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Abstract

Few-shot learning aims to scale visual recognition to open-ended growth of new classes with
limited labelled examples, thus alleviating data and computation bottleneck of conventional
deep learning. This thesis proposes a meta learning (a.k.a. learning to learn), paradigm to
tackle the real-world few shot learning challenges.

Firstly, we present a parameterized multi-metric based meta learning algorithm (Rela-
tionNet2). Existing metric learning algorithms are always based on training a global deep
embedding and metric to support image similarity matching, but we propose a deep com-
parison network comprised of embedding and relation modules learning multiple non-linear
distance metrics based on different levels of features simultaneously. Furthermore, images
are represented as a distribution rather than vectors via learning parameterized Gaussian
noise regularization, reducing overfitting and enable the use of deeper embeddings.

We next consider the fact that several recent competitors develop effective few-shot learn-
ers through strong conventional representations in combination with very simple classifiers,
questioning whether “meta-learning” is necessary or highly effective features are sufficient.
To defend meta-learning, we take an approach agnostic to the off-the-shelf features, and focus
exclusively on meta-learning the final classifier layer. Specifically, we introduce MetaQDA, a
Bayesian meta-learning extension of quadratic discriminant analysis classifier, that is comple-
mentary to advances in feature representations, leading to high accuracy and state-of-the-art
uncertainty calibration performance in predictions.

Finally, we investigate the extension of MetaQDA to more generalized real-world scenarios
beyond the narrow standard few-shot benchmarks. Our model achieves both many-shot and
few-shot classification accuracy in generalized few-shot learning. In terms of few-shot class-
incremental learning, MetaQDA is inherently suitable to novel classes growing scenarios.
As for open-set recognition, we calculate the probability belonging to novel class by Bayes’
Rule, maintaining high accuracy in both close-set recognition and open-set rejection.

Overall, our contributions in few-shot meta-learning advance state of the art under both
accuracy and calibration metrics, explore a series of increasingly realistic problem settings,
to support more researchers and practitioners in future exploration.
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Chapter 1

Introduction

Machine learning is an important branch of Artificial Intelligence (AI). It is the study of
learning from experience (data) to train a program (model) and therefore to solve a problem
(task), like humans can do. However, conventional machine learning algorithms require an
abundance of labelled data to build a standard training paradigm to solve a specific task,
and lack the capacity to learn from only a few instances. Meta learning aims to address
this by improving the learning algorithm itself through a learning-to-learn process. This
provides a mechanism to tackle some challenges in contemporary meta learning applications
such as few-shot learning in computer vision. That is, how we can leverage prior knowledge
to recognize new categories based on only a few labelled samples. This thesis focuses on
meta-learning algorithms based on statistics and deep learning approaches, and explores a
series of few-shot learning problems from simple academic benchmarks to more challenging
real-world scenarios, which aims to achieve the state-of-the-art performance and provide
guidelines to further research.

1.1 Background
Deep-learning based approaches have yielded great successes when applied to numerous
fields, such as image classification, speech recognition, language translation and robotics [56,
149, 26]. This is partly due to the development of powerful computing resources, such as
GPU clusters and distributed high-performance platforms, and enormous benchmark datasets,
e.g., ImageNet [25] and MetaDatast [164]. Modern machine learning technologies aim to
bridge the gap between computers and humans to achieve greater capability and autonomy,
which has so far been highly successful in a variety of real-world daily-life applications, e.g.,
face recognition [197, 67, 50], machine translation [167, 31], search engines [120], unmanned
aerial vehicles (UAVs) [2, 184] and recommendation systems [24, 178, 22].



2 Introduction

State-of-the-art deep learning models are data-hungry and time consuming, and thus
still only effective in areas where big data and computations are available. Specifically,
contemporary machine learning systems require high human cost to prepare the annotation,
and expensive computing resources to train the neural networks with millions of parameters
[81]. For example, a shallow basic 9-layer convolutional neural network (CNN) can have
60 million parameters and 650,000 nodes, which needs to be trained on a million distinct
samples. Furthermore, the popular BERT model [26] has more than 3 billion parameters,
which necessarily costs 64 NVIDIA V100 GPUs training 4 days and utilizes an effective
1507 kilowatt-hours of electricity.

In principle, once given infinite data, the brute force application of deep learning is pow-
erful enough to represent deterministic mapping from instances into a finite set of categories
(e.g., ImageNet). But in reality, it is not possible to always collect abundant data for all the
tasks or domains, not only due to laborious and costly annotation, but also considering the
issues related to privacy, safety and ethics, etc. There are a lot of low-data regimes where the
labelled data can be hard or even impossible to acquire. For example, due to potential toxicity
and shortage of clinical records, drug discovery often lacks sufficient samples to detect and
analyze the properties of new molecules [1]. Also, the data owner may not want to share
the raw data publicly for social fairness or commercial sensitivity, and data annotation by
specialists is expensive due to the requirement of expert knowledge [112, 168]. Data scarcity
(e.g. for rare animal species) and annotation budgets (e.g., for medical images) create an
application bottleneck for deep learning algorithms. Therefore, we need to propose more
practical algorithms to relieve the burden of the requirement of large-scaled supervised data
[180, 103].

Humans seem to hold the advantage of reusing their previous knowledge and extracting
abstract explicit definition and implicit meanings. It is easy for a child to learn the concept
of tiger after recognizing cat, and to classify the difference between a hand-written digit
and a printed digit after only a few instances. However, conventional machine learning is
different from humans. When facing with a new task, the classic paradigm becomes useless
without leveraging prior knowledge, and may need to be stated again from scratch. Thus,
generalization across tasks could enhance the essential ability to learn from a few samples,
which is an important property of human intelligence.

To solve the complex, data-scarce learning problems, there are several popular approaches
in the literature. Classic deep learning approaches treat each learning problem as tabula-rasa
[81, 56, 66], whereas transfer learning, as an effective methodology, is used to enhance the
learning of the target task given a source task (problem) by parameter transfer and optional
fine-tuning (methodology) [119, 135]. Source and target tasks can often have different feature
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spaces and data distribution. For example, in computer-aided detection problems, a CNN
model pre-trained on ImageNet is required to be transferred to a specific medical image
dataset such as interstitial lung disease classification [148], in order to achieve the required
level of accuracy. Transfer learning sometimes also refers to a problem setting rather than a
methodology. In this case, it has an overlap with few-shot learning problem setting, because
both address reducing the data requirements for the target task.

Deep learning methods typically attempt to use prior knowledge as little as possible, which
enabled them to achieve excellent performance when trained on large datasets. However,
exploiting prior knowledge is crucial when training on small datasets. For example, Bayesian
models hold mathematical interpretability, allowing prior knowledge to be encoded explicitly.
Nevertheless, using Bayesian models by itself cannot compete with the high performance of
current deep learning approaches. In this case, it is crucial to exploit the strengths of both
Bayesian and deep learning methods to achieve strong few-shot learning performance.

1.2 Meta Learning
Meta-Learning aims to improve a learning algorithm over a distribution of tasks, while
conventional deep learning gains knowledge from a given dataset or task. Specifically, meta
learning applied to neural network further advances the frontier of deep learning to integrate
joint feature, model and algorithm learning, in order to improve the performance of future
tasks with both data and computing efficiency. This thesis focuses on meta-learning style
approaches to improve the data efficiency in few-shot problems. The methodologies can be
broken down into three main taxonomies: optimization-based methods (e.g. MAML [34,
35]), model-based methods (e.g. MANN [141]) and metric-based methods (e.g. Prototypical
Network [150]). We explore both model-based and metric-based approaches to enhance the
few-shot recognition performance. In this research area, there are various methods including
Siamese Networks [78], Matching Networks [170], Prototypical Networks [150], Relation
Networks [159], and Graph Neural Networks [40].

We propose RelationNet2 (in Chapter 3) deploying parameterized multi-metrics to achieve
parallel learning of different level feature embeddings and similarity matching metrics. We
also uniquely propose an amortized Bayesian meta learning approach MetaQDA (in Chapter 4).
Importantly, where standard deep learning methods suffer from poor uncertainty calibration,
MetaQDA also provides state-of-the-art uncertainty calibration in its predictions. As computer
vision is used in more safety critical applications, proper calibration plays an important role
in addition to the average accuracy. Models should report the confidence of predictions,
allowing one to double check low-confidence decisions to avoid disastrous errors [49].
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We are concerned with not only the academic but also the real-world applications of few-
shot learning problems. Current few-shot benchmarks are limited to the hand-crafted episodic
C-way-K-shot formulation, but are not quite suitable to the more complicated real-world
challenges. In the standard few-shot learning problem setting, the source many-shot samples
are only used to train the meta-learning model, before updating it with the few-shot categories.
During testing, the model is then only prevented with the few-shot categories for evaluation.
However, in practical applications both many-shot seen classes and few-shot unseen classes
are of interest, e.g., real-time interactive vision applications for portable devices [188, 44,
93]. Generalized few-shot learning (GFSL) evaluates model performance on both old and
novel instances at test time. This therefore requires models to solve the catastrophic forgetting
problem [44, 147, 65]. Similarly, another real-world challenge is that in few-shot incremental
learning, unseen few-shot classes could be provided incrementally in a stream rather than as
a batch [131, 126, 53], such as on-device deployment in robotic scenarios. However, many
popular gradient based meta learning methods (e.g., MAML [34]) cannot tackle this challenge.
A conventional classification system is assumed to operate in a closed-set condition where
all training (support) and testing (query) examples are from the same label space. However,
we actually often encounter unseen samples from the open-ended real world, which means
unknown instances would be fed into the model during the testing procedure. These should
be rejected as unknown instances instead of being wrongly classified to some known classes
[142, 5, 199]. Open-Set Recognition (OSR) requires dual functions of anomaly detection and
close-set classification. The difference from generalized few-shot learning is that we could
hardly get any "feature" from the "unknown open-set" to realize detection, but we need to
retain both the classification and rejection performance. This thesis endeavors to propose
meta learning methodologies which can be easily adapted to the above more realistic problem
settings and compares these to the existing approaches to show the advantages of our model.

In this thesis, we conduct research on meta learning methods applied to few-shot learning
problems. The proposed approach formulation is based on these hypotheses: (1) The class
distribution could be formulated as a The main contributions are as follows: (1) We demon-
strate RelationNet2, which is a non-linear parametric deep metric-based meta learner that
achieves state-of-the-art few-shot learning performance. (2) We then introduce MetaQDA,
a hybrid deep Bayesian approach to few-shot learning that conveniently decomposes the
representation learning and classifier meta-learning problems, which can further improve the
few-shot learning performance. (3) We explore the extension of MetaQDA to a variety of
increasingly real-world problem scenarios including generalized, incremental, and open-set
few-shot learning.
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1.3 Thesis Outline
The thesis consists of 3 parts with 6 chapters, as shown in Figure 1.1:
1. Introduction
Chapter 1 We demonstrate an introduction to the research area, including our research
motivation, goals and contributions, providing an overview of the thesis structure and contents.
Chapter 2 We investigate the related work and summarize the background of meta learning
and few shot learning, providing an overview literature review with the terminology and
taxonomy. Overall, we focus on how to use meta-learning methods to improve the few shot
learning problems in different scenarios.
2. Main Work and Contributions
Chapter 3 We propose our first contribution, a simple but powerful metric-based few-
shot learning algorithm named RelationNet2/DCN, comprised of embedding and relation
modules learning multiple non-linear distance metrics based on different levels of features.
Furthermore, image features are presented as distribution rather than vectors via learning
parameterized Gaussian noise regularization. This work achieves SotA performance on
various standard FSL benchmarks, and the insight is verified effectively. This work was
published as an oral conference paper in IJCNN’2020.
Chapter 4 We then introduce our second contribution, an orthogonal few-shot learning
direction of Bayesian shallow meta-learning classifiers, which is easy to plug in any off-the-
shelf extracted features. By decomposing the representation learning and classifier meta-
learning issues in few-shot visual recognition, MetaQDA enables few-shot meta-learning
to benefit from future advances in supervised representation learning. Furthermore, the
probabilistic approach MetaQDA outperforms the other algorithms in terms of superior
uncertainty calibration. We also show that thanks to this decomposition of classifier meta-
learning and representation learning, MetaQDA can draw upon features designed for multi-
domain data, and also achieve state of the art cross-domain few-shot learning. This work was
published as a conference paper in ICCV’2021.
Chapter 5 We move to our third contribution, which extends our Bayesian MetaQDA
model to several more realistic scenarios, from generalized few-shot learning (GFSL), few-
shot class incremental learning (FSCIL) to few-shot open-set recognition (FSOSR). Each
problem setting is much more complicated than fixed C-way-K-shot standard paradigm. The
model should keep both the many-shot and few-shot classification accuracy without forgetting,
support incremental addition of new categories, and maintain high performance on both
close-set recognition and open-set rejection.
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3. Discussions and Future Work
Chapter 6 We provide conclusion and discussion about open challenges in meta learning,
especially some valuable open questions on few shot learning, including some of the potential
directions of future work, such as deep Bayesian meta-learning, multi-domain meta learning,
life-long meta learning, and few-shot learning beyond object recognition.

Figure 1.1 Outline of the thesis. The thesis deploys meta-learning approaches to various few-shot
learning scenarios. We show the thesis structure from both the view of problem scenario and approach
mechanism.



Chapter 2

Literature Review

This chapter provides a brief review of the underlying methodologies of meta learning
and few-shot learning, along with the problem settings and applications. Specifically, we
investigate related literature and summarize the contributions and limitations, not only listing
the terminology and taxonomy of meta learning, but also how to solve different few-shot
learning problems from academic research to various commercial and industrial applications.
We then introduce more specialized details corresponding to the specific research topics in
each technical chapter.

2.1 Background in Meta-Learning
In this section, we introduce the fundamental concepts and development of the research fields
related to meta learning. We also propose a distribution-view formalization of meta learning,
providing a general understanding from a data distribution point of view [7]. Finally, we
organize the existing methods with a taxonomy reflecting the landscape of meta-learning.

2.1.1 Related Research Fields

Meta-learning first appeared in the literature in 1987, proposing a theoretical framework of self-
referential learning which can learn weights and predict updates, with the fast/slow-weights
corresponding to optimizer updates and inference itself [61, 144]. Recent contemporary
meta-learning has a resurgence along with the advancement of deep learning algorithms and
GPU computing capabilities. Gradient descent and back-propagation have been used since
2001 [136], and contemporary meta learning is introduced in [163], marking the beginning
of modern meta learning.



8 Literature Review

Meta learning is often confused with some related research areas, so we explain the
connections to and differences from the other fields. Transfer Learning (TL) [119, 193,
135] refers to a model which is trained on a source task with sufficient data to improve
performance on a target task with a different label space, but meta learning deals with a high-
level objective to learn the "learning algorithm" itself by much more wide meta-representation
or meta-optimizer. For example, MAML [34] learns the prior by an outer optimization that
evaluates how well the prior performs when helps learning a new task, instead of simply
extracting the corresponding prior from the source tasks. Domain Adaptation (DA) and
Domain Generalization (DG) are both domain-shift issues where the source and target tasks
have different distributions reducing the model performance. DA can utilize unlabelled data
from the target domain, while DG does not have any access to target domain data during
the training process [119, 23]. Meta-learning methodologies can be designed to solve both
DA and DG problems [89]. Continual Learning, a.k.a. Lifelong Learning, accelerates the
learning of new tasks without forgetting old tasks by training on a sequence of tasks drawn
from a potentially non-stationary distribution [121, 21]. However, meta-learning proposes a
framework to improve lifelong learning by overcoming the difficulty of encoding the meta-
objective [146, 134, 111]. Hierarchical Bayesian Models (HBM) are a theoretically valuable
viewpoint for meta-learning, including Bayesian learning of parameters 𝜃 through a prior
𝑝(𝜃|𝜔), where 𝜔 is a kind of meta knowledge. Instead of providing an algorithmic framework,
Bayesian inference appears to provide a model for understanding the intrinsic intuition of
meta learning. For example, Latent Dirichlet Allocation [16] uses Bayesian marginalization
due to the conjugate exponential models, and a stochastic variational approach [30] calculates
an approximate posterior from which a lower bound to the marginal likelihood is computed.

Moreover, contemporary neural network meta learning is a methodology framework used
to solve more challenging problems, which is always conducted as an end-to-end optimization
of the inner algorithm with respect to an explicitly defined meta-objective [62, 183, 100].

2.1.2 Formalization of Meta Learning

Meta-learning aims to improve the learning algorithm over multiple learning episodes, which
involves a hierarchical optimization problem, namely a tuple including base algorithm, trained
model and performance. Base-learning is the inner learning algorithm itself such as image
classification or language translation, but meta-learning is the outer learning to update the
inner algorithm with a high-level meta-objective. For example, learning speed of the inner
algorithm refers to either training examples (sample efficiency) or optimization iterations
(convergence rate), and generalization performance refers to the performance of the learned
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model on a held out validation set. Here we depict then mathematical formalization of
meta-learning.

Conventional machine learning is commonly understood to improve the model perfor-
mance from scratch for each task. Given a training dataset 𝐷 = (𝑥1,𝑦1), ..., (𝑥𝑁 ,𝑦𝑁 ) as the
pair of an input instance and the corresponding label, then we can train a model �̂� = 𝑓𝜃(𝑥)
parameterized by 𝜃, where 𝜃 is usually specific to the application, e.g. a convolutional neural
network (CNN) in the case of computer vision [81] or a recurrent neural network (RNN) in
the case of natural language processing [26]. The objective is

𝜃∗ = argmin
𝜃

(;𝜃,𝜔), (2.1)

where  is the loss function to evaluate the predicted label accuracy comparing to the ground
truth label, and 𝜔 is the dependency on explicit condition such as function for 𝑓 or optimizer
for 𝜃. The specialization of 𝜔 determines the learning process of 𝜃 with great influence on
generalization, computation cost and data efficiency.

Meta-learning prefers to learn a more general purpose across multiple learning episodes
sampled from a task family, where𝜔 is referred to as meta-knowledge across different tasks. In
particular, it prefers to learn the 𝜔 from a distribution of tasks rather than fix the hand-crafted
𝜔. Meta-knowledge 𝜔 is evaluated as the capability of how to learn over a distribution of
tasks 𝑝( ), where  = {,}. The meta-learning process becomes

𝜔∗ = argmin
𝜔

𝔼
 ∼𝑝( )

(𝐷;𝜔), (2.2)

where (;𝜔) indicates the performance of a model with trained 𝜔 on dataset .
We need to generate 𝑀 training tasks from 𝑝( ) instead of training instances. During

meta-training process, we mimic the meta-testing process to provide the supervision labels
to measure the meta-knowledge, so there are support (s) and query (q) set corresponding to
the train and validation roles, 𝑚−𝑡𝑟𝑎𝑖𝑛 = {(𝑠

𝑚−𝑡𝑟𝑎𝑖𝑛,
𝑞
𝑚−𝑡𝑟𝑎𝑖𝑛)

(𝑖)}𝑀𝑖=1. Then the objective of
meta-training step is

𝜔∗ = 𝑎𝑟𝑔max
𝜔

log𝑝(𝜔|𝑚−𝑡𝑟𝑎𝑖𝑛). (2.3)

Similarly, during meta-testing, we have𝑁 testing tasks as𝑚−𝑡𝑒𝑠𝑡 ={(𝑠
𝑚−𝑡𝑒𝑠𝑡,

𝑞
𝑚−𝑡𝑒𝑠𝑡)

(𝑖)}𝑁𝑖=1,
and then we could use the learned meta-knowledge 𝜔 to train the base model on the 𝑖− 𝑡ℎ
unknown target testing tasks:

𝜃∗(𝑖) = 𝑎𝑟𝑔max
𝜃

log𝑝(𝜃|𝜔∗,𝑠(𝑖)
𝑚−𝑡𝑒𝑠𝑡). (2.4)
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2.1.3 Methodology Taxonomy

We prefer to classify the existing methodologies into three axes as meta-representation, meta-
optimizer, and meta-objective [62], reflecting the cutting-edge researches on meta-learning
from a big-picture perspective.
Meta Representation ("What") There are several possible choices of learning meta-
knowledge 𝜔. Parameter initialization considers 𝜔 as the initial parameters of a neural
network, e.g. MAML [34, 35] is a typical family of methods meta-learning the initial
condition of the inner optimization. But the challenge whether one initial condition is limited
to narrow distribution 𝑝( ) led to other approaches with model mixtures over multiple initial
conditions [138, 171]. Optimizer methods replace the hand-crafted optimizers, e.g. widely
used stochastic gradient descent (SGD), with a learned optimizer defined by 𝜔 [129, 3, 179].
Black-box models train 𝜔 to learn a feed-forward mapping from the support set 𝜃 = 𝑔𝜔(𝑡𝑟𝑎𝑖𝑛)
with a black-box CNN or RNN [106, 27, 173]. Metric-learning is always applied to few-shot
learning, which is an important application of meta-learning, also is what we focus on in this
thesis. Making the embedding task-conditional and learning an elaborate comparison metric
are widely used to enhance the performance [159, 40, 116]. Loss-learning aims to learn
the base model task-loss 𝑡𝑎𝑠𝑘𝜔 , improving the generalization ability with less local minima,
especially in self-supervised or auxiliary learning. Architecture learning uses reinforced
learning, long short term memories (LSTMs) and evolution algorithms to learn a better
architecture which can be directly applied to meta-testing.
Meta Optimizer ("How") The choice of outer (meta) optimization strategy for 𝜔 is
divided into gradient-descent, reinforcement learning, and evolutionary search. Gradient
Descent methods exploit analytical gradients of 𝑑∕𝑑𝜔 by computing derivatives [34, 129,
36], with the challenge of second-order gradients [114], the inevitable gradient degradation
and some non-differentiable operations. Reinforcement Learning (RL) estimates the gradient
alleviating the requirements of differentiability but with tremendous computing cost. Evolu-
tion Algorithms (EA) also relieve the differentiability and back propagation, and are highly
parallelizable and lower costly [154, 139]. However, the population size is exponentially
increased and the mutation strategy is sensitive to hyperparameters, thus evolution algorithms
are often applied in combination with reinforcement learning [64].
Meta Objective ("Why") The choice of meta-objective, from a bilevel optimization view,
is related to the outer objective 𝑚𝑒𝑡𝑎, the task distribution 𝑝( ) and the associated data-flow
between inner-loop episodes and outer-loop optimization. Many-/Few-shot episode design
could be defined by generating tasks with the labelled examples to improve the performance
[36, 179, 34, 129]. Fast adaptation encourages fast base task learning, where the validation
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loss is calculated after each inner-loop episode [4, 10, 179]. Multi/Single-task requires the
inner-loop learning episodes drawing data from the same specific task or various tasks from a
given family 𝑝( ) with different value propositions, separately [150, 3, 183]. Offline learning
defines the meta-optimization as an outer-loop of the inner base learner [107], while online
learning approaches perform the meta-optimization within a single base learning episode to
co-evolve with higher compute efficiency [91, 9].

2.2 Background in Few-shot Learning
In this section, we introduce few-shot learning, one of the most popular applications of
meta-learning in the computer vision domain, motivated by the challenge of the long-tail
distribution of image recognition. We depict the problem setting and benchmarks in this
research field, by utilizing both the taxonomies and terminologies.

2.2.1 Literature Review

Few-shot learning is hard to solve by using traditional deep neural networks, whereas human
intelligence can sufficiently learn a classification rule from a few labelled samples [170].
Various methodologies are proposed to overcome the challenge of overfitting in the few
examples of novel classes, e.g., transfer learning, semi-supervised learning, and meta-learning
approaches [135, 156, 78, 34]. However, this thesis focuses on the metric-based and model-
based meta-learning methods for few-shot learning problems, which enable a deep neural
network to be successfully applied to small datasets.

Specifically speaking, few-shot multi-class classification is one of the basic problems in
image recognition. Metric based meta learning approaches learn the feature encoder and
the distance measurement, then recognize the unknown few-shot instances by comparing to
the known train images using the learned metric [159]. The intuition is that images from
the same class are located closer to each other in the feature space, and different classes
would be further apart from each other. A meta-learning strategy could be used for different
components, namely feature embedding, class representations, and similarity measures.

From both a theoretical and practical perspective, few-shot learning has three aspects of
significance: (1) A reduced reliance on large-scale training samples and relieve the annotation
cost; (2) Bridging the gap between human intelligence and artificial intelligence; (3) Achieving
quick deployment for real-world applications. Consequently, researchers have previously
shed light on few-shot learning in the past, non-deep era (e.g., congealing algorithm [105],
variational Bayesian framework [32]), and the advancement of deep-learning has recently
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attracted increasing attention. Here we put emphasis on the deep-learning period beginning
with [78], which incorporated a siamese convolutional neural network to learn a class-
irrelevant similarity measure. It seems that the discriminative model based few-shot learning
algorithms dominates in recent developments, and a meta-learning framework is widely used
in this area, such as Matching Nets [170], MAML [34], meta-LSTM [129], MANN [141],
MetaNet [108], Prototypical Nets [150], Relation Net [159] and etc.

2.2.2 Problem Setting

Firstly, we consider a 𝐶-way 𝐾-shot classification problem for few shot learning. There are
some labelled source tasks with sufficient data, denoted as meta-train dataset m-train, and
we ultimately want to solve a new set of target tasks denoted as meta-test dataset m-test, for
which the label space is disjoint 𝑚−𝑡𝑟𝑎𝑖𝑛∩𝑚−𝑡𝑒𝑠𝑡 = ∅. Within each episode of meta-train
and meta-test process, we denote each task  as being composed of a support set of training
examples, and a query set of testing examples. Meta-test tasks are assumed to be few-shot,
so m-test contains a support set with 𝐶 categories and 𝐾 examples for each category, and
the query set has 𝐾 ′ examples for each class. Then the support set has 𝐶 ×𝐾 instances,
and the query set has 𝐶 ×𝐾 ′ examples. The meta-training process generates tasks to mimic
the meta-testing process, and the evaluation of the model is the average prediction accuracy
performance of the query set. In this context, we want to learn a model during meta-training
that can generalize out of the box, without fine-tuning, to learning the new categories during
meta-testing. The problem setting could be illustrated as Figure 2.1.

Formally, we use 𝑥 to represent the feature of input data, 𝑦 to represent the label of the
data, so the dataset contains of data-label pairs  = (𝑥𝑖,𝑦𝑖), and  and  to denote the space
of input data feature space and label space, respectively. We introduce the principle to model
few-shot learning problems. As for one query sample 𝑥𝑗 , the algorithm predicts the label 𝑦𝑗
with the highest posterior probability of different support classes by the following statistical
model:

𝑦𝑗 = argmax
𝑦∈

𝑝(𝑦|𝑥𝑗). (2.5)

Some few shot learning approaches endeavor to model the posterior probability 𝑝(𝑦|𝑥)
directly by learning the distribution of 𝑥 belonging to different classes in the task. However,
some other methods prefer to tackle the problem by Bayes’ rule, then the Bayesian model
becomes to:

𝑦𝑗 = argmax
𝑦∈

𝑝(𝑥𝑗|𝑦)𝑝(𝑦). (2.6)
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Figure 2.1 Problem setup of few-shot learning. The meta-test dataset has disjoint label space
with the meta-train dataset, and they share the similar task generation as C-way-K-shot, which is
5-way-1-shot in this illustration.

where 𝑝(𝑦) is the prior distribution of the target class and 𝑝(𝑥𝑗|𝑦) is the conditional distribution
of the query instance given class 𝑦. However, 𝑝(𝑦) is assumed as uniformly distributed or
calculated as the statistical frequency of different classes.

2.2.3 Benchmarks

Well-designed benchmarks motivate and spur the high development of machine learning
algorithms. In terms of few-shot learning, we should design a benchmark where the learner is
trained on a set of tasks, which is then required to generalize to learn on unseen tasks. Most
few-shot learning studies follow the standard set-to-set task generation setting [170, 150],
requiring the model should extract task-specific information from the support set and perform
well on the query set. The meta-learner is trained across the tasks during meta-training
process as "C-way-K-shot". There are numerous established few shot learning datasets, such
as omniglot [170], miniImagenet [129], tieredImagenet [132], CUB-200 [20] and CIFAR-100
[80]. These datasets are all re-composed into smaller classification tasks with lower-way, and
re-purposed to define a task definition for benchmarking the meta-training and meta-testing
processes. All the dataset details are depicted in the following experiment sections.

While, it is convenient to generate enough tasks from aforementioned datasets, the model
still suffers from the lack of task diversity. Even for a many-shot deep learning model, it is
hard to fit a single neural network to tackle the domain-generalization scenarios. Specifically
speaking, when it comes to a few-shot learner facing a novel domain without relevant available
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auxiliary data, e.g., when source data is general images of miniImageNet and target data
is medical images from Chest X-Ray [75], the performance decreases dramatically with a
domain shift, motivating some recent research on Meta-Dataset [164] and cross-domain
evaluation [51]. This topic is naturally related to domain adaptation, but with the additional
challenge that one is trying to learn a novel category in the target domain (unlike domain
adaptation where target and source categories are usually overlapped).

2.3 Real-World Challenges
With the ubiquitous demand for machine learning systems, we have witnessed considerable
progress in few shot learning, both in methodology and applications. However, challenges
still exist due to the intrinsic difficulty of having sparse samples. Actually, most current
few-shot learning studies are built on an ideal data hypothesis with small-scale novel few-shot
task classes and large-scale labelled meta-training samples. These assumptions may not
hold for some practical scenarios, such as the long-tailed phenomenon of data distribution
which requires recognizing both many-shot and few-shot instances, or continual learning
of incremental few-shot samples, and even open-set recognition with abnormal detection.
This section extends the traditional problem setting to more challenging real-world complex
scenarios and discusses the pros and cons of the existing related works.

2.3.1 Generalized Few-Shot Learning

Vanilla standard few-shot learning approaches are trained to make a prediction for pre-defined
classes of a novel task, but are hardly applied to the previously seen classes in the meta-
training auxiliary dataset. Naively extending them to recognize in the joint label space of
auxiliary meta-training and target meta-testing data tends to result in catastrophic forgetting
and/or poor scalability. However, it is very common that users are interested in recognising
class concepts from both the auxiliary training dataset (with many examples available) and the
novel classes (with few examples available). Such data imbalance is extremely challenging
to handle. Then, generalized few-shot learning (GFSL) approaches are required to jointly
recognize the many-shot and few-shot instances [147, 187].

Several augmentation based few-shot learning methods have two-stage independent learn-
ing process which firstly augments the few-shot training samples before meta-training the
models, which is naturally suitable for generalized few-shot learning setting. GcGPN [147]
combines the prototypical network [150] and GCN [77] to model the relationship of the
few-shot new class with the many-shot old classes by defining the class as nodes and the inter-
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class dependencies as edges. CADA-VAE [145] deploys a cross-modal embedding framework
with variational auto-encoder, jointly representing the information in its latent space and
training a linear softmax classifier. FEAT [188] develops the set-to-set class-agnostic function
instantiating with transformer to realize embedding adaptation. Many other methodologies
also tackle the generalized few-shot learning problems by leveraging the relationship between
target task training instances.

2.3.2 Few-Shot Class-Incremental Learning

Incremental learning is commonly referred to continual learning and lifelong learning. It
aims to continuously learn novel data in sequence (rather than in batch) while memorizing
knowledge from previously seen tasks [130, 163]. The conventional few-shot learning
paradigm can access all support examples during one single training session of the deep
neural network. But practically speaking, as for the class-incremental learning scenario [166],
the meta-learner should be trained in a sequence of delineated training sessions, with new
classes presented at each session but the leaner should be capable of distinguishing between
all classes [37]. Humans acquire and leverage knowledge from previous tasks, and integrate
new knowledge with existing knowledge. This joint access not only overcomes the famous
drawback of catastrophic forgetting but also utilizes past meta-knowledge. In a learning
system, it is crucial and desirable to keep an incremental learning ability, not only due to
the biological motivation, but also the potential to save on computing costs and optimize
the learning process. In traditional deep learning systems, it is always essential to retrain all
tasks in order to achieve better performance on both previous and novel tasks, but it is often
expensive or even unavailable because of privacy or safety problems.

There are a variety of research in the literature regarding class-incremental learning
problems. iCARL [130] firstly proposes a method for continual learning and learns strong
nearest-neighbor classifiers and a data representation simultaneously, maintaining an episodic
memory of previous exemplars. EEIL [18] utilizes external memory by adding the distillation
loss term to the cross-entropy loss for end-to-end training. NCM [63] uses the cosine distance
metric to mitigate the prediction bias in the output layer caused by the class-imbalance
problem. Similarly, BIC [181] learns a bias-correction model to post-process the output logits
to alleviate the bias between the progressively added new classes and old classes. However,
in the context of few-shot learning, this thesis focuses on a more difficult scenario, few-shot
class-incremental learning (FSCIL), where the number of new class training samples is
limited. TOPIC [161] constrains the feature space of a convolutional neural network with
a neural gas network, learning and preserving the topology of the features manifolded by
different classes.
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2.3.3 Open-Set Recognition

Traditional machine learning is based on a closed set or static environment assumption, where
training and testing data are drawn from the same label and feature space. However, various
realistic scenarios are usually open and non-stationary where some unseen instances would
appear unexpectedly, such as unmanned driving [17, 95], medical diagnosis [52, 73], and
etc. Open-set recognition (OSR), first formulated by Scheirer et al. [142], which aims to
endow a learning system with the ability to reject unknown samples from novel classes at test
time, while preserving the ability to recognize known classes. Nevertheless, it is difficult for
traditional machine learning algorithms to work effectively when the open-set samples may
have a high activation score for one of the known categories. Therefore, various frameworks
and algorithms of open-set recognition in the computer vision area have attracted considerable
attention recently [123, 58], and we analyze this challenge in the context of deep networks.

Scheirer et al. [142] proposed an extreme value parameter redistribution method for the
logits generated by the classifier. The later works could be divided into discriminative and
generative perspectives. Schlachter et al. [143] built an intra-class splitting model, where a
closed-set classifier was used to split data into typical and atypical subsets, reformulating
open-set recognition as a traditional classification problem. OpenMax [12] has been proposed
as the first solution for an open-set deep neural network with the normal SoftMax layer. G-
OpenMax [43] utilizes a generator as an alternative to SoftMax, providing explicit probability
estimation over the generated unknown classes to synthesize all unknown examples as an
extra class. Neal et al. [113] introduced counterfactual image generation, aiming to generate
samples that cannot be classified into any of the seen classes, producing an extra class for
classifier training. To deviate from simulating open-set classes, a class conditional generator
learns a representation preserving only known-class samples [117]. It is also possible to
ignore the labels and modelling known class with one-class classification [118, 124, 123],
but this tends to perform poorly compared to standard approaches. Generative representation
and self-supervision can also be used to enhance the performance [125].

Most methods reduce the set of unseen classes to one extra class. In actual fact, open
samples can be drawn from different categories and have significant visual differences, thus
the assumption that a feature extractor can map them all into a single feature space cluster is
biased. It is practically difficult even if theoretically possible. Some generative approaches
try to build a meta learning model allowing a cluster per seen class and label samples that do
not fall into these clusters as unseen.
Few-Shot Open-Set Recognition However, few-shot recognition is a more challenging
scenario than the context of large-scale classification. Obviously, the approaches based on
the large-scale classifier are not suitable for solving few-shot open-set recognition (FSOSR)
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problems. A classifier trained in the few-shot context is more difficult to delineate seen-class
boundariessolve due to the lack of labelled data. Therefore, few-shot is a more pervasive but
challenging setup for current open-set recognition research. Meta learning methods tend to
capture the metric structure of the data more broadly throughout the feature space and achieve
better performance on these generalization critical tasks. An episodic training mechanism
randomly selects a set of novel classes per episode, producing more robust embedding to
overcome the problem of overfitting to one specific class. PEELER [93] proposes a meta-
learning-based framework for open-set recognition, combining the cross-entropy loss and a
novel open-set loss to improve open-set performance on both the large-scale and few-shot
settings. Gaussian embedding and Mahalanobis distance further improve the performance
and robustness.

2.4 Summary
In this chapter, we have reviewed the background and several well-established algorithms
of meta learning, providing a formalization and taxonomy analysis. We then discussed the
significance and contributions of meta-learning to the few-shot learning problem, and also
introduced the benchmarks and terminologies. Finally, we moved to more complex real-world
scenarios, and provided a literature review in this cutting-edge research field.





Chapter 3

RelationNet2

In this chapter, we discuss few-shot deep learning which scales visual recognition to open
ended growth of unseen new classes with limited labeled figures. One promising approach is
based on metric learning, which trains a deep embedding to support image similarity matching.
Our insight is that effective general-purpose matching requires discrimination with regard to
features at multiple abstraction levels. We propose RelationNet2, a.k.a Deep Comparison
Network (DCN) in the published paper, decomposing embedding learning into a sequence of
modules paired each with a relation module. Furthermore, to reduce overfitting and enable
deeper embeddings, we represent images as distribution rather than vectors via learning
parameterized Gaussian noise regularization. Finally, the resulting network achieves state-
of-the-art performance on both miniImageNet and tieredImageNet, retaining the appealing
simplicity and efficiency of deep metric learning approaches.

3.1 Introduction
Few shot learning recovers a surgence recently due to the successful development of deep
learning models [56, 69, 66] applied on large-scale visual recognition problems. However, the
most popular deep-learning based methods treat each learning problem independently from
scratch, and fail to learn efficiently from few instances while human could easily generate a
new concept from a single image by building upon prior knowledge. These observations have
motivated a resurgence of interest in FSL (few-shot learning) for visual recognition [170, 34,
150, 127] and beyond. Contemporary deep networks overfit in the few-shot regime – even
when exploiting fine-tuning [193], data augmentation [81], or regularization [152] techniques.
In contrast, ‘Meta-learning’ techniques extract transferable task agnostic knowledge from
historical tasks and benefit sparse data learning of specific new target tasks. These take
several forms: Fast adaptation methods enable sparse-data adaptation without overfitting –
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via good initial conditions [34] or learned optimizers [129]. Weight synthesis approaches
learn a meta-network that synthesizes recognition weights given a training set [13, 106].
Deep metric learning approaches support representation [78] and comparison [170, 150]
of instances, allowing new categories to be recognized with nearest-neighbour comparison.
However, existing approaches have several drawbacks including inference complexity [85,
84], architectural complexity [108], the need to fine-tune on the target problem [34], or
reliance on a simple linear comparison [170, 150, 84].

We build on deep metric learning methods due to their architectural simplicity and
instantaneous training of new categories. These methods use auxiliary training tasks to learn
a deep image-embedding such that the embedded data becomes linearly separable [78, 170,
150]. Thus the decision is non-linear in image-space, but linear in the embedding space.
For learning the target task, images are simply memorized during few-shot training. But for
testing the target task, query images are matched to training examples by deep embedding
and similarity comparison function. Within this paradigm, the recent Relation Network
[159] achieved excellent performance by learning a non-linear comparison function. Relation
Network is meta-trained to lean a deep distance metric to compare a small number of images
within episodes, which is designed to simulate the few-shot setting. The model is trained end-
to-end from scratch and is able to classify new images from novel classes by only computing
relation scores without further updating.

Learning the embedding and non-linear comparison module jointly alleviates the reliance
on the embedding’s ability to generate linearly separable features. We take this idea of
jointly learning an embedding and a non-linear distance metric further with the following
insights. First, we introduce the notion of multiple meta-learners operating at multiple
abstraction levels. Concretely we train non-linear distance metrics corresponding to each
embedding module in a feature hierarchy - thus covering features from simple textures to
complex parts [194]. Secondly, prior studies only use a single linear [150] or non-linear
comparison [159]. To provide the inductive bias that each layer of representation should be
potentially discriminative for matching, and enable better gradient propagation [69] to each
relation module, we deeply supervise [87] all the relation modules. Finally, to enable deeper
embedding architectures to be used without overfitting, we design each embedding module
to output a feature distribution, thus representing each image as a distribution rather than
a vector. This can be seen as an end-to-end learnable noise regularizer that performs data
augmentation in semantic feature space rather than image space.

Overall our RelationNet2 (RN2) can be seen as jointly learning embedding and comparison
as task agnostic meta knowledge [78, 170, 150, 159]. It makes full use of deep networks
by making comparisons with the full feature hierarchy extracted by the embedding network,
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and learning Gaussian noise to improve generalization. The resulting framework maintains
the architecture simplicity and efficiency of other methods in this line, while providing
excellent performance on both miniImageNet and the more challenging tieredImageNet few
shot learning benchmarks.

3.2 Related Work
Contemporary approaches to deep-network few-shot learning have exploited the learning-to-
learn paradigm. Auxiliary tasks are used to meta-learn some task agnostic knowledge, before
exploiting this to learn the target few-sample more effectively problem. The learning-to-learn
idea has a long history [162, 33, 85], but contemporary approaches typically cluster into three
categories: Fast adaptation, weight synthesis, and metric-learning approaches.

3.2.1 Fast Adaptation

These approaches aim to meta-learn an optimisation process that enables base models to be
fine-tuned quickly and robustly. So that a base model can be updated for sparse data target
problems without extensive overfitting. Effective ideas include the simply meta-learning an
effective initial condition [34], and learning a recurrent neural network optimizer to replace
the standard SGD learning approach [129]. Recent extensions also include learning per-
parameter learning rates [92], and accelerating fine-tuning through solving some layers in
closed form [14]. Nevertheless, these methods suffer from needing to be fine-tuned for the
target problem, often generating costly higher-order gradients during meta-learning process
[34], and failing to scale to deeper network architectures as shown in [106]. They also suffer
from a fixed parametric architecture. For example, once the MAML [34] is trained for 5-way
auxiliary classification problems, it is restricted to the same for target problems without being
straightforwardly generalizable to a different cardinality of classification.

3.2.2 Classifier Synthesis

Another line of work focuses on synthesising a classifier based on the provided few-shot train-
ing data [44]. An early method in this line learned a transferrable ‘LearnNet’ that generated
convolutional weights for the base recognition network given a one-shot training example
[13]. However, this was limited to binary classification. Conditional Neural Processes [41]
exploited a similar idea, but in a Bayesian framework. SNAIL obtained excellent results
by embedding the training set with temporal convolutions and attention [106]. Recently
Qiao et al. proposed a method to predict classification parameters given neuron activations
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[127]. In this case the global parameter prediction network is the task agnostic knowledge
that is transferred from auxiliary categories. Compared to the fast adaptation approaches,
these methods generally synthesize their classifier in a single pass, making them faster to
train on the target problem. However learning to synthesize a full classifier does entail some
complexity. This process can overfit and generalize poorly to novel target problem.

3.2.3 Deep Metric Learning

These approaches aim to learn a deep embedding that extracts robust features, allowing them
to be classified directly with nearest neighbour type strategies in the embedding space. The
deep embedding forms the task agnostic knowledge transferred from auxiliary to target tasks.
Early work simply used Siamese Networks [78] to embed images, such that images of the same
class are placed near each other. Matching Networks [170] defined a differentiable nearest-
neighbour loss based on cosine similarity between the support set and query embedding.
Prototypical Networks [150] provided a simpler but more effective variant of this idea where
the support set instances for one class are embedded as a single prototype. Their analysis
showed that this leads to a linear classifier in the embedding space. The most related method
to ours is RelationNet [159], which extends this line of work to use a separate non-linear
comparison module instead of relying entirely on the embedding networks to make the data
linearly separable [78, 150, 170]. This division of labour between a deep embedding and a
deep relation module improved performance in practice [159]. Our approach builds on this
line of work in general and RelationNet in particular. RelationNet relied on the embedding
networks to produce a single embedding for the relation module to compare. We argue that a
general purpose comparison function should use any or all of the full feature hierarchy [194]
to make matching decisions, for example matching based on colors, textures, or parts, which
may be represented at different layers in an embedding network. To this end we modularise
the embedding networks, and pair every embedding module with its own relation module.

3.2.4 Use of Feature Hierarchies

The general strategy of simultaneously exploiting multiple layers of a feature hierarchy
has been exploited in conventional many-shot classification network [69, 153], instance
recognition [19], and semantic segmentation networks [54]. However, in the context of deep-
metric learning, the conventional pipeline is to extract a complete feature [42, 67]. Importantly,
in contrast to prior approaches single ‘short-cut’ connection of deeper features to a classifier
[54, 19], we uniquely learn a hierarchy of relation modules: One non-linear comparison
function for each block of the embedding modules. Our approach is also reminiscent of
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classic techniques such as spatial pyramids [86] (since each module in the hierarchy operates
at different spatial resolutions) and multi-kernel learning [169] (since we learn multiple
relation modules for each feature in the hierarchy). This can also be seen as the first multiple
meta-learner approach for few shot learning problems.

3.2.5 Leaned Noise and Regularization

Many previous FSL models struggle with deeper backbones [106, 34]. For best performance,
we would like to exploit a state-of-the-art embedding module architecture (we use SENet
[66]), and also benefit from the array of comparison modules mentioned above. To enable
RN2 to benefit from deep backbones without overfitting, we modify the embedding modules
to output a feature distribution at each layer. Rather than generating deterministic features at
a module output, we generate means and variances which are sampled in the forward pass,
with back propagation relying on the reparamaterization trick. Unlike density networks [15]
where such distributions are only generated at the output layer, or VAEs [76] here they are
generated only once by the generator, we generate such stochastic features at each embedding
module’s output. This can be seen as an end-to-end learnable data augmentation strategy in
semantic feature rather than image space. It is also complementary to standard L2/weight
decay and image space augmentation techniques.

3.3 Methodology

3.3.1 Problem Definition

We consider a 𝐶-way 𝐾-shot classification problem for few shot learning. There are some
labelled source tasks with sufficient data, denoted meta-train m-train, and we ultimately want
to solve a new set of target tasks denoted meta-test m-test, for which the label space is disjoint.
Within meta-train and meta-test, we denote each task as being composed of a support set of
training examples, and a query set of testing examples. The meta-test tasks are assumed to
be few-shot, so m-test contains a support set with 𝐶 categories and 𝐾 examples each. We
want to learn a model on meta-train that can generalize out of the box, without fine-tuning, to
learning the new categories in meta-test.
Episodic Training We adopt an episodic training paradigm for few-shot meta-learning.
During meta-training, an episode is formed as follows: (i) Randomly select 𝐶 classes from
m-train, (ii) Sample 𝐾 images each class, which serve as support set S

m-train =
{

(𝑥𝑖,𝑦𝑖)
}𝑚
𝑖=1,

where 𝑚 = 𝐾 ∗ 𝐶 , (iii) For the same 𝐶 classes, sample 𝐾 ′ images each class serving as
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Figure 3.1 Network architecture of RelationNet2. There are 4 embedding modules 𝑓𝜃 for each
embedding branch, and a set of 4 corresponding relation modules 𝑔𝜙. Support set and query set share the
same embedding network. Each embedding module outputs a feature distribution  (𝑓𝜃,𝜇(𝑥),𝑓𝜃,𝜎(𝑥)),
we then randomly sample a feature 𝑓𝜃(𝑥) as the input of corresponding relation module and next
embedding module.

the query set Q
m-train =

{

(�̃�𝑗 , �̃�𝑗)
}𝑛
𝑗=1, where 𝑛 = 𝐾 ′ ∗ 𝐶 , S

m-train ∩Q
m-train = ∅. The sup-

port/query distinction mimics the m-test/ real-time testing. Our few-shot RN2 will be trained
for instance comparison using episodes constructed in this manner.

3.3.2 Model

Overview RelationNet2 (RN2) is composed of two module types: embedding and relation
modules 𝑓𝜃 and 𝑔𝜙, as shown in Figure 3.1. The detailed architecture will be given in
Section 3.3.3. Here we choose 4 sub-modules following that SENet architecture has 4 blocks.
A pair of images 𝑥𝑖 and 𝑥𝑗 in the support and query set are fed to embedding modules
respectively. Then the multi-level embedding modules output stochastic features to the
corresponding multi-level relation modules, and learn the relation score and weights for
different relation modules. Finally, the RN2 learns weighted non-linear metric of few shot
learning tasks.
Distribution Embedding Modules Conventionally, an embedding module (e.g., a ResNet
or SENet block) outputs deterministic features. As a regularization strategy, we treat each
feature output as a random variable drawn from a parameterized Gaussian distribution, for
which the embedding module outputs the mean and variance. This design is illustrated in
Figure 3.1. Each 𝑣th-level embedding module predicts a feature mean 𝑓 𝑣𝜃,𝜇 and a feature
variance 𝑓 𝑣𝜃,𝜎 . To generate a module’s output 𝑓 𝑣𝜃 , we use the reparameterization trick to draw



3.3 Methodology 25

one (or more) Gaussian random samples

𝑓 𝑣𝜃 = 𝑓 𝑣𝜃,𝜇+𝜀⊙𝑓
𝑣
𝜃,𝜎 , (3.1)

where 𝜀 is a standard Gaussian  (0,1) random samples, and⊙ denotes element-wise product.
Metric Hierarchy The 𝑣th-level of embedding modules produce query and support image
feature maps, which are concatenated as [𝑓 𝑣𝜃 (𝑥𝑖),𝑓

𝑣
𝜃 (𝑥𝑗)], and then fed into the corresponding

𝑣th-level relation module for comparison. For a pair 𝑥𝑖 and 𝑥𝑗 at level 𝑣−1, the relation
module outputs a similarity feature map 𝑔𝑣−1𝜙 . The 𝑣th-level relation module takes both the
𝑣th-level embedding output for query and support, and also the (𝑣−1)th-level relation module
similarity feature map as input:

𝑔𝑣𝜙 = 𝑔([𝑓
𝑣
𝜃 (𝑥𝑖),𝑓

𝑣
𝜃 (𝑥𝑗),𝑔

𝑣−1
𝜙 ]). (3.2)

The first relation module is special as it does not have a predecessor to input, and we
cannot use zero-padding because 0 has a specific meaning in our context (that the similarity of
the previous support and query images are the same). Thus we set 𝑔1𝜙 = 𝑔([𝑓

1
𝜃 (𝑥𝑖),𝑓

1
𝜃 (𝑥𝑗)]).

Simultaneously, after an average pooling and fully connected layer denoted 𝑞(⋅), each
relation module also outputs a real-valued scalar representing similarity/relation score 𝑟𝑣𝑖,𝑗 of
two images estimated at the feature level 𝑣,

𝑟𝑣𝑖𝑗 = 𝑞(𝑔
𝑣
𝜙). (3.3)

K-Shot For 𝐾-shot with 𝐾 > 1, the embedding module outputs the average pooling of
features, and all samples from the same class produce one feature map. Thus, the number of
outputs for the 𝑣-level relation module is 𝐶 , regardless of the value of 𝐾 .
Objective Function There are 2 steps to train the RelationNet2 (RN2) network. We
first train the embedding network, then fix the embedding network parameters and train the
relation network (run the whole RN2 consisting of embedding and relation modules, but
only update the relation modules). We first train the embedding network 𝜃 as a conventional
multi-class classifier for the data in 𝑚−𝑡𝑟𝑎𝑖𝑛 using cross entropy loss 𝓁𝐶𝐸 . To leverage our
distribution-embedding, we add a feature variance regularizer:

𝜃← argmin
𝜃

𝓁𝐶𝐸(𝜃)−𝜆 1
𝑚

𝑚
∑

𝑖=1
𝜎𝑖, (3.4)

where 𝜎𝑖 is the predicted standard deviation of each instance and 𝑚 is their total number, and
𝜆 is the hyperparameter to finetune the influence of the regularizer (here is 0.01). This ensures
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that feature distributions are learned, and we do not collapse to standard (zero-variance)
vector embedding (our mean 𝜎 is about 0.5). This pipeline can be seen as a learnable data
augmentation strategy at each level of the feature hierarchy for relation modules. Learning with
these augmented features improves generalization. After embedding training, the parameters
𝜃 of embedding modules are fixed.

We next train the column of relation modules 𝜙 on 𝑚−𝑡𝑟𝑎𝑖𝑛 with an episodic strategy
[170] using cross entropy loss 𝓁𝐶𝐸 at each module (Figure 3.1). To weight the 𝑉 relation
modules, we assign a learnable attention weight 𝑤𝑣𝑐,𝑗 to the calculated relation similarity
score 𝑟𝑣𝑐,𝑗 of each module.

𝜙← argmin
𝜙

𝐶
∑

𝑐=1

𝑛
∑

𝑗=1

𝑉
∑

𝑣=1
𝓁𝐶𝐸(𝑤𝑣𝑐,𝑗𝑟

𝑣
𝑐,𝑗 ,𝟏(𝑦𝑐 = 𝑦𝑗);𝜙), (3.5)

where 𝑗 = 1…𝑛 refers to query samples and 𝑐 refers to a batch of𝐾 support examples of class
𝑦𝑐 in a 𝐶-way-𝐾-shot problem. 𝑟𝑐,𝑗 are the relation scores between query image 𝑗 and the
class 𝑦𝑐 support images. Additionally, 𝑤𝑣𝑐,𝑗 = 𝛼

𝑣(𝑔𝑣𝑐,𝑗) is a sigmoid-activated fully connected
layer that computes a scalar attention weight given relation feature map 𝑔𝑣𝑐,𝑗 , and the weights
of 𝛼𝑣 are included in 𝜙.
Testing Strategy To evaluate our learned model on 𝐶-way-𝐾-shot learning, we calculate
the final relation score 𝑟𝑐,𝑗 of one query image 𝑥𝑗 to the images of each support class 𝑐:

𝑟𝑐,𝑗 =
𝑉
∑

𝑣=1
𝑤𝑣𝑗 𝑟

𝑣
𝑐,𝑗 (3.6)

where 𝑟𝑣𝑐,𝑗 is the relation score between image 𝑗 and the support images of class 𝑐 at module
𝑣. Finally, the class with the highest relation score 𝑟𝑐 is the final predicted classification. We
evaluate the approach by the resulting classification accuracy.

3.3.3 Network Architecture

The RelationNet2 architecture (Figure 3.1) uses 4 embedding modules, each paired with a
relation module. We explain our method with SENet for concreteness, but it can be instantiated
with any backbone.
Embedding Subnetwork As shown in Table 3.1, first we use a 7×7 convolution followed
by a 3×3max-pooling, which is a common size reduction as [66]. Then, we have 4 embedding
modules each composed of a number of SENet blocks. Finally, an avg-pooling and a fully-
connected layer are used to produce 𝐶 logit values, corresponding to 𝐶 classes in m-train.
More specifically, 4 embedding modules followed the 4 SENet basic blocks composition
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Output size Embedding Embedding+ noise Output size Relation

112×112 conv, 7×7, 64, stride 2, padding 3
56×56 Maxpooling 3×3, stride 2, padding 1

56×56
⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,64
𝑐𝑜𝑛𝑣,3×3,64
𝑓𝑐, [4,64]

⎤

⎥

⎥

⎦

×3

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,64
𝑐𝑜𝑛𝑣,3×3,64
𝑓𝑐, [4,64]

⎤

⎥

⎥

⎦

×2

28×28
⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,128
𝑐𝑜𝑛𝑣,3×3,128
𝑓𝑐, [8,128]

⎤

⎥

⎥

⎦

×2
⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,64
𝑐𝑜𝑛𝑣,3×3,65
𝑓𝑐, [4,65]

⎤

⎥

⎥

⎦

×1

28×28
⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,128
𝑐𝑜𝑛𝑣,3×3,128
𝑓𝑐, [8,128]

⎤

⎥

⎥

⎦

×4

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,128
𝑐𝑜𝑛𝑣,3×3,128
𝑓𝑐, [8,128]

⎤

⎥

⎥

⎦

×3

14×14

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,384
𝑐𝑜𝑛𝑣,3×3,256
𝑓𝑐, [16,256]

⎤

⎥

⎥

⎦

×1

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,128
𝑐𝑜𝑛𝑣,3×3,129
𝑓𝑐, [8,129]

⎤

⎥

⎥

⎦

×1
⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,256
𝑐𝑜𝑛𝑣,3×3,256
𝑓𝑐, [16,256]

⎤

⎥

⎥

⎦

×1

14×14
⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,256
𝑐𝑜𝑛𝑣,3×3,256
𝑓𝑐, [16,256]

⎤

⎥

⎥

⎦

×6

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,256
𝑐𝑜𝑛𝑣,3×3,256
𝑓𝑐, [16,256]

⎤

⎥

⎥

⎦

×5

7×7

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,768
𝑐𝑜𝑛𝑣,3×3,512
𝑓𝑐, [32,512]

⎤

⎥

⎥

⎦

×1

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,256
𝑐𝑜𝑛𝑣,3×3,257
𝑓𝑐, [16,257]

⎤

⎥

⎥

⎦

×1
⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,512
𝑐𝑜𝑛𝑣,3×3,512
𝑓𝑐, [32,512]

⎤

⎥

⎥

⎦

×1

7×7
⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,512
𝑐𝑜𝑛𝑣,3×3,512
𝑓𝑐, [32,512]

⎤

⎥

⎥

⎦

×3

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,512
𝑐𝑜𝑛𝑣,3×3,512
𝑓𝑐, [32,512]

⎤

⎥

⎥

⎦

×2

7×7

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,1536
𝑐𝑜𝑛𝑣,3×3,512
𝑓𝑐, [32,512]

⎤

⎥

⎥

⎦

×1

⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,512
𝑐𝑜𝑛𝑣,3×3,513
𝑓𝑐, [32,513]

⎤

⎥

⎥

⎦

×1
⎡

⎢

⎢

⎣

𝑐𝑜𝑛𝑣,3×3,512
𝑐𝑜𝑛𝑣,3×3,512
𝑓𝑐, [32,512]

⎤

⎥

⎥

⎦

×1

1×1 Global average pooling, fc

Table 3.1 Parameters of each embedding and relation module. Relation modules concatenate the
final feature maps of both corresponding embedding modules and the previous relation module. The
output size of each embedding module matches the input size of the corresponding relation module.
The brackets of ‘fc’ indicate the dimension of FC layers in an SE block [66].

[3,4,6,3], respectively. In original SENet paper [66], they use SE-ResNet-50, but here we
use smaller backbones as SE-ResNet-34, where (3+4+6+3) ∗ 2+2 = 34. Otherwise, we
follow the other setting in [66], e.g., reduction ratio 𝑟 = 16 as suggested.
Distribution Embedding Conventually, an embedding module outputs deterministic
features. As explained in Section 3.3.2, each embedding module’s output is split into two
parts: the mean feature 𝑓𝜃,𝜇 sized [𝑏,𝑐,ℎ,𝑤] ([batch_size, channel, height, width]), and
standard deviation (std) 𝑓𝜃,𝜎 sized [𝑏,1,ℎ,𝑤]. We assume that every channel shares the same
standard deviation (std). This means, in addition to the penultimate-to-output layer (now it is
penultimate-to-mean layer), we have a new penultimate-to-std layer (with its own parameters).
The motivation behind sharing stds across channels is to reduce the number of parameters in
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the newly introduced layer. We also control the amount of noise added by applying Sigmoid
activation to constrain the std to the range [0,1]. We sample one feature vector per image in
a single forward pass, but multiple samples are drawn considering the whole batch.
Relation Subnetwork As illustrated in Figure 3.1, the relation column consists of 4 serial
modules, each of which has 2 SENet blocks, with a pooling and a fully-connected layer to
produce the relation score. Thus the relation modules are designed as [2,2,2,2], where the
SENet block architecture is the same as the one used in embedding module.

3.4 Experiments
Our RN2 is evaluated on few-shot classification using datasets: miniImageNet and tieredImageNet
datasets. All experiments are implemented in PyTorch. Code is published on https://github.
com/zhangxueting/DCN.

3.4.1 Prerequisites

Baselines We compare several state-of-the-art baselines for few-shot learning including
Matching Nets [170], Meta Nets [108], Meta LSTM [129], MAML [34], Baseline++ [20],
Prototypical Nets [150], Graph Neural Nets [40], Meta-SSL [132], Relation Net [159], Meta-
SGD [92], TPN [96], CAVIA [198], DynamicFSL [44], SNAIL [106], AdaResNet [109],
TADAM [116], MTL [156], TapNet [191], MetaOpt Net [84], PPA [127], LEO [138].
Data Augmentation We follow the standard data augmentation [160, 66, 56, 20] with
random-size cropping and random horizontal flipping Input images are normalized through
mean channel subtraction.
Pre-train and train The embedding branch is pre-trained by the training set and the
parameters then are fixed. The validation set is used to estimate the number of early stop
episodes for the relation training. Finally, both train and validation data (as per common
practice [127]) are used to train the relation modules in RN2.

3.4.2 miniImagenet

Dataset miniImageNet has 60,000 images in consist of 100 ImageNet classes, each with
600 images [170]. Following the split in [129], the dataset is divided into a 64-class training
set, 16-class validation set and a 20-class testing set.
Settings We evaluate both 5-way-1-shot and 5-way-5-shot, where each episode con-
tains 5 query images for each sampled class. There are 5*5+1*5=30 images per training

https://github.com/zhangxueting/DCN
https://github.com/zhangxueting/DCN
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Model Embedding miniImagenet 5-way Acc.

1-shot 5-shot

MATCHING NETS [170] Conv-4 43.56 ± 0.84% 55.31 ± 0.73%
META LSTM [129] Conv-4 43.44 ± 0.77% 60.60 ± 0.71%
MAML𝑂 [34] Conv-4 48.70 ± 1.84% 63.11 ± 0.92%
BASELINE++ [20] Conv-4 48.24 ± 0.75% 66.43 ± 0.63%
META NETS [108] Conv-5 49.21 ± 0.96% -
PROTONET [150] Conv-4 49.42 ± 0.78% 68.20 ± 0.66%
GNN [40] Conv-4 50.33 ± 0.36% 66.41 ± 0.63%
META SSL[132] Conv-4 50.41 ± 0.31% 64.39 ± 0.24%
RELATION NET [159] Conv-4 50.44 ± 0.82% 65.32 ± 0.70%
META SGD𝑂 [92] Conv-4 50.47 ± 1.87% 64.03 ± 0.94%
TPN [96] Conv-4 52.78 ± 0.27% 66.59 ± 0.28%
CAVIA [198] Conv-4 51.82 ± 0.65% 65.85 ± 0.55%
DYNAMIC FSL† [44] Conv-4 56.20 ± 0.86% 72.81 ± 0.62%
RN2 Conv-4 53.48 ± 0.78% 67.63 ± 0.59%

BASELINE++ [20] ResNet-18 51.87 ± 0.77% 75.68 ± 0.63%
RELATION NET [20] ResNet-18 52.48 ± 0.86% 69.83 ± 0.68%
PROTONET [20] ResNet-18 54.16 ± 0.82% 73.68 ± 0.65%
SNAIL [140] ResNet-12 55.71 ± 0.99% 68.88 ± 0.92%
DYNAMIC FSL [44] ResNet-12 55.45 ± 0.89% 70.13 ± 0.68%
ADARESNET [109] ResNet-12 57.10 ± 0.70% 70.04 ± 0.63%
TADAM [116] ResNet-12 58.50 ± 0.30% 76.70 ± 0.30%
MTL [156] ResNet-12∗ 61.20 ± 1.80% 75.50 ± 0.80%
TAP NET [191] ResNet-12 61.65 ± 0.15% 76.36 ± 0.10%
METAOPTNET𝑂 [84] ResNet-12∗ 64.09 ± 0.62% 80.00 ± 0.45%
RN2 ResNet-12 63.92 ± 0.98% 77.15 ± 0.59%

PPA [127] WRN-28-10 59.60 ± 0.41% 73.74 ± 0.19%
LEO𝑂 [138] WRN-28-10 61.78 ± 0.05% 77.59 ± 0.12%

MAML SENet 55.99 ± 0.99% -
RELATION NET SENet 57.39 ± 0.86% -
PROTONET SENet 51.60 ± 0.85% -
RN2 SENet 63.19 ± 0.87% 76.58 ± 0.66%

Table 3.2 Few-shot classification results on miniImageNet. Our model achieves excellent perfor-
mance across a range of shallow and deep architectures. All accuracies are averaged over 600 test
episodes and are reported with 95% confidence intervals. From top to bottom: Simple conv block
embeddings to other deep embeddings (ResNet, WRN, SENet). ‘-’: not reported. †: uses two-step
optimization with added attention. 𝑂: requires gradient-based optimisation at meta-test time. ∗: uses
a wider ResNet than standard and higher dimensional embedding.

episode/mini-batch for 5-way-1-shot experiments, and 5*5+5*5=50 images for 5-way-5-shot
experiments. When it comes to 5-shot, we calculate the class-wise average feature across the
support set. Thus we get 5*5*5*1=125 feature pairs as input for the relation module. For
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embedding and relation module training, optimization uses SGD with momentum 0.9. The
initial learning rate is 0.1, decreased by a factor of 5 every 60 epochs, and the training epoch
is 200. All models are trained from scratch, using the robust RELU weight initialization [57].
We follow [20] in using 224×224 pixels crops for evaluation on ResNet and SENet, and [129]
in using 84×84 images for the smaller Conv-4 backbone.
Results Following the setting of [150], when evaluating testing performance, we batch
15 query images per class in a testing episode and the accuracy is calculated by averag-
ing over 600 randomly generated testing tasks (for both 1-shot and 5-shot scenarios). In
Table 3.2, RN2 achieves excellent performance with different embedding backbones. Specifi-
cally, the accuracy of 5-way miniImageNet with SENet is 63.19% and 76.58% for 1-shot and
5-shot respectively. We note that MetaOptNet [84] uses significantly more advanced regu-
larizers than standard among the competitors (which corresponds to about 2% performance
according to [84]), also requires an order of magnitude higher dimensionality of embeddings
[64,160,320,640] than the other competitors [64,96,128,256]. Overall RN2’s 1-shot recog-
nition performance is state-of-the-art among methods that do not require optimisation at
meta-test time (unlike, e.g., MAML [34] and MetaOptNet [84]). It is noteworthy that achiev-
ing good performance with deeper backbones is not trivially automatic as Dynamic FSL, for
example fails to improve from Conv-4 to ResNet embedding. RN2’s learned noise regularizer
helps it to exploit a powerful SENet backbone without overfitting. Direct comparison among
models is complicated by the diversity of embedding networks used in different studies, so
we show the results of RN2 with each commonly used backbone in Table 3.2, e.g. Conv-4
and ResNet-12. We can see that our model performs favorably across a range of architectures.
Cross-way Testing Results Standard procedure in few-shot evaluation is to train models for
the desired number of categories to discriminate at testing time. However, unlike alternatives
such as MAML [34], our method is not required to match label cardinality between training
and testing. We therefore evaluate 5-way trained model on 20-way testing in Table 3.3. It
shows that our model outperforms the alternatives clearly despite RN2 being trained for
5-way, and the others specifically for 20-way, indicating another important aspect of RN2’s
flexibility and general applicability.

3.4.3 tieredImagenet

Dataset tieredImageNet is a larger few-shot recognition benchmark containing 608 classes
(779,165 images), in which training/validation/testing categories are organized so as to
ensure a larger semantic gap than those in miniImageNet, thus providing a more rigorous
test of generalization. This is achieved by dividing according to 34-higher-level nodes in the
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Model Embedding miniImagenet 20-way Acc.

1-shot 5-shot

MATCHING NETS [92] Conv-4 17.31 ± 0.22% 22.69 ± 0.86%
META LSTM𝑂 [92] Conv-4 16.70 ± 0.23% 26.06 ± 0.25%
MAML𝑂 [92] Conv-4 16.49 ± 0.58% 19.29 ± 0.29%
META SGD𝑂 [92] Conv-4 17.56 ± 0.64% 28.92 ± 0.35%

RN2 Conv-4 27.56 ± 0.24% 39.56 ± 0.81%
RN2 ResNet-12 31.65 ± 0.34% 50.25 ± 0.46%
RN2 SENet 32.90 ± 0.39% 51.37 ± 0.39%

Table 3.3 20-way classification accuracy on miniImageNet. RN2 is trained on 5-way with different
embeddings and transferred to 20-way. The results of Meta LSTM, MAML and Meta SGD are from
[92].

ImageNet hierarchy [132], grouped into 20 for training (351 classes), 6 for validation (97
classes) and 8 for testing (160 classes), respectively.
Settings Similar to the setting of miniImageNet, we use 5 query images per training episode.
Due to the larger data size, we train embedding modules with a larger batch size 512, initial
learning rate 0.3 and 100 training epochs. Other settings remain the same as miniImageNet.
Results Following the former experiments, we batch 15 query images per class in each
testing episode and the accuracy is calculated by averaging over 600 randomly generated
testing tasks. From Table 3.4, RN2 achieves the state-of-the-art performance on the 5-way-1-
shot and 5-shot tasks with comfortable margins. Again, this is state-of-the-art performance
for methods that do not require optimisation at meta-testing. We note also that Meta-SSL
[132] and TPN [96] are semi-supervised methods that use more information than ours, and
have additional requirements such as access to the test set for transduction.

3.5 Further Analysis
In this section, we capture some further analysis to highlight the insight of our model, show the
comparison of different metric learners, and give ablation study to confirm the effectiveness
of the architecture design and multiple relation modules.

3.5.1 Application to Other Metric Learners

Our main insight is the value of feature comparison at multiple abstraction levels in metric
learning, as well as that of learned noise regularizers for deep networks in the few-shot regime.
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Model Embedding tieredImagenet 5-way Acc.

1-shot 5-shot

REPTILE [96] Conv-4 48.97% 66.47%
MAML [96] Conv-4 51.67% 70.30%
META SSL† [132] Conv-4 52.39 ± 0.44% 70.25 ± 0.31%
PROTO NET [96] Conv-4 53.31% 72.69%
RELATION NET [96] Conv-4 54.48% 71.31%
TPN† [96] Conv-4 59.91% 73.30%
TAP NET [191] ResNet-12 63.08 ± 0.15% 80.26 ± 0.12%
METAOPTNET𝑂 [84] ResNet-12∗ 65.81 ± 0.74% 81.75 ± 0.53%

RN2 Conv-4 60.58 ± 0.72% 72.42 ± 0.69 %
RN2 ResNet-12 68.58 ± 0.63% 80.65 ± 0.91%
RN2 SENet 68.83 ± 0.94% 79.62 ± 0.77%

Table 3.4 Few-shot classification results on tieredImageNet. All accuracies are averaged over 600
test episodes and reported with 95% confidence intervals. For each task, the best-performing method
is bold. †: uses additional unlabelled data for semi-supervised learning or transductive inference. 𝑂:
requires gradient-based optimisation at meta-test time. ∗: uses a wider ResNet than standard size and
higher dimensional embedding.

Model Noise Regularization? Deep Comparisons? Acc.

PROTONET[150] X X - 1 module 51.04 ± 0.77%
PROTONET ✓ X - 1 module 51.60 ± 0.85%
PROTONET X ✓- 4 modules 53.62 ± 0.82%
PROTONET ✓ ✓- 4 modules 54.78 ± 0.88%

RELATIONNET[159] X X - 1 module 52.48 ± 0.86%
RELATIONNET ✓ X - 1 module 57.39 ± 0.86%
RN2 X ✓- 4 modules 60.57 ± 0.86%
RN2 ✓ ✓- 4 modules 63.19 ± 0.87%

Table 3.5 Comparison of RelationNet and ProtoNet. Multiple deep comparisons and distribution
embedding of features benefit both RelationNet (learnable relation modules) and ProtoNet (fixed
linear modules) few-shot architectures. Accuracies are calculated on 5-way-1-shot classification of
miniImagenet.

We confirm these ideas can be applied to other base metric learners. Table 3.5 shows the 5-way-
1-shot results for both RelationNet [159] and ProtoNet [150] base learners controlling for these
features. We can see that both architectures benefit from deep comparisons and regularizers.
However the benefit is greater for RelationNet, which we attribute to the learnable non-linear
relation modules. These can learn a different comparison function at each abstraction level,
but are also more complex so benefit more from the additional regularization.
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Model miniImageNet 5-way-1-shot Acc.

RN2 Full model 63.19 ± 0.87%
RN2-No module weight 62.88 ± 0.83%
RN2-No noise 60.57 ± 0.86%
RN2-No retrain 60.79 ± 0.88%
RN2-No retrain, No noise 58.04 ± 0.82%
RN2-No deep sup. 58.02 ± 0.80%

RN2-𝑟1 52.25 ± 0.80%
RN2-𝑟2 58.07 ± 0.80%
RN2-𝑟3 60.69 ± 0.81%
RN2-𝑟4 58.31 ± 0.79%

Table 3.6 Ablation study to evaluate the regularization and multiple relation modules. Accuracies
are calculated on 5-way-1-shot classification of miniImageNet.

3.5.2 Ablation Study

We further investigate the detailed design parameters of our method with a series of ablation
studies reported in Table 3.6. Parameterized Gaussian Noise Regularization: Comparing
RN2 and RN2-No Noise, we can see that this brings over 2% improvement. Retraining: The
impact of retraining on the combined training and validation set is visible by comparing the
entries with RN2-No Retrain, which provides a similar 2% margin, and this is complementary
to the noise. Deep Supervision: The RN2-No Deep Sup. result shows that deep supervision
is important to gain full benefit from a column of relation modules. Module Weighting: Our
model learns the attention weight automatically during meta-training, which eliminates the
need for hand-tuning. Compared to manually tuned module weights or no weights, learning
weights per module helps somewhat. Multiple Non-linear Metrics: Table 3.6 also shows the
testing accuracy with each relation module output score 𝑟𝑣 in isolation (RN2-𝑟𝑣). Each module
performs competitively, but their combination clearly leads to the best overall performance,
supporting our argument that multiple levels of the feature hierarchy should be used to make
general purpose matching decisions. Multiple meta learner design is a creative contribution of
our work. Architecture: Our model benefits from deeper embedding architectures (Table 3.2).
It improves when going from simple convolutional blocks (used by early studies [34, 150,
159]), to ResNet [56] and SENet [66]. For fair comparison, when fixing a common ResNet-12,
our model outperforms the others that do not require meta-test optimization. Moreover, when
fixing a common SENet, competitors RelationNet/ProtoNet/MAML are improved, but still
surpassed by our model.
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3.5.3 Relation Module Analysis

A key contribution is to perform metric learning at multiple abstraction levels simultaneously
via a series of paired relation and embedding modules. Relation modules are analyzed to
provide insight into the complementarity.
Score-Distance Correlation We firstly check how the relation module (RM) scores relate to
distances in the ImageNet hierarchy [81]. We search for (𝑠𝑢𝑝𝑝𝑜𝑟𝑡1, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡2, 𝑞𝑢𝑒𝑟𝑦) category
tuples where the distance𝐷(𝑞𝑢𝑒𝑟𝑦,𝑠𝑢𝑝𝑝𝑜𝑟𝑡1) and𝐷(𝑞𝑢𝑒𝑟𝑦,𝑠𝑢𝑝𝑝𝑜𝑟𝑡2) match a certain number
of links, and then plot instances from these tuples query categories against the relative relation
module scores 𝑅𝑀(𝑞,𝑠1), 𝑅𝑀(𝑞,𝑠2). Figure 3.2 presents scatter plots for the four relation
modules where points are images and colors indicate category tuples with specified distance
from the two support classes. We can see that: (1) The scores generally match ImageNet
distances: The most/least similar categories (red/magenta) are usually closer to the top
right/bottom left of the plot; while query categories closer to one support class are in the
opposite corners (blue/yellow-green). (2) Generally higher numbered relation modules are
more discriminative, separating classes with larger differences in relation score.
Score Correlation We next investigated if relation module predictions are diverse or
redundant. We analyzed the correlation in their predictions by randomly picking 10,000 image
pairs from miniImageNet and computing the Spearman rank-order correlation coefficient
[151] between each pair of relation module’s scores. The results in Table 3.7, show that: (1)
Many correlations are relatively low (down to 0.34), indicating that they are making diverse,
non-redundant predictions; (2) Adjacent RMs have higher correlation than non-adjacent RMs,
indicating that prediction diversity is related to RM position in the feature hierarchy.

Module RM1 RM2 RM3 RM4

RM1 - - - -
RM2 0.75 - - -
RM3 0.55 0.73 - -
RM4 0.34 0.45 0.61 -

Table 3.7 Spearman rank-order correlation coefficient between different relation modules.
Results show that different modules make diverse predictions.

Prediction Success by Module We know that RM predictions do not necessarily agree.
But to find out if they are complementary, we made a scatter plot of the per-class accuracy of
RM-1 vs RM-4 in Figure 3.3. We can see that many categories lie on the diagonal, indicating
that RM-1 and RM-4 get them right equally often. However there are some categories below
the diagonal, indicating that RM-1 gets them right more often than RM-4. Examples include
both stereotyped and fine-grained categories such as ‘hourglass’ and ‘African hunting dog’.
These below diagonal elements confirm the value of using deeper features in metric learning.
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Figure 3.2 Illustration of query-support score distribution and the link to ImageNet hierarchy.
Colors indicate query images of a (𝑞𝑢𝑒𝑟𝑦,𝑠𝑢𝑝𝑝𝑜𝑟𝑡1, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡2) class triple matching the specified
ImageNet distance relationship [𝐷(𝑞,𝑠1),𝐷(𝑞,𝑠2)].

20 30 40 50 60 70 80 90 100
Accuracy(%) of RM1

20

30

40

50

60

70

80

90

100

Ac
cu
ra
cy
(%

) o
f R

M
4

malamute

African hunting dog

liver-spotted dalmatian

golden retriever

lion cub

bookshop

hourglass

Figure 3.3 Category-wise accuracy of RM1 vs RM4. Different relation modules are better at
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3.6 Summary
In this chapter, we proposed RelationNet2, a.k.a. DCN, a new general purpose matching
framework for few-shot learning. This architecture performed effective few-shot learning via
learning multiple non-linear comparisons simultaneously corresponding to multiple levels of
feature extraction, while resisting overfitting. The resulting method achieved state-of-the-art
results on miniImageNet and the more ambitious tieredImageNet, while retaining architectural
simplicity, and fast training and testing processes.

However, Relation Network uses the matching score to evaluate the similarity between
support and query data, of which the computing cost is exponentially increased by the size of
dataset. Our multi-metric RelationNet2 is based on the same paradigm of similarity evaluation
with poor compute scalability to a large support set and a high number of way.



Chapter 4

Shallow Bayesian MetaQDA

Many state-of-the-art few-shot learners focus on developing effective training procedures
for feature representations, before using simple (e.g., nearest centroid) classifiers. In this
chapter, we take an approach that is agnostic to the features used, and focus exclusively on
meta-learning the final classifier layer. Specifically, we introduce MetaQDA, a Bayesian
meta-learning generalization of the classic quadratic discriminant analysis. This approach
has several benefits of interest to practitioners: meta-learning is fast and memory efficient,
without the need to fine-tune features. It is agnostic to the off-the-shelf features chosen, and
thus will continue to benefit from future advances in feature representations. Empirically,
it leads to excellent performance in cross-domain few-shot learning, class-incremental few-
shot learning, and crucially for real-world applications. The Bayesian formulation leads to
state-of-the-art uncertainty calibration in predictions.

4.1 Introduction
Few-shot recognition methods aim to solve classification problems with limited labelled
training data. The practical importance of this capability across diverse sparse data appli-
cations has motivated a large body of work [177]. Contemporary approaches to few-shot
recognition are characterized by a focus on deep meta-learning [62] methods that provide
data efficient learning of new categories by using auxiliary data to train a model designed
for rapid adaptation to new categories [34, 198], or for synthesizing a classifier for new
categories in a feed-forward manner [106, 127]. Many of these meta-learning methods are
intimately interwoven with the training algorithm and/or architecture of the deep network
that they build upon. For example, many have relied on episodic training schemes [150, 170],
where few-shot learning problems are simulated at each iteration of training; differentiable



38 Shallow Bayesian MetaQDA

optimizers [14, 84]; or new neural network modules [159, 41, 133] to facilitate data efficient
learning and recognition.

Against this backdrop, a handful of recent studies [176, 45, 20, 102, 189, 172] have
pushed back against deep meta-learning. They have observed, for example, that a well tuned
convolutional network pre-trained for multi-class recognition and combined with a simple
linear or nearest centroid classifier can match or outperform state-of-the-art meta-learners.
Even self-supervised pre-training [102] has led to feature extractors that outperform many
meta-learners. These analyses raise the question: is meta-learning indeed beneficial, or is
focusing on improving conventional pre-training sufficient?

We take a position in defense of meta-learning for few-shot recognition. To disentangle
the influences of meta-learning per-se and feature learning discussed above, we restrict
ourselves to fixed pre-trained features and conduct no feature learning in this study. This
result shows that both camps are correct: good vanilla pre-training strategies do provide
strong downstream few-shot learning; but also meta-learning, even in its shallowest form, can
boost few-shot learning above and beyond whatever is provided by the pre-trained features
alone.

We take an amortized Bayesian inference approach [47, 59] to shallow meta-learning.
During meta-testing, we infer a distribution over classifier parameters given the support set;
and during meta-training we learn a feed-forward inference procedure for these parameters.
While the limited recent work in Bayesian meta-learning is underpinned by amortized Varia-
tional Inference [47], our approach relies instead on conjugacy [82]. Specifically, we build
upon the classic Quadratic Discriminant Analysis (QDA) [38] classifier and extended it with
a Bayesian prior, an inference pipeline for the QDA parameter posterior given the support set,
and gradient-based meta-training. We term the overall framework MetaQDA.

MetaQDA has several important practical benefits for real-world deployments. Firstly,
many real-world applications lack computing infrastructure for end-to-end training [71].
MetaQDA allows few-shot meta-learning to be conducted in such resource constrained
scenarios, while providing superior performance to recent fixed-feature approaches [176, 20,
102]. Furthermore by decomposing representation learning from classifier meta-learning,
MetaQDA is expected to benefit from continued progress in CNN architectures and training
strategies. Indeed our empirical results show that MetaQDA’s feature-agnostic meta-learning
strategy benefits a diverse range of classic and recent feature representations.

As computer vision systems begin to be deployed in high-consequence applications where
safety [83] or fair societal outcomes [104] are at stake, their calibration becomes as equally,
or more, important as their actual accuracy. E.g., models must reliably report low-certainty
in those cases where they do make mistakes, thus allowing their decisions in those cases to
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be reviewed. Indeed, proper calibration is a hard requirement for deployment in many high
importance applications [49, 115]. Crucially, we show that our Bayesian MetaQDA leads to
significantly better calibrated models than the standard classifiers in the literature.

Finally, we show that MetaQDA has particularly good performance in cross-domain
scenarios where existing methods are weak [20], but which are ubiquitious in practical
applications, where there is invariably insufficient domain-specific data to conduct in-domian
meta-learning [51].

To summarize our contributions: (i) We present MetaQDA, a novel and efficient Bayesian
approach to classifier meta-learning based on conjugacy. (ii) We empirically demonstrate that
MetaQDA’s efficient fixed feature learning provides excellent performance across a variety of
settings and metrics including conventional, cross-domain, class-incremental, and probability
calibrated few-shot learning. (iii) We shed light on the meta-learning vs vanilla pre-training
debate by disentangling the two and showing a clear benefit from meta-learning, across a
variety of fixed feature representations.

4.2 Related Work

4.2.1 Few-Shot and Meta-Learning Overview

Few-shot and meta-learning are now a widely studied area that is too broad to review here. We
refer the reader to comprehensive recent surveys for an introduction and review [177, 62]. In
general they proceed in two stages: meta-training the strategy for few-shot learning based on
one or more auxiliary datasets; and meta-testing (learning new categories) on a target dataset,
which should be done data-efficiently given the knowledge from meta-training. A high level
categorization of common approaches groups them into methods that (1) meta-learn how to
perform rapid gradient-based adaptation during meta-test [34, 198]; and (2) meta-learn a
feed-forward procedure to synthesize a classifier for novel categories given an embedding of
the support set [47, 127], where metric-based learners are included in the latter category [62].

4.2.2 Is Meta-Learning Necessary?

Many recent papers have questioned whether elaborate meta-learning procedures are necessary.
SimpleShot [176] observes vanilla CNN features pre-trained for recognition achieve near
SotA performance when appropriately normalized and used in a trivial nearest centroid
classifier (NCC). Chen et al. [20] present the simple but high-performance Baseline++, based
on fixing a pre-trained feature extractor and then building a linear classifier during meta-
test. Goldblum et al. [45] observe that although SotA meta-learned deep features do exhibit
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strong performance in few-shot learning, this feature quality can be replicated by adding
simple compactness regularisers to vanilla classifier pre-training. S2M2 [102] demonstrates
that after pre-training a network with self-supervised learning and/or manifold-regularised
vanilla classification, excellent few-shot recognition is achieved by simply training a linear
classifier on the resulting representation. Chen et al. [189] analyze whether the famous
MAML algorithm is truly meta-learning, or simply pre-training a strong feature.

We show that for fixed features pre-trained by several of the aforementioned “off-the-shelf”
non-meta techniques [176, 102], meta-learning solely in classifier-space further improves
performance. This allows us to conclude that meta-learning does add value, since alternative
vanilla (i.e., non-meta) pre-training approaches do not influence the final classifier. We
leave conclusive analysis of the relative merits of meta-learning vs vanilla pre-training of
feature representation space to future work. In terms of empirical performance, we surpass
all existing strategies based on fixed pre-trained features, and most alternatives based on deep
feature meta-learning.

4.2.3 Fixed Feature Meta-Learning

A minority of meta-learning studies such as [138, 94] have also built on fixed features. LEO
[138] synthesizes a classifier layer for a fixed feature extractor using a hybrid gradient- and
feedforward-strategy. The concurrent URT [94] addresses multi-domain few-shot learning by
meta-training a module that fuses an array of fixed features and dynamically produces a new
feature encoding for a new domain. Ultimately, URT uses a ProtoNet [150] classifier, and
thus our contribution is orthogonal to URT’s, as MetaQDA aims to replace the classifier (ie,
ProtoNet), not produce a new feature. Indeed we show empirically that MetaQDA can use
URT’s feature and improve their performance, further demonstrating the flexibility of our
feature-agnostic approach.

4.2.4 Bayesian Few-Shot Meta-Learning

Relatively few methods in the literature take Bayesian approaches to few-shot learning. A
few studies [48, 190] focus on understanding MAML [34] as a hierarchical Bayesian model.
Versa [47] treats the weights of the final linear classifier layer as the quantity to infer given
the support set during meta-test. It takes an amortized variational inference (VI) approach,
training an inference neural network to predict the classifier parameters given the support
set. However, unlike us, it then performs end-to-end representation learning, and is not fully
Bayesian as it does not ultimately integrate the classifier parameters, as we achieve here.
Neural Processes [41] takes a Gaussian Process (GP) inspired approach to neural network
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design, but ultimately does not provide a clear Bayesian model. The recent DKT [122]
achieves true Bayesian meta-learning via GPs with end-to-end feature learning. However,
despite performing feature learning, these Bayesian approaches have generally not provided
SotA benchmark performance compared to the broader landscape of competitors at the time of
their publication. A classic study [59] explored shallow learning-to-learn of linear regression
by conjugacy. We also exploit conjugacy but for classifier learning, and demonstrate SotA
results on heavily benchmarked tasks for the first time with Bayesian meta-learning.

4.2.5 Classifier Layer Design

The vast majority of few-shot studies use either linear [102, 47, 29], cosine similarity [127],
or nearest centroid classifiers [176, 150] under some distance metric. We differ in: (i) using a
quadratic classifier, and (ii) taking a “generative” approach to fitting the model [55]. While a
quadratic classifier potentially provides a stronger fit than a linear classifier, its larger number
of parameters will overfit catastrophically in a few-shot/high-dimension regime. This is why
few studies have applied them, with the exception of [6] who had to carefully hand-craft
regularisers for them. Our key insight is to use conjugacy to enable the quadratic classifier
prior to be efficiently meta-learned, thus gaining improved fitting strength, while avoiding
overfitting.

4.3 Probabilistic Meta-Learning
One can formalise a conventional classification problem as consisting of an input space  , an
output space  , and a distribution 𝑝 over  × that defines the task to be solved. Few-shot
recognition is the problem of training a classifier to distinguish between 𝐶 different classes
in a sparse data regime, where only 𝐾 labelled training instances are available for each class.
Meta-learning aims to distill relevant knowledge from multiple related few-shot learning
problems into a set of shared parameters that boost the learning of subsequent novel few-shot
tasks. The simplest way to extend the standard formalisation of classification problems to a
meta-learning context is to instead consider the set,  of all distributions over  × , each
of which represents a possible classification task. One can then assume the existence of a
distribution, 𝑄 over  [8].

From a probabilistic perspective, the parameters inferred by the meta-learner that are
shared across tasks, which we denote by 𝜙, can be seen as specifying or inducing a prior
distribution over the task-specific parameters for each few-shot problem. As such, meta-
learning can be thought of as learning a procedure to induce a prior over models for future
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tasks by meta-training on a collection of related tasks. Representing task-specific parameters
for task 𝑡 by 𝜃𝑡, the few-shot training (aka support) and testing (aka query) sets as 𝐷𝑡

𝑆 and
𝐷𝑡
𝑄, a Bayesian few-shot learner should use the learned prior to determine the posterior

distribution over model parameters,

𝑝(𝜃𝑡|𝐷𝑡
𝑆 ,𝜙) =

𝑝(𝐷𝑡
𝑆|𝜃𝑡)𝑝(𝜃𝑡|𝜙)

∫ 𝑝(𝐷𝑡
𝑆|𝜃𝑡)𝑝(𝜃𝑡|𝜙)d𝜃𝑡

. (4.1)

Once this distribution is obtained, one can model novel query instances, (�⃗�𝑡𝑖,𝑦
𝑡
𝑖) ∈𝐷

𝑡
𝑄, using

the posterior predictive distribution,

𝑝(𝐷𝑡
𝑄|𝐷

𝑡
𝑆 ,𝜙) =

|𝐷𝑡𝑄|
∏

𝑖=1
∫ 𝑝(�⃗�𝑡𝑖,𝑦

𝑡
𝑖|𝜃𝑡)𝑝(𝜃𝑡|𝐷

𝑡
𝑆 ,𝜙)d𝜃𝑡. (4.2)

A natural measure for the goodness of fit for 𝜙 is the expected log likelihood of the few-shot
models that make use of the shared prior,

𝔼
𝐷𝑆 ,𝐷𝑄∼𝑞,𝑞∼𝑄

[𝐿(𝜙|𝐷𝑆 ,𝐷𝑄)], (4.3)

where

𝐿(𝜙|𝐷𝑆 ,𝐷𝑄) =
|𝐷𝑄|
∑

𝑖=1
log𝑝(�⃗�𝑖,𝑦𝑖|𝐷𝑆 ,𝜙). (4.4)

The process of meta-learning the prior parameters can then be formalised as a risk minimisa-
tion problem,

𝜙∗ = argmin
𝜙

𝔼
𝐷𝑆 ,𝐷𝑄∼𝑞,𝑞∼𝑄

[−𝐿(𝜙|𝐷𝑆 ,𝐷𝑄)]. (4.5)

Discussion A prior probabilistic meta-learner [47] focused on the term 𝑝(𝜃𝑡|𝐷𝑡
𝑆 ,𝜙), taking

an amortized variational inference perspective that treats 𝜙 as the parameters of a neural
network that predicts a distribution over the parameters 𝜃𝑡 of a linear classifier given support
set 𝐷𝑡

𝑆 . In contrast, our framework will use a QDA rather than linear classifier, and then
exploit conjugacy to efficiently compute a distribution over the QDA mean and covariance
parameters 𝜃𝑡 given the support set. This is both efficient and probabilistically cleaner, as our
model contains a proper prior, while [47] does not.

The integrals in Equation 4.1 and 4.2 are key to Bayesian meta-learning, but can be
computationally intractable and [47] relies on sampling. Our conjugate setup allows the
integrals to be computed exactly in closed form, without relying on sampling.
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Figure 4.1 Illustrative schematic of MetaQDA. (a) NCC classifier uses the class mean to induce
linear decision boundaries. (b) QDA uses both the support class mean and covariance to induce a
curved decision boundary, but easily overfits in a few-shot regime due. (c) MetaQDA meta-learns
the QDA parameter prior to provide stable estimation of a non-linear decision boundary without
overfitting.

An Illustrative Example To illustrate the mechanism of MetaQDA, we compare it schemat-
ically to conventional linear classifier used in many studies [20, 150, 94], and vanilla QDA in
Figure 4.1. In the figure, the colored circles indicate 3-way-5-shot support datasets, and the
"x" data points are the query set of the corresponding color. The dashed line is the decision
boundary of different classifiers. Figure 4.1(a) shows Nearest Centre Classifier (NCC) [150,
94], where the stars represent the mean of the support set class distributions, and these induce
linear decision boundaries. Figure 4.1(b) depicts the Quadratic Discriminant Analysis (QDA)
classifier, where the dashed ellipses represent the class covariance models, estimated from
the support set. These induce a non-linear decision boundary. Figure 4.1(c) illustrates our
MetaQDA, where the meta-training process learns a shared NIW prior (the shadow ellipse)
from many few-shot training tasks. Then MetaQDA uses conjugacy to update the class
covariances (solid line) using the support set and prior, and so induces a better non-linear
decision boundary.
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This illustrates how the MetaQDA setup allows us to exploit the benefit of a non-linear
classifier, without the associated overfitting risk that would normally undermine such an
attempt (as illustrated by the poor results of vanilla MetaQDA in the following experiments.

4.4 Meta-Quadratic Discriminant Analysis
Our MetaQDA provides a meta-learning generalization of the classic QDA classifier [55].
QDA works by constructing a multivariate Gaussian distribution 𝜃 corresponding to each
class by maximum likelihood. At test time, predictions are made by computing the likelihood
of the query instance under each of these distributions, and using Bayes theorem to obtain
the posterior 𝑝(𝑦|𝑥,𝜃). Rather than using maximum likelihood fitting for meta-testing, we
introduce a Bayesian version of QDA that will enable us to exploit a meta-learned prior
over the parameters of the multivariate Gaussian distributions. Two Bayesian strategies for
inference using such a prior are explored: 1) using the maximum a posterior (MAP) estimate
of the Gaussian parameters; and 2) the fully Bayesian approach that propagates the parameter
uncertainty through to the class predictions. The first of these is conceptually simpler, while
the second allows for better handling of uncertainty due to the fully Bayesian nature of the
parameter inference. For both cases, we make use of Normal-Inverse-Wishart priors [82], as
their conjugacy with multivariate Gaussians leads to an efficient implementation strategy.

4.4.1 MAP-Based QDA

We begin by describing a MAP variant of QDA. In conventional QDA the likelihood of an
instance, �⃗� ∈ℝ𝑑 , belonging to class 𝑗 ∈ ℕ𝐶 is given by  (�⃗�|𝜇𝑗 ,Σ𝑗) and the parameters are
found via maximum likelihood estimation (MLE) on the subset of the support set associated
with class 𝑗,

𝜇𝑗 ,Σ𝑗 = argmax
𝜇,Σ

𝐾
∏

𝑖=1
 (�⃗�𝑗,𝑖|𝜇,Σ). (4.6)

This optimisation problem has a convenient closed form solution: the sample mean and
covariance of the relevant subset of the support set. In order to incorporate prior knowledge
learned from related few-shot learning tasks, we define a Normal-inverse-Wishart (NIW)
prior [110] over the parameters and therefore obtain a posterior for the parameters,

𝑝(𝜇𝑗 ,Σ𝑗|�⃗�, �⃗�,𝜅,𝑆,𝜈)

=
∏𝐾

𝑖=1 (�⃗�𝑗,𝑖|𝜇𝑗 ,Σ𝑗)(𝜇𝑗 ,Σ𝑗|�⃗�,𝜅,𝑆,𝜈)

∫ ∫
∏𝐾

𝑖=1 (�⃗�𝑗,𝑖|𝜇,Σ)(𝜇′,Σ′
|�⃗�,𝜅,𝑆,𝜈)𝑑𝜇′𝑑Σ′

.
(4.7)
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Training This enables us to take advantage of prior knowledge learned from related tasks
when inferring the model parameters by MAP inference,

𝜇𝑗 ,Σ𝑗 = argmax
𝜇,Σ

𝐾
∏

𝑖=1
𝑝(𝜇𝑗 ,Σ𝑗|�⃗�𝑗,𝑖, �⃗�,𝜅,𝑆,𝜈). (4.8)

Because NIW is the conjugate prior of multivariate Gaussians, we know that the posterior
distribution over the parameters takes the form of

𝑝(𝜇𝑗 ,Σ𝑗|�⃗�, �⃗�,𝜅,𝑆,𝜈) =(𝜇𝑗 ,Σ𝑗|�⃗�𝑗 ,𝜅𝑗 ,𝑆𝑗 , 𝜈𝑗), (4.9)

where

�⃗�𝑗 =
�⃗�+𝐾 ̂⃗𝜇𝑗
𝜅+𝐾

, 𝜅𝑗 = 𝜅+𝐾, 𝜈𝑗 = 𝜈+𝐾,

𝑆𝑗 = 𝑆 +
𝐾
∑

𝑖=1
(�⃗�𝑗,𝑖− ̂⃗𝜇𝑗)(�⃗�𝑗,𝑖− ̂⃗𝜇𝑗)𝑇+

𝜅𝐾
𝜅+𝐾

( ̂⃗𝜇𝑗 − �⃗�)( ̂⃗𝜇𝑗 − �⃗�)𝑇 ,

(4.10)

and we have used ̂⃗𝜇𝑗 =
1
𝑘
∑𝐾
𝑖=1 �⃗�𝑗,𝑖. The posterior is maximised at the mode, which occurs at

𝜇𝑗 = �⃗�𝑗 , Σ𝑗 =
1

𝜈𝑗 +𝑑+1
𝑆𝑗 . (4.11)

Testing After computing point estimates of the parameters, one can make predictions on
instances from the query set according to the usual QDA model,

𝑝(𝑦 = 𝑗|�⃗�, �⃗�,𝜅,𝑆,𝜈) =
 (�⃗�|𝜇𝑗 ,Σ𝑗)𝑝(𝑦 = 𝑗)

∑𝐶
𝑖=1 (�⃗�|𝜇𝑖,Σ𝑖)𝑝(𝑦 = 𝑖)

. (4.12)

Note the prior over the classes 𝑝(𝑦) can be dropped in the standard few-shot benchmarks that
assume a uniform distribution over classes.

4.4.2 Fully Bayesian QDA

Computing point estimates of the parameters throws away potentially useful uncertainty
information that can help to better calibrate the predictions of the model. Instead, we can
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marginalise the parameters out when making a prediction,

𝑝(𝑦 = 𝑗|�⃗�)

=
∫ ∫  (�⃗�|𝜇𝑗 ,Σ𝑗)(𝜇𝑗 ,Σ𝑗|�⃗�𝑗 ,𝜅𝑗 ,𝑆𝑗 , 𝜈𝑗)𝑑𝜇𝑗𝑑Σ𝑗

∑𝐶
𝑖=1 ∫ ∫  (�⃗�|𝜇𝑖,Σ𝑖)(𝜇𝑖,Σ𝑖|�⃗�𝑗 ,𝜅𝑗 ,𝑆𝑗 , 𝜈𝑗)𝑑𝜇𝑖𝑑Σ𝑖

.
(4.13)

Each of the double integrals has the form of a multivariate 𝑡-distribution [110], yielding

𝑝(𝑦 = 𝑗|�⃗�, �⃗�,𝜅,𝑆,𝜈)

=

(

�⃗�|�⃗�𝑗 ,
𝜅𝑗+1

𝜅𝑗 (𝜈𝑗−𝑑+1)
𝑆𝑗 , 𝜈𝑗 −𝑑+1

)

∑𝐶
𝑖=1 

(

�⃗�|�⃗�𝑖,
𝜅𝑖+1

𝜅𝑖(𝜈𝑖−𝑑+1)
𝑆𝑖, 𝜈𝑖−𝑑+1

) .
(4.14)

4.4.3 Meta-Learning the Prior

Letting 𝜙 = (�⃗�,𝜅,𝑆,𝜈), our objective is to minimise the negative expected log likelihood of
models constructed with the shared prior on the parameters, as given in Equation 4.5. For
MAP-based QDA, the log likelihood function is given by

𝐿(𝜙|𝐷𝑆 ,𝐷𝑄) =
𝐶
∑

𝑗=1

𝐾
∑

𝑖=1
log (�⃗�𝑗,𝑖|𝜇𝑗 ,Σ𝑗), (4.15)

where 𝜇𝑗 and Σ𝑗 are the point estimates computed via the closed-form solution to the MAP
inference problem given in Equation 4.11. When using the fully Bayesian variant of QDA,
we have the following log likelihood function:

𝐿(𝜙|𝐷𝑆 ,𝐷𝑄)

=
𝐶
∑

𝑗=1

𝐾
∑

𝑖=1
log

(

�⃗�𝑗,𝑖|�⃗�𝑗 ,
𝜅𝑗 +1

𝜅𝑗(𝜈𝑗 −𝑑+1)
𝑆𝑗 , 𝜈𝑗 −𝑑+1

)

.
(4.16)

Meta-Training We approximate the optimization in Equation 5.6 by performing empirical
risk minimisation on a training dataset using episodic training. In particular, we choose  to
be the set of uniform distributions over all possible 𝐶-way classification problems, 𝑄 as the
uniform distribution over  , and the process of sampling from each 𝑞 ∈  results in balanced
datasets containing𝐾 instances from each of the 𝐶 classes. Episodic training then consists of
sampling a few-shot learning problem, building a Bayesian QDA classifier using the support
set, computing the negative log likelihood on the query set, and finally updating 𝜙 using
stochastic gradient descent. Crucially, the use of conjugate priors means that no iterative
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Algorithm 1: Pseudocode for epsiodic meta-learning of hyper-parameters in
MetaQDA.
1 Require: Distribution over tasks 𝑄, number of iterations 𝑇 , learning rate 𝛼
2 Result: prior parameters 𝜙𝑇
3 Init: 𝜙0 = {�⃗� = 0⃗,𝑆 = 𝐈,𝜅 = 1, 𝜈 = 𝑑}
4 for 𝑡 = 1 to 𝑇 do
5 Sample task, 𝑞𝑡 ∼𝑄 ;
6 Sample support and query set, 𝐷𝑡

𝑆 ,𝐷
𝑡
𝑄 ∼ 𝑞𝑡 ;

7 Build Bayesian QDA Model ;
8 If MAP: 𝜃𝑡 ← {(𝜇𝑗 ,Σ𝑗)}𝐶𝑗=1 ; // Eq 4.11

9 If Fully Bayes: 𝜃𝑡 ← {(�⃗�𝑗 ,𝜅𝑗 ,𝑆𝑗 , 𝜈𝑗)}𝐶𝑗=1 ; // Eq 4.10

10 Update Prior
11 𝜙𝑡 ← 𝜙𝑡−1−𝛼∇𝜙𝐿(𝜙𝑡−1|𝐷𝑡

𝑆 ,𝐷
𝑡
𝑄) ; // Eq 4.15 or 4.16

12 end

optimisation procedure must be carried out when constructing the classifier in each episode.
Instead, we are able to backpropagate through the conjugacy update rules and directly modify
the prior parameters with stochastic gradient descent. The overall learning procedure is given
in Algorithm 1.

Some of the prior parameters must be constrained in order to learn a valid NIW distribution.
In particular, 𝑆 must be positive definite, 𝜅 must be positive, and 𝜈 must be strictly greater
than 𝑑−1. The constraints can be enforced for 𝜅 and 𝜈 by clipping any values that are outside
the valid range back to the minimum allowable value. We parameterise the scale matrix in
terms of its Cholesky factors,

𝑆 = 𝐿𝐿𝑇 , (4.17)

where 𝐿 is a lower triangular matrix. During optimisation we ensure 𝐿 remains lower
triangular by setting all elements above the diagonal to zero after each weight update.

4.5 Experiments
We measure the efficacy of our model in standard, cross-domain and multi-domain few-shot
learning problem settings. We also evaluate the uncertainty calibration error, which is also a
significant advantage of our approach. MetaQDA is a shallow classifier-layer meta-learner
that is agnostic to the choice of fixed extracted features. Unless otherwise stated, we report
results for the FB-based variant of MetaQDA. During meta-training, we learn the priors
𝜙 = (�⃗�,𝜅,𝑆,𝜈) over episodes drawn from the training set, keeping the feature extractor fixed.
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We use the meta-validation datasets for model selection and hyperparameter tuning. During
meta-testing, the support set is used to obtain the parameter posterior, and then a QDA
classifier is established according to either Equation 4.12 or Equation 4.14. All algorithms
are evaluated on 𝐶-way 𝑘-shot learning [150], with a batch of 15 query images per class in
a testing episode. All accuracies are calculated by averaging over 600 randomly generated
testing tasks with 95% confidence interval.

4.5.1 miniImageNet

Dataset miniImageNet [129] is split into 64/16/20 for meta-train/val/test, respectively,
containing 100 classes and 600 examples per class, drawn from ILSVRC-12 [137]. Images
are resized to 84×84 [56].
Settings As for Conv-4 extractor and ResNet-18 extractor, following [176], we use
stochastic gradient descent (SGD) with a multi-step learning rate schedule, momentum of
0.9, and the initial learning rate is set to 0.01. At epochs 70 and 100 we reduce the learning
rate by a factor of 0.1. Weight decay is set as 0.0001 through out training. Batch size is
256 images. In terms of WRN-28-10 extractor, following [102], as for 1-shot classification
on miniImageNet, we use stochastic gradient descent (SGD) with a multi-step learning rate
schedule, momentum of 0.9, and the initial learning rate is set to 0.001. But as for 5-shot
classification on miniImageNet, we use ADAM optimiser.
Competitors We group competitors into two categories: (1) direct competitors that also
make use of ‘off-the-shelf’ fixed pre-trained networks and only update the classifier to
learn novel classes; and (2) non-direct competitors that specifically meta-learn a feature
optimised for few-shot learning and/or update features during meta-testing. We do not
attempt to be comprehensive in SotA comparison with latter learnable feature alternatives
since our academic and practical motivation is fixed-feature meta-learning as explained
earlier. Baseline++ [20] fixes the feature encoder and only tunes the (cosine similarity)
classifier during the meta-test stage. SimpleShot [176] uses an NCC classifier with different
feature encoders and studies different feature normalizations. We use their best reported
variant, CL2N. S2M2 [102] uses a linear classifier after self-supervised and/or regularized
classifier pre-training. SUR [29] also uses pre-trained feature extractors, but focuses on
weighting multiple features extracted from different backbones or multiple layers of the
same backbone. We compare their reported results of a single ResNet backbone trained for
multi-class classification as per ours, but they have the advantage of fusing features extracted
from multiple layers. Unravelling [45] proposes some new regularizers for vanilla backbone
training that improve feature quality for few-shot learning without meta-learning. PT-MAT
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Model Backbone 1-shot 5-shot

MATCHINGNETS [170] Conv-4 43.56 ± 0.84% 55.31 ± 0.73%
METALSTM [129] Conv-4 43.44 ± 0.77% 60.60 ± 0.71%
MAML𝑂 [34] Conv-4 48.70 ± 1.84% 63.11 ± 0.92%
PROTONET [150] Conv-4 49.42 ± 0.78% 68.20 ± 0.66%
GNN [40] Conv-4 50.33 ± 0.36% 66.41 ± 0.63%
METASSL[132] Conv-4 50.41 ± 0.31% 64.39 ± 0.24%
RELATIONNET [159] Conv-4 50.44 ± 0.82% 65.32 ± 0.70%
METASGD𝑂 [92] Conv-4 50.47 ± 1.87% 64.03 ± 0.94%
CAVIA [198] Conv-4 51.82 ± 0.65% 65.85 ± 0.55%
TPN [96] Conv-4 52.78 ± 0.27% 66.59 ± 0.28%
R2D2 [14] Conv-4∗ 51.90 ± 0.20% 68.70 ± 0.20%
RELATIONNET2[196] Conv-4 53.48 ± 0.78% 67.63 ± 0.59%
GCR [88] Conv-4 53.21 ± 0.40% 72.34 ± 0.32%
VERSA [47] Conv-4 53.40 ± 1.82% 67.37 ± 0.86%
DYNAMICFSL† [44] Conv-4 56.20 ± 0.86% 72.81 ± 0.62%
BASELINE++ [20] Conv-4 48.24 ± 0.75% 66.43 ± 0.63%
SIMPLESHOT[176] Conv-4 49.69 ± 0.19% 66.92 ± 0.17%
METAQDA Conv-4 56.41 ± 0.80% 72.64 ± 0.62%

SNAIL [140] ResNet-12 55.71 ± 0.99% 68.88 ± 0.92%
DYNAMIC FSL [44] ResNet-12 55.45 ± 0.89% 70.13 ± 0.68%
ADARESNET [109] ResNet-12 57.10 ± 0.70% 70.04 ± 0.63%
TADAM [116] ResNet-12 58.50 ± 0.30% 76.70 ± 0.30%
CAML [72] ResNet-12 59.23 ± 0.99% 72.35 ± 0.18%
AM3 [182] ResNet-12 65.21 ± 0.49% 75.20 ± 0.36%
MTL [156] ResNet-12∗ 61.20 ± 1.80% 75.50 ± 0.80%
TAP NET [191] ResNet-12 61.65 ± 0.15% 76.36 ± 0.10%
RELATIONNET2[196] ResNet-12 63.92 ± 0.98% 77.15 ± 0.59%
R2D2[14] ResNet-12 59.38 ± 0.31% 78.15 ± 0.24%
METAOPT𝑂 [84] ResNet-12∗ 64.09 ± 0.62% 80.00 ± 0.45%
RELATIONNET [20] ResNet-18 52.48 ± 0.86% 69.83 ± 0.68%
PROTONET [20] ResNet-18 54.16 ± 0.82% 73.68 ± 0.65%
DCEM [28] ResNet-18 58.71 ± 0.62% 77.28 ± 0.46%
AFHN [90] ResNet-18 62.38 ± 0.72% 78.16 ± 0.56%
SUR[29] ResNet-12 60.79 ± 0.62% 79.25 ± 0.41%
UNRAVELLING[45] ResNet-12∗ 59.37 ± 0.32% 77.05 ± 0.25%
BASELINE++ [20] ResNet-18 51.87 ± 0.77% 75.68 ± 0.63%
SIMPLESHOT[176] ResNet-18 62.85 ± 0.20% 80.02 ± 0.14%
S2M2 [102] ResNet-18 64.06 ± 0.18% 80.58 ± 0.12%
METAQDA ResNet-18 65.12 ± 0.66% 80.98 ± 0.75%

LEO𝑂 [138] WRN 61.78 ± 0.05% 77.59 ± 0.12%
PPA [127] WRN 59.60 ± 0.41% 73.74 ± 0.19%
SIMPLESHOT[176] WRN 63.50 ± 0.20% 80.33 ± 0.14%
S2M2 [102] WRN 64.93 ± 0.18% 83.18 ± 0.22%
METAQDA WRN 67.83 ± 0.64% 84.28 ± 0.69%

Table 4.1 Few-shot classification results on miniImageNet. †: two-step optimization with attention.
𝑂: requires gradient-based optimisation at meta-test time. ∗: uses a wider CNN than standard and
higher dimensional embedding. Grey: fixed feature methods.
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[68] is a transfer-based method building on preprocessing the feature vectors close to Gaussian
distributions, and then leveraging this preprocessing features to an optimal-transport inspired
algorithm. Actually, in miniImageNetimplementation process, this method used extracted
features pre-trained on Imagenet, which is much larger than miniImageNetto make it an unfair
comparison with other baselines.
Results Table 4.1 summarizes the results on miniImageNet. MetaQDA performs better
than all the previous methods that rely on off-the-shelf feature extractors, and also the majority
of methods that meta-learn representations specialised for few-shot problems. We do not
make efforts to carefully fine-tune the hyperparameters, but focus on showing that our model
has robust advantages in different few-shot learning benchmarks with various backbones.
A key benefit of fixed feature approaches (grey) is small compute cost, e.g., under 1-hour
training. In contrast, the other state-of-the-art end-to-end competitors (white) such as [84, 44,
196] require over 10 hours.

4.5.2 tieredImageNet

tieredImageNet is a more challenging benchmark [132] consisting of 608 classes (779,165
images) and is divided into 39197/160 classes for meta-train fold, 97 classes for meta-val
fold, and 160 classes for meta-test fold, respectively. Images are also resized to 84×84.
Settings For both Conv-4 extractor and ResNet-18 extractor, following [176], we use
stochastic gradient descent (SGD) with a multi-step learning rate schedule, momentum of 0.9,
and the initial learning rate is set to 0.001. At epochs 70 and 100 we reduce the learning rate by
a factor of 0.1. Weight decay is set as 0.0001 throughout training. Batch size is 256. In terms
of WRN-28-10 extractor, following [102], as for 1-shot classification on tieredImageNet, we
use ADAM optimiser.
Results Table 4.2 shows that MetaQDA performs state-of-the-art on tieredImageNet.
Similar to miniImageNet, we split the competitors to direct and indirect competitors, and
use off-the-shelf feature extractors without fine-tuning. Because tieredImageNetis bigger
than miniImageNet, it is much more important to save the computation time with holding the
accuracy performance, which is the prominent advantage and contribution of our methodology.
Specifically, MetaQDA achieves the best performance regarding different backbones, and
way beyond more than 6% advantages with the shallow Conv-4 feature extractor.
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Model Backbone 1-shot 5-shot

REPTILE [96] Conv-4 48.97% 66.47%
MAML [96] Conv-4 51.67 ± 1.81% 70.30 ± 1.75%
METASSL† [132] Conv-4 52.39 ± 0.44% 70.25 ± 0.31%
RELATIONNET [96] Conv-4 54.48 ± 0.48% 71.31 ± 0.78%
TPN† [96] Conv-4 59.91 ± 0.94% 73.30 ± 0.75%
RELATIONNET2[196] Conv-4 60.58 ± 0.72% 72.42 ± 0.69%
PROTONET [96] Conv-4 53.31 ± 0.89% 72.69 ± 0.74%
SIMPLESHOT[176] Conv-4 51.02 ± 0.20% 68.98 ± 0.18%
METAQDA Conv-4 58.11 ± 0.48% 74.28 ± 0.73%

TAPNET [191] ResNet-12 63.08 ± 0.15% 80.26 ± 0.12%
RELATIONNET2 [196] ResNet-12 68.58 ± 0.63% 80.65 ± 0.91%
METAOPTNET𝑂 [84] ResNet-12∗ 65.81 ± 0.74% 81.75 ± 0.53%
SIMPLESHOT [176] ResNet-18 69.09 ± 0.22% 84.58 ± 0.16%
METAQDA ResNet-18 69.97 ± 0.52% 85.51 ± 0.58%

LEO [138] WRN 66.33 ± 0.05% 81.44 ± 0.09%
SIMPLESHOT [176] WRN 69.75 ± 0.20% 85.31 ± 0.15%
S2M2 [102] WRN 73.71 ± 0.22% 88.59 ± 0.14%
METAQDA WRN 74.33 ± 0.65% 89.56 ± 0.79%

Table 4.2 Few-shot classification results on tieredImageNet. All best-performing results are bold.
†: makes use of additional unlabelled data for semi-supervised learning or transductive inference. 𝑂:
requires gradient-based optimisation at meta-test time. ∗: uses a wider ResNet than standard size and
higher dimensional embedding. Gray: uses fixed pre-trained backbones.

4.5.3 CIFAR-FS

Dataset CIFAR-FS [14] was created by randomly sampling from CIFAR-100 [80] by
using the same criteria as miniImageNet (100 classes with 600 images per class, split into
folds of 64/16/20 for meta-train/val/test). Images are resized to 32×32.
Settings As for Conv-4 and ResNet-18 extractor, following [176], we use stochastic
gradient descent (SGD) with a multi-step learning rate schedule, momentum of 0.9, and the
initial learning rate is set to 0.01. At epochs 70 and 100 we reduce the learning rate by a
factor of 0.1. Weight decay is set as 0.0001 through out training. In terms of WRN-28-10
extractor, we use the pre-trained WRN backbone of S2M2 [102].
Results Following former experiment settings, as shown in Table 4.3, we also use 15
query images here and split the competitors. Similarly, as an additional experiment, we also
achieve state-of-the-art performance on CIFAR-FS, further verifying the effectiveness and
generalization of MetaQDA.
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Model Backbone 1-shot 5-shot

MAML [102] Conv-4 58.90 ± 1.90% 71.50 ± 1.00%
RELATIONNET [102] Conv-4 55.50 ± 1.00% 69.30 ± 0.80%
PROTONET [102] Conv-4 55.50 ± 0.70% 72.02 ± 0.60%
R2D2 [14] Conv-4 62.30 ± 0.20% 77.40 ± 0.10%
SIMPLESHOT+ [176] Conv-4 59.35 ± 0.89% 74.76 ± 0.72%
METAQDA Conv-4 60.52 ± 0.88% 77.33 ± 0.73%

PROTONET [102] ResNet-12 72.20 ± 0.70% 83.50 ± 0.50%
METAOPT [84] ResNet-12∗ 72.00 ± 0.70% 84.20 ± 0.50%
UNRAVELLING [45] ResNet-12∗ 72.30 ± 0.40% 86.30 ± 0.20%
BASELINE++ [20, 102] ResNet-18 59.67 ± 0.90% 71.40 ± 0.69%
S2M2 [102] ResNet-18 63.66 ± 0.17% 76.07 ± 0.19%
METAQDA ResNet-18 72.57 ± 0.48% 86.48 ± 0.66%

METAOPTNET [84] WRN 72.00 ± 0.70% 84.20 ± 0.50%
BASELINE++ [102, 20] WRN 67.50 ± 0.64% 80.08 ± 0.32%
S2M2 [102] WRN 74.81 ± 0.19% 87.47 ± 0.13%
METAQDA WRN 75.83 ± 0.88% 88.79 ± 0.75%

Table 4.3 Few-shot classification results on CIFAR-FS. +: Our implementation. Gray: uses fixed
pre-trained backbones.

4.5.4 Cross-Domain Few-Shot Learning

Current metric-based few-shot learning methodologies often fail to generalize to novel domain
due to the big difference of new feature distribution across domains. Several prior methods
are proposed to tackle the challenge of cross-domain few-shot learning (CD-FSL). Tseng et.al
[165] propose an approach meta-learns the hyper-parameters of feature-wise transformation
layers to simulate different feature distributions by augmenting the instance features. Similarly,
FEAT [188] adapts the instance embeddings to the target classification task with a set-to-set
function such as Transformer. Adversarial training is used to battle the domain shift, and
the embedding is generalized to a novel task by metric-based learning approach [99, 74].
Guo et.al [51] propose a new benchmark which captures a broader spectrum of image types
such as industrial, aerial, and medical images. However, our metric-based meta-learning
model (MetaQDA) is composed of an off-the-shelf feature encoder and a Bayesian classifier,
providing intuitive generalization ability under domain shift. Then we conduct experiments
trained on miniImageNet but tested on CUB and Cars datasets, demonstrating that our
MetaQDA is applicable to cross-domain condition directly.
Dataset CUB [60] is Caltech-UCSD Birds 200 dataset with fine-grained classes (200 bird
species) dividing into 100 for training, 50 for validation, and 50 for testing. Each image is
resized to 84x84 pixels. Cars [79, 165] contains 196 classes (16,185 images) randomly split
into folds of 98, 49, and 49 classes for meta-train/val/test, respectively.
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Model Backbone 1-shot 5-shot
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MAML [122] Conv-4 34.01 ± 1.25% -
RELATIONNET [122] Conv-4 37.13 ± 0.20% -
DKT [122] Conv-4 40.22 ± 0.54% -
PROTONET [122] Conv-4 33.27 ± 1.09% -
BASELINE++ [122, 20] Conv-4 39.19 ± 0.12% -
SIMPLESHOT+ [176] Conv-4 45.36 ± 0.75% 61.44 ± 0.71%
METAQDA Conv-4 47.25 ± 0.58% 64.40 ± 0.65%

MAML [20] ResNet-18 - 51.34 ± 0.72%
RELATIONNET [20] ResNet-18 - 57.71 ± 0.73%
LRP (CAN) [155] ResNet-12 46.23 ± 0.42% 66.58 ± 0.39%
LRP (GNN) [155] ResNet-10 48.29 ± 0.51% 64.44 ± 0.48%
LFWT [165] ResNet-10 47.47 ± 0.75% 66.98 ± 0.68%
PROTONET [20] ResNet-18 - 62.02 ± 0.70%
BASELINE++ [20] ResNet-18 42.85 ± 0.69% 62.04 ± 0.76%
SIMPLESHOT+ [176] ResNet-18 46.68 ± 0.49% 65.56 ± 0.70%
METAQDA ResNet-18 48.88 ± 0.64% 68.59 ± 0.59%

S2M2 [102] WRN 48.24 ± 0.84% 70.44 ± 0.75%
SIMPLESHOT+ [176] WRN 49.65 ± 0.24% 66.77 ± 0.19%
METAQDA WRN 53.75 ± 0.72% 71.84 ± 0.66%
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SIMPLESHOT+ [176] Conv-4 29.52 ± 0.56% 39.52 ± 0.66%
METAQDA Conv-4 30.98 ± 0.66% 42.85 ± 0.68%

LRP (CAN) [155] ResNet-12 32.66 ± 0.46% 43.86 ± 0.38%
LRP (GNN) [155] ResNet-10 32.78 ± 0.39% 46.20 ± 0.46%
LFWT [165] ResNet-10 30.77 ± 0.47% 44.90 ± 0.64%
SIMPLESHOT+ [176] ResNet-18 34.72 ± 0.67% 47.26 ± 0.71%
METAQDA ResNet-18 37.05 ± 0.65% 51.58 ± 0.52%

S2M2 [102] WRN 31.52 ± 0.59% 47.48 ± 0.68%
SIMPLESHOT+ [176] WRN 33.68 ± 0.63% 46.67 ± 0.68%
METAQDA WRN 36.21 ± 0.62% 50.83 ± 0.64%

Table 4.4 Cross-domain few-shot classification results from miniImageNet to CUB and Cars
datasets. All best-performing results are bold. +: Our implementation. Gray: fixed pre-trained
backbones.

Problem Setup Source domain is assumed as a collection of few-shot classification tasks,
and the target domain is denoted to evaluate the generalization ability. E.g., meta-learning
model can be trained on miniImageNet and test on CUB or Cars. Note that the access to
testing domains during meta-training is not allowed in this Problem Setup.
Competitors Better few-shot learning methods should degrade less when transferring
to new domains [20, 165]. We are specifically interested in comparing MetaQDA with
other methods using off-the-shelf features. In particular, we consider Baseline++ [20] and
S2M2 [102] that use linear classifiers, and the nearest centroid method of SimpleShot [176].
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Results Table 4.4 demonstrates that MetaQDA exhibits good robustness to domain shift.
Specifically, our method outperforms other approaches by at least 2%−4% across all dataset,
support set size, and feature combinations.

4.5.5 Multi-Domain Few-Shot Learning

Multi-domain few-shot learning is obviously a bigger challenge than cross-domain few-shot
learning, where both the number of domains and the episodic training procedure change to a
more realistic way. Meta-Dataset is proposed to evaluate FSL models with diverse domains
of datasets [164]. They leverage the same diverse source training datasets to improve the
model’s generalization in multi-domain testing. Comparing to standard few-shot learning
on miniImageNetand , Meta-Dataset changes the formulation of datasets and tasks (how to
generate the training episode), and the details are shown in Section 4.5.5.
Dataset Meta-Dataset [164] is a large-scale benchmark spanning 10 image datasets. Specif-
ically speaking, except for Traffic Signs and MSCOCO reserved for evaluation, the remaining
8 datasets are split roughly with 70/15/15% proportions for training/validation/testing sets.
Following [133, 6], we report results using the first 8 datasets for meta training (some
classes are reserved for "in-domain" testing performance evaluation), and hold out entirely
the remaining 2 (Traffic Signs and MSCOCO) plus an additional 3 datasets (MNIST [186],
CIFAR10, CIFAR100 [80]) for an unseen "out-of-domain" performance evaluation. Note that
the Meta-Dataset protocol is random way and shot.
Problem Setup Meta-Dataset [164] uses episode sampling mechanism yielding realistically
imbalanced episodes of random-way-random-shot as shown in Figure 4.2. Each training
episode is generated with the classes from the same single domain. During meta-training
procedure, to mimic the meta-testing condition, the training tasks are episodically sampled
as described above and the choice of the dataset (step 0) is uniformly random. We use
both the classification accuracy and the rank computation to compare our models with other
state-of-the-art main meta-learning algorithms.
Competitors CNAP [133] and SCNAP [6] meta-learn an adaptive feature extractor whose
parameters are modulated by an adaptation network that takes the current task’s dataset as
input. SUR [29] performs feature selection among a suite of meta-train domain-specific
features. The concurrent URT [94] meta-learns a transformer to dynamically meta-train
dataset features before nearest-centroid classification with ProtoNet. We apply MetaQDA
upon the fixed fused features learned by URT, replacing ProtoNet. Implementation Details
We use the same backbone as SUR [29] and URT [94], and take the trained fused features
by URT [94]. We use ADAM optimizer and cosine learning rate scheduler, and the initial
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Figure 4.2 Episode sampling of Meta-Dataset. Firstly sample a dataset from the big collection of
meta-dataset, then sample the classes of one episode, and formulate random-way-random-shot few
shot learning tasks.

learning rate is set to 0.0003, beta is set as 0.9 and 0.999. Weight decay is set as 0.0001
throughout training. The number of training episodes is 10000.
Results Following [164], few-shot tasks are sampled with varying number of classes 𝑁 ,
varying number of shots 𝐾 and class imbalance. Table 4.5 reports the average rank and
accuracy of each model across all 13 datasets. We also break accuracy down among the
‘in-domain’ and ‘out-of-domain’ datasets (i.e., seen/unseen during meta-training). MetaQDA
has the best average rank and overall accuracy. In particular, it achieves strong out-of-domain
performance, which is in line with our good cross-domain results above. Furthermore,
Table 4.6 reports more detailed performance in accuracy over 600 sampled meta-test tasks.
Because most of the results have very similar confidence interval, we omit this part to make
the table more readable. The results of other SotA algorithms are taken from URT [94] and
SCNAP[6]. From the results, we can see that MetaQDA performs well in both seen domains
(left) and out-of-distribution unseen (right) domains. It achieves the highest performance in
8 of 13 domains within the Meta-Dataset benchmark.

Model Avg. Rank Avg. Accuracy
overall overall in-domain out-of-domain

CNAP [133] 4.5 65.9 ± 0.8% 69.6 ± 0.8% 59.8 ± 0.8%
SCNAP [6] 2.9 72.2 ± 0.8% 73.8 ± 0.8% 69.7 ± 0.8%
SUR [29] 3.2 72.7 ± 0.9% 75.6 ± 0.8% 68.1 ± 0.8%
URT+PN [94] 2.4 73.7 ± 0.8% 77.2 ± 0.9% 68.1 ± 0.9%
URT+MQDA 1.8 74.3 ± 0.8% 77.7 ± 0.9% 68.8 ± 0.9%

Table 4.5 Few-shot classification results on Meta-Dataset. The performance is evaluated by the
classification accuracies and the rank across episodes and datasets. Gray: fixed pre-trained backbones.
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4.6 Further Analysis

4.6.1 Model Calibration

In real world scenarios, where high-importance decisions are being made, neural networks
should indicate the probability of correctness beyond only reporting the accuracy performance
[49]. Many real systems are required of high reliability, where any errors they make should
be accompanied with associated low-confidence scores, e.g., so they can be checked by
another process. For example, when a self-driving car algorithm cannot confidently predict
the presence or absence of immediate obstructions, it should rely more on the other sensors.
Metrics Following [115, 49], we compute Expected Calibration Error (ECE) with and
without temperature scaling (TS). ECE assigns each prediction to a bin that indicates how
confident the prediction is, which should reflect its probability of correctness. IE: 𝐸𝐶𝐸 =
∑𝐵
𝑏=1

𝑛𝑏
𝑁 |acc(𝑏)−conf(𝑏)|, where 𝑛𝑏 is the number of predictions in bin 𝑏, 𝑁 is the number

of instances, and acc(𝑏) and conf(𝑏) are the accuracy and confidence of bin 𝑏. We use 𝐵 = 20.
Temperature scaling uses validation episodes to calibrate a softmax temperature for best ECE.
Please see [115, 49] for full details.
Results Table 4.7 shows MetaQDA has superior uncertainty quantification compared to
existing competitors. Vanilla QDA and SimpleShot are poorly calibrated, demonstrating the
importance of our learned prior. The deeper WRN is also worse calibrated despite being
more accurate, but MetaQDA ultimately compensates for this. Finally, we see that our fully-
Bayesian (MetaQDA-FB, Section 4.4.2) variant outperforms our MAP (MetaQDA-MAP,
Section 4.4.1) variant.

Model Backbone ECE+TS ECE
1-shot 5-shot 1-shot 5-shot

LIN.CLASSIF. Conv-4 3.56 2.88 8.54 7.48
SIMPLESHOT Conv-4 3.82 3.35 33.45 45.81
QDA Conv-4 8.25 4.37 43.54 26.78
MQDA-MAP Conv-4 2.75 0.89 8.03 5.27
MQDA-FB Conv-4 2.33 0.45 4.32 2.92

S2M2+LIN.CLASSIF WRN 4.93 2.31 33.23 36.84
SIMPLESHOT WRN 4.05 1.80 39.56 55.68
QDA WRN 4.52 1.78 35.95 18.53
MQDA-MAP WRN 3.94 0.94 31.17 17.37
MQDA-FB WRN 2.71 0.74 30.68 15.86

Table 4.7 Expected calibration error (ECE) comparison on miniImageNet. Lower is better. TS
indicates temperature scaling.
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Model Backbone 1-shot 5-shot

LDA Conv-4 - 64.24 ± 1.42%
QDA Conv-4 - 34.45 ± 0.67%
LDA (PRIOR) Conv-4 54.84 ± 0.80% 71.48 ± 0.64%
QDA (PRIOR) Conv-4 54.84 ± 0.80% 71.40 ± 0.64%
METALDA Conv-4 56.24 ± 0.80% 72.39 ± 0.64%
METAQDA Conv-4 56.41 ± 0.80% 72.64 ± 0.62%

LDA WRN - 51.83 ± 1.29%
QDA WRN - 27.14 ± 0.59%
LDA (PRIOR) WRN 63.79 ± 0.83% 81.05 ± 0.56%
QDA (PRIOR) WRN 63.79 ± 0.83% 81.18 ± 0.56%
METALDA WRN 64.92 ± 0.85% 83.18 ± 0.83%
METAQDA WRN 67.83 ± 0.64% 84.28 ± 0.69%

Table 4.8 Comparison of different classifiers and hand-crafted vs. meta-learned prior measured
on miniImageNet. We compare LDA and QDA classifiers with/without priors based on different
embeddings of various backbones from shallow to deep.

4.6.2 Discussion

Why QDA but not other classifiers? In principle, one could attempt an analogous
Bayesian meta-learning approach to other classifiers, but we build on discriminant analysis.
This is because most classifiers do not admit a tractable Bayesian treatment, besides logistic
regression (LR) and discriminant analysis. While LR has a Bayesian generalization [101], it
requires approximate inference and is significantly more complicated to implement, making it
difficult to extend to meta-learning. In contrast, our generative discriminant analysis approach
admits an exact closed-form solution, and is easy to extend to meta-learning.
Why not other Discriminant Analysis methods? We compare how moving from LDA to
QDA changes performance; and study the impact of changing from (i) no prior, (ii) hand-
crafted NIW prior, and (iii) meta-learned prior. We set the hard-crafted NIW prior to �⃗� = 0,
𝜅 = 1, 𝑆 = 𝐼 , and 𝜈 = 𝑑 which worked well in practice. Table 4.8 demonstrates that classic
unregularized discriminant analysis methods (LDA and QDA without priors) have very poor
performance in the few-shot setting, due to extreme overfitting. This can be seen because: 1)
the higher capacity QDA exhibits worse performance than the lower capacity LDA; and 2)
incorporating a prior into LDA and QDA, thereby reducing model capacity and overfitting,
results in an improvement in performance. Finally, by meta-learning the prior, we are able to
optimize inductive bias for few-shot learning performance. Both LDA and QDA benefit from
meta-learning, but QDA performs better overall.
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Why not non-Bayesian Meta-Learning? To disentangle the impact of Bayesian modeling
from our classifier architecture and episodic meta-learning procedure, we evaluate a non-
Bayesian MetaQDA as implemented by performing MAML learning on the initialization of
the QDA covariance factor 𝐿 (Eq 4.17). From Table 4.9, we can see that MAML is worse
than MetaQDA in both accuracy and calibration.

Meta Alg. Backbone 1-shot Acc. ECE 5-shot Acc. ECE

MAML Conv-4 54.33 ± 0.78% 52.75 69.17 ± 0.77% 38.84
Bayesian Conv-4 56.41 ± 0.80% 8.03 72.64 ± 0.62% 5.27
MAML ResNet-18 63.66 ± 0.80% 58.11 77.82 ± 0.62% 44.62
Bayesian ResNet-18 65.12 ± 0.66% 33.56 80.98 ± 0.75% 13.86

Table 4.9 Comparison of Bayesian vs. non-Bayesian realization of MetaQDA on miniImageNet.
We compare our Bayesian implementation with MAML paradigm, and find that our model holds an
obvious advantage no matter with shallow or deep backbones.

4.7 Summary
We propose an efficient shallow meta-learner for few-shot learning. MetaQDA provides a
fast exact inference strategy for amortized Bayesian meta-learning through conjugacy, and
highlights a distinct avenue of meta-learning research in contrast to meta representation learn-
ing. The empirical performance of our model exceeds that of others that rely on off-the-shelf
feature extractors, and often outperforms those that train extractors specialised for few-shot
learning. In particular, it excels in a number of challenging but highly practically benchmarks
and providing accurate probability calibration – a vital property for many applications where
safety or reliability is of paramount concern.

MetaQDA remains some limitations of computing efficiency, firstly the memory use of
covariance is bigger than simple linear classifiers but the additional memory is still small com-
pared to feature extractor memory. Secondly, the fully Bayesian version of MetaQDA costs
much more training time than MAP version, but providing better calibration performance.





Chapter 5

Extensions of MetaQDA

MetaQDA provides a novel research direction to demonstrate the usefulness of meta-learning
for few-shot recognition, which is an amortized Bayesian inference approach relying on a
shallow QDA classifier with conjugacy. Furthermore, MetaQDA is inherently more suitable
to the highly practical, but otherwise harder to achieve few-shot learning settings. The
previous chapter showed that MetaQDA has achieved particularly good performance in
cross-domain and multi-domain few-shot learning problems ‘out of the box’. This chapter
will further explore different extensions of the current MetaQDA approach to more realistic
problem settings, where existing deep meta-learning algorithms cannot be generalized easily.
In terms of generalized few-shot learning and few-shot class-incremental learning [161,
130], MetaQDA easily concatenates likelihood models produced by both many-shot and
few-shot data via conjugacy during meta-testing, and produces a single Bayesian classifier
in the joint label space. Because class conditional models are fitted independently for each
class and built on fixed features, there are no forgetting problems. Furthermore, applying
this procedure repeatedly also enables MetaQDA to easily overcome the class-incremental
learning problem without forgetting. As for few-shot open-set recognition, we calculate the
probability belonging to the novel class by marginalisation. Compared to other approaches
that rely on training with auxiliary pseudo-unseen data, our approach does not require extra
data, and thus saves time and computation while also providing state-of-the-art performance.

5.1 Introduction
Modern meta learning approaches can be viewed as learning the high-level concept and
shared knowledge or paradigm among previously seen tasks. However, in current standard
few-shot learning benchmarks, the model assumes a fixed label space defined by the support
set which is not always suitable for real-world applications. From this perspective, previous
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meta learning approaches may not be applied to new scenarios, e.g. predicting both seen
instances and novel ones at the same time. This forms our motivation to further investigate
this topic. MetaQDA can learn a prior such that, when only combined with a small amount of
new data, the prediction can still maintain highly accuracy because of the introduced Bayesian
inference. Its superiority to recognize novel instances can be extended to many cutting-edge
scenarios, such as generalized few-shot learning, few-shot class-incremental learning, and
few-shot open-set recognition.

5.1.1 Generalized Few-Shot Learning (GFSL)

Comparing to standard few-shot learning, generalized few-shot learning (GFSL) focuses on
the ability to perform recognition in the joint label space of many-shot (base) and few-shot
(novel) categories. However, generalized few-shot learning in the context of meta-learning is
not yet a very well-studied research area with unified definition and benchmark settings.

Some previous approaches use transductive learning algorithms by applying the exemplar-
based classification paradigms on both base and novel categories, so it requires recomputing
the centroids during the query phase [39, 175, 53]. Some others [145, 174, 97] learn base and
novel classifiers separately, ignoring the explicit relationship. Assuming that we cannot have
access to novel classes during meta-training the model, thus the model is end-to-end learnable
framework required to inductively transfer meta-knowledge from base class to novel classes
during the meta-testing phase. DFSLwoF [44] is proposed in the meta-learning setup to
extend the classifier to joint label space, by utilizing an attention-based weight generator for
novel classes and learning with recurrent back-propagation. CADA-VAE [145] meta-learns a
global feature encoder with the latent embedding of both image features and class embedding
via aligned variational autoencoder (VAE), and trains a classifier in the joint label space.
CASTLE [187] proposes a learning framework to synthesize calibrated few-shot classifiers in
addition to the head base classifier with a shared neural dictionary. GcGPN [147] learns the
weighted graphs embedding previously seen and novel classes into a joint prototype space,
leveraging side information of inter-class relationships. FEAT [188] instantiates a set-to-set
function with transformer, customizing task-specific embedding spaces via a self-attention
architecture, to achieve fast adaptation on novel classes.

In this thesis, we shed light on meta-learning based models to solve inductive generalized
few-shot learning problems. Thus, models trained on base categories should be capable of
incorporating the limited novel class examples, and make predictions on both base many-shot
categories and novel few-shot categories.
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5.1.2 Few-Shot Class-Incremental Learning

Standard few-shot learning benchmarks provide a new task as a batch of a fixed number of
support classes. However, in real world applications, we often face a growing number of
novel categories, and hope to maintain prediction performance on all categories seen thus far.

Actually, it is often desirable to have the flexibility to incrementally enrol novel categories
received in as a stream without forgetting the old ones. To address this problem in the
context of few-shot learning, we follow the paradigm of few-shot class-incremental learning
(FSCIL) [161]. The training procedure of which requires to learn novel classes from few
labelled samples presented at the same time, and new classes could be added progressively.
This FSCIL setting is similar to GFSL, in terms of both requiring the model to perform
recognition in the joint space of all categories seen so far. However, while GFSL receives the
novel categories in a single batch, FSCIL receives them incrementally over multiple training
sessions.

Most existing class-incremental learning approaches focus on the general many-shot
problem settings to distinguish new classes being added progressively in the growing joint
label space. iCaRL [130] learns stronger classifiers and data representation simultaneously,
NCM [63] and BIC [181] propose a bias-correction mechanism for the output to alleviate the
bias between progressively added new classes and old classes. AAM [131] trains a set of new
weights to recognize novel classes by the technique of recurrent back-propagating through
the optimization process and facilitate parameter learning. Tao et al. [161] propose a TOPIC
framework by a neural gas network to represent the knowledge preserving the topology of
the feature manifold formed by different classes. We claim that our MetaQDA framework is
naturally suited to this setting, and it can keep learning the prior hyperparameters along with
the progressive training sessions, and therefore update the classifier with the plugged-in novel
statistical data. In this condition, the fixed feature assumption reduces the risk of forgetting
and saves the computing time and resources, holding more advantages than disadvantages.

5.1.3 Few-Shot Open-set Recognition

Open-set recognition (OSR) is a real-world challenge to reject when a given testing sample
does not belong to any known classes, as well as maintaining the high accuracy of the known
classes. Since OSR requires a large amount of datasets and FSL considers only closed-set
classification and fails to recognize open samples directly, few-shot open-set recognition
(FSOSR) problem in fact collects the challenges from both, and existing OSR and FSL
methods may not perform well via a direct use. The main difference of FSOSR from previous
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GFSL and FSCIL problem setting is the requirement to reject the open-set instances, also
known as anomaly detection.

There are two main existing strategies to reject open-set instances. The ‘𝑁 +1’-way
approach reduces open-set recognition to a traditional classification problem by viewing all
novel classes/anomalies as members of a single unknown class [192]. This benefits from using
standard supervised learning tools, but suffers from the difficulty of finding representative
and diverse enough training data to train the unknown-category classifier. The difficulty
of data collection limits its performance to generalize well to true anomalies. Another
branch of approaches is based on standard 𝑁-way classification using confidence score, as a
threshold, to reject open-set examples. This looks like the same benefit of ‘N+1’-way method
aforementioned, but it relies on the assumption that anomalous examples can be projected to
low-confidence areas feature space, and the method may not perform well if the assumption
cannot be fully satisfied [46, 12, 192, 117].

However, regardless of rejection classifier, most previous FSOSR methods [93, 113, 143]
follow the pseudo-open class sample-based manner, which collects pseudo-open samples
from other datasets or synthesize samples to model open-set representations. However, this
approach is heavily dependent on the composition of the pseudo samples. In contrast, based
on Bayesian architecture, MetaQDA provides two key benefits for outlier detection. Both
are contributed by the fact that a distribution over the unknown classifier parameter can be
maintained. Firstly, the Bayesian architecture leads to better calibration, as discussed in
Chapter 4. This means that thresholding-based outlier detection strategies can be improved.
Secondly, the Bayesian architecture leads to the ability to define a posterior probability for an
instance being drawn from a known class (similarly to the N+1 classifier approach but without
requiring auxiliary data) by marginalizing out the unknown classifier parameters. We also
show that MetaQDA is complementary with the strategy and losses based on pseudo-unseen
data proposed in the PEELER method [93], leading to state-of-the-art performance overall.

Recognition Paradigm NO. of Samples per training class Support UNSEEN classes in testing?

CLOSED-SET Large No
FEW-SHOT Few No
OPEN-SET Large Yes
FEW-SHOT OPEN-SET Few Yes

Table 5.1 Comparison of different image recognition tasks. Conventional closed-set recognition has
a large dataset, but standard few-shot learning only has access to few labelled data. Conventional open-
set recognition needs to support unseen detection during testing, while few-shot open-set recognition
should realize anomaly detection with only a few labelled seen data.
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5.2 Method
In this section, we formulate the problem of each specific real-world challenge, from general-
ized few-shot learning (GFSL) to few-shot class-incremental learning (FSCIL) and few-shot
open-set recognition (FSOSR). We then demonstrate the framework, algorithm and pseu-
docode of each methodology. All the problems share the same challenge to overcome the
overfitting of few-shot tasks and prevent catastrophic forgetting old tasks, but they also have
different detailed settings regarding to the formulation of novel tasks. For example, (1) there
is only one novel task session in each GFSL training episode, but FSCIL requires much
more training sessions for the class-incremental scenario in one training episode; (2) FSOSR
should reject all unseen open-set instances, whereas GFSL and FSCIL will not encounter
unseen instances. In addition, the latter two should recognize both many-shot and few-shot
instances in the joint label space.

5.2.1 Generalized Few-Shot Learning

The vanilla MetaQDA framework as introduced in Chapter 4 can already apply to generalized
few shot learning off-the-shelf by independently processing base and novel categories. In this
chapter, we also introduce MetaQDA+ which customises the training algorithm to provide
improved GFSL performance.

As for standard few-shot learning, a meta-training task is represented as 𝑁-way 𝐾-shot
classification problem with 𝑁 novel classes sampled from a set of support classes. However,
in the setup of generalized few-shot learning, the instances seen during meta-training cannot
be available during testing time. In contrast, the model is required to incorporate the novel
few-shot classes into the existing space of base classes while maintaining global classification
in the joint label space (𝑁+ ∶= 𝑁 +𝑁𝑏𝑎𝑠𝑒 instead of only 𝑁). As for 𝑁+-way 𝐾-shot
generalized few-shot classification, the model is required to discriminate the query instance
in the joint label space 𝑗𝑜𝑖𝑛𝑡 = 𝑏𝑎𝑠𝑒 ∪𝑛𝑜𝑣𝑒𝑙, where 𝑏𝑎𝑠𝑒 is the previously seen training
classes and 𝑛𝑜𝑣𝑒𝑙 depicts the novel few-shot classes. Assume that the training dataset has
many-shot base categories as the only input of the learning system. To avoid disambiguation,
we formalize the task of generalized few-shot learning with both base data and novel data,
denoting the data from base classes as 𝑏𝑎𝑠𝑒, and the data from novel classes as 𝑛𝑜𝑣𝑒𝑙,
following the definition in a standard few-shot learning. Then both base and novel data are
shown as

𝑏𝑎𝑠𝑒 =
𝑁𝑏𝑎𝑠𝑒
⋃

𝑛=1
{(𝑥𝑛𝑘,𝑦𝑛)}

𝐾𝑏𝑎𝑠𝑒
𝑘=1 ,𝑛𝑜𝑣𝑒𝑙 =

𝑁
⋃

𝑛=1
{(𝑥𝑛𝑘,𝑦𝑛)}𝐾𝑘=1,
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where 𝑁𝑏𝑎𝑠𝑒 is the number of classes and 𝐾𝑏𝑎𝑠𝑒 is the number of labelled samples available
for each class. In most cases, 𝑁𝑏𝑎𝑠𝑒≫𝑁 and 𝐾𝑏𝑎𝑠𝑒≫𝐾 .
Meta-training We also apply episodic meta-training for GFSL. The support set of GFSL is
the same as the standard FSL with 𝑁-way few-shot novel classes, but the query set of GFSL
contains a joint label space of both base and novel classes, motivating the model to maintain
a generalized classification capability instead of only focusing on novel classes. During
meta-training, the real novel dataset is unavailable, and the feature encoder is pre-trained
and frozen on 𝑏𝑎𝑠𝑒. Thus, in each training episode, we re-sample 𝑁 pseudo-novel classes
from the 𝑁𝑏𝑎𝑠𝑒 base classes, and the remaining 𝑁𝑏𝑎𝑠𝑒−𝑁 classes are the label space of the
pseudo-base classes. We denote 𝜙 similar to Chapter 4.4, specifying the prior distribution
over the task-specific parameters for each GFSL task. We denote the parameters of QDA
classifier as 𝜓 = {𝜇𝑗 ,𝜎𝑗}, where in terms of standard FSL, 𝑗 = 1,2, ...,𝑁 , but in the case
of GFSL, 𝑗 = 1,2, ...,𝑁,𝑁 +1, ...𝑁 +𝑁𝑏𝑎𝑠𝑒. Specifically, 𝜓 = [𝜓𝑝𝑠𝑒𝑢𝑑𝑜−𝑛𝑜𝑣𝑒𝑙,𝜓𝑝𝑠𝑒𝑢𝑑𝑜−𝑏𝑎𝑠𝑒],
where 𝜓𝑝𝑠𝑒𝑢𝑑𝑜−𝑏𝑎𝑠𝑒 is initialized as the mean and covariance of 𝑏𝑎𝑠𝑒, and both pseudo-base
classes and pseudo-novel classes share the same prior 𝜙. We compute the loss gradient to
update the prior parameter 𝜙 and classifier parameter 𝜓 of MetaQDA+ in the GFSL setup.
Intuitively, the fixed feature encoder can avoid catastrophic forgetting by nature, and Bayesian
classifier can learn a joint classifier prior 𝜙 with generatively modelled class conditionals.
After meta-training, we get the joint-space classifier prior 𝜙, and set the learned 𝜓𝑝𝑠𝑒𝑢𝑑𝑜−𝑏𝑎𝑠𝑒
as the 𝜓𝑏𝑎𝑠𝑒 for meta-testing.
Meta-testing During meta-testing, in a realistic problem setting, the model cannot get
access to the original 𝑏𝑎𝑠𝑒, but only the few-shot novel classes in 𝑛𝑜𝑣𝑒𝑙 are accessible. The
support set of meta-testing episode is sampled from the 𝑛𝑜𝑣𝑒𝑙, and the query set is sampled
from non-overlap instances from both 𝑛𝑜𝑣𝑒𝑙 and 𝑏𝑎𝑠𝑒 in the joint label space 𝑗𝑜𝑖𝑛𝑡. Facing
with a query 𝑥, a GFSL model performs

�̂� = argmax
𝑦∈𝑗𝑜𝑖𝑛𝑡

𝑝𝜓 (𝑦|𝑥,𝑛𝑜𝑣𝑒𝑙), (5.1)

where 𝜓 = [𝜓𝑛𝑜𝑣𝑒𝑙,𝜓𝑏𝑎𝑠𝑒] has fixed 𝜓𝑏𝑎𝑠𝑒 from the output of meta-training process. Base
classes are completely fixed and unable to access during meta-testing in our setting. We can
evaluate the performance by calculating the classification accuracy in different label spaces.
The pseudocode of MetaQDA+ for GFSL is shown as Alg.2.
Discussion Prototypical Network [150, 147] could be easily adapted to GFSL problem
setting in principle, where the prototypes of base classes are available and we can use the
joint sets of prototypes for generalized few-shot learning. However, most existing meta-
learning approaches may fall into a dilemma that either the base classes are recognized much
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Algorithm 2: Pseudocode of MetaQDA+ for GFSL.
1 Require: Distribution over tasks 𝑄, number of iterations 𝑇 , learning rate 𝛼
/* Meta-train */

2 Input: Base Dataset 𝑏𝑎𝑠𝑒

3 Init: 𝜙0 = {�⃗� = 0⃗,𝑆 = 𝐈,𝜅 = 1, 𝜈 = 𝑑}
4 for 𝑡 = 1 to 𝑇 do
5 Sample 𝑁-way-𝐾-shot pseudo-novel instances as support set from 𝐷𝑏𝑎𝑠𝑒, and the

remaining is pseudo-base data, then sample query set from the joint space;
6 Build QDA model on pseudo-base instances to get 𝜓𝑝−𝑏𝑎𝑠𝑒;
7 Build Bayesian QDA model on pseudo-novel support set to get 𝜓𝑝−𝑛𝑜𝑣𝑒𝑙 by Eq.

4.10/ 4.11;
8 Concatenate 𝜓 = concat[𝜓𝑝−𝑛𝑜𝑣𝑒𝑙,𝜓𝑝−𝑏𝑎𝑠𝑒];
9 Use query set to predict the label �̂� in the joint label space and calculate the loss

by Eq. 4.15/ 4.16;
10 Back propagate to update the joint prior 𝜙 and 𝜓 .
11 end
12 Output: 𝜙 = {�⃗�,𝑆,𝜅,𝜈}, base classifier 𝜓𝑏𝑎𝑠𝑒
/* Meta-test */

13 Input: Testing Base Dataset 𝑡𝑒𝑠𝑡𝑏𝑎𝑠𝑒, Novel Dataset 𝑛𝑜𝑣𝑒𝑙, 𝜙, base classifier 𝜓𝑏𝑎𝑠𝑒
14 Build the novel classifier 𝜓𝑛𝑜𝑣𝑒𝑙 on support set from 𝐷𝑛𝑜𝑣𝑒𝑙 by Eq. 4.10/ 4.11;
15 Concatenate with the fixed base classifier to get the joint classifier:

𝜓𝑗𝑜𝑖𝑛𝑡 = concat[𝜓𝑛𝑜𝑣𝑒𝑙,𝜓𝑏𝑎𝑠𝑒];
16 Predict the label �̂� of query set with the joint classifier 𝜓𝑗𝑜𝑖𝑛𝑡 in 𝑗𝑜𝑖𝑛𝑡;
17 Output: the predicted label �̂� of query set

worse than a simple supervised learning, or joint space recognition is highly biased towards
base classes because novel-class are rarely selected. For example, MAML [34] struggles
to implement GFSL without a linear classifier layer which is the union of base and novel
classes. Ideally, we want to avoid catastrophic forgetting of base classes and maintain the
performance as close as possible to standard few-shot learning. MetaQDA+ avoids these
problems because the use of a fixed feature extractor prevents catastrophic forgetting; while
the independent training of generative class-conditional models for base and novel classes
prevents base and novel classes from destructively interfering with each other. Moreover,
as a generative model MetaQDA+ also enables tuning the trade-off between base and novel
class bias via class priors.
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5.2.2 Few-Shot Class-Incremental Learning

Incremental learning addresses the scenario of continually arriving data in stream instead of
in batch, while the prior knowledge should be transferred without forgetting. Various previous
approaches are memory-based which store the trained examples explicitly or regularize the
parameter updates [11, 185]. However, since the model cannot get access to base class data
within the support set of each few-shot training episode, it is challenging to learn a classifier
capable to jointly classify both base and novel categories. In our setting, the model starts from
a pre-trained network on a set of base classes, and during each training episode, we directly
augment the classifier with learning new classifier parameters for the incremental augmented
classes batch of data. Similar to generalized few-shot learning, the class-incremental learning
scenario also requires the model to maintain the base and novel classification accuracy.
Specifically speaking, the label space covered by novel categories increases at each episode
in few-shot class-incremental scenario.

Assuming that the novel instances are coming in a streaming sequence of mini-batch
labelled samples as 1,2, ...,𝑖, where 𝑖 is the index of the 𝑖-th training novel dataset,
and none of the incremental dataset shares overlap label spaces. To make the definition
consistent, 0 is the base class dataset, which is a many-shot (large-scale ) recognition task,
and the following incremental novel class datasets are few-shot recognition tasks. The meta-
learning model is trained incrementally within the increasing joint label space, but only the
current dataset 𝑖 is available as the support set for each iteration (a.k.a the training session).
However, the model is tested on all encountered classes with a joint label space, in order to
prevent overfitting on few-shot novel classes and avoid catastrophic forgetting on many-shot
base classes.

We illustrate the details of the experiment setting in section 5.3.2, and show the outline
of our meta-learning procedure of MetaQDA+ in the pseudocode (Alg.3): (1) Firstly learn a
base classifier on a set of base classes; (2) During meta-training, we have incremental training
sessions to optimize an augmented pseudo-novel class classifier; (3) After meta-training,
we learned and fixed the prior hyperparameters 𝜙 to perform joint prediction on both base
many-shot and novel class-incremental few-shot classification.
Pretraining Stage: We pretrain a feature encoder of the base dataset to achieve a good
representation of instance features. We also get a set of QDA classifier parameters from the
base dataset to fix the initialization of the pseudo-base classifier during meta-training.
Incremental Few-Shot Meta-training Stage: We re-sample pseudo-novel classes from
the original base dataset to generate the few-shot learning tasks. One meta-training episode
could have several incremental sessions, and for each training session, the few-shot label
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Algorithm 3: Pseudocode of meta-training MetaQDA+ for FSCIL.
1 Require: Distribution over tasks 𝑄, number of incremental iterations 𝐼 , number of

training iterations 𝑇 , learning rate 𝛼
2 Input: Base Dataset 𝑏𝑎𝑠𝑒

3 Init: 𝜙0 = {�⃗� = 0⃗,𝑆 = 𝐈,𝜅 = 1, 𝜈 = 𝑑}
4 for 𝑡 = 1 to 𝑇 do
5 Dataset is randomly split into 𝑝−𝑏𝑎𝑠𝑒 and 𝐼 incremental 𝑖

𝑝−𝑛𝑜𝑣𝑒𝑙 datasets;
6 Build QDA model on 𝑝−𝑏𝑎𝑠𝑒 to get 𝜓0 = {𝜇𝑝−𝑏𝑎𝑠𝑒,𝜎𝑝−𝑏𝑎𝑠𝑒};
7 for 𝑖 = 1 to 𝐼 do
8 Build Bayesian QDA model on pseudo-novel support set from 𝑖

𝑝−𝑛𝑜𝑣𝑒𝑙 to get
𝜓 𝑖𝑝−𝑛𝑜𝑣𝑒𝑙 by Eq. 4.10/ 4.11;

9 Concatenate 𝜓 𝑖 = concat[𝜓 𝑖−1,𝜓 𝑖𝑝−𝑛𝑜𝑣𝑒𝑙];
10 Use query set to predict the label �̂� in the joint label space and calculate the

loss by Eq. 4.15/ 4.16;
11 Back propagate to update the joint prior 𝜙 and 𝜓𝑖;
12 end
13 end
14 Output: the prior 𝜙

space should be disjoint with the base classes. For each session, we can lean a classifier on
the support set and evaluate the joint prediction on query set including both base and novel
classes. We iteratively meta lean the hyperparameters of priors in order to minimize the joint
prediction loss on the joint query set.
Meta-Testing Stage: We meta-test the model for joint prediction in each few-shot episode,
and we directly concatenate the augmented classifier with the optimized hyperparameters.
As for evaluation, we show the average test accuracy of each training session, indicating the
change curve of the class-incremental scenario.

5.2.3 Few-Shot Open-Set Recognition

Given that it is impossible to model every concept, open-set recognition (OSR) is ubiquitously
required for a real-world visual recognition system. Furthermore, open-set recognition in
combination with few-shot learning is of particular interest to support a highly practical
scenario which an agent continually explores an unconstrained open-world. Novel concepts
can be flagged by the open-set capability of the vision system, and subsequently annotated by
a human. Annotated concepts, can subsequently be recognised by the agent using the few-shot
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learning capability of the vision system. Supporting both two capabilities simultaneously is
the challenging goal of few-shot open-set recognition.

In this section, we discuss how to extend MetaQDA to deal with this few-shot open-set
recognition problem. Many existing approaches to OSR use auxiliary pseudo-open data
to explicitly train the outlier detection model. In addition to its computational burden, the
issue with this is that OSR performance depends highly on whether the auxiliary data is
representative of the true open-set/anomalies encountered at testing-time, which is impossible
to be guaranteed in real open-world deployments. In contrast, we will see that a key feature of
MetaQDA is that it can directly provide open-set recognition without requiring any auxiliary
data. We denote MetaQDA++ as the variant of our framework extended with the open-set
few-shot recognition capability. Furthermore, if representative auxiliary data can actually
be available, MetaQDA can also use this data for training to further boost its performance,
which is denoted as MetaQDA++PO.

5.2.3.1 MetaQDA++ without Pseudo-Open Data

Assume that𝐷𝐾 is the known dataset (closed-set), 𝐷𝑈 is the unknown dataset (open-set). 𝐷𝐾
should be split into training subset 𝐷𝐾_𝑡𝑟 and testing subset 𝐷𝐾_𝑡𝑒, sharing the same label
space  but non-overlapping instances. During training, we can only have access to 𝐷𝐾_𝑡𝑟,
but during testing we need to realize closed-set classification on 𝐷𝐾_𝑡𝑒 and open-set rejection
on 𝐷𝑈 . We model each known class 𝐶𝑖, 𝑖 ∈  with a distribution parameterized by 𝜃𝑖, upon
which we place a shared prior parameterized by 𝜙. For a novel instance �⃗�, a Bayesian learner
should use the learned prior 𝜙 to determine the posterior distribution over model parameters,
and predict the label of the instance to a known class 𝑦 ∈  as

𝑝(𝑦 = 𝑖|�⃗�,𝜙,𝐾 ) =
∫𝜃𝑖 𝑝(�⃗�|𝜃𝑖)𝑝(𝜃𝑖|𝐷𝐾 ,𝜙)𝑝(𝑦 = 𝑖)𝑑𝜃𝑖

𝑝(�⃗�|𝜙)
. (5.2)

Obviously, we can compute the likelihood of a novel instance belonging to any possible
class for the standard few-shot learning, as per regular MetaQDA in Chapter 4. However, if a
new sample comes from an unknown dataset 𝐷𝑈 which we have never seen before, the model
should be capable of computing the likelihood of the test instance belonging to unknown
classes. The Bayesian formulation of MetaQDA++ enables dealing with the possibility of
an unknown class via the shared prior over classifier parameters 𝑝(𝜃|𝜙). More specifically,
the marginal likelihood for an instance 𝑥 that may come from a known class in 𝑖 ∈  or an
unknown class 𝑦 ∉  is:
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𝑝(�⃗�|𝜙,𝐾 ) =
∑

𝑖∈
∫𝜃𝑖

𝑝(�⃗�|𝜃𝑖)𝑝(𝜃𝑖|𝐷𝐾 ,𝜙)𝑝(𝑦 = 𝑖)𝑑(𝜃𝑖)

+𝑝(𝑦 ∉ )∫𝜃
𝑝(�⃗�|𝜃)𝑝(𝜃|𝜙) ⋅𝑑𝜃,

(5.3)

where 𝑝(𝜃|𝜙) is a Normal Inverse-Wishart distribution and 𝑝(�⃗�|𝜃) is a multivariate Gaussian
distribution. Due to the conjugacy shown in Section 4.5, the integral in the above equation is
known to be a multivariate 𝑡 distribution. Thus the denominator in Bayes’ rule is straightfor-
ward to evaluate, and one can therefore compute the probability of an instance belonging to
an unknown class as

𝑝(𝑦 ∉ |�⃗�,𝜙) = 1−
∑

𝑖∈
𝑝(𝑦 = 𝑖|�⃗�,𝜙). (5.4)

MetaQDA++ enables predicting the probability of an instance being in the open-set,
without requiring any auxiliary data to train an explicit open-set detector, which is essential
for many other methods [157, 113, 117], verifying the advantage of Bayesian mechanism in
meta-learning context. Instead of training the feature extractor to estimate the unseen sample
distribution, MetaQDA++ provides efficient few-shot open-set recognition performance,
without highly relying on the quality of pseudo-open configuration which may increase the
training cost.

5.2.3.2 MetaQDA++ with Pseudo-Open Data

Even though our MetaQDA++ does not require pseudo-open samples dependency for meta
training, the method could still get benefits from the pseudo-open paradigm. Existing methods
such as PEELER [93] widely used the re-sampled pseudo-open samples from the known
dataset (closed-set). Unlike sampling the auxiliary non-overlapping data in the problem
setting of OSR, our method avoids to train the feature extractor in order to obtain a better
generalization ability. Actually, it is hard to achieve representative auxiliary data additional to
the existing closed-set dataset, which makes the pseudo-open based approaches highly depen-
dent on the data quality. Instead, MetaQDA could utilize off-the-shelf feature extractor of the
closed training dataset, and plug-in the learnable conjugate priors of Bayesian QDA classifier
to solve the few-shot open-set recognition problems. Throughout this problem setting, we
interchangeably use the terms 𝐷𝐾 and 𝐷𝑈 to denote the known closed-set and unknown
open-set, respectively. More specifically, during each meta-training episode, we randomly
sample 𝑀 classes as pseudo-closed, and the remaining classes are used as pseudo-open.
Then each support set includes pseudo-closed 𝐷𝑆

𝐾_𝑡𝑟, and query set consists of both pseudo-
closed and pseudo-open 𝐷𝑄

𝐾_𝑡𝑟. To further improve the model performance on anomaly
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detection without compulsively mapping them into a single feature cluster, MetaQDA++
uses re-sampled pseudo-open data to optimize the training of the conjugate priors.

In conventional closed-set few-shot image classification, a natural measure for the good-
ness of fit for 𝜙 is the expected log likelihood of the model plus the use of the shared prior,

𝔼[𝐿(𝜙|𝐷𝑆
𝐾_𝑡𝑟,𝐷

𝑄
𝐾_𝑡𝑟)]. (5.5)

The process of learning the prior parameters can then be formalised as a risk minimisation
problem,

𝜙∗ = 𝑎𝑟𝑔min
𝜙

𝔼[𝐿(𝜙|𝐷𝑆
𝐾_𝑡𝑟,𝐷

𝑄
𝐾_𝑡𝑟)]. (5.6)

When it comes to FSOSR, the optimal model requires a suitable loss function to take ad-
vantage of the pseudo-open samples. MetaQDA++ is able to explicitly predict the probability
of an unknown query sample belonging to open-set, shown as Equation 5.5. Therefore, the
out-of-distribution (OOD) anomaly detection can be viewed as another binary classification
problem [65]. Combining with the traditional 𝑁-way closed few-shot learning classification
task, it becomes ‘𝑁 +1’-way classification for both closed-set and open-set.
Closed-Set Loss As for known instances in query set, the closed-set classification problem
is the same as conventional few-shot recognition. We can use any suitable popular loss
function (e.g., cross-entropy loss) to supervise the back-propagation optimization.

𝐿𝑐𝑙𝑠(𝜙|𝑆
𝐾_𝑡𝑟,

𝑄
𝐾_𝑡𝑟) = −log

∑

𝑦∈
𝑝(𝑦|�⃗�,𝑆

𝐾_𝑡𝑟,
𝑄
𝐾_𝑡𝑟). (5.7)

Rejection Loss Anomaly detection requires to reject the unknown instances which can
be formalised as a binary classification problem. As a result, we can also calculate the
cross-entropy loss of the unknown instances rejection as follow,

𝐿𝑟𝑒𝑗(𝜙|𝑆
𝐾_𝑡𝑟,

𝑄
𝐾_𝑡𝑟) = −log

∑

𝑦∉
𝑝(𝑦|�⃗�,𝑆

𝐾_𝑡𝑟,
𝑄
𝐾_𝑡𝑟). (5.8)

It is worth noting that the probability of an unseen open sample in the query set is
calculated as Equation 5.5, which is the uniqueness of our model. MetaQDA++ provides
an explicit probability from the forward pass, then backprop to optimize the model. This
classifier extends the existing closed-set 𝑁-way classifier to an ‘𝑁 +1’-way classifier, and
the rejection loss is assigned to the one more shot. Hence, the loss function of MetaQDA++
can be addressed as the combination of the above two loss functions that applied to closed
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and open samples in the query set separately with weight 𝛼,

𝐿𝑁+1 = 𝐿𝑐𝑙𝑠+𝛼 ∗ 𝐿𝑟𝑒𝑗 . (5.9)

5.2.3.3 MetaQDA with Pseudo-Open Data

Similar to most existing open set recognition models, standard MetaQDA is also an 𝑁-way
classifier. Unlike the large-scale setting that seen classes can be well trained with sufficient
examples, the few-shot condition makes it much harder to achieve open detection. In this
case, facing an unseen open sample, the model cannot assign a large probability to any known
class. It should be rejected if the maximum predicted probability among all closed classes is
small.
Open-Set Loss An open sample in the query set does not belong to any known classes
represented by the 𝑁-way classifier, so the predicted value of each way will tell no difference.
To enable this smoothing function, the learning algorithm should minimize the predicted
probabilities on known classes for open samples from unknown classes, which can be imple-
mented by maximizing the entropy of closed-set class probabilities. Following [93], we can
use the negative entropy for pseudo-open data in query set,

𝐿𝑜𝑝(𝜙|𝑆
𝐾_𝑡𝑟,

𝑄
𝐾_𝑡𝑟) =

∑

𝑦∈
𝑝(𝑦|�⃗�,𝑆

𝐾_𝑡𝑟,
𝑄
𝐾_𝑡𝑟)log

∑

𝑦∈
𝑝(𝑦|�⃗�,𝑆

𝐾_𝑡𝑟,
𝑄
𝐾_𝑡𝑟). (5.10)

Hence, the loss function of MetaQDA with pseudo-open data can be addressed as the
combination of closed-set loss shown as Equation 5.8 and the open-set smoothing loss with
weight 𝛽,

𝐿𝑁 = 𝐿𝑐𝑙𝑠+𝛽 ∗ 𝐿𝑜𝑝. (5.11)

5.3 Experiments
In this section, we show various experiments of extended MetaQDA models in real-world
scenarios of generalized few-shot learning and open-set few-shot learning.

5.3.1 Generalized Few-Shot Learning

Dataset Split To formalize the problem setup, we take miniImageNet dataset as an example.
As for standard few shot learning problem, the dataset is split into train/validation/test subsets
as 64/16/20 categories (600 instances of each category). We pre-train the model with train
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Figure 5.1 The dataset split of miniImageNet in the generalized few-shot learning scenario
(GFSL). The training base data are the same as standard few shot learning (red part), and the non-
overlap auxiliary base instances are sampled from original ImageNet with the same label space (pink
part). The pseudo-novel data in meta-training are the same as the validation dataset in standard
few-shot learning (green part), and the novel instances of meta-testing are the same as the test dataset
in standard few-shot learning (yellow part).

dataset (or both train and validation dataset, then use train dataset to meta-train the model, and
choose the best model by validation dataset. During meta-test, we evaluate the model on test
dataset, and compare our performance with other state-of-the-art approaches. However, when
it comes to generalized few-shot learning as shown in Figure 5.1, we use standard train dataset
for base classes and validation dataset for pseudo-novel classes during meta-training, and
use auxiliary train data for base classes and test dataset for novel classes during meta-testing.
The auxiliary 300 base instances for mate-testing are sampled from ImageNet [187] with the
same label space of the base classes in meta-training.
Episodic Meta Training MetaQDA method has two phases to predict the label of query
instances. The first step is getting the prior of the QDA classifier, and the second step is to use
both the prior and the statistical parameters (𝜇,𝜎) to infer the classification result by Bayes’
rule. Thus during meta-training, we can firstly initialize the prior with the base categories
(64-way), and then sample the novel instances (𝑁-way-𝐾-shot) from the pseudo-novel dataset
to calculate the class-conditional distribution (𝜇𝑛,𝜎𝑛) of the novel data in support set (𝑁-
way), and concatenate with the statistical parameters (𝜇𝑏,𝜎𝑏) of the base data (64-way) to
get the GFSL parameters (‘𝑁+64’-way). Specifically speaking, if standard 5-way-1-shot
few-shot learning has 5-way-15-shot query instances each episode, then generalized few-shot
learning has 64-way-15-shot base instances and 5-way-15-shot novel instances to compose
69-way-15-shot query instances in each episode for GFSL.
Meta Testing During meta-testing, we sample novel instances (e.g. 5-way-1-shot) from the
novel dataset (yellow part) as support set, and sample novel instances (non-overlap 15-shot of
the same 5-way) and base instances (e.g. 64-way-15-shot) from the auxiliary base dataset
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(pink part) as query set. After meta-training, we acquire the trained prior of the MetaQDA
model, then we use the prior and the support set to get the class conditional distribution
of novel classes by conjugacy, and concatenate it with the pre-trained class conditional
distribution of base classes to produce a GFSL classifier by Bayes’ rule (69-way).
Evaluation Metric Following previous meta-learning research in GFSL [147], we also
evaluate the model and calculate the average accuracy with 95% confidence interval over
600 random test episodes, while each episode is composed of all base classes plus 𝑁-way
novel categories.We evaluate the GFSL performance by 5 metrics following [147], such
as Base-Base, Novel-Novel, Base-Joint, Novel-Joint, Joint-Joint, where the item before the
hyphen is the query data used, and the item after the hyphen is the label space considered for
classifying the specified data. To penalize unsatisfactory performance in either metric, we
also report the harmonic mean to balance the unequal sizes of base and novel data.
Results We compare our methodology with some other baselines: PN+ [150], DFSLwoF
[44], and GcGPN [147]. Specifically, Prototypical Network could be straightly extended to
PN+ to satisfy the memorization of base classes, the details are shown in [147]. Then we
evaluate our model on miniImageNet both for 1-shot and 5-shot of ‘5+𝑏𝑎𝑠𝑒’-way classification.
As shown in 5.2, MetaQDA+ is capable of both achieving excellent few-shot recognition
accuracy on novel categories and maintaining high performance on base categories, surpassing
prior state-of-the-art approaches.

Model FSL GFSL
1-shot Base-Base Novel-Novel Base-Joint Novel-Joint Joint-joint H-mean

PN+ [150] 54.02 ± 0.46% 53.88 ± 0.78% 54.02 ± 0.46% 0.02 ± 0.01% 27.02 ± 0.23% 0.04 ± 0.03%
DFSLWOF [44] 69.93 ± 0.41% 55.80 ± 0.78% 58.54 ± 0.43% 40.30 ± 0.74% 49.42 ± 0.41% 46.95 ± 0.55%
GCGPN-AS [147] 68.13 ± 0.43% 60.40 ± 0.71% 54.68 ± 0.46% 48.59 ± 0.72% 51.63 ± 0.41% 50.83 ± 0.45%
METAQDA 64.25 ± 0.18% 56.41 ± 0.80% 59.47 ± 0.18% 5.08 ± 0.82% 55.52 ± 0.16% 9.25 ± 0.58%
METAQDA+ 68.66 ± 0.15% 56.35 ± 0.80% 61.58 ± 0.16% 45.25 ± 0.79% 58.22 ± 0.13% 52.65 ± 0.55%

5-shot Base-Base Novel-Novel Base-Joint Novel-Joint Joint-joint H-mean
PN+ [150] 60.42 ± 0.45% 70.84 ± 0.66% 60.41 ± 0.45% 2.99 ± 0.20% 31.70 ± 0.25% 5.54 ± 0.34%
DFSLWOF [44] 70.24 ± 0.43% 72.59 ± 0.62% 59.89 ± 0.47% 58.26 ± 0.68% 59.08 ± 0.40% 58.58 ± 0.41%
GCGPN-AS [147] 68.30 ± 0.45% 73.31 ± 0.62% 57.93 ± 0.48% 59.32 ± 0.68% 58.63 ± 0.40% 56.69 ± 0.41%
METAQDA 65.98 ± 0.12% 72.64 ± 0.62% 61.72 ± 0.12% 10.97 ± 0.58% 58.04 ± 0.15% 16.39 ± 0.45%
METAQDA+ 68.67 ± 0.12% 72.08 ± 0.65% 62.74 ± 0.13% 55.19 ± 0.67% 62.19 ± 0.13% 59.73 ± 0.42%

Table 5.2 Generalized few-shot learning results on miniImageNet. This table demonstrates the
average accuracy and harmonic mean to show the joint-joint performance, which is the main objective
of GFSL. Harmonic mean is calculated by the Base-Joint and Novel-Joint accuracies. The results are
evaluated on testing set both for 1-shot and 5-shot of 5+𝑏𝑎𝑠𝑒-way classification. Note that GcGPN
uses Conv4-128 backbone, but DFSLwoF and ours use Conv4-64 backbone. MetaQDA means that
using vanilla MetaQDA trained by standard FSL benchmark directly, which is easily overfitted to base
categories. MetaQDA+ means the extended model shown in GFSL methodology.
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5.3.2 Few-Shot Class-Incremental Learning

Dataset Split Following [161], miniImageNet is split into 60 Base classes and 40 Novel
classes, each with 500 training instances and 100 testing instances, respectively. Each episode
starts from a base classifier and proceeds in 8 learning sessions by adding a 5-way-5-shot
support set per session. After each session, models are evaluated on the full set of classes
seen so far, leading to a 100-way generalized few-shot problem in the 9𝑡ℎ session (session 8),
as shown in Figure 5.2. During the meta training process, only the 60 Base class training
dataset is available, then we re-sample them to pseudo-base and pseudo-novel classes to get
the trained prior of MetaQDA, and directly deploy it on the incremental meta-testing process.

Figure 5.2 One meta-test task episode of miniImageNet in the few-shot class-incremental learning
(FSCIL) scenario. Base class (60-way) only appears in the query set (in pink) and the category
number of novel class increases 5-way per training session (in yellow). Note that base instances are
from the testing dataset disjoint with the meta-training dataset.

Implementation Detail As per [161], we pre-train a ResNet18 backbone and then meta-
train MetaQDA+ model on 60 base classes before performing incremental meta testing. We
use stochastic gradient descent (SGD) with the initial learning rate of 0.1, decreasing the
learning rate to 0.01/0.001 after 30/40 epochs, respectively, and mini-batch size is 128. The
MetaQDA+ prior is not updated during meta-testing. Meta-Training: We adopt the 5-way-
5-shot few-shot paradigm, and we have 9 training sessions in total, while each incremental
session is constructed by randomly picking 5 training samples per class from the original
dataset. The MetaQDA+ prior is then trained by generating sequential (multi-session) episodes
from the 60 base class set, using the feature extractor trained as above. Meta-Testing: Due
to our Bayesian class-conditional modeling, meta-testing decomposes over classes. Class-
incremental learning is thus trivially realized by running the update step of MetaQDA+ for
each new category, and adding the final mean and covariance to the set used by the final QDA
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Model AL_MML [161] NCC METAQDA+ Margin

session 0 (60) 61.31 46.62 59.57 -
session 1 (65) 50.09 43.26 54.98 (+4.89)
session 2 (70) 45.17 40.87 51.06 (+5.89)
session 3 (75) 41.16 39.04 47.69 (+6.53)
session 4 (80) 37.48 37.50 44.71 (+7.23)
session 5 (85) 35.52 35.96 42.08 (+6.56)
session 6 (90) 32.19 34.13 39.74 (+7.55)
session 7 (95) 29.46 33.19 37.66 (+8.20)
session 8 (100) 24.42 32.26 35.78 (+11.36)

Table 5.3 Class-incremental few-shot learning results on miniImageNet. Start with 60-way base
classifier and add 5-way-5-shot per session. At each session, the models are evaluated on the test sets
of the full set of classes encountered so far. All models in the table use ResNet-18 backbone. (#):
classifier-way at each session.

classifier. We apply MetaQDA+ both for the many-shot base classes, and 5-shot incrementally
increasing novel classes.
Results We depict the experiment results in terms of accuracy and session number shown
in Table 5.3, noting that the number of categories increases in the label space over iterations
from session 0 (60-way) to session 8 (100-way). Specifically, the accuracy is the average
number generated by independently repeating both meta-train and meta-test (8 incremental
sessions each) phases 10 times with random 5-shot episodes. It shows that PN and NCC
could outperform the other State of the art baselines with big session number, which requires
to overcome the challenge of forgetting. Clearly MetaQDA+ also mitigates the forgetting
of old classes and improves the few-shot learning of new classes in the class-incremental
scenario due to the Bayesian classifier, significantly show the advantage of our model over
other baselines [161].

5.3.3 Few-Shot Open-Set Recognition

Dataset Split Following [93], we use miniImageNet to evaluate the algorithm performance
on both closed-set classification and open-set detection performance. Similar to standard
few-shot benchmark, miniImageNet dataset is split into 64 classes for training, 16 classes
for validation and 20 classes for testing. Because the support set could not have access to
open-set, so our support set only includes𝑁-way-𝐾-shot closes set samples, but the query set
contains both closed classes and also open-set samples. MetaQDA++ can be implemented
without meta-training by pseudo-open data, and both MetaQDA++ and MetaQDA can be
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implemented with re-sampled pseudo-open data to further train the anomaly detector. Here
we show the dataset split with pseudo-open data following [93]. To clarify the difference
of pseudo-open data between large-scale and few-shot open set recognition, we have an
illustrative visualisation of OSR and FSOSR shown as Figure 5.3. It is noting that large
scale open set recognition does not use meta-learning paradigm, and to guarantee the testing
samples non-overlap with the training samples, we need to sample extra closed-set samples
from original ImageNet. However, when it comes to FSOSR, we follow the 5-way few-shot
open-set recognition paradigm as [93] to guarantee the fair comparison. To make the balance
of closed-set and open-set for evaluation, we only re-sample 𝑁-way pseudo-open classes for
the query set. Specifically speaking, in each meta training episode, 5 classes are randomly
selected as pseudo-closed set and 5 other classes are randomly selected as pseudo-open set.
For both meta training and meta testing tasks, all support samples are selected from the
closed-set, but the query set samples are selected from both closed and open sets.
Implementation Detail Similar to previous methods, we pre-train a ResNet18 backbone
on the known base classes. We meta-train MetaQDA++ by stochastic gradient descent (SGD)
with the initial learning rate of 0.01, decreasing the learning rate to 0.001 after 40 epochs,
and mini-batch size is 128. As for the scenario with pseudo-open set, 𝛼 is set to 0.3 for
MetaQDA++PO and 𝛽 is set to 0.5 for MetaQDA.
Evaluation Metric Following Neal et al. [113], we use the conventional closed-set
classification accuracy and open-set detection AUROC (Area Under ROC Curve) to evaluate
open-set recognition performance. For test images drawn from known categories, we evaluate
the conventional 𝑁-way multi-class accuracy as per standard closed-set few-shot learning.
Considering all test images including both open- and closed-set examples, MetaQDA++
performs outlier detection as a binary classification problem between known and unknown
categories, which is explicitly assigned by the ‘𝑁 +1’-way classifier. MetaQDA with open-
loss performs outlier detection by the entropy of an N-way classifier prediction, similar to [93].
We report the outlier detection performance in terms of AUROC. A good open-set classifier
should not sacrifice the standard known-class recognition performance, so we calculate the
closed-set accuracy applying to only the known classes with open-set detection disabled.
Results As for few shot open set recognition, we compare different experiment settings to
show the effectiveness of different components of our methodology. Specifically, we evalu-
ate MetaQDA++ with and without pseudo-open data meta-training, and compare standard
MetaQDA with pseudo-open data. Our baselines are including some previous large-scale
open-set recognition approaches which can be applied to few-shot scenario, shown in [93]. To
disambiguate the confusion of various components adding to the original algorithm, we only
report the best results obtained by previous methods. Thus the baselines in our experiments
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(a)

(b)

Figure 5.3 Illustrative visualization of the paradigm of open-set recognition (OSR) and few-
shot open-set recognition (FSOSR) on miniImageNet. (a) Large-scale open set recognition on
miniImageNet with pseudo-open data. (b) Few-shot open-set recognition on miniImageNet without
requiring extra data, but only re-sample to get the pseudo-open data.

are: ProtoNet [150], FEAT [188], OpenMax [143], Counterfactual [113], and PEELER [93].
Our Bayesian paradigm could obviously hold the advantage to balance the closed-set and
open-set out-of-distribution detection at the same time. The first line in grey shade is our
MetaQDA++ with a vanilla Bayesian outlier detector without re-sampling pseudo-open data
during meta-training process, which has already outperformed the previous state-of-the-art
result [93] with a large margin. Our standard MetaQDA is designed for standard few-shot
learning, but it can also get improved by being re-trained with pseudo-open data. In comple-
mentary, we use the pseudo-open data to train the MetaQDA++, whereupon the margin over
competitors increases.
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Model Pseudo. OpLoss 5-way-1-shot 5-way-5-shot
Acc (%) AUROC (%) Acc (%) AUROC (%)

PROTONET [150] ✓ 64.01 ± 0.88% 51.81 ± 0.93% 80.09 ± 0.86% 60.39 ± 0.77%
FEAT [188] ✓ 67.02 ± 0.85% 57.01 ± 0.84% 82.02 ± 0.77% 63.18 ± 0.83%
OPENMAX [143] ✓ 57.89 ± 0.59% 58.92 ± 0.59% 75.31 ± 0.76% 67.54 ± 0.67%
COUNTER. [113] ✓ 57.89 ± 0.59% 52.20 ± 0.61% 75.31 ± 0.76% 63.25 ± 0.59%
PEELER [93] ✓ 56.31 ± 0.57% 58.94 ± 0.60% 74.19 ± 0.75% 66.00 ± 0.67%
PEELER [93] ✓ ✓ 58.31 ± 0.58% 61.66 ± 0.62% 75.08 ± 0.72% 69.85 ± 0.70%

METAQDA ✓ ✓ 60.45 ± 0.68% 63.55 ± 0.65% 76.22 ± 0.86% 70.18 ± 0.78%
METAQDA++ 62.75 ± 0.62% 69.08 ± 0.85% 79.97 ± 0.66% 75.49 ± 0.71%
METAQDA++ ✓ 64.25 ± 0.58% 70.08 ± 0.83% 80.47 ± 0.58% 81.33 ± 0.68%

Table 5.4 Few-shot open-set recognition results on miniImageNet. Average closed-set accuracy
and open-set AUROC are shown on both 1-shot and 5-shot of 5+-way few-shot open-set recognition
experiments. We use ResNet-18 backbone for fair comparison.

5.4 Summary
In this chapter, we explored extending and applying MetaQDA to various more realistic
application scenarios, and empirically demonstrated that MetaQDA provided excellent perfor-
mance across various settings and evaluation metrics including generalized, class-incremental,
and open-set few-shot recognition. We shed light on the superiority of our method due to
a combination of fixed feature representation and a Bayesian meta-learned classifier. It is
obvious that the fixed features avoid catastrophic forgetting by nature, and the Bayesian
classifier with generatively modelled class conditionals further alleviates the forgetting prob-
lem in contrast to discriminately learned decision boundaries. Consequently, GFSL with
class imbalance is easier to solve, and class-incremental scenario is implemented by adding
new class conditionals without modifying the existing a class-conditional models. Finally,
our Bayesian classifier also makes outlier detection easier by providing a direct estimate of
unknown class probability through marginalising out the unknown classifier parameters.

Even though using fixed features is an advantage in many ways as discussed above, it
provides a limitation in other ways. If (meta)-tested on images with very different statistics
from the meta-training data (e.g. from ImageNet to medical images), the performance of
MetaQDA is likely to be worse because the feature extractor does not update in response to
meta-test images. While this can be ameliorated with strong multi-domain features as shown
in Chapter 4.6.5, it remains doubtful to provide a sufficient solution in general, or if new
methods with end-to-end updates during meta-test will ultimately be required.



Chapter 6

Conclusions and Future Work

This thesis studied few-shot meta-learning in computer vision. We started by focusing on
deep learning architectures to improve metric-based meta-learning in the form of DCN/
RelationNet2. Subsequently we moved on to more general model-based meta-learning in
the form of MetaQDA, where we focused on Bayesian meta-learning approaches to a final
classifier layer, while being agnostic to the deep architecture used. Over the course of the
thesis we also moved from addressing the most widely studied but least realistic C-way-K-shot
style academic benchmarks, to addressing more practically realistic and valuable problem
settings such as generalized, class-incremental, and open-set few-shot learning. The vast
majority of existing academic research has focused on the narrowly defined C-way-K-shot
problem for few-shot learning. While this has helped the core technology to advance, their
restrictive assumptions limit them to hardly benefit some main potential use-cases of few
shot learning technology such as autonomous agents that need to learn from each newly
encountered object online [98, 158]. We hope that the broader contributions of our work
in incremental generalized few-shot learning and novelty detection could help make such
autonomous agent applications a reality.

6.1 Contributions
The main contributions of this thesis are the investigation of using meta-learning methodolo-
gies to entangle few-shot learning and open-ended image recognition challenges.

(1) We propose a parameterized metric-learning approach, RelationNet2, as a matching
framework comprised of embedding and relation modules, learning multiple non-linear
comparisons simultaneously corresponding to multiple levels of extracted features.

(2) We defend the meta-learning role in various few-shot learning scenarios by introducing
a shallow meta-learner, which utilizes an amortized Bayesian quadratic discriminant analysis
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through conjugacy. This method outperforms the others relying on off-the-shelf feature
extractors, and even exceeds those training deep features specialized on few-shot learning
with higher computation cost.

(3) Our methods achieve state-of-the-art performance on the standard few-shot learning
benchmarks, retaining the simplicity and effectiveness of meta-learning pipelines. Further-
more, our RelationNet2 reduces the overfitting by adding Gaussian noise regularization, and
MetaQDA avoids overfitting to a few-shot support set through use of a prior on the parameters
which prevents them from overfitting to a few-shot support set.

(4) Faced with real-world applications, our MetaQDA is inherently suited to highly
practical but more challenging tasks, with the probability calibration of the model being
especially critical. The Bayesian paradigm with MetaQDA’s efficient fixed-feature learning
performs excellently across various settings from cross/multi-domain and class-incremental
to open-set recognition.

(5) We make a major contribution to the recent debate in few-shot learning for computer
vision: "Is meta-learning really helpful or not, given improving techniques for training basic
features?" Our results show that the answer is Yes. Meta-learning can benefit few shot learning
even for fixed pre-provided features, simply by performing suitably designed meta-learning
at the classifier layer.

(6) We evaluate our models by both classification accuracy and calibration performance,
and also calculate the AUROC of the open-set settings. Experiments are conducted on
various benchmarks, such as the widely-used miniImageNet and tieredImagenet, and also
the fine-grained CUB and Cars, showing our approaches can achieve stable state-of-the-art
performances with less uncertainty.

6.2 Limitations
In this thesis, we have already explored the pipelines of meta-learning and contributed an im-
pressive promotion to various computer vision applications with data scarcity. However, after
many academic endeavors, we have still come across several limitations. This section offers
a discussion about the disadvantages of current approaches and potential future directions.
Lack of Scalability Even though our RelationNet2/DCN achieves state-of-the-art perfor-
mance on standard few-shot learning benchmarks, e.g., miniImageNet and tieredImageNet, it
has scalability limitation of additional multi-metrics computing. When it comes to a large
support set and a bigger number of classes, the non-linear growth of parameters will accel-
erate the computing cost based on deep backbones with enormous parameters. Also, all
experiments in Chapter 3 are conducted on standard few shot learning benchmarks, but when
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it comes to more realistic applicants, where the agent needs to classify both novel few-shot
and seen many-shot classes, a.k.a, generalized few shot learning, the model could hardly
achieve a competitive performance without forgetting the previous seen classes.
Memory and Computing Cost MetaQDA utilizes a QDA classifier, of which the covari-
ance matrix increases the memory cost from linear level to square level. Wider network
architectures are infeasible to enhance the performance of the current model, thus we need
to limit the extracted feature dimension to a reasonable range. Meanwhile, quadratic clas-
sifier requires more computing cost than linear classifier to update the model, even though
our conjugacy-based methods are much faster than other backdrop-based methods. We
should design more effective dimensionality reduction algorithm to augment the capability
of MQDA.
Generalization for Out-of-Distribution Datasets As discussed in Chapter 5, current few
shot learning assumes sampling from a pre-defined distribution of tasks, which in practice
requires laborious human engineering, but we hope to design models with high generalization
ability to diverse realistic scenarios. Despite the advantage of using off-the-shelf features in
MetaQDA, it seems that meta testing on images out of distribution (OOD) is challenging for
current MetaQDA without back propagation. To enhance the generalization ability in the
future, we may need stronger features, e.g., multi-domain features trained from meta-dataset,
to provide a more general solution.

6.3 Future Work
In this section, we would like to discuss some immediate extensions of the current meta-
learning research to overcome the previous discussed limitation, and some potential promising
directions of future work in both the academy and the industry.
Deep Bayesian Meta-Learning Our current work only exploits Bayesian meta-learning at
the classifier layer, performing prior-posterior updates on the classifier distribution given the
support set, but treats the feature extractor as the black box. Future work could investigate
whether performance could be improved by end-to-end Bayesian meta-learning to train the
optimal Bayesian prior for every weight in the deep network. In this more general case,
simple and efficient conjugacy-based updates would likely no longer be possible. Developing
a tractable approach, e.g., by drawing on tools such as amortized variational inference [70,
128], would be the key challenge.
Multi-Domain Meta-Learning Multi-domain meta-learning is an outstanding challenge
in this field. While MetaQDA performs well when leveraging a multi-domain pre-trained
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feature, shown in Chapter 4, it misses an opportunity to exploit a statistical model of the
situation, which would likely improve results further. Single domain MetaQDA corresponds
to learning a uni-modal NIW prior on the QDA classifier. In the multi-domain case (e.g.,
given a mixture of everyday, medical and astronomical images), the relevant statistical model
could be a mixture-model prior on the QDA classifier. Then the meta-test step would involve
estimating the relevant mixture component and using that component to update the classifier.
Lifelong Meta Learning Due to the conjugacy, MetaQDA can perform efficient and
non-forgetting class-incremental and instance-incremental few-shot learning out of the box,
and thus could be described as ‘meta-learning a lifelong learner’. However it is not truly a
lifelong meta-learner in that the globally shared meta-knowledge (prior parameters) are not
updated after the meta-train stage. In a lifelong learning setting, once the number of new
meta-test tasks encountered becomes large compared to the initial number of meta-train tasks,
MetaQDA misses an increasing opportunity for cross-task knowledge transfer. Developing a
lifelong meta-learner remains an outstanding challenge.
Few-Shot Learning beyond Object Recognition Most existing work on few shot learning
focuses on simple object recognition. This only scratches the surface of the applications
within vision where few-shot learning is necessary, but ignoring other applications include
for example relationship detection in scene graph recognition. We did some preliminary
studies on this topic but not covered in the thesis, unfortunately lack enough time to finish
it. Visual relationships in a scene graph are represented as subject-predicate-object triplet
< 𝑆,𝑃 ,𝑂 >, providing a more powerful query modality than simple image tags. However,
the predicates in a scene graph meet long-tailed distribution and have a large label space
with incomplete annotation, so few-shot predicate classification problem setting has more
realistic meaning. Datasets that have a long tail of relationships with few-shot samples,
e.g, Visual Genome (VG) only focuses on 50 frequent predicates, which were ignored in
previous researches. Semantic segmentation models tend to provide specialised architectures
for performing image-to-image prediction. However, there is still usually a conventional
classification layer applied pixel-wise to get the unary potential of each pixel belonging to
a given category. These pixel-wise classifiers could be upgraded from conventional linear
classifiers to meta-learned MetaQDA classifiers. More generally, because MetaQDA does not
focus on any particular neural network architecture, it is in no way specific to computer vision.
The ideas in MetaQDA could be applied to any supervised classifier learning application
where there are task families and new tasks required to be solved with few examples, such as
ASR (Auto Speech Recognition) [100], TTS (Text To Speech) [195].
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