

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Robust and Efficient Inference and Learning
Algorithms for Generative Models

Kai Xu
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

The University of Edinburgh

2021

Abstract

Generative modelling is a popular paradigm in machine learning due to its natural

ability to describe uncertainty in data and models and for its applications including data

compression (Ho et al., 2020), missing data imputation (Valera et al., 2018), synthetic

data generation (Lin et al., 2020), representation learning (Kingma and Welling, 2014),

robust classification (Li et al., 2019b), and more. For generative models, the task of

finding the distribution of unobserved variables conditioned on observed ones is referred

to as inference. Finding the optimal model that makes the model distribution close to the

data distribution according to some discrepancy measures is called learning. In practice,

existing learning and inference methods can fall short on robustness and efficiency. A

method that is more robust to its hyper-parameters or different types of data can be

more easily adapted to various real-world applications. How efficient a method is in

regard to the size and the dimensionality of data determines at what scale the method

can be applied. This thesis presents four pieces of my original work that improves these

properties in generative models.

First, I introduce two novel Bayesian inference algorithms. One is called coupled

multinomial Hamiltonian Monte Carlo (Xu et al., 2021a); it builds on Heng and Jacob

(2019), which is a recent work in unbiased Markov chain Monte Carlo (MCMC) (Jacob

et al., 2019b) and has been found to sensitive to hyper-parameters and less efficient

compared to normal, biased MCMC. These issues are solved by establishing couplings

to the widely-used multinomial Hamiltonian Monte Carlo, leading to a statistically

more efficient and robust method. The other method is called roulette-based variational

expectation (RAVE; Xu et al., 2019) that applies amortised inference to a model family

called Bayesian non-parametric models, in which the number of parameters are allowed

to grow unbounded as the data gets more complex. Unlike previous sampling-based

methods that are slow or variational inference methods that rely on truncation, RAVE

combines the advantages of both to achieve flexible inference that is also computational

efficient. Second, I introduce two novel learning methods. One is called generative

ratio-matching (Srivastava et al., 2019) which is a learning algorithm that makes deep

generative models based on kernel methods applicable to high-dimensional data. The

key innovation of this method is learning a projection of the data to a lower-dimensional

space in which the density ratio is preserved such that learning can be done in the lower-

dimensional space where kernel methods are effective. The other method is called

Bayesian symbolic physics that combines Bayesian inference and symbolic regression

iii

in the context of naïve physics—the study of how humans understand and learn physics.

Unlike classic generative models for which the structure of the generative process is

predefined or deep generative models where the process is represented by data-hungry

neural networks, Bayesian-symbolic generative processes are defined by functions over

a hypothesis space specified by a context-free grammar. This formulation allows these

models to incorporate domain knowledge in learning, which gives highly-improved

sample efficiency. For all four pieces of work, I provide theoretical analyses and/or

empirical results to validate that the algorithmic advances lead to improvements in

robustness and efficiency for generative models.

Lastly, I summarise my contributions to free and open-source software on generative

modelling. This includes a set of Julia packages that I contributed and are currently

used by the Turing probabilistic programming language (Ge et al., 2018). These pack-

ages, which are highly reusable components for building probabilistic programming

languages, together form a probabilistic programming ecosystem in Julia. An important

package that is primarily developed by me is called ADVANCEDHMC.JL (Xu et al.,

2020), which provides robust and efficient implementations of HMC methods and has

been adopted as the backend of Turing. Importantly, the design of this package allows

an intuitive abstraction to construct HMC samplers similarly to how they are math-

ematically defined. The promise of these open-source packages is to make generative

modelling techniques more accessible to domain experts from various backgrounds and

to make relevant research more reproducible to help advance the field.

iv

Acknowledgements

First, I would like to thank my supervisor Charles Sutton for his all-sided support

during Ph.D study at Edinburgh, and his indulgence on my wide research interests,

fortunately most of which his coincides with. The guidance from Charles of how to

conduct research as well as the technical support from him really transformed me from

a student to a researcher.1 I also want to thank my second supervisor, Iain Murray, for

the support and useful discussions, from which I always learned something new.

Many thanks to my peers in Edinburgh, especially the Cat Squad members (Akash

Srivastava, Cole Hurwitz), my office mates (Bowen Li, Yumo Xu, Liu Yang) and co-

workers in Charles’s Uncertain People (Lazar Valkov, Simao Eduardo). I am so glad I

have you during the life and research in my PhD—it was the every meal I enjoyed with

you and every research argument I had with you that enriched my PhD life.

I would like to acknowledge my collaborators of publications during my Ph.D

who have not been mentioned earlier. It was a great learning experience working with

all of you: Hong Ge, Zoubin Ghahramani, Tor E. Fjelde, Michael U. Gutmann, Dan

Gutfreund, Tomer Ullman, Joshua B. Tenenbaum, Felix A. Sosa, Mohamed Tarek,

Martin Trapp, Rajkarn Singh, Marco Fiore, Mahesh K. Marina, Hakan Bilen, Dae Hoon

Park and Chang Yi. Special thanks to Zoubin and Hong who brings me to the research

field of probabilistic machine learning.

I also would like to thank people from the Turing team and close developers from

the Julia community: Cameron Pfiffer, David Widmann, Elizaveta Semenova, Qinliang

Zhuo, Mohamed Tarek, Seth Axen, Will Tebbutt, Christopher Rackauckas and Andreas

Noack. Without the efforts from everyone the Turing project will not go this far.

Finally, special thanks to my mother, Caiqin He, my father, Xuegen Xu, and my

wife2, Pinzhen Liao, for their care, encouragement and love for the nerdy Kai throughout

these years.

1Also thanks to Charles’ black Scottish cat, Daisy, who keeps our remote meetings lifeful and
uncertain (in a good way).

2My wife and I married on 8th Dec 2022, which is exactly one week prior to my viva.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Kai Xu)

vi

Publications
This thesis contains some work that was previously published in the following

venues.

Chapter 3 extends on3:

• Xu, K., Fjelde, T. E., Sutton, C., and Ge, H. (2021a). Couplings for multinomial

Hamiltonian Monte Carlo. In International Conference on Artificial Intelligence

and Statistics

Chapter 4 extends on:

• Xu, K., Srivastava, A., and Sutton, C. (2019). Variational Russian roulette for

deep Bayesian nonparametrics. In International Conference on Machine Learning

Chapter 5 extends on4:

• Srivastava, A., Xu, K., Gutmann, M. U., and Sutton, C. (2019). Generative ratio

matching networks. In International Conference on Learning Representations

Chapter 6 extends on:

• Xu, K., Srivastava, A., Gutfreund, D., Sosa, F. A., Tomer, U., Tenenbaumm, J. B.,

and Sutton, C. (2021b). A Bayesian-symbolic approach to reasoning and learning

in intuitive physics. In Advances in Neural Information Processing Systems

Chapter 7 extends on:

• Ge, H., Xu, K., and Ghahramani, Z. (2018). Turing: A language for flexible

probabilistic inference. In International Conference on Artificial Intelligence and

Statistics

• Xu, K., Ge, H., Tebbutt, W., Tarek, M., Trapp, M., and Ghahramani, Z. (2020).

AdvancedHMC.jl: A robust, modular and effcient implementation of advanced

HMC algorithms. In Symposium on Advances in Approximate Bayesian Inference

3I (Kai Xu) and Tor E. Fjelde share the leading authorship of Xu et al. (2021a). I develop the method
and conduct initial theoretical analysis as well as all the experiments, and Tor leads the final proofs and
theoretical analysis that is presented in the published paper. The proof strategy presented in section 3.4.3
is my original work that was not included in the published version.

4Akash Srivastava and I (Kai Xu) share the leading authorship of Srivastava et al. (2019). Akash and
I co-developed the prototype of the method, I experiment and study the method on synthetic data and
Akash contributes all the experiments on large-scale data sets.

vii

Contents

List of Figures xi

List of Tables xvii

1 Introduction 1
1.1 Artificial intelligence, science and machine learning 1

1.2 Thesis outline . 4

2 Background 9
2.1 Generative modelling . 9

2.2 Inference as numerical integration . 16

2.3 Learning as divergence minimisation 25

2.4 Limitations in robustness and efficiency 29

I Inference 31

3 Couplings for Multinomial Hamiltonian Monte Carlo 33
3.1 Introduction . 33

3.2 Background . 35

3.3 Optimal transport couplings for multinomial HMC 41

3.4 Theoretical analysis . 46

3.5 Experiments . 56

3.6 Related Work . 64

4 Variational Russian Roulette for Deep Bayesian Nonparametrics 75
4.1 Introduction . 75

4.2 Background . 77

4.3 Roulette-based amortised variational expectation 79

ix

4.4 Experiments . 86

4.5 Related work . 93

II Learning 105

5 Generative Ratio Matching Networks 107
5.1 Introduction . 107

5.2 Background . 108

5.3 Generative ratio matching . 110

5.4 Experiments . 118

5.5 Related work . 123

6 A Bayesian-Symbolic Approach to Physics Learning in Intuitive Physics 133
6.1 Introduction . 133

6.2 Related work . 135

6.3 Bayesian-symbolic physics . 136

6.4 Experiment: Learning force laws in fully observed environment 141

6.5 Experiment: Learning force laws in partially observed environments . . 145

7 Free and Open-source Software for Generative Modelling 165
7.1 The TURING probabilistic programming ecosystem 165

7.2 ADVANCEDHMC.JL: An efficient and user-friendly HMC implementation 170

8 Conclusion and Future Work 181
8.1 Future work . 182

Bibliography 187

Index 204

x

List of Figures

2.1 Plate diagram for the coin-flipping model 12

2.2 Plate diagram for Bayesian logistic regression 13

3.1 An illustration of different HMC couplings: trajectories of simulated

coupled chains (figure 3.1a) and their joints (figure 3.1b and figure 3.1c

with marginals on top and right sides). Green lines in figure 3.1a

indicate possible pairs from different methods. For coupled Metropolis

HMC, the dashed line pairs the end-points of two trajectories, which

has a relative large distance. The dotted line is for multinomial HMC

with maximal coupling. Though there is a change that the 6-th points

of two trajectories are paired, other index-aligned pairs are equally

likely (figure 3.1b), e.g. the pair of 2-th points has a large distance.

In contrast, all pairs from multinomial HMC with W2-coupling (solid

lines) have relatively small distances, resulting in a small distance on

average. To see this, we calculate the expected distances: they are 1.37

for W2-coupling and 1.97 for maximal coupling, where the former is

clearly smaller, as expected. Note that the marginals in figure 3.1b and

figure 3.1c are close to uniform because the quantisation error is small

in this example. 46

3.2 Controlling excursions outside of sets 56

3.3 Meeting time τ with different ε (x-axis) and L = 10 out of R = 10 runs

with lines for average and shade for 1 standard deviation. Overall,

coupled multinomial HMC attains smaller meeting time and is more

robust to ε. Note that the range of x-axes depends on the actual

parameter sweeps; see main texts for details. 58

3.4 Averaged meeting time τ̄ with different ε and L for 1,000D Gaussian. 61

3.5 Averaged meeting time τ̄ with different ε and L for logistic regression. 62

xi

3.6 Averaged meeting time τ̄ with different ε and L for log-Gaussian Cox

point process. 62

3.7 Meeting efficiency on the mixture of Gaussians target with the total

trajectory length εL increasing. Solid lines are from increasing ε and

dashed ones from increasing L. 63

4.1 Features learned by VAEs (α = 4.0) 87

4.2 Number activations per feature and truncation probability 88

4.3 Posterior feature activation probability in grey-scale for VAEs with

deep decoders on a subset of SYNTH; darker the higher. The plot for

RRS-IBP is padded to the same number of features for comparison. . 90

4.4 Effects of truncation level for S-IBP with a deep decoder. All plots are

computed from the whole test set of MNIST dataset. The vertical line

in red is the corresponding mode of the truncation distribution inferred

by RRS-IBP. 91

4.C.1 Functions and the target summation in the toy example 98

4.C.2 Mean, variance and efficiency for Russian roulette and naive Monte

Carlo estimation. In all plots, rr stands for Russian roulette and naive

stands for naive Monte Carlo. In the first plot, true represents the value

of S that we are estimating. 102

4.F.1 Effects of truncation level for S-IBP with a deep decoder. All plots are

computed from the whole testing set of Fashion-MNIST dataset. The

vertical line at 8.0 in red is the corresponding truncation level learned

by RRS-IBP. 103

5.1 Training results with projected dimension fixed to 2. 115

5.2 Training after 2,000 epochs by varying noise dimension h and the

hidden layer size of critic model. For each model, each row is a

different layer size in [20,100,200] and each column is a different h in

[2,4,8,16]. Half of the GAN training diverges while all GRAM training

converges. 116

5.3 Training results of GRAM-nets with projected dimension fixed to 2 on

the 3D ring dataset. 117

5.4 Data and samples (top and bottom half in each plot) during training

at iteration 100, 250, 500 (top row) and at 750, 1,000, 4,000 (bottom

row). The orders for each row are from left to right. 118

xii

5.5 Trace of L̂γ and D∗ (equation equation 5.3) during training. The left

plot is for iteration 1 to 100 and the right plot is for 100 to 5,000, with

the same y-axes in the log scale. 119

5.6 Computation graphs of GAN, MMD-net, MMD-GAN and GRAM-

net. K is the kernel Gram matrix. Solid arrows represent the flow

of the computation and dashed lines represents min-max relationship

between the losses, i.e. saddle-point optimisation in which minim-

ising one loss maximises the other. Therefore, in the zero-sum game

case (GAN, MMD-GAN) the two objectives (Lγ and Lθ) cannot be

optimised simultaneously (Mescheder et al., 2017b). 119

5.1 Random Samples from a randomly selected epoch (>100). 121

5.2 Nearest training images to samples from a GRAM-net trained on Ci-

far10. In each column, the top image is a sample from the generator,

and the images below it are the nearest neighbors. 122

5.3 Hyper-parameter sensitivity of MMD-GAN, GAN and GRAM-net on

Cifar10 dataset. Sample quality measured by FID. 122

5.B.1 Corresponding plots to figure 5.2 for MMD-nets and MMD-GANs. . 127

5.C.1 Training of MMD-GAN with projected dimension fixed to 2 before

diverging. Data and samples in the original (top) and projected space

(bottom) during training; four plots are at iteration 100, 500 and 1,000

respectively. Notice how the projected space separates p̄ and q̄. . . . 129

6.1 From left to right are rule-based to purely data-driven models of phys-

ics. Examples for each column are (1) Smith et al. (2019), (2) Ullman

et al. (2018), (3) BSP (Ours), (4) (H)OGN Sanchez-Gonzalez et al.

(2019), (5) IN Battaglia et al. (2016) and (6) Breen et al. (2019). . . . 135

6.1 Illustration of how the dimensional analysis and translation invariance

priors help constrain the search space. Each box contains a subset of

valid and illegal (stroked) sub-expressions. 138

6.1 Example scenes from SYNTH. Entities in gray are static. 141

6.2 Comparison of neural baselines and BSP, using predictive error on held

out scenes given varying number of training scenes. Some baselines

are not displayed due to very poor performance; see figure 6.C.1 in

appendix 6.C for the version with all methods displayed. 143

xiii

6.3 Ablation study of priors using predictive error on held out scenes given

varying number of training scenes. Comparison between G11 and G01

shows the effect of the dimensional analysis prior and Comparison

between G01 and G00 shows the effect of the translation invariance prior.145

6.1 Results of the EM algorithm on NBODY. Figure 6.1a to figure 6.1c

shows the posterior of mass for Entity 1 in Scene 1 with the correspond-

ing force function for different EM iteration i. In figure 6.1b, the force

function F† = 239.99 mim j
‖pi−p j‖2

pi−p j
‖pi−p j‖2

. The constant in figure 6.1d is

c = 2.04×103. 146

6.2 Example frames for FALL (left) and SPRING (right) 147

6.3 Learned force expression for FALL (left) and SPRING (right) 147

6.4 Example from ULLMAN . 149

6.A.1 The generation of an observed trajectory: a three-body example with

unknown mass. Circles are the learnable force function, rectangles are

fixed functions, rounded rectangles are random variables and others

are deterministic variables. 153

6.A.2 A grammar of Newtonian physical laws 154

6.B.1 Expression trees (under G) of true force laws that generates the datasets

used in section 6.4. 162

6.B.2 Approximate bounce law, c ‖vi−v j‖2
pi−c
‖pi−c‖2

doesCollide(pi,si,p j,s j),

learned by BSP under our grammar; c = 130.22 163

6.B.3 Predicated trajectories of the true bounce law and the learned bounce

law. 163

6.B.4 Generalization of the approximate bounce law in a vertical world with

downward gravity. 163

6.C.1 Comparison of neural baselines and BSP, using predictive error on held

out scenes given varying number of training scenes. Some baselines

are not displayed due to very poor performance. 164

6.D.1 Results of the EM algorithm on MAT. figure 6.D.1a to figure 6.D.1c

shows the posterior of friction coefficient in Scene 2 with the cor-

responding force function during EM. In figure 6.D.1b, the force

function F† = −22.99 µ jmi
vi
‖vi‖2

isOn(pi,si,p j,s j). The constant in

figure 6.D.1d is c =−8.605. 164

6.D.2 Prediction of the vertical position 164

xiv

7.1 The TURING probabilistic programming ecosystem in Julia. Blue

area covers packages developed and maintained by the Turing team,

forming the TURING ecosystem. Broader region covers other packages

in Julia. Packages with name in bold are actively maintained by me. . 169

7.1 BLR (50 runs). For the density plots, blue is for AHMC and orange is

for STAN and each row is for a different size N, corresponding to the

table on the right. 176

7.2 Gaussian (50 runs); left to right: step size, tree depth, ESS 176

7.3 SDT (100 runs); left to right: step size, tree depth, ESS 177

7.4 HPR (25 runs); left to right: step size, tree depth, ESS (of some variables)177

7.5 LBA (50 runs); left to right: step size, tree depth, ESS (of some variables)178

xv

List of Tables

3.1 Relative inefficiency with different k and m for logistic regression

(top half) and log-Gaussian Cox point processes (bottom half). Bold

indicates the one most close to 1. Note that for each method, k is

different thus inefficiencies across different coupled kernels (across

columns) are not directly comparable. Instead, we aim to study if the

relative inefficiency can be made close to 1 with suitable parameters

(across rows). 61

3.2 Effect of different momentum coupling methods on meeting time for

the Banana target. 63

4.1 IWAE for different VAEs under the IBP prior on various datasets. . . 89

5.1 Sample quality (measured by FID; lower is better) of GRAM-nets

compared to GANs. Numbers after ± are standard deviations. 120

5.2 FID with fully convolutional architecture originally used by Li et al.

(2017). Numbers after ± are standard deviations. 120

5.B.1 Critic architecture for MNIST. All BatchNorm are followed by a ReLU

activation. 128

5.C.1 Performance of MMD-GAN (Inception scores; larger is better) for

MMD-GAN with and without additional penalty terms: feasible set

reduction (FSR) and the autoencoding loss (AE). The full MMD-GAN

method is MMD+FSR+AE. 130

5.D.1 DCGAN generator architecture for Cifar10. 130

5.D.2 DCGAN discriminator architecture for Cifar10. 131

5.D.3 Shallow DCGAN discriminator architecture. 131

5.E.1 Inception Scores for MMD-GAN, GAN, GRAM-net and MMD-nets on

CIFAR10 for three random initializations. 132

xvii

6.1 Test predictive performance (nRMSE) on partially observed SYNTH

scenarios (using 5 random scenes for training and from 5 different

runs). Note BSP consistently beats the constant baseline. 146

6.2 Test predictive performance (nRMSE) for FALL (top) and SPRING

(bottom) . 147

6.3 Accuracy per question category . 149

7.1 Comparison of different HMC/NUTS implementations. TFP.MCMC

refers to TENSORFLOW.PROBABILITY’s MCMC library. DYNAMICHMC

is another high-quality HMC implementation in Julia. Windowed adap-

tion is a method for joint adaption of leapfrog integration step-size and

mass matrix. Windowed adaption was proposed by the Stan team (Car-

penter et al., 2017), and has demonstrated remarkable robustness in a

wide range of Bayesian inference problems. Partial support for GPU

means the log density function can be accelerated by GPU, but the

HMC sampler itself runs on CPU. Slice and Multinomial are two meth-

ods for sampling from dynamic Hamiltonian trajectories, e.g. those

generated by the No-U-Turn algorithm (see e.g. Betancourt (2017) for

details). Tempered leapfrog integrator improves convergence when

the target distribution has multiple modes by performing tempering

within Hamiltonian trajectories (Neal, 2011). Coupled multinomial is

supported through COUPLEDHMC.JL. 179

7.2 Computational efficiency for five models using 1 25 runs, 2 50 runs or 3

100 runs. For AHMC, forward-mode AD is used for computing gradi-

ent. AHMC can be used together with different AD backends/pack-

ages, e.g. FORWARDDIFF.JL’s forward-mode AD, TRACKER.JL’s

reverse-mode AD and ZYGOTE.JL’s source-to-source AD. 180

xviii

Chapter 1

Introduction

1.1 Artificial intelligence, science and machine learn-

ing

Artificial intelligence (AI) is the long-standing mission of building machines that can

behave or think like human beings. More specifically, the goal is to develop computer

programs or algorithms that can solve tasks which were believed to only capable

by humans, such as recognising animals from photos, understanding human speech,

conducting conversations using natural languages with humans, etc. These tasks only

have been successfully or partially solved by recent developments in AI, leading to the

current ambition of developing artificial general intelligence (AGI) agents, which can

understand, learn and perform any intellectual task just like humans do.

Science has also benefited from tools based on techniques from computer science,

statistics and engineering. For example in natural science, statistical models are used by

biologists to analyse genes—predicting traits or understanding diseases; such research

usually requires massive computer simulation due to the large scale of genomics data

(Larranaga et al., 2006). Another example is found in neuroscience where researchers

analyse and interpret large-scale neural recordings using a variety of probabilistic

models (Hurwitz et al., 2021). Similarly, in social science, quantitative approaches have

been used to understand social interactions. Such analysis usually requires non-trivial

computer engineering on large scale data to give reliable results (Peng et al., 2016).

Machine learning (ML) has become one of the most important methodologies for

both AI and science due to the opportunity and challenge of big data that emerges from

1

CHAPTER 1. INTRODUCTION

modern information technologies. The main distinction between ML and traditional

computer sciences is the ability to learn from data. As such, engineering effort of

programming machines what to do has been moved to teaching machines how to learn

and provide them with learning signals, e.g. data. For example, pre-ML methods for

hand-written digits recognition may require manually define heuristics of how each digit

looks like in terms of templates while ML-based methods involves a data set of images

of digits with the corresponding labels as well as a learning algorithm that teaches

the program how to learn from such paired examples. After learning, the program is

capable of predicting labels given images of digits.

Model-based ML is an ML paradigm in which models explicitly encodes the as-

sumptions of the problem domain (Winn et al., 2020). One benefit of model-based ML

is that more tailored solution to specific problem can be implemented through models;

another benefit is that comparison between different hypotheses can be done through

models encoded with different assumptions (Bishop, 2013). One type of model called

generative models in the probabilistic machine learning (probabilistic ML) paradigm

are especially interesting due to their probabilistic nature to deal with noise in data or

uncertainty in models (Murphy, 2012). A wide range of applications have been built

on generative models, including but not limited to data compression (Ho et al., 2020),

missing data imputation (Valera et al., 2018), synthetic data generation (Lin et al., 2020),

representation learning (Kingma and Welling, 2014), robust classification (Li et al.,

2019b), etc.

The probabilistic ML framework that generative modelling takes is important be-

cause representing uncertainty is crucial. First, probability theory is the mathematical

language for representing and manipulating uncertainty (Jaynes, 2003). The Cox axioms

define some desirable properties of a formal way to represent beliefs or uncertainty, and

indicate that degrees of belief, ranging from “impossible” to “absolutely certain”, must

follow the rules of probability theory (Cox, 1963; Jaynes, 2003). An example of how

concise and useful this language is that, in the language of probability theory, the task of

missing data imputation can be described as a conditional distribution of what to impute

given what has been observed. Various problems in machine leaning such as noisy

data, model learning and decision-making rely on careful representations of uncertainty

(Ghahramani, 2015). The uncertainty in learning is rooted in the fact that observed

data could be consistent with many models/hypotheses, which can mean the model

parameter is uncertain, the model structure is uncertain or even the model/hypothesis

2

CHAPTER 1. INTRODUCTION

itself is uncertain. Decision-making is a task that directly relies on uncertainty, which is

grounded by the Dutch book theorem which states that an agent is willing to accept bets

that will lose money unless the agent’s belief is consistent with the rules of probabilities

(De Finetti, 1937). When the decision-making problem is critical, such as disease

diagnosis and policymaking, a careful and grounded treatment of uncertainty is needed,

which cannot be well-handled by other machine learning paradigms.

In a high level, generative models are essentially probability distributions: Differ-

ent models corresponds to different ways to represent probability distributions. The

advances in generative modelling techniques can be generally categorised into three

aspects: new representations, new inference algorithms and new learning algorithms.

There are various representations for distributions. For example, a distribution can be

represented by its probability density function, its generative process, etc. The task

of finding the distribution of unobserved variables conditioned on observed ones is

referred as inference. Finding the optimal model that makes the model distribution,

i.e. the distribution that the model represents, close to the data distribution, i.e. the

underlying distribution that generates the data, is called learning.

For successful application of generative models in practice, the corresponding

inference and learning algorithms need to be robust and efficient. A method that is more

robust to its hyper-parameters or different types of data can be more easily adapted to

various applications. Robustness of the model determines how much human efforts

are needed to make a successful application and is crucial for fully automated systems.

How efficient a method is in regard to the size and dimensionality of data determines

at what scale the method can be applied. Usually a large data set means more training

signals and a lot of data like images, audio and videos live in high dimension, both of

which requires high scalability for generative modelling. On the other hand, a method is

more statistically efficient if it can perform well even a limit amount of data is provided.

In the rest of this chapter I will review necessary background to understand the main

focus and the contributions of this thesis. A set of well-established, popular methods

will be reviewed along with their advantages and limitations. In section 2.4, I will

discuss how their limitations lead to practical concerns in robustness and efficiency.

Finally, in section 1.2, I will sketch a set of solutions to these limitations solved by

methods presented in this thesis as the outline of the thesis.

3

CHAPTER 1. INTRODUCTION

1.2 Thesis outline

The rest of this thesis first reviews some necessary background knowledge (chapter 2)

and then presents four pieces of my original work that tackles the robustness and

efficiency problems in the forementioned limitations in generative modelling.

Chapter 3 introduces coupled multinomial Hamiltonian Monte Carlo (CMHMC), an

algorithm for robust and efficient unbiased Markov chain Monte Carlo (MCMC) estim-

ation. Hamiltonian Monte Carlo (HMC) is a family of Bayesian inference algorithms

that is widely used by practitioners for modelling in various science domains, such as

biology, chemistry, pharmacology, cognitive science, etc., due to its superior statistical

performance in differentiable models and its mature implementation in popular prob-

abilistic programming languages, in which the inference methods are also known as

inference engines. However, as a type of MCMC algorithm, HMC is only guaranteed to

achieve unbiased inference in an asymptomatic manner (i.e. using an infinite amount of

time) and is not easy to parallelise. Solving these two issues can make HMC more useful

to Bayesian inference practitioners by providing robust and faster inference engines. A

recent line of work (Jacob et al., 2019b; Heng and Jacob, 2019) tackles this problem

by establishing unbiased MCMC estimation using couplings for HMC, showing the

possibility of making HMC-based inference unbiased and parallelizable. In spite of this

significant theoretical contribution, the proposed algorithm was found to be inferior to

normal, biased HMC in terms of statistical efficiency, due to an unsatisfying trade-off

between unbiasedness and variance. In my newly developed method CMHMC, I solve

this problem by designing a coupled HMC kernel for multinomial HMC, a type of

HMC variant that is more suitable for coupling, that encourages the chains to meet fast

based on optimal transportation. Compared to the previously established coupled HMC

algorithm in (Heng and Jacob, 2019), we find that CMHMC improves the computation

cost thanks to the formulation of optimal transportation and improves the statistical

efficiency and the robustness thanks to the role of multinomial HMC. Importantly, it

achieves unbiasedness while maintaining statistical efficiency close to commonly-used

HMC methods, indicating its potential to be used as the default inference engine in

probabilistic modelling frameworks. All these improvements pave the way for wider

use of unbiased MCMC estimation and hence more robust and efficient general-purpose

Bayesian inference engines.

Chapter 4 introduces roulette-based amortised variational expectation (RAVE), an

estimator used in flexible and efficient variational inference for (deep) Bayesian non-

4

CHAPTER 1. INTRODUCTION

parametric models with stick-breaking priors. Bayesian nonparametric models are

models in which the number of parameters is dependent on the complexity of data and

could be potentially unbounded. For example, in an infinite latent feature model for

a scene image, one would infer a different number of latent features, such as object

identities and properties, based on the complexity of a given scene; it is not easy to set

an upper bound for the number in practice as the scene could go as complex as it may

need to be. While the nonparametric modelling approach is appealing, inference in such

models is computationally challenging. For BNP models with stick-breaking priors,

previous methods either use computationally expansive sampling-based approaches

such as Gibbs sampling and slice sampling (Griffiths and Ghahramani, 2011; Teh et al.,

2007) by faithfully treating the problem as nonparametric, or introduce an extra as-

sumption on the maximum number of parameters that the model may take, leading to

truncation-based variational inference methods (Chatzis, 2014; Singh et al., 2017). RAV

E combines the benefits of both sampling-based method and variational based method

by using a Russian roulette sampling within variational inference, leading to a new type

of principled inference method that is fast while putting no additional assumption on

the maximum number of parameters. Moreover, it is demonstrated that RAVE can be

used together with amortised inference, a type of variational inference method that uses

neural networks for accelerated computation. In fact, this leads to a type of variational

autoencoders with a potentially infinitely large hidden size but can automatically infer

the size during training. With both the advantages of sampling-based inference method—

faithful nonparametric model complexity—and variational method—scalability due to

the use of neural networks, RAVE paves the way for using truly nonparametric Bayesian

methods in areas such as continual learning, scene understanding, etc.

Chapter 5 introduces generative ratio matching (GRAM), an algorithm that scales

MMD-nets to high-dimensional data without introducing an unstable saddle-point

optimisation. Deep generative models have become popular due to their capability

of generating realistic natural images and are considered as an important approach to

synthetic data generation that aims to solve privacy issue by replacing real data with

statistical similar but private data generated by models. However, the most popular type

of deep generative models, generative adversarial networks (GANs; Goodfellow et al.,

2014), are known to be unstable and hard to train due to the existence of a saddle-point

optimisation problem during training: it usually requires a careful hyper-parameter

tuning (network architecture, learning rates, batch sizes, etc) to balance the capacity

of the two involved components, a generator and a discriminator. Another recently

5

CHAPTER 1. INTRODUCTION

proposed model called MMD-nets (Li et al., 2015; Dziugaite et al., 2015) that replaces

the role of discriminator by a probability discrepancy measure called the maximum

mean discrepancy (MMD) solves the stability issue but the method itself fails to generate

data that is as high-dimensional as GANs can generate. To solve this issue, GRAM is

designed to find a lower-dimensional projection of the data for which the density ratio

of the model and data distribution is preserved such that training in the projected space

via MMD is statistically efficient and still ensures the training is valid (as the ratio being

preserved) in the original space. This formulation avoids introducing any saddle-point

optimisation problem and the GRAM training is found to be stable to different choices of

various hyper-parameters, and deep generators trained by GRAM also show improved

modelling performance on high-dimensional data than existing GANs.

Chapter 6 introduces Bayesian-symbolic physics (BSP), a framework that incorpor-

ates symbolic components to generative modelling for physics learning to improve data

efficiency. Understanding how humans learn physics is an important topic in cognitive

science and an important question to answer in artificial intelligence. While there have

been many methods proposed to learn physics from data, compared to what humans

can do, they either fall short in adaptivity (i.e. the system can only deal with a limited

number of laws that it is programmed to deal with and cannot understand novel physical

phenomena; Smith et al., 2019; Ullman et al., 2018) or fall short in data efficiency

(i.e. they require much more data to learn a physical law that humans would need;

Sanchez-Gonzalez et al., 2019; Battaglia et al., 2016; Breen et al., 2019). BSP aims

to fill the gap by providing a method that is adaptive to various, potentially unseen

physical laws while only requiring limited data for the learning process. In BSP, I

introduce a grammar of Newtonian physics that can be used to describe a wide range of

Newtonian physics, and the overall data is assumed to be generated in a probabilistic

manner by assuming unseen properties as latent variables, i.e. a generative model.

By using physically inspired priors within the grammar, physics learning in BSP is

made to be more data-efficient than alternatives based on neural networks. In order

to learn physical laws, I extend the traditional symbolic regression setup to a bilevel

optimisation problem so that the overall method is more robust to the local minima of

the global constants which appear in common physical laws.

Lastly, chapter 7 describes some of my work and contributions to free and open-

source software for generative modelling. This includes the development of the open-

source ecosystem around TURING.JL in the Julia programming language, especially

6

CHAPTER 1. INTRODUCTION

ADVANCEDHMC.JL (AHMC) an open-source library that implements CMHMC along

with other popular HMC methods in a modular and efficient manner.

The thesis ends with chapter 8 which gives a conclusion of the thesis and sketches

some future directions of works contained in this thesis.

7

Chapter 2

Background

2.1 Generative modelling

I start by introducing generative models and the corresponding learning and inference

tasks. Let the random variable X represent the data, which can be a row in the table, an

image or a structured instance (e.g. a graph). Denote x ∈ RD as a realisation of X and

suppose we are given a data set of N data points D = {xi}N
i=1, where xi ∼ pD—the data

distribution.1 For generative modelling, we are interested in building a generative

model with parameter θ that describes the data set D , i.e. a probability distribution pθ,

the model distribution, that is close to pD , and in using this model to perform certain

tasks that correspond to operations on the probability distribution pθ, e.g. missing data

imputation as inference of unobserved variables.

Representation There are various ways to represent a probability distribution pθ.

• The most straightforward way is to represent the probability density function

(PDF) pθ(x) explicitly, i.e. the probability density for a given data point x has

an explicit form and can be computed in a tractable manner. For example, one

can make an assumption that the data is Gaussian distributed and define pθ(x) =
N (x;µµµ,ΣΣΣ), where θ = {µµµ,ΣΣΣ} (the mean vector and the covariance matrix) is the

model parameter and we explicitly have the PDF defined as

N (x;µµµ,ΣΣΣ) :=
1√

(2π)D|ΣΣΣ|
exp
(
−1

2
(x−µµµ)>ΣΣΣ

−1(x−µµµ)
)
.

1In the scope of this thesis, we assume x is a vector-valued continuous variable and there are no labels
in the data set, meaning the task is unsupervised.

9

CHAPTER 2. BACKGROUND

However, the disadvantage of using explicit density functions is that the model

would perform badly if the assumption of the explicit distribution fails.

• Latent variable models (LVMs) provides a recipe of building more flexible

models given explicit probability density functions. In addition to X , a latent

variable Z and its realisation z ∈ RK are introduced, followed by two distributions:

(i) the prior p(z) and (ii) the likelihood pθ(x | z). One then has

pθ(x) =
∫

pθ(x | z)p(z)dz.

Even in cases where both the prior and likelihood are explicit, pθ can be more

flexible and not equivalent to any distribution with an explicit density function.

Apart from the expressiveness, one can also “bring” meanings to the latent

variable by using a specific prior. For example, by defining p(z) =N (000K, IIIK) and

p(x | z) = N (x;WWWz,σ2IIID), where K < D, K is defined to be a low-dimensional

representation of X ; here 000K is a K-dimensional zero vector, IIIK is a K-by-K

identity matrix and θ = {WWW} is the model parameter. This model is called

probabilistic principal component analysis (PPCA) in the literature (Tipping and

Bishop, 1999). The model is called PPCA because it is a probabilistic extension

of principle component analysis (PCA)—we recover PCA with σ→ ∞.

• Another way to represent distributions beyond those with explicit density func-

tions is to define the generative process instead. Suppose we are interested in

modelling a 1-dimensional real-valued random variable X and we are given

a uniformly distributed random variable U , we can define the generation of a

realisation X of X given a realisation U of U as

X = T (U)

where T : [0,1] 7→ R is the transformation function. Given such a transformation

function, this generative process also defines a probability distribution pθ. This is

in fact called the inverse transform sampling and T corresponds to the inverse

of the cumulative distribution function (CDF) of pθ. Note that for any given T , it

is not necessarily possible to compute the density pθ(X) for a given X .

There are other ways to represent pθ such as defining a diffusion process (Sohl-Dickstein

et al., 2015), defining a set of invertible transformations on a noise variable with the

same dimension as X (Papamakarios et al., 2019), defining an energy function as an

unnormalised probability distribution (Hinton, 2002; Du and Mordatch, 2019), etc. I do

not expand on them due to the focus of this thesis.

10

CHAPTER 2. BACKGROUND

Inference Suppose we are given a model pθ for images and an image instance with a

missing patch, which we denote as x = {x0,x1} where x0 is the missing part and x1 are

the observed part. The inference task, which is essentially missing data imputation, here

is to find x0 given x1 based on our model, or more technically, to characterise pθ(x0 | x1).

Another common inference task arises in latent variable models. In cases where we are

given a data point x and we would like to find the corresponding latent variable z, the

inference task is to characterise the so-called posterior distribution pθ(x | z), which I

will expand in section 2.2.

Learning Suppose a model with unknown parameter θ is defined for a problem.2 A

model pθ with randomly initialised θ will in no way be able to describe the data well

and the process of making pθ close to pD is therefore called learning. To define this

learning procedure, we need to use some probability divergence D that characterise

the similarity between two distributions. For two distributions p and q, a probability

divergence D is a function for which the following two properties hold

• D(p‖q)≥ 0 for all p,q

• D(p‖q) = 0 if and only if p = q

Given a divergence D, we can define the following optimisation problem

θ
∗ = argmin

θ

D(pD‖pθ).

Solving this optimisation problem is then called learning because after it, the model is

able to describe the data, or in other words, the model learns from the data. Various forms

of D correspond to different learning methods, which will be discussed in section 2.3.

I now review four types of generative models that are related to this thesis with

details in the rest of this section.

2.1.1 Probabilistic graphical models

Probabilistic graphical models are probabilistic models in which the dependencies
2As mentioned in section 1.1, model learning can be in forms of learning the parameters, learning the

structure or learning the model hypothesis. Here we mostly focus on the first type of learning while some
of the methods or principles are generically applied. For example, one could encode the model structure
as (discrete) parameters and treat the structure learning as parameter learning. With this being said, it is
usually believed that hypothesis learning is the hardest, followed by structure learning then parameter
learning.

11

CHAPTER 2. BACKGROUND

X i θ

α

β

i = 1, . . . ,N

Figure 2.1: Plate diagram for the coin-flipping model

between random variables are represented by graphs. Such a graph could be an un-

directed graph, a directed acyclic graph, or even a cyclic directed graph. This thesis

mostly focuses on directed graphical models while some techniques can also be applied

to undirected ones. Directed graphical models are usually presented by either their

generative process or in plate diagram notations. I give two examples next.

Coin flipping Suppose you are presented with a coin which you do not know whether

it is fair or unfair. You want to know its fairness based on a few flips. One way to do so

is by defining a coin-flipping model as follows. Define θ as the probability of flipping

the coin gives a face, and {X i}N
i=1 is the data—the history of a few flip results for which

X i = 1 means the i-th flip is a head and X i = 0 for a tail. The generative process of a

coin-flipping models is as follows

θ∼ Beta(α,β)

X i ∼ Ber(θ) for i ∈ 1, . . . ,N

where Beta is the beta distribution, α,β is the parameters of the beta distribution and

Ber is the Bernoulli distribution. Note that as being a generative model, one can easily

generate synthetic data from the model once defined. The plate diagram for this coin-

flipping model is show in figure 2.1. In such plate diagrams, nodes without a circle are

constants or (hyper-)parameters, circular nodes (without shades) are unobserved random

variables, and circular nodes with shades are observed random variables, i.e. data. The

benefit of such illustration is to clearly show the local and global dependencies: Random

variables in the same plate are repeated and are independent and identically distributed

(i.i.d.) given variables outside.

Bayesian logistic regression Logistic regression is a classic machine learning model

for binary classification tasks such as spam email detection. For a data point xxx ∈ RD

(e.g. an email), the model with parameter www∈RD predicts the probability p̂ for xxx having

12

CHAPTER 2. BACKGROUND

yi

xxxi www

σwww

i = 1, . . . ,N

Figure 2.2: Plate diagram for Bayesian logistic regression

a positive label y = 1 (e.g. being a spam email) as

p̂ = σ(www>xxx)

where σ(x) = 1
1+exp(−x) is the sigmoid function. Such a model is not generative but can

be made so by specifying a proper prior and a corresponding likelihood for labels: For

example, a standard Gaussian prior on the parameter www, N (www;000,σwwwIII) (where σwww is a

hyper-parameter), and a Bernoulli likelihood for the label y, Ber(y; p̂). The generative

process for N labels given N data points (i.e. conditioned on x1, . . . ,xN) under this

model is
www∼N (000,σwwwIII)

for i ∈1, . . . ,N

p̂i = σ(www>xxxi)

yi ∼ Ber(p̂i)

This model is called Bayesian logistic regression (BLR) and model uncertainty is

captured in the distribution of www. The plate diagram for this model is show in figure 2.2.

Compared to logistic regression, BLR captures the uncertainty in the model parameter www,

which is a type of model uncertainty, also referred as epistemic uncertainty (Gal, 2016).

Such uncertainty is useful to access when the model is uncertain on its predictions.

2.1.2 Deep generative models

Different representations of generative models, in one way or another, relies on some

flexible parametric functions. One way to construct flexible functions with learnable

parameters are using neural networks (NNs). There are various ways to incorporate

NNs in generative models, loosely corresponding to different generative model repres-

entations as discussed in the beginning of this section. For the interest of this thesis,

I will focus on the basics of two of them in this section, after reviewing the basics of

neural networks.

13

CHAPTER 2. BACKGROUND

Neural networks Neural networks, or more precisely artificial neural networks, are

layer-wise parametric functions inspired by humans’ biological neural networks. The

basic form of NNs are feedforward neural networks (FNNs) or multilayer perceptrons

(MLPs), in which each layer consists a parametric transformation tθ and an activation

function a. The most simple example of tθ is the linear layer: tθ(xxx) =WWW T xxx+bbb where

θ = {WWW ,bbb} is the parameter containing the weights and biases of this layer. There are a

range of choices for a, e.g. a(x) = 1
1+exp(−x) , the sigmoid activation, a(x) = max(0,x),

the rectified linear unit (ReLU) activation. We call the composition of some choice

of tθ and a as a layer, i.e. fθ(xxx) = a(tθ(xxx)). One can compose multiple layers of f to

make the transformation more expressive.3 In fact, it has been shown that under certain

conditions, NNs are capable of modelling any function, which is usually referred as the

universal approximation theorem (Cybenko, 1989; Pinkus, 1999). Therefore, NNs are

used as a flexible parametric function in places where a complex unknown function is

needed (to learn). I refer the reader to a standard text book such as Goodfellow et al.

(2016) for a comprehensive review of the foundation of neural networks.

Variational autoencoders Variational autoencoders (VAEs; Kingma and Welling,

2014; Rezende et al., 2014) are latent variable models that make use of neural networks.

VAEs usually consist of two components, a recognition network (also called the encoder)

and a generative network (also called the decoder). The recognition network plays

a role of inference, which we will explain in section 2.2.2. The generative network

is essentially an explicit likelihood function parametrised by neural networks. For

example, denote the latent variable as z and the observed variable as x, a generative

network for a Bernoulli likelihood can be written as p(x | z) = Ber(fθ(z)) where fθ is a

neural network with the weight parameter θ.

Generative adversarial networks Generative adversarial networks (GANs Good-

fellow et al., 2014) are models inspired from the inverse transform sampling. They

deterministically transform a random variable z ∈ RK , called the noise, to the data

x ∈ RD, where usually K < D.4 Importantly, such transformation is implemented by a

neural network fθ with parameter θ. Suppose we have a uniform noise distribution, the

3When the number of layers is large, NNs becomes deep NNs and the method is called as deep
learning.

4Note that one difference between the noise variable in GANs and the latent variable in VAEs is that
in GANs the noise variable deterministically decides the observation while the latent variable in VAEs
probabilistically decides the observation.

14

CHAPTER 2. BACKGROUND

sampling process of a data point x in GANs is

zi ∼U(0,1) for i ∈ 1, . . . ,K

x = fθ(z)
.

As GANs directly define the sampling process, the generative network is also called

neural samplers. Because there is no direct way to evaluate pθ(xxx) for GANs, such

models are also referred as implicit models and the learning is usually more involved (as

maximum likelihood is not directly applicable), which will be discussed in section 2.3.

There are also works such as Donahue et al. (2016); Dumoulin et al. (2016); Tran

et al. (2017) which bridge VAEs and GANs. I omit the discussion of them as they do

not serve as necessary background for this thesis.

2.1.3 Bayesian nonparametric models

Bayesian nonparametric (BNP) models are Bayesian models in which the number of

parameters grows with the complexity of the data. BNP models have the promise to

automatically infer the complexity of the model based on the complexity of the data,

which is a hard problem known as model selection. The formulation of BNP models

usually involves stochastic processes. For example, mixtures models based on Dirichlet

process (DP) or Chinese restaurant process (CRP) can automatically infer the number

of mixtures that is needed to fit the data. In CRP, the clustering process is analogous to

seating customers (= data points) at tables (= clusters) in a Chinese restaurant (Aldous,

1985). Imagine in a restaurant that has an infinite number of tables each with infinite

capacity, customers come in according to the following procedure

1. Customer 1 comes and sits at table 1

2. Customer 2 comes and either sits at table 1 or a new table (table 2)

3. Customer i comes and either sits at a table already with customers or a new table

• Customers choose sit at an occupied table with a probability proportional to

the number of customers already there.

After seating, each customer has been assigned to a table and the clustering is done.

As it can be seen, such process will give a number of clusters that has not predefined

maximum value. As this process defines how a set of clusters are generated, one can

15

CHAPTER 2. BACKGROUND

associate each cluster with observations through a likelihood function. For instance, a

Gaussian likelihood would mean that data points belong to the same cluster are deviated

from the cluster mean with Gaussian additive noises. Thus, the CRP prior with a

likelihood associated describes how data is generated, forming a representation of the

generative model.

The inference problem arises in such models will naturally determine the number of

clusters instead. While BNP models are defined to have such appealing properties, the

learning and inference for them can be hard in general.

2.2 Inference as numerical integration

I review the basics of inference in generative models in this section. To contextualise the

discussion, I mainly focus on Bayesian inference in a latent variable model Z→ X with

prior p(z) and likelihood p(x | z) while the methodology could apply in other cases;

note that I omit the model parameter θ in this section as it is assumed to be fixed during

inference. According to the Bayes’ rule

P(B | A) = P(A | B)P(B)
P(A)

,

we call the conditional distribution of Z given X the posterior

p(z | x) = p(x | z)p(z)
p(x)

(2.1)

where p(x) is called the marginal likelihood of x or model evidence. The goal

of (Bayesian/posterior) inference is to characterise the posterior p(z | x), which for

example in PPCA describes, for a given data point, how its low-dimensional rep-

resentation look like (Tipping and Bishop, 1999). Importantly, we usually assume

p(x) =
∫

p(x | z)p(z)dz is hard to compute or intractable because it involves integration

(or summation if Z is discrete).

Usually, obtaining the posterior is not the end of the task and we need to use the

posterior for prediction. Suppose we are given a function h that takes the latent variable

z as inputs and makes predictions5, the so-called Bayesian predictive is the weighted

average of h under the posterior

H =
∫

h(z)p(z | x)dz = Ez∼p(z | x)[h(z)]. (2.2)

5As in LVMs we assume z is either some meaningful, intrinsic latent variables (e.g. coin flip
parameters) or some compact low-dimensional representation of x (e.g. as in PPCA), making predictions
using z can be more effective and robust than using x directly.

16

CHAPTER 2. BACKGROUND

One way to estimate H is by Monte Carlo methods if one has a way to (approximately)

sample from p. Suppose we have {zi}N
i=1 where zi ∼ p(z | x), we can estimate H as

Ĥ =
1
N

N

∑
i=1

h(zi)≈ H. (2.3)

It is common to use algorithms to obtain such samples or approximate the posterior by

a distribution that is easy to sample from, corresponding to the two algorithms, Markov

chain Monte Carlo and variational inference, which I will review in this section.

In addition, instead of first characterising the posterior and then solving the integral,

one may also frame the inference problem as approximating this integral in equation 2.2

directly. I will review how to obtain unbiased estimates of H in the end of this section.

2.2.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a sampling method to draw (approximate)

samples from a target distribution π(x) = p∗(x)/Z (just like the form of p(z | x) in

equation 2.1), where Z =
∫

p∗(x)dx, knowing only the unnormalised density function

p∗. It is a good candidate for Bayesian inference as it avoids the computation of Z,

which is usually intractable.

Suppose p is defined on a sampling space X , MCMC works by defining a Markov

kernel K : X 7→ X that characterises the transition from x to x′, denoted as K (x′ | x).
With an initial distribution p(0)(x), one can simulate a Markov chain by first sampling

from p(0), and then iteratively applying the kernel K to the current state, leading to the

following intermediate distributions at iteration t (t ≥ 1)

p(t)(x) =
∫

K (x′ | x)p(t−1)(x)dx.

A MCMC method is valid if this Markov chain has following properties

1. The target distribution π is an invariant distribution of the Markov chain

π(x′) =
∫

K (x′ | x)π(x)dx.

2. The chain must be ergodic:

p(t)(x)→ π(x) as t→ ∞, for any p(0)(x).

17

CHAPTER 2. BACKGROUND

If such two properties holds, after an infinitely-long MCMC simulation, the samples in

the end can be used to construct the Monte Carlo estimate in equation 2.3 as they are

from limt→∞ p(t)(x) = π(x), i.e. the target distribution.6 A sufficient but not necessary

condition of the first property is detailed balance, which says

π(x)K (x′ | x) = π(x′)K (x | x′).

For the second property, it is usually enough to show that the initial distribution together

with the kernel does not contain some isolated subsets nor have any periodic set

(MacKay, 2003). The most popular MCMC methods are the Metropolis–Hastings (MH)

algorithm and the Hamiltonian Monte Carlo (HMC) method.

It is important to notice that for a valid MCMC kernel, only running the chain

infinitely long ensures the chain samples from the target in general. However, for any

target π and a finite chain, it is unclear if the samples are from the stationary π. Thus,

the estimate in equation 2.3 by MCMC samples is usually biased although the bias can

be incrementally reduced by simulating a longer chain.

2.2.2 Variational inference

Instead of obtaining samples from the target posterior directly, variational inference
(VI) learns a tractable distribution (tractable in the sensible of being easy to sample

from) that approximates the target, and one can approximate H using samples from this

approximate distribution. This distribution is usually called the variational distribution

and the form of this distribution is usually referred as the variational approximation.

Consider a posterior p(z | x) that we want to characterise, we define the variational

posterior qφ(z) to be a parametrised distribution with parameter φ. We can measure

how well qφ(z) approximates p(z | x) by some probability discrepancy. The most

popular choice is the Kullback–Leibler (KL) divergence due to its tractability. The KL

divergence for two distributions p and q is defined as

DKL(p‖q) =
∫

p(x) log
p(x)
q(x)

dx.

6As an infinite simulation is not possible, practically a long-enough chain, whose length is based on
some forms of convergence diagnosis, is run, and the samples during the burn-in period (the period that
the samples are far from π) are discarded. This would typically give estimates that have small enough
bias. With this being said, as there is no guarantee the samples are actually from π, there is no guarantee
on the bias of the estimate. We will focus on this problem in chapter 3.

18

CHAPTER 2. BACKGROUND

One way to make qφ(z) approximates p(z | x) is by finding the parameter φ that minimise

the KL divergence between them, equivalently the optimisation problem below

φ
∗ = argmin

φ

DKL
[
qφ(z)‖p(z | x)

]
= argmin

φ

∫
qφ(z) log

qφ(z)
p(z | x)

dz

= argmin
φ

∫
qφ(z) log

qφ(z)p(x)
p(x | z)p(z)

dz (Bayes’ rule)

= argmin
φ

{
DKL

[
qφ(z)‖p(z)

]
−Eqφ(z) [log p(x | z)]+ log p(x)

}
= argmax

φ

{
−DKL

[
qφ(z)‖p(z)

]
+Eqφ(z) [log p(x | z)]︸ ︷︷ ︸

ELBO

}
(omit constant and flip sign)

.

(2.4)

As the KL divergence is non-negative, according to the second to last line in equation 2.4

we also have DKL
[
qφ(Z)‖p(Z)

]
−Eqφ(z) [log p(X | Z)]+ log p(X)≥ 0, which gives

log p(X)≥−DKL
[
qφ(Z)‖p(Z)

]
+Eqφ(z) [log p(X | Z)]︸ ︷︷ ︸

ELBO

(2.5)

As being a lower bound to the log-evidence log p(x), the term on the right-hand side

of equation 2.5 is referred the evidence lower bound (ELBO). Note that it is also

the optimisation objective as in equation 2.4. The most common choice of qφ is the

Gaussian distribution, i.e.

qφ(z) = N (µµµ,ΣΣΣ)

where φ = {µµµ,ΣΣΣ} consists the mean vector and the covariance matrix for z.

Research on VI has been focus on how to allow more flexible representation of qφ

(Rezende and Mohamed, 2015; Mescheder et al., 2017a), how to make qφ take account

of posterior structures (Hoffman and Blei, 2015; Webb et al., 2017), how to make VI

faster for Bayesian neural networks (Wu et al., 2018), etc. One exciting innovation

in VI is to use neural networks in variational approximation. In such formation, the

parameter of the variational distribution is computed by a neural network that takes the

observation as inputs. In fact, this corresponds to the recognition network or the encoder

in VAEs. For example, denote the recognition network as fφ(x) = [µµµφ(x),σσσφ(x)] (φ is

the neural network parameter and [·, ·] is for concatenation), and use Gaussian as the

variational approximation, the variational distribution is then

qφ(z) = N (µµµφ(x),σσσφ(x)2III).

19

CHAPTER 2. BACKGROUND

The main advantage of such formulation is that the recognition network after training

can be used to obtain variational parameters for new inputs without any optimisation

such as equation 2.4. Therefore, the method is also called amortised inference, as

the computation is mostly done during training and obtaining the parameter of the

variational distribution at test time is almost free (Gershman and Goodman, 2014).

2.2.3 On Monte Carlo estimation of infinite summations

A range of inference problems consist or can be converted to computing infinite sum-

mations. This includes approaching asymptomatic property (i.e. properties that hold in

infinite limits) of certain methods (e.g. MCMC in chapter 3) by converting infinite limits

to infinite sums (section 2.2.3.4) or Bayesian nonparametric modelling (e.g. models

with IBP priors in chapter 4). In this section I review some techniques for estimating

infinite summations, and discuss what types of theoretical properties are required for

successfully applying them in the end.

From now on, I will focus on reviewing how to compute the infinite summation S

defined in the form below

S =
∞

∑
k=0

Tk,

where the summation S is assumed to be finite, i.e. S < ∞. As long as Tk 6= 0 for all

k = 1, . . . ,∞, there is no way to exactly compute S as it requires infinite computation.

A naive work-around is to truncate this summation up-to some level K, leading to an

estimate ŜK = ∑
K
k=0 Tk. The concern of using ŜK is that this estimate is biased with any

choice of K, i.e. ŜK 6= S. The way I will focus on to tackle this bias issue is by Monte

Carlo methods to get some estimate Ŝ with the unbiasedness property E[Ŝ] = S, where

the expectation is taken over the randomness of the Monte Carlo method.

2.2.3.1 Crude Monte Carlo

Consider a random variable X . If Tk can be decomposed as a multiplication of a

probability mass term pk := P(X = k) and another term T ′k , i.e. Tk = pkT ′k , then S can be

written as an expectation E[T ′k] and estimated by crude Monte Carlo (a.k.a. mean-value

Monte Carlo) using the following unbiased estimate

ŜMC = T ′k (2.6)

with probability P(X = k) = pk.

20

CHAPTER 2. BACKGROUND

2.2.3.2 Importance sampling

When the decomposition Tk = pkT ′k is not directly available, one can still apply im-
portance sampling to convert S into an expectation by introducing an importance

distribution

SIS =
∞

∑
k=0

qk

(
Tk

qk

)
= E[

Tk

qk
] (2.7)

where qk is the probability of X = k under the importance distribution. We can then

estimate SIS by Monte Carlo by the following estimate

ŜIS = Tk/qk (2.8)

with probability P(X = k) = qk. This way of applying importance sampling is also

referred as single term weighted truncation (Lyne et al., 2015). The variance of this

estimator depends on the choice of importance distribution, which I will expand in

section 2.2.3.6.

2.2.3.3 Russian roulette sampling

Russian roulette sampling (Lux and Koblinger, 1991; Carter and Cashwell, 1975;

Lyne et al., 2015; Georgoulas et al., 2017) is a Monte Carlo technique for estimating

large summations, including infinite ones. In Russian roulette sampling, S is estimated

by randomly truncating the summation with τ (a random variable) terms. As a simple

example, consider a two-term summation S = T1 +T2. We can estimate S using

ŜRR =

T1 with probability π

T1 +
1

1−π
T2 with probability 1−π

.

It is easy to see that E[ŜRR] = S, meaning the estimate is unbiased. Applying this trick

recursively yields the general Russian roulette estimate.

Let pτ be the distribution of the truncation level τ; the support of pτ is a subset of N.

We define the Russian roulette estimator ŜRR as the truncated summation

ŜRR =
τ′

∑
k=0

Tk

P(τ≥ k)
, (2.9)

where τ′ ∼ pτ. Note that as τ′ is a random variable, ŜRR is also a random variable.

P(τ ≥ k) is the probability that τ is greater than or equal to k, and dividing by this

quantity has the effect of correcting for the fact that later terms are less likely to be

21

CHAPTER 2. BACKGROUND

included in the estimate. It can be shown that this estimate is unbiased for S, e.g. see

the appendix of Lyne et al. (2015) for a proof.

A general way to parameterise pτ is by defining P(τ = k) = (1− ρk+1)∏
k
s=0 ρs

and P(τ = 0) = ρ0. This is in fact a Bernoulli process, a stochastic process of tossing

coins until getting a tail. In this process, we only make the k-th toss if the previous

one turns out to be a head. The probability of the k-th coin being a head is denoted as

ρk. Note that we also have the probability of starting tossing process being ρ0. In this

parameterisation, the probability vector ρρρ := [ρ0,ρ1,ρ2, . . .] is parameters of pτ and the

corresponding Russian roulette estimator can be written as

Ŝρρρ =
τ′

∑
k=0

Tk

∏
k−1
s=0 ρs

, (2.10)

where τ′ ∼ pτ and ∏
k−1
s=0 ρs is the probability that τ≥ k (∏−1

s=0 ρs is defined as 1).

Note that the actual distribution of pτ decides the expected computation and the

variance of the estimator, the latter of which can potentially be infinite. I leave the

related discussion to section 2.2.3.6.

2.2.3.4 The telescoping sum trick for infinite limits

One reason that unbiased estimation of infinite sums can be interesting is that, under

certain conditions, any infinite limits can be converted to an infinite sum and thus

be unbiased estimated. Consider the limit L = limt→∞ St , one can rewrite it as an

summation of infinite terms of “differences” as below

L = lim
t→∞

St = S0 +(S1−S0)+(S2−S1)+ . . .

= S0 +
∞

∑
t=1

(St−St−1)

=
∞

∑
t=0

δt

(2.11)

where the “differences” are defined as

δt =

S0 if t = 0

St−St−1 if t > 0
.

Once the infinite limit is written in the form of infinite sums, generic methods to estimate

infinite sums, which are discussed earlier, can be used to estimate the limit, potentially

in an unbiased manner. However, when each St is the distribution q(t) induced by a

22

CHAPTER 2. BACKGROUND

Markov chain and an initial distribution as discussed in section 2.2.1, there is a special,

low-variance way based on coupling to estimate such a limit with finite computation,

which is reviewed next.

2.2.3.5 Unbiased MCMC via couplings

Coupling In probability theory, coupling is a concept defined for two distributions, µ

defined on X and ν defined on Y , and another distribution γ defined on X ×Y . All the

couplings of µ and ν, Γ(µ,ν), forms a set of distributions defined on X ×Y for which

their marginals are same as µ and ν, i.e.∫
γ(x,y)dy = µ and

∫
γ(x,y)dx = ν ∀γ ∈ Γ(µ,ν).

We call any γ ∈ Γ(µ,ν) a coupling of µ and ν. For a graduate-level introduction to

couplings in the context of Monte Carlo methods, see the online course Couplings and

Monte Carlo by Pierre Jacob at https://sites.google.com/site/pierrejacob/

cmclectures.

Coupled MCMC Similarly, couplings can be defined for a pair of MCMC kernels.

For two MCMC kernels K1 : X 7→ X and K2 : Y 7→ Y , the couplings for them is a set

of functions of X ×Y 7→ X ×Y for which the marginal kernels are same as K1 and K2.

Recall that when estimating H =
∫

h(x)π(x)dx via Monte Carlo using MCMC

samples, the estimate is usually biased because MCMC samples are only approximate—

there is no guarantee that they are actually from the target distribution (stationary

distribution) in finite time. Rhee and Glynn (2012) develops an unbiased estimate based

on the telescoping sum trick reviewed in the previous section, and Jacob et al. (2019b)

further improves the estimate based on coupled MCMC methods. This will make use

of the property of valid MCMC chain X for which limt→∞ p(t)(x) = π(x) holds. First,

because of this limit, define Ht :=
∫

h(x)p(t)(x)dx := E[h(Xt)] we have

H = lim
t→∞

Ht = lim
t→∞

E[h(Xt)].

We can then apply the telescoping sum trick to re-write it as an infinite sum

lim
t→∞

E[h(Xt)] = E[h(X0)]+(E[h(X1)]−E[h(X0)])+(E[h(X2)]−E[h(X1)])+ . . .

= E[h(X0)]+∑
∞

t=1(E[h(Xt)]−E[h(Xt−1)])
(2.12)

23

https://sites.google.com/site/pierrejacob/cmclectures
https://sites.google.com/site/pierrejacob/cmclectures

CHAPTER 2. BACKGROUND

To estimate such infinite sums with finite computation and low variance (compared to

the generic methods reviewed earlier), Jacob et al. (2019b) introduce another MCMC

chain Y that coupled with X . This coupled chain Y has the following two properties

1. Y has the same marginal distribution as X

2. The chain (Yt−1) meets with (Xt) and stays together after some iteration τ

Given such a chain Y , the unbiased estimate via coupled MCMC is derived as follows

lim
t→∞

E[h(Xt)]

=E[h(X0)]+∑
∞

t=1(E[h(Xt)]−E[h(Xt−1)]) (equation 2.12)

=E[h(X0)]+∑
∞

t=1(E[h(Xt)]−E[h(Yt−1)]) (property 1)

=E[h(X0)]+E[∑
∞

t=1(h(Xt)−h(Yt−1))] (exchange expectation and summation)

=E[h(X0)]+E[∑
τ−1
t=1 (h(Xt)−h(Yt−1))] (property 2)

.

As so, the research on this estimate has focused on developing coupled MCMC methods

for which the coupled chains meet fast, which affects the meeting time τ and thus the

expected computation time.

2.2.3.6 Properties and requirements of mentioned infinite sum estimators

A set of requirements have to be satisfied in order to use the generic estimators,

ŜMC, ŜIS, ŜRR, reviewed in this section.

1. The infinite summation itself should be finite valued, i.e. S < ∞. This is usually

obvious in the problem itself or easy to check based on the form of the infinite

sum. In general, this would require the sequence (Tk) decays in certain rates.

2. The expected computation cost should be finite. Suppose the evaluation of any

term has a constant, finite cost C, this is easily true for ŜMC and ŜIS, which are

both single-sample estimators, i.e. only need to evaluate a single term. For ŜRR,

the expected cost ∑
∞
k=0CkP(τ = k) =C ∑

∞
k=0 kP(τ = k) =CEpτ

[k] is required to

be finite. As C is finite, this basically requires the truncation distribution pτ to

have an finite expectation. This usually means the probability mass decays in

certain rates when k increases.

3. The estimator itself should have finite variance.

24

CHAPTER 2. BACKGROUND

• For ŜMC, it means ∑
∞
k=0 pkT ′k

2 < ∞.

• For ŜIS, it means ∑
∞
k=0 qk(

Tk
qk
)2 = ∑

∞
k=0

T 2
k

qk
< ∞.

• For ŜRR, it means

∞

∑
k=0

P(τ = k)(
τ′

∑
k=0

Tk

P(τ≥ k)
)2 =

∞

∑
k=0

[
(1−ρk+1)

k

∏
s=0

ρk

]
(

τ′

∑
k=0

Tk

∏
k−1
s=0 ρs

)2 < ∞

One important thing to notice here is that this variance, unlike the expected cost,

also depends on Tk. Specific analysis is problem-dependent however usually it

would mean the probability mass decays in a rate that is faster than the decay of

the sequence (T 2
k).

For the unbiased MCMC estimation via couplings, the conditions are slightly more

involved, which we will discuss in chapter 3.

2.3 Learning as divergence minimisation

I now review a few ways to learn generative models from data. In the rest of this section,

we assume that we are equipped by a generative model pθ with parameter θ. We are

given a N-sized set of D-dimensional continuous data points D = {xi}N
i=1 i.i.d. from

the data distribution pD , i.e. xi ∼ pD . The goal of learning is to make pθ similar to pD .

2.3.1 Kullback–Leibler divergence and maximum likelihood

Maximum likelihood is a general principle in statistics to learn probability distributions

(James et al., 2013). For given pθ and D , the log-likelihood is defined as

LML(θ,D) = log ∏
x∈D

pθ(x) = ∑
x∈D

log pθ(x)

and the maximum likelihood estimate (MLE) θ∗ML is then defined as

θ
∗
ML = argmax

θ

LML(θ,D). (2.13)

The basic requirement of applying maximum likelihood is that the probability density

function of the model is tractable. For example, if the model is defined as a Gaussian

distribution with unknown mean and variance. However, directly solving equation 2.13

is not possible for latent variable models Z → X in general due to the intractable

25

CHAPTER 2. BACKGROUND

marginal likelihood which defined as an integral pθ(x) =
∫

p(z)pθ(x | z)dz. Fortunately,

as reviewed for variational inference in section 2.2.2, such marginal likelihood has a

tractable lower-bound

log pθ(x)≥−DKL
[
qφ(Z)‖p(Z)

]
+Eqφ(z) [log pθ(X | Z)] =: LVI(θ,D) (2.14)

where qφ(z) is the variational distribution that is introduced to approximate the true

posterior pθ(z | x). Therefore, for LVMs, instead of maximising the log-likelihood

directly, one can maximise a lower-bound of it—the ELBO

θ
∗
VI = argmax

θ

LVI(θ,D). (2.15)

When both pθ and qφ are implemented as neural networks, the two networks forms the

variational auto-encoder, and equation 2.15 is the standard training objective of VAEs,

for which φ is also optimised using the same objective. It can be shown that when the

bound in equation 2.14 is tight, the training is consistent with maximum likelihood

estimation, i.e. θ∗VI = θ∗ML.

Another important fact for MLE is that solving equation 2.13 is equivalent to

minimising the KL divergence between pD and pθ:

argmin
θ

DKL[pD‖pθ] = argmin
θ

∫
pD(x) log

pD(x)
pθ(x)

= argmin
θ

EpD [log pD(x)]−EpD [log pθ(x)]

= argmax
θ

EpD [log pθ(x)]

. (2.16)

When EpD [log pθ(x)] is estimated by Monte Carlo using the data set D, we recover

equation 2.13. This creates link between model learning and divergence minimisation,

and one would expect different learning algorithms emerge by difference choices of

divergences, which I will continue reviewing.

2.3.2 Jensen–Shannon divergence and adversarial learning

As mentioned in the previous section, maximum likelihood can only be applied to

models for which the likelihood (or a lower bound of it) is tractable, which is not the

case for neural samplers as reviewed in the beginning of section 2.1. Goodfellow et al.

(2014) proposed a learning method called adversarial learning that can be used to

learn neural samplers (also called implicit models), leading to a class of models called

26

CHAPTER 2. BACKGROUND

generative adversarial networks (GANs). Denote Gθ : Z 7→ X as generator representing

the generative process of pθ and pnoise on Z as the noise distribution, adversarial

learning introduces an auxiliary network Dφ : X 7→ [0,1] called the discriminator, which

is a binary classifier implemented by a neural network. The discriminator is trained to

predict whether a sample is from pθ or pD , and can be used to provide learning signal to

pθ. The original adversarial learning (Goodfellow et al., 2014) iterates gradient-based

parameter update for the following two optimisation steps

Step 1 argmax
φ

Ex∼pD [logDφ(x)]+Ez∼pnoise[log
(
1−Dφ(Gθ(z))

)
] (2.17)

Step 2 argmin
θ

Ez∼pnoise[log
(
1−Dφ(Gθ(z))

)
] (2.18)

It can be shown that such learning corresponds to minimising the Jensen–Shannon

divergence between pθ and pD (Goodfellow et al., 2014; Nowozin et al., 2016)

θ
∗
adv = argmin

θ

DJS[pD‖pθ]

where

DJS[pD‖pθ] :=
1
2

DKL[pD‖
pD + pθ

2
]+

1
2

DKL[pθ‖
pD + pθ

2
].

Note that adversarial learning (Goodfellow et al., 2014) is closely related to prior works

on density ratio estimation (Gutmann and Hyvärinen, 2010) due to the role of Dφ as

effectively being a density ratio estimator..

While adversarial learning enables the training of neural samplers or implicit models,

it has been found that the learning is sensitive to hyper-parameters (learning rate,

network sizes, etc) due to the saddle-point optimisation problem rooted in the min-max

formulation (equation 2.17 and equation 2.18).

2.3.3 Maximum mean discrepancy

One way to train neural samplers stably is using a discrepancy that does not reply on

an auxiliary network as in adversarial learning. An example of this approach is by

using the maximum mean discrepancy (MMD; Gretton et al., 2012) which measures

the discrepancy between two distributions as the maximum difference between the

expectations of a class of functions F in which f : X 7→ R:

MMDF (µ,ν) = sup
f∈F

(
Eµ[f (x)]−Eν[f (x)]

)
. (2.19)

27

CHAPTER 2. BACKGROUND

Here Eµ[f (x)] and Eν[f (x)] are usually referred as mean embeddings and equation 2.19

effectively computes the maximum difference for the mean embedding, which leads to

the name maximum mean discrepancy.

If F is chosen to be a rich enough class, then MMD is a valid probability discrepancy,

i.e., MMD(µ,ν) = 0 implies that µ = ν. Gretton et al. (2012) show that it is sufficient

to choose F to be a unit ball in an reproducing kernel Hilbert space (RKHS) R with

a characteristic kernel k. Given samples x1, . . . ,xN ∼ µ and yi, . . . ,yM ∼ ν, we can

estimate MMDR as

ˆMMD2
R (µ,ν) =

1
N2

N

∑
i=1

N

∑
i′=1

k(xi,xi′)−
2

NM

N

∑
i=1

M

∑
j=1

k(xi,y j)+
1

M2

M

∑
j=1

M

∑
j′=1

k(y j,y j′).

(2.20)

MMD networks (MMD-nets; Li et al., 2015; Dziugaite et al., 2015) are neural samplers

for which the learning is done by minimising the empirical estimate of MMD in

equation 2.20. MMD-nets are found stable to train but, on their own, not much empirical

success on high-dimensional image data, which GANs are capable of modelling.

2.3.4 Wasserstein distance and optimal transportation

Lastly, another way to measure the discrepancy between two probability distributions

is through the theory of optimal transportation (OT). Although in this thesis OT is not

used to learn generative models, it is used for other purposes (e.g. improving couplings)

in chapter 3. For this reason, I review OT in this section.

Intuitively, suppose we have two distributions µ and ν defined on the same space X .

They both describe the allocation a unit amount of earth is distributed on X . Let’s also

define d(xxx,xxx′) as the cost of moving earth between location xxx and xxx′. The Wasserstein

distance is defined to be the minimal cost of turning the allocation defined by µ to that

defined by ν. Because of this earth moving analogy, this distance is also called earth

mover’s distance (EMD). More formally, the Wasserstein-p distance (Wp) is defined as

Wp(µ,ν) =
(

inf
γ∈Γ(µ,ν)

∫ ∫
γ(x,x′)d(x,x′)pdxdx′

)1/p

,

where Γ(µ,ν) is all couplings between µ and ν. One could imagine using this optimisa-

tion problem to find the coupling that makes two marginal distribution close in some

choice of d, which is how OT is used in chapter 3.

The Wasserstein distance is a proper probability discrepancy thus can also be used

to train neural samplers, e.g. in Arjovsky et al. (2017b). In fact, both the Wasserstein

28

CHAPTER 2. BACKGROUND

distance and the MMD are instances of a family of probability discrepancies called the

integral probability metrics (IPMs) while divergences like Kullback–Leibler divergence

and Jensen-Shannon divergence belong to the family of f -divergence (Sriperumbudur

et al., 2009). Both families have different theoretical and practical properties; see

Sriperumbudur et al. (2009) for details.

2.4 Limitations in robustness and efficiency

However, forementioned algorithms for generative modelling have many limitations

and fall shorts in terms of robustness and efficiency.

Unbiased MCMC estimation are sensitive to hyper-parameters and statistically

inefficient (robustness and statistically efficiency). In order to achieve fast meeting

(which corresponds to small computation cost), coupled HMC methods have been

developed. However, it has been found that the computation time of this estimate is

very sensitive to the two important parameters of the coupled HMC kernel. Moreover,

the estimates based on coupled HMC are statistically less efficient than those based on

normal HMC, making the use of unbiased estimation less appealing.

Inference for BNP models are either restricted to truncation or unable to scale to

large data sets (computational efficiency). Traditionally inference for BNP models are

either based on truncated VI or sampling-based methods. For truncated VI, a maximum

model complexity need to be set, which is not desirable because BNP models are aimed

to automatically find the model complexity. For sampling-based methods such as Gibbs

sampling and slice sampling, the inference is usually slow compared to VI and cannot

benefit from modern hardware acceleration.

GANs are unstable to train and MMD-nets fail to model high-dimensional data

(robustness and statistically efficiency). The convergence of adversarial training is

sensitive to hyper-parameters like network architecture or learning rates due to the

existence of saddle-point optimisation. The efficiency of using MMD as the training

objective is limited to the nature of kernel methods, which is known to be less effective

for high-dimensional data unless there are flexible enough kernels. How to train neural

samplers that are both robust and effective in high dimension remains a challenge.

Symbolic generative models provides the advantage of incorporating symbolic

priors for data efficiency but they can be sensitive to local optima for learnable constants

(robustness and data efficiency). Unlike neural methods or statistical methods, symbolic

29

CHAPTER 2. BACKGROUND

methods such as symbolic regression need special care of incorporating numerical

values, which is refereed as constant learning, when the symbolic form is learned. In

the context of generative modelling, applying standard learning framework to learn

such constant as latent variables can make the learning sensitive to local optima, and it

requires some other formulation to alleviate this drawback.

30

Part I

Inference

31

Chapter 3

Couplings for Multinomial
Hamiltonian Monte Carlo

3.1 Introduction

Markov chain Monte Carlo (MCMC) is a standard tool to draw samples from target

distributions known up to a normalising constant (Metropolis et al., 1953; Geman and

Geman, 1984). Such samples are commonly used to estimate an integral of interest.

Specifically, for a probability distribution π on Rd and a measurable function of interest

h : Rd 7→ R, we want to estimate

H =
∫

π(x)h(x)dx = Ex∼π[h(x)]. (3.1)

Approximating this integral H in equation 3.1 is at the core of many statistics and

machine learning problems. For example in Bayesian inference, Monte Carlo samples

are used to estimate some posterior predictive distribution, or perform model comparison

(Gelman et al., 2013). Or in energy-based modelling, MCMC samples are to estimate

gradients used to update model parameters (Teh et al., 2003; Xie et al., 2016; Qiu et al.,

2019). A particular popular MCMC algorithm is Hamiltonian Monte Carlo (HMC),

which is widely applicable to differentiable π and has been shown to scale well to

high-dimensional problems due to the use of underlying geometric information (Neal,

2011).

Under the framework of MCMC, a Markov chain is simulated to obtain correlated

samples from π, and then Monte Carlo integration is used to estimate H using these

samples. However, such estimators are unbiased only when the underlying Markov chain

33

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

has converged to the equilibrium, which is challenging to verify in practice. Therefore,

convergence analysis of the chain is performed to ensure the bias is sufficiently small.

MCMC with couplings has attracted research attention recently thanks to its ability

to debias Monte Carlo estimators (Jacob et al., 2019b). In particular, Heng and Jacob

(2019) focused on the Metropolis-Hastings (MH) adjusted HMC variant, which proposes

the end-point of a simulated Hamiltonian trajectory as the new state, followed by an

MH correction step. We refer to this HMC variant as coupled Metropolis HMC. Heng

and Jacob (2019) noticed that coupled Metropolis HMC is sensitive to the choice of

HMC parameters such as integrator step sizes and Hamiltonian trajectory lengths. More

specifically, parameters (e.g. trajectory lengths) optimal for sampling efficiency (e.g.

effective sample size) can require numerous HMC iterations to achieve meeting; on the

other hand, optimal parameters for coupling can lead to poor mixing (Heng and Jacob,

2019).

Building upon the recent work of Heng and Jacob (2019), we propose two novel

couplings based on a different, more robust implementation of HMC—multinomial

HMC. Unlike Metropolis HMC that only considers the end-point of a simulated traject-

ory with a risk of getting rejection, multinomial HMC samples from the entire simulated

trajectory and is thus more robust. We refer to our methods as coupled multinomial

HMC and demonstrate several advantages of these methods. First, coupled multinomial

HMC meets faster in general. Intuitively, like all MH algorithms, the previous coupled

HMC method can only propose a point from the initial or the last integration step, which

leads to two drawbacks for couplings: (i) it may well be that intermediate points are the

closest between two chains and (ii) rejection rates of proposals are quite sensitive to step

sizes of Hamiltonian dynamics solvers. Multinomial coupling allows coupled chains to

accept intermediate points that are potentially closer together, so they meet quicker. We

therefore design couplings to minimise the expected distance between coupled chains

within each transition to encourage faster meeting. Second, coupled multinomial HMC

is less sensitive to Hamiltonian integration step sizes. For Metropolis HMC, a small

enough step size has to be used to ensure a large enough acceptance probability in

the MH adjustment step. However, for multinomial HMC, intermediate points can be

proposed even though the end-points would have been rejected in Metropolis HMC.

We argue that this robustness is crucial for practical use of coupled HMC algorithms.

Thirdly, we prove that the meeting time of coupled multinomial HMC decays geomet-

rically, which is a sufficient condition to use the unbiased estimator from Jacob et al.

34

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Algorithm 3.1 Sample a pair of coupled chains
Input: A kernel K , its coupled kernel K̄ , an initial distribution π0 and a coupling of π0

Output: A pair of coupled chains (X ,Y)k

1: Sample (X0,Y0)∼ π̄0 (π̄0 is a coupling of π0)

2: Sample X1 ∼K (X0, ·)
3: Set N = 1

4: while XN 6= YN−1 do
5: Sample (XN+1,YN)∼ K̄ ((XN ,YN+1), ·)
6: Set N = N +1

7: end while
8: Set τ = N and output {(Xn)

τ
n=0,(Yn)

τ−1
n=0}

(2019b). Finally, we perform extensive simulations to verify the improved meeting and

robustness of our proposed method. The improvements in efficiency and robustness

together pave the way for a wider and more practical use of coupled HMC methods.

3.2 Background

3.2.1 Unbiased MCMC with couplings

For two distributions p and q, we denote Γ(p,q) as their couplings, i.e. for any

γ ∈ Γ(p,q), the marginals of γ are p and q. For a π-invariant Markov kernel K defined

on
(
Rd,B(Rd)

)
, its coupled kernel K̄ , defined on

(
Rd×Rd,B(Rd)×B(Rd)

)
, by

construction has K as its marginals, where B denotes the Borel σ-algebra. Additionally,

given an initial distribution π0 and some π̄0 ∈ Γ(π0,π0), a pair of coupled chains X =

(Xn)n≥0, Y = (Yn)n≥0 that share the same equilibrium distribution π can be simulated by

algorithm 3.1 (Jacob et al., 2019b) until meeting at iteration τ := inf{n≥ 1 : Xn =Yn−1}
(the meeting time). The main design choice in this algorithm is the construction of K̄ .

Jacob et al. (2019b) established that if K̄ satisfies certain conditions/assumptions, a pair

of coupled chains X ,Y from algorithm 3.1 can be used to obtain unbiased estimates of

equation 3.1 with finite variance and finite computation cost as

Hk(X ,Y) = h(Xk)+∑
τ−1
n=k+1{h(Xn)−h(Yn−1)} (3.2)

35

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

where k ∈ N is a parameter to choose.1 The first term in equation 3.2 is a standard,

single-sample MCMC estimate and the second term can be seen as a debiasing term

to correct the bias introduced by non-converged chains. This estimator is built on the

pioneering works from Glynn and Rhee (2014), derived using telescoping sums. In

practice, we use a time-averaged version of equation 3.2, which is still unbiased but

with lower variance, e.g. in Section 3.5. The three assumptions on K̄ to use equation 3.2

are

Assumption 1 (Convergence of marginal chain). As n→ ∞, E[h(Xn)]→ H. Further-

more, ∃ η > 0 and D < ∞ such that E[|h(Xn)|2+η]≤ D for all n ∈ N.

Assumption 2 (Tail of meeting time). The chains are such that the meeting time

τ := inf{n≥ 1 : Xn = Yn−1} satisfies P(τ > n)≤Cλn for all n ∈ N for some constants

C < ∞ and λ ∈ (0,1).

Assumption 3 (Faithfulness). The coupled chains are faithful (Rosenthal, 1997)—they

stay together after meeting, i.e. Xn = Yn−1 for all integers n≥ τ.

Assumption 1 basically requires the marginal chains to be valid, i.e. converging to

the target and the function h has finite variance; assumption 2 requires the coupling

to be “fast-enough” such that the estimate has finite computation time. Under these

assumptions, using a pair of coupled chains (X ,Y) from algorithm 3.1, we can obtain

an unbiased estimate of equation 3.1 with finite variance (Glynn and Rhee, 2014; Jacob

et al., 2019b)

3.2.2 Hamiltonian Monte Carlo

In an HMC kernel, new states are proposed by simulating Hamiltonian dynamics (Neal,

2011). For a Hamiltonian system with a position variable q ∈ Rd and a momentum

variable p ∈ Rd , the trajectory t := (q(t), p(t))t∈R+
can be described by the following

ordinary differential equations

dq
dt

=+∇pE (q(t), p(t)) ,

dp
dt

=−∇qE (q(t), p(t)) =−∇U (q(t))
(3.3)

1When k happens to be smaller than τ−1, the second term can be seen as a debiasing term; otherwise,
the debiasing term could be non-existent, which is counter-intuitive. To understand this, recognise the
fact that τ itself is a random variable that has a different realisation for each MCMC simulation and the
probability of k < τ−1 (depending on the convergence rate of MCMC chains) is non-zero—meaning
that in expectation the debiasing term helps remove the bias.

36

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

where the potential U : Rd 7→ R+ is chosen s.t. the target π(q) ∝ exp(−U(q)), the

kinetic term K : Rd 7→R+ is assumed to have a form of K(p) = 1
2 p>Mp, where M is the

mass matrix, and the Hamiltonian is defined as E(q, p) :=U(q)+K(p).2 The extended

target π̄ for phase points z := (q, p) on the phase space Rd ×Rd is then defined as

having density ∝ exp(−E(q, p)).

To describe the dynamics more succinctly, we consider the flow map Φt(q0, p0) =

(q(t), p(t)) for equation 3.3 initialised at (q0, p0) :=
(
q(0), p(0)

)
∈Rd×Rd . Following

Heng and Jacob (2019), we write Φ◦t (q0, p0) = q(t) and Φ∗t (q0, p0) = p(t) for the flow

projected onto its position and momentum spaces, respectively. The flow map Φt is in

general not available in closed form and requires discretisation in time via numerical

integrators as approximations. A standard choice for HMC is the leapfrog integrator

that, given an initial phase point (q0, p0), iterates:

p`+1/2 := p`−
ε

2
∇U(q`)

qt+1 := q`+ εp`+1/2

pt+1 := p`+1/2−
ε

2
∇U(q`+1)

for ` = 0, . . . ,L− 1 with a step size ε > 0 and leapfrog steps L ∈ N. We denote

Φ̂ε,`(q0, p0) := (q`, p`) as the numerical flow map approximated by a leapfrog integrator

with a step size ε for ` steps, and similarly Φ̂◦
ε,` and Φ̂∗

ε,` for projected maps onto

position and momentum, respectively. For more properties of Hamiltonian dynamics

and numerical integration, see appendix 3.A.

Metropolis HMC One can design an MCMC kernel by proposing the end-point of a

Hamiltonian trajectory in equation 3.3. In practice, a discretised trajectory is obtained

by leapfrog integration. Due to numerical errors in the simulation, in order to ensure

the kernel π-invariant, the proposal needs to be adjusted by a Metropolis-Hasting step

(Metropolis et al., 1953; Neal, 2011). Denoting Nd as the d-dimensional standard

Gaussian, the kernel Q∼K MH
ε,L (Q0, ·) for Metropolis HMC follows

P0 ∼Nd, (qL, pL) = Φ̂ε,L(Q0,P0),

Q =

qL with prob. min{1,exp(∆E)}

Q0 otherwise

(3.4)

2Unless otherwise specified we let M−1 = Id throughout, though we note that M can be chosen
using existing adaption methods, e.g. (Carpenter et al., 2017), or as in Riemannian HMC (Girolami and
Calderhead, 2011).

37

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

where ∆E :=−E(qL, pL)+E(Q0,P0) is the energy difference between the origin and

the proposal.

Note here (and across this chapter) we use lower case q, p to refer to the states of

numerical simulation/trajectory and capital Q,P to refer to MCMC states.

Multinomial HMC Betancourt (2018) describes a trajectory variant of HMC, which

we refer as multinomial HMC and denote K Mult
ε,L (Q0, ·). In multinomial HMC, all

intermediate points of a numerical trajectory can be proposed as the next state:

P0 ∼Nd, t∼ Pε,L(· | Q0,P0),(Q,P)∼ P(· | t) (3.5)

where t := [(q−Lb , p−Lb), . . . ,(Q0,P0), . . . ,(qLf , pLf)]. The trajectory sampling t ∼
Pε,L(· | Q0,P0) follows

Lf ∼U({0, . . . ,L}), Lb = L−Lf,

(q`, p`) =

Φ̂ε,`(Q0,+P0) for `= 1, . . . ,Lf

Φ̂ε,`(Q0,−P0) for `= 1, . . . ,Lb

(3.6)

The intra-trajectory sampling Q,P∼ P(· | t) follows a multinomial distribution (Betan-

court, 2018) as

P((Q,P) = (q`, p`) | t) = σ((q`, p`), t) (3.7)

where σ(z, t) := exp(−E(z))/∑z′∈t exp(−E(z′)). Note that sampling from equa-

tion 3.7 can be equivalently defined by sampling from a categorical distribution followed

by an indexing operation as

i∼ P̄̀

(q`, p`) = ti = (qi, pi)

where P̄̀ is a categorical with probability mass Cat(`= i) = σ(t`, t).

3.2.3 Coupled MCMC kernels

The coupled HMC kernel in (Heng and Jacob, 2019) and the coupled kernels proposed

in this work can be unified through algorithm 3.2. Specifically, letting (i) In Line 2,

PLf(Lf = L) = 1 and (ii) In Line 6, (i, j) | (t1, t2)∼ P̄̀ in algorithm 3.2, we recover the

38

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Algorithm 3.2 Coupled HMC kernels
INPUT: A pair of current states (Q1

0,Q
2
0) and a HMC kernel Kε,L with step size ε and

number L

OUTPUT: A pair of next states (Q1,Q2)

1: Sample P0 ∼Nd

2: Sample Lf ∼ PLf and set Lb = L−Lf

3: for c = 1,2 do
4: Use the leapfrog integrator to simulate the trajectory tc =

[Φ̂ε,−Lb(Q
c
0,−P0), . . .(Qc

0,P0), . . .Φ̂ε,Lf(Q
c
0,P0)]

5: end for
6: Sample next state indices (i, j) | (t1, t2)∼ P̄̀

7: Set (Q1,P1) = t1
i ,(Q

2,P2) = t2
j

8: Output (Q1,Q2)

K̄ MH
ε,L from Heng and Jacob (2019), where P̄̀ follows the generative process

u∼U([0,1]),

i =

L if u < α1

0 otherwise
and j =

L if u < α2

0 otherwise

where αc = exp
(
−E(tc

L)+E(tc
0)
)

for c = 1,2. This corresponds to using common

random number (CRN) in the MH correction steps in equation 3.4. For coupled

multinomial HMC kernels studied in this work, which we denote K̄ γ

ε,L, we make

different choices for Line 2 and Line 6 in algorithm 3.2. In short, Line 2 will be a

coupled version of equation 3.6 and Line 6 will correspond to a coupling γ of two

multinomial distributions as equation 3.7. We will discuss them in detail in section 3.3.

Although coupled HMC kernels can bring two chains within a small neighbourhood

of each other, the probability of exact meeting is zero, thus failing to satisfy the faithful-

ness condition for using equation 3.2. To alleviate this issue, Heng and Jacob (2019)

instead propose a mixture of coupled random-walk Metropolis-Hastings (RWMH) K̄σ

and coupled HMC K̄ε,L to trigger “exact meeting”. The coupled RWMH kernel K̄σ

with proposal variance σ2Id uses maximal coupling (Johnson, 1998; Jacob et al., 2019b)

to encourage two chains meet exactly when they are close. For completeness, we

provide it in algorithm 3.3 where we slightly abuse notation, writing Kσ(X ,Y) to mean

denote the probability density of the probability measure Kσ(X , ·) evaluated at Y , where

X and Y are random variables. Intuitively speaking, at each iteration of the coupled

39

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Algorithm 3.3 Coupled RWMH kernel with maximal coupling (Jacob et al., 2019b)
Input: A pair of current states (X0,Y0) and a RWMH kernel Kσ with variance σ2Id

Output: A pair of next states (X ′,Y ′)

1: Sample X∗ ∼Kσ(X0, ·)
2: Sample w | X ∼U([0,Kσ(X0,X∗)])

3: if w≤Kσ(Y0,X∗) then
4: Set Y ∗ = X∗

5: else
6: repeat
7: Sample Y ∗ ∼Kσ(Y0, ·)
8: Sample w∗ | Y ∗ ∼U([0,Kσ(Y0,Y ∗)])

9: until w∗ > Kσ(X0,Y ∗)

10: end if
11: Sample u∼U([0,1])

12: Set X = X0 and Y = Y0

13: if u≤min{1,π(X∗)/π(X0)} then
14: Set X = X∗

15: end if
16: if u≤min{1,π(Y ∗)/π(Y0)} then
17: Set Y = Y ∗

18: end if
19: Output (X ,Y)

RWMH kernel, the kernel is designed as the maximal coupling of the two (conditional)

Gaussians—with this we maximise the probability of transiting to a state that the two

chains meet. Also note that this ignores the MH correction following the random walk;

for a method that considers the maximal coupling of the random walk together with the

corrections, see O’Leary et al. (2020).

The overall mixture kernel, denoted K̄ε,L,σ, is then defined as

K̄ε,L,σ
(
x̄, Ā
)
= (1−α)K̄ε,L

(
x̄, Ā
)
+αK̄σ

(
x̄, Ā
)

(3.8)

for α ∈ (0,1), x̄ := (x,y) ∈ Rd×Rd and Ā := (A,B) ∈ B(Rd)×B(Rd). That is, with

probability α we use the coupled RWMH kernel and with probability 1−α we use the

HMC kernel. Heng and Jacob (2019) proves that, under certain assumptions, if the

relaxed meeting time τδ := inf{n≥ 0 : ‖Xn−Yn−1‖ ≤ δ} of the coupled HMC kernel

40

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

K̄ε,L has geometric tails for any δ > 0, the chains meet exactly with non-zero probability

under K̄ε,L,σ for any α ∈ (0,1), warranting the use of equation 3.2.

The key conditions that ensure the unbiasedness, finite variance and finite computa-

tion cost of equation 3.2 are (i) the coupled chains marginally converge to the target and

(ii) the two chains meet sufficiently quickly and stay together after meeting; see Jacob

et al. (2019b) for explicit definitions. Suppose our proposed HMC kernels satisfy (i) by

construction, to ensure the method satisfies (ii) it is sufficient to prove that the relaxed

meeting time has geometric tails. This we establish in section 3.4

3.3 Optimal transport couplings for multinomial HMC

Recall that in order to use the multinomial HMC kernel K Mult
ε,L in algorithm 3.2, we

need to specify how Line 2 and Line 6 are performed. First, the number of leapfrog

steps forward and backward sampled in Line 2 follows equation 3.6, inheriting from

multinomial HMC, and is shared between the two chains. In other words, both chains

simulate forward and backward for the same number of steps, making them “aligned

in-time”. Second, Line 6 correspond to a coupling of the intra-trajectory multinomial

sampling step in equation 3.7. To ensure that the marginal chains are equivalent to the

original multinomial kernel, it is sufficient to sample (i, j) such that the corresponding

marginal categorical distributions µµµ and ννν of equation 3.7 for indices i, j are preserved

µµµ : Cat(`= i) = σ(t1
` , t

1), ννν : Cat(`= j) = σ(t2
` , t

2)

Here we overload the notations µµµ and ννν also to refer to their corresponding probability

vectors.

To this end, our method is fully specified by providing an algorithm to sample

(i, j) such that i∼ µµµ and j ∼ ννν. The collection of such joint distributions for (i, j) are

couplings of µµµ and ννν, i.e. Γ(µµµ,ννν).

3.3.1 Optimal transport couplings

To repeat, our aim is to construct coupled kernels in which the coupled chains from

algorithm 3.1 meet in a relatively small number of MCMC steps, i.e. short meeting time.

Unfortunately, it is not clear how to directly minimise the meeting time. Intuitively,

one might expect a kernel which, informally, “brings chains closer” to also have an

41

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Algorithm 3.4 Sampling from a discrete joint J
Input: A M×N matrix J that represents the joint of two categorical distributions

Output: A pair of indices (i, j)∼ J

1: for i = 1, . . . ,M, j = 1, . . . ,N do
2: Compute k = M(i−1)+ j

3: Set uk = (i, j) and vvvk = Ji j

4: end for
5: Sample k ∼ Cat(vvv)

6: Output uk

improved meeting time. Naturally this brings us to consider the following problem:

γ := argmin
γ′

∑
i, j

γ
′
i jDi j s.t. γ

′ ∈ Γ(µµµ,ννν) (3.9)

where Di j = d(t1
i , t2

j) is the distance in the position space between the i-th point in the

first trajectory and the j-th point in the second. This is an example of a Kantorovich

problem, a well-studied family of problems from optimal transport (Villani, 2003). In

the case where dp
2 (x,y) = ‖x− y‖p

2 , we will refer to the minimiser as the Wp-coupling

due to the role it plays in the Wasserstein distance w.r.t. Euclidean metric Wp(µµµ,ννν) =(
infγ∈Γ(µµµ,ννν)E(X ,Y)∼γ‖x− y‖p

2
)1/p.

In this work we will consider two different choices for the metric d: 1) Euclidean

distance d2 which gives rise to the W2-coupling, and 2) 0-1 distance dI which gives rise

to the maximal coupling.

3.3.2 W2-coupling

Arguably the most natural choice of metric d in equation 3.9 is the squared Euclidean

distance d2
2(t

1
i , t2

j) =
∥∥∥q1

i −q2
j

∥∥∥2

2
, whose solution we denote γ◦. Once we obtain γ◦,

sampling (i, j) is straightforward. For completeness, we provide an algorithmic de-

scription of how to sample a pair of indices given their joint probability matrix in

algorithm 3.4.

Computationally, the optimisation in equation 3.9 can be solved by generic linear

programming solvers or more specialised methods, e.g. as in Bonneel et al. (2011).

Such solvers in general have a time complexity O(K3) where K is the length of the

probability vectors µµµ and ννν. This can be alleviated by using an approximate solver which

42

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

could introduce biases. Therefore, similarly to Jacob et al. (2016), we also describe a

debiasing method that allows the use of approximate solvers in section 3.3.2.1.

3.3.2.1 Debiasing marginal-non-preserving joints

A side effect of using fixed-point iteration solvers or even approximate solvers (Cuturi,

2013) to solve equation 3.9 is that the solution does not belong to Γ(µµµ,ννν). We denote

such solutions as J◦, which indicates it is a joint probability matrix rather than a proper

coupling. Therefore we need a way to ensure that when using J◦, we still have i∼ µµµ

and j ∼ ννν exactly, which we refer as a debiasing step. Inspired by the mixture view of

the maximal coupling, the result of our debiasing algorithm, the debiased W2-coupling

γ̂◦, can be as well viewed as a mixture

γ̂
◦ = αJ◦+(1−α)Jd

where α is the probability of sampling from J◦, and Jd is the debiasing joint probability

matrix (“d” is underlined to indicate it is the superscript in Jd). The algorithm aims to

find the maximal probability α such that γ̂◦ ∈ Γ(µµµ,ννν), together with the corresponding

debiasing matrix Jd . First, to find the maximal α, we see that γ̂◦ ∈ Γ(µµµ,ννν) implies

µµµ = αµµµ◦+(1−α)µµµd, ννν = αννν
◦+(1−α)νννd (3.10)

where µµµ◦ and ννν◦ are marginals of J◦ and µµµd and νννd are marginals of Jd . Since µµµd and νννd

are K-length probability vectors, we have µd
i > 0 and νd

i > 0 for all i = 1, . . . ,K, which

implies a set of constrains on α

µi ≥ αµ◦i , and νi ≥ αν
◦
i for all i = 1, . . . ,K

Therefore, the maximal value of α is given by

α = min{1, µ1

µ◦1
, . . . ,

µK

µ◦K
,
ν1

ν◦1
, . . . ,

νK

ν◦K
}. (3.11)

With α found, we can solve equation 3.10 to find µµµd and νννd , and Jd can be chosen

as any coupling of them, i.e. Jd ∈ Γ(µµµd,νννd), including the independent coupling that

simply samples as i∼ µµµd, j ∼ νννd . We summarise in algorithm 3.5 a sampling procedure

of γ̂◦ resulting from this debiasing approach. It is not hard to see that by construction,

the approach satisfies equation 3.10 and yields γ̂◦ ∈ Γ(µµµ,ννν), which, as a result, yields a

coupled HMC kernel whose marginal kernels converge to the target. Also, when there is

no bias, i.e. J◦ ∈ Γ(µµµ,ννν), we have α = 1 from equation 3.11 and the algorithm reduces

to exact W2-coupling.

43

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Algorithm 3.5 Maximally sampling from a joint γ̂ that is not a coupling while ensuring

marginals to be µµµ and ννν

Input: A K×K probability matrix γ̂ and two K-length probability vectors µµµ,ννν to target

Output: A pair of indices (i, j) with i∼ µµµ and j ∼ ννν while maximally using γ̂

1: Compute µµµ◦ and ννν◦ as marginals of γ̂

2: Compute α according to equation 3.11

3: Sample U ∼U([0,1])

4: if U < α then
5: Sample (i, j)∼ γ̂ using algorithm 3.4

6: else
7: Compute µµµd and νννd by solving equation 3.10

8: Sample i∼ µµµd and j ∼ νννd

9: end if
10: Output (i, j)

3.3.3 Maximal coupling

For general choices of d, we do not have analytical solutions for equation 3.9, but

for the particular choice dI(t1
i , t2

j) = 1(i 6= j) we do. In this case, the solution is the

well-known maximal coupling γ∗ of two categorical distributions—the coupling that

maximising the probability that the two categoricals having the same index, which can

be represented in its mixture view as

γ
∗ = ω

µµµ∧ννν

Z
+(1−ω)

µµµ− (µµµ∧ννν)+ννν− (µµµ∧ννν)

1−Z
(3.12)

where ∧ is the point-wise minimum operation, ω = P(i = j) = 1−DTV(µµµ,ννν) (where

DTV is the total variation distance) and Z = ∑i(µµµ∧ ννν)i. Here in equation 3.12 the

first term/mixture is trying to putting as much probability on letting i = j happen

as possible, and the second term/mixture serves as a debiasing term to preserve the

marginals. As it is possible to compute the joint probability matrix using equation 3.12,

sampling from γ∗ is tractable and straightforward. For completeness, we provide an

algorithmic description of how to sample a pair if indices from the maximal coupling of

two categorical distribution in algorithm 3.6.

By definition, for a maximal coupling γ∗, the probability of choosing pairs with the

same time-index in two trajectories is maximised; we refer to such pairs with same

indices as "index-aligned" pairs. As we will see in section 3.4, this property allows us

44

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Algorithm 3.6 Maximal coupling of µµµ and ννν

Input: Two categorical distributions µµµ and ννν Output: A pair of indices (i, j)∼ γ∗

1: Compute ω = 1−DTV(µµµ,ννν) and Z = ∑i(µµµ∧ννν)i

2: Sample u∼U([0,1])

3: if u≤ ω then
4: Sample i∼ Cat(µµµ∧ννν

Z) and set j = i

5: else
6: Sample i∼ Cat(µµµ−(µµµ∧ννν)

1−Z), j ∼ Cat(ννν−(µµµ∧ννν)
1−Z)

7: end if
8: Output (i, j)

to exploit Lemma 1 in Heng and Jacob (2019) to show that the distance between the

two coupled chains decreases with non-zero probability when the potential is strongly

convex, or, equivalently, the target is strongly log-concave.

Though the idea of index-aligned pairs is useful to establish the theoretical results,

it is not necessarily so in practice. Note that as the approximation of Hamiltonian

simulation by numerical integration becomes more accurate when step sizes become

smaller, the joint γ∗ converges to the diagonal uniform distribution, i.e. γii ≈ 1/K

and γi j ≈ 0 for i 6= j for large K. It is easy to construct examples where this leads to

sub-optimal behaviour when the goal is to minimise distance between the proposed

states; figure 3.1 illustrates this nicely.

Computationally, maximal couplings in algorithm 3.6 are much cheaper than OT

couplings as the maximal couplings for categoricals are easy to compute.

3.3.4 An illustration of different couplings

We now illustrate how different intra-trajectory couplings behave using a 2D Gaussian

with zero mean and unit diagonal covariance. We start by simulating two Hamiltonian

trajectories from q1
0 = [0.5,2.0] and q2

0 = [0.5,−1.0] using the same momentum p0 =

[1.0,1.0] for 7 steps, obtaining two trajectories t1 and t2 in figure 3.1a, where the arrows

represent the initial momentum p0. We then sample from our two couplings to generate

100,000 pairs of indices to estimate the joint distributions and to compute the marginals,

which are shown in figure 3.1b and figure 3.1c. Note how the joint distributions differs:

the ordering of the pairings are “reversed”. This intuitively makes sense when looking

at figure 3.1a, in which, e.g. the closest point for t1
1 (state 1 in the first (blue) trajectory)

45

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

(a) Coupled trajectories in 2D (b) Maximal coupling (c) W2-coupling

Figure 3.1: An illustration of different HMC couplings: trajectories of simulated coupled

chains (figure 3.1a) and their joints (figure 3.1b and figure 3.1c with marginals on top and right

sides). Green lines in figure 3.1a indicate possible pairs from different methods. For coupled

Metropolis HMC, the dashed line pairs the end-points of two trajectories, which has a relative

large distance. The dotted line is for multinomial HMC with maximal coupling. Though there

is a change that the 6-th points of two trajectories are paired, other index-aligned pairs are

equally likely (figure 3.1b), e.g. the pair of 2-th points has a large distance. In contrast, all

pairs from multinomial HMC with W2-coupling (solid lines) have relatively small distances,

resulting in a small distance on average. To see this, we calculate the expected distances: they

are 1.37 for W2-coupling and 1.97 for maximal coupling, where the former is clearly smaller, as

expected. Note that the marginals in figure 3.1b and figure 3.1c are close to uniform because the

quantisation error is small in this example.

is t2
8 (state 8 inn the second (red) trajectory). Finally, note that this U-turn example is

chosen to highlight the differences between the two couplings. If there was no U-turn,

the differences between the two couplings could potentially be smaller.

3.4 Theoretical analysis

We now establish geometric tails for the meeting time for the mixture kernel in equa-

tion 3.8 with the proposed coupled HMC kernels as the HMC component, thus satisfying

the necessary conditions to use the estimator equation 3.2.

Proof sketch To prove geometric tails it turns out that it is sufficient to prove that the

methods satisfy the conditions for Proposition 1 in Heng and Jacob (2019). Informally,

the proposition states that once the chains enter a region S in the state space where the

target density is strongly log-concave, there is a non-zero probability that the chains will

end up in a δ-neighbourhood of each other in some n0 ∈ N steps. The proof presented

46

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

in Heng and Jacob (2019) obtains this statement for the coupled Metropolis HMC

by arguing directly about the probabilities of such an event conditioned on the initial

states being in S. Here we instead prove a slightly stronger property, local contractivity,

from which the proposition follows immediately. Informally, local contractivity ensures

that the distance between the chains will decrease on average when initialised in some

region. We first prove that this holds for the maximal coupling by exploiting the fact

that it maximises the probability of picking index-aligned pairs, which, as mentioned

before, is guaranteed to decrease the distance compared to the initial positions for

strongly log-concave targets. Once this has been established, local contractivity for

the W2-coupling follows immediately since by definition W2-coupling has a smaller

expected distance than the maximal coupling. The remainder of the proof is essentially

identical to Heng and Jacob (2019) where excursions from the set S is controlled with a

geometric drift condition, from which we obtain geometric tails for the meeting time

and thus validity of the methods.

Following Heng and Jacob (2019), we make two assumptions on the potential

function U : Rd 7→ R.

Assumption 4 (Regularity and growth of potential). The potential U is twice continu-

ously differentiable and its gradient ∇U : Rd 7→ Rd is globally β-Lipschitz, i.e. there

exists β > 0 such that ‖∇U(q)−∇U(q′)‖ ≤ β‖q−q′‖ for all q,q′ ∈ Rd .

Assumption 5 (Local strong convexity of potential). There exists a compact set S ∈
B(Rd), with positive Lebesgue measure, s.t. the restriction of the potential U to S is

α-strongly convex, i.e., ∃ α > 0 s.t. (q−q′)> (∇U(q)−∇U(q′))≥ α‖q−q′‖2 for all

q,q′ ∈ S.

Unless otherwise specified, we will let S denote the set in Assumption 5, K̄ γ

ε,L denote

a coupled HMC kernel as described in algorithm 3.2 with (i) shared momentum, (ii)

shared forward and backward simulation steps and (iii) (i, j) ∼ γ for intra-trajectory

sampling, and prγ

ε,L denote the law of a coupled HMC kernel K̄ γ

ε,L. For functions

f : Rd → R, we will also use the notation L`(f) =
{

x ∈ Rd : f (x)≤ `
}

for the level

sets of f and fA := f
∣∣
A for the restriction of f to A ∈ B(Rd).

3.4.1 Geometric tails via local contractivity

We first state the definition of local contractivity and Proposition 1 from Heng and Jacob

(2019).

47

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Condition 1 (Local contractivity). Given a compact set S ∈ B(R) with positive Le-

besgue measure, we say the kernel K̄ γ

ε,L is locally contractive on S with rate ρ ∈ (0,1)

if there exists m≥ 1 such that for any given k0 > 0 there exists ε̄ > 0, L̄ ∈ N s.t.

E(l1,l2)∼γ

∥∥Φ̂
◦
ε,l1(q

1, p)− Φ̂
◦
ε,l2(q

2, p)
∥∥m ≤ ρ

m∥∥q1−q2∥∥m
(3.13)

for all ε ∈ (0, ε̄), L ∈ N such that εL < ε̄L̄ and for all (q1,q2, p) ∈ S×S×Lk0(K).

Informally, this is saying that there exists a step size and integration time such that

a single application of K̄ γ

ε,L decreases the distance between the two states on average.

Furthermore, this property is preserved when decreasing the step size or the integration

time. This last part is important since different parts of the analysis will require possibly

smaller step sizes and/or integration times. Thus, by ensuring that all statements hold

for all smaller step sizes and integration times, we can combine the statements by

simply choosing the minimum of the step sizes and/or integration times required by the

different statements.

Proposition 3.4.1 (Proposition 1, Heng and Jacob (2019)). Suppose that the potential

U satisfies Assumptions 4 and 5. Then for any δ > 0, u0 > infq∈SU(q), and u1 <

supq∈SU(q) with u0 < u1, there exists ε̄ > 0 and L̄ ∈ N such that for any ε ∈ (0, ε̄) and

L ∈ N satisfying εL < ε̄L̄, there exists v0 ∈ (u0,u1), n0 ∈ N and ω ∈ (0,1) such that

inf
q1,q2∈S0

K̄ γ,n0
ε,L
(
(q1,q2),Dδ

)
≥ ω (3.14)

where S0 = Lv0(US) is compact with positive Lebesgue measure,

K̄ γ,n
ε,L
(
(q1,q2),A1×A2)= prγ

ε,L
(
(Q1

n,Q
2
n) ∈ A1×A2 | (Q1

0,Q
2
0) = (q1,q2)

)
denotes the n-step transition probabilities of the coupled chain, and Dδ =

{
(q,q′) ∈ Rd×Rd : ‖q−q′‖ ≤ δ

}
.

As noted earlier, this proposition is a key step in the proof of the coupled Metropolis

HMC kernel in Heng and Jacob (2019). This ensures that once we reach the set S0 ⊂ S,

there is a non-zero probability that within some finite number of steps the chains will be

δ-close, i.e. meet in the relaxed sense. If we can then also ensure that this set S0 will be

entered by the coupled chains sufficiently often, then we bound the tails of distribution

over meeting times.

We now establish that indeed, for coupled multinomial HMC kernels, Condition 1

implies Proposition 3.4.1.

48

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Lemma 3.4.1. If K̄ γ

ε,L satisfies Condition 1, then K̄ γ

ε,L satisfies the conditions of Pro-

position 3.4.1.

Proof. Observe that

prε,L
(∥∥Q1

1−Q2
1
∥∥≤ ρ

∥∥Q1
0−Q2

0
∥∥ | (Q1

0,Q
2
0) = (q1,q2)

)
= EK̄ γ

ε,L
[1
{∥∥Q1

1−Q2
1
∥∥≤ ρ

∥∥q1−q2∥∥}]
= EP∼N (0,I)[E(l1,l2)∼γ[1(Rq1,q2,P) | P]]

where we have let Rq1,q2,p denote the set of events where we have contraction, i.e.

Rq1,q2,p =
{∥∥Φ̂

◦
ε,l1(q

1, p)− Φ̂
◦
ε,l2(q

2, p)
∥∥≤ ρ

∥∥q1−q2∥∥}
By Condition 1, E[(l1, l2)∼ γ]1(Rq1,q2,p)> 0 for any (q1,q2, p)∈ S×S×Lk0(K), where

k0 > 0 is to be decided, since otherwise equation 3.13 would not hold. Hence a

single application of the kernel K̄ γ

ε,L will have a non-zero probability of decreasing the

distance between the states if we are in S. The remainder of the proof ensures that

parameters can be chosen such that there is a non-zero probability of staying within

the set S0 ⊂ S for some n0 := inf
{

n ∈ N : ρn
∥∥q1−q2

∥∥≤ δ
}

applications of the kernel,

i.e. (Q1
k ,Q

2
k) ∈ S0× S0 for all k = 1, . . . ,n0. This finally allows us to conclude that

there is a non-zero probability of entering Dδ if we are currently in the set S0. See the

appendix 3.B.1 for the full proof.

Theorem 3.4.1 (Theorem 2, Heng and Jacob (2019)). Suppose that the potential U

satisfies Assumptions 4 and 5. Suppose that there exists ε̄ > 0 and σ̄ > 0 such that for

any ε ∈ (0, ε̄), L ∈N and σ ∈ (0, σ̄), there exists a measurable function V : Rd→ [1,∞),

λ ∈ (0,1), b < ∞ and µ > 0 such that

Kε,L(V)(x)≤ λV (x)+b, Qσ(V)(x)≤ µ(V (x)+1)

for all x ∈ Rd , π0(V) < ∞, λ0 = (1− γ)λ+ γ(1+ µ) < 1 and
{

x ∈ Rd : V (x)≤ `1
}
⊆

{x ∈ S : U(x)≤ `0}, for some `0 ∈ {infx∈SU(x),supx∈SU(x)} and `1 > 1 satisfying

λ0 +2((1− γ)b+ γµ)(1−λ0)
−1(1+ `1)

−1 < 1. Then there exists ε0 ∈ (0, ε̄), L0 ∈ N
and σ0 > 0 such that for any ε ∈ (0,ε0), L ∈N satisfying εL < ε0L0 and σ ∈ (0,σ0), we

have

prγ

ε,L,σ(τ > n)≤C0κ
n
0

for some C0 ∈ R+ and κ0 ∈ (0,1) and for n ∈ N0, where prγ

ε,L,σ denotes the law of the

kernel K̄ γ

ε,L,σ for a given coupled HMC kernel K̄ γ

ε,L.

Proof. The proof is identical to Heng and Jacob (2019) via Lemma 3.4.1.

49

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

3.4.2 Local contractivity for W2-coupling and maximal coupling

Now we establish Condition 1 for coupled multinomial HMC kernels with maximal

coupling γ∗ and W2-coupling γ◦, ensuring that Theorem 3.4.1 applies to the resulting

mixture kernels K̄ ∗
ε,L,σ and K̄ ◦

ε,L,σ.

We first restate a slight variation of Lemma 1 from Heng and Jacob (2019), which

tells us that the states reached by exact flows with shared momentum is closer than the

initial states for sufficiently small integration times.

Lemma 3.4.2. Suppose that the potential U satisfies Assumptions 4 and 5. For any

compact set A⊂ S×S×Rd , there exists a trajectory length T > 0 such that∥∥Φ
◦
t (q

1, p)−Φ
◦
t (q

2, p)
∥∥≤ ρ

∥∥q1−q2∥∥ (3.15)

for all t ∈ [−T,T]\{0} and all (q1,q2, p) ∈ A.

Proof. See appendix 3.B.2 for the detailed proof.

Note that Lemma 3.4.2 is a statement about the distance between the integrated states

at the same integration time t. As an immediate consequence the expected distance with

respect to a joint distribution with probability mass only along the diagonals satisfies a

similar property, controlling for numerical errors (see appendix 3.B.3). Therefore, our

strategy in proving local contractivity for K̄ ∗
ε,l and K̄ ◦

ε,l is to ensure that as we decrease

the stepsize the probability mass on the diagonals, i.e. P(i = j), can be made close to 1.

Maximal coupling To establish Condition 1 for coupled multinomial HMC with

maximal coupling γ∗, K̄ ∗
ε,l , we first introduce a bound on the total variation distance

between the trajectory distributions µµµ and ννν.

Proposition 3.4.2. Suppose that U satisfies Assumptions 4 and 5. For any δ > 0, there

exists ε0 > 0, L0 ∈ N s.t. for all ε ∈ (0,ε0), L ∈ N satisfying εL < ε0L0, we have

DTV(µµµ‖ννν) = P(i 6= j)< δ. (3.16)

Proof. The proof uses the 1-Lipschitz property of the softmax function (Gao and Pavel,

2018) in equation 3.7 to bound the probability differences introduced by numerical

errors. See appendix 3.B.4.

With Proposition 3.4.2, we can establish local contractivity for coupled multinomial

HMC kernels with γ∗.

50

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Lemma 3.4.3. K̄ ∗
ε,l satisfies Condition 1.

Proof. Due to Proposition 3.4.2, for a given integration time, we can choose step

size arbitrary small to increase probability of picking parallel-in-time pairs, whose

contractivity is established in Proposition 3.B.1. See appendix 3.B.5 for the complete

proof.

W2-coupling Similarly to Lemma 3.4.3, for coupled multinomial HMC with γ◦, K̄ ◦
ε,l ,

we have:

Lemma 3.4.4. K̄ ◦
ε,l satisfies Condition 1.

Proof. The definition of γ◦ from equation 3.9 implies

E(i, j)∼γ◦

∥∥∥Φ̂
◦
ε,li(q

1, p)− Φ̂
◦
ε,l j

(q2, p)
∥∥∥2
≤

E(i, j)∼γ∗

∥∥∥Φ̂
◦
ε,li(q

1, p)− Φ̂
◦
ε,l j

(q2, p)
∥∥∥2 (3.17)

The rest of the proof follows that of Lemma 3.4.3.

Lemmas 3.4.3 and 3.4.4 together with Theorem 3.4.1 then establishes geometric

tails for the meeting time of the resulting mixture kernels K̄ ∗
ε,l and K̄ ◦

ε,l , respectively.

3.4.3 A simplified proof for relaxed meeting time

Previous parts of this section establish a proof of the geometric tails of exact meeting

time by modifying Heng and Jacob (2019). The proof is complete but can be involved

due to the complexity of the proof strategy taken by Heng and Jacob (2019). Here

I present an alternative, simplified proof for the most important part of the property

we want to establish—geometric tails of the relaxed meeting time. Note that although

this proof, on its current form, cannot show the geometric tails for the exact meeting

time, it is simpler and gives intuitive on how the (relaxed) meeting time is controlled by

different conditions.

A proof strategy for geometric tails This specific proof relies on a proof strategy

that is commonly used to deal with the drift condition of MCMC algorithms (Jacob,

2020). I summarise it as the theorem below.

51

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Theorem 3.4.2. If there exist a set C ⊆ X where X is the space that the Markov kernel

K defined on, a parameter λ ∈ (0,1) and a function V : C 7→ [1,∞] satisfying

EK {V (xt+1) | xt} ≤ λV (xt)

for all xt /∈C. Then let τC := inf{t ≥ 0 : xt ∈C}, we have

pr(τC > t)≤ aλ
t

for some constant a < ∞.

Note that I will expand the proof of this theorem when it is used in context.

Proof sketch With Theorem 3.4.2 available, the job left is to show that such a set

C and function V exist for the coupled kernel we are interested in. This will rely on

the local contractivity we have shown for the two coupled kernels (Lemma 3.4.3 and

Lemma 3.4.4) as well as a similar assumption on the existence of a global Lyapunov

function that Theorem 3.4.1 also assumes.

3.4.3.1 Geometric tails of relaxed meeting time

I now establish a modified version of Theorem 1 from (Heng and Jacob, 2019) that is

more suitable to our problem by relating the theorem and proof directly with contractiv-

ity instead of the probability of relaxed meeting which is established in (Proposition 1,

Heng and Jacob, 2019).

Remark. Difference and similarity. In (Heng and Jacob, 2019), they first establish the

probability of n-step transition probability to relaxed meeting in (Proposition 1, Heng

and Jacob, 2019) and use it in the proof of (Theorem 1, Heng and Jacob, 2019), which

is exactly what has been done in (Proposition 3.4, Jacob et al., 2019b) as for generic

Metropolis–Hastings. The difference here is that I want to replace this n-step transition

probability with a contractivity condition. The motivation here is to relate the theorem

and proof directly to the contractivity rate, which is more suitable to our case because

of how the method is related to OT.3

Theorem 3.4.3. Suppose that there exists ε0 > 0 and L0 ∈N such that for any ε∈ (0,ε0)

and L ∈ N satisfying εL < ε0L0 such that the kernel Kε,L satisfies

3I believe that (Heng and Jacob, 2019) can also state something similar here. However, the end-point
HMC itself they work with is very related to MH. Therefore, adapting the proof of (Proposition 3.4,
Jacob et al., 2019b) makes a lot of sense to them.

52

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

1. For the coupled Markov kernel K̄ and the local contractivity set S ∈ X , there

exists a contractivity rate λ ∈ (0,1) such that for (x,y) ∈ S×S

EK̄ {
∣∣x′− y′

∣∣ | x,y} ≤ λ|x− y|, (3.18)

where λ is the contractivity rate.

2. For the Markov kernel K , there exists a measurable function V : X → [1,∞),

λ ∈ (0,1),b < ∞ such that for all x ∈ X and Ex∼π0{V (x)}< ∞,

EK {V (y) | x} ≤ λV (x)+b. (3.19)

and {q∈Rd :V (q)≤ `1}⊆{q∈ S :U(q)≤ `0} for some `0 ∈{infq∈SU(q),supq∈SU(q)}
and `1 > 1 satisfying λ+2b(1+ `1)

−1 < 1.

Then for any δ > 0 with ε ∈ (0,ε0) and L ∈ N satisfying εL < ε0L0,

prε,L(τδ > n)≤C0κ
n(λ) (∀n ∈ N) (3.20)

for some C0 ∈ R+ and κ(λ) ∈ (0,1). In particular, κ(λ) is monotonically increasing.

Remark. Theorem3.4.3 is consistent with (Theorem 1, Heng and Jacob, 2019) but

replaces (Proposition 1, Heng and Jacob, 2019) with a local contractivity condition and

makes this condition explicit as an assumption. For the drift condition, the reason it

looks more complex than the drift condition in (Proposition 3.4, Jacob et al., 2019b) is

because of the interaction of the local convexity set S. Besides, the condition on `1 in

the end of the drift condition is less stricter compared to that of (Heng and Jacob, 2019),

which is λ+2b(1−λ)−1(1+ `1)
−1 < 1.

Proof. We first establish the excursion set from the drift condition, following the proof

of (Theorem 1, Heng and Jacob, 2019). For any ε ∈ (0,ε0) and L ∈ N satisfying

εL < ε0L0, it follows from the second assumption that the coupled transition kernel

K̄ε,L satisfies the geometric drift condition

EK̄ε,L
{V̄1(x′,y′) | x,y} ≤ λ0V̄1(x,y)+b

for all x′,y′ ∈ Rd with V̄1(x,y) = {V (x)+V (y)}/2 as the bivariate Lyapunov function.

Define level sets L`(f) := {x ∈ Ω : f (x) ≤ `}, we have for (x,y) /∈ L`0(US)×L`0(US)

which implies (x,y) /∈ L`1(V)×L`1(V), we have V̄1(x,y)≥ (1+ `1)/2. Hence

EK̄ε,L
{V̄1(x′,y′) | x,y} ≤ λ1V̄1(x,y) (3.21)

53

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

with λ1 = λ0 +2b(1+ `1)
−1 < 1 for all (x,y) /∈ L`0(US)×L`0(US) := C̄.

We then look at the excursion set from the local contractivity condition. For any

ε ∈ (0,ε0) and L ∈ N satisfying εL < ε0L0, it follows local contractivity assumption

that the coupled trainsition kernel K̄ε,L satisfies

EK̄ε,L
{
∣∣x′− y′

∣∣ | x,y} ≤ λ2|x− y|

for all (x,y) ∈ S× S. Define Dδ = {(x,y) ∈ Rd ×Rd : |x− y| < δ} and V̄δ(x,y) =

|x− y|/δ, we have

EK̄ε,L
{V̄δ(x

′,y′) | x,y} ≤ λ2V̄δ(x,y)

for which V̄δ(x′,y′) ∈ [1,∞) for all (x,y) ∈ {(x,y) ∈ S×S : (x,y) /∈ Dδ}.

Now with λ := max(λ1,λ2) we have

EK̄ε,L
{V̄ (x′,y′) | x,y} ≤ λV̄ (x,y) (3.22)

with

V̄ (x,y) :=

V̄ (x,y) (x,y) /∈ S×S

V̄δ(x,y) (x,y) ∈ S×S

≥ 1 (3.23)

for all (x,y) /∈ C̄δ where {C̄δ := L`0(US)×L`0(US)}∩ D̄δ ⊂ D̄δ. Now we can use the

“standard” proof strategy for drift condition. For completeness, it is detailed below.

First define τC = inf{t ≥ 0 : (xt ,yt) ∈ C}. As C̄δ ⊆ Dδ, τDδ
≤ τC̄δ

, which means

prε,L{τDδ
> t} ≤ prε,L{τC̄δ

> t}. We now consider establish geometric tails for the latter.

Notice that
λ
−tprε,L{τC̄δ

> t}= λ
−t

∑
s>t

prε,L{τC̄δ
= s}

≤∑
s>t

λ
−sprε,L{τC̄δ

= s}

= Eq̄{λ
−τC̄

δ 1(τC̄δ
> t)}=: Eq̄{Mt}

≤ Eq̄{λ
−τC̄

δ}=: Eq̄{M}

where q̄ := (x,y), Eq̄ is expectation over the coupeld initial state π̄0 and the first

inequality comes from the fact that λ−s > λ−t due to s > t. Equivalently, we have

prε,L{τC̄δ
> t} ≤ Eq̄{M}λt . (3.24)

In order to complete our proof, the last step is to show that Eq̄{M} is bounded above.

We first need to prove the following statement which says that for all t ≥ 1, q̄ /∈ C̄δ

V̄ (q̄)≥ λ
−tEq̄{V (q̄)1(τC̄δ

> t)}+
t

∑
s=1

λ
−sprε,L(τC̄δ

= s). (3.25)

54

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

The proof can be done by induction. For t = 1, the proof is done by applying the law of

total expectation to equation 3.22. Now suppose equation 3.25 is true for some t > 1,

we can use the following inequality to induce equation 3.25 is also true for t +1.

Eq̄{V̄ (q̄)1(τC̄δ
> t)} ≥ λ

−tEq̄{V̄ (q̄)1(τC̄δ
> t)}

≥ λ
−tEq̄{V̄ (q̄)1(τC̄δ

> t +1)}+λ
−tprε,L(τC̄δ

= t)

which completes the proof for equation 3.25. As for any q̄ /∈ C̄δ, we have V̄ (q̄) ≥ 1,

equation 3.25 implies for all t ≥ 1

V̄ (q̄)≥ λ
−tEq̄{1(τC̄δ

> t)}+
t

∑
s=1

λ
−sprε,L(τC̄δ

= s)︸ ︷︷ ︸
>0

≥ λ
−tEq̄{1(τC̄δ

> t)}

or equivalently prε,L{τC̄δ
> t} ≤ V̄ (q̄)λt . Taking t→∞, it gives that prε,L{τC̄δ

= ∞}= 0,

which means τC̄δ
is almost surely finite. Now take t→ ∞ in equation 3.25, we have

V̄ (q̄)≥
∞

∑
s=1

λ
−sprε,L(τC̄δ

= s) = Eq̄{λ
−τC̄

δ}= Eq̄{M}

of which the involved equality is valid because τC̄δ
is almost surely finite. Now we can

conclude that there exists a finite constant C0 ≥ supt
{
Eq̄{M}

}
such that

prε,L{τC̄δ
> t} ≤C0λ

t .

Remark. For the last step of the proof, we could also find a more explicit upper bound

via establishing (Mt ,Ft)t≥0 as a super-margintingale where F the required σ-algebra;

see the second part of the proof of (Theorem 1, Heng and Jacob, 2019).

Remark. Figure 3.2 visualize the relationship between the global drift condition and

the local contractivity condition using Venn diagrams. As it can be seen, the way the

geometric tails are established is by combining the global drift condition and the local

contractivity condition. Each of they correspond to a different set in the coupled state

space and the intersection between them is one in S×S with a corresponding Lyapunov

function on the coupled space, providing the necessary conditions to use the proof

strategy stated in Theorem 3.4.2.

55

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

S×S

L`0(US)×L`0(US)

Rd×Rd

(a) Global drift

S×S

Dδ

Rd×Rd

(b) Local contractivity

S×S

L`0(US)×L`0(US)

C̄δ

Dδ

Rd×Rd

(c) Combined

Figure 3.2: Controlling excursions outside of sets

3.5 Experiments

In this section, we evaluate the performance of the proposed coupled HMC kernels. The

coupled Metropolis HMC by Heng and Jacob (2019) is used as a baseline. Following

Heng and Jacob (2019), we combine coupled HMC kernels with a coupled RWMH ker-

nel to obtain exact couplings: we take the standard deviation of the RWMH kernel to be

σ = 10−3 and the mixture cofficient (i.e. probability of using RWMH) to be α = 1/20.

For the estimation task, we consider a more efficient (still unbiased) time-averaged

variant of equation 3.2:

Hk:m(X ,Y) =
1

m− k+1∑
m
i=kHi(X ,Y) (3.26)

where hyper-parameters k,m are positive integers to choose; we discuss some heuristics

to choose these parameters in section 3.5.3. This estimate still requires simulation

of a coupled chain X ,Y and essentially is an average of Hk in equation 3.2 using

samples from k to m. Practically, equation 3.26 can be averaged over multiple simula-

tions of coupled chains For this, we run R independent pairs of coupled chains (X r,Y r),

r = 1, . . . ,R, and estimate H† as Ĥ =R−1
∑

R
r=1 Hk:m(X (r),Y (r)). For x∈Rd , we consider

h as the first and second moments of x, i.e. hi(x) = xi and hd+i(x) = x2
i for i = 1, . . . ,d.

We consider three target distributions. The first target is a 1,000D Gaussian. The

second one is the posterior of a Bayesian logistic regression model on the German

credit dataset (Asuncion and Newman, 2007). We apply the same pre-processing as

in Heng and Jacob (2019), which results in a sampling space of R302. The last model

considered is a log-Gaussian Cox point process that models tree locations in a forest.

56

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

We discretise the forest using a 16× 16 grid, resulting in a sampling space on R256.

Note that the first two targets meet necessary conditions from section 3.4. More details

of these targets can be found in section 3.5.1.

3.5.1 Target distributions

We follow the pre-processing steps in Heng and Jacob (2019) for the German credit

dataset (Asuncion and Newman, 2007) and the Finnish pine saplings dataset (Møller

et al., 1998) used in logistic regression and log-Gaussian Cox point process respectively.

Bayesian logistic regression We combine features in the German credit dataset with

all of their standardized pairwise interactions, resulting in a design matrix in R300×1,000.

Denoting an Exponential distribution with rate λ as Exp(λ), the Bayesian logistic

regression follows the following generative process: s2 ∼ Exp(λ),a ∼ N (0,s2),b ∼
N300, where the variance s2 ∈ R, the intercept a ∈ R and the coefficients b ∈ R300,

giving a total dimension d = 302.

Log-Gaussian Cox point process Firstly, the plot of the forest is discretised into

an n× n grid. For i ∈ {1, . . . ,n}2, the number of points in each grid cell yi ∈ N is

assumed to be conditionally independent given a latent intensity variable Λi and follows

a Poisson distribution with mean aΛi, where a = n−2 is the area of each cell. We

denote the logarithm of Λ as X and put a Gaussian process prior with mean µ ∈ R and

exponential covariance function Σi, j = s2Exp(−|i− j|/(nb)) on it, where s2, b and µ

are hyperparameters. The generative process of the number of grid cell points follows

X ∼GP (µ,Σ), ∀ i∈ {1, . . . ,n}2 : Λi = Exp(Xi), yi ∼ P oisson(aΛi). Following (Møller

et al., 1998), we use a dataset of 126 Scot pine saplings in a natural forest in Finland,

and adapt the parameters s2 = 1.91, b = 1/33 and µ = log(126)− s2/2.

Our implementation is based on ADVANCEDHMC.JL Xu et al. (2020) and is

available at https://github.com/TuringLang/CoupledHMC.jl, which also

contains scripts to reproduce results in this chapter.

3.5.2 Meeting time comparisons

We first investigate how the meeting time τ of our method changes under different step

sizes ε and numbers of leapfrog steps L. For this purpose, we run all coupled HMC

57

https://github.com/TuringLang/CoupledHMC.jl

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Metropolis Maximal W2

0.1 0.2 0.3 0.4
0

250

500

750

1000

ε

τ

(a) 1,000D Gaussian

0.01 0.02 0.03 0.04
0

250

500

750

1000

ε

τ

(b) Logistic regression

0.1 0.2 0.3 0.4
0

250

500

750

1000

ε

τ

(c) Log-Gaussian Cox point pro-

cess

Figure 3.3: Meeting time τ with different ε (x-axis) and L = 10 out of R = 10 runs with lines

for average and shade for 1 standard deviation. Overall, coupled multinomial HMC attains

smaller meeting time and is more robust to ε. Note that the range of x-axes depends on the

actual parameter sweeps; see main texts for details.

methods initialised at a random draw from N (0, I) for 1,000 iterations. For each method,

we use different step sizes ε and leapfrog steps L: (ε,L) ∈ {0.05,0.07, . . . ,0.45}×
{5,10,15} for 1,000D Gaussians, (ε,L) ∈ {0.01,0.0125, . . . ,0.04}×{10,20,30} for

logistic regression and (ε,L) ∈ {0.05,0.07, . . . ,0.45}×{10,20,30} for log-Gaussian

Cox point processes. Furthermore, we repeat each experiment for R = 10 times to

estimate standard derivation. Figure 3.3 shows resulting meeting time together with

standard derivation for varying ε and a fixed L = 10; figures for other L are similar so

we defer those to appendix 3.5.4. It is worth noting that τ equal to 1,000 should be

interpreted as coupled chains did not meet within 1,000 iterations.

Figure 3.3 shows clearly that both maximal coupling and W2-coupling achieve

smaller meeting time than the baseline for large step sizes. This robustness against large

step sizes is useful in practice since it allows us to simulate a trajectory of a given length

with less computation, by using larger ε rather than larger L. However, when the step

size is sufficiently small Metropolis HMC will almost always accept the end-point, thus

travel the full integration length T at every step. In contrast, multinomial HMC will put

uniform mass on intermediate states which means that it travels 1/4T in expectation.

Therefore, Metropolis HMC will move towards the typical set faster and thus have

a smaller meeting time compared to multinomial HMC. It is also worth noting the

surge in meeting time for coupled Metropolis HMC in figure 3.3a around ε = 0.3 can

be explained by the similar phenomena observed in figure 3.1, large trajectory length

can lead to end-points close to their starting points, thus never meet. In particular,

the trajectory length 3 = 0.3× 10 is around π ≈ 3.14, in which case trajectories are

58

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

basically full circles ending close to where they start, a special case for Gaussians.

Furthermore, for logistic regression (figure 3.3b), optimal parameters of HMC

(ε = 0.03,L = 10) leads to excessively long meeting time. This result is consistent with

those in Heng and Jacob (2019). This is clearly undesirable: optimal parameters for

sampling efficiency leads to non-contractive coupled chains. Besides, it is worth noting

that maximal coupling is more robust to large step sizes than W2-optimal coupling for

the logistic regression model. To understand this, recall that W2-coupling takes a local

greedy approach but there is no guarantee it can lead to faster meeting through multiple

transitions. With large step sizes, numerical errors in simulation are enlarged, leading to

more probabilities assigned to non-diagonal entries in the coupling matrix, equivalently

more freedom in the W2-coupling. In such cases, the greedy effect of W2-coupling is

also enlarged but such greedy approach turns out to be less effective than maximal

coupling for the logistic regression model, a target that satisfies Assumptions 4 and 5. In

short, whether the greedy approach is preferable or not is target-dependent. Specifically,

when a target satisfies Assumptions 4 and 5, one would expect maximal coupling to

work well enough; when such assumptions fail, W2-coupling can be more efficient, as

seen in appendix 3.5.5.

Finally, as motivated earlier, one can use existing adaption techniques to choose

parameters ε,L. For example, one can use the adapted parameters from preliminary

runs of NUTS. As a concrete example, NUTS-adapted ε,L for logistic regression are

0.022 and 22, and those for log-Gaussian Cox point processes are 0.28 and 16, which

allows our method to meet relatively fast: 114 and 118 for the first model and 50 and 51

for the second one, for the two proposed kernels respectively.

3.5.3 Estimator efficiency comparisons

Although Monte Carlo estimates by equation 3.26 are unbiased, it can have large

variances due to the use of coupled but often short Markov chains. In other words,

making equation 3.26 unbiased comes at a cost of increased variance. Therefore, it is

helpful to study the efficiency, or inefficiency, of the estimator under a joint effect of

removed bias but increased variance, which we define next.

For a vector-valued function h, the variance of estimator Ĥ for coupled HMC is

defined as ∑d ν(hd) where ν(h) = Vr (Hk:m(h,X r,Y r)). Here r is the index of repeated

runs. Asymptotic inefficiency is defined as ∑d i(hd) where i(h) = Ĉν(h) (Glynn and

59

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Whitt, 1992). Here Ĉ = E[r]2(τr−1)+max(1,m+1− τr) is the expected cost over

R runs and τr is the meeting time for the r-th run. The asymptotic variance of (non-

coupled) HMC can be approximated with the spectrum0.ar function of the coda R

package (Plummer et al., 2006) using a long chain: 10,000 samples after a burn-in of

1,000 using (ε,L) = (0.03,10) for logistic regression, and (0.3,10) for the log-Gaussian

Cox point process model. Relative inefficiency is then defined as the ratio of asymptotic

inefficiency (of coupled HMC) over asymptotic variance (of the corresponding non-

coupled HMC).

We study inefficiency using logistic regression and log-Gaussian Cox point pro-

cesses, both widely used in practice. Following Heng and Jacob (2019), we set ε and

L to values resulting in the smallest meeting time in section 3.5.2. We first perform

100 runs of coupled HMC kernels to get an empirical distribution of meeting time τ,

then we use this distribution to determine k and m following heuristics from Heng and

Jacob (2019): take k as either the median or the 90% sample quantile of τ and m as a

product of k and a constant, e.g. 5k or 10k—setting a large m here is helpful to get a

lower variance with an increase in computation. We then perform R = 100 independent

runs of coupled chains with different combinations of k and m—we expect a longer

chain to have a smaller variance but larger computation budget. Also bear in mind that

an ideal asymptotic inefficiency should be close to 1.

Table 3.1 shows asymptotic inefficiencies for varying k and m.4 For logistic re-

gression, with suitable choices of k,m, the relative inefficiency can be made close to

1 (W2-coupling); for the other model, the best (3.83) is attained by maximal coupling,

both of which are superior to best of Metropolis. Overall, it demonstrates that optimal

transport couplings can obtain better bias-variance trade-off than the baseline. Note

that both optimal transport couplings seem to be inefficient for m = 5k with k being the

median. This is because the chains meet quickly compared to Metropolis, and are thus

further from the stationary distribution. Table 3.1 also confirms that larger m reduces

asymptotic inefficiency at the cost of more computation. Variance reduction can also be

achieved by parallel execution.

4We kindly note that relative inefficiencies reported here for Metropolis on logistic regression differ
from Heng and Jacob (2019) by a factor ≈ 2.0, as confirmed by the authors.

60

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

k m Metropolis Maximal W2

median
5k 2.40 17.69 3.18

10k 2.39 7.37 3.73

90% quantile
5k 2.36 2.14 2.88

10k 2.32 1.90 0.94

median
5k 6.03 4.84 7.62

10k 4.81 4.01 6.00

90% quantile
5k 5.26 4.58 6.86

10k 4.61 3.83 5.80

Table 3.1: Relative inefficiency with different k and m for logistic regression (top half) and

log-Gaussian Cox point processes (bottom half). Bold indicates the one most close to 1. Note

that for each method, k is different thus inefficiencies across different coupled kernels (across

columns) are not directly comparable. Instead, we aim to study if the relative inefficiency can

be made close to 1 with suitable parameters (across rows).

Metropolis Maximal W2

0.1 0.2 0.3 0.4
0

250

500

750

1000

ε

τ

(a) L = 5

0.1 0.2 0.3 0.4
0

250

500

750

1000

ε

τ

(b) L = 10

0.1 0.2 0.3 0.4
0

250

500

750

1000

ε

τ

(c) L = 15

Figure 3.4: Averaged meeting time τ̄ with different ε and L for 1,000D Gaussian.

3.5.4 Robustness: meeting time with more parameter sweeps

Figure 3.4, 3.5 and 3.6 provide a wider range of parameter sweep under the same

experimental setup as Section 3.5.2. We can see the proposed method with both kernels

in general has a better meeting time than coupled Metropolis HMC over a wider range

of parameters. However, not only there is no clear winner between maximal and W2

couplings but also, maybe counter-intuitively, maximal coupling performs pretty well

on the logistic regression target. In general, we do expect the maximal coupling perform

well on log-concave targets (with mild assumptions)—this is in fact the conditions for

which we proved the convergence of our method (with maximal coupling first, followed

by W2 coupling). With this being said, for more complex targets, there is no such

61

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Metropolis Maximal W2

0.01 0.02 0.03 0.04
0

250

500

750

1000

ε

τ

(a) L = 10

0.01 0.02 0.03 0.04
0

250

500

750

1000

ε

τ

(b) L = 20

0.01 0.02 0.03 0.04
0

250

500

750

1000

ε

τ

(c) L = 30

Figure 3.5: Averaged meeting time τ̄ with different ε and L for logistic regression.

Metropolis Maximal W2

0.1 0.2 0.3 0.4
0

250

500

750

1000

ε

τ

(a) L = 10

0.1 0.2 0.3 0.4
0

250

500

750

1000

ε

τ

(b) L = 20

0.1 0.2 0.3 0.4
0

250

500

750

1000

ε

τ
(c) L = 30

Figure 3.6: Averaged meeting time τ̄ with different ε and L for log-Gaussian Cox point process.

guarantee any more. The next section shows two examples of such, which are targets

with multi-modality and targets that are high non-convex, in both of which W2 couplings

show consistent advantages.

3.5.5 Multi-modal and highly non-convex targets

We first study how proposed methods behave on multi-modal distributions. Specifically,

we want to know if the coupled chains can meet in a short time given the target

is multi-modal. We consider a mixture of Gaussians on R2 with three components

N ([−1,−1],0.252I), N ([0,0],0.252I), N ([1,1],0.252I) weighted by 0.25, 0.4 and

0.35 respectively. We initialise chains from U([0,1]2), covering two of the modes. We

simulate R = 500 pairs of chains and check if they meet within 100 iterations. Denoting

the number of chains which meet as Nτ, we report iτ = Nτ/R as a measure of efficiency

in meeting. Regarding the choice of ε,L, it is known that HMC is sensitive to the total

trajectory length εL in multi-modal distributions: it requires the Hamiltonian simulation

long enough to allow jumps between modes. Therefore, starting with (ε,L) = (0.1,10),

we consider two ways of increasing εL: sweeping ε ∈ {0.1,0.15, . . . ,0.3} and sweeping

62

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

εL

M
ee

tin
g

ef
fic

ie
nc

y Metropolis
Maximal
W2

Figure 3.7: Meeting efficiency on the mixture of Gaussians target with the total trajectory length

εL increasing. Solid lines are from increasing ε and dashed ones from increasing L.

Momentum Metropolis Maximal W2

Shared 136.6±95.8 112.4±74.9 103.8±76.5

Contractive 39.7±18.9 81.3±56.3 77.2±48.1

Table 3.2: Effect of different momentum coupling methods on meeting time for the Banana

target.

L ∈ {10,15, . . . ,30}, equivalently providing a range of total lengths between 1 and 3.

While both means increase the trajectory length, the first approach doesn’t introduce

additional computation but might lead to larger simulation errors, which may then

affect the overall performance. Figure 3.7 provides iτ under such changes of total

trajectory lengths for all methods. First, by increasing εL, our proposed methods overall

improve the meeting efficiency, which is not the case for coupled Metropolis HMC.

This can be explained by the following: for coupled Metropolis HMC, meetings can

only happen if two chains are proposed to the same mode. However, for coupled

multinomial HMC, as long as the trajectories explore common modes, there is a chance

for meeting. Especially with W2-coupling, this chance is further increased by utlizing

the actual distances between pairs to find coupling, making it the best in the figure.

Second, regarding the two ways of increasing εL, for our proposed methods, increasing

L appears to be better as we expected. That said, the gap is relatively small—coupled

multinomial HMC tends to be robust against large ε, which is practically useful as it

allows the use of a smaller amount of computation comparing to increasing L. Note

that we do not claim or indicate our methods improve the mixing in multi-modal

distributions, which by itself is an important and unsolved issue for HMC.

63

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Second, to examine the proposed methods on highly non-convex distributions, we

consider a banana-shaped distribution on R2, of which the potential is given by the

Rosenbrock function U(x1,x2) = (1− x1)
2 +10(x2− x2

1)
2 (x1,x2 ∈ R). As it is done in

(Heng and Jacob, 2019), we also take this chance to study the effect of other methods

for coupling the initial momentums rather than simply sharing them. Specifically, we

consider the contractive coupling from (Bou-Rabee et al., 2020), in which the initial

momentums P1,P2 are sampled based on the current positions Q1,Q2 as follow

P1 ∼N (0, I),

P2 =


P1 +κ∆ with prob.

N (∆̄>P1+κ|∆|;0,1)
N (∆̄>P1;0,1)

P1−2(∆̄>P1)∆̄ otherwise

where κ > 0 is a tuning parameter, ∆ = Q1−Q2 is the difference in position space

and ∆̄ is the corresponding normalised difference. With initial states sampled from

U([0,1]2), we simulated R = 500 pairs of coupled chains with (ε,L) = (1/50,50) for

maximally 500 iterations with two momentum coupling methods: shared momentum

and contractive coupling with κ = 1. We summarise means and standard deviations of τ

from R runs in table 3.2.

First of all, all method with two momentum coupling methods can meet within 150

iterations in such high non-convex setup. Also, it can be seen that our methods can

also benefit from contractive coupling, even though it is derived as a maximal coupling

(Thorisson, 2000) for Metropolis HMC. This is the reason why coupled Metropolis

HMC is largely improved by it. That is to say, contractive coupling is an orthogonal

method of ours rather than a replacement. Note that the table should not be used to

compare coupled multinomial HMC against coupled Metropolis HMC in terms of

meeting time because they have different optimal parameters for meeting in this target.

3.6 Related Work

Research on couplings for MCMC methods has a long history (Devroye, 1990; Johnson,

1996, 1998; Rosenthal, 1997; Meyn and Tweedie, 2012; Rowland et al., 2018; Nuesken

and Pavliotis, 2018; Jacob et al., 2019a; Biswas et al., 2019). Couplings for HMC

has been more recently focusing on Metropolis HMC, e.g. Neal (2017). Most closely

related to our work is Heng and Jacob (2019), in which coupling for Metropolis HMC is

established. Bou-Rabee et al. (2020) studied the convergence of Metropolis HMC, and

64

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

also proposed a new way to couple momentum variables, called contractive coupling,

that does not rely on simply sharing them.

Developing or improving parallel MCMC methods has surged an interest in recent

years due to cheaper parallel computing resources. For example, Neiswanger et al.

(2013) proposed to distribute the computation of the complete dataset into subsets;

Goodman and Weare (2010) develops a method that running multiple MCMC chains

and combine them every few iterations. A separate direction of scaling up MCMC

methods to large data is to use stochastic information via mini-batches at each iteration

only (Korattikara et al., 2014) which also has been done in the context of HMC (Welling

and Teh, 2011; Chen et al., 2014).

Our analysis in section 3.4 is also related to works on convergence analysis of HMC

on log-concave targets (Mangoubi and Smith, 2017; Chen and Vempala, 2019).

65

Appendix

3.A Additional Background

3.A.1 Properties of Hamiltonian flow

The flow map Φt has the following properties:

1. (Reversibility). ∀ t ∈ R+, the inverse flow map Φ
−1
t satisfies Φ

−1
t = R◦Φt ◦R,

where R(q, p) = (q,−p) denotes the momentum reversal operation.

2. (Energy conservation). The Hamiltonian E of the system satisfies E ◦ Φt = E .

3. (Measure preservation). For any t ∈R+ and A∈B(R2d), we have Leb2d (Φt(A))=

Leb2d(A), where Lebd denotes the Lebesgue measure on Rd .

Together the properties ensures that the Markov kernel defined by the Hamiltonian flow

leaves the extended target distribution π̄ invariant.

3.A.2 Properties of leapfrog integration

The numerical flow map Φ̂ε,L enjoys the following two inequalities due to the sym-

plecticity of order-two leapfrog integrators (Hairer et al., 2006)∥∥Φ̂ε,L(q0, p0)−ΦεL(q0, p0)
∥∥≤Ca(q0, p0,L)ε2 (3.27)

∥∥E
(
Φ̂ε,L(q0, p0)

)
−E(q0, p0)

∥∥≤Cb(q0, p0,L)ε2 (3.28)

for some positive constants Ca and Cb. These two inequalities are used in several places

through our theoretical analysis, e.g. in Section 3.B.2 and Section 3.B.4.

67

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

3.B Technical Details

3.B.1 Proof of Lemma 3.4.1

Proof. Suppose K̄ γ

ε,L satisfies Condition 1 on the set S for some ε̄ > 0, L̄ ∈ N.

First observe that

prγ

ε,L
(∥∥Q1

1−Q2
1
∥∥≤ ρ

∥∥Q1
0−Q2

0
∥∥ | (Q1

0,Q
2
0) = (q1,q2)

)
= EK̄ γ

ε,L
1
{∥∥Q1

1−Q2
1
∥∥≤ ρ

∥∥q1−q2∥∥}
= EP∼N (0,I)

[
E(l1,l2)∼γ1(Rq1,q2,P) | P

]
where we have let Rq1,q2,p denote the set of events where we have contraction, i.e.

Rq1,q2,p =
{∥∥Φ̂

◦
ε,l1(q

1, p)− Φ̂
◦
ε,l2(q

2, p)
∥∥≤ ρ

∥∥q1−q2∥∥}
By Condition 1 we know that there exists ω1 ∈ (0,1) such that

P(l1,l2)∼γ

(
Rq1,q2,p

)
≥ ω1 (3.29)

for all (q1,q2, p) ∈ S×S×Lk0(K), where k0 > 0. By the tower property of expectation,

this immediately implies that

EP∼N (0,I)

[
E(l1,l2)∼γ1(Rq1,q2)1{K(P)≤ k0} | P

]
≥ EP∼N (0,I)ω11{K(P)≤ k0}

= ω1PP∼N (0,I)({K(P)≤ k0})

> 0

where the last inequality follows from the fact that the level sets Lk0(K) are closed for any

k0 > 0 since K is continuous and bounded and therefore compact, in addition to having

positive Lebesgue measure. Since equation 3.29 holds for all (q1,q2, p)∈ S×S×Lk0(K)

with ω1 > 0, we have

inf
q1,q2∈S

prγ

ε,L
({∥∥Q1

1−Q2
1
∥∥≤ ρ

∥∥Q1
0−Q2

0
∥∥}

∩{K(P)≤ k0} | (Q1
0,Q

2
0) = (q1,q2)

)
≥ ω1ω2

> 0

(3.30)

where we have let ω2 = PP∼N (0,I)(K(P)≤ k0).

68

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

In words, for any initial points (q1,q2) ∈ S×S, a single application of the kernel

K̄ γ

ε,L decreases the distance with non-zero probability. Equipped with this, proving the

desired statement is just a matter of ensuring that we can indeed apply equation 3.30

repeatedly to get the states sufficiently close to each other. A straightforward approach

to this is to simply choose the stepsize to be sufficiently small such that even when

taking the required number of steps to get within the desired δ-ball, every step taken

is still within a set where equation 3.30 holds. This is exactly the approach taken in

Heng and Jacob (2019) and so the rest of the proof is essentially identical to the last

paragraph in the proof of Proposition 1 in Heng and Jacob (2019).

Consider u0 > infq∈SU(q), and u1 < supq∈SU(q) with u0 < u1, and let A` :=

L`(US)×Lu1−`(K) ⊂ Lu1(E) for ` ∈ (u0,u1). Since continuity and convexity of US

imply that this is a closed function, its level sets L`(US) are closed. Moreover, under

the assumptions on U and S, it follows that these level sets are compact with positive

Lebesgue measure. Note that if (q, p) ∈ A`, due to energy conservation and continuity

of U , the mapping t 7→ Φ◦t (q, p) imply that Φ◦t (q, p) ∈ Lu1(US) for any t ∈ [−T,T].

Due to time discretisation, using equation 3.28 and compactness of A` we can only

conclude that there exists η0 > 0 such that Φ̂◦
ε,l(q, p) ∈ Lu1+η0(U) for all (q, p) ∈ A`

and l = Lb, ...,L f . Let n0 = min{n ∈ N : ρnB≤ δ}, where B := supq1,q2∈S
∥∥q1−q2

∥∥.

By choosing v0 ∈ (u0,u1), k0 > 0, and η0 > 0 small enough such that

v0 +(n0 +1)k0 +n0η0 < u1

holds, we have Q1
k ,Q

2
k ∈ S for all k = 1, . . . ,n0. Hence, by repeated application of equa-

tion 3.30,

inf
q1,q2∈S0

prε,L
(∥∥Q1

n0
−Q2

n0

∥∥≤ δ | (Q1
0,Q

2
0) = (q1,q2)

)
> 0

with S0 = Lv0(US), exactly as in Proposition 3.4.1.

3.B.2 Proof of Lemma 3.4.2

Lemma 3.B.1. Suppose that the potential U satisfies Assumptions 4 and 5. For any

compact set A⊂ S×S×Rd , there exists a trajectory length T > 0 and a step size ε1 > 0

s.t. for any ε ∈ (0,ε1] and any t ∈ [−T,T]\{0} with l := t/ε ∈ Z, there exists ρ ∈ [0,1)

satisfying ∥∥Φ̂
◦
ε,l(q

1
0, p0)− Φ̂

◦
ε,l(q

2
0, p0)

∥∥≤ ρ
∥∥q1

0−q2
0
∥∥ (3.31)

for all (q1
0,q

2
0, p0) ∈ A.

69

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Proof. As the leapfrog integrator is of order two (Hairer et al., 2006; Bou-Rabee et al.,

2020), for any sufficently small step size ε and number of step l states above, we

have
∥∥Φ̂ε,l(q0, p0)−Φt(q0, p0)

∥∥≤C1(q0, p0, t)ε2 and similar for its position-projected

correspondence ∥∥Φ̂
◦
ε,l(q0, p0)−Φ

◦
t (q0, p0)

∥∥≤C1(q0, p0, t)ε2 (3.32)

where C1(q0, p0, t) is some constant that only depends on q0, p0 and t.

By (Lemma 1, Heng and Jacob, 2019), with some fixed T , we have ρ′ ∈ [0,1)

satisfying ∥∥Φ
◦
t (q

1
0, p0)−Φ

◦
t (q

2
0, p0)

∥∥≤ ρ
′∥∥q1

0−q2
0
∥∥ (3.33)

for any t ∈ (0,T] and all (q1
0,q

2
0, p0) ∈ A. Since Φ◦t (q

1
0,−p0) = Φ◦−t(q

1
0, p0), applying

(Lemma 1, Heng and Jacob, 2019) again with the momentum variable negated, we

have equation 3.33 for t ∈ [−T,0). Therefore equation 3.33 holds for t ∈ [−T,T]\{0}.

With these two intermediate results, we can now bound the left-hand side (LHS)

of equation 3.31 for any t ∈ [−T,T]\{0} with l = t/ε ∈ Z and all (q1
0,q

2
0, p0) ∈ A∥∥Φ̂

◦
ε,l(q

1
0, p0)− Φ̂

◦
ε,l(q

2
0, p0)

∥∥
=‖Φ̂◦ε,l(q1

0, p0)−Φ
◦
t (q

1
0, p0)−

Φ̂
◦
ε,l(q

2
0, p0)+Φ

◦
t (q

2
0, p0)+Φ

◦
t (q

1
0, p0)−Φ

◦
t (q

2
0, p0)‖

≤
∥∥Φ̂
◦
ε,l(q

1
0, p0)−Φ

◦
t (q

1
0, p0)

∥∥+∥∥Φ̂
◦
ε,l(q

2
0, p0)−Φ

◦
t (q

2
0, p0)

∥∥+∥∥Φ
◦
t (q

1
0, p0)−Φ

◦
t (q

2
0, p0)

∥∥
≤
(
C(q1

0, p0, t)+C(q2
0, p0, t)

)
ε

2 +ρ
′∥∥q1

0−q2
0
∥∥

where the third line is a result of the triangle inequality and the last line comes from equa-

tion 3.32 and equation 3.33 respectively. As limε→0
(
C(q1

0, p0, t)+C(q2
0, p0, t)

)
ε2 = 0,

for any ρ ∈ (ρ′,1), there exists a step size ε1 > 0 such that for any ε≤ ε1, equation 3.31

holds.

3.B.3 Proof of Proposition 3.B.1

For the sake of presentation, in this section we only consider Condition 1 for m = 1.

To prove that γ∗ satisfies Condition 1 for m > 1 follows the exact reasoning since

equation 3.15 in Lemma 3.4.2 still holds when both sides are raised to some positive

power m.

70

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Proposition 3.B.1. Suppose that U satisfies Assumptions 4 and 5. For any compact set

A⊂ S×S×Rd and any parallel-in-time joint J‖ ∈RK×K , there exists a trajectory length

T > 0, a step size ε1 > 0 s.t. for any ε ∈ (0,ε1] and any L1,L2 ∈N with L1+L2 = K−1

and εL1,εL2 < T , there exists ρ̃ ∈ (0,1) satisfying

E(i, j)∼J‖

∥∥∥Φ̂
◦
ε,li(q

1, p)− Φ̂
◦
ε,l j

(q2, p)
∥∥∥≤ ρ̃

∥∥q1−q2∥∥ (3.34)

for all (q1,q2, p) ∈ A, where lk is the k-th entry of the vector [−L1, . . . ,0, . . . ,L2].

Proof. By definition, J‖ has only diagonal entries, thus (i, j)∼ J‖ is equivalent to (i, i)

with i ∼ diag(J‖). Denote the left-hand side of equation 3.34 as A1, expanding and

rearranging A1 and applying Lemma 3.4.2, we have

A1 =
L1+L2+1

∑
k=0

P(i = k)
∥∥Φ̂
◦
ε,lk(q

1, p)− Φ̂
◦
ε,lk(q

2, p)
∥∥

= ∑
k 6=L1+1

P(i = k)
∥∥Φ̂
◦
ε,lk(q

1, p)− Φ̂
◦
ε,lk(q

2, p)
∥∥

+P(i = L1 +1)
∥∥Φ̂
◦
ε,0(q

1, p)− Φ̂
◦
ε,0(q

2, p)
∥∥

≤ ∑
k 6=L1+1

P(i = k)ρlk

∥∥q1−q2∥∥
+P(i = L1 +1)

∥∥q1−q2∥∥
= Ei[ρli]

∥∥q1−q2∥∥
:= ρ̃

∥∥q1−q2∥∥
where we let ρ0 = 1. As ρl ∈ (0,1) for l 6= 0 and ρ0 = 1, Eiρli =∑kP(i= k)×ρlk ∈ (0,1)
by the property of convex combination. In other words, we have ρ̃ ∈ (0,1).

3.B.4 Proof of Proposition 3.4.2

Proof. For two length-K Hamiltonian trajectories t1 and t2, denote xxx= [E(t1
1), . . . ,E(t1

K)]

and yyy= [E(t2
1), . . . ,E(t2

K)] as vectors of the Hamiltonian energy of all phasepoints. With

the softmax function σ(xxx)i = exp(−xxxi)/∑i′ exp(−xxxi′), the entries of µµµ and ννν can be

expressed as

µi = σ(xxx)i ν j = σ(yyy) j

71

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

By the Cauchy–Schwarz inequality, we have ‖σ(xxx)−σ(yyy)‖1 ≤
√

K‖σ(xxx)−σ(yyy)‖.
With this, we can then upper-bound DTV(µµµ,ννν) as

DTV(µµµ,ννν) = DTV(σ(xxx),σ(yyy))

=
1
2
‖σ(xxx)−σ(yyy)‖1

≤ 1
2

√
K‖σ(xxx)−σ(yyy)‖

Denote the energy of the initial phase points in each trajectory (q1
0, p0) and (q2

0, p0) as

E1
0 and E1

0 and let E1
i := xxxi and E1

j := yyy j; note that for some i0 ∈ {1, . . . ,K} we have

E(tc
i0) = Ec

0 for c = 1,2, i.e. i0 represents the initial time-index which is shared between

the two. As the leapfrog integrator is of order two (Hairer et al., 2006; Bou-Rabee et al.,

2020), for any sufficiently small step size ε = T/L, we have

|Ec
0 −E(tc

i))| ≤C2(qc
0, p0) ti ε

2 ≤C2(qc
0, p0)T ε

2 (3.35)

for c = 1,2, where ti denotes the corresponding integration time for the i-th phase

point from the first phase point. Denote the energy differences as ∆1
i = E(t1

i)−E1
0 and

∆1
j = E(t2

j)−E2
0 and observe that

σ(xxx) = σ([∆1
1, . . . ,∆

1
K]) σ(yyy) = σ([∆2

1, . . . ,∆
2
K])

Using the fact that the softmax function is 1-Lipschitz (Gao and Pavel, 2018) and

applying equation 3.35, we have

‖σ(xxx)−σ(yyy)‖=
∥∥σ([∆1

1, . . . ,∆
1
K])−σ([∆2

1, . . . ,∆
2
K])
∥∥

≤
∥∥[∆1

1, . . . ,∆
1
K]− [∆2

1, . . . ,∆
2
K]
∥∥

≤

√√√√ K

∑
k=1

C2(q1
0, p0)C2(q2

0, p0)T 2 ε4

=
√

KC2(q1
0, p0)C2(q2

0, p0)T ε
2

Substituting back into our bound on DTV(µµµ,ννν),

DTV(µµµ,ννν)≤
1
2

K
√

C2(q1
0, p0)C2(q2

0, p0)T ε
2

Since T is fixed, ε = T/L and K = L+1, we have

DTV(µµµ,ννν)≤
1
2

√
C2(q1

0, p0)C2(q2
0, p0)T 3 L+1

L2

≤
√

C2(q1
0, p0)C2(q2

0, p0)T 3 L−1

≤
√

C2(q1
0, p0)C2(q2

0, p0)T 2
ε.

(3.36)

72

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

Finally, note that the upper-bound decreases in with ε and T , hence for any given

δ > 0, there exists ε0 > 0, L0 ∈ N such that DTV(µµµ,ννν)≤ δ for all ε ∈ (0,ε0) and L ∈ N
satisfying εL < ε0L0 = T .

3.B.5 Proof of Lemma 3.4.3

Similarly to in appendix 3.B.3 we only consider Condition 1 with m = 1 as the case of

m > 1 follows similarly.

To prove Lemma 3.4.3 we first restate a more detailed version of the lemma, which

we then prove.

Lemma 3.B.2. Suppose that the potential U satisfies Assumptions 4 and 5. For a

maximal coupling γ∗, there exists a trajectory length T > 0 and a step size ε2 > 0 such

that for any ε ∈ (0,min{ε1,ε2}] and any t ∈ [−T,T]\{0} with l := t/ε ∈Z, there exists

ρ2 ∈ (0,1) satisfying

E(l1,l2)∼γ∗
∥∥Φ̂
◦
ε,l1(q

1, p)− Φ̂
◦
ε,l2(q

2, p)
∥∥≤ ρ

∥∥q1−q2∥∥ (3.37)

for all (q1,q2) ∈ S×S, where K̄ ∗
ε,l is the coupled kernel in algorithm 3.2 with (i) shared

momentum, (ii) shared forward and backward simulation steps and (iii) (i, j)∼ γ∗ for

intra-trajectory sampling.

Proof. We first decompose γ∗ into its “diagonal” and “non-diagonal” components

γ
∗ = ωJ‖+(1−ω)J∦

where 1−ω = P(i 6= j) and J∦ is defined to be the residual with normalisation. Thus

we have
A2 := ωEJ‖

∥∥∥Φ̂
◦
ε,li(q

1, p)− Φ̂
◦
ε,l j

(q2, p)
∥∥∥

+(1−ω)EJ∦

∥∥∥Φ̂
◦
ε,li(q

1, p)− Φ̂
◦
ε,l j

(q2, p)
∥∥∥

≤ ωρ̃
∥∥q1−q2∥∥

+(1−ω)EJ∦

∥∥∥Φ̂
◦
ε,li(q

1, p)− Φ̂
◦
ε,l j

(q2, p)
∥∥∥

(3.38)

for T > 0, ε∈ (0,ε1] and ρ̃∈ (0,1) in Proposition 3.B.1. As EJ∦

∥∥∥Φ̂◦
ε,li(q

1, p)− Φ̂◦
ε,l j

(q2, p)
∥∥∥

is finite, by Proposition 3.4.2, the limit of the upper bound goes to ρ̃
∥∥q1−q2

∥∥ as ε→ 0.

In other words, for any ρ ∈ (ρ̃,1), there exists a step size ε2 > 0 such that for any

ε ∈ (0,min{ε1,ε2}],
A2 ≤ ρ

∥∥q1−q2∥∥
73

CHAPTER 3. COUPLINGS FOR MULTINOMIAL HAMILTONIAN MONTE CARLO

which is exactly what we wanted to prove.

74

Chapter 4

Variational Russian Roulette for Deep
Bayesian Nonparametrics

4.1 Introduction

A major challenge in unsupervised learning is to infer the complexity of the latent

structure, such as the number of clusters or the size of a continuous representation,

that is necessary to describe a data set. A principled way from statistics to choose the

complexity of a model is provided by Bayesian nonparametric (BNP) methods (Walker

et al., 1999; Müller and Quintana, 2004; Orbanz and Teh, 2010; Gershman and Blei,

2012). BNP methods allow for the size of the inferred model to automatically adapt to

the complexity of data, so that simpler models are preferred for smaller data sets, and

more complex models are preferred for larger data sets. For example, a latent feature

model with an Indian buffet process prior is a representation learning method that

infers a latent binary vector for each data point, where the number of binary features is

chosen adaptively based on the data. Within machine learning, Bayesian nonparametric

methods have been applied within models as diverse as clustering (Antoniak, 1974;

Görür and Rasmussen, 2010; Teh et al., 2005), topic modelling (Teh et al., 2006), and

infinite deep neural networks (Adams et al., 2010; Abbasnejad et al., 2017).

While Bayesian nonparametric models are appealing, inference in such models

can be computationally challenging. Among the most common inference algorithms

are Markov chain Monte Carlo based methods, which includes Gibbs sampling and

slice sampling (Griffiths and Ghahramani, 2011; Teh et al., 2007). These methods are

flexible but slow, making them hard to apply to large data sets. Amortised variational

75

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

methods, which is a type of variational inference method (Kingma and Welling, 2014;

Rezende et al., 2014; Ranganath et al., 2014; Mnih and Gregor, 2014), are an appealing

option, because they exploit the smoothing properties of deep neural networks to

accelerate inference. For Bayesian nonparametric models, however, amortised inference

is challenging because the dimensionality of the latent space is not fixed. Previous

methods for variational inference in such models rely on a truncated approximation,

which places an upper bound on the size of the latent space under the approximate

posterior (Blei and Jordan, 2004; Doshi-Velez et al., 2009). Similarly, recent work on

amortised inference in Bayesian nonparametrics relies on truncation, albeit sometimes

within an outer loop that searches over the truncation size (Miao et al., 2017; Nalisnick

and Smyth, 2017; Chatzis, 2014; Singh et al., 2017).

However, the use of truncated approximation has several drawbacks. If the truncation

level is chosen too small, the accuracy of the approximation degrades, whereas if the

truncation level is chosen too large, then inference will be slow, removing one of the

main advantages of variational inference. Besides, the truncation level can interact

poorly with amortised inference, because of the well-known component collapse issue

(Dinh and Dumoulin, 2016; van den Oord et al., 2017), which is also called over-pruning

(Burda et al., 2015; Yeung et al., 2017). This refers to the problem when the inferred

latent representation includes components whose conditional distribution given a test

data point tends to remain very similar to the prior.1 Perhaps more importantly, it loses

the main benefit of nonparametric approach for automatic complexity inference.

In this work, we overcome these limitations using a new dynamic variational ap-

proximation, which we call roulette-based amortised variational expectation (RAV

E). The goal of RAVE is to allow the approximate variational posterior to adapt its size

over the course of the optimisation within the variational inference framework. However,

realising this causes the problem that expectations for the evidence lower-bound (ELBO)

then require computing an infinite summation which cannot be tackled using the repara-

meterisation trick (Williams, 1992; Kingma and Welling, 2014; Rezende et al., 2014).

To surmount this problem, we use a different Monte Carlo approximation, namely, the

Russian roulette sampling method from statistical physics (Lux and Koblinger, 1991;

Carter and Cashwell, 1975; Lyne et al., 2015), which allows to approximate this sum by

1This effect is similar to the truncated approximation in that it seems to automatically determine the
number of dimensions in the latent representation. However, it is considered as a failure case of training
because otherwise the model can either manage (1) to use all the capacity (e.g. by scheduled annealing
on the KL term to use all provided latent dimensions) or (2) to avoid perform unnecessary computation
for dimensions that collapse to the prior as these dimensions do not help explain (or reconstruct) the data.

76

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

a sample from a Markov chain. This leads to an unbiased estimate of the gradient of the

ELBO which can be maximised using stochastic gradient ascent.

We demonstrate RAVE on an infinite variational autoencoder Chatzis (2014), which

assigns each data point to a continuous representation whose size is automatically

inferred from the data set. The prior on the number of components is given by an Indian

buffet process prior. We show empirically that previous amortised variational methods

suffer from the component collapsing problem and tend to infer useless components,

whereas RAVE leads to a model with many fewer components, while the overall model

has a similar explanatory power. Importantly, RAVE achieves so within the variational

inference framework without any outer-loop optimisation, which means it enjoys the

theoretical benefits of variational inference in terms of consistency, convergence, etc.

4.2 Background

In this section, we review materials from nonparametric Bayesian statistics and vari-

ational inference that are used in developing and demonstrating RAVE.

4.2.1 Indian buffet process

An important problem in representation learning is to learn to represent each data item

by a binary vector whose elements indicate latent features underlying the data. If the

necessary number of features is unknown, we can take a Bayesian approach, and place a

prior distribution over all possible latent feature matrices. One such prior distribution is

the Indian buffet process (IBP), denoted Z∼ IBP(α), which is a probability distribution

over sparse binary matrices with a finite number of rows and an unbounded number of

columns (Griffiths and Ghahramani, 2011). We define the IBP using the stick-breaking

construction (SBC) of Teh et al. (2007), which defines a distribution over Z by the

following generative process for each entry znk of the matrix

νk ∼ Beta(α,1), πk =
k

∏
j=1

ν j, znk ∼ Ber(πk) (4.1)

for n ∈ 1 . . .N and k ∈ 1,2, . . . ,∞, where znk is the n-th row and k-th column of Z.

Intuitively, we start with a stick of length 1 and break it at random to obtain a new stick

of length ν1. We then break this new stick at another random proportion ν2 to obtain

a new stick of length ν1ν2. We write Z∼ SBC(α,N,K) to indicate the distribution of

77

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

the binary matrix Z if this process is stopped after K columns, where N is the number

of data points which should be clear in context. We denote by IBP(α) the stochastic

process that results from SBC(α,N,K) as K→ ∞.

4.2.2 Latent feature model

The IBP can be used as a prior over sparse latent representation Z = [z1 . . .zN] ∈ RK×N

of data X = [x1 . . .xN] ∈ RN×D, where K is the size of the latent representation that can

potentially go to infinity. Using this prior, we model the data as

Z∼ IBP(α), A∼N (0,σ2
AI), X∼ pθ(X | Z,A), (4.2)

where A is a feature matrix; a popular model arises when A is a matrix with K rows and

D columns, and when pθ(X | Z,A) = N (X | ZA,σ2
XI). This is the well-studied linear

Gaussian model. For this linear case, the prior on A is usually omitted (Chatzis, 2014;

Singh et al., 2017) when doing amortised inference, and instead optimisation is done

for A, treating it as model parameters; I follow this choice in the experiments. As the

Gaussian likelihood model has the same role of decoder in a variational autoencoder, I

also refer to it as the linear decoder.

Alternatively, we can use a deep network to parameterised the likelihood pθ(X |Z,A).

Specifically, choose pθ(X |Z,A)=N (X | µθ(H),σθ(H)) or pθ(X |Z,A)=Ber(X | pθ(H))

where the hidden representation H := Z�A and � is the Hadamard product (Chatzis,

2014; Singh et al., 2017), µθ, σθ, and pθ are multi-layer neural networks with weights

θ. We refer to these three neural networks as a deep decoder. This choice of decoder

leads to the infinite variational autoencoder, which we describe next.

4.2.3 Infinite variational autoencoders

The infinite variational autoencoder (infinite VAE) arises when apply variational infer-

ence to the deep latent feature model of the previous section (Chatzis, 2014). In that

model, the posterior distribution over the latent variables p(Z,A,ννν | X) is intractable,

so one popular approximate inference is variational inference. Singh et al. (2017)

present a structured variational inference method for this model, based on the method

of Hoffman and Blei (2015), which performs better than the more common mean-field

approximation, as it introduces dependencies in the approximate posterior distribution,

78

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

between Z and ννν. The variational posterior from Singh et al. (2017) has the form

q(Z,A,ννν(1:K)) = q(A)q(ννν(1:K))
N

∏
n=1

K

∏
k=1

q(znk | ννν(1:K)),

where K is the truncation level. Each component of q has parameters, called variational

parameters, which are optimised to make q(Z,A,ννν(1:K)) as close as possible to the true

posterior p(Z,A,ννν(1:K)|X) as measured by the KL-divergence. This is accomplished

by optimising a lower bound called the evidence lower-bound (ELBO). Optimising

the ELBO requires sampling from a Monte Carlo estimate, which is designed to be

differentiable with respect to the model parameters and the variational parameters.

This can be made possible with the reparameterisation trick.2 Singh et al. (2017)

employs reparameterisation of the Beta distribution (Nalisnick and Smyth, 2017) and

the Bernoulli distribution (Jang et al., 2016; Maddison et al., 2016). Singh et al. (2017)

notices that using the reparameterisation tricks leads to better training than REINFORCE

(Williams, 1992; Chatzis, 2014) for VAEs with IBP priors.

4.3 Roulette-based amortised variational expectation

Now we introduce RAVE, an amortised variational inference method based on random

truncation. For concreteness, we describe RAVE in the context of a deep latent factor

model with an IBP prior, but the method can be generally applied to models with a

beta-Bernoulli process prior. First, we introduce a variational family in which the

number of latent dimensions is random, governed by its own variational parameters

(section 4.3.1); this is essentially an infinite mixture of truncated variational distributions.

Then, we present the ELBO over all the variational parameters, showing that it can

be written as an infinite sum (section 4.3.2). Then we show how Russian roulette

sampling can be used to obtain an unbiased Monte Carlo estimate the gradient of this

sum (section 4.3.3). Finally, we put all of these ideas together into a stochastic gradient

optimisation algorithm that works on a finite representation of the infinite number of

parameters (section 4.3.4).

2Alternatives include REINFORCE (Williams, 1992), which uses log-derivative trick to compute
gradient and other reparameterisation tricks such as generalised reparameterisation gradient (Ruiz et al.,
2016), and automatic differentiation variational inference (Kucukelbir et al., 2017).

79

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

4.3.1 Infinite-sized variational family

We start by describing the variational family of approximate posterior distributions that

we consider in RAVE. Unlike previous amortised variational methods, the dimensionality

is not bounded a priori, but is controlled by continuous variational parameters. We

define the variational family using the stick-breaking construction as

νk ∼ Beta(αk,βk), πk =
k

∏
j=1

ν j,

K∗ = k with probability mk = (1−ρk+1)
k

∏
i=1

ρi,

znk ∼ Ber(fφ(πk,xn) ·δ{k ≤ K∗})

(4.3)

for n ∈ 1, . . . ,N and k ∈ 1,2, . . . ,∞.3 We denote a single variational distribution in

this family as q(ννν,K∗,Z | α,β,φ,ρ). We refer this generative process as the modified

stick-breaking process (MSBC) for the IBP. In this process, αk, βk, ρk, and φ are the

variational parameters, and the neural network fφ is an inference network that amortises

the approximation of the posterior distribution. Also note that fφ (the whole inference

network) has a static-sized input and a varied-sized output, and fθ (the whole generative

network) has a varied-sized input and a static-sized output. One can also view this

variational distribution as a mixture of infinitely many truncated ones.

In the rest of presentation, the only parameters we amortise are those for the

variational distribution of Z. The parameters of the inference network are an infinite

sequence of vectors φ = (φ0,φ1, . . .) with φk ∈ RD+1. Then our inference network is

fφ(πk,xn) = σ(logit(πk)+φ
>
k [xn,1]), (4.4)

where logit is the logit function and σ is the sigmoid function.4 Note that fφ outputs a

scalar, essentially the approximate posterior distribution for a single hidden unit.

For the Beta and Bernoulli distributions, we use the Monte Carlo “reparameterisation

trick” during training for gradient. We use the Kumaraswamy reparameterisation for

the Beta distribution (Nalisnick and Smyth, 2017) and the Concrete reparameterisation

for the Bernoulli distribution (Jang et al., 2016; Maddison et al., 2016), following Singh

et al. (2017).
3Note that if we let ρk = 1 for all k, we recover the SBC for IBP(α) by letting β = 1.
4The notation [xn,1] represents vector concatenation, so that the dot product implicitly incorporates

the bias term.

80

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

We have defined this variational family to have an infinite number of parameters: all

of the variational parameters α, β, ρ and φ are infinite sequences. In order to optimise

these parameters practically, observe for any integer k the conditional distribution

q(ννν,Z | K∗ = k,α,β,φ,ρ) depends only on the first k variational parameters. It is this

property that we use to approximate the ELBO in the next section.

This completes the description of the approximate posterior distribution q(ννν,Z,K∗)
for the parameters of the IBP prior. We also need a variational distribution q(A) over

the parameters A of the observation model, which we choose to be Gaussian. It is only

amortised when using deep decoders while learned by optimisation for linear decoders

(Chatzis, 2014; Singh et al., 2017).

Lazy dense layer A lazy dense layer is a dense layer that can take arbitrary size of

input and make arbitrary size of output. Consider a normal dense layer `(x) = Wx+b,

where W has infinitely many rows and columns and b is an infinite long vector. One can

make this layer take arbitrary dimension of x ∈ RI×B, where I is the input dimension

and B is the batch size, by using the sub-matrix of W that has I columns. Similarly,

one can make this layer output an arbitrary dimension O by using the sub-matrix of W
that has O rows. In practise, W cannot be infinitely many rows and columns, but the

rows and columns can be initialised (using standard Xavier initialisation (Glorot and

Bengio, 2010)) as required during training.5 This type of lazy dense layers are used to

implement the inference and generative networks.6

4.3.2 Approximating the ELBO gradient

To find the best approximate posterior distribution, we maximise the ELBO

L =−DKL[q(ννν)‖p(ννν)]−DKL[q(A)‖p(A)]

+Eqννν

[
EqZ

[
EqA

[
log

p(X | Z,A)p(Z | ννν)
q(Z | ννν)

]]], (4.5)

5Note that there is a non-zero probability that, at inference time, a new “feature” can be initialised at
random. This appears to have little effect to the overall method because the “importance” of that feature
is really small.

6Note that an alternative to the proposed lazy dense layers here are recurrent neural networks.
However, during initial investigation, they were found to be much harder to train thus not used in the
final method.

81

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

which can be derived from the KL-divergence between the marginal distribution

q(ννν,Z,A)7 and the true posterior p(ννν,Z,A|X).8 Optimising this function is chal-

lenging for several reasons. First, there are an infinite number of variational parameters,

so we need to obtain a finite representation. Second, the distribution q(Z | ννν) in the

third term is not easy to compute, because it is a marginal distribution q(Z | ννν) =
∑

∞
k=0 q(Z,K∗ = k | ννν). Finally, optimising with respect to ρ is particularly challenging,

intuitively because ρ determines the stochastic control flow of q; see algorithm 4.1.

Specifically, there is no gradient for the parameters ρk of the auxiliary stopping variables

from the terms under the expectation of qZ (the second expectation in second line of

equation 4.5), because they vanish once we apply the Monte Carlo approximation.

Computing the first two terms of equation 4.5 is straightforward (see appendix 4.A).

For the third term, we re-write this expectation using the tower property (a.k.a. the law

of total expectation)

EqA

[
EqZ

[
log

p(X | Z,A)p(Z | ννν)
q(Z | ννν)

]]
=EqA

[
∞

∑
k=0

mkEqZ

[
log

p(X | Z,A)p(Z | ννν)
q(Z | ννν)

| K∗ = k
]]

.

(4.6)

Because the expectation now conditions on K∗ = k, we know that Z will have at most

k nonzero columns, and so the numerator within the expectation is now computable.

The denominator q(Z | ννν) is still challenging, because it marginalises out K∗, and still

contains an infinite sum. We can obtain a slightly looser variational lower bound using

the inequality

q(Z | ννν) =
∞

∑
j=1

m jq(Z | K∗ = j,ννν)≤ q(Z | K∗ = K†,ννν), (4.7)

where K† := max{k | ∃n,znk 6= 0}, the maximum column index for which that column

of Z is not all 0s. The inequality comes from two facts. First, q(Z|K∗ = j,ννν) = 0

for j < K† because it is impossible to generate more than j features if the process

is truncated at j. Second, q(Z|K∗ = j,ννν) is a monotonically decreasing function for

j ≥ K† because observing more columns of zeros will only decrease the probability

under the Bernoulli distribution. A more detailed proof is provided in the appendix 4.B.

7We have omitted the dependence of q on the variational parameters for brevity.
8Note that here we present the formulation in which A is treated as a latent variable, which is the case

we assume for deep decoder. For the linear model, we do optimisation for A thus the corresponding KL
term and expectation disappear.

82

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

Combining equation 4.5–equation 4.7, we obtain the training objective

L̃ =
∞

∑
k=0

mkL̃k, (4.8)

where
L̃k =−DKL[q(ννν)‖p(ννν)]−DKL[q(A)‖p(A)]

+EqA

[
Eqννν

[
EqZ

[
log

p(X | Z,A)p(Z | ννν)
q(Z | K∗ = K†,ννν)

| K∗ = k
]]]. (4.9)

Note that we also move the KL terms for ννν and A inside the infinite summation. This is

valid as the infinite summation is an expectation. This expectation cannot be computed

exactly, but we will present a method for approximating it in the next section.

When RAVE is used with the IBP, we will refer to the overall method as RRS-IBP,

where RR stands for Russian roulette and S stands for either structured or sampling, at

the reader’s option.

Interpretation as a mixture of random truncation We give another interpretation

of the ELBO in equation 4.8. During training, L̃k is exactly the ELBO for the truncated

variational method with truncation level k (Singh et al., 2017). Therefore, the lower

bound L̃ that we use can be interpreted as the expectation of the truncated ELBO,

where the expectation is taken over our variational distribution q(K∗ = k) = mk over

the truncation level.

4.3.3 Russian roulette estimation of the ELBO gradient

Finally, we describe how we optimise the ELBO L̃ . To simplify the presentation, we

introduce the notation ψk = (αk,βk,φk,θk)
9, the vector of the variational and model

parameters for component k, except for ρk, and we define the matrix ψ1:k = (ψ1 . . .ψk).

Then, L̃ has the form

L̃ =
∞

∑
k=1

mkTk(ψ1:k), (4.10)

where mk = (1−ρk+1)∏
k
i=1 ρi depends only on ρ1:k+1, and Tk depends only on the

other parameters ψ1:k. This can be optimised by stochastic gradient ascent if we can

obtain an unbiased estimate of its gradient.

9We assume φk or θk subsumes the corresponding parameter of q(A) when it is modelled, for the
deep and linear model respectively.

83

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

First, the gradient with respect to ψk is

∂ψk :=
∂L̃
∂ψk

=
∞

∑
i=k

mi
∂Ti

∂ψk
. (4.11)

We assume each ∂Ti
∂ψk

can be computed by standard automatic differentiation techniques.

To estimate this, we use a Russian roulette estimate ∂̂R
ψ with probabilities mt . More

specifically, we sample τ with probability P(τ = t) = mt , and then return the estimate

∂̂R
ψk

= ∂̂τ
ψk

, where

∂̂
τ
ψk

=
τ

∑
i=k

mi(
∏

i
j=1 ρ j

) ∂Ti

∂ψk
=

τ

∑
i=k

(1−ρi+1)
∂Ti

∂ψk
. (4.12)

To derive the derivatives for ρk, first the chain rule yields

∂ρk :=
∂L̃
∂ρk

=
∂L
∂m

∂m
∂ρk

=
∞

∑
i=1

∂L̃
∂mi

∂mi

∂ρk
=

∞

∑
i=1

Ti
∂mi

∂ρk
, (4.13)

where ∂L
∂mi

= Ti and

∂mi

∂ρk
=


0 i < k−1

− mi
1−ρk

i = k−1
mi
ρk

i > k−1

. (4.14)

This yields

∂ρk =
∞

∑
i=k−1

miwiTi, wi =


1

ρk−1 i = k−1

1
ρk

i > k−1
. (4.15)

where we use the fact that ∂mi
∂ρk

= 0 for k ≥ i.

Finally, the Russian roulette estimate ∂̂R
ρk

is

∂̂
τ
ρk
=

τ

∑
i=k−1

miwiTi(
∏

i
j=1 ρ j

) =
τ

∑
i=k−1

(1−ρi+1)wiTi (4.16)

with probability P(τ = t) = mt .

Now, each Ti is still difficult to compute, because it contains the expectation

EqA

[
Eqννν

[
EqZ

[
log

p(X | Z,A)p(Z | ννν)
q(Z|K∗ = K†,ννν)

| K∗ = i
]]]

.

We obtain a Monte Carlo approximation of both of these expectations using the standard

reparameterisation tricks for beta-Bernoulli processes.

84

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

In general, the Russian roulette estimation can have high variance, but what makes

it so nice for variational inference is that because we are using a stick breaking con-

struction, the earlier terms in the summation are the most important to include in the

estimate.10

4.3.4 Stochastic gradient algorithm

Now that we have Monte Carlo estimates of the necessary derivatives, we can define

the stochastic gradient algorithm. The key point is how we operate with only a finite

representation of the variational parameters; essentially, we lazily instantiate only

the finite subset of variational parameters that receive stochastic gradient updates.

More specifically, at every point in the optimisation algorithm, we maintain a finite

representation of the variational parameters ψ = (ψ0 . . .ψL) and ρ = (ρ0 . . .ρL). These

matrices will lazily grow in size as needed, that is, L will grow over the course of the

optimisation. At the beginning of the algorithm L = 0, each iteration of stochastic

gradient ascent computes new parameters (ψ′,ρ′) from the current values (ψ,ρ). To

do this, first we sample τ from the distribution P(τ) defined in the previous section.

Importantly, it can happen that τ > L, which means that the current iteration will

introduce new parameters, which are initialised to default values. To make this clear,

see algorithm 4.1. Given a value of τ, we make the gradient updates

ψ
′
k← ψk + ε0∂̂

τ
ψk
, k ∈ 1,2, . . .τ

ρ
′
k← ρk + ε1∂̂

τ
ρk
, k ∈ 2,3, . . .τ+1

where ε0 and ε1 are step sizes. We only need perform the updates for k ∈ 1,2, . . .τ for

ψk because ∂̂τ
ψk

= 0 if k > τ, and similarly for ∂̂τ
ρk

. We enforce that ρ1 = 1 to ensure

τ > 0. Note that the gradient steps for ρ are important to the method, because this

determines the inferred number of features. Finally, in practice each gradient is an

average over M independent roulette samples; Appendix 4.D describes how to reuse

computation over the samples.

10It is also possible to estimate equation 4.11 and equation 4.14 via naive MC estimation as both
of them can be written as an expectation under m. However, this estimate is of high variance which
cannot be easily overcame by using more samples. We empirically illustrate this in appendix 4.C with
comparison to our Russian roulette estimates.

85

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

Algorithm 4.1 Sampling the truncation level τ during variational optimisation, with

lazy parameter initialisation.
Input: The IBP parameter α

1: t← 0

2: loop
3: t← t +1

4: if t > L then
5: Sample initial weights ε0 ∼N (0, I)

6: ρt+1← 0.5, αt ← α, βt ← 1.0, φt ← ε0, θt ← ε0

7: L← L+1

8: end if
9: return τ = t with probability 1−ρt+1

10: end loop

4.4 Experiments

To evaluate the RRS-IBP method, we compare it with two previous amortised inference

approaches for IBP models: mean-field Indian buffet process (MF-IBP) (Chatzis, 2014)

and structured Indian buffet process (S-IBP) (Singh et al., 2017). Following Singh

et al. (2017), a multiplier greater than 1 is put on the KL term for ννν during training for

structured variational methods, to encourage adhering to the IBP prior. See appendix 4.E

for other training details. Source code of the implementation of our method is also

available at https://github.com/xukai92/RAVE.jl.

4.4.1 Synthetic data

First, in order to check the correctness of the inference, we compare the different

inference methods on synthetic dataset, for which the true data distribution and number

of components are known. This data set, proposed by Griffiths and Ghahramani (2011),

contains 6×6 gray-scale images, each of which are generated as a linear combination

of four black and white images with random weights, plus Gaussian noise N (0,0.12).

We sample 2,400 images for training and 400 held-out images for testing. 11

All inference methods are applied to the linear-Gaussian IBP model (section 4.2.1).

11Different from Griffiths and Ghahramani (2011) in which each feature is activated with probability
0.5, we sample an activation matrix Z ∼ SBC(4.0,2800,4) (equation 4.1) and generate the dataset as
X = ZA, where A is the predefined feature matrix.

86

https://github.com/xukai92/RAVE.jl

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

(a) MF-IBP

0.0 0.2 0.4 0.6 0.8

(b) S-IBP

0.0 0.2 0.4 0.6 0.8

(c) RRS-IBP

Figure 4.1: Features learned by VAEs (α = 4.0)

We set α = 4 so that the expected number of components is not the same as the true

distribution. For MF-IBP and S-IBP, the truncation level is set to 9, greater than the

number of true features in the data.

First, we are interested in whether the inference methods identify the correct num-

ber of features for this data. One way to measure this is by the expected number

of features per images under the posterior distribution, which we define as M =

N−1
∑

N
n=1EqZ [∑k znk | xn] , where xn are the test images. For the true generating process,

M = 2.275. Because the training data set is large, and the model family contains the

generating distribution, the variational approximations should identify a similar number

of features. We find that M = 5.647 for MF-IBP and M = 6.021 for S-IBP, while

M = 3.464 for RRS-IBP. In other words, both MF-IBP and S-IBP infer many more

features than are present in the true distribution, while RRS-IBP infers a value that is

closer to the true one.

It may be surprising that the methods are inferring such different values for the

number of features, because all three approximate the same posterior distribution. To

understand this better, we visualise the learned features in figure 4.1, which is simply

the matrix A in the linear decoder. As we can see, S-IBP and RRS-IBP recover four

black-and-white image features, which indeed are the images that were used to generate

the data. MF-IBP recovers these four features up to a scaling of the image intensities, but

also introduces an unnecessary negative feature (lower left in figure 4.1a). Additionally,

both MF-IBP and SS-IBP infer several useless features, which we will refer as “dummy

features”.

Such dummy features do no harm if they are never activated, that is, if their cor-

responding column in Z is always zero. However, in 4.2a, we plot the activation

frequencies, i.e. the number of features activated from a single sample of q(Z | ννν),
inferred by S-IBP, for the testing set. This figure shows that the some top features

87

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

2 4 6 8
k-th feature

0

100

200

300
Fr

ac
tio

n

(a) S-IBP

2 4
k-th feature

0

100

200

300

Fr
ac

tio
n

(b) RRS-IBP

0 2 4 6 8
k

0.0

0.2

0.4

0.6

0.8

P(
K

*
=
k)

(c) P(K∗ = k)

Figure 4.2: Number activations per feature and truncation probability

from S-IBP are almost always activated, and in fact some are the black features in

figure 4.1b. In other words, meaningful features in S-IBP do not necessarily come in

order, as the method can infer “dummy” features.12 On the other hand, RRS-IBP mostly

avoids this issue (figure 4.2b), as it learns only one dummy feature and this feature

is not always being activated. As we can see the four meaningful features for S-IBP

and RRS-IBP actually has similar activation probabilities. We hypothesise that this

activation of dummy feature phenomena comes from the fact that when training with a

high truncation level, there are many local maxima.

The plot of the probability mass function of the stopping level in figure 4.2c shows

that after training, the variational posterior for the truncation level puts most of its mass

on the right level of truncation. This plot is not available for the other methods because

their truncation level is fixed. “Dummy” features are less likely to be learned, compared

with methods that require a large fixed truncation level because, in our method, only

features under the truncation level get the training signal, and the truncation level is only

optimised to be higher if during random truncation, it finds that having more features

tends to be helpful.

4.4.2 Image data

Now we compare the inference methods on benchmark image data sets, namely the

MNIST dataset of handwritten digits (LeCun, 1998; LeCun et al., 1998) and Fashion-

MNIST, a dataset of images of products (Xiao et al., 2017). We use a deep decoder,

where the prior is p(A) = N (A;0,1), and a Bernoulli observation distribution. Both

the encoder and the decoder are two layer neural networks with 500 hidden units and

rectified linear unit (ReLU) activation function. We also report the performance of the

12This was also observed by Singh et al. (2017) on a different synthetic data set (see their appendix).

88

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

Table 4.1: IWAE for different VAEs under the IBP prior on various datasets.

Method SYNTH MNIST Fashion-MNIST

(α,Kmax) (4,20) (10,50) (20,50)

Training Test K̃ Training Test K̃ Training Test K̃

MF-IBP 43.91 43.28 20 -111.17 -111.45 50 -241.99 -244.15 50

S-IBP 42.99 42.47 20 -103.83 -104.28 50 -239.24 -241.52 50

RRS-IBP 45.73 44.93 4 -103.54 -104.54 14 -237.84 -240.34 9

same model and architecture on the synthetic data from the last section; for that simpler

data, we use hidden layer of size 50 and a Gaussian observation distribution.

We measure both the quality of the inferred models and the number of inferred

features. To measure model quality, we estimate the marginal probability of the test

using the variational bound from the importance weighted autoencoder (IWAE) (Burda

et al., 2015), which is a tighter lower bound than the standard ELBO by using im-

portance sampling. For S-IBP, we use the modification of the IWAE from Singh et al.

(2017). For RRS-IBP, in order to compare against S-IBP using the same IWAE, we

compute the mean of variational distribution of the truncation level, m̄ = Ek∼mk [k],

and use dm̄e as the truncation level when computing the IWAE, where d·e is the

ceiling function. To measure the number of inferred features, we report the num-

ber of features that have a non-negligible posterior activation probability, defined as

K̃ = ∑
Kmax
k=1 maxn∈{1...N} δ{q(znk = 1)> ε} with ε = 0.01. We will call K̃ the number of

activated features. The results are shown in table 4.1. MF-IBP has the worst IWAE

over all datasets, consistent with the results of Singh et al. (2017). The model quality of

S-IBP and RRS-IBP are mostly similar. However, looking at K̃, we see that RRS-IBP

infers many fewer features than the other methods, even though the overall model is of

similar or better quality.

Visualising activation posterior probability We first verify our finding by visual-

ising the activation posterior probability, qZ, for models on the synthetic dataset. We

choose synthetic dataset for visualisation because the truncation level for other datasets

are too high to populate readable plots. We visualise qZ on a subset of the synthetic

dataset by plotting the probabilities in grey-scale, which is shown in figure 4.3. We

confirm our previous finding on the visualisation: MF-IBP spreads the activation prob-

89

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

k-th feature

n-
th

 c
us

to
m

er

(a) MF-IBP

k-th feature

n-
th

 c
us

to
m

er

(b) S-IBP

k-th feature

n-
th

 c
us

to
m

er

(c) RRS-IBP

Figure 4.3: Posterior feature activation probability in grey-scale for VAEs with deep decoders

on a subset of SYNTH; darker the higher. The plot for RRS-IBP is padded to the same number

of features for comparison.

ability after its dark region on the left widely. S-IBP has a more compact dark region

and the spread is much less. RRS-IBP has the smallest dark region and spreading effect.

Truncating collapsed components Another way to gain insight into whether the

additional features inferred by S-IBP are indeed meaningless dummy features is to

visualise the approximate posterior distributions for the S-IBP model. First, to under-

stand A, on the MNIST dataset13 we plot the absolute value of the posterior mean of

each feature k, EqA[Ak] (Ak for the k-th feature) in the order inferred by the model14,

averaged over the test set. This is shown in figure 4.4a. We see that the first 13 features

have a posterior distribution qAk with a mean that is not close to 0; for other features, the

posterior mean is very close to 0. This is component collapsing (Dinh and Dumoulin,

2016; van den Oord et al., 2017), a known phenomenon in VAEs, which means that

some hidden units collapse to the prior and hence convey no information to the decoder.

The vertical line in all the plots in figure 4.4 indicates the number of features inferred by

RRS-IBP, the mode of q(K∗). It is striking that RRS-IBP learns to truncate the model

right after where S-IBP stops producing informative features.

Now, to understand Z, we show the activation frequencies, i.e. the number of times

each feature is used, for the test set (figure 4.4b). This confirms that many of the

uninformative features are activated for a substantial fraction of data points. This is

similar to what we have visually seen in section 4.4.1 for the synthetic data.

13We conducted the same analysis on Fashion-MNIST and observed qualitatively similar results (see
plots in appendix 4.F).

14Observe that because all the inference procedures are based on the stick breaking construction, this
order is meaningful; the inferred features are automatically sorted by πk.

90

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

0 20 40
k-th feature

0.0

0.2

0.4

0.6

0.8

L1
 n

or
m

 o
f q

A k

(a) Mean absolute value of qA

0 20 40
k-th feature

0

2500

5000

7500

10000

Fr
ac

tio
n

(b) Activation frequency of Z

0 20 40
k_masked

−200

−150

−100

IW
AE

Tr. set
Te. set

(c) IWAE with first k features

10 20 30 40 50
k_masked

1.0

1.1

1.2

1.3

tim
e

(s
)

mean
std

(d) Running time v.s. k

Figure 4.4: Effects of truncation level for S-IBP with a deep decoder. All plots are computed

from the whole test set of MNIST dataset. The vertical line in red is the corresponding mode of

the truncation distribution inferred by RRS-IBP.

As a final test of whether these uninformative features contribute to the quality of

the inferred model, we report the test set IWAE of the S-IBP model if after training is

complete, the model is truncated after k features (figure 4.4c). Figure 4.4c confirms

our statement that the dummy features conveys no information to the decoder because

the IWAE reaches its maximum right after all non-collapsed features are used. It is

clear that the additional features do not help improve the inference results, and is a

waste of computation, shown in figure 4.4d. As we have seen, with a trained S-IBP, it

is hard for one to decide the optimal truncation level by only looking at the activation

frequencies of Z, without doing experiments like in figure 4.4a or figure 4.4c. However,

RRS-IBP avoids this problem due to its nature of automatic truncation and the inferred

truncation level (vertical line in red) is just the optimal level of truncation under our

post analysis. Additionally, compared with a fixed truncation chosen at 50, the inferred

network adapted with size 14 has ∼ 1.35 times speed-up.

We can understand why S-IBP activates dummy features by considering the effect

of dummy features on the ELBO. The additional KL penalty for the dummy features

is very small, as qAk for the dummy features collapses to the prior. Second, the IBP

91

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

prior we set encourages the inference network to use more features. E.g. under IBP(α),

the expected number of total features is αHN , where HN = ∑
N
j=1

1
j and N is the data

points, which is very large compared to the features all methods currently use. For

this reason, activating more features would decrease the KL terms for ννν and Z. This

is actually the mode collapsing for IBP prior, because the latent variables from the

inference network do not help the decoder at all. The only way to reduce this part of

KL penalty for the IBP prior is to use a smaller truncation level, because in a truncated

variational posterior, we assume qννν and qZ beyond the truncation level collapse to

the prior but they have no affect on the actual activations because the activations are

set to 0 by truncation. However, for S-IBP the truncation level is fixed. Furthermore,

the reconstruction term of the ELBO does not discourage dummy features too much

because the dummy features mostly model noise and are ignored by the decoder. Also,

for datasets in high dimension, the reconstruction dominates the ELBO, e.g. in MNIST,

the reconstruction term is order of magnitude higher than the KL term for A and Z and

2 order of magnitudes higher than the KL term for ννν, which also explains why there are

obvious gaps in IWAEs only for the synthetic dataset in table 4.1 (the gaps for the other

two datasets are marginal). As a result, the ELBO does not provide a large penalty for

including these features. As an aside, we found that optimisation becomes difficult for

MF-IBP and S-IBP with a large truncation. E.g. on SYNTH, we were unable to train

these methods with a fixed truncation of 50. We hypothesise this is due to an increased

number of local maxima introduced by the larger inference and generation networks.

As a result, there is only small or no gradient to remove these dummy features during

training for S-IBP.

As figure 4.4c indicates, the VAE only needs around 15 features to reach almost

optimal IWAE, which can be also seen from figure 4.4a as features after the 15-th one

collapsed to the prior. However, the inference network for Z still choose to activate

those collapsed features. This is unwanted because activating a collapsed feature does

not help with the inference quality nor the generative quality, which means it only can

add more KL penalty without gaining any decrease in reconstruction. Having a way to

large truncation is also a waste of computation, as shown in figure 4.4d.

92

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

4.5 Related work

IBP has been used to model choice behaviour, predict links, model dyadic data via

binary matrix factorisation, extract features from similarity judgements, model protein

interactions and in independent components analysis and sparse factor analysis; see

Griffiths and Ghahramani (2011) for a thorough discussion. Recently, Valera et al.

(2018) proposes a model with an IBP prior for tabular data for automatic data science;

the model can infer data types and perform missing value imputation automatically. The

IBP has been used in other areas like motion capture segmentation (Fox et al., 2014).

Variational inference for IBP latent feature models is proposed by Doshi-Velez et al.

(2009) and relies on the stick-breaking construction from (Teh et al., 2007). Based on

the construction, Teh et al. (2007) develops a slice sampler for IBP latent feature models.

The sampler maintains a finite representation of SBC that can be used to compute the

conditional probabilities required during the sampling. Our method is also based on the

stick-breaking construction and in fact shares a similar spirit with the slice sampling:

we maintain a finite representation that can be used to compute the unbiased gradient of

ELBO during optimisation.

We are aware of only a few papers that apply amortised inference to IBP models.

Chatzis (2014) uses black box variational inference (BBVI, Ranganath et al. (2014)) to

train a VAE with an IBP prior using the mean-field variational approximation; BBVI

is used due to the existence of Beta and Bernoulli distributions in SBC. Later Singh

et al. (2017) propose a more accurate approximation by using the Kumaraswamy and

Gumbel reparameterisation instead of BBVI, and by introducing a structured variational

approximation instead of mean-field. We follow all of those innovations in this work.

However, both of these papers rely on finite truncation in the variational distribution,

which we avoid in this work. Another type of nonparametric variational autoencoder is

proposed by Abbasnejad et al. (2017), who introduce an infinite mixture of finite-sized

variational autoencoders.

In other Bayesian nonparametric models, some authors have reduced the impact

of truncation by combining truncated variational inference with other optimisation

methods; however, these methods perform discrete search over the truncation level

outside the VI optimisation loop. In fact, discrete search for truncation levels based

on various heuristics can be viewed as using a roulette probability that only has mass

on truncation levels around the mode in our method. Such heuristics may introduce

93

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

some bias to the overall learning but also have the merits of low-variance in many cases.

For example, Bryant and Sudderth (2012); Hughes et al. (2015) use split and merge

steps to change the size of the variational model, which results in a complex heuristic

search algorithm. It is also possible to use heuristics to adaptively change the truncation

level. Hu et al. (2015); Hughes and Sudderth (2013) also propose methods that adapt

the truncation levels outside the VI optimisation loop in the context of memorised

variational inference for Dirichlet process models. Similarly, Nalisnick and Smyth

(2017) mention some initial experiments on making the level of stick-breaking adaptive

by putting a threshold on the percentage of the remaining stick but reports that this

approach is slow. We omit works in MCMC approaches with adaptive truncation levels

as we focus only on works that use VI. Some MCMC approach use adaptive truncation

levels (Teh et al., 2007; Griffiths and Ghahramani, 2011).

Within Bayesian statistics, Russian roulette sampling has been previously used

within MCMC algorithms for doubly-intractable distributions (Lyne et al., 2015; Wei

and Murray, 2016; Georgoulas et al., 2017). We are unaware of previous work applying

Russian roulette sampling within variational methods. Indeed, to our knowledge,

ours is the first variational inference method for Bayesian nonparametrics (whether

amortised or the more traditional mean-field approach) that avoids a truncated variational

approximation.

94

Appendix

4.A KL terms for A and ννν

The computation for the KL terms for A and ννν in equation 4.5 is omitted in the main

paper and we present here to show how to compute them.

The KL term for A is the KL between two Normal distributions qA =N (µφ(x),σφ(x))15

and pA = N (0, I). We use its closed-form expression adapted from the appendix of

Kingma and Welling (2014)

DKL[q(A)‖p(A)] =−1
2

∞

∑
k=1

(
1+ log

(
(σk)

2)− (µk)
2−σk)

2) (4.17)

where µk := µφk(x) and σk := σφk(x).

The KL term for ννν is the KL between the Kumaraswamy and Beta distributions

q(νk) = Kumaraswamy(ak,bk) and p(νk) = Beta(α,1). We use its closed-form expres-

sion adapted from appendix of Nalisnick and Smyth (2017)

DKL[q(ννν)‖p(ννν)] =
∞

∑
k=1

DKL[Kumaraswamy(ak,bk)‖Beta(α,1)], (4.18)

where

DKL[Kumaraswamy(a,b)‖Beta(α,β)]

=
a−α

a

(
−γ−Ψ(b)− 1

b

)
+ logab+ logB(α,β)− b−1

b
+(β−1)b

∞

∑
m=1

1
m+ab

B
(m

a
,b
)
.

(4.19)

We approximate the infinite sum in equation 4.19 using its first 11 terms as suggested

by Nalisnick and Smyth (2017).

15Note that here both µφ and σφ are implemented by the lazy dense layer such that the dimension of
their outputs can change.

95

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

4.B Proof of the inequality in equation 4.7

Equation 4.7 states the inequality that

q(Z | ννν) =
∞

∑
j=1

m jq(Z | K∗ = j,ννν)≤ q(Z | K∗ = K†,ννν), (4.7)

where K† := maxk{∃n,znk 6= 0}, the maximum column index for which that column of

Z is not all 0s.

To prove this, we begin with the definition of qZ given a truncation level j

q(Z|K∗ = j,ννν) := δ{ j ≥ K†}
N

∏
n=1

j

∏
k=1

π
znk
k (1−πk)

(1−znk). (4.20)

First,q(Z | K∗ = j,ννν) = 0 for j < K† because of the delta function that comes from

the truncation. Second, q(Zk | K∗ = j,ννν) is a monotonically decreasing function for

j ≥ K†. To see this, consider q(Z | K∗ = l,ννν) for which K† ≤ j < l

q(Z | K∗ = l,ννν) = δ{l ≥ K†}
N

∏
n=1

l

∏
k=1

π
znk
k (1−πk)

(1−znk)

=
N

∏
n=1

(
j

∏
k=1

π
znk
k (1−πk)

(1−znk)
l

∏
k= j+1

π
znk
k (1−πk)

(1−znk)

)

=

(
N

∏
n=1

j

∏
k=1

π
znk
k (1−πk)

(1−znk)

)(
N

∏
n=1

l

∏
k= j+1

π
znk
k (1−πk)

(1−znk)

)

= q(Z|K∗ = j,ννν)

(
N

∏
n=1

l

∏
k= j+1

π
znk
k (1−πk)

(1−znk)

)
=: q(Z|K∗ = j,ννν)Q

≤ q(Z | K∗ = j,ννν)
(4.21)

The last step comes from the fact that Q <= 1 since πk ∈ [0,1], ∀k = 1, . . . ,∞. Now we

can show

q(Z | ννν) =
∞

∑
j=1

m jq(Z | K∗ = j,ννν)

=
K†−1

∑
j=1

m jq(Z | K∗ = j,ννν)+
∞

∑
j=K†

m jq(Z | K∗ = j,ννν)

≤
∞

∑
j=K†

m jq(Z | K∗ = K†,ννν)

≤
∞

∑
j=1

m jq(Z | K∗ = K†,ννν) = q(Z | K∗ = K†,ννν)

96

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

which completes the proof. �

4.C Comparison of Russian roulette estimation against

naive Monte Carlo estimation

As a way to motivate the Russian roulette sampler, in this section we show the empirical

evidence that, when estimating an infinite summation like equation 4.11 or equation 4.14,

naive Monte Carlo can have very high variance which cannot be easily overcome by

using more MC samples.

Suppose that we want to estimate S= limK∗→∞ SK∗ where SK∗ =∑
K∗
k=1P(K = k)T (k).

In this illustration, we set T (k) = T ∗(k)+N (0,1) where

T ∗(k) =

(k−25)2 k < 25

0.01(k−25) k ≥ 25
.

in order to mimic a common loss curve for different sized truncation levels, and set

P(K = k) = mk = (1−ρk+1)∏
k
i=1 ρi where

ρk =


1

1+exp(−5(k−1)/29) k < 30

0.5 k ≥ 30
.

in order to mimic a distribution of truncation level which is still away from an optimal

one. Figure 4.C.1 shows T (k) and P(K = k) (figure 4.C.1a) as well as how SK∗ changes

with different level of K∗ (figure 4.C.1b). As can be seen from figure 4.C.1b, S is

approximately 96.

We compare to the native/crude Monte Carlo estimate in which we sample k1 . . .kN

independently from P(K) and compute

ŜMC =
1
N

N

∑
i=1

T (ki).

We run each estimation for 100 times with the number of samples varying from 1 to

200. We report the mean and variance over the 100 runs. We also report the efficiency

(Pharr et al., 2016) which is defined as 1/vt where v is the variance and t is the time

required by the estimation. These results are given in figure 4.C.2. As one can see

from the top plot for the mean, both estimates are unbiased towards the approximated

true value. However, the variance of the naive Monte Carlo estimator is much higher.

97

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

0 5 10 15 20 25 30 35 40
k

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P(
K

=
k)

0

100

200

300

400

500

600

T(
k)

(a) P(K = k) and T (k)

0 5 10 15 20 25 30 35 40
K

0

20

40

60

80

96
100

S K

SK =
K

k = 1
P(K = k)T(k)

(b) SK∗

Figure 4.C.1: Functions and the target summation in the toy example

This is shown more clearly in the plot in the middle, which shows how the variance

asymptotically changes with the number of samples. It can be seen that the Russian

roulette estimates have much lower variance than naive Monte Carlo. In fact, the naive

Monte Carlo estimation retains a variance of 63.5 even with 200 samples while Russian

roulette reaches a variance of around 10 with 15 samples. The final plot in the bottom

compares the efficiency of the two estimators and it can be seen that the efficiency

for the naive Monte Carlo one increases very slowly with more samples. Thus, we

can conclude that using a naive Monte Carlo estimation for an infinite summation like

equation 4.11 or equation 4.14 is of very high variance and the variance cannot be easily

overcome by using more MC samples.

4.D Algorithmic description for effective RAVE

A naive implementation requires running the encoder and decoder once for each Russian

roulette sample, but in this appendix we show how computation can be reused across

samples. When we average over M independent Russian roulette samples, of each the

truncation level is τm, the gradient estimate for ρk becomes

∂̂
M
ρk

:=
1
M

M

∑
m=1

τm

∑
i=1

aiTi, (4.22)

where Ti = L̃ i and we define

ai = (1−ρi+1)wi. (4.23)

98

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

A naive way to compute the weighted summation of ∂̂M
ρk

is by running the encoder

and decoder multiple times for each truncation level τm required and sum up, but this

involves much wasted computation.

Instead, a re-weighting trick can be applied to reuse computation. We first draw M

samples {τm}M
m=1 of the truncation level from the distribution defined by P(τm = k) =

mk. Then we compute τ∗ = maxm τm. We run the encoder once at the truncation level

of K∗ = τ∗ and run the decoder multiple times (with truncation level K∗ = 1, . . . ,τ∗),

and compute the final estimate as the weighted sum

∂̂
M
ρk
=

τ∗

∑
i=1

biTi, (4.24)

where

bi =
1
M

M

∑
m=1

aiδ(τm ≥ i). (4.25)

It can be seen by reordering terms that this is equal to equation 4.22.

A similar re-weighting method applies to computing ∂̂M
ψk

with M samples, for which

one only needs to re-weight each term in the forward pass of the EBLO computation as

L̃M =
τ∗

∑
i=1

ciTi, where ci =
1
M

M

∑
m=1

(1−ρi+1)δ(τm ≥ i) (4.26)

and automatic differentiation can compute the gradient for all the parameters in the

inference and generative network in equation 4.12.

Note that for the KL term, K1:i, in each L̃ i for i = 1, . . . ,τ∗, as K1:i is a sum of

independent KL terms for each feature, K j, this term can be computed after the single

run of encoder by K1:i = ∑
i
j=1 K j, where K j is the KL term of the j-th feature.

The complete algorithm that uses this re-weighting trick is given in algorithm 4.2.

This requires a single run of the encoder and τ∗ runs of the decoder. Additionally,

equation 4.24 for all ks (i.e. Line 10 in algorithm 4.2) can be vectorised and implemented

as matrix multiplications. We omit the details here and refer readers to our source code

for concrete ways of vectorisation.

4.E Training details

For optimisation, we use Adam (Kingma and Ba, 2014) with a learning rate of 0.001 and

momentum parameters 0.99 and 0.999, for all parameters except for ρ. For ρ we use a

99

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

Algorithm 4.2 Effective RAVE with re-weighting trick.
Input: a batch of B data points, {Xi}B

i=1, and the number of Russian roulette samples

to use M

1: for i = 1, . . . ,B do
2: Sample M samples {τm}M

m=1 from the truncation distribution mk

3: Compute τ∗ = maxm τm

4: Compute {bk}τ∗
k=1 following equation 4.25

5: Encode Xi into variational distributions with a truncation level of τ∗

6: Compute KL between variational posterior and prior for each level {K1:k}τ∗
k=1

7: for k = 1, . . . ,τ∗ do
8: Compute the expected reconstruction term Rk in Tk under variational distri-

butions

9: end for
10: Compute ELBO L̃ i for each level i: {L̃ i = Rk−K1:k}τ∗

k=1

11: Compute ∂̂M
ρk

for k = 1, . . . ,τ∗ using equation 4.24

12: Compute and return the weighted ELBO L̃M in equation 4.26 to automatic

differentiation

13: Obtain {∂̂M
ψk
}τ∗

k=1 from automatic differentiation

14: Update {ρk,ψk}τ∗
k=1 using {∂̂M

ρk
, ∂̂M

ψk
}τ∗

k=1 via gradient optimization methods

15: end for

stochastic gradient descent optimiser (Robbins and Monro, 1985) with a learning rate

of 0.002. During training, the temperature of Concrete reparameterisation is set to 0.1.

We found that in order to to use a low temperature, it is necessary to use high-precision

64-bit floating-point numbers. Using 32-bit floating point numbers with a temperature

of 0.1 frequently results in numerical errors.

Note again that we use a multiplier on the KL term for ννν for structured variational

methods during training to encourage adhering to the IBP prior, following Singh et al.

(2017). It is set to 1,000 on both MNIST and FMNIST datasets. This has a similar

effect of using a large α in the IBP prior. This increases the number of hidden units

used, encouraging a better IWAE.

100

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

4.F Visualisation of component collapsing of S-IBP on

Fashion-MNIST

For Fashion-MNIST, the corresponding component collapsing visualisation of figure 4.4

is given in figure 4.F.1. Note that worse than MNIST, there are even dummy features

that are activated as frequently as active features, e.g. the 7-th features in figure 4.F.1a is

shown to be frequently activated in figure 4.F.1. The number of active features shown in

figure 4.F.1a is 8, which is the mode of the truncation distribution inferred by RRS-IBP,

indicated in vertical red lines in both plots, which means RRS-IBP successfully inferred

the same number of active features.

101

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

25 50 75 100 125 150 175 200

90.00

95.00
95.98

100.00

105.00
mean (n_runs=100)

rr naive true

25 50 75 100 125 150 175 200
7.6

63.5

500.0

1000.0

variance (n_runs=100)
rr naive

25 50 75 100 125 150 175 200
0.000

0.001

0.002

0.003

0.004

efficiency (n_runs=100)
rr naive

Figure 4.C.2: Mean, variance and efficiency for Russian roulette and naive Monte Carlo

estimation. In all plots, rr stands for Russian roulette and naive stands for naive Monte Carlo.

In the first plot, true represents the value of S that we are estimating.

102

CHAPTER 4. VARIATIONAL RUSSIAN ROULETTE FOR DEEP BAYESIAN NONPARAMETRICS

0 20 40
k-th feature

0.0

0.2

0.4

0.6

0.8

L1
 n

or
m

 o
f q

A k

(a) Mean absolute value of qA

0 20 40
k-th feature

0

2500

5000

7500

10000

Fr
ac

tio
n

(b) Activation frequency of Z

Figure 4.F.1: Effects of truncation level for S-IBP with a deep decoder. All plots are computed

from the whole testing set of Fashion-MNIST dataset. The vertical line at 8.0 in red is the

corresponding truncation level learned by RRS-IBP.

103

Part II

Learning

105

Chapter 5

Generative Ratio Matching Networks

5.1 Introduction

Deep generative models (Kingma and Welling, 2014; Rezende et al., 2014; Goodfellow

et al., 2014; Kingma and Dhariwal, 2018) have been shown to learn to generate realistic-

looking images. These methods train a deep neural network, called a generator, to

transform samples from a noise distribution to samples from the data distribution. Most

methods use adversarial learning (Goodfellow et al., 2014), in which the generator is

pitted against a critic function, also called a discriminator, which is trained to distinguish

between the samples from the data distribution and from the generator. Upon successful

training the two sets of samples become indistinguishable with respect to the critic.

Maximum mean discrepancy networks (MMD-nets; Li et al., 2015; Dziugaite et al.,

2015) are a class of generative models that are trained to minimise the MMD (Gretton

et al., 2012) between the true data distribution and the model distribution. MMD-nets

are similar in spirit to generative adversarial networks (GANs; Goodfellow et al., 2014;

Nowozin et al., 2016), in the sense that the MMD is defined by maximising over a

class of critic functions. However, in contrast to GANs, where finding the right balance

between generator and critic is difficult, training is simpler for MMD-nets because

using the kernel trick the MMD can be estimated without the need to numerically

optimise over the critic function. This avoids the need in GANs to numerically solve a

saddle-point problem.

Unfortunately, although MMD-nets work well on low dimensional data, these

networks have not on their own matched the generative performance of adversarial

methods on higher dimensional datasets, such as natural images (Dziugaite et al., 2015).

107

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

Several authors (Li et al., 2017; Bińkowski et al., 2018) suggest that a reason is that

MMD is sensitive to the choice of kernel. Li et al. (2017) propose a method called

MMD-GAN, in which the critic maps the samples from the generator and the data into

a lower-dimensional representation, and MMD is applied in this transformed space.

This can be interpreted as a method for learning the kernel in MMD. The critic is

learned adversarially by maximising the MMD at the same time as it is minimised with

respect to the generator. This is much more effective than MMD-nets, but training

MMD-GANs can be challenging, because in this saddle-point optimisation problem, the

need to balance training of the learned kernel and the generator can create a sensitivity

to hyper-parameters like network sizes or learning rates. In practice, it is necessary to

introduce several additional penalties to the loss function in order for training to be

effective.

In this work, we present a novel training method that builds on MMD-nets’ insight

to use kernels as fixed adversaries in order to avoid saddle-point optimisation based

training for the critic and the generator. Our goal is for the critic to map the samples

into a lower-dimensional space in which the MMD-net estimator will be more effective.

Our proposal is that the critic should be trained to preserve density ratios, namely, the

ratio of the true density to the model density. If the critic is successful in this, then

matching the generator to the true data in the lower dimensional space will also match

the distributions in the original space. We call networks that have been trained using

this criterion generative ratio matching (GRAM) networks, or GRAM-nets1. We show

empirically that our method is not only able to generate high quality images but by virtue

of avoiding a zero-sum game (in critic and generator) it avoids saddle-point optimisation

and hence is more stable to train and robust to the choice of hyper-parameters.2

5.2 Background

Given data xi ∈ RD for i ∈ {1 . . .N} from a distribution of interest with density pX , the

goal of deep generative modelling is to learn a parameterised function Gγ : Rh 7→ RD,

called a generator network, that maps samples z ∈ Rh where h < D from a noise

distribution pZ to samples from the model distribution. Since Gγ defines a new random

variable, we denote its density function by qX , and also write xq = Gγ(z), where we

1Interestingly, the training of GRAM-nets heavily relies on the use of kernel Gram matrices.
2Official implementations are available at https://github.com/GRAM-nets

108

https://github.com/GRAM-nets

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

suppress the dependency of xq on γ. The parameters γ of the generator are chosen to

minimise a loss criterion which encourages qX to match pX .

5.2.1 Density ratio estimation

Given i.i.d samples from the data distribution pX and a generative model of the data qX ,

many learning and inference methods can be reduced to the estimation and thereafter

the optimisation of the ratio r(x) = pX (x)
qX (x)

of the data distribution pX and the model

distribution qX . The task of estimating this ratio is called density ratio estimation. As

surveyed by Sugiyama et al. (2012), a well known way of estimating this ratio is to train

a classifier to distinguish between the samples from pX and qX . Upon convergence, as

the classifier is Bayesian optimal, the ratio is simply a function of the classifier logits.

Seen in this light, GANs essentially use the discriminator to ascertain a function of

the ratio of the data and model densities. Then the generator parameters are trained to

minimise the Jensen-Shannon divergence between pX and qX , which is in fact simply a

function of the ratio that the discriminator estimates.

Huang et al. (2006); Sugiyama et al. (2012) present a density ratio estimator for the

ratio between the densities p and q that has a closed form solution, based on kernel

mean embedding. This estimator for r(x) = p(x)
q(x) only needs samples from p and q and

is derived by optimising

r̂(x) = argmin
r∈R

∥∥∥∥∫ k(x; .)p(x)dx−
∫

k(x; .)r(x)q(x)dx
∥∥∥∥2

R
, (5.1)

where k is a kernel function. It is easy to see that at the minimum, we have r = p/q.

In the so-called fixed design setup, in which we only seek for the ratio estimates for a

set of samples from q rather than actually building a (parametric) model for r(x), this

estimate has a closed form solution (Huang et al., 2006; Sugiyama et al., 2012)

r̂q = K−1
q,qKq,p111

where Kq,q and Kq,p denote the kernel Gram matrices defined by [Kq,q]i, j = k(xq
i ,x

q
j)

and [Kq,p]i, j = k(xq
i ,x

p
j) for some kernel k. Note that this closed-form estimator is not

guaranteed to be non-negative nor guaranteed to provide normalised estimator (for a

normalised density ratio estimator r̂ we have Ex∼q[r̂(x)] = 1). Alternative, a positivity

or a normalisation constraint can be imposed, for which equation 5.1 can to solved by

standard constrained solvers.

109

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

Dimensionality reduction for density ratio estimation Sugiyama et al. (2011) sug-

gest that density ratio estimation for distributions p and q over RD can be more accur-

ately done in lower dimensional sub-spaces RK . They propose to first learn a linear

projection to a lower dimensional space by maximising an f -divergence between the

distributions p̄ and q̄ of the projected data and then estimate the ratio of p̄ and q̄ (using

direct density ratio estimation). They showed that the projected distributions preserve

the original density ratio. Our method builds on this insight, generalising it to non-linear

projections and incorporating it into a method for deep generative modelling.

5.3 Generative ratio matching

Our aim will be to enjoy the advantages of MMD-nets, but to improve their sample

quality by mapping the data (RD) into a lower-dimensional space (RK), using a critic

network fθ, before computing the MMD criterion. Because MMD with a fixed kernel

performs well for lower-dimensional data (Li et al., 2015; Dziugaite et al., 2015), we

hope that by choosing K < D, we will improve the performance of the MMD-net.

Instead of training fθ using an adversarial criterion like MMD-GAN, we aim at a stable

training method that avoids the saddle-point optimisation for training the critic.

More specifically, unlike the MMD-GAN type methods, instead of maximising the

same MMD criterion that the generator is trained to minimise, we train fθ to minimise

the squared ratio difference, that is, the difference between density ratios in the original

space and in the low-dimensional space induced by fθ (section 5.3.1). More specifically,

let q̄ be the density of the transformed simulated data, i.e., the density of the random

variable fθ(Gγ(z)), where z ∼ pZ . Similarly let p̄ be the density of the transformed

data, i.e., the density of the random variable fθ(x). The squared ratio difference is

minimised when θ is such that pX/qX equals p̄/q̄. The motivation is that if density

ratios are preserved by fθ, then matching the generator to the data in the transformed

space will also match it in the original space (section 5.3.2). The reduced dimension of

fθ should be chosen to strike a trade-off between dimensionality reduction and ability to

approximate the ratio. If the data lie on a lower-dimensional manifold in RD, which is

the case for e.g. natural images, then it is reasonable to suppose that we can find a critic

that strikes a good trade-off. To compute this criterion, we need to estimate density ratio

p̄/q̄, which can be done in closed form using MMD (section 5.2.1). The generator is

trained as an MMD-net to match the transformed data { fθ(xi)}with transformed outputs

110

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

from the generator { f (Gγ(zi)} in the lower dimensional space (section 5.3.2). Our

method performs stochastic gradient (SG) optimisation on the critic and the generator

jointly (section 5.3.3).

5.3.1 Training the critic using squared ratio difference

Our principle is to choose fθ so that the resulting densities p̄ and q̄ preserve the density

ratio between pX and qX . We will choose fθ to minimise the distance between the two

density ratio functions

rX(x) = pX(x)/qX(x) rθ(x) = p̄(fθ(x))/q̄(fθ(x)).

One way to measure how well fθ preserves density ratios is to use the squared distance

D∗(θ) =
∫

qX(x)
(

pX(x)
qX(x)

− p̄(fθ(x))
q̄(fθ(x))

)2

dx. (5.2)

This objective is minimised only when the ratios match exactly, that is, when rX = rθ

for all x in the support of qX . Clearly a distance of zero can be trivially achieved if

K = D and if fθ is the identity function.But non-trivial optima can exist as well. For

example, suppose that pX and qX are “intrinsically low dimensional” in the following

sense. Suppose K < D, and consider two distributions p0 and q0 over RK , and an

injective map T : RK → RD. Suppose that T maps samples from p0 and q0 to samples

from pX and qX , by which we mean pX(x) = JJJ(T)p0(T−1(x)), and similarly for qX .

Here JJJ(T) denotes the Jacobian matrix JJJ(T) =
√
|δT δT>| of T . Then we have that D∗

is minimised to 0 when fθ = T−1.

However, it is difficult to optimise D∗(θ) directly because density ratio estimation in

high dimension, where data lives, is known to be hard, i.e., the term pX (x)
qX (x)

in equation 5.2

is difficult to estimate. We will show how to alleviate this issue next.

Avoiding density ratio estimation in data space To avoid computing the term pX (x)
qX (x)

in equation 5.2, we expand the square in equation 5.2, apply the law of the unconscious

statistician and cancel terms out (see appendix 5.A for detailed steps), which yields

D∗(θ) =C+
∫

q̄(fθ(x))
(

p̄(fθ(x))
q̄(fθ(x))

)2

d fθ(x)−2
∫

p̄(fθ(x))
p̄(fθ(x))
q̄(fθ(x))

d fθ(x),

=C′−

[∫
q̄(fθ(x))

(
p̄(fθ(x))
q̄(fθ(x))

)2

d fθ(x)−1

] (5.3)

111

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

where C and C′ = C− 1 does not depend on θ. This implies that minimising D∗ is

equivalent to maximising the Pearson divergence

PD(p̄, q̄)=
∫

q̄(fθ(x))
(

p̄(fθ(x))
q̄(fθ(x))

)2

d fθ(x)−1=
∫

q̄(fθ(x))
(

p̄(fθ(x))
q̄(fθ(x))

−1
)2

d fθ(x)

(5.4)

between p̄ and q̄, which justifies our terminology of referring to fθ as a critic function.

So we can alternatively interpret our squared ratio distance objective as preferring fθ so

that the low-dimensional distributions p̄ and q̄ are maximally separated under Pearson

divergence. Therefore, D∗ can be minimised empirically using samples xq
1 . . .x

q
M ∼ qX

to maximise the critic loss function

L(θ) =
1
M

M

∑
i=1

[
rθ(x

q
i)−1

]2
. (5.5)

Optimising this requires a way to estimate rθ(x
q
i). For this purpose we use the

density ratio estimator introduced in section 5.2.1. Notice that to compute equation 5.5,

we need the value of rθ only for the points xq
1 . . .x

q
M. In other words, we need to

approximate the vector rq,θ = [rθ(x
q
1) . . .rθ(x

q
M)]T . Following Huang et al. (2006);

Sugiyama et al. (2012), we replace the integrals in equation 5.1 with Monte Carlo

averages over the points fθ(x
q
1) . . . fθ(x

q
M) and over points fθ(x

p
1) . . . fθ(x

p
N) ∼ p̄; the

minimising values of rq,θ can then be computed as

r̂q,θ = K−1
q,qKq,p111. (5.6)

Here Kq,q and Kq,p denote the kernel Gram matrices defined by [Kq,q]i, j = k(fθ(x
q
i), fθ(x

q
j))

and [Kq,p]i, j = k(fθ(x
q
i), fθ(x

p
j)).

Substituting these estimates into equation 5.5 and adding a positivity constraint

r̂T
q,θ.111 for using the MMD density ratio estimator (Sugiyama et al., 2012), we get

L̂(θ) =
1
M

M

∑
i=1

[
rθ(x

q
i)−1

]2
+λr̂T

q,θ.111, (5.7)

where λ is a parameter to control the constraint, being set to 1 in all our experiments.3

This objective can be maximised to learn the critic fθ. We see that this is an estimator

of the Pearson divergence PD(p̄, q̄) in that we are both, averaging over samples from

qX , and approximating the density ratio. Thus maximising this objective leads to the

preservation of density ratio (Sugiyama et al., 2011).
3As it is pointed out by one of the reviewers, instead of adding the regularisation term, another way to

resolve the non-negativity issue of the ratio estimator is to simply clipping it the estimator be positive.
This in fact works well in practice and can further improves the stability of training.

112

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

Algorithm 5.1 Generative ratio matching
1: while not converged do
2: Sample a mini-batch of data {xp

i }N
i=1∼ pX and generated samples {xq

i }M
i=1∼ qX

3: Using fθ to transform data as { fθ(x
p
i)}N

i=1 and generated samples as { fθ(x
q
i)}M

i=1

4: Compute the Gram matrix K under the kernel of choice in the transformed

space

5: Compute L̂(θ) via equation 5.6 and equation 5.7, and L̂(γ) via equation 5.8

using the same K
6: Compute the gradients gθ = ∇θL̂(θ) and gγ = ∇γL̂(γ)

7: θ← θ+ηgθ; γ← γ−ηgγ . Perform SG optimisation for θ and γ

8: end while

5.3.2 Generator loss

To train the generator network Gγ, we minimise the MMD in the low-dimensional space,

where both the generated data and the true data are transformed by fθ. In other words,

we minimise the MMD between p̄ and q̄. We sample points z1, . . . ,zM ∼ pZ from the

input distribution of the generator. Then using the empirical estimate equation 2.20 of

the MMD, we define the generator loss function as

L̂2(γ) =
1

N2

N

∑
i=1

N

∑
i′=1

k(fθ(xi), fθ(xi′))−
2

NM

N

∑
i=1

M

∑
j=1

k(fθ(xi), fθ(Gγ(z j)))

+
1

M2

M

∑
j=1

M

∑
j′=1

k(fθ(Gγ(z j)), fθ(Gγ(z j′)))

, (5.8)

which we minimise with respect to γ.

5.3.3 The generative ratio matching algorithm

Finally, the overall training of the critic and the generator proceeds by jointly performing

SG optimisation on L̂(θ) and L̂(γ)., which is shown in algorithm 5.1. Unlike WGAN

(Arjovsky et al., 2017a) and MMD-GAN (Li et al., 2017), we do not require the use

of gradient clipping, feasible set reduction or autoencoding regularisation terms. Our

algorithm is a simple iterative process. By default for continuous data, we use the

Gaussian kernel or a mixture of Gaussian kernels with a set of bandwidths in Line 4.

We fount GRAM is insensitive to the absolute value of bandwidths as the projection

network has the ability to change the scale of the projected space. Therefore, it is

113

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

enough to choose the set of bandwidths with distinct relative values, such as (0.1,1,10)

or (0.2,1,5).

Convergence If we succeed in matching the generator to the true data in the low-

dimensional space, then we have also matched the generator to the data in the original

space, in the limit of infinite data. To see this, suppose that we have γ∗ and θ∗ such

that D∗(θ∗) = 0 and that My = MMD(p̄, q̄) = 0. Then for all x, we have rX(x) = rθ∗(x)
because D∗(θ∗) = 0, and that rθ∗(x) = 1, because My = 0. This means that rX(x) = 1,

so we have that pX = qX .

5.3.4 Stability of GRAM-nets

Unlike GANs, the GRAM formulation avoids the saddle-point optimisation which leads

to a very stable training of the model. In this section we provide a battery of controlled

experiments to empirically demonstrate that GRAM training relying on the empirical

estimators of MMD and Pearson Divergence (PD), i.e. equations equation 5.5 and

equation 5.7. While the MMD estimator is very extensively studied, our novel empirical

estimator of PD is not. Therefore we now show that in fact maximizing our estimator for

PD can be reliably used for training the critic, i.e. it minimizes equation equation 5.2.

Stability of adversarial methods has been extensively studied before by using a

simple dataset of eight axis-aligned Gaussian distributions with standard deviations of

0.01, arranged in a ring shape (Roth et al., 2017; Mescheder et al., 2017b; Srivastava

et al., 2017). Therefore we train a simple generator using GRAM on this 2D ring dataset

to study the stability and accuracy of GRAM-nets. We set the projection dimension

K = D = 2 in order to facilitate visualisation. Both the generator and the projection

networks are implemented as two-layer feed-forward neural networks with two hidden

layers of size of 100 and ReLU activations.

The generator output (orange) is visualised over the real data (blue) in figure 5.1a at

10,100,1000 and 10,000th training iterations. The top row visualises the observation

space (RD) and the bottom row visualises the projected space (RK). Note, as the

training progress the critic (bottom row) tries to find projections that better separate the

data and the generator distributions (especially noticeable in columns 1 and 3). This

provides a clear and strong gradient signal to the generator optimisation that successfully

learns to minimise the MMD of the projected distributions and eventually the data and

the model distributions as well (as shown in the last column). Notice, how in the final

114

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

(a) Data and samples in the original (top) and

projected space (bottom) during training; four

plots are at iteration 10, 100, 1000 and 10,000

respectively. Notice how the projected space

separates p̄ and q̄.

1 20 40 60 80 100

10−1

100

101

102

103

100 1000 2000 3000 4000 5000

̂γ (̂MMD)
D * (Eq. 5)

(b) Trace of L̂γ and D∗ (equation equation 5.3)

during training. The left plot is for iteration 1 to

100 and the right plot is for 100 to 5,000, with

the same y-axes in the log scale.

Figure 5.1: Training results with projected dimension fixed to 2.

column the critic is no longer able to separate the distributions. Throughout this process

the critic and the generator objectives are consistently minimised. This is clearly shown

in figure 5.1b which records the values of equation 5.8 for the generator (orange) loss

and equation 5.3 for the critic objective (blue). Next, we compare GRAM-based training

against classical adversarial training that involves a zero-sum game. For this purpose

we train a GAN with the same exact architecture and hyper-parameter as those used

for the GRAM-nets in the previous experiments. Adversarial models are known to be

unstable on the 2D ring dataset (Roth et al., 2017; Mescheder et al., 2017b) as the critic

can often easily outperform the generator in this simple setting. Figure 5.2 summarises

the results of this comparison. Both models are trained on three different levels of

generator capacity and four different dimensions of the input noise variable (h). GANs

are known to be unstable at both low and high dimensional noise but they additionally

tend to mode-collapse (Srivastava et al., 2017) on high dimensional noise. This is

confirmed in our experiments; GANs failed to learn the true data distribution in every

case and in most cases the optimisation also diverged. In sharp contrast to this, GRAM

training successfully converged in all 12 settings. Adversarial training needs a careful

balance between the generator and the critic capacities. In the plot we can see that,

as the capacity of the generator becomes larger, the training become more unstable in

GAN. This is not the case for GRAM-nets, which train well without requiring to make

any adjustments in other hyper-parameters. This enlists as an important advantage

of GRAM, as one can use the most powerful model (generator and critic) given their

computational budget instead of worrying about balancing the optimisation. We also

provide the corresponding results for MMD-nets and MMD-GANs in appendix 5.B.2,

115

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

2 4 8 16

20

100

200

(a) GANs

2 4 8 16

(b) GRAM-nets

Figure 5.2: Training after 2,000 epochs by varying noise dimension h and the hidden layer size

of critic model. For each model, each row is a different layer size in [20,100,200] and each

column is a different h in [2,4,8,16]. Half of the GAN training diverges while all GRAM training

converges.

in which one can see MMD-nets can also capture all modes, but the learned distribution

is less separated (or sharp) compared to GRAM-nets and MMD-GANs tend to produce

distributions which are too sharp.

5.3.4.1 3D ring dataset

The same experiment as in figure 5.1a is repeated with a 3-dimensional data space

and a 2-dimensional projection space to provide further insights of how the projection

network works. We create a 3D ring dataset by augmenting the third dimension with

Gaussian noise (0 mean and 0.1 standard deviation), which is then rotated by 60 degrees

along the second axis. We repeat the experiments in figure 5.1a using this dataset. The

results are shown in figure 5.3. Unlike the 2D ring example, the optimal choice of the

projection function learned here is no longer the identity function. However, our method

can stil, easily learn a low-dimensional manifold that tends to preserve the density ratio.

5.3.4.2 MNIST dataset

In this section, we show the results of training GRAM-nets on a more realistic dataset—

the MNIST dataset; the hyperparameters for this experiment can be found in ap-

pendix 5.B.3. Figure 5.4 shows how the generated samples change during the phase

of training. This results confirms that GRAM is not only applicable synthetic datasets

116

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

(a) Data and samples in the original (top) and projected

space (bottom) during training; four plots are at iteration

0, 100, 1000 and 10,000 respectively. Notice how the

projected space separates p̄ and q̄.

Figure 5.3: Training results of GRAM-nets with projected dimension fixed to 2 on the 3D ring

dataset.

that are shown before but also to real dataset like MNIST. Figure 5.5 shows how the

generator loss and the ratio matching objective are being optimised simultaneously.

As for dataset that has a similar dimensionality of MNIST, kernel methods are still

statistically effective thus we can still estimate the squared difference in density ratios in

equation 5.2. Figure 5.5 confirms that during training, this squared difference decreases,

meaning the projection network is learning a space that matches the density ratio.

5.3.5 Computation graphs

Figure 5.6 visualises the computational graph for GAN, MMD-net, MMD-GAN and

GRAM-net. Solid arrows describe the direction of the computation, K denotes the

kernel gram matrix and most importantly dashed lines represent the presence of saddle-

point optimisation. In case of GAN and MMD-GAN, the dashed lines imply that by

formulation, training the critic adversarially affects the training of the generator as they

are trained by minimising and maximising the same objective i.e., Lγ = −Lθ. Both

MMD-nets and GRAM-nets avoid this saddle-point problem. In GRAM-nets, the critic

and generator do not play a zero-sum game as they are trained to optimise different

objectives, i.e. the critic learns to find a projection in which the density ratios of the

pair of input distributions are preserved after the projection and the generator tries to

minimise the MMD in the projected space.

117

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

Figure 5.4: Data and samples (top and bottom half in each plot) during training at iteration 100,

250, 500 (top row) and at 750, 1,000, 4,000 (bottom row). The orders for each row are from left

to right.

5.4 Experiments

In this section we empirically compare GRAM-nets against MMD-GANs and vanilla

GANs, on the Cifar10 and CelebA image datasets. Please note that while we have

tried to include maximum number of evaluations in this section itself, due to space

limitations, some results are made available in the appendix. To evaluate the sample

quality and resilience against mode dropping, we used Frechet Inception Distance (FID;

Heusel et al., 2017).4 Like the Inception Score (IS), FID also leverages a pre-trained

Inception Net to quantify the quality of the generated samples, but it is more robust to

noise than IS and can also detect intra-class mode dropping (Lucic et al., 2017). FID

first embeds both the real and the generated samples into the feature space of a specific

layer of the pre-trained Inception Net. It further assumes this feature space to follow a

multivariate Gaussian distribution and calculates the mean and covariance for both sets

of embeddings. The sample quality is then defined as the Frechet distance between the

4We use a standard implementation available from https://github.com/bioinf-jku/TTUR

118

https://github.com/bioinf-jku/TTUR

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

1 20 40 60 80 100

100

101

102

100 1000 2000 3000 4000 5000

̂γ (̂MMD)
D * (Eq. 5)

Figure 5.5: Trace of L̂γ and D∗ (equation equation 5.3) during training. The left plot is for

iteration 1 to 100 and the right plot is for 100 to 5,000, with the same y-axes in the log scale.

z∼ pZ

xq xp ∼ pX

Lγ Lθ

γ

θ
θ

θ

(a) GAN

z∼ pZ xp ∼ pX

xq K

Lγ

γ

(b) MMD-net

z∼ pZ xp ∼ pX

xq fθ(xp)

fθ(xq) K

Lγ Lθ

γ θ

θ

(c) MMD-GAN

z∼ pZ xp ∼ pX

xq fθ(xp)

fθ(xq) K

Lγ Lθ

γ θ

θ

(d) GRAM-net

Figure 5.6: Computation graphs of GAN, MMD-net, MMD-GAN and GRAM-net. K is the kernel

Gram matrix. Solid arrows represent the flow of the computation and dashed lines represents

min-max relationship between the losses, i.e. saddle-point optimisation in which minimising

one loss maximises the other. Therefore, in the zero-sum game case (GAN, MMD-GAN) the

two objectives (Lγ and Lθ) cannot be optimised simultaneously (Mescheder et al., 2017b).

two Gaussian distributions, which is

FID(xp,xq) = ‖µxp−µxq‖2
2 +Tr(Σxp +Σxq−2(ΣxpΣxq)

1
2),

where (µxp,Σxp), and (µxq,Σxq) are the mean and covariance of the sample embeddings

from the data distribution and model distribution. We report FID on a held-out set

that was not used to train the models. We run all the models three times from random

initializations and report the mean and standard deviation of FID over the initializations.

Architecture We test all the methods on the same architectures for the generator and

the critic, namely a four-layer DCGAN architecture (Radford et al., 2015), because this

has been consistently shown to perform well for the datasets that we use. Additionally,

to study the effect of changing architecture, we also evaluate a slightly weaker critic,

119

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

Table 5.1: Sample quality (measured by FID; lower is better) of

GRAM-nets compared to GANs. Numbers after ± are standard deviations.

Arch. Dataset MMD-GAN GAN GRAM-net

DCGAN Cifar10 40.00±0.56 26.82±0.49 24.85 ± 0.94
Weaker Cifar10 210.85±8.92 31.64±2.10 24.82 ± 0.62
DCGAN CelebA 41.105±1.42 30.97±5.32 27.04 ± 4.24

Table 5.2: FID with fully convolutional architecture originally used by Li et al. (2017). Numbers

after ± are standard deviations.

Dataset MMD-GAN

Cifar10 38.39±0.28

CelebA 40.27±1.32

with the same number of layers but half the number of hidden units. Details of the

architectures are provided in appendix 5.D.

Hyper-parameters To facilitate fair comparison with MMD-GAN we set all the

hyperparameters shared across the three methods to the values used in Li et al. (2017).

Therefore, we use a learning rate of 5e−5 and set the batch size to 64. For the MMD-

GAN and GRAM-nets, we used the same set of RBF kernels that were used in Li et al.

(2017). We used the implementation of MMD-GANs from Li et al. (2017).5 We leave

all the hyper-parameters that are only used by MMD-GAN to the settings in the authors’

original code. For GRAM-nets, we choose K = h, i.e. the projected dimension equals

the input noise dimension. We present an evaluation of hyperparameter sensitivity in

section 5.4.2.

5.4.1 Image quality

We now look at how our method competes against GANs and MMD-GANs on sample

quality and mode dropping on Cifar10 and CelebA datasets. Quantitative results for

comparison are shown in table 5.1 with some of the randomly generated samples from

our method in figure 5.1. Clearly, GRAM-nets outperform both baselines. For CelebA,

5Available at https://github.com/OctoberChang/MMD-GAN.

120

https://github.com/OctoberChang/MMD-GAN

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

(a) CIFAR10 (b) CelebA

Figure 5.1: Random Samples from a randomly selected epoch (>100).

we do not run experiments using the weaker critic, because this is a much larger and

higher-dimensional dataset, so a low-capacity critic is unlikely to work well.

It is worth noting that while the difference between the FIDs of GAN and GRAM-net

is relatively smaller, it is quite significant that GRAM-net outperforms GAN on both

datasets. As shown in a large scale study of adversarial generative models (Lucic et al.,

2017), GANs in general perform very well on FID when compared to the state-of-the-art

methods such as WGAN (Arjovsky et al., 2017a). Interestingly, in the case CIFAR10,

GANs are the state-of-art on FID performance.

To provide evidence that GRAM-nets are not simply memorizing the training set, we

note that we measure FID on a held-out set, so a network that memorized the training

set would be likely to have poor performance. For additional qualitative evidence of

this, see figure 5.2. This figure shows the five nearest neighbours from the training set

for 20 randomly generated samples from the trained generator of our GRAM-net. None

of the generated images have an exact copy in the training set, and qualitatively the 20

images appear to be fairly diverse.

Note that our architecture is different from that used in the results of Li et al. (2017).

That work uses a fully convolutional architecture for both the critic and the generator,

which results in an order of magnitude more weights. This makes a large comparison

more expensive, and also risks overfitting on a small dataset like Cifar10. However,

for completeness, and to verify the fairness of our comparison, we also report the FID

121

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

Figure 5.2: Nearest training images to samples from a GRAM-net trained on Cifar10. In each

column, the top image is a sample from the generator, and the images below it are the nearest

neighbors.

10 6 10 5 10 4 10 3 10 2

learning rate

50

100

150

200

250

300

FI
D

MMD-GAN
GAN
GRAMnet

(a) FID vs Learning Rate

64 150 300
batch size

25

30

35

40

45

50

FI
D

MMD-GAN
GAN
GRAM-net

(b) FID vs Batch Size

0 500 1000 1500 2000 2500 3000
Output Dimensionality of the Critic

24

26

28

30

32

34

FI
D

(c) FID vs critic output dimension

for GRAM-nets.

Figure 5.3: Hyper-parameter sensitivity of MMD-GAN, GAN and GRAM-net on Cifar10 dataset.

Sample quality measured by FID.

that we were able to obtain with MMD-GAN on this fully-convolutional architecture

in table 5.2. Compared to our experiments using MMD-GAN to train the DCGAN

architecture, the performance of MMD-GAN with the fully convolutional architecture

remains unchanged for the larger CelebA dataset. On Cifar10, not surprisingly, the larger

fully convolutional architecture performs slightly better than the DCGAN architecture

trained using MMD-GAN. The difference in FID between the two different architectures

is relatively small, justifying our decision to compare the generative training methods

on the DCGAN architecture.

5.4.2 Sensitivity to hyper-parameters and effect of the critic dimen-

sionality

GAN training can be sensitive to the learning rate and the batch size used for training

(Lucic et al., 2017). We examine the effect of learning rates and batch sizes on the

122

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

performance of all three methods. Figure 5.3a compares the performance as a function

of the learning rates. We see that GRAM-nets are much less sensitive to the learning

rate than MMD-GAN, and are about as robust to changes in the learning rate as a

vanilla GAN. MMD-GAN seems to be especially sensitive to this hyper-parameter. We

suggest that this might be the case since the critic in MMD-GAN is restricted to the

set of k-Lipschitz continuous functions using gradient clipping, and hence needs lower

learning rates. Similarly, figure 5.3b shows the effect of the batch size on three models.

We notice that all models are slightly sensitive to the batch size, and lower batch size is

in general better for all methods.

We examine how changing the dimensionality K of the critic affects the performance

of our method. We use the Cifar10 data. Results are shown in figure 5.3c. Interestingly,

we find that there are two regimes: the output dimensionality steadily improves the

FID until K = 1000, but larger values sharply degrade performance. This agrees with

the intuition in section 5.3.1 that dimensionality reduction is especially useful for an

“intrinsically low dimensional” distribution. For more inspections of the stability of

MMD-GANs, see appendix 5.C.

5.5 Related work

Li et al. (2015) and Dziugaite et al. (2015) independently proposed MMD-nets, which

use the MMD criterion to train a deep generative model. Unlike f -divergences, MMD

is well-defined even for distributions that do not have overlapping support, which is

an important consideration for training generative models (Arjovsky et al., 2017a).

Therefore, MMD-nets use equation 2.20 in order to minimise the discrepancy between

the distributions qX and pX with respect to Gγ. However, the sample quality of MMD-

nets generally degrades for higher dimensional or color image datasets (Li et al., 2015).

To address this problem, Li et al. (2017) introduce MMD-GANs, which use a critic

fθ : RD 7→ RK to map the samples to a lower dimensional space RK , and train the

generator to minimise MMD in this reduced space. This can be interpreted as learning

the kernel function for MMD, because if fθ is injective and k0 is a kernel in RK , then

k(x,x′) = k0(fθ(x), fθ(x′)) is a kernel in RD. This injectivity constraint on fθ is imposed

by introducing another deep neural network f ′
φ
, which is trained to approximately invert

fθ using an auto-encoding penalty. Though it has been shown before that inverting

fθ is not necessary for the method to work. We also confirm this in experiments (See

123

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

appendix).

The critic fθ is trained using an adversarial criterion (maximizing equation equa-

tion 2.20 that the generator minimizes), which requires numerical saddle-point optim-

ization, and avoiding this was one of the main attractions of MMD in the first place.

Due to this, successfully training fθ in practice required a penalty term called feasible

set reduction on the class of functions that fθ can learn to represent. Furthermore, f

is restricted to be k-Lipschitz continuous by using a low learning rate and explicitly

clipping the gradients during update steps of f akin to WGAN (Arjovsky et al., 2017a).

Recently, Bińkowski et al. (2018); Li et al. (2019a) have proposed improvements to

stabilize the training of the MMD-GAN method. But these methods still rely on solving

the same saddle-point problem to train the critic.

124

Appendix

5.A Derivation details

The derivation from equation 5.2 - equation 5.4 relies on the law of unconscious

statistician (LOTUS), and therefore no Jacobian correction is needed. Here we show

how we applied LOTUS in the derivation, with more detailed steps.

Let r̄(x) = p̄(x)
q̄(x) . Expanding equation 5.2 we have,

D∗(θ) =
∫

qX(x)
(

pX(x)
qX(x)

)2

dx−2
∫

qX(x)
pX(x)
qX(x)

p̄(fθ(x))
q̄(fθ(x))

dx+
∫

qX(x)
(

p̄(fθ(x))
q̄(fθ(x))

)2

dx

=
∫

pX(x)
pX(x)
qX(x)

dx−2
∫

pX(x)
p̄(fθ(x))
q̄(fθ(x))

dx+
∫

qX(x)
(

p̄(fθ(x))
q̄(fθ(x))

)2

dx

=
∫

pX(x)
pX(x)
qX(x)

dx−2
∫

pX(x)r̄(fθ(x))dx+
∫

qX(x)r̄2(fθ(x))dx

We obtain the second line by cancelling and rearranging terms and the third line, by

plugging in r̄(x).

Applying Theorem 3.6.1 from Bogachev (2007) (pg. 190) on the third term,∫
qX(x)r̄2(fθ(x)), with g = r̄2 and f = fθ, we get

∫
qX(x)r̄2(fθ(x))dx =

∫
q̄(fθ(x))r̄2(fθ(x))d fθ(x).

Similarly, for the second term, with g = r̄ and f = fθ, we obtain

2
∫

pX(x)r̄(fθ(x))dx = 2
∫

p̄(fθ(x))r̄(fθ(x))d fθ(x).

Thus,

D∗(θ)=
∫

pX(x)
pX(x)
qX(x)

dx−2
∫

p̄(fθ(x))r̄(fθ(x))d fθ(x)+
∫

q̄(fθ(x))r̄2(fθ(x))d fθ(x),

125

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

which is the first line of equation 5.3.

Note that we use LOTUS "in reverse" of its usual application.

5.B Experimental details and more results for section 5.3.4

5.B.1 Experimental details

Below list the hyper-parameters used in section 5.3.4, except from those being varied in

the experiments.

• Number of epochs: 2,000

• Noise distribution: Gaussian

• Activation between hidden layers: ReLU

• Batch normalisation: not used

• Batch size: 200

• Batch size for generated samples: 200

• GAN

– Optimizer: ADAM

– Learning rate: 1e-4

– Momentum decay: 0.5

– Critic architecture: 2-100-100-10

• MMD-net

– Optimizer: RMSprop

– Learning rate: 1e-3

– RBF kernel bandwidth: 1

• GRAM-net

– Optimizer: ADAM

– Learning rate: 1e-3

126

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

2 4 8 16

20

100

200

(a) MMD-nets

2 4 8 16

(b) MMD-GANs

Figure 5.B.1: Corresponding plots to figure 5.2 for MMD-nets and MMD-GANs.

– Momentum decay: 0.5

– RBF kernel bandwidth: 1

– Critic architecture: 2-100-100-10

Note that we also provide the experimental details for MMD-nets where we will show

the results in appendix 5.B.2.

5.B.2 Stability of MMD-nets and MMD-GANs

In this section we repeat the same stability-related experiments that we conducted on

GANs and GRAM-nets in section 5.3.4, for MMD-nets and MMD-GANs. Results are

shown in figure 5.B.1a and 5.B.1b. One can see MMD-nets can capture all the modes,

but the learned distribution is less separated (or sharp) compared to GRAM-nets. This

is because the MMD is computed with a fixed kernel and in a fixed space, which can

only distinguish distributions, subject to the set of kernels being used. Figure 5.B.1b

shows the results on MMD-GAN models that are trained for 4,000 epochs, each with

5 steps for the critic network and 1 step for the generative network.6 Compared to

figure 5.2b, in which GRAM-nets only takes 2,000 training epochs with 1 joint step

for both networks, even with longer training, the quality of MMD-GAN is visually

worse than GRAM-nets in this synthetic example. Notice, how the generated samples

of MMD-GAN are similar to the successful runs for GAN in figure 5.2a: generated

6When training MMD-GAN, both the auto-encoding loss and the feasible set reduction loss are used.
Parameter clipping is done with -0.1 (lower) and 0.1 (upper). Learning rate is set to 5e-5 and other
parameters are the same as GRAM-nets.

127

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

samples tend to be too concentrated around the mode of the individual clusters. Our

method on the other hand, with shorter training time, is clearly able to recover all the 8

clusters along with their spreads.

Note that, unlike GRAM-nets which are robust to changing dimensionality of the

projected spaces (2, 4, 8, 16), MMD-GAN training easily diverges for 2-dimensional

projected spaces. As a result, for MMD-GAN we only show the results up to the

iterations before the training diverges. It’s likely that any change in the neural network

size (output dimension) requires a different set of hyperparameters to make MMD-GAN

converge. On the other hand, GRAM-nets are robust to these changes, out of the box.

5.B.3 GRAM-nets on the MNIST dataset

The generator used in this experiment is a multilayer perceptron (MLP) of size 100-600-

600-800-784 with ReLU activations between hidden layers and sigmoid activation for

the output layer; the noise distribution is a multivariate uniform distribution between

[−1,1] with 100 dimensions. For the critic, we use a convolution architecture specified

in table 5.B.1. For the optimisation, we use ADAM with a learning rate of 1e-3,

Op Input Output Filter Pooling Padding

Reshape 784 (-1,28,28,1) - - -

Conv2D + BatchNorm 1 16 3 2 1

Conv2D + BatchNorm 16 32 3 2 1

Conv2D + BatchNorm 32 32 3 2 1

Reshape (-1,3,3,32) (-1,288) - - -

Linear 288 100 - - -

Table 5.B.1: Critic architecture for MNIST. All BatchNorm are followed by a ReLU activation.

momentum decay of 0.5, and batch size of 200 for both data and generated samples.

For the RBF kernels, we use bandwidths of [0.1,1,10,100]

128

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

(a) 2D Ring (b) 3D Ring

Figure 5.C.1: Training of MMD-GAN with projected dimension fixed to 2 before diverging.

Data and samples in the original (top) and projected space (bottom) during training; four plots

are at iteration 100, 500 and 1,000 respectively. Notice how the projected space separates p̄ and

q̄.

5.C Stability of MMD-GANs

In addition to figure 5.B.1b, which evaluates the stability of MMD-GANs in terms of

the projected dimension and the generator capacity, we perform qualitative evaluation

by visualizing the projected space during training as well as the effect of stabilization

techniques in this section.

5.C.1 Projected space during training

We first perform the qualitative evaluation (same as figure 5.1a and figure 5.3) for

MMD-GANs on the 2D and 3D ring datasets. The original space and the projected

space during training are visualized in figure 5.C.1 It is clear that the projected spaces

are quite different between MMD-GAN and our method. Unlike GRAM-nets, in the

projected space, the generated samples do not overlap with the data samples.

5.C.2 Stabilization techniques

We also evaluate the effect of the various stabilization techniques used for training,

namely the autoencoder penalty (AE) and the feasible set reduction (FSR) techniques

from (Li et al., 2017) on the Cifar10 data over two settings of the batch size. Table 5.C.1

shows the results. The performance of MMD-GAN training clearly relies heavily on

FSR. This penalty not only stabilizes the critic but it can also provides additional learning

signal to the generator. Because these penalties are important to the performance of

129

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

Table 5.C.1: Performance of MMD-GAN (Inception scores; larger is better) for MMD-GAN

with and without additional penalty terms: feasible set reduction (FSR) and the autoencoding

loss (AE). The full MMD-GAN method is MMD+FSR+AE.

Batch Size MMD+FSR+AE7 MMD+FSR MMD+AE MMD

64 5.35 ± 0.05 5.40 ± 0.04 3.26 ± 0.03 3.51 ± 0.03

300 5.43 ± 0.03 5.15 ± 0.06 3.68 ± 0.22 3.87 ± 0.03

MMD-GANs, it requires tuning several weighting parameters, which need to be set

carefully for successful training.

We would like to re-emphasize the stability of GRAM-nets with respect to different

settings of network sizes, noise dimension, projected dimension, learning rate, batch

size without relying on regularization terms with additional hyperparameters.

5.D Architecture

For the generator used in section 5.4, we used the following DCGAN architecture,

Op Input Output Filter Stride Padding

Linear 128 2048 - - -

Reshape 2048 (-1,4,4,128) - - -

Conv2D_transpose 128 64 4 2 SAME

Conv2D_transpose 64 32 4 2 SAME

Conv2D_transpose 32 3 4 2 SAME

Table 5.D.1: DCGAN generator architecture for Cifar10.

We used two different architectures for the experiments on Cifar10 dataset. Table 5.D.2

shows the standard DCGAN discriminator that was used. Table 5.D.3 shows the archi-

tecture of the weaker DCGAN discriminator architecture that was also used for Cifar10

experiments. While leaky-ReLU was used as non-linearity in the discriminator, ReLU

was used in the generator, except for the last layer, where it was tanh. Batchnorm was

130

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

Op Input Output Filter Stride Padding

Conv2D 3 32 4 2 SAME

Conv2D 32 64 4 2 SAME

Conv2D 64 128 4 2 SAME

Flatten 128 2048 - - -

Linear 2048 128 - - -

Table 5.D.2: DCGAN discriminator architecture for Cifar10.

Op Input Output Filter Stride Padding

Conv2D 3 32 4 2 SAME

Conv2D 32 32 4 2 SAME

Conv2D 32 64 4 2 SAME

Flatten 64 1024 - - -

Linear 1024 128 - - -

Table 5.D.3: Shallow DCGAN discriminator architecture.

used in both the generator and the discriminator.

5.E Inception score

Inception score (IS) is another evaluation metric for quantifying the sample quality in

GANs. Compared FID, IS is not very robust to noise and cannot account for mode

dropping. In addition to the FID scores that we provide in the paper, here we also report

IS for all the methods on CIFAR10 for completeness since the MMD-GAN paper used

it as their evaluation criteria.

131

CHAPTER 5. GENERATIVE RATIO MATCHING NETWORKS

Table 5.E.1: Inception Scores for MMD-GAN, GAN, GRAM-net and MMD-nets on CIFAR10

for three random initializations.

MMD-GAN GAN GRAM-net

Inception Score
5.35 ± 0.12

5.21 ± 0.14

5.31 ± 0.10

5.17 ± 0.13

4.94 ± 0.15

5.27 ± 0.05

5.73 ± 0.10
5.44 ± 0.12
5.45 ± 0.18

132

Chapter 6

A Bayesian-Symbolic Approach to
Physics Learning in Intuitive Physics

6.1 Introduction

Imagine a ball rolling down a ramp. If asked to predict the trajectory of the ball, most

of us will find it fairly easy to make a reasonable prediction. Not only that, simply by

observing a single trajectory people can make reasonable guesses about the material

and weight of the ball and the ramp. It is astonishing that while the exact answers to any

of these prediction and reasoning tasks requires an in-depth knowledge of Newtonian

mechanics and solving of some intricate equations, yet an average human can perform

such tasks without any formal training in physics. Studies suggest that from early age

humans come to understand physical interactions with very limited supervision, and can

efficiently reason and plan actions in common sense tasks, even in absence of complete

information (Spelke, 2000; Battaglia et al., 2013). For example, with limited data, 4 or 5

years old children are capable of learning the physical laws behind magnetism (Bonawitz

et al., 2019). Physical reasoning is considered a core domain of human common-sense

knowledge (Spelke and Kinzler, 2007). Recent studies suggest that the ability to

efficiently learn physical properties and interactions with limited supervision is driven

by a noisy model of Newtonian dynamics, referred to as the intuitive physics engine

(IPE; Bates et al., 2015; Gerstenberg et al., 2015; Sanborn et al., 2013; Lake et al., 2017;

Battaglia et al., 2013). This has led to a surge in research aimed at developing agents

with an IPE, or a model of the environment dynamics (Amos et al., 2018; Chang et al.,

2016; Grzeszczuk and Animator, 1998; Fragkiadaki et al., 2015; Battaglia et al., 2016;

133

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Watters et al., 2017; Sanchez-Gonzalez et al., 2019; Ehrhardt et al., 2017; Kipf et al.,

2018; Seo et al., 2019; Baradel et al., 2020). These efforts have created methods that

either trade-off data-efficiency, by using deep neural networks (NNs), for high predictive

accuracy (Breen et al., 2019; Battaglia et al., 2016; Sanchez-Gonzalez et al., 2019) or

trade-off flexibility to learn from data for data-efficiency by using symbolic methods

(Ullman et al., 2018; Smith et al., 2019; Sanborn et al., 2013; Bramley et al., 2018).

Inspired by the highly data-efficient ability of humans to learn and reason about

their physical environment with incomplete information, we present Bayesian-symbolic

physics (BSP), a Bayesian-symbolic model with an expectation-maximization (EM)

algorithm that combines the sample efficiency of symbolic methods with the accuracy

and generalization of data-driven approaches, using statistical inference of unobserved

object properties and symbolic learning of physical force laws. In BSP, we model the

evolution of the environment’s dynamics over time as a generative program of entities

interacting under Newtonian mechanics. As a probabilistic method, BSP treats the

properties of entities, such as mass and charge, as random variables. Since Newtonian

force laws are functions of these properties, in BSP we replace data-hungry NNs with

symbolic regression (SR) to learn explicit force expressions, and then evolve them

deterministically using equations of motion. A naive SR implementation here is not

enough though due to two issues. One is that if it operates on a vanilla grammar that

does not constrain the search space over force-laws, it can potentially have worse data-

efficiency than a NN. Therefore, we introduce a grammar of Newtonian physics that

leverages dimensional analysis to induce a physical unit system over the search space

and impose physics-based constraints on the production rules. This prunes physically

meaningless laws, therefore, drastically speeding up SR. Another issue is that the

symbolic force expressions usually contain global constants, e.g. the gravitational

constant, to learn, and common ways to deal with this challenge turn out to be inefficient

especially in an EM setup. We tackle this challenge by using SR in a bilevel optimization

framework in which a lower-level gradient based optimization step is used to optimize

the constant. In short, our three main contributions are:

• We introduce a Bayesian-symbolic model for physical dynamics and an EM based

algorithm, which combines approximate inference methods and SR, for maximum

likelihood learning.

• We introduce a grammar of Newtonian physics that appropriately constrains SR for

data-efficient learning, based on priors from dimensional analysis and physics-based

134

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Fixed

Physics

Engine

Fixed

Symbolic

Force Laws

Summation

Newtonian

Dynamics

Learnable

Symbolic

Force Laws

Summation

Newtonian

Dynamics

Neurally

Learned

Interaction

Aggregation

Hamiltonian

Dynamics

Neurally

Learned

Interaction

Aggregation

Neurally

Learned

Dynamics

Deep

Neural

Networks

More adaptive but less data-efficient
Legend

� Physics model

� Interac-

tion model

� How

each entity

receives

interactions

� Dynam-

ics model

Figure 6.1: From left to right are rule-based to purely data-driven models of physics. Examples

for each column are (1) Smith et al. (2019), (2) Ullman et al. (2018), (3) BSP (Ours), (4)

(H)OGN Sanchez-Gonzalez et al. (2019), (5) IN Battaglia et al. (2016) and (6) Breen et al.

(2019).

constraints.

• Empirically, we show that BSP reaches human-like data-efficiency, often requiring just

1 to 5 synthetic scenes to learn the underlying force laws—much more data efficient

than the closest neural alternatives. We then illustrate how BSP can discover physical

laws from real-world common sense scenes from Wu et al. (2016). Finally, we study

BSP on tasks previously used to study human physical reasoning in Ullman et al.

(2018) and discuss the similarity and differences with human results.

6.2 Related work

Many symbolic and data driven models of learning and reasoning about physics can

be broken down into smaller components that are either learned or fixed. In figure 6.1,

we compare some of the closely-related recent work on physics learning. Starting on

the right end, we have fully learned, deep NN approaches such as that used by Breen

et al. (2019). This approach does not use any prior knowledge about physics, and

learns to predict dynamics in a purely data-driven way. In the middle are hybrid models

that introduce some prior knowledge about physical interactions or dynamics, in their

NN-based prediction models. These include interaction networks (INs; Battaglia et al.,

2016), ODE graph networks (OGNs), and Hamiltonian ODE graph networks (HOGNs;

Sanchez-Gonzalez et al., 2019). Since these middle approaches use deep NNs, they

tend to have very good predictive accuracy, yet poor sample complexity, requiring

135

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

orders of magnitude more data to train than humans (Ullman et al., 2018; Battaglia

et al., 2016; Sanchez-Gonzalez et al., 2019). On the other end of the spectrum (left)

are fully symbolic, rule-based physics models and engines (Smith et al., 2019; Allen

et al., 2019; Wu et al., 2015; Ullman et al., 2018). While these methods are suitable for

reasoning tasks, they lack the flexibility of data-driven, learned models as they cannot

generalize or adapt to changes in the environment that their fixed physics engine cannot

simulate. For example, inference can fail on physically implausible scenes, and may

require additional workarounds such as ‘low probability events’ outside the dynamics

(Smith et al., 2019).

Symbolic regression has been used for general physics learning in prior research,

ranging from Schmidt and Lipson (2009)’s work on discovering force laws from experi-

mental data, to the more recent work of Cranmer et al. (2020) on distilling symbolic

forces from INs using genetic algorithms. More recently, Udrescu and Tegmark (2020)

proposed AI Feynman, which recursively simplifies the SR problem using dimensional

analysis and symmetries inferred by neural networks, to discover the underlying physics

equations of the data. The focus of these types of work has been to discover underlying

laws and equations based on direct input-output data. The focus of BSP, on the other

hand, is on physics learning based on indirect signals from the environment; this is a task

of interest in both intuitive physics studies with humans, and for human-like AI. Further,

most symbolic approaches learn physics while assuming all properties in a system are

known, which renders them inapplicable to environments with incomplete information.

Some neural approaches focus on addressing such limitations in an end-to-end fashion

(Zheng et al., 2018; Veerapaneni et al., 2020; Janner et al., 2019).

6.3 Bayesian-symbolic physics

BSP represents the physical environment using a generative model that evolves under

Newtonian dynamics (section 6.3.1). In this model, physical laws are treated as learnable

symbolic expressions and learned by symbolic regression and a specialized grammar of

Newtonian physics that confines the search space and prevent the model from learning

physically meaningless laws (section 6.3.2). BSP does not require all properties of the

entities to be fully observed. It models these properties as latent random variables and

infers them using Bayesian learning. To fit BSP on data, with incomplete information,

we propose an EM algorithm that iterates between Bayesian inference of the latent

136

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

properties, and SR which gives maximum likelihood estimation of the force expressions

(section 6.3.3).

6.3.1 Generative model of the environment

In BSP’s generative model, we represent each entity i ∈ {1 . . .N} by a vector of intrinsic

physical properties zi (such as mass, charge, and shape), and a time dependent state

vector si
t = (pi

t ,vi
t) which describes the evolution of its position pi

t ∈ Rd and velocity

vi
t ∈ Rd under Newtonian dynamics. Here, d refer to the dimensionality of the envir-

onment, and is typically 2 or 3. Let {τi}N
i=1 be the set of observed trajectories from an

environment with N entities, where τi = pi
1:T := (pi

1, . . . ,p
i
T). Then, together with the

prior on z, for an observed trajectory data, D, the generative model of BSP defines a

joint probability distribution p(D,z;F) over D and latent properties z, given the force

function F .1 The state transition of an entity in a Newtonian system depends on its

properties and current state as well as its interaction with other entities. So, in BSP the

force on entity i at time t is defined as fi
t = ∑

N
j=1 F(zi,si

t ,z
j,s j

t), where F(zi,si
t ,z

j,s j
t)

is the interaction force between entities i and j. Then, the trajectory τi of entity i is

generated by a transition function T that consumes the current state and the resultant

force to compute si
t+1 = T

(
si
t , fi

t
)
. Similar to Sanchez-Gonzalez et al. (2019), we use

numerical integration to simulate the Newtonian dynamics inside T. Specifically, we

choose the Euler integrator and expand T as

ai
t = fi

t/mi, vi
t+1 = vi

t +atε, pi
t+1 = pi

t +vi
t+1ε, (6.1)

where mi is the mass of the recipient of the force fi
t and ε is the step size of the

Euler integrator. Finally, we add Gaussian noise to each trajectory {τi}N
i=1, that is,

D := {τ̃i}N
i=1 where τ̃i := (p̃i

1, . . . , p̃
i
T), p̃i

t ∼ N (pi
t ,σ

2) and σ is the noise level. See

appendix 6.A.1 for the details of the complete generative process and illustrative

examples.

6.3.2 A grammar of Newtonian physics

In order to attain good data efficiency, we choose to learn the pairwise force F(zi,si,z j,s j)

between entities i and j using symbolic search. This approach can be inefficient if
1As physical dynamics are typically sensitive to initial states, we assume the noise-free initial states

are given either as part of the data D , or can be accurately estimated in a pre-processing step, e.g. by
using consecutive positions, thus are omitted in the notation.

137

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

mi +µ j, mi−µ j,

mi×µ j, mi÷µ j,

‖pi‖2, ‖pi−p j‖2

����mi +µ j, ����mi−µ j,

mi×µ j, mi÷µ j,

‖pi‖2, ‖pi−p j‖2

����mi +µ j,����mi−µ j,

mi×µ j, mi÷µ j,

�
��‖pi‖2, ‖pi−p j‖2

Dimensional

analysis
Translation

invariance

Figure 6.1: Illustration of how the dimensional analysis and translation invariance priors help

constrain the search space. Each box contains a subset of valid and illegal (stroked) sub-

expressions.
the search space of possible functions is too large, or inaccurate if the search space is

too small. So, we constrain the function F to be a member of a context-free language

with a grammar G , which we call the grammar of Newtonian physics. We design

the grammar to be expressive enough to represent a large variety of potential force

laws, while incorporating some simple, general constraints to improve the efficiency

of symbolic search. Here we describe G informally; for the formal description, see

figure 6.A.2 (appendix 6.A.2).

We consider the following terminal nodes in G : the masses mi,m j of the entities,

their friction coefficients µi,µ j, shapes si,s j
2, positions pi,p j, velocities vi,v j the contact

point c i.e. the position (if any) at which they touch, and finally a set of K learnable

constants {ck}K
k=1; the units of these terminals will be discussed in the next paragraph. In

cases of no contact, c is set as the middle position of the two objects, i.e. c=
(
pi +p j

)
/2.

We include the operators: (·)2 (square), +, −, ×, ÷, ‖·‖2 (L2-norm), normalise(·) and

project(·, ·), which projects a vector onto the unit ball.3 The grammar also allows forces

to be conditioned on a Boolean expression, in order to support conditional forces that

only apply when a condition is true, e.g., when two objects collide. We provide G two

primitive functions that encode the output of the perception system: doesCollide for

collision detection and isOn to check if an entity is on a surface. These functions output

integers 0 or 1. A rule in the grammar then allows a force expression to be multiplied

by a conditional, so that BSP can learn expressions that represent when a conditional

force should be applied.

Naively supporting all possible expressions for any combination of terminals would

make SR highly inefficient, and even lead to physically impossible force laws. There-

fore, we introduce two simple and general types of prior knowledge inspired by physics:

dimensional analysis and translation invariance. Figure 6.1 shows examples of ex-

pressions that are excluded by each. First, inspired by dimensional analysis in natural

2Each type of objects such as discs, rectangles, etc. have their shapes with corresponding parameters,
e.g. radius for discs.

3In our work we consider maximally three forces to be learn in the same time, thus setting K = 3;
more learnable constants and/or entity properties can be easily added to the grammar if needed.

138

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

sciences, where the relations between different units of measurement are tracked (Bres-

cia, 2012), we built the concept of units of measurement into the non-terminals of G .

The units we consider are kilogram (Kg) for mass, meter (Meter) for distance, and

meter per second (MeterSec) for speed. With this unit system in place, we only allow

addition and subtraction of symbols with the same units, avoiding physically impossible

sub-expressions such as Kg−Meter.4 Importantly, this can lead to force laws with unit

Newton (N).5 Second, the grammar ensures that all force laws are translation-invariant,

that is, independent on the choice of the origin of the reference frame. To do this, the

grammar forbids the direct use of absolute positions pi, p j and c and only allows their

differences to be used expressions.6

Finally, some care is needed to ensure the grammar is unambiguous. For example,

if we used a rule like Coeff → Coeff ×Coeff , then the grammar could generate many

expressions that redundantly represent the same function. This would make search

much more expensive. Instead, we rewrite this rule in an equivalent right-branching way,

e.g., Coeff → BaseCoeff ×Coeff . This significantly reduces the search space without

changing the expressivity of the grammar. Overall, although the grammar puts basic

constraints on plausible physical laws, it is still expressive: there are more than 7 million

possible trees up to depth 6 while even the expression of universal gravitation has a

depth of 7; the number of expressions up to depth 7 in G is intractable to count.

6.3.3 Learning algorithm

Following the EM approach, our learning method alternates between an E-step, where

object property distributions are estimated given the current forces via approximate

inference, and an M-step step, where forces are learned given object property distri-

butions via SR (section 6.3.3.1). For the E-step, we consider two standard inference

options: importance sampling (for any prior), and Hamiltonian Monte Carlo otherwise

(for continuous priors only). Appendix 6.A.4 discusses some details on applying them

in BSP. Note appendix 6.A.3 also provides all pseudo-code for algorithms introduced in

4Constraining the grammar using units shares a similar spirit to type inference in type-directed
synthesis (Feser et al., 2015; Osera and Zdancewic, 2015), which are crucial to improve search by
avoiding illegal programs.

5When forming the unit N, constants can in fact has arbitrary units. But if there is any sub-expression
like Kg−Meter, which is disallowed by our grammar, the final expression would not have any proper
unit.

6This is consistent with how such variables are pre-processed in neural network approaches (Breen
et al., 2019). Usually the mean of a pair of positions are subtracted from the pair to make them
translation-invariant.

139

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

this section.

Implementation In our work, we implement the generative models as probabilistic

programs using the Turing probabilistic programming language (Ge et al., 2018) in

Julia. As such the E-step is simply done by Turing’s built-in samplers. For the M-step,

we use the cross-entropy implementation from the ExprOptimization.jl package which

allows users to define grammars with intuitive syntax.

6.3.3.1 Symbolic regression with bilevel optimization for learnable constants

Symbolic regression (SR) is a function approximator that searches over a space of

mathematical expressions defined by a context free grammar (CGF) (Koza, 1994). In our

work, we use the cross-entropy method for SR. The method starts with a Probabilistic

context-free grammars (PCFG) that assumes a uniform distribution over the production

rules (PCFGs extend CFGs by assigning each production rule a probability). At each

successive iteration, it samples n trees (up to depth d) from the current PCFG, evaluates

their fitness by a loss function L , and uses the top-k trees to fit a PCFG via maximum

likelihood for the next iteration. This process returns the learned force law at the end of

the training. More formally, to learn force laws, we need to find an expression e ∈ L(G),

where L(G) is the language generated by G , and values for the learnable constants

c := {ci}3
k=1 that define the force function fe,c. The loss used by the cross-entropy

method involves computing the log-likelihood of the generative model. As the observed

trajectory is generated sequentially given an initial state, the computation of the log-

likelihood term cannot be parallelized, and can be computationally expensive in practice.

Therefore, following Battaglia et al. (2016) and Sanchez-Gonzalez et al. (2019), we use

a vectorized version of the log-likelihood that basically performs simulation in each

time stamp in parallel LL(e,c;z,D) = ∑
N
i=1∑

T−1
t=1 logN (p̃i

t+1;T
(
si
t , fi

e,c,t
)
,σ) where T

is expanded following equation 6.1 and s̃i
t := (p̃i

t , ṽi
t). Clearly, LL differs from its

corresponding sequential likelihood, as the input for the integrator contains noise at

each step. However, similar to previous work, we found it is not an issue when learning

forces by regression.

In order to prevent overfitting by finding over-complex expressions, we add a

regularization term—weighted log-probability under a uniform PCFG prior of G—to

the negative log-likelihood; to arrive at our final loss per trajectory L(e,c;z,D) =

−LL(e,c;z,D)+λ logP0(e). Here P0 is the uniform PCFG of G , and λ is the hyper-

140

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

(a) NBODY (b) BOUNCE (c) MAT

Figure 6.1: Example scenes from SYNTH. Entities in gray are static.

parameter that controls the regularization. The loss for multiple trajectories is just a

summation of L over individual trajectories. The continuous constants c require care

as they can take any value. To handle this, we use bilevel optimization (Dempe, 2002),

where the upper-level is the original symbolic regression problem, and the lower-level

is an extra optimization for constants. This means we optimize the constants before

computing the loss of each candidate tree within the cross-entropy iterations. The

defined loss for each expression e in SR is then L(e;z,D) = L(e,argminc L(e,c);z,D).

In BSP, we use the L-BFGS optimizer to solve the lower-level optimization. Our way

of handling learnable constants is related to other SR methods and bilevel optimization.

Traditionally, constants are either randomly generated from a predefined, fixed integer

set or a continuous interval, or for evolutionary algorithms, they can be mutated and

combined during evolution to produce constants that fit better; such constants are often

referred as ephemeral constants (Davidson et al., 2001). Compared to these methods,

the benefit of our formulation is that the evaluation of each tree candidate depends on

the symbolic form only as the constants are optimized-away, making the search more

efficient. Note that although the literature has not explicitly considered our way of

constant learning as bilevel optimization problem, similar strategies are also used in

(Cerny et al., 2008; Kommenda et al., 2013; Quade et al., 2016). In contrast to recent use

of bilevel optimization in meta-learning, e.g. (Finn et al., 2017), our method is simpler:

As our upper-level optimization is gradient-free, we do not need to pass gradient from

the lower-level to the upper-level.

6.4 Experiment: Learning force laws in fully observed

environment

In this section, we evaluate the BSP in a data-limited setting when the properties are

fully observed.

141

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Synthetic datasets (SYNTH). We created three synthetic datasets for controlled

evaluation: NBODY (n-body simulations with 4 bodies), BOUNCE (bouncing balls)

and MAT (mats with friction); see figure 6.1 for an illustration. NBODY (n-body

simulation with 4 bodies) is populated by placing a heavy body with large mass and

no velocity at [0,0], and three other bodies at random positions with random velocities

such that, they orbit the heavy body in the middle in the absence of the other two bodies.

The gravitational constant is set such that the system is stable for the duration of the

simulation. The ground truth force to learn is the gravitational force between bodies.

BOUNCE is generated by simulating elastic collisions between balls in a box. The

ground truth force to learn is the collision resolution force. MAT simulates friction-

based interaction between discs and a mat. We populate this dataset by rolling discs

over mats and applying a friction force when they come into contact. We randomized

the initial states of the discs as well as the sizes, friction coefficients, and positions of

the mats. The ground truth force to learn is the force of friction.

All scenes are simulated using a physics engine with a time-discretization of 0.02,

for 50 frames. We generate 100 scenes per dataset, and hold-out 20 of them for testing.

Appendix 6.B.1 provides the ground truth force expressions used to generate each

dataset under our grammar.

6.4.1 Data-efficiency: Symbolic vs neural

Baselines For the experiments in this section we use four different neural baselines: (i)

A specialized instance of the OGN model (Sanchez-Gonzalez et al., 2019) that only

outputs the partial derivative of the velocity variable, unlike the original model that also

outputs the partial derivative of the position variable. This is because under Newtonian

dynamics, the partial derivative of the position variable is simply the velocity. (ii)

An Interaction Network (IN) (Battaglia et al., 2016) (iii) A multi-layer perceptron-

based force model (MLP (Force)) that directly outputs the force, and (iv) A multi-layer

perceptron-based position model (MLP (Position)) that outputs the next position. See

appendix 6.B.2 for details of the neural architecture, training and parameterization

setup for all the baselines. Lastly, as a reference, we also include the performance

of a zero-force baseline (F0), which corresponds to the constant velocity baseline in

(Battaglia et al., 2016). Note that all neural baselines as well as BSP are provided with

symbolic representations for fair comparisons.

In order to compare the symbolic M-step of BSP against the neural baselines in terms

142

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

2 4 6 8 10
No. of scenes in training

0

1

2

3

4

5

nR
M

SE

BSP
OGN
IN

MLP (Force)
F0

(a) NBODY

2 4 6 8 10
No. of scenes in training

0.05

0.10

0.15

0.20

0.25

0.30

nR
M

SE

BSP
OGN

MLP (Force)
F0

(b) BOUNCE

2 4 6 8 10
No. of scenes in training

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

nR
M

SE

BSP
OGN

MLP (Force)
F0

(c) MAT

Figure 6.2: Comparison of neural baselines and BSP, using predictive error on held out scenes

given varying number of training scenes. Some baselines are not displayed due to very poor

performance; see figure 6.C.1 in appendix 6.C for the version with all methods displayed.

of data-efficiency, we report the per-frame prediction accuracy on held-out datasets, as a

function of the amount of training data. We use noise-free trajectories in this evaluation.

Since the neural baselines cannot be trained if the properties are not fully observed, we

provide all properties as observed data. For each dataset, we hold out 20 scenes for

evaluation. We randomly shuffle the remaining 80 scenes, and use the first k scenes to

fit the models. Because an average person can perform physical learning task similar to

the ones we use with fewer than 5 scenes (Ullman et al., 2018), we only vary k from 1

to 10 in our experiments. We use the normalized root mean squared error (nRMSE), per

frame per entity, between the predicted location of the entity and its actually location,

as the performance metric. We repeat each of the experiments five times with different

training set. These results are shown in figure 6.2, where the line plots are median

values and the error bars are the 25% and 75% quantiles. Note that the ground truth

force F∗ has an RMSE of 0 per frame. As can be seen, for most values of k across of

the three datasets, the symbolic M-step of BSP is more data-efficient than the neural

baselines. The exceptions are in the BOUNCE dataset for k = 1 and in the MAT

dataset for k = 2,3,4. This is likely due to specific bad local minima that may exist in

the limited training data.

For NBODY and MAT, BSP can find the ground truth force function with 1

scene and 10 scenes respectively. BOUNCE is the only case where our method

fails to find the true law within 10 scenes, we include the typical inferred force law

in appendix 6.B.3.1 as well the predicated trajectories of some selected scenes for

inspection. In appendix 6.B.3.2, we also demonstrate that this inferred force law closely

approximates the true force law and so can generalize to other scenes.

For BOUNCE, the neural baselines cannot reach the performance of F0 even after

143

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

10 scenes for training. This is a known issue with neural network approaches when

learning collisions, as the inherently sparse nature of the collision interaction does

not provide enough training signal (Battaglia et al., 2016). The order of performance

between neural baselines also indicates our discussion around figure 6.1. Object-centric

modelling (OGN and IN) tends to have better performance than the rest by decomposing

the transition into interaction and dynamics. Predefined dynamics with numerical

integration (OGN and MLP force) have better performance than their correspondences

with learned dynamics (IN and MLP position) by a notion of “force” (as the Euler

integrator is used in this case).

In short, the symbolic regression proper priors that constrains the search space in

BSP leads to significantly better performance in terms of data efficiency across the three

datasets studied. Together with the performance rank of neural models, our experiments

shows how different levels and forms of prior help with data-efficient learning.

6.4.2 Ablation study of priors in the BSP grammar

To demonstrate the impact of the grammar of Newtonian physics on the overall data

efficiency of BSP, we consider two ablations of our grammar: (i) G01, which is G
without the dimensional analysis prior and G00, which is G without both priors in (i)

and (ii); we also refer to G as G11 in this section. For reference, for a maximum depth

of 5, G00 contains 8,593,200 expressions, G01 contains 7,935,408 expression and G11

contains 75,816. For a maximum depth of 6, G11 contains 771,120, and the number for

other variants is intractable.

We repeat the experiment from section 6.4.1 for all three grammar variants, and

report the results in figure 6.3. As can be seen, both priors in BSP’s grammar contribute

to data efficiency of its M-step while dimensional analysis has more impact. This is

aligned with the analysis of the number of expressions per grammar above, showing

that data efficiency improves as the number of possible expressions decreases. There is

also a case in which the priors do not show advantages: MAT, in which the friction law

is simple enough (the shallowest expression among all) thus easy to find even without

priors.

144

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

2 4 6 8 10
No. of scenes in training

0

2

4

nR
M

SE

G11

G01

G00

(a) NBODY

2 4 6 8 10
No. of scenes in training

10-1

nR
M

SE

G11

G01

G00

(b) BOUNCE (y-axis in log scale)

2 4 6 8 10
No. of scenes in training

0.000

0.002
nR

M
SE

G11

G01

G00

(c) MAT

Figure 6.3: Ablation study of priors using predictive error on held out scenes given varying

number of training scenes. Comparison between G11 and G01 shows the effect of the dimensional

analysis prior and Comparison between G01 and G00 shows the effect of the translation invariance

prior.

6.5 Experiment: Learning force laws in partially ob-

served environments

We now evaluate BSP’s performance in environments with some unknown intrinsic

entity properties.7 We do not consider the neural baselines in this section, as they

did not show competitive performance compared to BSP, even in the fully observed

environment.

6.5.1 EM performance on SYNTH

We first demonstrate BSP’s ability to jointly learn and reason about the environment by

recovering the true force law when some properties are unobserved. As an illustrative

example, we use three scenes from the NBODY dataset (with four entities per scene),

such that if the true masses are given, the M-step can successfully learn the true force law.

We assume that the mass of the heavy entity is known but the masses of other the three,

7It is worth to mention that there is an identifiability issue for joint reasoning-learning tasks with
limited data, which we elaborate in appendix 6.A.5.

145

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

0 3 6 9
0

100

200

300

400

500

m

Posterior
Truth

(a) i = 0: F0 = 0

0 3 6 9
0

100

200

300

400

500

m

Posterior
Truth
MAP

(b) i = 1: F1 = F†

0 3 6 9
0

100

200

300

400

500

m

Posterior
Truth
MAP

(c) i = 3: F3 ≈ F∗
(d) Expression tree for

F3

Figure 6.1: Results of the EM algorithm on NBODY. Figure 6.1a to figure 6.1c shows the

posterior of mass for Entity 1 in Scene 1 with the corresponding force function for different

EM iteration i. In figure 6.1b, the force function F† = 239.99 mim j
‖pi−p j‖2

pi−p j
‖pi−p j‖2

. The constant in

figure 6.1d is c = 2.04×103.

NBODY BOUNCE MAT

Median 25% Q 75% Q Median 25% Q 75% Q Median 25% Q 75% Q

BSP 8.05e-1 7.83e-1 1.07e0 3.16e-2 3.11e-2 3.94e-2 5.39e-4 3.58e-4 7.63e-4

F0 1.77e0 5.98e-2 1.20e-3

Table 6.1: Test predictive performance (nRMSE) on partially observed SYNTH scenarios

(using 5 random scenes for training and from 5 different runs). Note BSP consistently beats the

constant baseline.

lighter entities are unknown with a uniform prior U(0.02,9). We use the EM algorithm

to fit the same generative model that simulates the data using BSP. Figure 6.1 shows

the posterior distribution over mass and the force function at initialization (figure 6.1a),

middle (figure 6.1b), and convergence (figure 6.1c). In this run, after 3 iterations, our

algorithm successfully recovers the true force function. We repeat this experiment ten

times with randomly sampled scenes. For eight of them, BSP successfully recovers the

true force law. Appendix 6.D.1.1 provides another demonstrative example on MAT.

For a quantitative analysis, we run the EM algorithm on each of the three scenarios

from SYNTH with 5 random scenes repeated 5 times. In table 6.1 we report nRMSE

on a fixed testing set of 20 scenes. Notice that the performance has a large variance due

to the fact that not all randomly selected 5-scene subsets provide enough training signal.

In all three scenarios, BSP consistently outperforms the zero force baseline and can

successfully recover the true force law in some random subsets.

146

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Mode 25% Q 75% Q

BSP 4.30e-2 3.45e-2 5.09e-2

F0 5.05e-2 4.61e-2 5.49e-2

BSP 9.22e-3 8.25e-3 9.87e-3

F0 2.19e-2 2.17e-2 2.21e-2

Table 6.2: Test predictive performance (nRMSE) for FALL (top) and SPRING (bottom)

6.5.2 Real world data: Physics 101

While SYNTH benchmark is interesting, a strength of our approach is the ability

to generalize to real world data. To demonstrate this, we use the PHYS101 dataset

(Wu et al., 2016), a dataset of real world physical scenes. We consider two scen-

arios, FALL and SPRING (shown in figure 6.2). As BSP works on symbolic in-

puts, we pre-process raw videos using standard tracking algorithms from OpenCV to

extract observations in numerical form; see the appendix for pre-processing details.

Figure 6.2: Example frames for FALL (left)

and SPRING (right)

Figure 6.3: Learned force expression for FALL (left)

and SPRING (right)

FALL We first train BSP on a single scene from FALL, where an object is dropped

on a table. A typical force expression that BSP discovers is c×mi×m j×normalize(pi−
p j), as shown in figure 6.3, suggesting that BSP is able to learn the correct form of

gravitational force law. Here, the direction of pi−p j points towards the table and m j is

the mass of the table, which together with c, serves as the constant g in Fg = mig. In

another solution frequently found by BSP, it learns the direction as normalize(vi) as

the velocity is always downwards. BSP can also learn global forces directly if constant

147

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

vectors [1,0] and [0,1] are provided, which is done in the next section.

SPRING After learning the gravity from FALL, in SPRING, assuming that the

original length of the spring is known, we train BSP on a single scene to evaluate

if it can learn the Hooke’s law F = kx. Here k is the tensor coefficient, and x is the

displacement of the spring. An example force law that BSP learns in this case is

c× (norm(pi−p j)− l j)× (pi−p j)÷ norm(pi−p j), as shown in figure 6.3, clearly

suggesting that BSP can learn Hooke’s law.

Finally, to quantitatively evaluate BSP’s performance on PHYS101, we select a

fixed set of 4 scenes from each scenario and use 2 for training and 2 for testing, repeating

for all the permutations of the 4 scenes. The aggregated test performance in terms of

normalised RMSE is given in table 6.2. BSP only slightly outperforms compared to

the zero force baseline on the FALL. This is because the FALL contains only limited

number of frames (< 10) and the trajectories do not diverge too far away from what

zero force would predict. For SPRING, BSP outperforms the baseline significantly,

closely estimating with ground truth time period of the harmonic motion. We also

provide qualitative evaluation via a time-series plot of the change of the block’s vertical

position with time in the appendix.

6.5.3 Does BSP perform similarly to humans?

In this section, we compare BSP’s performance against humans’ on the experiment

done in (Ullman et al., 2018). For this purpose, we use the ULLMAN dataset from this

study, which consists of 60 videos in which a set of discs interact with each other and

mats within a bounded area, as exemplified in figure 6.4. While similar to SYNTH,

ULLMAN has a lot more diversity in the scenes (stimulus) and reasoning tasks. The

force laws in ULLMAN are similar to those in SYNTH but they have different

constants and the scenes are generated from a completely different simulator. In the

original experiment, each participant is presented with 5 videos. Each of the videos

is from a different “world”, such that the object properties (for each colour) and force

laws are different in every video. For each video, the participant is asked 13 multiple

choice questions related to the mass of discs (“Mass”), roughness of mats (“Friction”)

and types of global (“Global”) and pairwise forces (“Pairwise”). For example, “How

massive are red objects?” where the options to choose from are “Light”, “Medium” and

“Heavy”. Please refer to appendix 6.D.3 for the complete set of questions and options.

148

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Figure 6.4: Example from ULLMAN

Human BSP Chance

Mass 43% 40% 33%

Friction 44% 39% 33%

Global 68% 55% 20%

Pairwise 62% 50% 33%

Table 6.3: Accuracy per question category

To be consistent with the setup in (Ullman et al., 2018), we assume that the friction

and collision forces are known apriori. Thus, the goal is to apply BSP on a single
scene and infer the properties by learning the expressions for the residual global and

pairwise force. The properties to infer are the mass for the discs, the friction coeffi-

cients for the mats and a latent property q that controls the pairwise interaction. To

accommodate for the global force, we added two constant vectors [1,0] and [0,1] to the

grammar; properties related to the known forces are also removed from the grammar.

In comparison to models studied in Ullman et al. (2018), BSP aims to learn the force

expressions explicitly, rather than inferring binary variables to turn on/off predefined

force components. Appendix 6.D.3 provides details on the learning tasks and setup of

BSP. We perform 3 runs of BSP on each of the 60 scenes and use the learning results to

answer the same set of 13 questions presented to participants in (Ullman et al., 2018).

Table 6.3 summarises the accuracy for humans and BSP on the four question

categories. As it can be seen, BSP’s performance is worse than that of humans’ but

convincingly better than chance. Considering the difficulty of inferring 9 properties and

learning the targeted force law using only 1 scene, this may not be surprising. There

are intriguing similarities between the answers given by BSP and human participants.

Both display the same relative order of accuracy across question types “Global” >

“Pairwise” > “Friction” > “Mass” while BSP’s performance is still inferior to humans’.

We hypothesize that humans may have much prior experience with similar physical

scenes to answer these questions or they may answer these questions in a different

way than explicitly learning the forces. Fully addressing the similarity and difference

between BSP and humans requires more analysis that is out of the scope of this paper.

149

Appendix

6.A Technical details

6.A.1 The complete generative process

Section 6.3 describes the top-down generative model piece by piece. To improve the

clarity the presentation, we provide the complete generative process of the observation

given force function F , which corresponds to the E-step in our method, as a probabilistic

program in algorithm 6.1. In this probabilistic program, we use the keyword ASSUME

and OBSERVE for sampling latent variables and observations separately, following the

notations from Wood et al. (2014). We also provide an example of the generative

process of a three-body problem in a more intuitive manner in figure 6.A.1.

6.A.2 Grammar for Newtonian physical laws: The complete form

The complete grammar following section 6.3.2 is given in figure 6.A.2.

6.A.3 Algorithmic description for the learning method

We provide a complete description of EM algorithm in algorithm 6.2.

We provide a complete description of the cross-entropy method with learnable

constants in algorithm 6.3.

6.A.4 Reasoning about unknown properties

Importance sampling In cases where the prior distribution is discrete, the inference

is done by importance sampling (IS) which produces a set of weighted samples. As the

number of samples to accurately estimate the marginal log-likelihood in the M-step can

151

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Algorithm 6.1 Complete generative process given force laws
. Sample latent variables

1: for i = 1, . . . ,N do
2: ASSUME zi from prior for entity i

3: if initial state is not given then ASSUME pi
0 from prior for entity i ASSUME vi

0

from prior for entity i

4: end if
5: Set si

0 = (pi
0,v

i
0)

6: end for
7: for t = 1, . . . ,T do
8: for i = 1, . . . ,N do . Compute force and acceleration

9: for j = 1, . . . ,N do
10: Compute fi, j

t = F(zi,si
t−1,z

j,si
t−1)

11: end for
12: Compute fi

t = ∑
N
j=1 fi, j

t

13: Compute ai
t = fi

t/mi . Euler’s integration

14: Update vi
t = vi

t−1 +atε

15: Update pi
t = pi

t−1 +vi
tε

16: Set si
t = (pi

t ,vi
t) . Sample observations

17: OBSERVE p̃i
t from N (pi

t ,σ
2)

18: end for
19: end for

be large and this would induce a large computational cost in the M-step, IS is followed

by a re-sampling step to select only a small set of k weighted samples in the M-step

{(ω1,z1), . . . ,(ωk,zk)}, where the weights are re-normalized.

Hamiltonian Monte Carlo Since for a fixed F , the generative model in BSP is end-

to-end, piecewise differentiable with respect to properties, we can use Hamiltonian

Monte Carlo (HMC; Duane et al., 1987; Neal, 2011) for inference. In order to draw

k samples from the posterior robustly in the E-step, we first run k+ k′ independent

HMC chains by the no-U-turn sampler (NUTS; Hoffman and Gelman, 2014) for a

reasonably large number of iterations, where k′ is a hyper-parameter. After this, we

remove k′ chains with the smallest effective sample size (ESS). This reduces the chance

of using samples from chains that mixed poorly or got stuck in bad region due to random

152

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

m1,m2,m3 ∼ pm

v1
1,v

2
1,v

3
1

p1
1,p

2
1,p

3
1

p̃1
1, p̃

2
1, p̃

3
1

F f1
1, f

2
1, f

3
1 a1

1,a
2
1,a

3
1

Integrator
v1

2,v
2
2,v

3
2

p1
2,p

2
2,p

3
2

p̃1
2, p̃

2
2, p̃

3
2

F f1
2, f

2
2, f

3
2 a1

2,a
2
2,a

3
2

Integrator . . .

+ εσ ∼N (0d,1d) + εσ ∼N (0d,1d)

Figure 6.A.1: The generation of an observed trajectory: a three-body example with unknown

mass. Circles are the learnable force function, rectangles are fixed functions, rounded rectangles

are random variables and others are deterministic variables.

initialization. Finally, we pick the last sample from each chain as the samples returned

by the E-step {z1, . . . ,zk}. To be consistent with the samples from IS, we also assign

equal weights ωi = 1/k to all samples.

6.A.5 Identifiability in reasoning and learning tasks

It is worth mentioning the fact that reasoning and learning tasks which BSP targets are

not necessarily identifiable, especially when data is very limited or when force laws and

object properties are jointly learned. When the data is limited, a certain level of diversity

of attribute values in the data has to be provided so that their impact on the force law

will be observed. For example, consider a dataset with multiple scenes of a 2-body

simulation with the same 2 entities and random initialization of position and velocities.

In this setup, no matter how many scenes are given, the actual gravitational force is not

identifiable because the product of mass is a constant for all scenes. This can be resolved

by introducing more entities in the same scene, or more scenes with entities that have

different attributes. In the case of joint reasoning and learning, the interplay between

attribute units and learnable constants in the force law could potentially create ambiguity.

For example, if a force law acts on an attribute linearly, the learning algorithm is free to

scale up the constant in the force law and scale down the attribute value accordingly to

reach the same results. This can actually be seen by the fact that constants in force laws

have their own units, e.g. the gravitational constant G has a unit of m3kg−1s−2. Scaling

the constant and the attribute accordingly can be seen as a unit change. Such ambiguity

between properties and force laws is also the reason why one might not want to be

Bayesian on force law, because there would be a mode switching problem in posterior

153

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Constant→ c1 | c2 | c3

Unitless→ µ1 | µ2

| µ1−µ2 | µ1 +µ2

Kg→ mi | m j

| mi−m j | m j +mi

KgSq→ mi×m j | (Kg)2

MeterVec→ pi−p j

| pi− c | p j− c

MeterSecVec→ vi | v j | vi−v j

Meter→‖MeterVec‖2 | l j

MeterSq→ (Meter)2

MeterSec→‖MeterSecVec‖2

MeterSecSq→ (MeterSec)2

TransInvVec→MeterVec |MeterSecVec

UnitlessVec→ normalize(TransInvVec) |MeterVec÷Meter

|MeterSecVec÷MeterSec

Meter→ project(MeterVec,UnitlessVec)

MeterSec→ project(MeterSecVec,UnitlessVec)

BaseCoeff → Unitless | Kg | KgSq | KgSq÷Kg |Meter

|MeterSq |Meter−Meter |Meter+Meter

|MeterSec |MeterSecSq+MeterSecSq

|MeterSecSq |MeterSecSq−MeterSecSq

Coeff → BaseCoeff | BaseCoeff ×BaseCoeff

| BaseCoeff ÷BaseCoeff

BaseForce→ Constant×Coeff ×UnitlessVec

Bool → isOn(pi,si,p j,s j) | doesCollide(pi,si,p j,s j)

Force→ BaseForce | BaseForce×Bool | Force+BaseForce

Figure 6.A.2: A grammar of Newtonian physical laws

sampling.

6.B Experimental Details for Section 6.4

All experiments are performed on CPU using two servers. One has Intel(R) Xeon(R)

CPU E5-2620 v3 @ 2.40GHz and the other has Intel(R) Xeon(R) CPU E5-2620 v4 @

2.10GHz. The two servers has 24 + 32 = 56 cores in total to help run experiments in

parallel.

6.B.1 Ground truth forces

The symbolic trees of ground truth forces that are used to generate the datasets that are

used in section 6.4 are given in figure 6.B.1.

154

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Algorithm 6.2 Expectation–maximization for Bayesian-symbolic physics
Input: Dataset D, grammar G , number of EM iterations m, sample size k and extra

chains k′ in E-step, number of repeats in M-step r

Output: A force function F and k samples of latent properties {z1, . . . ,zk}

1: Initialize the force function F0 as constantly zero

2: for i = 1, . . . ,m do
3: Get k weighted posterior samples {(ω1,z1), . . . ,(ωk,zk)} by IS or HMC .

E-step

4: Define current loss function Li(e,c) = ∑
k
i=1 ωiL(e,c;zi,D) . M-step starts

5: Get candidates C = {(t∗1 ,c∗1), . . . ,(t∗r ,c∗r)} by algorithm 6.3 with Li for r repeti-

tions

6: Find (t∗,c∗) from C with the best loss and set Fi = getF(t∗,c∗,G) . Update

force

7: end forreturn F = Fm and {z1, . . . ,zk} ∼ p(z |D;Fm)

6.B.2 Neural baselines

We now describe the neural baselines. Notation-wise, we use din to denote the total

dimension of properties and state (position and velocity) for each entity, and use dout for

the dimension of position/velocity/force dimension (2 in our case). The corresponding

implementation can be found in src/network.jl in our source code, and the hyper-

parameters (network sizes and training) can be found in scripts/runexp.jl, which

we also summarise below.

OGN For the OGN baseline, we use an MLP of din→ 100→ 50 as the node model

and a MLP of (50+50)→ 100→ 100→ 100→ dout as the edge model; the activation

function is the rectified linear unit (ReLU) for both models. For training, we use the

ADAM optimizer (Kingma and Ba, 2014) with a learning rate of 2×10−3 for 2,000

epochs.

In addition, for OGN, we found that we need provide additional prior knowledge on

how forces are related to the mass and acceleration by parameterising them as Fe(·) =
maθ(·), where θ is NN parameters, otherwise they fail to learn. This parameterization

is fact consistent with (Sanchez-Gonzalez et al., 2019) in which NNs output partial

derivatives of the Hamiltonian system.

155

src/network.jl
scripts/runexp.jl

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Algorithm 6.3 Cross-entropy method with learnable constants
Input: Grammar G with learnable constants c, loss function L , total population number

n, selected population number k, number of iterations m and maximum tree depth d

Output: An expression tree e∗ with optimized constants c∗

1: initialize a PCFG P0 for G uniformaly

2: for i = 1, . . . ,m do
3: Initialize an empty candidate set C
4: for j = 1, . . . ,n do
5: Sample an expression e j ∼ Pi−1,ei−1 with a maximum depth of d

6: Solve c∗j = argminc L(e j,c) by L-BFGS . Lower-level optimization

7: Compute the loss of the sampled tree ` j = L(e j,c∗j) and add (e j, ` j) to C
8: end for
9: if i < m then

10: Fit a PCFG Pi on trees from C with the top-k fitness via maximum-

likelihood

11: end if
12: end forreturn the best expression tree e∗ from C and the corresponding constant

as c∗

IN The node model for IN is same as that of OGN. The edge model for IN is same

as that of OGN except the output dimension of the last layer is 50. There is an extra

network for transition, a MLP of shape N×50→ 100→ 100→ 100→ 2×N×dout

(with ReLU activations), that takes the concatenation of embeddings for N entities and

outputs the change of the next state (position and velocity) of the whole system. The

training uses the ADAM optimizer that of OGN but with a learning rate of 1×10−3 for

400 epochs.

MLP force The MLP (force) baselines has a neural network that inputs the states of a

pair of entities and outputs the force from one of them applies to the other. The network

is an MLP of shape 2×din→ 100→ 100→ 100→ dout (with ReLU activations). The

training uses the ADAM optimizer that of OGN but with a learning rate of 1×10−3 for

2,000 epochs.

MLP position The MLP (force) baselines has a neural network that inputs the state

and properties of the whole system (as the concatenation of N entities) and outputs the

156

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

change of the next state (position and velocity) of the whole system. The network is a

MLP of shape N×din→ 100→ 100→ 100→ 2×N×dout (with ReLU activations).

The training uses the ADAM optimizer that of OGN but with a learning rate of 1×10−3

for 400 epochs.

6.B.3 A close look at the approximated bounce law

6.B.3.1 The learned bounce law

As mentioned in section 6.4 and discussed in section 6.B.3.2, the only case in which

BSP fails to infer the true law (within 10 scenes) is of special interest and requires

for further inspection. A typical approximate law learned in section 6.4 is shown in

figure 6.B.2; see section 6.B.3.2 for discussion on how this law differs from the true

one. To highlight, there are basically two mismatches between the true law and the

learned law. First, there is no projection operation that correctly calculates the effect

of speed. Second, the mass-based coefficient is missing. To assist inspection, we also

provide some visualizations in figure 6.B.3 using initial conditions from the training

set for inspection. The corresponding animations can be found in the supplementary

material (the suupl/bounce_inspection folder; see bsp.xuk.ai).

6.B.3.2 Generalization in new scenes

It is worth checking how the laws learned in section 6.4 generalize to new scenes

beyond the training data. In cases where the true law is successfully recovered, the

expression will generalize to novel scenes undoubtedly. Therefore, it is more interesting

to inspect the generalization ability of an approximate law, that is a law which is not

completely equivalent to the true law but is close. The emerged law for the BOUNCE

dataset is such an example as mentioned earlier. It has an expression of F† = c ‖vi−
v j‖2

pi−c
‖pi−c‖2

doesCollide(pi,si,p j,s j); see figure 6.B.2 in appendix 6.B.3.1 for the

actual tree. Although it is not identical to the true law, it is still a good approximation: it

takes into accounts the velocity difference into consideration and finds the correct force

direction. We now consider applying this law to a completely new scene: a vertical-

view world where the gravity is pointing in downward direction. Figure 6.B.4 shows

the predicted trajectory with true and the approximate law with two different initial

conditions. As it can be seen, the approximate law successfully generalize this novel

world. For the first condition, the projection is very close to the true one, while for the

157

suupl/bounce_inspection
bsp.xuk.ai

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

second condition, the concept of bounce is also correctly transferred. The corresponding

animations for these plots can also be found in the supplementary material for further

inspections (the suppl/generalization folder; see bsp.xuk.ai).

6.C Figure 6.2 with all methods displayed

Figure 6.2 omits some poor results for better visualization. The corresponding plots

with all methods displayed are shown in figure 6.C.1.

6.D Experimental details for Section 6.5

6.D.1 SYNTH

Hyper-parameters We refer readers to scripts/runexp.jl of our source code for

hyper-parameters used in the quantitative experiments (table 6.1). For the rest, in the

E-step, we use k = 3 and k′ = 2 and the hyper-parameters for NUTS are: 150 adaptation

steps, 150 HMC iterations, a maximum tree depth of 4 and a target acceptance ratio

of 0.75. In the M-step, we repeat r = 2 runs and the hyper-parameters for the cross-

entropy method are: 800 total populations, 400 selected populations, 4 iterations and

a maximum depth of 10. The weighting parameter for the PCFG prior are 1 for the

NBODY and BOUNCE datasets and 1×10−4 for the MAT dataset.

6.D.1.1 An extra demonstration of EM on MAT

As another example, we use five scenes from the (noisy) MAT dataset. We assume that

the only unknown is the friction coefficient of the mat with a truncated Gaussian prior

T runcated(N (µ0,22),0,5) (truncated between 0 and 5), where µ0 is the true coefficient,

Note that the variance 22 is large enough to be uncertain, justifying a fair choice of the

prior. Similarly, we use the EM algorithm to fit the same generative model that simulates

the data using BSP. figure 6.D.1 shows the posterior distribution over mass and the

force function at initialization (6.D.1a), middle (6.D.1b) and convergence (6.D.1c) of

the algorithm. Compared the expression at convergence with the true law, the algorithm

learns vi−v j instead of vi as the mat velocity is zero, i.e. v j = 0, in all scenes,

158

suppl/generalization
bsp.xuk.ai
scripts/runexp.jl

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

6.D.2 PHYS101

Pre-processing of videos We use an open-source implementation of standard tracking

algorithms from OpenCV to track the entities. The code is available at github.com/b

ikz05/object-tracker. To use the tracker, we manually select a bounding box of

the entity of interest and run the tracking algorithm. For FALL, it is done for the falling

object; for SPRING, this is done for both the hanging object and the spring joint.

For FALL, we found that the tracking algorithms can fail if the object is too fast.

In such cases, there are only limited frames (< 10) to track thus we manually annotate

these frames to get the trajectory of the falling object.

The processed data can be found in data/phys101/processed/ of the supple-

mentary material; see bsp.xuk.ai.

Qualitative evaluation To qualitatively see how well this learned force from SPRING

performs at prediction, we also show that how the vertical coordination of the object

position changes over time in figure 6.D.2. As it can be seen, the learned force produces

prediction that matches the periodicity quite well with some small deviation from the

amplitude.

6.D.3 ULLMAN

Pre-processing of visual stimulus We preprocess the videos from ULLMAN by

derendering the objects to symbolic forms, i.e. position trajectories of all entities. This

is done by template matching of the discs and mats. We manually crop the video

frames to obtain templates for discs with three different colours and mats with three

different colours, and match the location of each of them for each frame. The code

for this preprocessing step can be found in scripts/preprocess-ullman.py of the

source code and the processed data can be found in data/ullman/processed/ of the

supplementary material.

On reverse-engineering the collision and friction forces from stimulus As the

ULLMAN data is generated by an unknown simulator, the ground truth forces are

not directly accessible. Therefore, we need to “reverse engineer” these forces so that

we can provide them to BSP a prior, which is consistent with the setup of human

study in Ullman et al. (2018). We assume the ground truth forces for friction and

159

github.com/bikz05/object-tracker
github.com/bikz05/object-tracker
data/phys101/processed/
bsp.xuk.ai
scripts/preprocess-ullman.py
data/ullman/processed/

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

collision have their pre-defined expressions, similar to those used for the simulator for

SYNTH. However, each of these expressions also contains a constant that is unknown

for the actual simulation of the ULLMAN data. To this end, we use World 1 from

the ULLMAN data to fit these constants because World 1 contains only friction and

collision. For the rest of experiments of BSP, we assume these "reverse engineered"

forces are given and BSP only needs to learn the residual, as detailed next. Note that

this reverse engineering step may introduce systematic bias to the rest of learning as

well if there is a mismatch between the actual ground truth. In some of our exploratory

analysis on the mass inference results from BSP, we unexpectedly found that BSP can

confuse heavy objects with light objects. This is different from the pattern of confusion

that the human subjects display. We hypothesize this is due to the potential mismatch

between the ground truth collision and friction forces and the reverse-engineered forces

that we provide to BSP.

Details for the learning task As there are three discs and three mats, the number of

properties to infer is nine in total. The residual force to learn has the form: C1
f (q1,q2)

‖p1−p2‖2
2
uuu+

C2uuuC, where C1 and C2 are constants, f itself is an expression of how the sign of the

pairwise force depends on qi and q j, uuu is the direction of the pairwise force and uuuC is

the direction of the global force (up, down, left or right).

Questions and options presented to participants Participants are asked for a set of

questions that would not reveal personally identifiable information.

1. Mass related questions (3)

• How massive are [red] objects?

• How massive are [yellow] objects?

• How massive are [blue] objects?

Options are “Light”, “Medium” and “Heavy”.

2. Friction coefficient related questions (3)

• How rough are [green] patches?

• How rough are [purple] patches?

• How rough are [brown] patches?

160

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Options are “As smooth as the table-top”, “A little rough” and “Very rough”.

3. Pairwise force related questions (6)

• How do [red] and [red] objects interact?

• How do [red] and [yellow] objects interact?

• How do [red] and [blue] objects interact?

• How do [yellow] and [yellow] objects interact?

• How do [yellow] and [blue] objects interact?

• How do [blue] and [blue] objects interact?

Options are “Attract”, “Repel” and “None”.

4. Global force related questions (1)

• Is a global force pulling the objects, and if so in what direction is it pulling?

Options are “Yes, it pulls North”, “Yes, it pulls South”, “Yes, it pulls East”, “Yes, it

pulls West” and “No global force”.

6.E Reproducibility

The source code of experiments and the synthetic or processed data can be found at

https://code.xuk.ai/bsp/.

161

https://code.xuk.ai/bsp/

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Force

BaseForce

Constant

c1

Coeff

BaseCoeff ÷BaseCoeff

KgSq

mi×m j

MeterSq

Meter2

‖MeterVec‖2

pi−p j

UnitlessVec

normalize(TransInvVec)

MeterVec

pi−p j

(a) Gravitational force, c1 mim j
1

‖pi−p j‖2
pi−p j
‖pi−p j‖2 , (depth 8); c2 = 2/ε = 100 where ε = 2×10−2, (depth

7); c1 = 8.17×103

Force

BaseForce

Constant

c2

Coeff

BaseCoeff ×BaseCoeff

KgSq÷Kg

mi×m j mi +m j

Meter

project(MeterSecVec,UnitlessVec)

vi−v j normalize(TransInvVec)

MeterVec

pi− c

UnitlessVec

normalize(TransInvVec)

MeterVec

pi− c

Bool

doesCollide(pi,si,p j,s j)

(b) Collision force, c2
mim j

mi+m j
project(vi−v j,

pi−c
‖pi−c‖2)

pi−c
‖pi−c‖2 doesCollide(pi,si,p j,s j), (depth 8); c2 =

2/ε = 100 where ε = 2×10−2 is the step size of the integrator

Force

BaseForce

Constant

c3

Coeff

BaseCoeff ×BaseCoeff

Kg

mi

µ j

UnitlessVec

normalize(TransInvVec)

MeterSecVec

vi

Bool

isOn(pi,si,p j,s j)

(c) Friction force, c3 miµ j
vi
‖vi‖2 isOn(pi,si,p j,s j), (depth 5); c3 = 9.8

Figure 6.B.1: Expression trees (under G) of true force laws that generates the datasets used in

section 6.4. 162

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

Force

BaseForce

Constant

c

Coeff

BaseCoeff

MeterSec

normalize(MeterSecVec)

MeterSecVec

vi−v j

UnitlessVec

normalize(MeterVec)

MeterVec

pi− c

Bool

doesCollide(pi,si,p j,s j)

Figure 6.B.2: Approximate bounce law, c ‖vi−v j‖2
pi−c
‖pi−c‖2

doesCollide(pi,si,p j,s j), learned

by BSP under our grammar; c = 130.22

(a) Scene 1 (true) (b) Scene 1 (learned) (c) Scene 2 (true) (d) Scene 2 (learned)

(e) Scene 3 (true) (f) Scene 3 (learned) (g) Scene 4 (true) (h) Scene 4 (learned)

Figure 6.B.3: Predicated trajectories of the true bounce law and the learned bounce law.

(a) Condition 1 (true)

(b) Condition 1

(learned) (c) Condition 2 (true)

(d) Condition 2

(learned)

Figure 6.B.4: Generalization of the approximate bounce law in a vertical world with downward

gravity.

163

CHAPTER 6. A BAYESIAN-SYMBOLIC APPROACH TO PHYSICS LEARNING IN INTUITIVE PHYSICS

2 4 6 8 10
No. of scenes in training

0

5

10

15

20

nR
M

SE

BSP
OGN
IN

MLP (Force)
MLP (Position)
F0

(a) NBODY

2 4 6 8 10
No. of scenes in training

0

1

2

3

4

5

6

nR
M

SE

BSP
OGN
IN

MLP (Force)
MLP (Position)
F0

(b) BOUNCE

2 4 6 8 10
No. of scenes in training

0

1

2

3

4

nR
M

SE

BSP
OGN
IN

MLP (Force)
MLP (Position)
F0

(c) MAT

Figure 6.C.1: Comparison of neural baselines and BSP, using predictive error on held out scenes

given varying number of training scenes. Some baselines are not displayed due to very poor

performance.

0 1 2 3 4 5
0

100

200

300

400

500

µ

Posterior
Truth

(a) i = 0: F0 = 0

0 1 2 3 4 5
0

100

200

300

400

500

µ

Posterior
Truth
MAP

(b) i = 1: F1 = F†

0 1 2 3 4 5
0

100

200

300

400

500

µ

Posterior
Truth
MAP

(c) i = 4: F4 ≈ F∗

Force

BaseForce

Constant

c

Coeff

BaseCoeff ×BaseCoeff
µ j Kg

mi

UnitlessVec

normalize(TransInvVec)

MeterSecVec
vi−v j

Bool

isOn(pi,si,p j,s j)

(d) Expression tree for F4

Figure 6.D.1: Results of the EM algorithm on MAT. figure 6.D.1a to figure 6.D.1c shows the

posterior of friction coefficient in Scene 2 with the corresponding force function during EM.

In figure 6.D.1b, the force function F† =−22.99 µ jmi
vi
‖vi‖2

isOn(pi,si,p j,s j). The constant in

figure 6.D.1d is c =−8.605.

Figure 6.D.2: Prediction of the vertical position

164

Chapter 7

Free and Open-source Software for
Generative Modelling

7.1 The TURING probabilistic programming ecosystem

7.1.1 A brief introduction to probabilistic programming

When applying generative modelling in practice or to a new application, it is usually

necessary first to derive the inference method, e.g. in the form of VI or MCMC al-

gorithms, and then implement it in application-specific code, which can be challenging

to practitioners due to the level of mathematics involved and the engineering efforts to

ensure the implementation is bug-free. What is more challenging is that in Bayesian

analysis, building models from data is often an iterative process, where a model is

proposed, fit to data and modified depending on the inference results. These technical

difficulties discourage researchers from specific domains (e.g. biology) who are not

experts of generative modelling. In contrast, deep learning methods have benefited

enormously from easy-to-use frameworks based on automatic differentiation that im-

plement end-to-end optimisation. There is a real potential for automated probabilistic

inference methods (in conjunction with existing automated optimisation systems) to

make generative modelling more accessible.

Probabilistic programming languages (PPLs; Murray, 2013; Goodman and Stuhlmüller,

2014; Wood et al., 2014; Carpenter et al., 2017; Minka et al., 2018; Bingham et al.,

2019; Cusumano-Towner et al., 2019) aim to fill this gap by providing a very flexible

framework for defining probabilistic models and automating the model learning process

165

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

using generic inference engines. This frees researchers from writing complex models

by hand and enables them to focus on designing a suitable model using their insight

and expert knowledge, and accelerates the iterative process of model modification.

Moreover, probabilistic programming languages make it possible to implement and

publish novel learning and inference algorithms in the form of generic inference engines.

This enables fair direct comparison between new and existing learning and inference

algorithms on the same set of problems, something that is sorely needed by the scientific

community. Furthermore, modern PPLs open further opportunities to integrate different

paradigms such as deep learning, differential equations, symbolic methods, etc. into

a single framework, which opens a lot of opportunities to combine the strength of

different approaches.

7.1.2 The TURING probabilistic programming language

TURING.JL is a Julia library for general-purpose probabilistic programming. It allows

the user to write models using standard Julia syntax, and provides a wide range of

sampling-based inference methods for solving problems across probabilistic machine

learning and Bayesian statistics. Compared to other probabilistic programming lan-

guages, Turing has a special focus on modularity, and decouples the modelling language

(i.e. the compiler) and inference methods. This modular design, together with the use of

a high-level numerical language Julia, makes Turing particularly extensible: new model

families and inference methods can be easily added. More importantly, infrastructure-

level functionality such automatic differentiation (AD), hardware acceleration (such as

CUDA support) is also supported in a Turing-agnostic way thus users can plug any other

libraries. For example, users can use DIFFERENTIALEQUATIONS.JL (or DIFFEQS.JL)

for differential equations and efficient solvers in Turing’s probabilistic program and use

HMC samplers which would require to differentiate through the solvers to compute

gradients.

“Hello, world!” in TURING Below is a simple Gaussian model with unknown mean

and variance written in TURING.

1 @model GaussUnknown(xs) = begin
2 # Latent variables
3 v ~ InverseGamma(2,3)
4 m ~ Normal(0, sqrt(v))
5 # Observations
6 for i in eachindex(xs)

166

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

7 xs[i] ~ Normal(m, sqrt(v))
8 end
9 end

10
11 chain = sample(GaussUnknown([1.5, 2.0]), NUTS(), 2_000)

The model GaussUnknown is defined by @model macro as an generative process with

intuitive, math-like notations. The argument xs of the model is assumed to be potential

observations that can be passed in later and any other variables on the left-hand side

of ~ are assumed to be latent variables. After being defined, users can conditon the

generative process on observations by GaussUnknown([1.5, 2.0]). This conditioned

model can then be used in the sample function to draw samples using the specific

samplers. In this example, we draw 2,000 samples using NUTS.

A short history of TURING The first version of TURING was designed and developed

by Hong Ge and Zoubin Ghahramani in the Computational and Biological Learning Lab

at the University of Cambridge. Originally TURING only supports simulation-based

inference methods such as importance sampling, sequential Monte Carlo and particle

filtering. I started working on TURING to implement Hamiltonian Monte Carlo sampler

as my master project, during which the modelling language and the compiler, trace

structure (how random variables are stored and fetched in probabilistic programs) and

automatic differentiation are redesigned or added. After that, Hong and I designed and

implemented the compositional inference interface, as introduced in Ge et al. (2018).

I will not expand on details of TURING as this is not the focus of this chapter; for

that please refer to Ge et al. (2018) or https://turing.ml. Instead, I will discuss one

major practical difference between TURING and other PPLs, which is how different

functionalities are implemented as modular packages that, together with non-Turing

packages, forms a probabilistic programming ecosystem.

7.1.3 From a framework to an ecosystem

As the time when Ge et al. (2018) was published, TURING was still a standalone library

that contains all its functionality, just like all PPLs are implemented. However, during

the integration of Turing with many other libraries, e.g. the differential equation package

mentioned earlier, it was found that an integrated PPL system is hard to debug against a

third-party library. For example, it is ideal to debug the inference algorithm outside the

modelling language to avoid potential issue from the compiler. The TURING team soon

167

https://turing.ml

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

realised the importance of modularising each functionality, even into separate packages.

As the first step, I extracted all codes related to HMC from TURING.JL and put them into

a separate package called ADVANCEDHMC.JL with some important refactoring and

redesign. Such separation also enforces us, the developers and the researchers, to design

inter-package abstraction that works well in practice and allows fundamental research

innovations. Since then, different components of TURING.JL has been moved to separate

packages, e.g. the compiler is now in DYNAMICPPL.JL and the chain analysis is in

MCMCCHAINS.JL. One interesting outcome is that these components are no longer

TURING-specific—other PPLs in Julia have also been using the inference libraries

developed by the TURING team, which allows their focus on the programming language

side without maintaining the inference code. Another important outcome is that new

research in PPLs can also be done on specific packages without touching unnecessary

parts. For example, work has been done on static analysis on probabilistic programs

to extract variable dependencies, which can be later used in inference algorithms to

improve efficiency. This feature is implemented in IRTRACKER.JL (IR is short for

intermediate representation; Gabler et al., 2019) and made available to TURING as a

“plugin”.

Figure 7.1 shows a diagram of how different packages from TURING and other

libraries form a collaborating ecosystem that allows different levels of interoperation. A

few highlights are as below

• Shared infrastructure support: As mentioned, TURING.JL can use AD (forward-

mode AD via FORWARDDIFF.JL, tape-based reverse-mode AD via REVERSEDIFF.JL

or TRACKER.JL, AD based on source-code transformation via ZYGOTE.JL, etc)

and CUDA (CUDA.JL) together with other packages. It is made possible by

the language features from Julia together with generically implemented AD and

hardware support. Compared with frameworks like TensorFlow, PyTorch and

JAX which have their own numerical libraries and the corresponding AD systems,

the numerical functionality are well supported at language level by Julia (linear

algebra, statistics, etc) and AD can be implemented to support any program

written in Julia thanks to the multiple dispatch paradigm that Julia takes for

polymorphism. From the user point of view, they usually do not need to think

about the underlying AD system and just need to write normal Julia code. Also,

because numeric computations is decoupled from AD systems, users are provided

with the options to switch between different AD backends, which allows them to

168

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

Turing.jl

Turing

Julia

Libtask.jl

AdvancedHMC.jl

DistributionsAD.jl

CUDA.jl

AdvancedVI.jl
DynamicPPL.jl

AdvancedPS.jl

Bijectors.jl
AbstractMCMC.jl

MCMCDebugging.jl

MCMCChains.jl

AdvancedMH.jl

Tracker.jl

Zygote.jl

ReverseDiff.jl

ForwardDiff.jl

ChainRules.jl

Distributions.jl

Flux.jl

MacroTools.jl

DifferentialEquations.jl

Base.Threads

Base.Distributed

Plots.jl

Meta-programming

Coroutines

Pluto.jl

IRTracker.jl

LightGraphs.jl

DensityRatioEstimation.jl

ExprOptimization.jl

RAVE.jl

Figure 7.1: The TURING probabilistic programming ecosystem in Julia. Blue area covers

packages developed and maintained by the Turing team, forming the TURING ecosystem.

Broader region covers other packages in Julia. Packages with name in bold are actively

maintained by me.

take advantages of each AD paradigms.

• Bayesian deep learning: Neural networks implemented via FLUX.JL can be

plugged into the probabilistic program in TURING, thus implementing Bayesian

deep learning. This is very convenient feature to obtain model uncertainty for

small neural networks but such combination does not address the computation

challenge Bayesian deep learning faces when NNs are large. However, such

interoperation can be used to implement common-ground benchmark to accelerate

new efficient inference methods for Bayesian neural networks.

• Bayesian differential equations: Differential equations are useful tools to rep-

resent physical quantities, dynamics, etc. They usually consist some unknown

parameters and one way to estimate them is via Bayesian inference as to charac-

terise the uncertainty in these parameters. The way to implement this in Julia is a

simple inter-operation between TURING.JL and DIFFERENTIALEQUATIONS.JL.

169

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

Note that the support of differential equations is not unique for TURING and it is

also supported in STAN. However, the advantage of the TURING.JL or Julia is that

any new functionality in DIFFERENTIALEQUATIONS.JL, which is maintained by

researchers specialised in differential equations, will be available in TURING by

default. However, for other PPL teams like STAN, they would have to maintain

their own differential equation implementations, which is non-trivial on its own.

In fact, DIFFERENTIALEQUATIONS.JL is the differential equation library that has

the largest number of solvers.

• MCMC debugging: Not only the efforts from the user side can be automated but

also the development efforts. One example is debugging new MCMC samplers.

MCMCDEBUGGING.JL implements the Geweke test (Geweke, 2004) to diagnose

the correctness of MCMC samplers through models defined in TURING.

• Bayesian-symbolic programming: The Bayesian-symbolic framework introduced

in chapter 6 is implemented by TURING.JL and EXPROPTIMIZATION.JL, which

is a library that provides an intuitive syntax to define grammar through production

rules. Each of them automates Bayesian inference and symbolic regression

and can be easily used together. Note that TURING.JL is naturally capable of

differentiable through the expression generated by EXPROPTIMIZATION.JL to

run HMC, which is non-trivial for other alternatives unless specifically developed

to support.

As AHMC is the start point of the transformation from a single library into an

ecosystem and the most popular functionality/package within the TURING ecosystem, I

will expand on the design and performance of AHMC in the next section.

7.2 ADVANCEDHMC.JL: An efficient and user-friendly

HMC implementation

Hamiltonian Monte Carlo (HMC) is an efficient Markov chain Monte Carlo (MCMC)

algorithm which avoids random walks by simulating Hamiltonian dynamics to make

proposals (Duane et al., 1987; Neal, 2011). Due to the statistical efficiency of HMC, it

has been widely applied to fields including physics (Duane et al., 1987), differential

equations (Kramer et al., 2014), social science (Jackman, 2009) and Bayesian inference

170

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

(e.g. Bayesian neural networks; Neal, 2012). The No-U-Turn Sampler (NUTS; Hoffman

and Gelman, 2014) is an extension of the HMC sampler which automatically tunes two

key parameters, the leapfrog step size and integration time (aka trajectory length), which

used to require manual adjustments through extensive preliminary runs. Together with a

robust implementation in the STAN probabilistic programming language (PPL), NUTS

has become the default choice for HMC sampling for many probabilistic modelling

practitioners (Carpenter et al., 2017).

Although the integrated implementation of NUTS in STAN makes Bayesian infer-

ence easy for domain experts relying on the STAN language, it is desirable to have a high

quality, standalone NUTS implementation in a high-level language, e.g. for research on

HMC algorithms, reproducible comparisons and real-world approximate inference ap-

plications. To this end, we introduce ADVANCEDHMC.JL (AHMC), a robust, modular

and efficient implementation of STAN’s NUTS and several other commonly used HMC

variants in Julia.1

7.2.1 A modular Hamiltonian Monte Carlo implementation

The idea behind AHMC is to allow users to easily construct HMC samplers in a

similar way that how HMC is mathematically defined. This idea is implemented

through defining abstract types over different components of the HMC algorithm (such

as integrators, trajectory samplers, adaptors) and defining concrete behaviour of the

function for different concrete types of each component or for a specific combination of

a few concrete types, through multiple dispatch.2 Compared to a potential solution using

object-oriented programming, this paradigm maximally decouples the implementation

and allows reuse of codes for different components, which gives a combinatorial number

of valid HMC samplers. Importantly, it is well aligned with how HMC is mathematically

defined for different types of HMC algorithms.3

1Code is available at https://github.com/TuringLang/AdvancedHMC.jl.
2In programming languages, multiple dispatch, also called multimtehods, is a paradigm of polymorph-

ism in which specific implementations of a a function can be dispatched based on the concrete types of
augments at run-time (Bansal, 2010). This feature is supported in a range of programming languages
such as C#, Groovy, Common Lisp and Julia. It is in fact a core design of Julia and Julia heavily uses it
in its own standard library (Bezanson et al., 2017).

3In fact, function definitions in mathematics also implements multiple dispatch. Recall how the
addition operation is defined differently for different types of numbers such as integer and real. In fact,
we do have a type system for numbers and then define addition for each type, such as integer, real and
complex, i.e. we have the same function called addition but multiple implementations/definitions of it
based on the actual number types it acts on.

171

https://github.com/TuringLang/AdvancedHMC.jl

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

As types (abstract or concrete) can be seen as sets of entities following the same

semantics, we will now describe what kinds of HMC samplers are supported in AHMC

as sets. AHMC supports various HMC algorithms in the set below resulted from a

Cartesian product of a set of HMC trajectories and a set of adaptors:

(STATICTRAJECTORY ∪ DYNAMICTRAJECTORY)×ADAPTOR.

Here STATICTRAJECTORY contains a set of concrete types for HMC with fixed-length

trajectory length, which contains HMC with fixed step size and step numbers and HMC

with fixed total trajectory length. DYNAMICTRAJECTORY is more involved: It is a set

of HMC with adaptive trajectory length, which is defined as a Cartesian product of four

sets of different HMC components:

METRIC× INTEGRATOR×TRAJECTORYSAMPLER×TERMINATIONCRITERION,

where

METRIC = {UNITEUCLIDEAN,DIAGEUCLIDEAN,DENSEEUCLIDEAN}

INTEGRATOR = {LEAPFROG, JITTEREDLEAPFROG,TEMPEREDLEAPFROG}

TRAJECTORYSAMPLER = {SLICE,MULTINOMIAL}

TERMINATIONCRITERION = {CLASSICNOUTURN,GENERALISEDNOUTURN}

Finally, ADAPTOR consists of any BASEADAPTOR or any composition of two or more

BASEADAPTOR, where BASEADAPTOR∈{PRECONDITIONER,NESTEROVDUALAVERAGING}.
PRECONDITIONER behaves differently based on the choice of metric spaces (METRIC).

A special composition called STANHMCADAPTOR is provided to compose STAN’s

windowed adaptor, which has been shown to be robust in practice (Carpenter et al.,

2017).

7.2.1.1 Example code of building STAN’s NUTS using ADVANCEDHMC.JL

The code snippet below illustrates how to use AHMC to construct a no-U-turn sampler,

given the target log density function and its gradient, LOGDENSITY_F and GRAD_F

respectively.

1 using AdvancedHMC
2 n_samples, n_adapts, target = 10_000, 2_000, 0.8 # set up sampling parameters
3 q0 = randn(D) # draw a random starting point
4 ### Building up NUTS
5 metric = DiagEuclideanMetric(D) # diagonal Euclidean metric space

172

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

6 h = Hamiltonian(metric, logdensity_f, grad_f) # Hamiltonian on the target
distribution

7 eps_init = find_good_eps(h, q0) # initial step size
8 int = Leapfrog(eps_init) # leapfrog integrator
9 traj = NUTS{MultinomialTS,GeneralisedNoUTurn}(int) # multi. sampling with gen.

no U−turn
10 adaptor = StanHMCAdaptor(# Stan’s windowed adaptor
11 Preconditioner(metric), NesterovDualAveraging(target, eps_init)
12)
13 samples, stats = sample(h, traj, q0, n_samples, adaptor, n_adapts) # draw

samples

Here LOGDENSITY_F and GRAD_F are functions of the target distributions’s log density

and its gradient, which are functions independent of AHMC and can be, e.g. derived

from different PPLs or defined by normalising flows (Rezende and Mohamed, 2015;

Dinh et al., 2016; Papamakarios et al., 2017). The gradient function can also be defined

programmingly using any AD packages in Julia. We will show an example of such

models in the next section.

7.2.1.2 AD and GPU support for ADVANCEDHMC.JL via CUDA.JL

In order to run HMC on CUDA, one only needs to change Line 3 of the demo code

from Q0 = RANDN(D) to Q0 = CUARRAY(RANDN(D)), assuming LOGDENSITY_F

and GRAD_F in Line 6 are GPU friendly, which is how CUDA.JL could be used

with ADVANCEDHMC.JL to run HMC on GPUs. An example using GPU accelerated

AHMC to draw samples from a normalising flow, named FLOW_MODEL, trained on

MNIST (LeCun, 1998) is given below. The function LOGPDF(M, X) is used to compute

the log density for model M on data batch X.

1 logdensity_f(x) = logpdf(flow_model, reshape(x, 784, 1))[1]
2 # Define gradient function via reverse AD
3 function grad_f(x)
4 val, back = Tracker.forward(logdensity_f, x)
5 grad = back(1)
6 return (Tracker.data(val), Float32.(Tracker.data(grad[1][:,1])))
7 end

Here TRACKER is an automatic differentiation (AD) library which implements reverse-

mode AD.

How does it work? All arrays in AHMC are abstractly typed, meaning that the

concrete type is deduced at compile time from Q0. That is to say, if Q0 is defined on

the GPU, i.e. it is a CUARRAY, all internal arrays in HMC will be too. CUDA.JL has a

173

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

wide coverage of operations defined on GPUs, ranging from standard array operations

to special statistics functions. It also supports compiling Julia code to CUDA code

at run-time and its automatic conversion can be as fast as manually optimised CUDA

codes, if not faster. That is to say, if a function is written in pure Julia, it probably

supports GPUs acceleration without much housekeeping.4

7.2.2 Related work

A summary of the related work on HMC/NUTS implementations is given in table 7.1.

We want to emphasis that there exists a Python API of AHMC implemented by an

independent team available at https://github.com/salilab/hmc.

7.2.3 Evaluations

To compare the NUTS implementation between AHMC and STAN, we consider five

models from MCMCBENCHMARKS.JL, a package for benchmarking MCMC libraries

in Julia.5 The five models are

1. A Gaussian model (Gaussian), a simple two parameter Gaussian distribution

µ∼N (0,1)

σ∼ T runcated(Cauchy(0,5),0,∞)

yn ∼N (µ,σ) (n = 1, . . . ,N)

2. The signal detection model (SDT), a model used in psychophysics and signal

processing, which decomposes performance in terms of discriminability and bias

(Green et al., 1966)

d ∼N (0,
1√
2
)

c∼N (0,
1√
2
)

x∼ SDT(d,c)
4With this being said, not all native Julia codes are performant on GPUs. For example, one would be

careful of not using scalar operations as much because they are slow on GPUs.
5Available at https://github.com/StatisticalRethinkingJulia/MCMCBenchmarks.jl.

174

https://github.com/salilab/hmc
https://github.com/StatisticalRethinkingJulia/MCMCBenchmarks.jl

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

3. A Bayesian linear regression model (BLR) with a truncated Cauchy prior on the

weights

Bd ∼N (0,10)

σ∼ T runcated(Cauchy(0,5),0,∞)

yn ∼N (µn,σ)

where µ = B0 +BBBT XXX ,d = 1, . . . ,D and n = 1, . . . ,N.

4. A hierarchical Poisson regression (HPR) model

a0 ∼N (0,10)

a1 ∼N (0,1)

bσ ∼ T runcated(Cauchy(0,1),0,∞)

bd ∼N (0,bσ)

yn ∼ P oisson(logλn)

where logλn = a0 +bzn +a1xn,d = 1, . . . ,Nb and n = 1, . . . ,N.

5. The linear ballistic accumulator model (LBA), a cognitive model of perception

and simple decision making (Brown and Heathcote, 2008)

τ∼ T runcated(N (0.4,0.1),0,mn)

A∼ T runcated(N (0.8,0.4),0,∞)

k ∼ T runcated(N (0.2,0.3),0,∞)

νd ∼ T runcated(N (0,3),0,∞)

xn ∼ LBA(ννν,τ,A,k)

where mn = mini xi,2,d = 1, . . . ,Nc and n = 1, . . . ,N.

7.2.3.1 Statistical property of simulated trajectories

To compare the statistical property between STAN and AHMC, we run multiple chains

of NUTS with target acceptance rate 0.8 for 2,000 steps with 1,000 for adaptation,

where the warm-up samples are dropped. Each model is benchmarked with multiple

data sizes N. We compare the simulated trajectories by the distributions of step size and

tree depth and the average effective sample size (ESS) for all variables. The results for

175

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

0.0 0.1 0.2 0.3
0
2
4
6
8

De
ns

ity

AHMCNUTS 10
CmdStanNUTS 10

0.15 0.20 0.25 0.30 0.35
0.0
2.5
5.0
7.5

10.0

De
ns

ity

AHMCNUTS 100
CmdStanNUTS 100

0.15 0.20 0.25 0.30
0
2
4
6
8

10
12

De
ns

ity

AHMCNUTS 1000
CmdStanNUTS 1000

 Step size

Step size

Step size

3.0 3.5 4.0 4.5 5.0 5.5
0.0
0.2
0.4
0.6
0.8

De
ns

ity

AHMCNUTS 10
CmdStanNUTS 10

3.0 3.5 4.0 4.5
0.0

0.5

1.0

1.5

De
ns

ity

AHMCNUTS 100
CmdStanNUTS 100

3.0 3.5 4.0 4.5
0.0
0.5
1.0
1.5
2.0

De
ns

ity

AHMCNUTS 1000
CmdStanNUTS 1000

 Tree depth

Tree depth

Tree depth

N
ESS

b0 σ b1 b2

STAN 10 413.939 266.476 381.219 423.441

AHMC 10 354.946 263.894 411.769 399.420

STAN 100 621.796 729.812 465.990 608.608

AHMC 100 473.005 734.189 606.996 621.543

STAN 1000 668.524 789.987 464.459 648.201

AHMC 1000 485.988 786.577 676.097 689.344

Figure 7.1: BLR (50 runs). For the density plots, blue is for AHMC and orange is for STAN and

each row is for a different size N, corresponding to the table on the right.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
1
2
3
4
5

De
ns

ity

AHMCNUTS 10
CmdStanNUTS 10

0.6 0.8 1.0 1.2
0
1
2
3
4

De
ns

ity

AHMCNUTS 100
CmdStanNUTS 100

0.6 0.7 0.8 0.9 1.0 1.1 1.2
0
1
2
3
4
5

De
ns

ity

AHMCNUTS 1000
CmdStanNUTS 1000

 Step size

Step size

 Step size

1.6 1.8 2.0 2.2 2.4
0
1
2
3
4
5

De
ns

ity

AHMCNUTS 10
CmdStanNUTS 10

1.4 1.6 1.8 2.0 2.2 2.4 2.6
0.0
0.5
1.0
1.5
2.0
2.5

De
ns

ity

AHMCNUTS 100
CmdStanNUTS 100

1.5 2.0 2.5 3.0
0.0
0.5
1.0
1.5
2.0
2.5

De
ns

ity

AHMCNUTS 1000
CmdStanNUTS 1000

Tree depth

Tree depth

Tree depth

N
ESS

µ σ

STAN 10 513.163 466.577

AHMC 10 503.535 447.722

STAN 100 786.531 782.231

AHMC 100 786.531 796.628

STAN 1000 864.010 876.660

AHMC 1000 832.255 844.452

Figure 7.2: Gaussian (50 runs); left to right: step size, tree depth, ESS

the five benchmark models are shown in figure 7.1-7.5. As an example for discussion,

it can been seen from figure 7.3 that the distributions of step size and tree depth are

similar and the average ESS for all variables are close, indicating AHMC’s NUTS is

statistically similar to the implementation in STAN. Conclusions from the results of the

other four models remain similar.

7.2.3.2 Computational efficiency via running time

All the benchmark models used in this paper are implemented in TURING (Ge et al.,

2018), a universal PPL in Julia that uses AHMC as its HMC backend. Below is the

code snippet of running NUTS using TURING for the BLR model.
1 @model LR(x, y, Nd, Nc) = begin
2 B ~ MvNormal(zeros(Nc), 10)
3 B0 ~ Normal(0, 10)
4 sigma ~ Truncated(Cauchy(0, 5), 0, Inf)
5 mu = B0 .+ x * B
6 y ~ MvNormal(mu, sigma)
7 end
8 x, y, Nd, Nc = ... # load data
9 chain = sample(LR(x, y, Nd, Nc), NUTS(2_000, 1_000, 0.8))

The average time used to run the five benchmark models for multiple times using

176

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

0.6 0.7 0.8 0.9 1.0 1.1
0
1
2
3
4
5

De
ns

ity

AHMCNUTS 10
CmdStanNUTS 10

0.7 0.8 0.9 1.0 1.1 1.2
0
1
2
3
4
5

De
ns

ity
AHMCNUTS 100
CmdStanNUTS 100

0.6 0.7 0.8 0.9 1.0 1.1 1.2
0
1
2
3
4
5

De
ns

ity

AHMCNUTS 1000
CmdStanNUTS 1000

 Step size

Step size

Step size

1.50 1.75 2.00 2.25 2.50 2.75
0.0
0.5
1.0
1.5
2.0

De
ns

ity

AHMCNUTS 10
CmdStanNUTS 10

1.6 1.8 2.0 2.2 2.4 2.6 2.8
0.0
0.5
1.0
1.5
2.0
2.5

De
ns

ity

AHMCNUTS 100
CmdStanNUTS 100

1.50 1.75 2.00 2.25 2.50 2.75 3.00
0.0
0.5
1.0
1.5
2.0
2.5

De
ns

ity

AHMCNUTS 1000
CmdStanNUTS 1000

 Tree depth

Tree depth

Tree depth

N
ESS

d c

STAN 10 710.762 703.327

AHMC 10 802.236 815.929

STAN 100 820.741 823.152

AHMC 100 814.308 846.357

STAN 1000 844.478 872.961

AHMC 1000 829.792 859.018

Figure 7.3: SDT (100 runs); left to right: step size, tree depth, ESS

0.005 0.010 0.015 0.020 0.025 0.030 0.035
0

25
50
75

100

De
ns

ity

AHMCNUTS 1
CmdStanNUTS 1

0.00 0.01 0.02 0.03
0

20
40
60
80

De
ns

ity

AHMCNUTS 2
CmdStanNUTS 2

0.00 0.01 0.02 0.03
0

20
40
60
80

100
120

De
ns

ity

AHMCNUTS 5
CmdStanNUTS 5

 Step size

Step size

Step size

6.0 6.5 7.0 7.5 8.0
0.0
0.5
1.0
1.5
2.0

De
ns

ity
AHMCNUTS 1
CmdStanNUTS 1

6 7 8 9
0.0
0.2
0.4
0.6
0.8

De
ns

ity

AHMCNUTS 2
CmdStanNUTS 2

6 7 8 9
0.00
0.25
0.50
0.75
1.00

De
ns

ity

AHMCNUTS 5
CmdStanNUTS 5

Tree depth

Tree depth

Tree depth

N
ESS

a0 a1 bσ

STAN 10 221.485 215.013 266.900

AHMC 10 216.491 214.459 258.638

STAN 20 208.286 207.041 241.080

AHMC 20 206.458 200.469 236.546

STAN 50 172.484 172.982 216.586

AHMC 50 200.755 201.548 247.384

Figure 7.4: HPR (25 runs); left to right: step size, tree depth, ESS (of some variables)

STAN and using AHMC via TURING are reported in table 7.2. We see that AHMC has

comparable performance for all models except for HPR, which could be the result of

the difference in the implementation of the probability mass function for the Poisson

distribution. Also note that AHMC scales better for LBA models while STAN scales

better for the rest of the models. This is likely due to the fact that the LBA model relies

on a manually implemented distribution which is highly optimised by Julia’s compiler.

7.2.4 Conclusion

We have introduced ADVANCEDHMC.JL, a new Julia package that provides robust,

modular and efficient implementations of advanced HMC algorithms. We also highlight

the modularity of the package and compare the implemented NUTS with STAN, both

statistically and computationally. Overall, we hope that AHMC can serve as a robust

baseline for future research on HMC algorithms and can enable the development of new

PPLs which take advantage of the decoupling of inference algorithms from the actual

modelling language.

177

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

0.0 0.1 0.2 0.3
0.0
2.5
5.0
7.5

10.0

De
ns

ity

AHMCNUTS 10
CmdStanNUTS 10

0.05 0.10 0.15 0.20 0.25
0

5

10

15

De
ns

ity

AHMCNUTS 50
CmdStanNUTS 50

0.06 0.09 0.12 0.15
0
5

10
15
20
25

De
ns

ity

AHMCNUTS 200
CmdStanNUTS 200

 Step size

Step size

Step size

3.0 3.5 4.0 4.5 5.0 5.5
0.0

0.5

1.0

1.5

De
ns

ity

AHMCNUTS 10
CmdStanNUTS 10

3.5 4.0 4.5 5.0 5.5
0.0
0.5
1.0
1.5

De
ns

ity

AHMCNUTS 50
CmdStanNUTS 50

3.8 4.0 4.2 4.4 4.6 4.8 5.0
0
1
2
3

De
ns

ity

AHMCNUTS 200
CmdStanNUTS 200

 Tree depth

Tree depth

Tree depth

N
ESS

τ A ν1 ν2

STAN 10 226.463 282.656 305.614 276.557

AHMC 10 340.722 304.523 337.610 336.357

STAN 50 212.838 238.003 24.009 232.667

AHMC 50 248.249 238.979 248.331 255.421

STAN 200 244.926 264.967 268.793 270.36

AHMC 200 256.638 263.098 270.978 266.769

Figure 7.5: LBA (50 runs); left to right: step size, tree depth, ESS (of some variables)

178

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

Table 7.1: Comparison of different HMC/NUTS implementations. TFP.MCMC refers to

TENSORFLOW.PROBABILITY’s MCMC library. DYNAMICHMC is another high-quality HMC

implementation in Julia. Windowed adaption is a method for joint adaption of leapfrog integra-

tion step-size and mass matrix. Windowed adaption was proposed by the Stan team (Carpenter

et al., 2017), and has demonstrated remarkable robustness in a wide range of Bayesian inference

problems. Partial support for GPU means the log density function can be accelerated by GPU,

but the HMC sampler itself runs on CPU. Slice and Multinomial are two methods for sampling

from dynamic Hamiltonian trajectories, e.g. those generated by the No-U-Turn algorithm

(see e.g. Betancourt (2017) for details). Tempered leapfrog integrator improves convergence

when the target distribution has multiple modes by performing tempering within Hamiltonian

trajectories (Neal, 2011). Coupled multinomial is supported through COUPLEDHMC.JL.

STAN AHMC PYRO TFP.MCMC PYMC3 DYNAMICHMC

Adaption
Step-size 3 3 3 3 3 3

Mass matrix 3 3 3 3 3 3

Windowed adaption 3 3 3 7 7 3

Hamiltonian trajectory
Classic No-U-Turn 3 3 7 3 7 7

No-U-Turn 3 3 3 3 3 3

Strict No-U-Turn 3 3 7 7 3 7

Fixed trajectory length 3 3 3 3 3 7

Trajectory sampler
Slice 3 3 3 3 7 7

Multinomial 3 3 3 3 3 3

Coupled multinomial 7 3 7 7 7 7

Integrator
Leapfrog 3 3 3 3 3 3

Jittered Leapfrog 3 3 7 7 7 7

Tempered Leapfrog 7 3 7 7 7 7

DIFFEQS.JL integrators partial 3 7 7 7 7

GPU support partial 3 3 3 partial partial

179

CHAPTER 7. FREE AND OPEN-SOURCE SOFTWARE FOR GENERATIVE MODELLING

0 Gaussian 2 SDT 3 LR 2 HPR 1 LBA 2

N seconds N seconds N seconds N seconds N seconds

STAN 10 0.8039 10 0.7759 10 0.8669 10 2.4870 10 1.9179

AHMC 10 0.3361 10 0.3285 10 1.1356 10 19.4587 10 2.6906

STAN 100 0.7561 100 0.7261 100 0.9824 20 3.5025 50 7.8471

AHMC 100 0.3303 100 0.3201 100 1.3202 20 28.2982 50 11.0270

STAN 1000 0.7614 1000 0.7089 1000 2.2600 50 5.8954 200 31.3762

AHMC 1000 0.5081 1000 0.3179 1000 3.8326 50 40.0322 200 33.6125

Table 7.2: Computational efficiency for five models using 1 25 runs, 2 50 runs or 3 100 runs. For

AHMC, forward-mode AD is used for computing gradient. AHMC can be used together with

different AD backends/packages, e.g. FORWARDDIFF.JL’s forward-mode AD, TRACKER.JL’s

reverse-mode AD and ZYGOTE.JL’s source-to-source AD.

180

Chapter 8

Conclusion and Future Work

In this thesis, I present four pieces of my original work that improves the robustness and

efficiency of algorithms for generative modelling as well as my work and contributions

to free and open-source software for generative modelling.

In chapter 3, two novel couplings for multinomial HMC—a HMC variant that is

widely used in modern, standard HMC libraries—are introduced. Theoretical analysis

is provided on the validity of the proposed methods. Simulations are performed to

demonstrate their advantages over existing methods in terms of meeting time and

robustness to HMC parameters. The improved efficiency and robustness is an important

step towards practical use of coupled HMC and unbiased MCMC as it is the first time

that coupled HMC shows comparable efficiency as non-coupled HMC while providing

unbiased estimates. I hope this work will help advance the research on searching more

efficient coupled HMC methods, and a wider use of coupled HMC for probabilistic

modelling in practice.

In chapter 4, I introduce RAVE, a novel inference method for BNP models that

provides a probabilistic way to perform amortised variational inference without the need

of explicitly truncating the maximum number of inferred posterior features as is common

in previous work on variational inference for BNP. It is clearly demonstrated that the

inference method outperforms both structured and mean-filed amortised variational

inference methods that resort to explicit truncation of the posterior features. This work

paves the way for using truly non-parametric Bayesian methods in specific research

directions such as continual learning, scene understanding, etc.

In chapter 5, a new algorithm for training neural samplers called GRAM is introduced.

It is demonstrated that while MMD-nets in their original formulation fail to generate

181

CHAPTER 8. CONCLUSION AND FUTURE WORK

high dimensional images in good quality, their performance can be greatly improved

by training them under a low dimensional mapping. Unlike the alternative adversarial

(MMD-GAN) for learning such a mapping, GRAM learns this mapping while avoiding

the saddle-point optimization by being trained to match density ratios of the input and

the projected pair of distributions. This leads to a sizeable improvement in stability and

generative quality, that is at par with or better than adversarial generative methods. GRA

M makes it easier to use neural samplers in complex systems because it does not require

careful hyper-parameter tuning for successful training.

Chapter 6 introduces BSP, a Bayesian approach to learning symbolic physics which,

to our knowledge, is the first to combine symbolic learning of physical force laws and

statistical learning of unobserved attributes. The work enables data-efficient symbolic

physics learning from partially-observed trajectory data and paves the way for using

learnable IPEs in intuitive physics by providing a computational framework to study

how humans’ iterative reasoning-learning is mentally performed.

Lastly, chapter 7 summarises the development of the open-source ecosystem around

TURING.JL, especially ADVANCEDHMC.JL (AHMC) an open-source library that

implements CMHMC along with other popular HMC methods in a modular and effi-

cient manner. Importantly, such ecosystem is designed for reusable components for

developing feature-rich PPLs and interoperation between different Julia packages. The

former has influenced other PPLs in Julia and the latter has made it easy to Bayesian in-

ference together with techniques such as deep learning, differential equations, symbolic

regression, etc.

8.1 Future work

8.1.1 Advanced coupled HMC and a vision of a new Bayesian in-

ference workflow

Couplings for more advanced HMC variants One future work of chapter 3 is ex-

tending the coupling methods to more advanced HMC variants, e.g. the no-U-turn

algorithm (Hoffman and Gelman, 2014), which is the default sampler in many probabil-

istic programming languages because of its ability of self-tuning hyper-parameters.

182

CHAPTER 8. CONCLUSION AND FUTURE WORK

Learning the initial distribution π0 The meeting time and overall efficiency of

the coupled HMC sampler is dependent on the choice of the initial distribution π0.

An interesting research direction is to learn such a π0 that is optimised for coupled

MCMC estimators. One potential way to achieve so it to adapt the recent developed

contrastive divergence for combining MCMC and VI (Ruiz and Titsias, 2019) that learns

an optimised variational distribution as the initial distribution for a MCMC sampler.

Applying the same idea to coupled MCMC can potentially make unbiased MCMC

estimators more efficient and reliable to use.

A new Bayesian inference workflow As coupled multinomial HMC has shown

comparable efficiency of unbiased MCMC as to normal MCMC estimation, it would be

interesting to support it as a standard inference method in PPLs. Interestingly, this would

also require a change in the common abstraction of how Bayesian inference is performed.

For most of the existing PPLs, the inference is done through a sample function, which

obtains approximate samples for the target model, and the approximate samples usually

consumed manually by users to perform Monte Carlo estimation. However, for unbiased

estimation, it would mean to augment this interface via a function called estimate and

update sample accordingly:

• sample should return typed samples which are samples with additional informa-

tion, if available, that could be consumed by estimate later to perform unbiased

estimation. For unbiased MCMC, it would be coupled samples; for particle-based

methods (like importance sampling), it would be weighted samples.

• estimate then takes typed samples and a function of interest h to perform the

corresponding unbiased estimation for each type; for normal MCMC, this simply

reduced to normal MC estimation, which can be biased. It could also be interesting

to support estimate on models directly so sample is automatically performed.

8.1.2 Amortised feature complexity via RAVE

One limitation of the current way of using RAVE in VAEs is that the feature complexity

is same across all data points. However, one could also learn an inference network that

learns the dimension of representation for a given data point, essentially amortising the

feature complexity. This can be useful for problem in which a data point is a scene that

183

CHAPTER 8. CONCLUSION AND FUTURE WORK

can contain as many objects as possible so the representation of the scene could also be

unbounded.

Other directions for future work include extending RAVE to other non-parametric

models.

8.1.3 GRAM for representation learning

Intuitively speaking, the projection network in GRAM has to learn an informative feature

space in order to preserve the density ratios. Such feature space, during training or

at convergence, may be useful in general as representations of the data. Thus, one

interesting direction to explore is to facilitate the principle of density-ratio matching in

the context of representation learning, potentially together with contrastive learning.

8.1.4 Improving neuro-symbolic generative modelling

The current setup of BSP relies on two main assumptions. First, we assume it has

access to the grammar of Newtonian physics. However, how this knowledge is acquired,

e.g. through evolution, is not addressed. Second, BSP works on symbolic inputs and

assumes perceptual modules are given. This requires extra pre-processing steps when

applying BSP to perceptual data, e.g. videos from PHYS101 and ULLMAN. The

performance of BSP also depends on the quality of the pre-processing step. It will be

interesting to address these two limitations by formulating a computational framework

in which the grammar and the perceptual modules can be learned, either in separate

phases or jointly with symbolic force learning.

Symbolic prior learning The learning of grammar is essentially the learning of the

prior in a symbolic form. The prior should be learned in a way such that post-learning

with the prior is data-efficient, as it is shown by BSP. This direction is closely related to

active research in deep learning include pre-training and meta-learning.

Foundations of neuro-symbolic generative modelling Currently the learning of

neuro-symbolic generative models relies on adapting existing generic learning methods.

However, some methods could be ill-defined when a symbolic component is used in

the generative process. For example, the support of the model distribution could have

a mismatch with the data distribution if the symbolic part is wrong during learning.

184

CHAPTER 8. CONCLUSION AND FUTURE WORK

Proper measure-theoretical research to better understand and characterise the learning

of neuro-symbolic generative models should be conducted to consolidate the foundation

of neuro-symbolic generative modelling.

8.1.5 Towards a probabilistic symbolic programming ecosystem

As mentioned in chapter 6 and chapter 7, BSP is implemented using TURING.JL (for the

generative process and the E-step) together EXPROPTIMIZATION.JL (for the symbolic

regression in the M-step). This idea could be extended with more inference and symbolic

learning methods, together with enhanced modelling language support to allow users

to easily define probabilistic programs in which some functions follow a particular

grammar. Some efforts such as Dai et al. (2019); Manhaeve et al. (2021) have been

made to propose similar ideas but not yet any practical framework has been developed

to fulfil this mission. This paradigm could be useful in areas where domain-specific

knowledge can be provided in a symbolic form such as physics and chemistry.

185

Bibliography

Abbasnejad, M. E., Dick, A., and van den Hengel, A. (2017). Infinite variational autoencoder

for semi-supervised learning. In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 781–790. IEEE.

Adams, R., Wallach, H., and Ghahramani, Z. (2010). Learning the structure of deep sparse

graphical models. In Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, pages 1–8.

Aldous, D. J. (1985). Exchangeability and related topics. In École d’Été de Probabilités de

Saint-Flour XIII—1983, pages 1–198. Springer.

Allen, K. R., Smith, K. A., and Tenenbaum, J. B. (2019). The tools challenge: Rapid trial-and-

error learning in physical problem solving. arXiv preprint arXiv:1907.09620.

Amos, B., Dinh, L., Cabi, S., Rothörl, T., Colmenarejo, S. G., Muldal, A., Erez, T., Tassa,

Y., de Freitas, N., and Denil, M. (2018). Learning awareness models. arXiv preprint

arXiv:1804.06318.

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonpara-

metric problems. The annals of statistics, pages 1152–1174.

Arjovsky, M., Chintala, S., and Bottou, L. (2017a). Wasserstein GAN. arXiv preprint

arXiv:1701.07875.

Arjovsky, M., Chintala, S., and Bottou, L. (2017b). Wasserstein generative adversarial networks.

In International conference on machine learning, pages 214–223. PMLR.

Asuncion, A. and Newman, D. (2007). UCI machine learning repository.

Bansal, S. (2010). Multiple polymorphic arguments in single dispatch object oriented languages.

In International Conference on Contemporary Computing, pages 260–271. Springer.

Baradel, F., Neverova, N., Mille, J., Mori, G., and Wolf, C. (2020). Cophy: Counterfactual

learning of physical dynamics. In International Conference on Learning Representations.

187

BIBLIOGRAPHY

Bates, C., Battaglia, P. W., Yildirim, I., and Tenenbaum, J. B. (2015). Humans predict liquid

dynamics using probabilistic simulation. In CogSci.

Battaglia, P. W., Hamrick, J. B., and Tenenbaum, J. B. (2013). Simulation as an engine of phys-

ical scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327–

18332.

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D., and Kavukcuoglu, K. (2016). Interaction

networks for learning about objects, relations and physics. arXiv:1612.00222 [cs].

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint

arXiv:1701.02434.

Betancourt, M. (2018). A conceptual introduction to Hamiltonian Monte Carlo.

arXiv:1701.02434 [stat]. arXiv: 1701.02434.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A fresh approach to

numerical computing. SIAM review, 59(1):65–98.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh,

R., Szerlip, P., Horsfall, P., and Goodman, N. D. (2019). Pyro: Deep universal probabilistic

programming. The Journal of Machine Learning Research, 20(1):973–978.

Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A. (2018). Demystifying MMD

GANs. arXiv preprint arXiv:1801.01401.

Bishop, C. M. (2013). Model-based machine learning. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 371(1984):20120222.

Biswas, N., Jacob, P. E., and Vanetti, P. (2019). Estimating convergence of Markov chains with

l-lag couplings. In Advances in Neural Information Processing Systems, volume 32.

Blei, D. M. and Jordan, M. I. (2004). Variational methods for the Dirichlet process. In

International Conference in Machine Learning (ICML).

Bogachev, V. I. (2007). Measure theory, volume 1. Springer Science & Business Media.

Bonawitz, E., Ullman, T. D., Bridgers, S., Gopnik, A., and Tenenbaum, J. B. (2019). Sticking

to the evidence? a behavioral and computational case study of micro-theory change in the

domain of magnetism. Cognitive Science, 43(8):e12765.

Bonneel, N., Van De Panne, M., Paris, S., and Heidrich, W. (2011). Displacement interpolation

using Lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH Asia Conference,

pages 1–12.

188

BIBLIOGRAPHY

Bou-Rabee, N., Eberle, A., and Zimmer, R. (2020). Coupling and convergence for Hamilto-

nian Monte Carlo. Annals of applied probability: an official journal of the Institute of

Mathematical Statistics, 30(3):1209–1250.

Bramley, N. R., Gerstenberg, T., Tenenbaum, J. B., and Gureckis, T. M. (2018). Intuitive

experimentation in the physical world. Cognitive psychology, 105:9–38.

Breen, P. G., Foley, C. N., Boekholt, T., and Zwart, S. P. (2019). Newton vs the machine: solving

the chaotic three-body problem using deep neural networks. arXiv:1910.07291 [astro-ph,

physics:physics].

Brescia, F. (2012). Fundamentals of Chemistry: A Modern Introduction (1966). Elsevier.

Brown, S. D. and Heathcote, A. (2008). The simplest complete model of choice response time:

Linear ballistic accumulation. Cognitive psychology, 57(3):153–178.

Bryant, M. and Sudderth, E. B. (2012). Truly nonparametric online variational inference for

hierarchical Dirichlet processes. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,

K. Q., editors, Advances in Neural Information Processing Systems 25, pages 2699–2707.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance weighted autoencoders. arXiv

preprint arXiv:1509.00519.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,

M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic programming language.

Journal of statistical software, 76(1).

Carter, L. L. and Cashwell, E. D. (1975). Particle-transport simulation with the Monte Carlo

method. Technical report, Los Alamos Scientific Lab.

Cerny, B. M., Nelson, P. C., and Zhou, C. (2008). Using differential evolution for symbolic

regression and numerical constant creation. In Proceedings of the 10th annual conference on

Genetic and evolutionary computation, GECCO ’08, pages 1195–1202, Atlanta, GA, USA.

Association for Computing Machinery.

Chang, M. B., Ullman, T., Torralba, A., and Tenenbaum, J. B. (2016). A compositional

object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341.

Chatzis, S. P. (2014). Indian buffet process deep generative models. arXiv preprint

arXiv:1402.3427.

Chen, T., Fox, E., and Guestrin, C. (2014). Stochastic gradient hamiltonian monte carlo. In

International conference on machine learning, pages 1683–1691.

189

BIBLIOGRAPHY

Chen, Z. and Vempala, S. S. (2019). Optimal convergence rate of Hamiltonian Monte Carlo for

strongly logconcave distributions. arXiv:1905.02313 [cs, stat].

Cox, R. T. (1963). The algebra of probable inference. American Journal of Physics, 31(1):66–67.

Cranmer, M., Sanchez-Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K., Spergel, D., and

Ho, S. (2020). Discovering symbolic models from deep learning with inductive biases.

arXiv:2006.11287 [astro-ph, physics:physics, stat].

Cusumano-Towner, M. F., Saad, F. A., Lew, A. K., and Mansinghka, V. K. (2019). Gen:

a general-purpose probabilistic programming system with programmable inference. In

Proceedings of the 40th acm sigplan conference on programming language design and

implementation, pages 221–236.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In

Advances in neural information processing systems, pages 2292–2300.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4):303–314.

Dai, W.-Z., Xu, Q., Yu, Y., and Zhou, Z.-H. (2019). Bridging machine learning and logical

reasoning by abductive learning.

Davidson, J. W., Savic, D. A., and Walters, G. A. (2001). Symbolic and numerical regression:

Experiments and applications. In John, R. and Birkenhead, R., editors, Developments in Soft

Computing, Advances in Soft Computing, pages 175–182, Heidelberg. Physica-Verlag HD.

De Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. In Annales de

l’institut Henri Poincaré, volume 7, pages 1–68.

Dempe, S. (2002). Foundations of bilevel programming. Springer Science & Business Media.

Devroye, L. (1990). Coupled samples in simulation. Operations Research, 38(1):115–126.

Dinh, L. and Dumoulin, V. (2016). Training neural Bayesian nets.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using Real NVP. arXiv

preprint arXiv:1605.08803.

Donahue, J., Krähenbühl, P., and Darrell, T. (2016). Adversarial feature learning. arXiv preprint

arXiv:1605.09782.

Doshi-Velez, F., Miller, K., Van Gael, J., and Teh, Y. W. (2009). Variational inference for the

Indian buffet process. In Artificial Intelligence and Statistics, pages 137–144.

190

BIBLIOGRAPHY

Du, Y. and Mordatch, I. (2019). Implicit generation and modeling with energy based models.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo.

Physics letters B, 195(2):216–222.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., and Courville,

A. (2016). Adversarially learned inference. arXiv preprint arXiv:1606.00704.

Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. (2015). Training generative neural networks

via maximum mean discrepancy optimization. arXiv preprint arXiv:1505.03906.

Ehrhardt, S., Monszpart, A., Mitra, N. J., and Vedaldi, A. (2017). Learning a physical long-term

predictor. arXiv preprint arXiv:1703.00247.

Feser, J. K., Chaudhuri, S., and Dillig, I. (2015). Synthesizing data structure transformations

from input-output examples. ACM SIGPLAN Notices, 50(6):229–239.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of

deep networks. arXiv:1703.03400 [cs].

Fox, E. B., Hughes, M. C., Sudderth, E. B., Jordan, M. I., et al. (2014). Joint modeling of

multiple time series via the beta process with application to motion capture segmentation.

The Annals of Applied Statistics, 8(3):1281–1313.

Fragkiadaki, K., Agrawal, P., Levine, S., and Malik, J. (2015). Learning visual predictive models

of physics for playing billiards. arXiv preprint arXiv:1511.07404.

Gabler, P., Trapp, M., Ge, H., and Pernkopf, F. (2019). Graph tracking in dynamic probabilistic

programs via source transformations.

Gal, Y. (2016). Uncertainty in deep learning.

Gao, B. and Pavel, L. (2018). On the properties of the softmax function with application in

game theory and reinforcement learning. arXiv:1704.00805 [cs, math].

Ge, H., Xu, K., and Ghahramani, Z. (2018). Turing: A language for flexible probabilistic

inference. In International Conference on Artificial Intelligence and Statistics.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013).

Bayesian data analysis. CRC press.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):721–741.

191

BIBLIOGRAPHY

Georgoulas, A., Hillston, J., and Sanguinetti, G. (2017). Unbiased Bayesian inference for popu-

lation markov jump processes via random truncations. Statistics and computing, 27(4):991–

1002.

Gershman, S. and Blei, D. (2012). A tutorial on Bayesian nonparametric models. Journal of

Mathematical Psychology, 56:1–12.

Gershman, S. and Goodman, N. (2014). Amortized inference in probabilistic reasoning. In

Proceedings of the annual meeting of the cognitive science society, volume 36.

Gerstenberg, T., Goodman, N. D., Lagnado, D. A., and Tenenbaum, J. B. (2015). How, whether,

why: Causal judgments as counterfactual contrasts. In CogSci.

Geweke, J. (2004). Getting it right: Joint distribution tests of posterior simulators. Journal of

the American Statistical Association, 99(467):799–804.

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature,

521(7553):452–459.

Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte

Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

73(2):123–214.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the thirteenth international conference on artificial

intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings.

Glynn, P. W. and Rhee, C.-H. (2014). Exact estimation for Markov chain equilibrium expecta-

tions. Journal of Applied Probability, 51A:377–389.

Glynn, P. W. and Whitt, W. (1992). The asymptotic efficiency of simulation estimators. Opera-

tions Research, 40(3):505–520.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680.

Goodman, J. and Weare, J. (2010). Ensemble samplers with affine invariance. Communications

in applied mathematics and computational science, 5(1):65–80.

Goodman, N. D. and Stuhlmüller, A. (2014). The Design and Implementation of Probabilistic

Programming Languages. http://dippl.org. Accessed: 2021-8-21.

192

http://dippl.org

BIBLIOGRAPHY

Görür, D. and Rasmussen, C. E. (2010). Dirichlet process Gaussian mixture models: Choice of

the base distribution. Journal of Computer Science and Technology, 25(4):653–664.

Green, D. M., Swets, J. A., et al. (1966). Signal detection theory and psychophysics, volume 1.

Wiley New York.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A kernel

two-sample test. Journal of Machine Learning Research, 13(Mar):723–773.

Griffiths, T. L. and Ghahramani, Z. (2011). The Indian buffet process: An introduction and

review. Journal of Machine Learning Research, 12(Apr):1185–1224.

Grzeszczuk, N. and Animator, T. D. H. G. N. (1998). Fast neural network emulation and control

of physics-based models. Proc. ACM SIGGRAPH ‘98 (New York, 1998).–ACM Press, pages

9–20.

Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new estimation

principle for unnormalized statistical models. In Proceedings of the thirteenth international

conference on artificial intelligence and statistics, pages 297–304. JMLR Workshop and

Conference Proceedings.

Hairer, E., Lubich, C., and Wanner, G. (2006). Geometric numerical integration: structure-

preserving algorithms for ordinary differential equations. Number 31 in Springer series in

computational mathematics. Springer, Berlin ; New York, 2nd ed edition.

Heng, J. and Jacob, P. E. (2019). Unbiased Hamiltonian Monte Carlo with couplings. Biometrika,

106(2):287–302.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). Gans trained

by a two time-scale update rule converge to a local nash equilibrium. In Guyon, I., Luxburg,

U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,

Advances in Neural Information Processing Systems 30, pages 6626–6637.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural

computation, 14(8):1771–1800.

Ho, J., Lohn, E., and Abbeel, P. (2020). Compression with flows via local bits-back coding.

arXiv:1905.08500 [cs, math, stat].

Hoffman, M. and Blei, D. (2015). Stochastic structured variational inference. In Artificial

Intelligence and Statistics, pages 361–369.

193

BIBLIOGRAPHY

Hoffman, M. D. and Gelman, A. (2014). The no-U-turn sampler: Adaptively setting path

Lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–1623. arXiv:

1111.4246.

Hu, Z., Qirong, H., Dubey, A., and Xing, E. (2015). Large-scale distributed dependent nonpara-

metric trees. In International Conference on Machine Learning, pages 1651–1659.

Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., and Smola, A. (2006). Correcting

sample selection bias by unlabeled data. Advances in Neural Information Processing Systems,

19:601–608.

Hughes, M., Kim, D. I., and Sudderth, E. (2015). Reliable and scalable variational inference

for the hierarchical Dirichlet process. In Conference on Artificial Intelligence and Statistics,

volume 38, pages 370–378.

Hughes, M. C. and Sudderth, E. (2013). Memoized online variational inference for Dirichlet

process mixture models. In Advances in Neural Information Processing Systems, pages

1133–1141.

Hurwitz, C., Kudryashova, N., Onken, A., and Hennig, M. H. (2021). Building population

models for large-scale neural recordings: Opportunities and pitfalls. Current Opinion in

Neurobiology, 70:64–73.

Jackman, S. (2009). Bayesian analysis for the social sciences, volume 846. John Wiley & Sons.

Jacob, P. E. (2020). Couplings and monte carlo.

Jacob, P. E., Lindsten, F., and Schön, T. B. (2016). Coupling of particle filters. CoRR.

Jacob, P. E., Lindsten, F., and Schön, T. B. (2019a). Smoothing with couplings of conditional

particle filters. Journal of the American Statistical Association, pages 1–20.

Jacob, P. E., O’Leary, J., and Atchadé, Y. F. (2019b). Unbiased Markov chain Monte Carlo with

couplings. arXiv:1708.03625 [stat].

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical

learning, volume 112. Springer.

Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with gumbel-softmax.

arXiv preprint arXiv:1611.01144.

Janner, M., Levine, S., Freeman, W. T., Tenenbaum, J. B., Finn, C., and Wu, J. (2019). Reasoning

about physical interactions with object-oriented prediction and planning. arXiv:1812.10972

[cs, stat].

194

BIBLIOGRAPHY

Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge university press.

Johnson, V. E. (1996). Studying convergence of Markov chain Monte Carlo algorithms using

coupled sample paths. Journal of the American Statistical Association, 91(433):154–166.

Johnson, V. E. (1998). A coupling-regeneration scheme for diagnosing convergence in Markov

chain Monte Carlo algorithms. Journal of the American Statistical Association, 93(441):238–

248.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions.

In Advances in Neural Information Processing Systems, pages 10215–10224.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. arXiv:1312.6114 [cs,

stat].

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. (2018). Neural relational inference

for interacting systems. arXiv preprint arXiv:1802.04687.

Kommenda, M., Kronberger, G., Winkler, S., Affenzeller, M., and Wagner, S. (2013). Effects

of constant optimization by nonlinear least squares minimization in symbolic regression.

In Proceedings of the 15th annual conference companion on Genetic and evolutionary

computation, GECCO ’13 Companion, pages 1121–1128, Amsterdam, The Netherlands.

Association for Computing Machinery.

Korattikara, A., Chen, Y., and Welling, M. (2014). Austerity in MCMC Land: Cutting the

Metropolis-Hastings Budget. In International Conference on Machine Learning, pages

181–189. PMLR.

Koza, J. R. (1994). Genetic programming as a means for programming computers by natural

selection. Statistics and Computing, 4(2):87–112.

Kramer, A., Calderhead, B., and Radde, N. (2014). Hamiltonian Monte Carlo methods for

efficient parameter estimation in steady state dynamical systems. BMC bioinformatics,

15(1):253.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M. (2017). Automatic

differentiation variational inference. The Journal of Machine Learning Research, 18(1):430–

474.

195

BIBLIOGRAPHY

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building machines

that learn and think like people. Behavioral and brain sciences, 40.

Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J. A., Armanan-

zas, R., Santafé, G., Pérez, A., et al. (2006). Machine learning in bioinformatics. Briefings in

bioinformatics, 7(1):86–112.

LeCun, Y. (1998). The MNIST database of handwritten digits. online: http://yann.lec

un.com/exdb/mnist/.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos, B. (2017). MMD GAN: Towards

deeper understanding of moment matching network. In Advances in Neural Information

Processing Systems, pages 2200–2210.

Li, C.-L., Chang, W.-C., Mroueh, Y., Yang, Y., and Póczos, B. (2019a). Implicit kernel learning.

arXiv preprint arXiv:1902.10214.

Li, Y., Bradshaw, J., and Sharma, Y. (2019b). Are generative classifiers more robust to adversarial

attacks? arXiv:1802.06552 [cs, stat].

Li, Y., Swersky, K., and Zemel, R. (2015). Generative moment matching networks. In

International Conference on Machine Learning, pages 1718–1727.

Lin, Z., Jain, A., Wang, C., Fanti, G., and Sekar, V. (2020). Using GANs for sharing networked

time series data: Challenges, initial promise, and open questions. arXiv:1909.13403 [cs,

stat].

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bousquet, O. (2017). Are gans created

equal? a large-scale study. arXiv preprint arXiv:1711.10337.

Lux, I. and Koblinger, L. (1991). Monte Carlo Particle Transport Methods: Neutron and Photon

Calculations. CRC press.

Lyne, A.-M., Girolami, M., Atchadé, Y., Strathmann, H., Simpson, D., et al. (2015). On Russian

roulette estimates for Bayesian inference with doubly-intractable likelihoods. Statistical

science, 30(4):443–467.

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge

university press.

196

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY

Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribution: A continuous

relaxation of discrete random variables. arXiv preprint arXiv:1611.00712.

Mangoubi, O. and Smith, A. (2017). Rapid mixing of Hamiltonian Monte Carlo on strongly

log-concave distributions. arXiv:1708.07114 [math, stat].

Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., and De Raedt, L. (2021). Neural

probabilistic logic programming in deepproblog. Artificial Intelligence, 298:103504.

Mescheder, L., Nowozin, S., and Geiger, A. (2017a). Adversarial variational bayes: Unifying

variational autoencoders and generative adversarial networks. In International Conference

on Machine Learning, pages 2391–2400. PMLR.

Mescheder, L., Nowozin, S., and Geiger, A. (2017b). The numerics of GANs. In Advances in

Neural Information Processing Systems, pages 1825–1835.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of state calculations by fast computing machines. The Journal of Chemical Physics,

21(6):1087–1092.

Meyn, S. P. and Tweedie, R. L. (2012). Markov chains and stochastic stability. Springer Science

& Business Media.

Miao, Y., Grefenstette, E., and Blunsom, P. (2017). Discovering discrete latent topics with

neural variational inference. In International Conference in Machine Learning (ICML).

Minka, T., Winn, J., Guiver, J., Zaykov, Y., Fabian, D., and Bronskill, J. (2018). /Infer.NET 0.3.

Microsoft Research Cambridge. http://dotnet.github.io/infer.

Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief networks. In

International Conference on Machine Learning, Proceedings of Machine Learning Research,

pages 1791–1799. PMLR.

Müller, P. and Quintana, F. A. (2004). Nonparametric Bayesian data analysis. Statistical science,

pages 95–110.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Murray, L. M. (2013). Bayesian state-space modelling on high-performance hardware using

libbi. arXiv preprint arXiv:1306.3277.

Møller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998). Log Gaussian Cox processes.

Scandinavian Journal of Statistics, 25(3):451–482.

197

BIBLIOGRAPHY

Nalisnick, E. and Smyth, P. (2017). Stick-breaking variational autoencoders. In International

Conference on Learning Representations (ICLR).

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of markov chain monte

carlo, 2(11):2.

Neal, R. M. (2012). Bayesian learning for neural networks, volume 118. Springer Science &

Business Media.

Neal, R. M. (2017). Circularly-coupled Markov chain sampling. arXiv:1711.04399 [stat].

Neiswanger, W., Wang, C., and Xing, E. (2013). Asymptotically exact, embarrassingly parallel

mcmc. arXiv preprint arXiv:1311.4780.

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-GAN: Training generative neural samplers

using variational divergence minimization. In Advances in Neural Information Processing

Systems, pages 271–279.

Nuesken, N. and Pavliotis, G. A. (2018). Constructing sampling schemes via coupling: Markov

semigroups and optimal transport. arXiv:1806.11026 [math].

Orbanz, P. and Teh, Y. W. (2010). Bayesian nonparametric models. In Encyclopedia of Machine

Learning. Springer.

Osera, P.-M. and Zdancewic, S. (2015). Type-and-example-directed program synthesis. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’15, pages 619–630, New York, NY, USA. Association for Computing

Machinery.

O’Leary, J., Wang, G., and Jacob, P. E. (2020). Maximal couplings of the metropolis–hastings

algorithm. arXiv preprint arXiv:2010.08573, 1(2):4.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan,

B. (2019). Normalizing flows for probabilistic modeling and inference. arXiv preprint

arXiv:1912.02762.

Papamakarios, G., Pavlakou, T., and Murray, I. (2017). Masked autoregressive flow for density

estimation. In Advances in Neural Information Processing Systems, pages 2338–2347.

Peng, S., Wang, G., and Xie, D. (2016). Social influence analysis in social networking big data:

Opportunities and challenges. IEEE network, 31(1):11–17.

Pharr, M., Jakob, W., and Humphreys, G. (2016). Physically based rendering: From theory to

implementation. Morgan Kaufmann.

198

BIBLIOGRAPHY

Pinkus, A. (1999). Approximation theory of the mlp model in neural networks. Acta numerica,

8:143–195.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: convergence diagnosis and

output analysis for MCMC. R News, 6(1):7–11. Number: 1.

Qiu, Y., Zhang, L., and Wang, X. (2019). Unbiased contrastive divergence algorithm for

training energy-based latent variable models. In International Conference on Learning

Representations.

Quade, M., Abel, M., Shafi, K., Niven, R. K., and Noack, B. R. (2016). Prediction of dynamical

systems by symbolic regression. Physical Review E, 94(1):012214.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Ranganath, R., Gerrish, S., and Blei, D. (2014). Black box variational inference. In Artificial

Intelligence and Statistics.

Rezende, D. and Mohamed, S. (2015). Variational Inference with Normalizing Flows. In

Bach, F. and Blei, D., editors, Proceedings of the 32nd International Conference on Machine

Learning, volume 37 of Proceedings of Machine Learning Research, pages 1530–1538, Lille,

France. PMLR.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and

approximate inference in deep generative models. In International Conference on Machine

Learning.

Rhee, C.-h. and Glynn, P. W. (2012). A new approach to unbiased estimation for sde’s.

arXiv:1207.2452 [math, q-fin].

Robbins, H. and Monro, S. (1985). A stochastic approximation method. In Herbert Robbins

Selected Papers, pages 102–109. Springer.

Rosenthal, J. S. (1997). Faithful couplings of Markov chains: now equals forever. Advances in

Applied Mathematics, 18(3):372–381.

Roth, K., Lucchi, A., Nowozin, S., and Hofmann, T. (2017). Stabilizing training of generative

adversarial networks through regularization. In Advances in neural information processing

systems, pages 2018–2028.

Rowland, M., Choromanski, K. M., Chalus, F., Pacchiano, A., Sarlos, T., Turner, R. E., and

Weller, A. (2018). Geometrically coupled Monte Carlo sampling. In Advances in Neural

Information Processing Systems 31, pages 195–206.

199

BIBLIOGRAPHY

Ruiz, F. and Titsias, M. (2019). A contrastive divergence for combining variational inference

and mcmc. In International Conference on Machine Learning, pages 5537–5545. PMLR.

Ruiz, F. R., AUEB, M. T. R., and Blei, D. (2016). The generalized reparameterization gradient.

In Advances in neural information processing systems, pages 460–468.

Sanborn, A. N., Mansinghka, V. K., and Griffiths, T. L. (2013). Reconciling intuitive physics

and newtonian mechanics for colliding objects. Psychological review, 120(2):411.

Sanchez-Gonzalez, A., Bapst, V., Cranmer, K., and Battaglia, P. (2019). Hamiltonian graph

networks with ode integrators. arXiv:1909.12790 [physics].

Schmidt, M. and Lipson, H. (2009). Distilling free-form natural laws from experimental data.

Science, 324(5923):81–85.

Seo, S., Meng, C., and Liu, Y. (2019). Physics-aware difference graph networks for sparsely-

observed dynamics. In International Conference on Learning Representations.

Singh, R., Ling, J., and Doshi-Velez, F. (2017). Structured variational autoencoders for the

beta-Bernoulli process.

Smith, K., Mei, L., Yao, S., Wu, J., Spelke, E., Tenenbaum, J., and Ullman, T. (2019). Modeling

expectation violation in intuitive physics with coarse probabilistic object representations. In

Advances in Neural Information Processing Systems, pages 8983–8993.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised

learning using nonequilibrium thermodynamics. In International Conference on Machine

Learning, pages 2256–2265. PMLR.

Spelke, E. S. (2000). Core knowledge. American psychologist, 55(11):1233.

Spelke, E. S. and Kinzler, K. D. (2007). Core knowledge. Developmental science, 10(1):89–96.

Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schölkopf, B., and Lanckriet, G. R. (2009).

On integral probability metrics,\phi-divergences and binary classification. arXiv preprint

arXiv:0901.2698.

Srivastava, A., Valkoz, L., Russell, C., Gutmann, M. U., and Sutton, C. (2017). VEEGAN:

Reducing mode collapse in gans using implicit variational learning. In Advances in Neural

Information Processing Systems, pages 3310–3320.

Srivastava, A., Xu, K., Gutmann, M. U., and Sutton, C. (2019). Generative ratio matching

networks. In International Conference on Learning Representations.

200

BIBLIOGRAPHY

Sugiyama, M., Suzuki, T., and Kanamori, T. (2012). Density ratio estimation in machine

learning. Cambridge University Press.

Sugiyama, M., Yamada, M., von Bünau, P., Suzuki, T., Kanamori, T., and Kawanabe, M.

(2011). Direct density-ratio estimation with dimensionality reduction via least-squares

hetero-distributional subspace search. Neural Networks, 24 2:183–98.

Teh, Y. W., Grür, D., and Ghahramani, Z. (2007). Stick-breaking construction for the Indian

buffet process. In Artificial Intelligence and Statistics, pages 556–563.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2005). Sharing clusters among related

groups: Hierarchical Dirichlet processes. In Advances in neural information processing

systems, pages 1385–1392.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet processes.

Journal of the American Statistical Association, 101(476):1566–1581.

Teh, Y. W., Welling, M., Osindero, S., and Hinton, G. E. (2003). Energy-based models for sparse

overcomplete representations. Journal of Machine Learning Research, 4(Dec):1235–1260.

Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Probability and Its Applications.

Springer New York.

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component analysis. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622.

Tran, D., Ranganath, R., and Blei, D. M. (2017). Hierarchical implicit models and likelihood-free

variational inference. arXiv preprint arXiv:1702.08896.

Udrescu, S.-M. and Tegmark, M. (2020). Ai feynman: A physics-inspired method for symbolic

regression. Science Advances, 6(16):eaay2631.

Ullman, T. D., Stuhlmüller, A., Goodman, N. D., and Tenenbaum, J. B. (2018). Learning

physical parameters from dynamic scenes. Cognitive Psychology, 104:57–82.

Valera, I., Pradier, M. F., Lomeli, M., and Ghahramani, Z. (2018). General latent feature models

for heterogeneous datasets. arXiv:1706.03779 [stat].

van den Oord, A., Vinyals, O., et al. (2017). Neural discrete representation learning. In Advances

in Neural Information Processing Systems, pages 6297–6306.

Veerapaneni, R., Co-Reyes, J. D., Chang, M., Janner, M., Finn, C., Wu, J., Tenenbaum, J., and

Levine, S. (2020). Entity abstraction in visual model-based reinforcement learning. pages

1439–1456.

201

BIBLIOGRAPHY

Villani, C. (2003). Topics in optimal transportation. American Mathematical Soc.

Walker, S. G., Damien, P., Laud, P. W., and Smith, A. F. M. (1999). Bayesian nonparametric

inference for random distributions and related functions. Journal of the Royal Statistical

Society. Series B (Statistical Methodology), 61(3):485–527.

Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu, R., and Tacchetti, A. (2017). Visual

interaction networks: Learning a physics simulator from video. In Advances in neural

information processing systems, pages 4539–4547.

Webb, S., Golinski, A., Zinkov, R., Siddharth, N., Rainforth, T., Teh, Y. W., and Wood, F. (2017).

Faithful inversion of generative models for effective amortized inference. arXiv preprint

arXiv:1712.00287.

Wei, C. and Murray, I. (2016). Markov chain truncation for doubly-intractable inference. arXiv

preprint arXiv:1610.05672.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics.

In Proceedings of the 28th international conference on machine learning (ICML-11), pages

681–688.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. In Reinforcement Learning, pages 5–32. Springer.

Winn, J., Bishop, C. M., Diethe, T., Guiver, J., and Zaykov, Y. (2020). Model-based machine

learning.

Wood, F., Meent, J. W., and Mansinghka, V. (2014). A new approach to probabilistic program-

ming inference. In Artificial Intelligence and Statistics, pages 1024–1032.

Wu, A., Nowozin, S., Meeds, E., Turner, R. E., Hernandez-Lobato, J. M., and Gaunt, A. L.

(2018). Deterministic variational inference for robust bayesian neural networks. arXiv

preprint arXiv:1810.03958.

Wu, J., Lim, J., Zhang, H., Tenenbaum, J., and Freeman, W. (2016). Physics 101: Learning

physical object properties from unlabeled videos. In Procedings of the British Machine Vision

Conference 2016, pages 39.1–39.12, York, UK. British Machine Vision Association.

Wu, J., Yildirim, I., Lim, J. J., Freeman, B., and Tenenbaum, J. (2015). Galileo: Perceiving

physical object properties by integrating a physics engine with deep learning. In Advances in

neural information processing systems, pages 127–135.

202

BIBLIOGRAPHY

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 [cs].

Xie, J., Lu, Y., Zhu, S.-C., and Wu, Y. (2016). A theory of generative convnet. In International

Conference on Machine Learning, pages 2635–2644.

Xu, K., Fjelde, T. E., Sutton, C., and Ge, H. (2021a). Couplings for multinomial Hamiltonian

Monte Carlo. In International Conference on Artificial Intelligence and Statistics.

Xu, K., Ge, H., Tebbutt, W., Tarek, M., Trapp, M., and Ghahramani, Z. (2020). AdvancedHMC.jl:

A robust, modular and effcient implementation of advanced HMC algorithms. In Symposium

on Advances in Approximate Bayesian Inference.

Xu, K., Srivastava, A., Gutfreund, D., Sosa, F. A., Tomer, U., Tenenbaumm, J. B., and Sutton, C.

(2021b). A Bayesian-symbolic approach to reasoning and learning in intuitive physics. In

Advances in Neural Information Processing Systems.

Xu, K., Srivastava, A., and Sutton, C. (2019). Variational Russian roulette for deep Bayesian

nonparametrics. In International Conference on Machine Learning.

Yeung, S., Kannan, A., Dauphin, Y., and Fei-Fei, L. (2017). Tackling over-pruning in variational

autoencoders. arXiv preprint arXiv:1706.03643.

Zheng, D., Luo, V., Wu, J., and Tenenbaum, J. B. (2018). Unsupervised learning of latent

physical properties using perception-prediction networks. arXiv:1807.09244 [cs, stat].

203

Index

Roulette-based amortised variational expecta-

tion, 76

Adversarial learning, 26

Artificial general intelligence, 1

Artificial intelligence, 1

Bayesian logistic regression, 13

Bayesian nonparametric, 15

Big data, 1

Data distribution, 9

Detailed balance, 18

Generative adversarial network, 14

Generative model, 2

Importance sampling, 21

Inverse transform sampling, 10

Latent variable models, 10

Linear layer, 14

Logistic regression, 12

Machine learning, 1

Marginal likelihood, 16

Markov chain Monte Carlo, 17

Maximum likelihood, 25

Maximum mean discrepancy, 27

Model distribution, 9

Model evidence, 16

Neural networks, 14

Posterior, 16

Probabilistic graphical models, 11

Rectified linear unit, 14

Russian roulette sampling, 21

Variational autoencoder, 14

Variational inference, 18

204

	cover sheet.pdf
	phd_thesis_kai_final.pdf

