the points of

the dictionary Φ are stacked column wise on a matrix form). The representation for

each atom in RM and RK , is assigned with the same index in Φ, and Φ̂ accordingly.

Based on the definition for the NN search we obtain the following outcomes:

Outcome 1. dpy,φNNM
q ď dpy,φNNK

q.

Outcome 2. dpŷ, φ̂NNK
q ď dpŷ, φ̂NNM

q.

The distortion of the pairwise distances in between the dictionary points from RN

to RK is materialized as follows:

δij “ |dpφi,φjq ´ dpφ̂i, φ̂jq| (3.6)

Given that a mismatch between the Nearest Neighbor from RN to RK may occur i.e.,

NNM ‰ NNK in step 3 of Ap–NN and E–NN, and an update step is introduced in Step

4 of E–NN to compensate the error. Essentially up to step 3 E–NN is an approximation

algorithm. The additional step introduced by the algorithm is aiming to form a bridge

in between the approximate to the exact solution of the problem. A critical parameter

in the update step is the introduction of the penalty factor δ, where δ is defined as in

(3.7).

δ “ max
φi,φjPΦĂRM

|dpφi,φjq ´ dpφ̂i, φ̂jq| (3.7)

The outcome of the penalty factor is the result of the following analysis.

dpφi,φjq ´ δpi,jq ď dpφ̂i, φ̂jq ď dpφi,φjq ` δpi,jq

dpφi,φjq ´ δ ď dpφ̂i, φ̂jq ď dpφi,φjq ` δ
(3.8)
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Theorem 2.@φi,φj P Φ and @y R Φ, if δpy,φNNM q
“ |dpy,φNNM q ´ dpŷ, φ̂NNM q| ď

δ, with δ coming from (3.2), the E–NN introduced in Algorithm 1 guarantees the

acquisition of the exact NN.

By plugging y in (3.8) and δ in Outcome 1 we obtain the following relationships.

1. dpŷ, φ̂NNM
q ď dpy,φNNM

q ` δ.

2. dpŷ, φ̂NNK
q ď dpy,φNNK

q ` δ.

3. dpy,φNNM
q ď dpy,φNNK

q “ą

dpy,φNNM
q ` δ ď dpy,φNNK

q ` δ.

Proof. From Outcome 2, we have:

dpŷ, φ̂NNK
q ď dpŷ, φ̂NNM

q
1q
“ą

dpŷ, φ̂NNK
q ď dpŷ, φ̂NNM

q ď dpy,φNNM
q ` δ

3)
“ą

dpŷ, φ̂NNK
q ď dpŷ, φ̂NNM

q ď dpy,φNNM
q ` δ ď dpy,φNNK

q ` δ

(3.9)

The analysis provided by the proof of Theorem 2 simply states that cases where

NNM ‰ NNK , then dpŷ, φ̂NNM
q ď dpy,φNNK q ` δ.

Nevertheless, the version of the E–NN introduced in [9] has a basic disadvantage.

The validity of the penalty factor holds if δpy,NNM q ď δ. In particular, the overall idea

upon the update step relies on is that the representation of φNNM in the lower dimen-

sional space lives within a certain range from the representation of φNNK . However,

for dpy, φNNM q we have the following relationship:

dpŷ, φ̂NNM q ď dpyφNNM q ` δpy,φNNM q
(3.10)

where δpy,φNNM q
is defined as:

δpy,φNNM q
“ |dpy,φNNM q ´ dpŷ, φ̂NNM q| (3.11)

Then E–NN will retrieve the exact NN as long as:

dpŷ, φ̂NNM q ď dpy,φNNM q ` δpy,φNNM q
ď dpy,φNNM q ` δ (3.12)

60



The relationship introduced in (3.12) holds as long as:

δpy,φNNM q
ď δ “ą

|dpy,φNNM q ´ dpŷ, φ̂NNM q| ď max
φi,φjPΦĂRM

|dpφi,φjq ´ dpφ̂i, φ̂jq|
(3.13)

In practice though, there is no guarantee that this requirement is fulfilled during

the online process. The only available information during the online process is δ. In

order to derive information regarding δpy,φNNM q
we need to execute the following steps:

1) Brute force search in RN in order to find NNM 2) Embed y in RK and calculate

dpŷ, φ̂NNM q. In case we would like to follow such an approach during the online process,

by the time we execute step 1, then computationally we have already conducted the

naive way of executing the NNS. In practice by using δ or any other arbitrarily selected

threshold, we hope that the condition is fulfilled, but we can never be certain about it.

Hence, Algorithm 1 is fragile from a theoretical point of view.

From a theoretical point of view and from the perspective of the NNS problem the

goal of the current work is to introduce a theoretically robust algorithm that guarantees

the recovery of the exact NN within the linear embeddings framework. Note that the

bulk of the theoretical analysis that dominates the particular framework relies on the

JL lemma. However, the associated analysis introduces an upper bound ε that holds

explicitly for points φi P Φ and it is not informative regarding an out of sample point

y R Φ. It is unclear whether this sort of analysis can be extended for y as well. In

that sense, the associated algorithms that come along with the lemma, whether this is

an Ap–NN with a Q that comes along with the associated analysis or LSH, inherit the

drawback of the associated theoretical analysis.

The NNS problem is a well established framework within the academic community.

Surprisingly though, there is not any straightforward comparison in between the two

main approaches of the problem : 1) exact NNS 2) approximate NNS. This sort of

comparison could take place with respect to two basis criteria: 1) acceleration 2) exact

recovery. From a practical point of view, the current work conducts a straightforward

comparison in between an exact solution of the problem and an approximate solution

of the problem.
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3.6 Linear Embedding Properties

In various applications, it is preferred to seek for a low–dimensional representation of

points that originally live on a higher dimensional space. This is typically done via an

embedding, i.e. a linear operator Q : RM Ñ RK . There exist two popular cases for lin-

ear embeddings, 1) data-adaptive e.g., PCA [93] and 2) predefined, e.g., RP [97]. A key

characteristic of PCA is the fact that the linear operator is constructed in a relatively

simple manner. This type of linear operation involves the mapping of N–dimensional

data into a K–dimensional space with respect to the K dominant eigenvectors of the

data covariance matrix. Strictly speaking though, PCA is a projection and not an

embedding i.e., it is not one to one. However, it is known that applying a linear oper-

ator like PCA can typically lead to distances being distorted in an arbitrary manner.

Essentially the particular type of embedding may map a pair of points that are distinct

in RM to be indistinguishable in RK .

The authors in [82] introduced the NuMax algorithm which is a novel data–adaptive

framework aiming to produce a linear operator distorting the pairwise distances up to

an ε. Nevertheless, there is no guarantee that this ε can be generalised for an out of

sample point y R Φ.

The alternative to data–adaptive is the data–oblivious embeddings i.e. the RP

approach. In particular, given a finite point cloud Φ in RM , there exists an embedding

Q of dimension K “ Oplog|Φ|q with minimal distortion of the
`

|Φ|
2

˘

pairwise distances

between the |Φ| points [97], where | ¨ | indicates the cardinality of the set. A key

aspect of the particular approach is that the mapping is near isometric in the sense

that the embedding introduces a small distortion in the pairwise distances at least

with high probability. This linear embedding is easy to implement in practice. We

simply construct a matrix Q P RKˆM with elements drawn randomly from a certain

probability distribution and then we scale it with an appropriate factor.

The common classification framework for linear embeddings, is the one that evalu-

ates the distortion on pairwise distances in between points of known databases [82],[9]

, or alternatively whether they are associated with some sort of theoretical justification

(e.g., the JL lemma for RP). From the perspective of an online algorithm aiming to

acquire the exact NN though, the classification is somewhat different. In particular, we

classify the linear operators as follows: 1) Linear embeddings that shrink and stretch

distances, and 2) Linear embeddings that explicitly shrink distances, i.e., non–expansive

operators. The first class of linear embeddings is associated with E–NN. For the second

class of embeddings, we introduce Adaptive Exact Nearest Neighbor (AE–NN) which
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Algorithm 15 Adaptive Embedded NN (A E–NN)

1: Input: Φ, Φ̂,Q,y.
2: ŷ “ QTy.
3: Form set S=

 

i : dpφ̂i, ŷq ď dpy,φNNK q
(

,@φ̂i P Φ̂.
4: return argminiPS dpy,φiq .

guarantees the acquisition of the exact NN in RM .

Given that the operator shrinks the pairwise distances dpŷ, φ̂iq in the embedded

space RK , then:

1. dpŷ, φ̂NNM q ď dpy,φNNM q.

2. dpŷ, φ̂NNK q ď dpy,φNNK q.

Theorem 3 . For any operatorQ : RM Ñ RK that shrinks distances, the Adaptive

E–NN (AE–NN) introduced in Algorithm 15 guarantees the acquisition of the exact

Nearest Neighbor.

Proof. Assuming that a mismatch in the embedded space occurs, hence from Outcome

2:

dpŷ, φ̂NNK q ď dpŷ, φ̂NNM q
1q
“ą

dpŷ, φ̂NNK q ď dpŷ, φ̂NNM q ď dpy,φNNM q
Outcome 1
“ą

dpŷ, φ̂NNK q ď dpŷ, φ̂NNM q ď dpy,φNNM q ď dpy,φNNK q

(3.14)

Hence dpy,φNNK q can be used as an upper bound in RK in order to find the NN in

RM via the update step of the algorithm.

The case of k–nearest neighbors. Given a point y P RM and a number k,

return the k–closest points to y in RM . In this case the algorithm can be modified as

follows:

• In Step 3, replace dpy,φNNK
q by dpy,φNNK

qpkq.

• In Step 4, find the subset of points of interest in S by brute force.

The proof for k–NN case is a straight forward extension for the 1–NN as introduced in

proof of Theorem 3 where we assume that k “ 1 (i.e. dpy,φNNM
qp1q). For k “ 1,
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RK

RM

Step 2 :

Brute force search in RK

 

Brute force search in RM

Figure 3.5: The figure demonstrates the operations of the algorithm on a step wise
manner.

which is the standard NNS problem, we have discarded the corresponding index for

simplicity. For the case of k–NN we have to plug in k at the corresponding index.

For better understanding of the process, we provide a visual demonstration of the

step–wise process operated by the AE–NN algorithm in Figure 3.5. Specifically, we

consider the case in which a mismatch between RM and RK occurs. More specifically,

NNM “ µ, NNK “ 5. We highlight with blue the points with the index that corre-

sponds to NNM and NNK accordingly. The rest of the points are colored with green

in order to highlight that they are not involved in the mismatch and the update step

of AE–NN. Given that NNM “ µ, then we have fact 1: dpy,φNNM q ď dpy,φ5q.

The overall functionality of AE–NN can be described as follows: In Step 2 the

input signal y is embedded in the subspace RK via the non–expansive linear operator

Q. We obtain all the pairwise distance measurements in the embedded space RK .

Given that the positions in between the points of the cloud and the input signal y

alter, a mismatch occurs from RN to RK . Hence: NNK “ 5. From that we have fact

2: dpŷ, φ̂5q ď dpŷ, φ̂NNM q.

Upon the acquisition of the measurements in the embedded space, an extra mea-

surement is conducted in between the representation in RM of the closest point in RK

and the original representation of the input signal. In the scenario of Figure 3.5 this
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Algorithm 16 Adaptive Embedded MIPS (Adaptive E–MIPS)

1: Input: Φ, Φ̂,Q,y.
2: ŷ “ Qy.

3: Form set S=
 

i : xφ̂i, ŷy ě xy,φNNK y `
||ŷ||2´||y||2

2 `
||φ̂i||

2´||φNNK ||
2

2

(

,@φ̂i P Φ̂.
4: return argmaxiPS xy, φiy .

holds for dpy,φ5q. From a geometrical point of view a ball is drawn around ŷ with

a radius dpy,φ5q. Given that Q fulfills a particular property, Q is a non–expansive

operator, we have the following facts:

Fact 3: dpŷ, φ̂NNM q ď dpy,φNNM q and fact 4: dpŷ, φ̂5q ď dpy,φ5q. From fact

2 we have that: dpŷ, φ̂5q ď dpŷ, φ̂NNM q. Then from fact 3 we have: dpŷ, φ̂5q ď

dpŷ, φ̂µq ď dpy,φµq. Finally from fact 1 and fact 4 we have that: dpŷ, φ̂5q ď

dpŷ, φ̂µq ď dpy,φµq ď dpy,φ5q . This essentially means that φ̂µ is located within

the volume of the ball or in other words µ P S. Hence, when we calculate the exact

distances in the original space for the subset S, the exact NN can be located.

3.6.1 Maximum Inner Product Search: The case of non–expansive

operators

The NNS problem finds many similarities with the so–called Maximum Inner Product

Search problem (MIPS). That type of problem has received a significant attention in

recent years as an essential step in many machine learning algorithms. Applications

of MIPS can be found for example in matrix–factorization–recommender systems [98],

multiclass prediction [99], structural SVM [100] and vision applications [99]. The MIPS

problem can be formally described as follows: given a point cloud of N points Φ “

tφ1, φ2, ¨ ¨ ¨ , φNu where φ P RM and a query point y P RM the goal is to find φMIPS

that maximizes the inner product xq,φMIPSy. In other words the MIPS problem can

be summarised as follows:

φMIPS :“ argmax
φiPΦ

xy,φiy (3.15)

MIPS has been of significant interest the last few years [101]. Despite the different

approaches that may be followed to solve the problem, they all share a common char-

acteristic: the problem is solved approximately. We here introduce Adaptive Embedded

MIPS which is a bridge in between approximate to exact solutions for the MIPS prob-

lem.

Theorem 4 . For any operator Q : RM Ñ RK that shrinks distances between

points, the Adaptive E–MIPS introduced in Algorithm 3 guarantees the acquisition of

65



the point that maximizes the MIPS.

Proof. Given that any non–operator shrinks the pairwise distances assuming that a

mismatch occurs, then with respect to Theorem 3 we have the following:

dpŷ, φ̂NNM
q ď dpy,φNNK q “ą

dpŷ, φ̂NNM
q2 ď dpy,φNNK q

2 “ą

xŷ, φ̂NNM
y ě xy,φNNK y `

||ŷ||2 ´ ||y||2 ` ||φ̂NNM
||2 ´ ||φNNK ||

2

2

(3.16)

From a computational point of view AE–NN and AE–MIPS carry out the same

workload for the same dimensional subspace RK . In particular, step 1 carries out a

number of KM operations for both frameworks. In step 2, the bound is in practice

the same given that @i P S for AE–NN, we have the following relationship: dpy,φiq ď

dpy,φNNK q that leads to dpy,φiq
2 ď dpy,φNNK q

2, which is in practice the bound for

AE–MIPS. At step 3, AE–NN requires extra vector–vector operations to calculate the

Euclidean distance that results in a minimal additional computational overhead of 2N

operations.

3.6.2 Non–Negative Sparse Signal Processing

In this section we introduce an update on the structure of FNNOMP, as introduced

in Algorithm 2, with respect to the algorithm introduced in Algorithm 15. The first

change in the structure takes place in the selection step of FNNOMP [10, pp2] where we

make AE–NN adaptive. A common phenomenon in sparse non–negative decomposition,

is that a selected atom may be rejected by the non–negativity criteria, introduced by

the authors in [10], which are demonstrated in Table 3.2 and with respect to equation

(3.17). Consequently, we need to modify the content in Table 3.2 compared to the

original FNNOMP version. A key aspect of the changes is the insertion of the Adaptive

Updated–NN (AU–NN) algorithm, as introduced in Algorithm 17, such that AE–NN

is adapted on the non–negativity setting. All the changes in the overall structure of

FNNOMP are highlighted with red.

Adaptive E–NN passes to AU–NN the full set of measurements D in the embedded

space RK and a set of measurements tdpy,φiquiPS obtained by step 4 of the AE–NN

algorithm. In practice Adaptive Updated–NN can be addressed as a next NN Algo-

66



if then

0 ă z ď zt, z ą zc zj`1 Ð z, Terminate

0 ă z ď zt, z ď zc zj`1 Ð zc, pÐ pc, Terminate

z ą zc ě zt p “ p` 1, µ ÐU–NN

z ě zc ą zt zj`1 Ð zc, pÐ pc, Terminate

z ą zt ą zc zc Ð zt, pc Ð p, µ ÐU–NN

z ă 0 Terminate

Table 3.2: Criteria that guarantee the positivity of the coefficients

rithm. In that sense anytime that the NN acquired by AE–NN and indexed by µ is

rejected by the criteria introduced in Table 3.2, the task of AU–NN is the acquisition

of the next closest point to y. As such we need to discard µ from S. This is done

in step 2 of the algorithm. In order to provide a better understanding regarding the

functionality of AU–NN we consider a dictionary Φ “ tφ1,φ2,φ3,φ4,φ5,φ6,φ7,φµu ,

hence D “ tdpŷ, φ̂iquφ̂iPΦ̂.

zj`1 ď zt “

$

&

%

min
γiă0

|xi|
|γi|

Di, γi ď 0

8, otherwise
(3.17)

The case of a mismatch from RM to RK : NNK “ 6, NNM “ µ. Such case is

demonstrated in Figure 3.6. S “ tφ6,φ7,φµu. Assuming that µ is rejected by the

Non–Negativity criteria of FNNOMP we discard the corresponding index from S at

step 2 of AU-NN and we are looking for the next NN. Given that the upper bound

dpy,φ6q is independent to µ then the upper bound for AU–NN is similar to AE–NN.

Therefore at step 3 of AU–NN we have S1 “ S ´ µ and at step 4 we have S2 “ H.

Consequently no additional distance computation in RM is required.

The case where NNM “ NNK . Such case is demonstrated in Figure 3.7. At the

particular scenario the closest point at the first run of AE –NN adaptive φµ1 is rejected

by the non–negativity criteria of FNNOMP then the bound for AU–NN is updated since

dpy,φµ1q ď dpy,φµ2q where µ2 is the 2nd NN of ŷ in the embedded space. Hence, it

is most likely (though not necessary) that an extra point is introduced in our example

S1 : SYt4u , and S” “ t4u in step 4 of the algorithm. As a result an extra measurement

dpy,φ4q in RM is required which increases the initial computational cost introduced

by AE–NN.
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3.7 Acceleration Ratio

AE–NN is an algorithm that guarantees the acquisition of the exact NN from RN to

RK in any case. Nevertheless, this does not necessarily mean that AE–NN will be

faster than brute force search in RN in any case. Within the current section we will

discuss in which cases this sort of approach will be faster than linear search and in

what scenarios this acceleration will not be fulfilled.

In order to obtain a rough understanding regarding this issue, we can compare the

computational complexity of the two approaches: linear search versus AE–NN. The

overall computations required for the linear search are MN . For the AE–NN algorithm

the stepwise operations analysis are as follows:

Algorithm 17 Adaptive E–NN on FNNOMP

1: Initialization: s “ z0 “ H, j “ 0, r0 “ y.
2: while j ă K& max(ΦTrk ą 0).

i µÐ AE–NN.

ii pÐ 1.

iii pc Ð µ.

iv zc “ 0

v while „ Terminate & p ă N

vi zt from (3.17).

vii zÐ ψTµ rk: ψµ “
q

||q||2
, q “ pI ´ΨΨT qφµ

viii Update based on Table 3.2

ix end while

x s “ sY µ.

xi Update Ψ and R´1

xii zj`1 Ð rzj , zj`1s

xiii rj`1 Ð rj ´ zj`1ψj`1

xiv j Ð j ` 1

3: end while .
4: output: x|s Ð R´1zj

Algorithm 18 Adaptive Updated NN (AU–NN)

1: Input: Φ, Φ̂, y, µ, S,D.
2: Dpµq “ 8, S “ S ´ µ.
3: Form set S1 “

 

i : Dpiq ď dpy, φNNDq
(

.
4: Form set S2 “ S1 ´ S.
5: return arg minφiPSYS2 dpy, Sq Y dpy, S

2q .
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RM

RK

Figure 3.6: The mismatch case AU–NN.

1. Step 2. KM operations.

2. Step 3. KN operations.

3. Step 4. |S|M operations.

Derived on this, we introduce the Acceleration Ratio metric introduced in (3.18) to

provide a measure of the speed up that may be obtained by AE–NN.

Acceleration Ratio “
MN

KM `KN ` |S|M
(3.18)

The first issue we will address here, is for what size of K we expect that this type

of approach will start being faster than linear search in RN . Firstly though, we will

split the computational cost of AE–NN into two basic categories:

1. Fixed computational cost: step 2 and step 3 of the algorithm

2. Dynamic computational cost: Step 4 of the algorithm.

The main computational workload of AE–NN is carried out by step 2 of the algo-

rithm which is up to KN numerical operations. For any K ă M , then since N ą 0
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RM

RK

Nearest Neighbor

Rejection-Next Nearest Neighbor

yRM

Figure 3.7: The NNM “ NNK case U–NN. The measurements in RM obtained from
the run of E–adaptive are highlighted with blue. φµ1 is rejected by the non–negativity
criteria of FNNOMP hence it is colored with black. U–NN conducts an extra measure-
ment dpy, φ4q in RM hence φ4 it is also colored with blue.

then KN ă NM , which is the computational workload of linear search. Nonetheless,

the fixed computational cost of AE–NN includes the online embedding process of y in

the lower dimensional space RK which is up to KM operations. So, in order to start

having some benefits in terms of acceleration the following requirement needs to be

fulfilled:

K ă
MN

M `N
. (3.19)

The outcome of (3.19) is what we call the Lower Acceleration Bound.

Nevertheless, it is expected that in several cases the algorithm may be slower than

the linear search given the extra computations expressed by Dynamic computational

cost. The Acceleration Ratio can be used as guideline in order to understand in which

cases this may happen:

KM `KN ` |S|M ąMN “ą |S| ą
MN ´KM ´KN

M
. (3.20)
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Figure 3.8: The figure demonstrate characteristic cases for the update step of the
algorithm.

A natural consideration that may occur though, is what is the association between

|S| and dpy,φNNK
q, or in other words what is the relationship between the bound on

step 2 and the number of points in S. Given that the upper bound for any in input y

is dpy,φNNK
q, a ball is practically formed in step 2 of the algorithm.

From a theoretical point of view and when considering a continuous space, within

a ball there may exist an infinite amount of points regardless of the size of the radius.

Given that we perform the search on a finite point cloud this is not the case. In such

case |S| relies on two basic parameters: 1) the volume of the ball ρi “ dpyi,φNNKi q

(where NNKi denotes NNK for each input signal yi ) 2) and the density of the points

on the particular area of the point cloud in RK . In order to provide a deeper insight

regarding this issue we demonstrate an example in Figure 3.8.

In particular we are considering a point cloud Φ “ tφ1,φ2, ¨ ¨ ¨ ,φNu with N “ 5

and two different cases for input signals: y1,y2. Then for each signal we have the

following relationships: NNK1 “ 5 and NNK2 “ 2. As it can be seen from the figure

ρ1 ą ρ2 which means that dpy1,φNNK1
q ą dpy2,φNNK2

q. Nevertheless, |S|1 ă |S|2.

This is due to the fact that the area around point 2 is more dense in terms of population

compared to the area around point 5.

The example simply demonstrates that there may exist extreme cases where the

associated bound may be wide and still obtain the optimal acceleration, while on the

other hand the algorithm may perform poorly even in cases where the associated bound

is relatively small.
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3.7.1 Data Characteristics

Within the current section we provide a deeper insight regarding a particular property

that subspace methods are aiming to tackle, i.e., the representation that natural signals

may have in a lower dimensional space. Moreover, we will also demonstrate how the

embedding operation: Q : RM Ñ RK may affect the underlying structure of the

dictionary from RN to RK . The analysis will take place with respect to methodologies

that yield a full orthnonormal basis such as PCA and Discrete Cosine Transform (DCT)

[102]. The two approaches are different in the sense that the PCA coefficients are

acquired on a linear fashion while the DCT coefficients on a non–linear fashion. However

the operation of embedding the signal in RK is linear in both cases. We perform the

analysis with respect to these operators due to the fact that they are aligned with

the requirement of AE–NN, in the sense that the associated embedding operator is

orthonormal. This sort of embeddings do not expand distances by definition [25].

Let as assume that we are given such a basic QN provided by either PCA or DCT

or any other method. Then the following relationships hold:

QT
NQN “ IN “ Q

T
NQN (3.21)

The projection of the atom φi on the complete orthonormal basis QN can be then

obtained via the following relationship:

φ‹i “ Q
T
Nφi, (3.22)

The two signals φi,φ
‹
i may be different in terms of coefficients, but they are

identical by means of energy. This can be demonstrated as follows:

||φ‹i ||
2
2 “ φ

‹
i
Tφ‹i

(3.22)
“ φTi QNQ

T
Nφi

(3.21)
“ φTi φi “ ||φi||

2 (3.23)

The original spectra φi can be simply reconstructed via the measurements in φ‹i and

with respect to (3.22) as follows:

φ‹i “ Q
T
Nφi “ą QNφ

‹
i “ QNQ

T
Nφi

(3.21)
“ą QNφ

‹
i “ φi (3.24)

The standard notion about PCA, is that we select the K–th principle eigenvectors

with respect to some rule of thumb (i.e. number of the associated eigenvalues that

preserve more than 90% of the energy on the points that lay in Φ). That process
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is equivalent to performing some sort of thresholding (i.e. preserve the K principle

coefficients) on the coefficients of φ‹i :

φi
1

pmq :“

$

&

%

φ‹i pmq, if m ď K.

0, otherwise.
(3.25)

We denote the vector of K non–zero coefficients in φ
1

i as φ̂i. The relationship

introduced in (3.25) can then be reformulated as follows:

φi “ QNφ
‹
i « QNφ

1

i “ QKφ̂i, (3.26)

where QK P RNˆK stands for the subset of K principle eigenvectors. Note that the

equality holds, i.e. as in (3.27), when all of the m ` 1, ¨ ¨ ¨ , N coefficients in φ
1

i are

actually 0. In such case the following relationship holds:

φi “ QKφ̂i (3.27)

By embedding Φ in a lower dimensional space RK , in practice we are exploiting

the property that natural signals are characterised by some sort of lower dimensional

representation:

||φi||
2 “ φTi φi

(3.26)
« φ̂i

T
QT
KQKφ̂i

QTKQK“IK
“ ||φ̂i||

2

“ą ||φi||
2 « |φ̂i||

2,
(3.28)

where φi P R
N and φ̂i P R

K . Note the following, in cases where (3.27) holds, then:

||φi||2 “ ||φ̂i||2 (3.29)

This is the way that the current work addresses the notion of lower dimensional rep-

resentation, i.e. that a signal that originally lives in RN has a compact representation

(i.e., retains its energy) in a lower dimensional space RK . We denote the lower dimen-

sional representation of a a signal as Dpφiq. In accordance with the analysis upon the

sparsity of φi with respect to QN , the relationship introduced in (3.29) holds in cases

where:

||φ
1

i||0 “ K (3.30)

In order to provide a more practical intuition regarding this analysis we demon-
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strate such an example in Figure 3.9. In particular we demonstrate the standard

representation of a φi P Φ at subfigure a). Then we project φi on the orthonor-

mal bases QPCA and QDCT obtained by PCA and DCT via the process described in

(3.21). The corresponding representations are demonstrated in subgfigures b) and c)

accordingly. The red line is utilised in order to highlight the point beyond which the

associated coefficients are 0. In particular we have that φ̂PCApkq “ 0 for k ą 280

while φ̂DCT pkq “ 0 for k ą 450 in accordance with the analysis provided in (3.25)

and ||φi|| “ ||φ̂PCA280 || “ ||φ̂DCT 450 || “ 1, where the index 280 and 450 correspond

to the number of coefficients utilised at the vector. In that sense, φi has a lower di-

mensional representation DK which is exactly DK “ 280 for PCA and DK “ 450 for

DCT. In practise Figure 3.9 demonstrates the representation of φ in 3 different or-

thonormal bases: 1) The standard representation φi where QN “ IN with IN being

the identity matrix 2) QPCA is the orthonormal basis obtained by PCA and 3) QDCT

is the orthonormal basis obtained by DCT. In this particular scenarion φi has a more

sparse–compact representation on the PCA basis.

By fingerprinting the lower dimensional representation of each point in the point

cloud Φ in step 2 of AE–NN, we are aiming to obtain a layout of Φ̂ in a subspace RK

which introduces a minimal deviation within the underlying structure of the dictionary

compared to the original layout of Φ P RN . That essentially means that the pairwise

distances are approximately preserved from the one space to the other. Let us consider

a pair of points φ1,φ2, then from (3.26) we have the following relationships:

1. φ1 « QKφ̂1.

2. φ2 « QKφ̂2.

3. QT
KQK “ IK .

||φ1 ´ φ2||
2
2 “ pφ1 ´ φ2q

T pφ1 ´ φ2q

1q,2q
« pφ̂1 ´ φ̂2q

TQT
KQKpφ̂1 ´ φ̂2q

3q
“ ||φ̂1 ´ φ̂2||

2
2

(3.31)

Note that the approximation drops and equality holds when both signals align with

(3.27). In such case the following outcome holds:

||φ1 ´ φ2||
2
2 “ ||φ̂1 ´ φ̂2||

2
2 (3.32)

This implies that in cases where all the signals have a lower dimensional repre-
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Figure 3.9: Representation of φi in different orthonormal bases

sentation K, then by embedding Φ in RK , we obtain a Φ̂ with identical underlying

structure compared to Φ. In such case the following relationship holds:

φi “ QKφ̂i @φi P Φ. (3.33)
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However, a key question that may occur is: What does this knowledge provide from

the perspective of an online algorithm given that y R Φ? Within the current work we

have a particular interest for signals that are sparse with respect to a known dictionary:

y “
řk
i“1 aiφ̂i : φi P Φ. For this particular class of signals we can demonstrate the

following:

y “
k
ÿ

i“1

aiφi
(3.33)
“

k
ÿ

i“1

QKaiφ̂i “ QK ŷ
(3.33)
“ą

y ´ φj “ QK ŷ ´QKφ̂j “ QKpŷ ´ φ̂jq “ą

||y ´ φj ||
2
2 “ py ´ φjq

T py ´ φjq “ pŷ ´ φ̂jq
TQT

KQKpŷ ´ φ̂jq
QTKQK“IK
“ą

||y ´ φj ||
2
2 “ ||ŷ ´ φ̂j ||

2
2 @φj P Φ

(3.34)

Theorem 4. Given a lower dimensional space RK , an orthonormal operator QK P

RNˆK , a dictionary Φ : Dφi “ K @φi P Φ and a signal y which is sparse with respect

to Φ : y “
řk
i“1 aiφ̂i : i P s, then the following outcomes always hold for AE–NN: 1)

NNM “ NNK 2) |S| “ 1.

Proof. From the definition of NNS we have the following relationship:

||y ´ φNNM || ď ||y ´ φj || @φj P Φ : j ‰ NNM

(3.34)
“ą

||ŷ ´ φ̂NNM || “ ||y ´ φNNM || ď ||y ´ φj || “ ||ŷ ´ φ̂j || “ą

||ŷ ´ φ̂NNM || ď ||ŷ ´ φ̂j || “ą NNM “ NNK

(3.35)

From (3.35) we also have ||y ´ φNNM || ď ||ŷ ´ φ̂j ||@j ‰ NNM , hence the only point

that lays within the bound is the representation of NNM in RK therefore |S| “ 1.

The outcome of Theorem 4 states that for this explicit case Ar–NN will with a

QK from PCA, DCT ,or any other operator which is a subset of an orthonormal basis,

will retrieve the exact NN and the update step introduced by AE–NN FNNOMP is

practically redundant.
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3.7.2 Sparse Signal Processing: the Notion of Lower Dimensional

Representation

The current subsection as well as the following one are not aiming to revisit a well

established framework such as sparse signal processing. Our main scope is to highlight

the similarities as well as the differences in between AE–NN and OMP. Moreover we

are aiming to highlight the underlying process that takes place via orthogonalization.

The standard sparse signal processing model, implies that a signal y can be rep-

resented a linear combination of only a few elements of a known dictionary Φ. This

linear relationship is more formally expressed as:

y “ Φsxs, (3.36)

where y P RM Φs P R
Mˆk and xs P R

k. The subdictionary Φs can be represented by

means of QR factorization as follows:

Φs “ QsRs, (3.37)

where Qs P R
Mˆk contains a subset of vectors that are mutually orthogonal and Rs P

Rkˆk an upper triangular matrix. By plugging (3.37) into (3.36), the original linear

relationship is reformulated as follows:

y “ QsRsxs
Rsxs“zs
“ Qszs, (3.38)

where zs P R
K .

We can then obtain the following relationship:

||y||2 “ yTy
(3.38)
“ zTQTQz

QTQ“IK
“ zTs zs “ ||zs||

2 (3.39)

The outcome of (3.39) implies that a signal which is K–sparse with respect to a

known dictionary Φ, is a signal that can be exactly represented in a K–dimensional

space, or else it has an K lower dimensional representation. This associated subspace

RK is explicitly designed with the Qi’s: i P s.
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Algorithm 19 Adaptive Embedded NN (AE–NN)

1: Input: Φ, Φ̂,Q,y.
2: ŷ “ QTy.
3: Form set S=

 

i : dpφ̂i, ŷq ď dpy,φNNK q
(

,@φ̂i P Φ̂.
4: return arg miniPS dpy,φiq .

3.7.3 Similarities in between AE–NN and OMP

Within the current subsection we are aiming to draw link in between the functionality

of AE–NN and OMP. We will stretch the interest of the reader in step 2 of Algorithm

17 and step 2 of Algorithm 18 accordingly.

At step 2 of Algorithm 17, the corresponding algorithm is equipped with a

matrix Q P RMˆK . In practice this is a matrix with K columns that live in M di-

mensional space and they are orthonormal. The Q operator is practically obtained

by performing PCA on Φ and then picking the K first columns of QM P RMˆM .

The input signal y P RM is projected on the lower dimensional space RK by per-

forming a simple matrix–vector multiplication in between the transpose of Q and y.

In practice we multiply each of the K columns in Qi : Qi Ă Q with y: ŷpiq “

QT
i y. The outcome of the process would be the same if instead of performing a

matrix–vector multiplication we were performing a number of M loops such that:

ŷpmq “ QT
my,where Qm is the m–th column of Q and 1 ď m ď K.

In practice OMP performs exactly the same operation. The key difference is that

in contrast to AE–NN where Q is plugged in via PCA, the elements of the matrix Q are

unknown. They are constructed on the fly via i.e. the QR factorization with respect

to the atoms that are picked at the selection step of the algorithm. In practice, the

Algorithm 20 OMP via QR factorization

1: Initialization: s “ H, j “ 0, r0 “ y, ξ “ H.
2: while j ă K & max(ΦTrk ą 0).

i rµ, ιs=max |ΦTrj |

ii s “ sY µ.

iii Update Q,R factors.

iv zj “ QTj y.

v ξ Ð rzj , ξs

vi rj`1 “ rj ´Qjzj

vii j Ð j ` 1

3: end
4: xs “ R

´1
s ξ
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coefficients zj in OMP are obtained via the same operation that the coefficients ŷpmq

are obtained via AE–NN. Essentially, OMP via the orthogonalization step projects y

in a lower dimensional space. The size of the Euclidean subspace increases at each

iteration of the algorithm. The coefficients xi : i P s are then obtained by projecting

the coefficients zj of lower dimensional space RK back to the original space RN via

the R operation. The latter explains one of the key differences in between OMP and

MP, which is somehow hidden under the hood. On OMP the coefficients xi : i P s

are updated at each iteration k of the algorithm. This is not the case for MP though.

The reason why this phenomenon occurs is that at each iteration of OMP, the signal is

projected on a subspace with an increasing size. By projecting the coefficients zj back

to RN via i.e. the R operation we demonstrate the representation of y in different sub-

spaces, i.e. when we stop the algorithm at each iteration k´1 we have a representation

of the signal in a Rk´1 while in iteration k we have a representation of the signal in Rk

etc.

The analysis conducted here is aiming to highlight that an algorithm that incor-

porates an orthogonalization procedure essentially fingerprints the lower dimensional

representation of y with respect to Φ. This kind of characteristic holds for OMP and

CoSaMP type algorithms.

Note though that there is a difference between the particular approach and the

one followed by AE–NN. The functionality of AE–NN uses exactly the same operator

Q P RMˆK for both Φ and y. In that sense, the dictionary Φ and the input signal y

are embedded in the same subspace RK .

From the perspective of Sparse Signal Processing, this is not the case. In particular,

let us assume that we are given two input signals y1,y2 with |s1| “ |s2| “ k but s1 ‰ s2.

Then Q1 ‰ Q2 where Q1,Q2 P R
Mˆk. In that sense, even though y1,y2 have the same

size of lower dimensional representation k, with respect to Φ, the subspace Rk they

live in differs and it is spanned by Q1,Q2 accordingly.

In total, by incorporating AE–NN at the selection step of an FNNOMP we fin-

gerprint lower dimensional representation on a dual manner: 1) At the selection step

we fingerprint the K lower dimensional representation of Φ and y with respect to the

same subspace RK 2) While decomposing the signal over the iterations of FNNOMP

we fingerprint the k lower dimensional representation of y with respect to Φ.
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Figure 3.10: An example of an input signal y (plot on the top) that consists of caffeine
and sucrose.

3.8 Simulation Results

Within the current section we compare state of the art OMP type algorithms for Sparse

Non–Negative signal decomposition such as FNNOMP [10], NNOMP, [62], NN CoSaMP

[63] with respect to operational time and approximation error.

The first set of simulations takes place with respect to the Raman data provided

by [61]. The dimensions of the dictionary Φ are M “ 1507, N “ 4041. We generate

mixtures : y “
řj
w“1 awφw where aw „ U r0, 1s and then each algorithm is assigned to

decompose the input signal y.

Raman spectroscopy is a technique used to observe vibrational, rotational and

other low–frequency modes in a system. The method is widely used in different scien-

tific disciplines i.e. cancer detection [54], nanotechnology [55] as well as in industrial

applications [103],[56] such as the pharmaceutical industry where Raman spectroscopy

is applied in order to identify pharmaceutical ingredients and their polymorphic forms,

food safety [57], hazardous materials detection [59].

In order to provide a deeper insight regarding the raman spectral decomposition

problem and draw the link with the sparse signal processing aspect of it we demonstrate

a practical example in Figure 3.10. We demonstrate 3 different spectra. Within our

80



disposal we have a database of Raman dictionary where among the available samples

is the digital fingerprint of caffeine and sucrose. The corresponding digital fingerprint

is demonstrated in the provided figure. We generate a synthetic mixture of these two

spectras which is a linear combination of caffeine and sucrose where the associated

coefficient is set to a “ 1 and b “ 1 accordingly. In the ideal scenario, an OMP

type of algorithm such as FNNOMP will select the 2 components that constitute the

signal within the first two iterations of the algorithm and y will be fully reconstructed.

However, the selection rule of the OMP type algorithms is highly sensitive to the

underlying structure of Φ. In particular, in cases where a ground truth atom φi has a

relatively similar digital fingerprint, i.e., they are highly coherent with each other, with

a φj (for example instead of sucrose it could pick brown sugar) that does not contribute

to y it is quite possible that a false positive may be introduced in the support set s.

The introduction of a false positive may be critical in several applications. Let us

address the particular issue from the perspective of hazardous materials detection, a

false positive may correspond to a case where the algorithm detects a non–hazardous

material where in practice the mixture which is taken into account may consist of

a hazardous material. On the other hand from the perspective of food safety the

algorithm may detect an ingredient that the food is safe while in practise the mixture

consists of an ingredient that demonstrates that the food is contaminated. Within

the current work, we are aiming to accelerate such a framework without increasing

the sensitivity of the selection rule. Therefore we introduce an exact NN algorithm.

In contrast by incorporating an approximation algorithm ,i.e. Ap–NN, essentially we

introduce a framework that increases the sensitivity of an existing framework.

For AE–FNNOMP we select: 1) PCA and we set K “ 210 2) DCT and we set

K “ 370 (more details on how to tune K in the remainder of the current section). For

the Ap–NN algorithm we use PCA and DCT for the same K as in FNNOMP and a

version of the Ap–NN algorithm where the associated embedding operatorQ is designed

with respect to the RP principles (i.e., the entries in Q are sampled independently

from a Gaussian Np0, 1q and then scaled by an appropriate factor). For the particular

operator we set K “ 450 which is the lowest bound for K with respect to the formula

introduced in [104]. We plug in the algorithm at the selection step of FNNOMP. In

case where an atom is rejected by the non–negativity criteria of FNNOMP we select

the next NN in the embedded space RK .

For the rest of the section, we use the empirical Acceleration Ratio as a metric as

introduced in (3.40):

Acceleration Ratioplq “
Time FNNOMPplq

Time NN–OMP type algorithmplq
, (3.40)
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Figure 3.11: Comparisons of different sparse non–negative signal processing algorithms
in terms of reconstruction error.

where l corresponds to the signal sparsity.

We perform a simulation study over 1000 realizations. We first analyse the perfor-

mance of the algorithms in terms of acceleration. The obtained results are demonstrated

in Figure 3.11.

From the perspective of reconstruction error FNNOMP and NNOMP demonstrate

similar performance as it can be seen in Figure 3.11. The different versions of Ap–NN

algorithm increase the reconstruction error compared to the result of the original al-

gorithm that varies depending on the embedding operator. On the other hand, the

AE–NN FNNOMP algorithm introduces an identical reconstruction error regardless of

the operator, DCT or PCA. The latter demonstrates that the extra step introduced

by AE–NN closes the gap which is originally introduced by the Ap–NN versions of the

associated operators. As mentioned before, AE–NN is not aiming to introduce a new

sort of selection rule that improves the recovery performance of the original framework.

From the perspective of an approximation algorithm such as FNNOMP, AE–NN guar-

antees that the empirical approximation error introduced by the original algorithm will

be exactly recovered from AE–NN. Note that an AE–NN FNNOMP with an RP type
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Figure 3.12: Comparison in between sparse non–negative signal processing algorithms
in the time domain.

of operator is not feasible given that the associated operator is not an non–expansive

one.

From the perspective of acceleration, the results indicate that FNNOMP and

NNOMP demonstrate a relatively similar performance with respect to the particu-

lar criterion as demonstrated in Figure 3.12. The latter is not surprising given the

fact that the main computational workload is carried out by the selection step of the

algorithms which is in practise identical. The two algorithms outperform NN CoSaMP

in terms of acceleration. AE–NN FNNOMP and RP–FNNOMP accelerate FNNOMP.

This outcome highlights the benefits that can be exploited by performing the search in

a lower dimensional space compared to RN . AE–NN FNNOMP accelerates FNNOMP

by approximately 4.5 times over sparsity while RP–FNNOMP accelerates FNNOMP

but with a smaller factor i.e. approximately 2.1 times. This is due to the number

of dimensions of the subspace we embed the dictionary which is higher compared to

AE–NN FNNOMP. Generally speaking, the benefits in terms of acceleration increase

while reducing the number of dimensions in RK .

Our analysis does not consider the case of noisy data which is a common charac-

teristic of real world applications. In practise, what we would expect in this sort of
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Figure 3.13: Structural analysis on Raman data with respect to ε.

scenario is that the empirical approximation error will increase depending on the Signal

to Noise Ratio.

For the next part of the current section we discuss an empirical rule for tuning K

for AE–NN. In order to fingerprint the alteration of the underlying structure we use

the Empirical Cumulative Distribution Function (ECDF) introduced in (3.41). The

analysis will takes place alongside with Figure 3.14 that demonstrates the histograms

of point magnitude in the embedded space. Fundamentally, Figure 3.14 evaluates the

two methods in terms of preserving the lower dimensional representation of the dataset.

The results indicate that the overall performance of PCA and DCT in terms of ε is very

similar. DCT demonstrates a slightly better performance in terms of the particular

criterion. However, this performance takes place for a higher K compared to PCA.

We here tune K such that the two methods have a relatively close performance. By

tuning K for DCT to be equivalent to the one for PCA, DCT will demonstrate a lower

performance compared to PCA. A closer look at the magnitudes of points provides

an intuition why this phenomenon occurs. In particular, nearly 3000 ||φ̂i||’s have a

magnitude ||φ̂i|| “ 1 that means that these points retain their energy from RN to RK

(note that ||φi|| “ 1 within the OMP setting). This results to a distance between

these points which is identical from RN to RK as explained in (3.32). However, for the

bulk of points for both methods have a magnitude that lives within the range r0.95, 1s

that explains their very similar performance. However, PCA demonstrates this sort

of performance in lower dimensions than DCT that can be interpreted as the benefit
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Figure 3.14: Points magnitudes in RK

of utilizing a data aware operator (i.e. PCA) compared to a data oblivious one (i.e.

DCT). Nevertheless, DCT serves the purpose of acceleration as well.

ECDFpεq “
1

`

|Φ|
2

˘

M
ÿ

i“1

M
ÿ

j‰i

|||φi ´ φj || ´ ||φ̂i ´ φ̂j |||

||φi ´ φj ||
ď ε. (3.41)

In order to provide an intuitive analysis on that aspect of the problem, i.e., the

distortion of the underlying structure, we sketch the following example. We consider an

input signal y and a dictionary Φ̂ in RK for K “ 250 and K “ 150 accordingly. Let us

assume that NN250 “ NN150 “ 1. Then the associated bound is dpy,φ1q in both cases.

Nonetheless, the update step of the algorithm will have a different workload. This is

due to the alteration on the underlying structure of the dictionary. In particular, due

to the fact that the associated operator explicitly shrinks distances, then the points are

mutually getting closer from R250 to R150. This will eventually lead to an update step

where |S| “ N .

For the next part of this section we are discussing an explicit case that characterises

non–isometric embeddings i.e., the pairwise distance may collapse: ||φ̂i´φ̂j || « 0. Note

that this sort of scenario does not take place at the results demonstrated in Figure 3.13.

In cases where ||φ̂i ´ φ̂j || « 0 then ε « 1 which is not the case for PCA with K “ 210

or DCT with K “ 370 either. However, this is a scenario that may occur for lower K’s

or in other datasets. In order to address this aspect from the perspective of AE–NN

we sketch the example demonstrated in Figure 3.16. In particular we are considering

||φ̂µ ´ φ̂5|| « 0, while ||φi ´ φj || “ ||φ̂i ´ φ̂j || for the rest of the pairs. In such case

any time where NNK “ 5 or NNK “ µ then 5, µ P S. However, the most important

parameter for AE–NN is what happens with the vast majority of distances. So, in this

particular scenario |S| “ 2 instead of |S| “ 1 which is the ideal scenario for AE–NN.
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This minor additional cost will not affect the overall performance of the algorithm.

For the next set of simulations, we use a dictionary Φ of Swiss Roll data [96]

which is a synthetic machine Learning dataset of points that live on a 2–D manifold

embedded in R1507. We generate a point cloud of M “ 4041 points. We repeat the same

simulation settings that we used for Raman. For AE–NN FNNOMP we set K “ 3.

The obtained results are demonstrated in Figure 3.17.

AE–NN FNNOMP is faster than FNNOMP but with a bigger margin, up to 25

times, this time. Given that the two dictionaries have similar dimensions M,N a

natural question that rises is why we pick different K at each time and essentially

affect the acceleration of AE–NN FNNOMP over FNNOMP. The main reason why

this phenomenon occurs is that the points in Swiss Roll dictionary have a much lower

dimensional representation compared to the ones in the Raman dictionary. In partic-

ular, we can embed the Swiss Roll dictionary into a lower K without causing a severe

deviation to the pairwise distances compared to the one performed for the Raman data.

3.9 Summary

In this chapter we introduced novel algorithms for the generic NNS problem. From

the perspective of the NNS problem, linear embeddings are renown for introducing

fast but approximate solutions to the given problem. Within the current work we laid

down the theoretical framework that guarantees the acquisition of the exact NN from

86



RK

RM

Brute force search in RM

Figure 3.16: Examples where the pairwise distance collapse.

the original space RM to its subspace RK . A novel algotithm for the standard NNS

problem is introduced as a result of the theoretical analysis.

The NNS problem finds application in several areas such as pattern recognition [65],

data mining [66], data compression [67], data mining [113] to name a few. Within the

current work we have a particular interest for Sparse Non–Negative signal processing.

We incorporated our algorithms in the structure of FNNOMP, that fulfills such task,

and we demonstrated the benefits of following such an approach in terms of acceleration.

Finally, we demonstrate that our algorithms employs benefits from a particular property

that may characterise natural signals, i.e., lower dimensional representation.
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Figure 3.17: Acceleration factor for Raman and Swiss Roll. The two datasets have
identical dimensions M “ 1507, N “ 4041. The acceleration factor varies due to the
fact that the associated point clouds have a different lower dimensional representation.
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Chapter 4

Signal Recovery and Robustness

4.1 Introduction

Within the current Chapter we are aiming to develop a framework that boosts the

performance of greedy techniques in terms of signal recovery. Our motivation arises

from the success that unfolded techniques have been introduced in the sparse coding

regime.

From the perspective of greedy techniques a critical parameter that affects the

overall performance is the selection step of the algorithm. The conventional approach

that incorporates the standard dictionary Φ at the selection step of the algorithm.

In such case the recovery performance of the greedy algorithm heavily relies on the

underlying structure of the known dictionary, i.e. several points may live close to each

other. As a result, a false positive may be introduced in the support set s.

In order to overcome these impracticalities, a potential approach is the design

of a selection rule that overcomes the limitations that may occur from the existing

approach. A critical parameter when following this sort of direction though, is what is

the price we have to pay in terms of computation. The classical approach, regardless

of the limitations that may occur in terms of signal recovery, is characterised by its

computational efficiency. In that sense a reformulation of the selection rule should

take computational efficiency into account as well. Otherwise, the comparison of the

new approach with the existing one may introduce a trade off between recovery and

computational workload, i.e. the new approach may be more efficient in terms of

recovery but more expensive in terms of computational complexity. Therefore, our work

is aiming to develop a selection rule that improves the recovery performance of greedy
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Algorithm 21 Non-Negative Matching Pursuit algorithm (NNMP)

1: initialisation: s “ H, k “ 0 and r0 “ y
2: while k ă K & maxpΦTrkq ą 0
3: sk “ 0
4: pζ, ιq Ð maxpΦTrkq
5: skrιs “ ζ
6: rk`1 Ð Ptrk ´ ζφιu
7: k Ð k ` 1
8: end while
9: xÐ

ř

k sk

techniques but in the same time maintains the computational workload introduced by

the conventional frameworks.

We here introduce DeepMP, a novel sparse decomposition deep neural network. We

evaluate the performance of DeepMP compared to the conventional OMP,MP frame-

works for sparse non–negative signal processing frameworks via simulations. We lay

down the theoretical foundation that guarantees that the network will only recover

ground truth atoms over the k layers. We compare our method with state of the art

sparse coding frameworks such as LISTA and preconditioning.

4.2 DeepMP

We here introduce Deep Matching Pursuit (DeepMP), a Deep Neural Network for

Sparse Non–Negative Signal Processing. The corresponding architecture can be un-

folded as a sequence of blocks, where each of the blocks follows the decomposition

process of Non–Negative Matching Pursuit (NNMP) introduced in Algorithm 21.

Starting with the measurement y as the current residual signal rk|k“0, the main steps

of NNMP are: a) finding the best matched atom φk to rk, and b) updating the residual

rk by subtracting the contribution of selected atom. The operator P is the identity

matrix.

From the perspective of DeepMP, each of the basic steps of NNMP takes the form

of a Neural Network layer. Step 4 of NNMP takes the form of a dense layer that

consists of N neurons of size M . By doing that, in practice we replace the conventional

dictionary Φ by a new set of weights W
pkq
f that varies over the blocks of DeepMP (we

use the index f to distinguish the set of selection step weights from the weights of

the update step where we use the index b). On top of the W
pkq
f layer we apply the

“hard-max” operation as the non–linear activation function, which is the projection

onto the best one–sparse set, also known as the 1–sparse hard–thresholding [105]. In
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Figure 4.1: One step of non-negative matching pursuit algorithm. rk and sk are respectively
the residual and the selected index at the kth step of algorithm.

Figure 4.2: DeepMP model: a representation of a single iteration of the NNMP algorithm
in the form of a two layer neural network with a skip connection. gf and gb are respectively
hard–max and linear/ReLU activation functions.

practice the“hard-max” operation replaces the standard “max” operation. Here the

term “max” has a dual interpretation: 1) the index of the atom with the highest

contribution 2) the corresponding coefficient. The replacement of the “max” operation

by the “hard-max” operation is done mainly for implementation purposes and in order

to be consistent with the conventional NNMP framework. The “hard-max” operation

can be summarised as a special case of the hard thresholding operator τpn, zq which sets

all the elements in n below z (in terms of mangitude) to zero. In case of the “hard-

max” operation n “ ΦT y and z “ max ΦT y. The conventional NNMP framework

recovers a set of indices, while DeepMP returns a sparse vector where the non–zero

indices correspond to the atoms that are selected at step 4 of the algorithm. At the

update step of DeepMP the standard dictionary Φ utilised by NNMP is replaced by a

new set of weights W
pkq
b . We then discard the contribution of the selected atom from

the available set of measurements rk. Finally, the activation function P is applied on

top of the vector–vector operation performed in step 6. The P function can be linear

(i.e. the identity matrix) or non–linear (i.e. ReLU [106]). The outcome of step 6 is

then passed to the next block of DeepMP.

In order to assure that the coefficients obtained at the selection step of the network

are always non–negative, there are two approaches we can follow depending on the

activation function P we incorporate at step 6 of the algorithm. In particular, in cases

where P is linear then some coefficients in rk may live in the negative orthant. This may

lead to a situation where the outcome of the selection step yields a negative coefficient.

The “hard-max” function by itself does not guarantee that the dominant coefficient is

non–negative. In order to prevent the return of a negative coefficient we apply ReLU

on top of “hard-max”. Hence in cases where the dominant coefficient is negative, the
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selection step of DeepMP will yield 0. Note that by following this sort of approach and

if we we keep W k
b “W

k
f “ Φ fixed while training, DeepMP will demonstrate identical

results with NNMP. In cases where P is ReLU, then rk always lives in the positive

orthant. However, this is not necessarily the case for the atoms in W k
f . Therefore, we

constrain the weights to be non–negative while training, i.e. W k
f “ |D

k
f | (where Dk

f

is the set of weights that was originally learnt by DeepMP). From a practical point of

view we do not observe a significant difference in between the two approaches in terms

of support recovery. A key characteristic of DeepMP, is that the consecutive blocks

consist of different set of weights W k
f . This comes in contrast with the conventional

NNMP framework where the same set of weights Φ are utilized over the k iterations.

The overall functionality of the decomposition process for DeepMP can be de-

scribed by means of a (non–linear) system of equations,

¨

˝

rk`1

xk`1

˛

‚“ gb

¨

˝

´W
pkq
b gf pW

pkq
f

T
rkq ` rk

gf pW
pkq
f

T
rkq ` xk

˛

‚, (4.1)

where gf and gb are respectively forward and backward functions which are hard-max

and P. Such a model can be represented as two layers of a neural network model per

single iteration of the algorithm. By concatenation of K blocks of Figure 4.2. The

depth of the network is then ruled by the signal k, i.e. the concatenation of k blocks

of Figure 4.2 generates k sparse signals. The network takes then the form of a DNN of

2k layers. x can then be reconstructed by superposition of sk.

In the conventional MP frameworks, the successful recovery of s heavily relies

on the selection step of the algorithm where we select the atom in Φ that has the

highest contribution in the input signal. The core idea that DeepMP relies on, is the

representation of a conventional framework such as NNMP by means of a Deep Neural

Network. By fixing the weights of the network to be the same to Φ over the k layers

and setting P to be linear we obtain a structure that has identical performance to

NNMP. The main motivation of this type of approach is that by introducing a data

adaptive framework such as DeepMP, while training, the deep structure introduces a

better performance in terms of support–signal recovery compared to NNMP.

During the training process, DeepMP is provided with a set of artificial mixtures y

which are k sparse with respect to Φ. The model yields a sparse set s‹ which is gradually

constructed over the k layers of the model while decomposing y. The performance of

the model is then evaluated with respect to the fidelity in between s (the ground truth

support vector) and s‹. In that sense, the different sets of weights W k are learned while

optimizing the fidelity in between s and s‹. At an initial stage we set W k
f “ Φ. This
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DeepMP NNMP

Sensing step kMN MN

Update step kM kM

Numerical Operations kMN+kM kMN+kM

Table 4.1: Comparison in between DeepMP,MP in terms of numerical operations over
k

is done given that the standard dictionary Φ is considered as a good starting point

and from a practical point of view as the set of weights that yields a known empirical

bound in terms of sparse code fidelity. While training we start from this bound, which

is considered as the lower empirical bound, and we are aiming to learn sets of weights

that improve this bound. On the other hand we keep W k
f “ Φ fixed while training

given that empirically it demonstrates better performance.

From a more practical point of view, the reformulation of a conventional algorithm

in a form a Neural Network releases the degrees of freedom within the decomposition

process. In particular, given that a different set of weights is utilised over the k different

layers at the selection step of the algorithm, a higher number of parameters is utilised

over DeepMP compared to NNMP. The latter is presented in more detail in Table 4.1.

In particular, the sensing step of DeepMP utilises k, different dictionaries each of them

having MN parameters, over the different layers of DeepMP that results to an overall

number of kMN parameters on the sensing step of the network. On the other hand,

NNMP utilises the same set of weights Φ over the k iterations that results to an overall

number of MN parameters during the decomposition process. On the other hand at

the update step, the two frameworks consist of a total number of kM parameters. In

that sense, even if we utilise a W k
b ‰ Φ at the particular step we do not expect that it

will result to a marginal improvement in the overall process. Note also that the number

of parameters at the particular step is marginally smaller than the one corresponding

at the selection step, in that sense the particular step is not expected to have a role as

vital as the sensing step. From the perspective of computational complexity though,

the two frameworks carry out an identical workload. Even though the dictionaries W k

may differ to Φ in terms of weights, they are identical in terms of dimensions. In that

sense, the two frameworks conduct the same number of numerical operations.

The main task of DeepMP is to recover the atoms that constitute the input signal

y. In practice the corresponding architecture performs a multilabel classification task

[27]. The input signal y is decomposed with respect to the corresponding classes, while
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the weights are learned by optimizing the categorical cross–entropy loss function,

Hpp, qq “ ´

|Φ|
ÿ

j“1

1sapjqlog ppj, iq (4.2)

where i corresponds to the i–th sample, j is the index of atoms and 1sa : I Ñ t0, 1u is

the indicator function, defined as:

1spjq “

#

1 if j P s

0 if j R s

Note that we do not use backpropagation while training.

4.2.1 Sparse Signal Decomposition

The main motivation for introducing an unfolding scheme is that this type of approach

increases flexibility approach in the selection of the MP type algorithms. By doing that

we are aiming to improve the prediction rate on the support set and eventually reduce

the residual error compared to the standard MP framework.

Considering the set of sparse signals which are the main focus of the current work,

the main goal of the decomposition algorithm is to identify the atoms which build up

the input signal y with non–negative weights as follows:

y “
k
ÿ

l“1

awφi. (4.3)

with aw „ U r0, 1s, where U r0, 1s stands for the uniform distribution with 0 mean and

unit variance.

The overall process can then be represented as an iterative algorithm. A common

phenomenon that frequently takes place during the decomposition is the selection of

unrelated atoms in the support set sa, over the iterations of the algorithm.

The main reason why this phenomenon occurs, is the similarity between the atoms

φφφi. In cases where the algorithm operates over a dictionary where the constituent atoms

are highly coherent with each other, the algorithm may introduce a false positive to the

support set s. Coherence measures the maximum similarity between two distinctive

atoms of Φ. Given a pair of points φi,φj P Φ where i ‰ j, the coherence can be

formulated as follows:
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M N lr final lr epochs

Synthetic data 30 200 1e´ 3 0.1 20

Raman dictionary 503 2521 1e´ 3 0.1 30

Table 4.2: Dimensions of the datasets and training parameters for each of the associated
networks.

µpΦq “ max
i‰j

|xφφφi,φφφjy|

||φφφi||2 ¨ ||φφφj ||2
(4.4)

where || ¨ ||2 indicates the Euclidean norm. By introducing the matrix W
pkq
f at the

selection step of the algorithm, we are aiming for the points to be represented in a

way that the mutual coherence of the points will decrease. In that sense by training

the network we are expecting that the coherence of the corresponding representation

W
pkq
b yields an outcome where ideally µpΦq ě µpW

pkq
f q, where µpΦq and µpW

pkq
f q are

respectively the coherence in Φ and W
pkq
f .

4.3 Experiments

Within the current section we evaluate the performance of DeepMP by some sim-

ulations. In order to evaluate the performance of DeepMP we are considering two

datasets; a synthetic dataset Φ P RdˆN` . The dictionary was randomly generated with

an i.i.d. normal distribution and then projected onto the positive orthant and column

normalised. A real dataset of Raman spectra, where each of the spectras consists of

503 wavenumbers that lay within the range of 306 to 1249 cm´1, provided by [61] . We

perform a number of 150000 trials for each dataset where only W
pkq
f s were trained in

the M -space while W
pkq
b “ Φ. This essentially means that we only train the weights

that correspond to the selection step of the algorithm while the weights that correspond

to the update step are kept fixed.

The DeepMP framework is optimized using the AdaBound algorithm [107]. More

details about the datasets and the settings for the AdaBound algorithm can be found

in TABLE 4.2.

As an evaluation metric for the exact recovery of the support set we are using the

normalized Hamming distance complement [108]. The metric is defined as in (4.5).

HCpsa, sgq “
N
ÿ

n“1

1´
|sapnq ´ sgpnq|

k
(4.5)
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Figure 4.3: The performance of different MP frameworks with the Raman dictionary.

where sa is the support set acquired by the corresponding algorithm and sg the ground

truth, k is the sparsity level and | ¨ | the cardinality operator. The performance on the

reconstruction error for each sparsity k is evaluated with respect to ε as follows:

εpkq “
1

Z

Z
ÿ

z“1

||yrzs ´Φxrzs||2
||yrzs||2

, (4.6)

where Z is the number of realizations.

A basic expectation while training the selection step of the algorithm is the varia-

tion of the coherence between wk
i ,w

k
j columns of W

pkq
b . For the particular aspect of the

problem we use the empirical cumulative distributed function (ECDF) as introduced

in equation (4.7):

µECDFptq “
1

`

|Φ|
2

˘

M
ÿ

i“1

M
ÿ

j‰i

µpφφφi,φφφjq ď t. (4.7)

where t P r0, 1s.

4.3.1 Results

We here perform a simulation based evaluation of the different MP frameworks. We are

particularly interested in signals which are very sparse. Hence we consider mixtures
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Figure 4.4: The figure demonstrates the performance of the different MP frameworks
for the Synthetic dictionary.

of signals y that consist of up to 5 atoms. From the perspective of the DeepMP

framework this corresponds to concatenation of up to 5 different versions of the model

with a varying depth over sparsity. These versions are independent, i.e. the 1st layer

is different from the one model to the other. The obtained results for the Raman data

and the synthetic data are demonstrated in Figures 4.3 and 4.4 accordingly.

As it can be seen from the results, DeepMP outperforms the NNMP and FNNOMP

[10] with respect to the Hamming distance complement, while FNNOMP significantly

outperforms NNMP. This essentially means that the higher number of parameters at

the selection step of DeepMP introduces a more flexible approach which leads to a

better exact recovery performance. The advantage of DeepMP becomes more significant

over sparsity having less sparse signals, i.e. larger k. Hence, despite the fact that

the performance of all the MP frameworks decays with K, the flexibility of DeepMP

leads to a slower decay over sparsity and hence getting a better performance compared

to FNNOMP and NNMP. The ε–error results also indicate that the improved exact

recovery, leads to a better performance on the reconstruction of the input signal y.

Despite demonstrated good results using DeepMP, a question is why it outperforms

NNMP and FNNOMP. While a rigorous answer to this question is left for the future,

we demonstrate the µECDF’s of the two dictionaries and the trained model trained for

k “ 5 in figure 4.5. As it can be seen from the results, the network generates weight

matrices with reduced coherences compared to the original ones. In that sense, the
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(a) Raman dictionary

(b) Synthetic dictionary

Figure 4.5: The coherence of the Raman dictionary and the synthetic dictionary in
comparison with the coherence of the weight matrices of DeepMP for k “ 5.

corresponding point clouds consist of a set of atoms which are further apart the one

to the other. This essentially means that DeepMP alters the underlying geometry of

the selection step to avoid a misclassification. Given that the points are further apart,

i.e. smaller coherence in average, the algorithm can easier pick the right atom without

confusing it with its neighbors.

4.4 DeepMP and Exact Recovery

From a practical point of view, the outcome of DeepMP is that we replace Φ by a

different representation matrix. This sort of modification has similarities with the

so–called preconditioning framework introduced in [29]. A key characteristic of this

approach is that the MP functionality is split into two main steps: 1) sensing step (step 4
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DeepMP Preconditioning

Sensing step kMN MN

Update step kM kM

Numerical Operations kMN+kM kMN+kM

Table 4.3: Comparison in between the Preconditioning framework and DeepMP in
terms of computational cost.

in NNMP) 2) reconstruction step (step 6 in NNMP). The main scope of preconditioning,

is the design of a sensing matrix Ψ that improves the performance of the MP framework

in terms of support recovery compared to Φ. Despite the practical similarities between

DeepMP and the preconditioning framework, there are two basic differences between

the two approaches.

The first difference in between DeepMP and preconditioning is in the process upon

which the representation matrices are acquired. From the perspective of DeepMP the

model is trained to reconstruct artificial signals with respect to the exact recovery of the

support set as introduced in (4.2). We thus indirectly enforce the network to construct

layouts of representation matrices W k with lower cumulative coherence. The latter

will be more analytically demonstrated at Section 4.7.

On the other hand, the preconditioning framework finds the representation matrix

Ψ by solving the optimization problem introduced in (4.8).

min ||G´H||F , (4.8)

where G “ ΨTΦ and H a N ˆ N matrix with Hii “ 1 and |Hij | ď µ for i ‰ j. By

following this type of approach, the main goal is the construction of a representation

matrix Ψ, for the dictionary Φ, that gives low cumulative coherence and eventually

leads to a better performance in terms of support set reconstruction.

The second difference is related to the flexibility of each approach. In [29], Φ is

replaced by a single set of weights Ψ which is fixed over the iteration k. In contrast,

DeepMP consists of a sequence of matrices W k’s that varies over k providing a higher

degree of flexibility. In summary, the preconditioning framework incorporates an overall

number of parameters MN in the decomposition process while in case of DeepMP the

number of parameters is kMN as expressed in section 4.3.

Inspired from the theoretical results of [29] and considering a number of iterations

k (number of layers in DeepMP), the following theorem states the conditions that a

correct atom is selected at each of the layers of DeepMP. Note that within our analysis
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we introduce some sort of abuse in the standard terminology of the mutual coherence

term, as defined in (4.9), given that we use these terms for non–normalized W k’s. The

minimal coherence term introduced in (4.10) corresponds to the similarity in between

a dictionary element φi and its corresponding representation in W k.

µ̄wpΦ,W
k,Kq “ max

|s|“K
max
iRs

ÿ

jPs

|xW k
i ,φjy| (4.9)

βpΦ,W kq “ min
i
|xW k

i ,φiy| (4.10)

Theorem 1. Let y be an exactly K–sparse signal in Φ, with support s, i.e.

y “
ř

iPs xiφi. Deep Matching Pursuit with linear P using representation matrices

W k’s, selects components of the true support s, and its complement s̄ if for every K

we have,

||pΦT
sW

k
s q
´1ΦT

s W
k
s̄ q||1,1 ă 1, (4.11)

where in general ||A||p,q “
řN
j“1p

řM
i“1 |aij |q. (4.11) is always satisfied if,

µ̄wpΦ,W
k,Kq ` µ̄wpΦ,W

k,K ´ 1q ă βpΦ,W kq (4.12)

From (4.12) it follows:

µ̄wpΦ,W
k,K ´ 1q ă βpΦ,W kq “ą

“ą µ̄wpΦ,W
k,K ´ 1q ´ βpΦ,W kq ă 0

(4.13)

Proof. Given an input signal y “
ř

iPs xiφi and under the assumption that correct

atoms have been selected up to layer k, then the residual rk is still a linear combination

of the atoms in the true support:

rk “ y ´
ÿ

jPsk

bjφj “
ÿ

iPs

xiφi ´
ÿ

jPsk

bjφj “
ÿ

iPs

ciφi “ Φsc, (4.14)

where sk Ă s.

DeepMP selects a correct atom at the next layer, if the maximal contribution of

an atom in the support s: maxiPs |xW
k
i , rky| is larger than the maximal contribution of

an atom in the complement support s̄, maxjPs̄ |xW
k
j , rky|. Hence, we have to make sure

that the following inequality holds:

maxjPs̄ |xW
k
j , rky|

maxiPs |xW k
i , rky|

“
||pW k

s̄ q
Trk||8

||pW k
s q

Trk||8
ă 1 (4.15)
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We can use now the p, q–matrix norms for 1 ď p, q ď 8, defined as ||C||p,q “

max||x||p“1||x||q. Inserting r “ Φsc into (4.15) and under the assumption that pW k
s q

TΦs

is invertible , where z “ pW k
s q

TΦsc, we can bound (4.15) as follows:

||pW k
s̄ q

TΦsc||8
||pW k

s q
TΦsc||8

“
||pW k

s̄ q
TΦsppW

k
s q

TΦsq
´1z||8

||z||8
,

ď ||pW k
s̄ q

TΦsppW
k
s q

TΦsq
´1||8,8,

(4.16)

If we use the following duality norm relationship ||pW k
s̄ q

TΦsppW
k
s q

TΦsq
´1||8,8 “

||pΦT
s W

k
s q
´1ΦT

s W
k
s̄ ||1,1 we show that (4.11) is sufficient condition for exact recovery.

In the second part of the proof, we show that (4.12) implies (4.11). The first step

is to use the subaddition property of the norm as follows:

||pΦT
s W

k
s q
´1ΦT

s W
k
s̄ ||1,1 ď ||pΦ

T
s W

k
s q
´1||1,1||Φ

T
s W

k
s̄ ||1,1 (4.17)

The second term in the right hand side of (4.17) can be bounded by the mu-

tual–coherence term as follows:

||ΦT
s W

k
s̄ ||1,1 “ max

jPs̄

ÿ

iPs

|xW k
j ,φiy| ď µ̄wpΦ,W

k,Kq, (4.18)

where given a matrix Φ P RMˆN , the l1,1 norm of Φ is defined as follows:

||Φ||1,1 “
M
ÿ

j“1

N
ÿ

i“1

|ai,j | (4.19)

In order to find an upper bound for the first term in (4.17), we employ the property

that in cases where ||C||1,1 ă 1 then ||IK ` C||1,1 ă p1 ´ ||C||1,1q
´1[109]. Set C “

ΦT
s W

k
s ´ IK ,where IK the identity matrix in RK , then it follows:

||C||1,1 “ max
iPI
p|xW k

i ,φiy ´ 1| `
ÿ

j‰i

|xW k
j ,φiy|q

ď 1´ βpΦ,W kq ` µ̄wpΦ,W
k,K ´ 1q

(4.13)
ă 1,

(4.20)

that results to the following:

||pΦT
s W

k
s q
´1||1,1 ď p1´ p1´ βpΦ,W

kq ` µ̄wpΦ,W
k,K ´ 1qqq´1

ď pβpΦ,W kq ´ µ̄wpΦ,W
k,K ´ 1qq´1

(4.21)
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By combination of (4.18),(4.21) we get the desired result:

||pΦT
s W

k
s q
´1ΦT

s W
k
s̄ ||1,1 ď

µ̄wpΦ,W
k,Kq

β ´ µ̄wpΦ,W k,K ´ 1q
ă 1 (4.22)

The outcome of the theoretical analysis fingerprints the conditions which are nec-

essary in order to recover only correct atoms over the k layers of DeepMP. Typically

greedy methods aim to obtain fast but approximate solutions. However, exact sup-

port recovery is of critical importance in several applications, i.e. Beamforming with

multiple targets where the task is the detection of location of each target [110], DNA

microanalysis [111], Raman spectroscopy [112] where i.e. the task is the detection of

hazardous materials that may be present in a chemical mixture etc. The bound intro-

duced in (4.22), is not incorporated while training DeepMP. This sort of approach could

be a future direction for the current work. However, by evaluating the cross coherence

function on W k’s after training, then for all the k’s that comply with (4.22), we can be

certain that the support will be recovered. The latter turns the process of testing the

performance of DeepMP in terms of support recovery into a redundant process for this

level of k. Essentially, this is one of the key advantages of model based learnt struc-

tures compared to ad hoc structures. The common practice for Deep Neural Networks

is that they are treated as black box machines that deliver outstanding results. From

the perspective of DeepMP, such an outstanding result, i.e. the full recovery of the

support, takes place because the weights of the network align with (4.22).

4.5 Practical Considerations for DeepMP

The selection of a correct atom does not necessarily mean that within the k iterations

we may acquire k different atoms. This is due to the fact that a previously selected

atom may be reselected i.e. |s| ă k after k iterations. The latter holds for the precon-

ditioning framework in general, i.e. for both MP and OMP. This is not the case i.e. for

the standard OMP framework where the residual vector rk is always orthogonal to a

previously selected atom i.e. xφi, rky “ 0,@i P s. Due to this property a new iteration

of OMP always comes up with a new atom in s.

In order to assure that DeepMP always selects a new atom per each layer we

introduce a modification on the standard framework for MP which is introduced in

Algorithm 20. In particular we set the value of the inner product in between the
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Algorithm 22 Matching Pursuit with Support Manipulation (MPSM).

1: initialisation: sup “ H, k “ 0 and r0 “ y
2: whilek ă K.
3: sk “ 0
4: S “ |ΦTrk|
5: Ssup “ 0.
6: pζ, ιq Ð maxS
7: skrιs “ ζ
8: sup “ supY ι
9: rk`1 Ð rk ´ ζφι

10: k Ð k ` 1
11: end while
12: xÐ

ř

k sk

current residual rk and the previously selected atoms to 0. This modification can be

incorporated by the standard preconditioning framework for OMP as well. The main

scope of this work is to learn a better set of weights W k
f compared to Φ. In practice, we

do not expect that this type of modification will have a significant impact on training.

4.5.1 DeepMP and Exact Signal Recovery

Addressing the multilabel classification task from a Sparse Signal Processing point of

view, this is related with the identification of the correct atoms that may contribute

within a mixture. The main goal from a Sparse Signal Processing point of view though,

is to acquire the exact coefficients in order to fully recover the input signal. From the

perspective of the standard MP framework though , and consequently for DeepMP, the

exact recovery of s does not guarantee the exact recovery of xs.

In order to assure that DeepMP recovers xs exactly, any time s is reconstructed

exactly as well, we introduce an additional step to the framework. A renown approach

for exact signal recovery, given that the atoms are identified correctly, is to apply the

pseudoinverse Φ: “ pΦT
s Φsq

´1ΦT
s . It is well known that the pdeudoinverse recon-

structs in input signal exactly if the exact support set s is provided. The latter can be

demonstrated as follows:

y “ Φsxs “ą ΦT
s y “ ΦT

s Φsxs “ą pΦ
T
s Φsq

´1ΦT
s y “ xs. (4.23)

Note that the output introduced in (4.23) holds, as long as φi,φj are linearly indepen-

dent @i, j P s.

Therefore, we introduce a modified version for DeepMP in Algorithm 23 which

incorporates the pseudoinverse as a part of the process in order to guarantee the exact
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Algorithm 23 Deep Matching Pursuit algorithm (NN DeepMP)+Pseudoinverse

1: initialisation: s “ H, k “ 0 and r0 “ y, x “ 0
2: while k ă K & maxpΦTrkq ą 0
3: sk “ 0
4: S “ ΦTrk
5: Ssup “ 0.
6: pζ, ιq Ð maxS
7: skrιs “ ζ
8: s “ sY ζ
9: rk`1 Ð Ptrk ´ ζφιu

10: k Ð k ` 1
11: end while
12: xs Ð pΦT

s Φsq
´1ΦT

s y

acquisition of xs when s is fully recovered after k iterations. In practice by introducing

the update step on DeepMP we update the coefficients acquired over the layers of the

network. The latter can be incorporated at the general MP framework as well.

4.6 Comparison LISTA–DeepMP

The essential need for algorithms that perform well in terms of signal reconstruction

but, in the same time, they are computationally appealing was the main motivation

of the authors to propose the Learned Iterative Soft Thresholding (LISTA) framework

in [90]. The main characteristic of LISTA is that for the same number of iterations it

outperforms ISTA in terms of signal reconstruction as defined in (4.24).

ε “ ||x´ x‹||2 (4.24)

, where x the ground truth vector and x‹ the approximation obtained by the algorithm.

In practice, each iteration of ISTA corresponds to a layer of LISTA that consists of two

blocks W and S which are learned via training. In order to draw the connection in

between ISTA and LISTA, W corresponds to 1
LΦ while S corresponds to I ´ 1

LΦT 9Φ,

where I the identity matrix. Another key difference is that the non–linear function

ηλ{L is represented as: ηθ “ signpxqmaxp0, |x| ´ θq, where θ is a vector, where θi “
α
L .

α a parameter which is manually tuned while L is the maximum eigenvalue. A key

Algorithm 24 Iterative Shrinkage Thresholding Algorithm.

1: initialisation: x “ ~0, L ą largest eigenvalue of ΦTΦ
2: whilek ă some fixed threshold
3: xk`1 “ softpz, θqpxk ` 1

LΦT py ´ Φxkqq
4: end while
5: xÐ

ř

k sk
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difference of LISTA compared to ISTA is that θk(note that k for the LISTA notation

corresponds to a layer of the NN and not in the level of sparsity as it is commonly

used in the sparse signal decomposition framework) is learned over the layers instead

of being manually tuned. Similarly to DeepMP the weight matrix Φ is also replaced

by learned weights W . The authors in [91] introduced a bound over the residual error

for a sparse signal. In particular the error is bounded as follows:

||xk ´ x||2 ď pBexpp´ckq, (4.25)

where B ą 0, c ą 0 and p “ ||x||0. Note that k in this framework corresponds to the

number of layers and not in the level of sparsity which is the trivially used notation in

the sparse signal decomposition regime. Essentially the bound states, that the recovery

error converges to 0 as the number of layer goes to infinity. In practice, this means

that in cases where exact signal recovery is the preliminary goal, the associated com-

putational cost would be intractable given that the latter requires an architecture with

an infinite number of layers (or an infinite number of iterations from the perspective of

an iterative scheme). It is also worth mentioning that the bound introduced in (4.25)

holds under the following constraint:

k ă
p1` 1

µ̃q

2
(4.26)

where k corresponds to the number of non–zero coefficients (level of sparsity in the

signal) and µ̃ is defined as in (4.27):

µ̃ “ max
i‰j

|W̃i
T

Φj | (4.27)

, where W the set of training weights.

Note that for a similar type of bound where,

s ă
p1` 1

µq

2
(4.28)

, with

µ “ max
i‰j

|ΦT
i Φj | (4.29)

introduced in 4.26 the author in [45, pp.2] has proven that OMP recovers x in

exactly |s| steps. The latter corresponds to a finite number of steps and consequently

to a computationally tractable scheme. In that sense, implementing OMP for signals
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following the bound introduced in 4.26 is a computationally efficient approach assuming

in cases where the exact recovery of a signal is the main goal. Nevertheless, it is worth

mentioning that the author in [45] introduced a more relaxed bound with respect to

the Babel function (4.30) which can be summarised as in (4.31).

µ1ps,Φq “ max
i

max
|s|“K,iRs

ÿ

jPs

|xφi, φjy| (4.30)

, where s the support set.

µ1psq ` µ1ps´ 1q ă 1 (4.31)

In order to familiarise the reader and explain why we call the bound introduced in

(4.31) more relaxed than the one in 4.26, we will first rewrite the bound in 4.26 as

follows:

s ă
1

2
p
1

µ
` 1q “ą 2s ă

1

µ
` 1 “ą 2sµ ă 1` µ “ą 2sµ´ µ ă 1 (4.32)

The Babel function introduced in (4.30) can be upper bounded as follows:

µ1psq ď sµ (4.33)

, and therefore

µ1ps´ 1q ď ps´ 1qµ (4.34)

(4.33)`(4.34)
“ą µ1psq ` µ1ps´ 1q ď sµ` ps´ 1qµ “ 2sµ´ µ ă 1 (4.35)

Hence, the bound introduced by the Babel function as introduced in (4.31) is smaller

than the bound introduced in (4.28) and with respect to the reformulation introduced

in (4.32).

By following the guidelines introduced by the author in [45] we can relax the bound

for LISTA with respect to the Babel function as follows:

µ̄wpsq ` µ̄wps´ 1q ă βw (4.36)

µ̄wps,Φ,W
kq “ max

i
max

|I|“s,iRI

ÿ

jPI

|xW k
i ,φjy| (4.37)
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βwpΦ,W
kq “ min

i
|xW k

i ,φiy| (4.38)

Note though that the authors in [91] consider that W T
i Φi “ 1, hence βw “ 1, and

consequently the equation introduced in 4.12 can be rewritten as follows:

µ̄wpsq ` µ̄wps´ 1q ă 1 (4.39)

By following the same methodology with the bounds for OMP, we can show that:

µ̄wpsq ` µ̄wps´ 1q ď 2sµ̃´ µ̃ ă 1 (4.40)

The relaxation on the bound corresponds to the structural relationship in between

the weights of LISTA which is evaluated with respect to coherence. Nevertheless, the

fact that LISTA needs and infinite number of layers, i.e., iterations, to recover these

types of signals exactly remains the same. In contrast, from a theoretical point of view

DeepMP+Pseudoinverse guarantees the acquisition of the exact signal within k layers

(iterations) where k is a finite number.

From a practical point of view, DeepMP and LISTA share a common characteristic:

They are model based Deep NN’s, i.e. the corresponding structure is a reformulation

of an existing algorithm, which comes on contrast with the commonly followed practise

in Deep NN’s where the models are constructed on an ad hoc basis. However, the two

models are fundamentally different in the sense they are aiming to solve a different

optimization problem which is (2.30) and (2.23) for DeepMP and LISTA accordingly.

From a training perspective key difference of the two approaches is that LISTA learns a

set of parameters θ except from the weight matrices. This is not the case for DeepMP

though. However, we can develop a customized cost function, i.e.: |y´Φx|`λ|x|1, where

λ ą 0 could be a constant learned via training. A results based practical comparison

in between the two models is provided in section 4.7.

4.6.1 Computational Complexity LISTA–DeepMP

Within the current section we will discuss about the computational complexity of the

standard version of ISTA and MP. Note that the main motivation for unfolding a

Neural Network (NN) in the form of these algorithms, is to boost their performance in

terms of signal recovery while maintaining their appealing computational complexity.

In that sense, the complexity analysis holds for both ISTA and MP , regardless their

formulation (conventional or NN). Given a dictionary Φ P RMˆN , the computational
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Figure 4.6: Comparison with respect to Hc synthetic data, N “ 40.

complexity of MP for a single iteration , with respect to the selection step (step 4 in

(Algorithm 1)) and the update step (step 7 in Algorithm 2) , can be summarised as

follows: kpMN `Mq “ kMpN ` 1q « MNpfor a very large Nq. The complexity of

the algorithm scales linearly over the number of iterations k. From the perspective of

LISTA the computational complexity can be summarised as follows : k2MN`MN . By

evaluating the two algorithms one by one in terms in terms of computational complexity

and assuming that they perform the same number of iterations k, we can obtain the

following outcome:

Acceleration “
Numerical operations LISTA

Numerical operations MP

“ lim
kÑ8

MN ` 2k ¨MN

kMN

“ lim
kÑ8

2k ¨MN

k ¨MN
`

MN

k ¨MN
“ lim

kÑ8
2`

1

k
“ 2

(4.41)

The outcome of (4.41) simply states that ISTA, and consequently LISTA, is 2 times

slower than (Deep) MP. Note that the analysis is somewhat general and does not

consider the case of having a structured dictionary that may help us having a fast

dictionary–coefficient multiplication.

4.7 Results

We perform a simulation based comparison between different frameworks for sparse

decomposition with the non–negativity setting. The evaluation takes place with respect

to three datasets: 1) A set of synthetic data: We generate a random dictionary Φ P

RMˆN with M “ 30. For the particular dataset we are considering two different cases

107



for N : a) N “ 40, b) N “ 200. We then project Φ on the positive orthant, then

the unitary ball. This particular dataset will be used as the baseline dataset for the

remainder of the current section, unless it is explicitly mentioned. 2) A dataset of

Raman spectra provided by [61].

We first start with a comparison with the preconditioning framework. In par-

ticular we consider three different MP frameworks: 1) DeepMP, and 2) NNMP with

preconditioning and 3) FNNOMP with preconditioning.

We compare the performance of the two versions of DeepMP compared to NNMP

and FNNOMP [10] with respect to the exact recovery of the support set. As an eval-

uation metric for the exact recovery of the support set we are using the normalized

Hamming distance complement [108] defined as follows (4.42),

HCpsa, sgq “
T
ÿ

t“1

1´
|saptq ´ sgptq|

k
, (4.42)

where T the number of test samples. sgptq is the ground truth sparse vector that

consists of 0’s and 1’s. The nonzero indexes of the vector correspond to the labels

of the atoms that contribute to yptq and form the support set s. saptq corresponds

to the support set, that takes the form of a sparse vector, acquired by each of the

decomposition algorithms.

We generate a number of 500K samples for each level of sparsity and from them

we train the models with respect to 425K while the remaining 75K points are the test

samples. The coefficients are drawn from a uniform distribution of zero mean and unit

variance. We optimize the models with respect to the adabound [107] optimizer with

the settings presented in Table 4.4.

We will start the evaluation with respect to HC for the Random dictionary with

N “ 40. The obtained results are demonstrated in Figure 4.6. As it can be seen

from the results, DeepMP outperforms NNMP and FNNOMP with preconditioning

with respect to particular metric. Both frameworks demonstrate identical performance

M N lr final lr epochs

Synthetic data 30 40 1e´ 3 0.1 10

Synthetic data 30 200 1e´ 3 0.1 20

Raman data 503 2521 1e´ 3 0.1 30

Table 4.4: Dimensions of the evaluation datasets and training parameters of the asso-
ciated networks.
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Figure 4.7: Comparison of β and cross coherence for Synthetic data, N “ 40.

HCp1q “ 1. Hence both frameworks fully recover s for k “ 1. However, HCp2q “ 1

for DeepMP while HCp2q “ 0.98 for both NNMP and FNNOMP with preconditioning.

This essentially means, that DeepMP fully recovers s for k “ 2 as well. A closer look

to the growth of the cross coherence over k for DeepMP are demonstrated in figure 4.7

provide a better understanding why this phenomenon occurs. In particular, it is lower

than β for a k up to 2, therefore no spiral atom is introduced in s.

We will continue our comparison for the Random dictionary with N “ 200 and

the Raman dictionary. The obtained results are demonstrated in Figures 4.8 and 4.9.

The results indicate that DeepMP outperforms preconditioned NNMP and FNNOMP

in terms of HC . This essentially means that the performance of the MP framework can

be improved, in terms of support recovery by incorporating a series of representation

matrices W k compared to a single Ψ. The latter is not of surprise given that DeepMP

consists of an overall number of kMN parameters at the selection step compared to the
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Figure 4.8: Comparison with respect to Hc Synthetic data.
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Figure 4.9: Comparison with respect to Hc Raman data.

MN parameters of the preconditioning framework when incorporated at the structure

of the standard OMP,MP frameworks. Hence, DeepMP demonstrates a better perfor-

mance due to the higher degree of flexibility that characterises the model. This implies

that a sequential form of preconditioning introduces a more flexible approach compared

to the standard form of preconditioning. However, in case of the Random dictionary, in

contrast with the performance of the the network for N “ 40, HCp2q ă 1. The latter

indicates, that the growth of the coherence function and eventually the performance of

support recovery relies on the redundancy of the dictionary, i.e. N
M .

For the next stage of the comparison we will evaluate the cumulative cross –co-

herence function (4.12) for the representation matrices of DeepMP and the cumulative

cross–coherence function for the representation matrix Ψ of the preconditioning frame-

work. The obtained results for the Synthetic dictionaries and the Raman data are
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Figure 4.10: Cumulative (cross) coherence for Synthetic data.
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Figure 4.11: Cumulative (cross) coherence for Raman data.

demonstrated in Figures 4.10 and 4.11 accordingly. As it can be seen from the results

the cumulative cross–coherence the W k’s (where k “ 5 for DeepMP) is lower in both

the data. This results in an improved performance of DeepMP over the preconditioning

framework. The cumulative cross–coherence is much lower for the Synthetic data com-

pared to the Raman data. This results to a bigger margin in terms of support recovery

performance of DeepMP over the preconditioning framework for the two datasets.

Note the following, within our experimental analysis we tune the number of layers

k in DeepMP to be equal to s. However, there is no restriction to follow this sort

of approach for setting k in DeepMP. We can add more layers to the structure of

the network that increases the number of parameters and hence the flexibility of the

network, however this would result to an increase in the computational cost as well.

The k approach we follow here, essentially evaluates the performance of DeepMP and

greedy techniques in general, with respect to the ideal scenario i.e. retrieve the k

elements that constitute y within the first k iterations–blocks of each approach.

Within the so far conducted analysis we have not evaluated DeepMP with respect

some trivial challenges that characterise natural data i.e. the presence of noise. The

preliminary focus of the current work was to introduce some sort of interpretability into

Deep NN’s such as DeepMP. From the perspective of DeepMP this has to do with the

theoretical conditions that guarantee the acquisition of ground truth atoms within the

first k blocks of the model. This sort of analysis lays highlights that the development of

a training process that aligns with the theoretical criteria may boost the performance of

the model. This is left for a future work though. This comes in contrast with the widely

followed approach with Deep NN’s where the developed methodologies are treated as

some sort of black box machines that demonstrate outstanding results. However, the
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Figure 4.12: Comparison of the different Sparse Coding frameworks with respect to signal
reconstruction on the Synthetic data.

evaluation with respect to noisy data can take place in the results section of a future

submission. This sort of analysis may also extend this line of work to other aspects of

Deep NN’s i.e. generalization.

For the next step we conduct a comparison with respect to the exact signal recovery

in between DeepMP, DeepMP+pseudoinverse and LISTA [90]. We generate signals of

varying sparsity k “ 1, . . . 5. This results to an equivalent number of layers compared

with DeepMP. For the fairness of comparison, we follow the same principle for LISTA

in the sense that the number of layers is adapted to the sparsity of the signal. This

results in models that have relatively similar capacity. The two models are evaluated

with respect to their performance or recovering the ground truth sparse signal x as
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Figure 4.13: Comparison of the different Sparse Coding frameworks with respect to signal
reconstruction on the Raman data.
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Figure 4.14: Acceleration of DeepMP compared to LISTA

introduced in (4.43). Given that LISTA may not acquire exactly k coefficients, we

keep the k largest coefficients. Obtained results are demonstrated in Figure 4.12. Note

that B is the total number of test points, while xi is the ground truth signal, x‹i the

reconstructed signal by the recovery algorithm for the i–th test point.

ε “
1

B

B
ÿ

i“1

||xi ´ x
‹
i ||

2
2

||xi||22
(4.43)

As it can be observed in the results, DeepMP and its variant DeepMP+pseudoinverse

demonstrate a better performance in terms of signal reconstruction compared to LISTA.

The pseudoinverse introduces an improvement on the recovery of x at the cost of ad-

ditional computational costs. The decay in performance over sparsity highlights that

the task of signal reconstruction becomes more complicated and difficult while more

components contribute in the signal.

Finally, we will focus on the computational cost that characterises each of these

approaches, i.e. DeepMP and LISTA. The comparison is established with respect to

the metric introduced in the following,

Acceleration Factorpkq “
Time LISTApkq

Time DeepMPpkq
(4.44)

As it can be seen from the results, DeepMP is faster than LISTA, with an acceleration

factor of 2 over the iterations, which aligns with the analysis established in Section

4.6.1.
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4.8 Summary

In this chapter we have investigated the benefits that can be obtained by unfolding con-

ventional sparse signal decomposition frameworks and in particular NNMP by means

of a Deep Neural Network. We first compare our method with the conventional greedy

techniques for sparse non–negative signal decomposition techniques. The acquired re-

sults highlight that by learning dictionary layouts with lower coherence all over the

dictionary points, we can boost the performance of greedy techniques. We continue

by laying down the soil for drawing a theoretical analysis upon the performance of

DeepMP. By doing that we introduce interpretability of the results of DeepMP. We

compare DeepMP with the preconditioning framework. The results indicate that the

higher degrees of flexiblity implied by DeepMP results to an improved performance

compared to preconditioning. Finally, we compare DeepMP with LISTA a state of the

art framework for sparse decomposition. DeepMP outperforms LISTA in terms of sig-

nal recovery while in the same time introduces a decomposition framework with lower

computational cost. The performance of DeepMP may be improved in terms of signal

recovery by incorporating the pdeudoinverse outside the model.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Within the current thesis we focus on the improvement of greedy techniques from the

perspective of sparse non–negative signal processing with respect to two main direc-

tions: 1) acceleration, and 2) signal recovery. To do as such we formed a bridge in

between greedy techniques and data aware methodologies.

Our motivation is driven by the advantages that can be exploited via data aware

methodologies and may be incorporated in the structure of conventional sparse signal

decomposition techniques. The main characteristics of data we exploited here are,

from the perspective of acceleration, the lower dimensional representation that may be

present in natural data and can be exploited by data aware methodologies such as PCA.

From the perspective of signal reconstruction, the performance of the conventional

signal decomposition algorithms is one way or the other bounded by the underlying

structure of the standard dictionary Φ. A key characteristic of data ware methodologies

is that we can design dictionary layouts where atoms are mutually less coherent the

one to the other.

The standard exact nearest neighbor algorithms suffer from the so–called curse of

dimensionality in high dimensions. On the other hand, linear embbedings yield fast

but approximate solutions approximate solutions to the NN search problem. Within

the current work we laid down the soil for the development of a fast and theoretically

robust framework that guarantees the acquisition of the exact NN from RK to RN .

Within the current work we propose a novel algorithm for the generic NN problem.

In chapter 3, we demonstrated the benefits in terms of acceleration that can be obtained
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by incorporating such an approach within the structure of FNNOMP. We demonstrated

that our approach employs benefits from the lower dimensional representation of natural

data when present. We extended our results to the so–called MIPS problem.

The conventional decomposition schemes may demonstrate a poor performance

in terms of signal decomposition. On the other hand crafted learned frameworks for

sparse coding are characterised by a relatively high computational cost that makes the

prohibitive from the perspective of a real time application. The unfolding of conven-

tional signal decomposition algorithms such as MP, release the degrees of freedom of

the decomposition process of the conventional schemes. In the same time, it results to a

framework with a tractable computational workload. We demonstrated the benefits in

terms of signals reconstruction, by unfolding a conventional sparse non–negative signal

processing algorithm such as NNMP by means of Deep Neural network.

An extra benefit of unfolding is that it allows the introduction of some sort of

interpretability for the acquired results. This comes in contrast with the typical ap-

proach followed in the Deep Learning regime where Deep NN’s are treated as some

sort of black box machine. The empirical results as well as the conducted theoretical

analysis were demonstrated in Chapter 4.

An alternative approach that we could follow at this project would be the one

where we could explicitly focus on either of our two preliminary goals: 1) acceleration

2) robustness, and extend the so far acquired analysis–results. That would essentially

lead to a situation where e.g. from the perspective of acceleration we would focus on the

Nearest Neighbour problem and all the various techniques that we could deploy on top

of the ones we demonstrated on Chapter 3 of the current work. From the perspective

of robustness we could investigate how the existing model could be extended into other

scenarios i.e. train a model that incorporates a denoising process while training etc.

However, we chose to introduce a more comprehensive approach from the perspective

of greedy techniques and leave the these alternatives for future investigation.

5.2 Future directions

From the perspective of the NN search problem, we propose two algorithms: 1) A

theoretically robust algorithm for the explicit case where the associated operator strictly

shrinks distances, and 2) A heuristic but theoretically fragile algorithm for the general

case of operators.

The first question that could be answered in the future is whether a theoreti-
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cally robust framework could be developed for the general cases of linear operators

as well. From the perspective of operators that strictly shrink distances we utilized

PCA. Nonetheless, this does not necessarily mean that is the best operator to serve

the purpose. Designing a non–expansive operator that has the ability to retain the

structure of Φ with a minimal distortion in lower dimensions than PCA would result

to an acceleration of AE–NN. However, another direction could be the one where a

non–linear operator is incorporated within the embedding step of AE–NN. This sort of

operator would serve the purpose as long as it is a non–expansive one.

A critical parameter for the design of this operator would be the computational cost

of the embedding operation at step 1 of AE–NN. In particular the embedding operator

should introduce a computational cost of KM operations such that the associated

workload in step 1 is similar in between PCA and the new operator. The benefits of

following this approach would the the introduction of a smaller computational workload

at the the update step of the algorithm that eventually would lead to an acceleration

to the overall functionality of AE–NN.

Apart from the design of a linear or non-linear expansive operator, another direc-

tion could be the one where AE-NN is applied in other applications associated with

the standard NNS problem. This type of applications could be related with pattern

recognition [65],data mining [66], data compression [67], data mining [113] etc.

From the perspective of signal reconstruction a potentially new research direction

could be the one that performs denoising and decomposition on an integrated manner.

Note that within the current work we focus on the noiseless case and we demonstrate

the associated empirical and theoretical results.

The overall idea that DeepMP relies on is the unfolding of the k iterations of NNMP

within k layers of a Deep NN. A potential future direction could be the one where an

extra layer is be added that preceds the decomposition process. The main scope of the

particular layer would be to act as a denoiser. In the ideal scenario the DeepMP with a

denoising layer would perform identically in terms of signal desomposition to DeepMP.

The difference would be that DeepMP+denoising would be evaluated with respect to

noisy measurements while DeepMP would be evaluated with noiseless measurements.

Another approach is to integrate AE–NN with DeepMP. In particular, given a

set of k different sets of weights obtained via DeepMP after training we could apply

AE–NN on a per layer manner. In such case, we would transfer the weights W k and

plug them into an iterative scheme via blocking [114]. At each iteration k of that

scheme the associated set of weights W k would be loaded from the system memory.
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The search for each layer then, could be accelerated via AE–NN. In such case a different

operator Qk would be incorporated at each iteration of the algorithm associated with

the corresponding set of weights W k.
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