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Abstract
Sequence-to-sequence (S2S) models in text-to-speech synthesis (TTS) can achieve

high-quality naturalness scores without extensive processing of text-input. Since S2S

models have been proposed in multiple aspects of the TTS pipeline, the field has fo-

cused on embedding the pipeline toward End-to-End (E2E-) TTS where a waveform

is predicted directly from a sequence of text or phone characters. Early work on E2E-

TTS in English, such as Char2Wav [1] and Tacotron [2], suggested that phonetisation

(lexicon-lookup and/or G2P modelling) could be implicitly learnt in a text-encoder

during training. The benefits of a learned text encoding include improved modelling

of phonetic context, which make contextual linguistic features traditionally used in

TTS pipelines redundant [3]. Subsequent work on E2E-TTS has since shown simi-

lar naturalness scores with text- or phone-input (e.g. as in [4]). Successful modelling

of phonetic context has led some to question the benefit of using phone- instead of

text-input altogether (see [5]).

The use of text-input brings into question the value of the pronunciation lexicon

in E2E-TTS. Without phone-input, a S2S encoder learns an implicit grapheme-to-

phoneme (G2P) model from text-audio pairs during training. With common datasets

for E2E-TTS in English, I simulated implicit G2P models, finding increased error rates

compared to a traditional, lexicon-based G2P model. Ultimately, successful G2P gen-

eralisation is difficult for some words (e.g. foreign words and proper names) since

the knowledge to disambiguate their pronunciations may not be provided by the local

grapheme context and may require knowledge beyond that contained in sentence-level

text-audio sequences. When test stimuli were selected according to G2P difficulty,

increased mispronunciations in E2E-TTS with text-input were observed. Following

the proposed benefits of subword decomposition in S2S modelling in other language

tasks (e.g. neural machine translation), the effects of morphological decomposition

were investigated on pronunciation modelling. Learning of the French post-lexical

phenomenon liaison was also evaluated.

With the goal of an inexpensive, large-scale evaluation of pronunciation modelling,

the reliability of automatic speech recognition (ASR) to measure TTS intelligibility

was investigated. A re-evaluation of 6 years of results from the Blizzard Challenge

was conducted. ASR reliably found similar significant differences between systems

as paid listeners in controlled conditions in English. An analysis of transcriptions for

words exhibiting difficult-to-predict G2P relations was also conducted. The E2E-ASR

Transformer model used was found to be unreliable in its transcription of difficult G2P
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relations due to homophonic transcription and incorrect transcription of words with

difficult G2P relations. A further evaluation of representation mixing in Tacotron finds

pronunciation correction is possible when mixing text- and phone-inputs. The thesis

concludes that there is still a place for the pronunciation lexicon in E2E-TTS as a

pronunciation guide since it can provide assurances that G2P generalisation cannot.

∗ ∗ ∗



[Before the dawn of 2001] there will be no C, X or Q in our every-day alphabet. They

will be abandoned because unnecessary.

JOHN ELFRETH WATKINS, 1900
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Chapter 1

Introduction

1.1 The Pronunciation Lexicon in the Age of End-to-

End

In recent years, research in the field of text-to-speech synthesis (TTS) has adopted

deep learning with sequence-to-sequence (S2S) models [6] in a drive towards end-to-

end (E2E-) TTS. E2E-TTS usually employs a character sequence of either graphemes

or phones as input1. The authors of Tacotron 2 noted that natural sounding speech

("difficult to distinguish from human speech" [7, p.1]) was possible with normalised

character sequences only. In [3], the learned text encoding from an input character se-

quence was shown to make linguistic features previously used in hidden Markov model

and feedforward deep neural network acoustic models (HMM- and DNN-TTS respec-

tively) redundant. Implicit learning of input character contexts (as was demonstrated

in [8]) reduces front-end processing to the stages of text normalisation and an optional

grapheme-to-phoneme (G2P) model. S2S modelling also potentially simplifies text

normalisation (e.g. [9]), raising the prospect of E2E-TTS from raw text characters.

The shift away from expertly-derived rules and word pronunciations potentially re-

duces the cost of TTS voice-building. In particular, the shift casts doubt over whether

the manual construction of a pronunciation lexicon is required at all for TTS. Prior to

the era of E2E-TTS, research on grapheme-based TTS consistently observed decreased

performance without the use of linguistic features provided in the front-end [10]–[14].

One such work conducted in Spanish however [13] noted that the relative gap in in-

telligibility narrowed when increasing the quantity of training data from 1 to 5 hours.

1Throughout, the terms graphemes, grapheme-input and text-input are used interchangeably to op-
pose the use of phones and phone-input interchangeably.

19
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Given that E2E-TTS makes use of comparatively larger datasets than previously in

statistical parametric speech synthesis (SPSS) (e.g. LJ Speech [15] contains 24 hours

of audio), the usefulness of a phones instead of graphemes has further been brought

into question. In [16] and [5] MOS naturalness scores with non-significant differences

were reported with grapheme- and phone-input. Meanwhile, analogous work in E2E-

automatic speech recognition (E2E-ASR) has also observed similar word error rate

(WER) scores with grapheme- and phone-input [17]–[19].

However, generalisation poses a key challenge in G2P modelling, particularly for

words with rare or unusual G2P relations such as foreign words and proper names.

Correct pronunciations of foreign words and proper names may be important in a vari-

ety of deployed TTS applications (e.g. in smartphone voice interactions). In E2E-TTS

with grapheme-input, the G2P model is learnt implicitly from the text-audio pairs in

the training set. This thesis explores the performance of implicit G2P performance of

E2E-TTS models, with a particular focus on the pronunciation of words of difficult

G2P relations. The experiments are mostly conducted in English, but a small experi-

ment is also conducted with an E2E-TTS system in French.

Another recent trend in TTS is intelligibility evaluation by ASR transcription (e.g.

as in [20] and [4]). The reliability of using a text-transcription from an ASR system

has not previously been analysed in depth. Correlation scores were reported between

ASR WER and human transcription WER in [21] and with MOS scores in [22] which

indicated a high degree of reliability, but it was unknown whether ASR could reliably

rank TTS systems. Using evaluation data collected from 6 years of the Blizzard Chal-

lenge, a comparison is conducted between transcriptions by an E2E-ASR system and

the Challenge’s paid listeners, speech experts, online volunteers. The analysis pro-

ceeds to analyse the reliability of E2E-ASR transcription for words of difficult G2P

relations. These words are potentially error-prone for both E2E-TTS and E2E-ASR

with grapheme-input. Questions thus arise over the empirical fairness of comparing

pronunciations by E2E-TTS systems with grapheme- or phone-input with E2E-ASR.

Another perspective on the value of the pronunciation lexicon in English comes

from representation mixing in TTS [23]. By mixing grapheme- and phone-input, it be-

comes possible to specify pronunciations when needed at test time. To train a Tacotron-

like model with representation mixing requires phone labels for some of the training

data, but it remains unknown how much training data would need to be labelled for a

functional phone corrector at test time.

The rest of this chapter provides an overview of background literature, introducing
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topics and terms relevant to the reader. A description of the terms phone and phoneme

and their use in TTS is followed by a brief overview of how phonetic context is handled

in different TTS paradigms. Early work on grapheme-based TTS is analysed and the

use of S2S modelling in TTS leads to a discussion about the definition of E2E-TTS. A

brief overview of the experiments in this thesis then follows with a list of contributions.

1.2 Definitions

1.2.1 Phone and Phoneme

In this section relevant notions of the terms phone, phoneme and phonetic context will

be introduced alongside pronunciation modelling in different TTS paradigms. This

background information is provided as context to the reader before proceeding to anal-

yse the use of S2S modelling in TTS, particularly for the E2E-TTS paradigm.

The standards for the representation of speech sounds vary between phonetics,

phonology and speech processing for TTS. In phonetics, the most common repre-

sentation is the International Phonetic Alphabet (IPA) where speech sounds are cat-

egorised according to approximate configurations of the vocal tract. Consonant sounds

of the IPA are primarily described with voicing (voiced or voiceless), place of artic-

ulation (e.g. bilalbial, alveolar, velar) and manner of articulation (e.g. plosive, frica-

tive, approximant). The primary phonetic attributes for vowel sounds are lip-rounding

(rounded or unrounded), tongue height (high/close, to low/open) and tongue advance-

ment (forward, central or back). The IPA can also describe other phonetic attributes

including suprasegmentals (syllables, lexical stress), tone levels, tone contours and

more fine-grained detail with diacritics.

The IPA phoneset is applicable to all human languages and is a commonly-used

standard in phonetics and phonology. In TTS, ASCII encodings of phonesets were

originally used and these were typically language-specific. For instance, ARBAbet

contains phones of General American English (GAM), and SAMPA contains phones

for multiple European languages. X-SAMPA contains ASCII encodings for the entire

IPA [24]. With unicode-compatibility, the IPA may also be used directly for example in

multi-lingual grapheme-to-phoneme (G2P) modelling [25]. An approximate mapping

between phonesets employed in common TTS pronunciation lexica is presented in

Table 1.1. Unless stated otherwise, the IPA will be used to refer to pronunciations

throughout this thesis, but the TTS systems with phone-input in English used Unisyn
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IPA ARPAbet Unilex Combilex Keyword

ə AX @ @ COMMA
æ AE a a TRAP
ɑː AA aa A PALM
aɪ AY ai aI PRICE
b B b b BAT
ʧ CH ch tS CHAT
d D d d DAB
ð DH dh D THAT
ɛ EH e E DRESS
ɛɪ EY ei eI WAIST
f F f f FAT
g G g g GAP
h HH h h HAT
ɪ IH i I KIT
iː IY ii i FLEECE
ʤ JH jh dZ JAB
k K k k CAT
l L l l LAD
l̩ EL l= l= CATTLE
ɫ LW lw 5 FEEL
m M m m MAT
m̩ EM m= m= SPASM

IPA ARPAbet Unilex Combilex Keyword

n N n n NAP
n̩ EN n= n= GARDEN
ŋ NG ng N PANG
ɔɪ OY oi OI CHOICE
ɒ OH Q Q LOT
ɔː AO oo O THOUGHT
aʊ AW ow aU MOUTH
əʊ OW ou @U GOAT
p P p p PAT
ɹ R r r RAT
s S s s SAT
ʃ SH sh S SHAM
ɾ T t 4 BUTTER
θ TH th T MATH
ʊ UH u U FOOT
ʌ AH uh V STRUT
uː UW uu u GOOSE
v V v v VAT
w W w w WAG
y Y y j YAP
z Z z z ZAP
ʒ ZH zh Z BEIGE

Table 1.1: Approximate mapping between IPA, ARPAbet (used in the CMU Pronounc-

ing Dictionary or CMUdict) and extensions of SAMPA used in Unisyn and Combilex.

Keyword metaphonemes do not map directly to IPA phones since their pronunciation

changes depending on dialect. The characters in bold under keywords in this table

map to Received Pronunciation (RP).

and Combilex for word pronunciations.

The term phone may generally denote a segmental speech sound according to an

articulatory description such as in the phonesets above. However, these phones overlie

a continuous signal, and thus only approximate phonetic realisations. Details may

be added in narrow IPA transcriptions to encompass co-articulation (e.g. assimilation),

syllabic, or stress information. Nevertheless, ultimately phones are constrained in their

description of speech gestures.

When uttered within a language, a phone may be interpreted as one of the lan-

guage’s phonemes. Phonemes describe meaningful speech sounds which determine the

minimal pairs of a word. For instance the words path and bath are meaningfully distin-

guished by the minimal pair of phonemes: /p/ and /b/. Multiple phonetic realisations

may be possible however: for instance the vowel in bath or path may be realised as [A]
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or [a] according to the accent of a speaker. In different accents the concept of phoneme

may be different. Beyond accent (or geographic/social stratification), phone sounds

may also vary according to the surrounding phonetic context (e.g. assimilation), the

speech speed (e.g. elision), the interlocutor (e.g. speech convergence/divergence [26]),

or a combination of these factors.

Due to the many possible phonetic realisations of phones, the subtleties between

the terms phone and phoneme are complicated. More insight may be gained (in the

case of co-articulation) by considering speech sounds as gestures under an Articula-

tory Phonology approach driven by instrumental methods [27]. Although discrete units

only coarsely approximate a phonetic realisation, traditionally in TTS phones are typ-

ically used as an intermediary between text-input and an acoustic signal. The phonetic

context is then typically learnt from the acoustic signal with the use of features ex-

tracted from input text or by encoding an input sequence of characters (text or phones)

in an embedding. How phonetic context is handled in TTS depends on the method of

acoustic modelling and vocoding which will be covered below.

In Speech Technology the terms phone and phoneme are often mis-used without

consideration for the implied subtleties in their use. In [28], the authors analysed

the use of the term phoneme in papers accepted to the 2018 Interspeech conference.

While 34% of papers contained the word phoneme, only 2% gave a definition and

40% misused the term. The authors recommended researchers use the term phone

unless specifically providing a definition of a phoneme. While phonesets can be used

to store contrastive pronunciations of words in a lexicon, lexicon transcriptions for

TTS are usually phonetic at the surface-level of a particular accent (e.g. GAM or RP).

Furthermore, although TTS models presented do learn phonetic context implicitly, the

phones are still used primarily as a phonetic intermediary between text and a TTS

acoustic model. Hence, the term phone will be used throughout this thesis where

other works may refer to phoneme, or where in a strict sense the term phoneme could

correctly be used2.

In TTS, the pronunciation in output speech depends on how phone sounds are

realised in context. In the following sections, methods used in TTS for dealing with

phone sounds in different contexts are briefly introduced. First, the phone symbols

themselves may implicitly store knowledge about variation depending on character

2A parallel could be drawn with the terms graph and grapheme. In TTS and ASR, the term grapheme
usually refers to text as it is written in a language (that may also be normalised) rather than to a nuanced
distinction from the term graph. Besides the introduction reviewing grapheme-based TTS and ASR, the
term text is instead generally used to contrast to the term phone throughout the thesis.
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Keyword Metaphone RP GAM Examples

MAZDA aA a [æ] A [A]
Mario

pasta

BANANA Aa A [A] a [æ]
Nevada

calve

TRAP a a [æ] a [æ]
Ascot

Langton

PALM A A [A] A [A]
Chicago

Grenada

Table 1.2: Example Combilex keyword metaphonemes and their differing realisations

in two surface-form accents. Square brackets denote IPA, and all others are Combilex

symbols (X-SAMPA).

contexts as with metaphonemes.

1.2.2 Metaphoneme

Dialect variation may be modelled using phoneme-2-phoneme (P2P) transformations

across accents [29]–[31]. These approaches typically rely on transforming phones

from one accent or dialect to another. However, at a deeper level phonetic varia-

tion based on speaker accent in English may be recorded with keyword phonology.

Described in [32] and adopted to Unisyn in [33], [34], keyword pronunciation lex-

ica employ an underlying baseform lexicon where word pronunciations are stored in

metaphonemes which can then be transformed to surface-form accents.

A metaphoneme is denoted by a representative keyword. Looking at Table 1.2, it is

said that the ‘the MAZDA vowel’ refers to the metaphoneme ‘aA’. Words containing

the MAZDA vowel, such as Mario and pasta, are transformed to [æ] in RP and to [A]

in GAM. Note that the transformations are not identical for the MAZDA, BANANA,

TRAP and PALM vowels. Importantly, these denote distinct sets of vowels which have

differing transformations in the RP and GAM accents. For instance the transformation

is reversed for the BANANA vowel with [A] in RP and to [æ] in GAM.

Word entries in the baseform lexicon are written in metaphonemes. Metaphonemes

abstract away from phonetic realisations of keywords observed across different ac-
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cents. From metaphonemes, context-dependent transformation rules are used to create

new surface-form lexica in different accents. Creating a lexicon this way aimed to

avoid the effort that would be incurred by building/maintaining separate lexica for dif-

ferent accents. However, writing metaphone-to-phone transformations may require

specialist knowledge of a given target accent which is still laborious even if more effi-

cient than building new lexica from scratch.

Usually, speech recordings used in single-speaker TTS have a GAM accent (e.g.

LJ Speech or Nancy - see Table 2.1) for which surface-form phones are readily avail-

able in open sourced tools such as the CMUdict. The pronunciation corresponding to

surface-form phones will depend on how a TTS system models phone sounds in con-

text. Phonetic context in acoustic modelling varies depending on the TTS paradigm in

question (see Section 1.2.3 below).

Important to note however is that metaphonemes store variation which cannot be

learnt from the surrounding phonetic context alone (such as the knowledge of the dif-

fering transformations of the MAZDA and BANANA vowels above). In this thesis,

further examples where pronunciations may not be predictable from surrounding pho-

netic or character context will also be analysed.

1.2.3 Phonetic Context in Acoustic Modelling

Phones are limited in the phonetic detail they describe in speech signals. As discrete

symbolic representations they do not describe co-articulation - especially the simple

phonesets used in TTS. For example the pronunciation of handbag may vary: the

voiced alveolar plosive /d/ can be deleted and the voiced alveolar nasal /n/ often as-

similates the bilabial place of articulation of the following phoneme /b/: [hæmbæg].

While some phonetic variation based on context can be designed into a pronunciation

lexicon (see Section 1.2.2 above), phonetic variation based on context is typically miss-

ing from the phonestrings in a pronunciation lexicon in TTS. Instead, phonetic context

is handled in different ways depending on the TTS pipeline employed as will be ex-

plained below. Figure 1.3 presents a diagram of how phonetic contexts are handled in

unit selection, HMM-TTS, DNN-TTS and E2E-TTS.

1.2.3.1 Unit Selection

In unit selection for instance, the units of natural speech from a database are con-

catenated together. The unit of choice spans an arbitrary length that typically crosses
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phone boundaries (diphones, triphones or quinphones). The span of the unit, the selec-

tion of appropriate units and the minimisation of join mismatches together determine

the audio output that represent phonetic contexts in unit selection. The Independent

Feature Formulation (IFF - [35]) labels units with linguistic metadata such as neigh-

bouring phones, syllabic, word and phrasal information, and POS tags. These labels

come from a series of modules collectively known as the front-end. The IFF may

be used to calculate the target cost of candidate units. The join cost would minimise

audible artefacts between units by measuring mismatches in F0, energy and spectral

mismatch. The acoustic space formulation (ASF) selects units according to acoustic

similarity. Phonetic context in unit selection is thus handled by supplemental linguistic

and or acoustic analysis which drives retrieval and concatenation of units. The acoustic

realisation of handbag would depend on the span of the unit (e.g. diphone), processes

of unit retrieval, concatenation and smoothing.

1.2.3.2 Phonetic Context in SPSS

In statistical parametric speech synthesis (SPSS), acoustic models predict vocoder pa-

rameters given contextual linguistic features. HMM-TTS employs the front-end to

provide questions in a decision tree. The leaves of the decision tree map the linguis-

tic contexts to an acoustic space to generate the speech parameters fed to acoustic/

duration models and a vocoder.

However, decision trees are ultimately limited. The number of definable contexts

becomes exponential and no amount of training data could comprehensively provide a

mapping between the linguistic features and the acoustic parameters [36]. DNN-TTS

employs feed forward (and later recurrent) neural networks to learn a distributed repre-

sentation of contextual features from frame-wise one-hot vectors which are embedded

into a high-dimensional space. The distributed representation within DNNs replaces

the feature extraction of decision trees.

In SPSS thus, the pronunciation of handbag in context is learnt via regression of

defined linguistic contexts and speech parameters. The linguistic contexts are once

again provided by the TTS front-end. In [8], the most important features in DNN-TTS

were investigated. Based on results in [37] and [38], these features are listed in Table

1.3.

With the adoption of S2S models in acoustic modelling, work towards E2E-TTS

replaced explicit context features with character sequences [3]. Importantly, the im-

plicit learning of context raises the question of how front-end analysis is conducted
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HMM-TTS

Is previous phone [ð]?

Is current phone 
nucleus?

Yes No

Yes No

Yes
No

……

… …

DNN-TTS:

ð ɪ s …

ɪ s ɪ …

Database

ð - ɪ

ð - ɪ

ð - ɪ

Target Cost

0.2

0.1

0.3

Unit Selection 

Join Cost DNN

HMM

Vocoder

Maximum Likelihood 
Parameter Generation

Vocoder

Frame-wise 
Context Vectors

Decision Tree 

0.3

0.2

0.2

Viterbi Search/Concatenation

Smoothing

E2E-TTS:

Characters

t h i … 

Graphemes

ð ɪ … 

Phones

Encoder-Decoder with Implicit Duration

Waveform

Database

ð - ɪ

… 

ð - ɪ

Previous unit: sil-ð
Current unit ð - ɪ

Next unit: ɪ - s
…

Previous unit: z-ð
Current unit ð - ɪ

Next unit: ɪ - k
…

Acoustic Parameters

Vocoder

Mel Spectrogram

…

<s> This <> is <> a <> sentence <e> 

Previous phone = [ð]
Current phone = [ɪ]

Next phone = [s]
Position of phone in syllable = nucleus
Name of vowel of current syllable = [ɪ]

Current POS tag = Pronoun
…

Abstract Metaphoneme Pronunciation:

D i s i z @ …

Front-End

[ð ɪ s I z ə …]

Metaphoneme-to-Surface 
Form Phone Transformation:

Lexicon/ G2P

This is a sentence

Text Normalisation

Figure 1.1: Diagram of phonetic context features in different TTS paradigms. The front-

end provides context features for unit selection, HMM-TTS and DNN-TTS. E2E-TTS

takes graphemes, phones or a mixture as input usually without additional features.
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Linguistic Level Feature in unit selection Important Feature in SPSS

Phonetic Context - Left/right phonetic contexts - Previous, current and next phone identities

Syllable - Position in syllable (initial, medial, final and inter-word) - Whether current syllable is stressed or not

- Name of vowel in current syllable

Word - Position in word (initial, medial, final and inter-word) - Position of current syllable in word

- Stress is correct

POS - POS is correct - POS of current word

Phrase - Position in phrase \\(initial, medial or final)\end{tabular} n.a

Table 1.3: Context Features in Multisyn (unit selection [39]) and the most important

features in SPSS. In Multisyn, each context feature receives a weight in the calculation

of the target cost. The features are applied to units such as diphones. The features

presented for SPSS are a subset calculated to be the most beneficial in [37]. The

subset of important features are referenced in Section 1.5.1 when discussing context

feature learning in E2E-TTS from an analysis in [8]. A comprehensive set of context

features used in SPSS is provided in [40].

and whether text-input may be used instead of complex analyses in the front-end. In

the next section, grapheme-based TTS in traditional TTS paradigms will be covered

before introducing S2S models and analysing implicit phonetic context learning in

E2E-TTS.

1.3 Grapheme-based TTS

Traditionally, the modules of the front-end have required expert linguistic knowledge

to label text-input at different linguistic levels (as shown in Figure 1.3). The cost of

front-end processing is considerable, especially to build text-normalisation rules and a

pronunciation lexicon. For low resource languages, the required expertise for front-end

processing may not exist or arguably may not be necessary with a regularly phonetic

orthography. The constraints to create linguistic resources motivated research into

grapheme-based TTS.

The first use of grapheme-based TTS in a unit selection system was [10]. A unit-

selection system was also used in [11]. Grapheme-based TTS was also explored for

decision-tree/HMM-TTS for English in [12], for Spanish in [13] and for 12 languages

in [14]. Importantly, surrounding context still needed to be defined for unit selection

and HMM-based TTS. In these works, grapheme-based systems underperformed their

counterparts that used phones and contextual features.

In [11], the intelligibility of using graphemes in unit selection was improved by
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naively expanding grapheme-models to tri-grapheme models. In the works with HMMs,

intelligibility was lower in English and Spanish. In Spanish, the system had difficul-

ties learning two-letter-to-one phone mapping. For example the letter h in Spanish is

usually silent but was confused with [tS] as in words like churro. Monosyllabic words

were also frequently omitted such as hay, un and la. However, it was also found that

the gap in intelligibility between grapheme- and phone-input narrowed from 12% to

8% on Spanish Harvard test stimuli when training data was increased from 1 to 5 hours.

Nevertheless, all phone-based systems (including those trained on 1 hour of data) per-

formed with a WER of 4% or below. In English, larger gaps in performance were

observed. For instance the best performing grapheme-based system in [12] scored

42% WER compared to 25% from the phone-based system.

In [14], grapheme-based HMM baselines (built with clustergen [41]) in 12 lan-

guages were compared with phone-based systems employing a universal phonetic tran-

scription method known as Unitran [42]. In the results, there was a clear preference

for systems with Unitran or linguistic knowledge (including phones where available)

over the grapheme-based baselines. However to what extent are word pronunciations

improved in grapheme-based TTS with the contextual learning benefits of S2S models

trained on larger amounts of data?

1.3.1 Grapheme-based ASR

In ASR, it was observed that grapheme-based HMM systems performed with very

similar WERs to phone-based equivalents when increasing the amount of data to 1200

hours in [43], and these results have been echoed with S2S models with even less

data. With the 300 hour Switchboard corpus in [18] the performance of the grapheme-

based system was only negligibly below the phone-based system. With the 960 hour

Librispeech dataset the grapheme-based system outperformed the phone-based sys-

tem in terms of WER on the clean and other test sets. These findings were corrobo-

rated in [19], and similar findings were shown when approximately 12,500 hours of

speech were used to train models in [17]. Given the similarity in WER performance in

ASR models with grapheme- and phone-input, it is natural to ask to what extent does

grapheme- or phone-input matter for S2S TTS acoustic models?

More broadly, S2S models can simplify text normalisation and G2P modelling to

enable E2E-TTS from raw text characters. Thus in the next section S2S modelling

for modules in the TTS pipeline will be reviewed to cover how necessary linguistic
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analyses are in TTS in English given the advances of deep learning with large amounts

of data.

1.4 Sequence-to-Sequence Modelling

In recent years, a large amount of research has studied the application of S2S models in

TTS, as in related fields such as ASR, Natural Language Processing (NLP), Machine

Translation (MT). Simultaneously, research has sought to simplify the TTS pipeline

towards E2E-TTS. In this section, the use of deep learning in front-end modules and

acoustic modelling will be reviewed.

1.4.1 The Front-End

The TTS front-end consists of a pipeline to normalise input text and generate a linguis-

tic specification for use by duration, acoustic, prosody and vocoder models. Modules

in the front-end pipeline for English typically include tokenisation, non-standard word

disambiguation, part-of-speech (POS) tagging, a pronunciation lexicon, letter-to-sound

(LTS) or G2P prediction for out-of-vocabulary (OOV) words and post-lexical process-

ing.

Traditionally, each module requires a separate processing step. Since a key topic in

E2E-TTS for this thesis is the question between grapheme- or phone-input, here text

normalisation (also known as TN) and G2P modelling will be reviewed specifically.

1.4.1.1 Text Normalistion: Tokenization and Verbalisation

Tokenisation classifies tokens of text-input. Examples of token classes include: ordi-

nary words, punctuation, individual or unknown characters (such as emojis) and non-

standard semiotic classes or words. Non-standard semiotic classes or words (some-

times known as NSWs) include measures (km, cm), currency symbols ($, £, dates (of

varying forms: d/mm/yyyy, m/dd/yy) ordinal numbers (1st, 2nd, etc), cardinal numbers

(one, two), fractions, times, telephone numbers and addresses.

After classification the tokens are verbalised. Verbalisation uses language-specific

rules to disambiguate and expand identified tokens into a spoken form - see [44] or

[45] for more information. Manual creation of rules for tokenisation - especially of

non-standard classes - makes front-end development an expensive process.
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Tokenization and verbalisation can be treated as a neural machine translation (NMT)

task where the source is unnormalised text and the target normalised text or phones in

a spoken form. In [9], the authors used recurrent neural networks (RNNs), observ-

ing high accuracy but unacceptable errors for TTS in deployment. The authors ran

a Kaggle challenge to improve RNN-based text normalisation and avoid the errors in

English, Polish and Russian. Since this time, proposals to improve neural text normal-

isation with S2S models have included convolutional neural networks (CNNs) [46],

[47] and transformers [48] for faster training and inference. In [49], the authors pro-

posed decomposition of input text into subword units and additional linguistic features

derivable from text-input.

In Mandarin, text normalisation is also an important task. Word segmentation iden-

tifies logographs in context to meaningfully disambiguate words into a spoken form

[50]–[52]. In [53], the authors proposed a hybrid approach leveraging multi-head self-

attention with hand-written text normalisation rules. S2S models have also been pro-

posed to jointly perform front-end tasks in Mandarin such as polyphone disambigua-

tion, POS tagging and prosody prediction [54] and in 19 languages in [55]. However,

in the results of the Text Normalisation with RNNs challenge, the best performing sys-

tems still heavily relied on manual rules [56]. Text normalisation using S2S models

still produce irrecoverable errors which post-filters cannot fix such as transcribing but

as Sunday [48].

Another obstacle in their deployment is the amount of labelled data needed to per-

form supervised learning for new languages. A large public dataset exists for English

(approximately 3.6GB released for the aforementioned challenge [57]), but labelling

data for text normalisation is an expensive process. In [58], the authors proposed to

perform S2S text normalisation with less labelled data using a granular tokenisation

method. Prior to S2S modelling, an unsupervised approach to front-end processing

was proposed in [59]. Tools dedicated to unsupervised text normalisation were also

developed during the Simple4all project [60].

Text normalisation with at least some manual rules is the most reliable approach in

practice. Recent work has thus sought to productively extract relevant tokenisation and

verbalisation rules from speakers of low-resource languages. In [61], the authors build

finite state transducer (FST) grammars for Bangla, Khmer, Nepali, Javanese, Sinhala

and provide advice for working with linguists. Text normalisation for Burmese was

also created in [62]. A rapid identification and creation of FST-rules for new languages

using a template-based questionnaire was also proposed in [63]. The reliance of text
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normalisation on manual rules poses an obstacle for E2E-TTS from raw-text input.

Research on E2E-TTS acoustic modelling usually employs pre-normalised text.

1.4.1.2 Lexicon and G2P

After the verbalisation of input text, a phonetic representation is usually predicted.

Word pronunciations are stored in a lexicon if they are available or predicted from a

G2P model if the words are out-of-vocabulary (OOV - missing from the lexicon).

Inconveniently, manual creation of a pronunciation lexicon is laborious and expen-

sive. Aside from accurate phone strings (potentially in multiple accents), pronuncia-

tion lexica may also contain more linguistic metadata stored as fields in a database.

Unisyn and Combilex contain metaphonemes, syllabic and morphological boundaries,

POS tags and lexical stress for word entries. Due to the finite nature of pronunciation

lexica, a G2P model is always necessary for TTS in deployment.

G2P can be rule-based (LTS) or data-driven. Rule-based LTS typically encodes

rules in an FST with an accompanying exception list. Data driven G2P by contrast

aims to learn the regular pronunciation rules of a language from examples in a lexicon.

As outlined in [64], two key aims of data-driven G2P are lexicon compression (learn-

ing from as small and as regular a lexicon as possible) and generalisation (predicing

pronunciations for unseen words). Compression and generalisation are particularly

difficult in English due to its complex LTS rules (see Figure 2.2).

Data-driven methods for G2P include local classification (or 1-to-N alignments typ-

ically with decision trees - [65]–[71]), pronunciation by analogy [72]–[75] and joint-

sequence models [76], [77]. The approach employed in the commonly used Sequitur

package [78] is based on joint-sequence models where aligned graphemes and phones

are learnt as joint tokens or graphones [64]. Proposed improvements to graphone mod-

els with language model rescoring include [79] and [80]. For more information on data

driven G2P methods prior to S2S modelling, see [64].

S2S models applied to G2P include RNNs with long short term memory (LSTM)

units3 [81], [82], CNNs [83], [84] and the transformer [85]. Augmenting S2S G2P

model with analogy information from a lexicon was proposed in [86]. In [87], syllable

boundaries and stress markers were jointly predicted in an RNN, where improvements

in G2P prediction were found for some languages. Neural models have also been

3Note, the meaning of unit here is a cell in a neural network. This is different from the meaning
of unit in unit selection which refers to an audio sample that spans an arbitrary length of phone sounds
(e.g. diphone, triphone or quinphone). A separate meaning of unit is also used in Section 3.3 where it
refers to either words or morphemes.
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applied to multilingual G2P [25], [88], [89] which was the subject of the 2020 and

2021 SIGMORPHON challenge [90].

1.4.1.3 Pronunciation of Proper Names and Foreign Words

Despite advances in G2P with S2S modelling, pronunciation of proper names and

words of foreign origin remain a challenge. Learning word pronunciations for proper

names and foreign words has typically focused on G2P for ASR [91]–[94]. Early

work on G2P for names employed language origin information - as in [95], [96]. Ap-

proaches where pronunciations are gathered via online users include [97] and through

Crowdsourcing in [98]. The use of an ASR acoustic model has been investigated to

improve the recognition of names with Google voice search [99]–[101]. It is not clear

how reliable these methods could be for correct word pronunciations in TTS. A similar

area of research on the pronunciation of names is nativization [102], [103]. Foreign

words (including names) may possess G2P relations not typically used in a language.

Nativization is the adoption or adaption of foreign G2P relations into a the native lan-

guage of a TTS system.

1.4.2 Acoustic Modelling

A general development of TTS acoustic models in recent years is presented in Figure

1.2. As mentioned above, two key approaches to acoustic modelling in TTS are unit

selection or SPSS. Both of these approaches make use of front-end text analysis. In unit

selection, concatenation of candidate units generate a waveform. Units are selected

either according to an IFF where linguistic features specify similarity of candidate

units, or according to an acoustic similarity under an ASF. IFF features include phones

(and phonetic class information - manner, place, voicing etc), syllabic, stress and POS

tag information. The ASF includes features such as F0, spectral energy or amplitude,

and spectral mismatch. In [104], 10 years of TTS systems up to 2014 were analysed

with the author concluding unit selection systems were more natural and SPSS systems

were more intelligible but robotic. The ASF employed models used in SPSS, which led

to a cross-over known as hybrid TTS. Examples of these include unit selection driven

by DNNs [105] and S2S models [106].

RNNs with LSTM units were first proposed as S2S models for SPSS in works such

as [107], [108]. These can still be considered an extension of DNN-TTS since they use

aligned linguistic context features as input. In [3], it was shown that the use of a phone
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Unit Selection

SPSS

Deep Learning
Hybrid

End-to-End

Independent Feature 
Formulation (IFF) Acoustic Space 

Formulation (ASF)

HMM-based TTS 

DNN-based TTS

S2S-based TTS

Figure 1.2: Paradigm shifts in TTS from unit selection to E2E-TTS.

character sequence (the learned text encoder) instead of linguistic context features

improved naturalness. An input sequence of characters is an attribute of E2E-TTS,

described further below.

1.5 E2E-TTS

E2E-TTS was first defined in [109]:

“The term “end-to-end” means that text analysis and acoustic modelling are accom-

plished together by an attention-based recurrent network, which has the capacity to

learn the relevant contextual factors embedded in the text sequence.” - [109, p.1]

Whereas in (feedforward) DNNs, context is provided by a frame-wise vector of con-

textual linguistic features, S2S models learn a contextual representation from an input

sequence of characters. Whereas in DNN-TTS the duration of a phone was modelled

determined by a Viterb-based aligner, in [109] (also known as the "attention-based

recurrent sequence transducer" - ARST), the HMM aligner drove a neural attention

mechanism of an LSTM acoustic model.
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(a) A taxonomy of neural TTS.
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(b) The data flows from text to waveform.

Figure 3: A taxonomy of neural TTS from the perspectives of key components and data flows.

5

Figure 1.3: Pipelines of E2E-TTS from [110]. Traditionally the front-end predicts linguis-

tic features and an acoustic model predicts vocoder parameters which are used by a

vocoder to produce a waveform. In E2E-TTS, the front-end normalises input text and

may also predict phones. In Tacotron the acoustic model predicted a linear spectro-

gram, but Tacotron 2 and Deep Voice 3 [111] (and DC-TTS [112] used in Chapter 2)

predict a mel spectrogram which is then converted to a waveform via neural vocoders

such as WaveRNN ([113] used in Chapter 3), WaveGlow [114], FloWaveNet [115], Mel-

GAN [116], Parallel WaveGAN [117], HIFI-GAN [118], DiffWave [119] and WaveGrad

[120]. Since these can be trained on predicted mel spectrograms from an acoustic

model, they can be considered E2E-TTS despite separate training of the vocoders. The

only fully E2E-TTS compatible models (that run from characters to waveform) without

separate training are FastSpeech 2s [121], EATS [20], Wave-Tacotron [4], Efficient-TTS

[122] and VITS [123], since Char2Wav [1], Clarinet [124] require extra steps in training.

In this thesis, when S2S acoustic models use graphemes/text-input they will be referred

to as E2E-TTS despite the use of Griffin-Lim or vocoder to obtain waveforms. Some

neural vocoders can produce a waveform from linguistic features such as WaveNet

[125], WaveRNN [113], Parallel WaveNet [126] and GAN-TTS [127] but the reliance

of features precludes this pipeline from the classs of E2E models. The STRAIGHT

and WORLD and LPCNET vocoders [128]–[130] were used in HMM-based and DNN-

based pipelines, using acoustic parameters to model a waveform. In this thesis, when

S2S acoustic models use graphemes/text-input they will be referred to as E2E-TTS de-

spite the use of a vocoder to obtain waveforms. This figure has been reproduced with

permission from the original authors.
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The Char2Wav [1] system proposed an E2E system using text-input (without a

front-end) with an attention-based S2S acoustic model. The aligner was also replaced

by attention in Tacotron [2], which predicted a spectrogram. Figure 1.3 describes the

aim of E2E-TTS with Tacotron in more detail. One of the key aims of E2E-TTS

outlined in early works was to replace the lexicon and G2P model with an encoder.

E2E-TTS has since employed a variety of architectures. In summary, some trends

in E2E-TTS have included the adoption of CNNs [7], [111], [112] and transform-

ers [131]; the replacement of autoregressive decoding with multi-head attention or

depthwise convolutions [132] for faster decoding; the replacement of brittle soft at-

tention mechanisms with hard monotonic attentions [16], [133]; the replacement of

attention with alternative, implicit duration models such as VAE [134]; unsupervised

duration models [135] for expressive or controllable TTS, also with pre-trainined lan-

guage model embeddings such as BERT [136], [137]; multi-speaker TTS [138], [139];

multi-lingual TTS and cross language voice cloning [140], [141]; low-resource TTS

[142] and streaming, or real-time TTS [143]–[146]. For a wide-randing survey on

neural models in TTS see [110]. For a review of deep learning in E2E-TTS see [121].

Arranging the large number of works on TTS with deep learning in recent years

is not straightforward. According to [110], alternative taxonomies for the work on

neural TTS include autoregressive v non-autoregressive, generative model types (S2S,

Flow, GAN, VAE) and network structure (CNN, RNN, self-attention and hybrid). See

Section 2.6 of [110] for more details.

Given the variety of work and approaches, the definition of E2E-TTS has become

ambiguous and multi-faceted. Early-on, it was proposed in [147] that the use of neural

sequence models for each stage of the SPSS TTS pipeline was E2E (a pipeline of indi-

vidually trained networks e.g. a S2S G2P model, a S2S text-encoder, a S2S vocoder).

However, E2E-TTS usually implies a pipeline that does not require training of sepa-

rate modules. Some early key attributes of E2E-TTS included the use of: 1) raw text/

minimal normalised text, 2) S2S encoder-decoder models with attention, 3) implicit

vocoding. Over-time the attention mechanism in point 2) was shown to be redundant

[3] and could lead to unrobust acoustic modelling. The E2E-TTS attribute of an atten-

tion mechanism could more broadly be understood as a method for implicit duration

modelling as in [135]. In this thesis, DC-TTS and Tacotron are used which employ a

CNN and a CBHG encoder respectively to predict mel spectrograms. The mel spectro-

grams are then converted to waveforms with neural vocoders. These neural vocoders

must be trained separately from the text encoders. This contrasts to the class of E2E-
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Figure 3: Visualization of Tacotron’s embeddings at the encoder. Top-left: every embedding with a color per grapheme. Top-right:
highlights “n” graphemes. Bottom-left: highlights “u” grapheme. Bottom-right: punctuation.

Table 2: Phoneme Error Rate [%] of G2P models learned from
Tacotron’s embedded representations or raw graphemes.

Raw graphemes Tacotron embeddings
Train set 19.3 12.8
Dev set 30.2 16.4

tracted from data unseen during the training of the Tacotron
model are slightly less related to phonemes. In the case of the
model trained on raw graphemes, the PER increases substan-
tially. The high gap in precision between the two models trained
on the dev set leads to an interesting use case: Tacotron’s em-
bedded representations might be used to train G2P models for
low-resource languages. We will investigate this in our future
work.

4.3. Phoneme Control in Grapheme based Tacotron

Contextual grapheme embeddings encode phoneme informa-
tion, so they should be usable to control the pronunciation of
synthesized speech. As a proof of concept, we extracted the
contextual grapheme embedding sequences of two sentences
and switched the embedding of a “b” grapheme in the first sen-
tence by that of an “m” grapheme in the second sentence be-
fore resuming synthesis. When the context of the “m” and “b”
graphemes are similar, the synthesized phoneme is recognized
as /m/ instead of /b/. When the contexts are largely dissimilar,
listeners are unsure about the synthesized phoneme. Further
work needs to be done to investigate the use of grapheme em-
beddings for phonemic control. Synthesized samples are avail-
able on the listening page.

5. Conclusions

We trained a Tacotron model directly on graphemes rather than
phonemes and showed that in the case of a well-curated French
dataset, the system performs similarly to a system trained on
phonemes. Such a system embeds graphemes in a way that
encodes phoneme information. Thus, Tacotron’s embedded
grapheme representations might be used for a wide variety of
applications such as grapheme-to-phoneme or control of the
synthesized pronunciation.

In this work, we focused on the French language. We be-
lieve our analysis should hold true for other alphabet-based
languages such as English. Indeed, neither language have a
phonemic orthography, ie the mapping between grapheme and
phoneme is not one-to-one. However, the consistency of orthog-
raphy varies between languages. For exemple, French’s orthog-
raphy is more consistent than English, but less consistent than
German [16]. Thus, future works should evaluate the impact of
a language’s orthography consistency on our findings.

Our future work will also include more detailed investiga-
tions of phoneme control in grapheme-based Tacotron.
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Figure 1.4: T-SNE visualisation of grapheme ’n’ in Tacotron trained on French data

from [5]. The authors highlighted the embeddings of the grapheme in red and reported

clustering of different nasal phone identities depending on context. However, clustering

of grapheme-contexts does not indicate that pronunciations of words - especially words

with unusual G2P relations - are robustly modelled.

TTS models which convert directly from text to waveform (which will be referred to

as single-stage or fully E2E-TTS). The difference is illustrated in Figure 1.3

1.5.1 Phonetic Context in E2E-TTS

A key difficulty when working with neural networks is the black-box which makes

interpretability of learnt knowledge more difficult than when using the IFF in unit

selection or decision trees in SPSS. The replacement of contextual features in a feed-

forward DNN with a S2S text-encoder consuming a character sequence was observed

to lead to significant improvements in naturalness in [3]. However, questions still re-

main when using only character sequences. How much phonetic context is implicitly

learnt? Should the character sequence be composed of graphemes or phones?

The first question was tackled in [8], where the embeddings of a Deep Voice 3

system were treated as a pre-trained model for a classification task of the most im-

portant linguistic context features in Figure 1.3. The E2E-TTS model was trained on

phone-input from a G2P model using the ARPAbet. The classification task involved

predicting each feature given the input.
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The accuracy of classification of previous, current and next phonemes was 73.1%,

84% and 67.1% respectively. While overall these are high classification scores, it was

noted that accuracy was particularly difficult for vowel identities which vary a lot in

English depending on context and stress. However, when predicting POS-tags, words

spelt similarly would be confused (such as wood as a noun and wooden as an adjective).

This suggests that E2E-TTS models may not be learning a deep linguistic structure of

language.

Another work which has attempted to understand phonetic contexts in E2E-TTS is

[5]. The authors used t-SNE [148] to observe embeddings of input graphemes, finding

that they mapped to different acoustic spaces depending on the grapheme context. For

example the grapheme n in French is [œ̃] in a word like un but [Ã] in word like banque.

This visualisation demonstrates phonetic contexts can be learnt in E2E-TTS. However,

obtaining a correct word pronunciation may require deeper knowledge than is possible

in sentence level text-audio pairs. A G2P model whether implicit (using text-input) or

explicit (trained separately to predict phones) may be insufficient for TTS in deploy-

ment. This point will be argued in further detail throughout this thesis.

1.5.2 Grapheme- or Phone-input for E2E-TTS?

Early work on E2E-TTS (e.g. Tacotron [2]) claimed that the lexicon as well as the

G2P model could be replaced by a neural text encoder. Word pronunciations are then

modelled using only the data available in the training data. This approach does not

use a pronunciation lexicon, which bypasses a considerable cost in building front-end

resources for TTS in new languages. This approach to TTS is part of a more general

trend in speech processing to move away from manual resources for tasks such as text

normalisation and acoustic modelling in ASR: where the relationship between input

and output sequences can be learnt with a character representation of either text or

phones.

The use of a front-end in traditional paradigms of TTS would include text normal-

isation before phonetisation. In a strict sense, E2E-TTS should use (unnormalised)

text-input but to date, text-input in E2E-TTS models still use some form of normalised

text-input. The first Tacotron paper [2] employed normalised text-input to an encoder

(see 1.5). The authors noted that some text normalisation was necessary but that neural

text normalisation as in [9] could simplify the process. Importantly for E2E-TTS how-

ever: reliable text normalisation is not simple to build. Text normalisation with S2S
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models require labelling a large amount of non-standard words and the models still

make unacceptable and irrecoverable errors [48]. S2S text normalisation also requires

explicit training. At the time of writing, subsequent Tacotron papers (including the

most recent [4], [149]) still employ Google’s proprietary text normalisation which is

reliant upon manual rules. Text normalisation therefore presents a challenge to build-

ing fully E2E-TTS systems.

If phone-input is employed in E2E-TTS, the quality of phone-labels are often un-

known. For instance, the rule-based LTS module from E-speak [150] and online S2S-

based G2P models found on GitHub [151], [152] are commonly used for the E2E-TTS

voice building recipes in the collaborative ESPnet-TTS [153] toolkit. In English, the

use of phones in E2E-TTS therefore implies G2P predictions rather than gold-standard

labels from a lexicon. This thesis compares the pronunciation of E2E-TTS to gold-

standard phone labels, to understand whether there is still a benefit to using a pronun-

ciation lexicon for phone-strings instead of a G2P model.

1.6 Thesis Layout

The starting point in Chapter 2 is to measure the quality of G2P models trained with

only the words contained in E2E-TTS datasets. The chapter proceeds to evaluate the

pronunciation of words with difficult G2P relations and the quality of grapheme-input

to an early E2E-TTS system based on CNNs: DC-TTS.

Following the observation that pronunciations in DC-TTS made generalisation er-

rors with words that contain difficult-to-model G2P relations4, in Chapter 3 the use

of morphological boundaries (which offer an augmentation to phones) is examined to

improve pronunciation modelling. In the results, it is found that the pronunciations

of some words require more knowledge than can be learnt from surrounding context

when using text-input. This is explored further with an evaluation of implicit pronun-

ciation modelling in French with more examples of difficult G2P relations and liaison.

These experiments are conducted with an implementation of Tacotron.

In Chapter 4 the thesis analyses another recent trend in TTS: the use of E2E-ASR

as a proxy metric of intelligibility. The chapter begins with a re-evaluation of 6 years

of results from the Blizzard Challenge to inform of the reliability of this approach in

4What is meant by these words will become clear in Section 2.5.2. Briefly, they are a set of words
that were mispronounced by a S2S-G2P model. These will usually be referred to as words of difficult
G2P relations, difficult G2P words or G2P error words. In Chapters 4 and 5 the set of words is known
as Out-LJ.
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ranking the relative performance of TTS systems. Since pronunciation evaluation in

preceding chapters are on a small-scale and subjective, the reliability of E2E-ASR tran-

scription for difficult G2P words is also investigated. Since E2E-ASR only provides

grapheme-based transcription, an in-depth analysis is conducted to explore whether

this form of transcription can be appropriate to evaluate pronunciation modelling in

grapheme- or phone-input to E2E-TTS.

The use of grapheme- and phone-input is investigated further in E2E-TTS with an

experiment in representation mixing in Chapter 5. The idea behind representation mix-

ing is to use phones as an alternative to graphemes when the latter presents ambiguous

G2P relations. Varying amounts of training data are phonetised in an attempt to find the

smallest pronunciation lexicon necessary to enable pronunciation correction. Results

from a small-scale subjective listening test are compared with E2E-ASR transcription.

In Chapter 6, the thesis concludes with an analysis of the value of the pronunciation

lexicon in E2E-TTS. Some concluding remarks aim to offer insight in anticipation

of lingering questions the reader may have, with proposals for future research in the

comparison of text- and phone-input in E2E-TTS.

1.7 Contributions

In the following chapters, the performance of E2E-TTS is analysed with text- and

phone-input. Original contributions include:

Chapter 2

Modelling word pronunciations is explored in E2E-TTS via a simulation using G2P

models. Implicit G2P models learnt from E2E-TTS data are shown to score higher

error rates than the same G2P model trained on a pronunciation lexicon in English. An

accompanying analysis of G2P and TTS model errors is provided. Text- and phone-

input is compared in DC-TTS in an attempt to find an approximate phonetic error rate

of text-input with words of irregular pronunciation in English.

Chapter 3

Following the observation that some word mispronunciations occur around morpheme

boundaries (e.g. th in the word pothole was pronounced as [D]), the use of morpho-

logical boundaries is investigated in a S2S-G2P model and in an implementation of
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Tacotron trained on text-input in English. The further observation that some word pro-

nunciations are difficult to predict from surrounding phonetic context alone (e.g. such

as names like Siobahn) inspires preference tests with stimuli containing difficult to

pronounce G2P words in French. These experiments follow the findings of [5] where

it was suggested there was little difference between text- and phone-input to Tacotron

in French. Specifically, G2P error words and post-lexical cases of disallowed liaison

in French are found to be preferred by phone-based systems with gold-standard phone

strings.

Chapter 4

In an attempt to conduct a larger-scale evaluation of TTS output, an exploration of

ASR as an intelligbility metric is conducted. The reliability of rankings of systems

in the Blizzard Challenge is studied. An analysis of E2E-ASR transcription to ap-

proximately measure pronunciation modelling in E2E-TTS is conducted. While on

aggregate E2E-ASR is found to be more reliable than the non-native listeners in the

Blizzard Challenge, specifically for words of difficult G2P E2E-ASR is shown to be

biased in the transcription of words with difficult G2P (or P2G). Notwithstanding the

imperfections in E2E-ASR transcription, E2E-ASR detects mispronunciations by TTS

systems and text- and phone-input are compared on a large scale.

Chapter 5

Experiments measuring pronunciation correction using representation mixing are con-

ducted. Text-input is mixed with phone-input from lexica of a varying number of n

word types. Results from a small-scale listening test are compared with a large scale

evaluation of intelligibility using E2E-ASR. Clear improvements in pronunciations are

shown when adopting representation mixing with phones.

Chapter 6

The following findings are submitted as a thesis:

• Pronunciation control is desirable in certain deployable TTS applications to en-

sure correct pronunciation.

• The pronunciation of some words cannot be predicted by generalising from sur-

rounding character contexts alone. To accurately guide the correct pronunciation
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of these words requires prior knowledge as represented in a lexicon.

• E2E-ASR transcription can be more reliable than transcription by unreliable

judgements from untrained listeners to approximately evaluate the intelligibility

of TTS systems. However, E2E-TTS transcription can be unreliable for words

of difficult G2P relations.

Some concluding remarks address the value of the pronunciation lexicon in TTS

whilst providing further information in anticipation of questions the reader may have.

Proposals for future work are also presented.

1.8 Summary

In this chapter, pronunciation modelling across TTS paradigms was introduced. S2S

modelling for text normalistion, G2P and acoustic modelling was introduced in the

context of work towards E2E-TTS. A discussion about the use of text-input in E2E-

TTS and the value of the pronunciation lexicon motivated research questions which

are tackled in the next chapter. A list of contributions was also presented.



Chapter 2

Implicit Pronunciation Modelling in

E2E-TTS

As discussed in the previous chapter, in the stricted sense E2E-TTS uses S2S text en-

coders without extensive front-end processing. Under E2E-TTS, the G2P model usu-

ally becomes implicit when learning acoustic representation from an input sequence

of text. Questions arise about the reliability of E2E-TTS pronunciations with the sub-

stitution of a manually-curated pronunciation lexicon for a pre-trained G2P model or

text-input. How reliable are implicit G2P models in generalisation compared to tradi-

tional G2P models trained on a lexicon? Do implicit G2P models reliably generalise

to unseen word pronunciations? Is the extensive cost of maintaining a high-quality

pronunciation lexicon in English really worthwhile? This chapter presents a theoreti-

cal analysis of implicit G2P modelling. Experiments are conducted with the DC-TTS

system using text-input. This system belongs to the class of E2E-TTS that takes char-

acter input and predicts a mel spectrogram with a separate network for conversion to a

waveform.

2.1 Motivation

S2S acoustic models in TTS such as Tacotron and Deep Voice 3 produce high qual-

ity speech without linguistic context features. Tacotron 2 for instance was shown to

learn the pronunciation of words unseen in the training data (such as supercalifrag-

ilisticexpialidocious), pronounce tongue twisters (such as she sells sea shells on the

sea shore) and pronounce the correct pair in common homographs (such as read in

the present or past tense) [154]. However, whether the implicit pronunciation model

43
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Datum LJ Nancy VCTK

Total Word Types 14,750 18,695 5,839

Total Word Tokens 225,715 170,018 326,971

Total Sequences 13,100 12,095 44,070

Total Length (hours) 24 17 44

Mean Sequence Length (words) 17.2 14.1 7.4

Table 2.1: General Information on large TTS datasets

learnt from text-input is robust to modelling difficult word pronunciations remained

unclear. If pronunciations can be implicitly modelled as suggested, a lexicon and the

cost involved in its curation would not be necessary for TTS.

As mentioned in 1.3, previous work building TTS systems with graphemes ob-

served lower intelligibility than when using phones in unit selection and with HMM

acoustic models, even though more data could improve intelligibility. Furthermore, in

ASR multiple works have suggested little difference in WER between text- and phone-

input, especially when using S2S models with datasets of at least 300 hours. To what

extent can word pronunciations be accurately learnt in these speech models? Is a lexi-

con still required in TTS for English or does an implicit G2P model learnt from a large

set of text-audio pairs in training suffice?

2.2 Research Questions

1. How does implicit G2P modelling work in E2E-TTS?

2. How do implicit G2P models compare to G2P models trained on a pronunciation

lexicon?

3. Is there a difference in DC-TTS when training on text- or phone-input?

2.3 E2E-TTS Datasets

2.3.1 Size

S2S acoustic models for TTS are typically trained with more hours of speech than pre-

vious SPSS acoustic models such as DNNs and HMMs (see [155]). The Linda John-

son (LJ) Speech corpus [156] and the Blizzard Challenge 2011 corpus (also known as
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Figure 2.1: Cumulative coverage of unique word types per TTS dataset. The bottom

left of the figure contains curves for LJ, Nancy and VCTK expanded in the graph to

the right. The x-axis are hours of recorded speech in a dataset. The y-axis is the to-

tal of unique words. The curves expanded to the right also contain a count of unique

root morphemes. The unique morphemes were initially counted to understand the rela-

tionship between cumulative root morphemes and word types. These follow the same

zipfian pattern. Root morphemes were counted only for in vocabulary (IV) words to

Combilex - the true number may be higher. The graphs show fewer unique word types

than contained in common pronunciation lexica.

Nancy [157]) contain 24 and 17 hours of speech respectively. The open-source multi-

speaker corpus from the Centre for Speech Technology Voice Cloning Toolkit [158]

(VCTK) contains 44 hours of speech. Industry-only datasets at the time in Tacotron 2

and Deep Voice 3 contained 15-25 hours of speech. E2E-TTS has since been trained

on more text-audio data. At the time of writing, the latest single-speaker work from

the Tacotron team was trained on 39 hours [4]. The latest multi-speaker works were

trained on 354 hours [135] and 243 hours [149] of audiobook data. Is a pronunciation

lexicon still beneficial in TTS given these larger datasets?

2.3.2 Unique Word Coverage

To comprehend how much pronunciation knowledge was provided in these datasets,

the unique word types and tokens of the types in the publicly-available datasets were

counted. These numbers are shown in shown in Table 2.1. Usually, a data-driven G2P

model is trained on word types that appear in a pronunciation lexicon: 135,000 types

in the CMUdict, 165,000 in Unisyn and 145,000 in Combilex. For TTS in deployment
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Beyond a window width of 7, rule growth tapers
off  considerably.  In  this  region  most  new  rules
serve  to  identify  particular  words  of  irregular
spelling, as it is uncommon for long rules to gener-
alize beyond a single instance. Thus when training
a  smoothed  LTS rule  system it  is  fair  to  ignore
contexts larger than 7, as is done for example in
the Festival synthesis system (Black, 1998).

Figure 2 contrasts four languages with training
data of around 40k words, but says nothing of how
rule sets grow as the corpus size increases. Figure
3 summarizes measurements taken on eight encod-
ings of seven languages (English twice, with and
without stress marking), tested from a range of 100
words  to  over  100,000.  Words  were  subsampled
from each alphabetized lexicon at equal spacings.
The results are interesting, and for us, unexpected.

Figure 3. Rule system growth as the corpus size is
increased,  for  seven languages.  From top to bot-
tom:  English  (twice),  Dutch,  German,  Afrikaans,
Italian, Telugu, Spanish. The Telugu lexicon uses
an Itrans-3 encoding into roman characters, not the
native  script,  which  is  a  nearly  perfect  syllabic
transcription. The context window has a maximum
width of 9 in these experiments.

Within  this  experimental  range  none  of  the  lan-
guages  reach  an  asymptotic  limit,  though  some
hint  at  slowed  growth  near  the  upper  end.  A
straight line on a log-log graph is characteristic of
geometric growth, to which a power law function
y=axb+c is an appropriate parametric fit. For diffi-
cult  languages the growth rates  (power  exponent
b) vary between 0.5 and 0.9, as summarized in Ta-
ble 3. The language with the fastest growth is En-
glish, followed, not by Dutch, but Italian. Italian is
nonetheless the simpler of these two, as indicated
by the smaller multiplicative factor a.

Language a b

English (stressed) 2.97 0.88

English (plain)  3.27 0.85

Dutch  12.6 0.64

German  39.86 0.49

  Afrikaans  15.34 0.57

Italian  2.16 0.69

Table 3. Parameters a and b for the power law fit
y=axb+c to the growth of LTS system size. 

It would be good if a tight ceiling could be estimat-
ed from partial data in order to know (and report to
the lexicon builder) that  with  n rules defined the
system is m percent complete. However, this trend
of  geometric  growth  suggests  that  asking  “how
many letter-to-sound rules does a given  language
have?” is an ill-posed question. 

In light of this, two questions are worth asking.
First, is the geometric trend particular to our rule
representation?  And  second,  is  “total  number  of
rules”  the  right  measure  of  LTS complexity? To
answer the first  question we repeated the experi-
ments with the  CART tree builder available from
the Festival  speech  synthesis  toolkit.  As it  turns
out  –  see  Table  4  –  a  comparison  of  contextual
rules and node counts for Italian  demonstrate that
a CART tree representation also exhibits geometric
growth with respect to lexicon size.

Num Words
in Lexicon

Contextual
LTS Rules

CART Tree
Nodes

100 80 145

250 131 272

500 198 399

1000 283 601

2500 506 1169

5000 821 1888

10,000 1306 2840

20,000 2109 4642

40,000 3385 7582

80,000 5524 13206

Table 4. A comparison of rule system growth for
Italian as the corpus size is increased. CART tree
nodes (i.e. questions) are the element comparable
to LTS rules used in letter context chains. The fit-
ted parameters to the  CART data are  a=2.29 and
b=0.765. This compares to  a=2.16 and b=0.69.
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Figure 2.2: LTS (= G2P) rules in a decision tree as a function of lexicon size from [160].

The number of LTS rules in English increases with the number of words in a lexicon up

to 100,000 words but common E2E-TTS datasets contain less than 20,000 word types.

To what extent is pronunciation modelling weaker in English E2E-TTS than with the use

of a pronunciation lexicon? This figure has been reproduced with permission from the

original authors.

pronunciation lexica may be even larger as new pronunciations are entered according

to need. However the E2E-TTS datasets presented in Figure 2.1 provide a narrower

unique word coverage than pronunciation lexica.

For each sequence in the datasets, the new unique word types that appeared per

hour of speech were counted and averaged. Initially, the comparatively smaller LJ,

Nancy, and VCTK sets were analysed but later the calculation was applied to LibriTTS

[159] (containing 585 hours) once the latter was released. The per-hour accumulation

of unique word types is illustrated in Figure 2.1. The left of Figure 2.1, shows the

curve for the LibriTTS dataset, and the right side is an expansion of the bottom left

of the LibriTTS graph. The unique word types in pronunciation lexica are displayed

above the LibriTTS curve, visualising the scale of the gap in unique word types.

G2P relations missing from the training data cannot be learnt. Such missing G2P

relations could include place names and foreign words which would potentially be

important for TTS in deployment. Implicit G2P models trained on E2E-TTS datasets

may not be exposed to the same G2P relations as G2P models trained on pronunciation

lexica, with presumably increased mispronunciations.

2.3.3 Zipfian Disitribution of Unique Word Types

The unique word types were observed to follow a zipfian distribution. Theoretically,

one could accumulate more and more speech to achieve the same phonetic coverage
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as a lexicon. However, obtaining comparable coverage from speech corpora would

require an exponential increase in audio data, which would become increasingly costly

and infeasible to process.

Contrast the information in Figure 2.1 with a plot from [160] shown in Figure 2.2.

In Figure 2.2 the authors plotted the number of LTS (=G2P) rules in a decision tree as a

function of lexicon size. In all languages1, the number of LTS rules increased propor-

tionally (at different rates depending on the language) with the number of words - in

the case of English up to a 100,000 words. But the number of unique words in datasets

used to train E2E-TTS models is typically below 20,000. Are E2E-TTS datasets with

less than 20,000 unique words sufficient for errorless pronunciation modelling with

S2S acoustic models?

2.4 Simulated G2P models

2.4.1 Method

In an attempt to quantify the performance of implicit pronunciation modelling in E2E-

TTS, implicit G2P models were emulated by training explicit G2P models with TTS

training data. A model was trained on a lexicon as a baseline. This analysis allowed for

a quantitative comparison using the WER and phone error rate (PER), standard metrics

in G2P modelling.

2.4.2 Lexicon

The training data were phonetised using the General American surface-form of Com-

bilex. In this chapter, Combilex is used as the lexicon. In future chapters Unisyn is

used instead. Combilex would usually require a commercial license whereas Unisyn

is more accessible (free) for academic research. Both Combilex and Unisyn were

preferred over the standard CMUdict due to the fewer word types and relatively low

1The experiments in this thesis focus on English but it would be interesting to conduct an analogous
analysis in other languages. In Figure 2.2, there is an indication that English is not the only language for
which LTS rules increase as words increase in the pronunciation lexicon (e.g. Dutch and German also
exhibit similar rates whilst Spanish is notably flatter). Due to a lack of pronunciation lexica and publicly
available datasets suitable for TTS voice building in other languages at the time this analysis focused on
English. The release of the the CSS10 collection of single speaker datasets for building E2E-TTS voices
in other languages [161] helps enable this analysis to be conducted on those languages too. The CSS10
resource was used to analyse pronunciation of an E2E-TTS models trained on French data in Chapter 3,
but a large-scale multi-lingual analysis is presented as a key area for future work (see 6.3)
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quality of phone entries in the latter (as recommended in [71]). Combilex and Unisyn

derive surface form phones in multiple accents from a baseform metaphoneme lexi-

con [34] as explained in Chapter 1. In this experiment the General American (GAM)

surface-form lexicon was used.

Ideally, a pronunciation lexicon would contain all the words contained in a TTS

dataset. For instance, all words in the Arctic A and B script (commonly used to build

unit-selection and SPSS voices) [162] were contained in Unisyn. However the larger

TTS datasets contain out-of-vocabulary words.

Figure 2.3 presents a pseudo-Venn diagram of lexical content compared with Com-

bilex. LJ and Nancy contained a substantial number of OOVs, indicated by the num-

bers outside of the Combilex circle. Since phone labels for these OOVs were unavail-

able they were not included when training the LJ, Nancy and VCTK models. Ap-

proximately 10% more data is used when training TTS models with LJ or Nancy than

provided to the G2P models. While this may have disadvantaged the G2P models, the

word types used to build the G2P models would still be fewer than contained in pro-

nunciation lexica. All characters were lower-cased and all punctuation was removed

(except hyphens denoting compound words and apostrophes denoting possessive s).

2.4.3 Input Types

The networks were trained with either:

1. isolated unique words (Types)

2. isolated word tokens (Tokens)

3. all words in a sequence (Sequences).

Although Sequences emulated learning in E2E-TTS in the category above, all

models were tested on single words only. Testing on sequences could offer insights into

how pronunciations are learnt contextually. For instance post-lexical pronunciations

are an important aspect of implicit pronunciation modelling. However in this setup

G2P models did not test post-lexical pronunciations. See Section 3.5 for an analysis of

post-lexical pronunciations (in French).
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Combilex
Train:

105,937 
Val:
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Test:

10,389
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VCTK1,452

13,302
16,736

1,959
5,791

48

Figure 2.3: Words shared and not shared between Combilex and the E2E TTS training

sets. NB: overlap also exists between LJ, Nancy and VCTK, but this was not shown to

ease visualisation

2.4.4 Architecture

The OpenNMT [163] package in PyTorch, originally developed for NMT, was used

to train Bidirectional Long Short Term Memory (BLSTM) models for the task of

G2P. At the time, RNNs with LSTM units offered state-of-the-art results for G2P [82].

The relevant hyper-parameters were: 6 bi-directional encoder and decoder layers with

500 units each, a learning rate of 0.0001, dropout of 0.1, global attention [164], the

ADAM optimiser and mini-batches of 64. The BLSTMs converged between 50,000

and 100,000 training steps.

The test set was a held-out set from Combilex also absent from the training datasets.

The WER and PER were measured on the Combilex test set (containing 10,389 words)

as shown in Figure 2.3. The WER was the Levenshtein distance at the word level

between the predicted and correct strings, divided by the total number of words in the

test set. The PER used the Levenshtein distance at the phone level. Both rates are

expressed as percentages.

2.4.5 Results

Table 2.2 shows the results of the G2P models trained on TTS datasets. PER scores

reflected WER scores. The baseline Combilex G2P model performed with PER = 1.1%

and WER = 4.9%. The first two rows of Table 2.2 show the error rates for G2P models

trained on single word types. The middle two rows show the error rates when trained

on word tokens. The bottom two rows show the error rates for the models trained on
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Input Type Metric LJ Nancy VCTK

Types WER 52.9% 44.4% 82.5%

PER 13.6% 10.3% 30.3%

Tokens WER 64.0% 60.1% 89.5%

PER 19.7% 17.7% 38.7%

Sequences WER 42.5% 37.9% 57.7%

PER 10.7% 8.9% 14.9%

Table 2.2: WER and PER for G2P models measuring implicit word pronunciation mod-

elling from E2E-TTS datasets. Types are G2P models trained on unique word types.

Tokens were trained with single words where the same word could appear multiple

times during training. Sequences contained word sequences. All models were tested

on unique word types. The Combilex baseline performed with PER = 1.1% and WER =

4.9%.

sequences (N.B. all sequences contained IV words).

For each input type the error rates were higher than the Combilex baseline. The

error rates were particularly high for VCTK which had less than 6,000 word types.

Models trained on the Nancy corpus, (with the highest number of unique word types),

performed with the lowest error rates of the three datasets.

2.4.5.1 Types and Tokens

The error rates for tokens were higher than for types for all datasets. The higher

error rates when training on tokens suggests a bias for the G2P relations contained in

frequent word types was introduced. Since LSTMs (like other neural networks) contain

latent, uninterpretable weights, such a bias is difficult to confirm. When analysing

errors, I noticed groups of graphemes such as th in pothole were predicted as [D] (in

X-SAMPA or [D] in IPA) as pronounced in frequent words like the, they, or there. I

reasoned that fewer unique word types and a frequent word token bias would degrade

implicit G2P model quality in E2E-TTS.

2.4.5.2 Sequences

The error rates for Sequences models were the lowest of the input types. This sug-

gested that longer sequences led to better results in the G2P model. To investigate how

sequence length affected G2P performance, further G2P models were trained on the
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Figure 2.4: G2P error rates with increasing number of word tokens per sequence during

training

Nancy dataset with a differing number of tokens per sequence.

The tokens were initially combined in their original order but randomising the to-

kens in the sequences made little difference, suggesting implicit word-level language

model information had little effect on G2P performance. These results are presented

in Figure 2.4, with highly variable WER for sequences of 2, 3, 4 and 5 tokens before

levelling out for sequences of more tokens. For this particular G2P modelling setup

(LSTM, Nancy), the results suggested input and output sequences of at least 60 char-

acters, or 6 words, were an optimal length for training. E2E-TTS models are typically

trained on sequences with an average of more than 7 words (see Table 2.1).

The above results suggest implicit pronunciation modelling is weaker than a G2P

model trained on a lexicon. In the next section, there is a discussion of some lim-

itations in emulating implicit pronunciation models in E2E-TTS using explicit G2P

models. Further tests are then conducted to discover whether the G2P model results

are paralleled in a DC-TTS model trained on text-input.

2.4.6 Constraints of Simulated G2P models

What is an appropriate way to show differences in pronunciation modelling when using

minimally processed text input versus phone input in TTS? In the previous section im-

plicit pronunciation modelling in E2E-TTS models was simulated by training explicit

G2P models with E2E-TTS training data. However, this analysis was limited.
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First, the implicit G2P models did not learn the same kind of implicit information

as would E2E-TTS models. As already mentioned, some OOV word tokens were ex-

cluded from the models and post-lexical pronunciations were not included. E2E-TTS

learns an acoustic representation rather than phone strings and OOVs may be implicitly

modelled without the requirement for a corresponding phonestring like in G2P mod-

elling. Importantly, in E2E-TTS with text-input, an intermediate phone sequence is

not required. OOVs and post-lexical pronunciation are implicitly included in training

without phones. Furthermore, the audio may contain pronunciation variation in speech

style, rate and post-lexical pronunciation rules. Other components of E2E-TTS ar-

chitecture may also influence pronunciation such as the type of encoder (RNN, CNN,

transformer), the implicit duration method (e.g. attention mechanisms may skip over

input sounds or produce babble noise) and waveform generation (which at the time

may have used Griffin-Lim as in DC-TTS and Tacotron or employed a neural vocoder

to convert mel spectrograms to waveforms such as in [113]).

Second, objective error rates do not reflect the plausibility of predicted sequences

which are different from the true reference sequences. For instance, if the letter i in

the word tamil were predicted with [I] (X-SAMPA)/[I] (IPA) instead of [@]/[@], this

would not be a gross error. However, modifying the metrics to account for plausible

alternatives, as attempted in [165], would not tell apart plausible from implausible pre-

dictions because the correct identification of alternatives would require hand-written

rules. How E2E-TTS would pronounce these small variations was unclear. Given

these constraints to the above analysis, how could emulated G2P models be shown to

reflect implicit pronunciation modelling in E2E-TTS?

2.5 TTS of G2P Error Words

Initially, an E2E-TTS model was trained on LJ and a small listening test using some

targeted stimuli was conducted. A larger-scale evaluation with targeted stimuli was

conducted in Section 4.4. A selection of words were synthesised whose phonestrings

were either a) correctly predicted or inaccurately predicted by the LJ Tokens G2P

model in the previous section. The test words were embedded into the carrier sentence:

‘Now we will say __ again.’

A speech expert classified words in set a) as either understandable/correct or incor-

rect/unrecognisable and words in set b) as either correct, wrong but recognisable or

unrecognisable. 100 correctly predicted words were randomly sampled, and a further
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Figure 2.5: Expert listener judgement on E2E TTS for G2P error words.

100 incorrectly predicted words were hand-selected according to 4 categories:

1. where G2P gave plausible alternatives (Plausible G2P e.g. tamil)

2. where G2P gave inappropriate alternatives (Implausible G2P e.g. loophole as [l

u f @ ë])

3. foreign names or loan words (Foreign Wordse.g. Flaubert and karate)

4. English names with difficult orthography (Difficult Orthography e.g. Loughbor-

ough and Worcester)

2.5.1 DC-TTS

An open-source implementation of Deep-Convolutional TTS was used (DC-TTS [112])

with normalised text as provided in the LJ dataset. In early 2019, this was an open-

source E2E-TTS system that produced high quality speech and was used by others in

the field at the time (e.g. [3], [166]).

DC-TTS uses convolutional text and audio encoders known collectively as a text2mel

(T2M) network to consume the input and predict ‘coarse-in-time’ mel-spectrograms.
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Words E2E Pronunciation (IPA)

loophole

goatherd

gigabytes

anchoring

[l u f @ ë]

[g a D @ d]

[g I g æ b I t s]

[@ S O R I N]

Loughborough

McElroy

Siobahn

ASCII

[l @U b @ r @U]

[s @ l r i]

[s i @U b æ n]

[@ s aI]

karate

maoist

Flaubert

Eduardo

[k @ R @ t]

[m @U I s t]

[f l A b @ t]

[@ d o R d u]

Table 2.3: Phonetic Transcriptions (IPA) of DC-TTS with text-input. The pronunciations

are incorrect.

Forcibly incremental attention was used and the Super Spectrogram Resolution Net-

work (a CNN) was trained to refine the predicted course Mel spectrogram. The SSRN

consumes mel-spectrograms and upsamples them in both time and frequency to pro-

duce a full magnitude spectrogram. Both networks were trained for 300 epochs. Fi-

nally, the Griffin-Lim algorithm was used to re-introduce phase to the magnitude spec-

trogram and thus create the output speech waveform. For more information about the

architecture see [112]. From Chapter 3 onwards, an implementation of Tacotron was

instead used for experiments with E2E-TTS models.

All LJ utterances were included in training, including those with Combilex OOVs

as this was not a restriction with text-input. All waveforms were downsampled to

16kHz before training.

2.5.2 Results

Of the 100 words predicted correctly by the G2P model, 79 were understood by the

speech expert and 21 were unrecognised. These words could be difficult to understand

without context (e.g. flutings and sluicing). Slight mispronunciations could render

words unrecognisable. The expert often mistook them for more common words, for

instance mesher was misunderstood as measure. Despite these perceptual difficulties,
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the overall trend was that the words predicted correctly by G2P models were also

intelligible to the expert when synthesised by DC-TTS with text input.

G2P error words with plausible but formally incorrect G2P predictions were syn-

thesised more intelligibly on the whole. This is shown by the Plausible G2P col-

umn in Figure 2.5, where the “Unrecognisable” bar is shorter than for the other cate-

gories. Specifically in this category, unrecognisable pronunciations produced by DC-

TTS were caused by stress placement on incorrect syllables. For example, the first

syllable was more prosodically salient than the second in regina. Stress was an at-

tribute of pronunciations not emulated in the G2P model analysis above. In [87], G2P

models were jointly trained to predict stress and syllabification with improvements

found in multiple languages when including stress information. In Chapter 3, some

improvements in stress are observed when subword decomposition is applied to text-

input (morphemes in English and syllables in French). However, when attempting

pronunciation correction when mixing text-input with other lingustic representations

in Chapter 5, stress markers are found not to be beneficial.

The other 3 categories of inaccurate G2P were associated with larger proportions of

unrecognisable E2E pronunciations. Samples of such words with their pronunciations

are in Table 2.3. Audio samples are available online2.

2.5.3 Discussion

2.5.3.1 Frequency of Pronunciation Errors

To gain a perspective on the scale of the pronunciation problem, the frequencies of er-

ror words from the LJ Tokens G2P model in the British National Corpus (BNC) were

plotted using estimated frequency data from [167]. The brown squares each represent

a count per million for individual words in the BNC. The green crosses demonstrate

the frequency of the LJ Tokens G2P model error words in the BNC (from which the

Out-LJ test set is derived in Chapter 4 onwards). For ease of visualisation less than 1

count per million words were rounded up to 1 and the top 30 words in the BNC (func-

tional items like ’the’) were exluded from the top frequencies. All words containing

digits and special characters (@, &, % etc were also removed to aid visualisation).

Only 699 out of 6648 error words had counts higher than 1 per million and the

most frequent error word had an estimated count of 1154 per million. Figure 2.6

shows the majority of error words would be rare in everyday texts. However, the

2Audio samples at: http://homepages.inf.ed.ac.uk/s1649890/lts/

http://homepages.inf.ed.ac.uk/s1649890/lts/


Chapter 2. Implicit Pronunciation Modelling in E2E-TTS 56

Figure 2.6: Counts of LJ Tokens G2P model error words in British National Corpus

(BNC). The 30 most frequent BNC words were omitted for ease of visualisation. The

figure demonstrates that the majority of G2P error words occur with a single count per

million in the BNC. Nevertheless the ability to control pronunciation and correct errors

(of names especially) is still important for TTS.

ability to control pronunciations is important in deployment and the problem should

not be disregarded merely because the majority of pronunciation errors are for single

count words. For instance, it would still be important for the names in Table 2.3 to be

pronounced correctly for voice assistants (e.g. Siobahn).

2.5.3.2 From G2P to TTS

In the DC-TTS model trained with normalised text above, words with difficult G2P re-

lations were mispronounced. There is pronunciation knowledge that cannot be learnt

from text alone but that requires extra knowledge for disambiguation. The front-end

composed of text normalisation, a lexicon and G2P model is used in front-end pro-

cessing for this purpose. Similarly in E2E-ASR [17] it has still been noted that for

particularly difficult words such as foreign words and proper names a pronunciation

lexicon is still beneficial for correct recognition even if the general performance be-

tween text-based and phone-based systems is similar.

But how effective was this listening test at demonstrating that the simulated G2P

models reflected implicit pronunciation modelling in E2E-TTS? It showed some clear
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correspondences between the explicit G2P models trained on TTS datasets and the pro-

nunciation of E2E-TTS output. However, the test was conducted on a small scale and

was subjective: only 200 stimuli in total evaluated by 1 speech expert. In Section 4.4,

the reliability of E2E-ASR for transcription of difficult G2P words is assessed. An ob-

jective and larger-scale intelligibility experiment is then conducted using transcriptions

of 3,000 G2P error words from multiple systems in Sections 4.4.4.2 and 5.5.

The broader question for DC-TTS remained however: while some mispronunci-

ations can be observed in targeted stimuli when using text-input, what about general

speech quality between text- and phone-input? The experiments in the next section

sought to answer this question with DC-TTS.

2.6 MUSHRA with Phone Label Corruption

2.6.1 Motivation

In the previous analysis, implicit pronunciation modelling of E2E-TTS with text-input

was simulated by training explicit G2P models with E2E-TTS datasets. DC-TTS was

also shown to mispronounce common error words from these G2P models.

G2P modelling in English is particularly difficult due to its notoriously irregu-

lar spelling. Graphemes in English are pronounced differently depending on the sur-

rounding context. For example, the bold letters in tough, women and nation represent

different sounds from the same graphemes in though, womb and native. While work

previously mentioned ([8]) shows phone contexts may be modelled (when using an

input sequence of characters), an encoder with text-input would have to learn disam-

biguate these contexts which could introduce confusion into the G2P relations during

training. Given the highly variable spelling in English, the pronunciations of some

words (e.g. foreign words and proper names) are not easily disambiguated.

In this section, results are presented from a MUSHRA listening test where DC-TTS

was trained with differing amounts of incorrect phone labels to find the approximate

phone-label accuracy of using text-input.

The following analysis was conducted with my colleague Jason Fong. I created

the training/test transcripts and Jason Fong trained all of the TTS models. We ran a

listening test and published our results together.
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Input Sequence

Graphemes

Incorrect
Phones

Correct 
Phones

Input Type

tough
though

f
_

_
f

gh
gh

[f]
<sil>

End Symbol(s) Acoustics

t V f
D @U _

t @U _
D V f

match

mismatch

ambiguous

Figure 2.7: Simulation of corrupted phone input. The graphemes gh can have 2 pronun-

ciations depending on a context learnable by the encoder. The correct phones contain

no phonetic error and are gold-standard. Incorrect phones have mismatched pronun-

ciations for th in though and tough. For each input sequence pair, the pronunciation

should correspond to [f] and <sil> in the acoustics. The underscore symbol ‘_’ rep-

resents a missing phone from the prediction, and ‘<sil>’ represents a missing sound.

Using correctly predicted phones results in a match between input and acoustics during

training that should produce a high quality acoustic model at test time. However using

incorrectly predicted phones results in a mismatch that may negatively impact the per-

formance of the acoustic model. As the mapping between graphemes and acoustics

can be ambiguous, to what extent could graphemes have a negative effect on the train-

ing of the acoustic model?

2.6.2 Method

2.6.2.1 Creation of Training Transcripts

Figure 2.7 shows how text-input may be ambiguous in its G2P relations. The ambiguity

in letters may be simulated by using incorrect phones. The letter cluster gh may repre-

sent either silence (<sil>) in though or a voiceless labio-dental fricative ([f]) in tough.

A range of training transcripts with incorrect phone labels was generated to serve as a

proxy for text-input with differing amounts of words of irregular pronunciation.

Phone transcripts were created using the following methodology. First, a ‘gold

standard’ 0% WER transcript was generated via look-up using the full (Combilex

GAM) lexicon. These phones were as accurate as possible given the large dataset

size. Any sentences containing OOVs to Combilex were removed from the transcripts.

Second, phonetic transcriptions were corrupted by varying the proportion of the train-
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Name Input Ratio (%) WER (%)

100combi Lexicon Lookup (LL) 100 0.0

50neur LL / Neural G2P 50 / 50 11.5

50cart LL / CART G2P 50 / 50 14.3

100neur Neural G2P 100 25.2

100cart CART G2P 100 30.6

let Graphemes 100 -

Table 2.4: Description of phonetisation and WER of each training transcript. Input

column denotes method used to phonetise transcript. Ratio column denotes % of full

lexicon used, or the entries replaced by G2P predictions.

ing text phonetised by lexicon or by 2 different G2P models: a classification and re-

gression tree (CART) model from Festival [168] and the BLSTM model described in

Section 2.4.4 were used. In this way we compared text- to phone-input with varying

phone-label accuracy.

Table 2.4 presents the breakdown of phonetisation in the transcripts. The Ratio

column shows the percentage of phone labelling by G2P model. The WER column

shows the WER of each training transcript. The error rates report the WER of the

transcripts, not performance on a test set.

Recall some G2P errors may in fact be plausible variants, such as a prediction of

the word tamil with [I] (in X-SAMPA) instead of a schwa phone [@]. The extent of

plausible variants in the phone-transcripts was not measured as it would have required

a manual review of all the errors.

2.6.2.2 Listening Test

The transcripts in Table 2.4 were input to 6 DC-TTS T2M networks. We chose a

MUSHRA [169] test over a Mean Opinion Score test (MOS) to obtain a comparison

between systems for each test stimulus [170]. We chose to measure naturalness as it is a

recognised standard listening test metric in the field. We wanted a general idea of TTS

quality when using text- and phone-input. In the test set, we only used words where the

text had unambiguous G2P relations so they were easily predictable from graphemes.

We selected 20 utterances from the wider set of 242 test utterances containing words
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that did not require any disambiguation via the traditional front-end. Homographs3 and

abbreviations were excluded and any numbers were verbalised. Any possible errors re-

sulting from grapheme ambiguity were minimised. For a fair comparison of the models

learnt from the training transcripts alone, we used the same Combilex transcriptions

from the complete lexicon to test all phone-based systems.

We recruited 30 English native speakers as listeners, paid £8 each for 45 minutes.

The listening test was conducted in purpose-built listening booths. We included copy-

synthesis of natural recordings as gold-standard upper bounds. We used the student

t-test to measure the significance of each system’s scores using the Holm-Bonferroni

method for error correction.

2.6.3 Results

Figure 2.8 displays the results of the MUSHRA test. Participants were instructed to

raise the score of the highest quality voice (natural) to 100, which is evident in the

results. No such stipulations were made for other voices, and all systems scored below

52% on the naturalness scale, including the 0% WER transcript. Whilst we evaluated

the general performance of each model by varying the input to the T2M network, arte-

facts resulting from the use of the Griffin-Lim algorithm are likely to have influenced

the average score for each system4.

It is also possible that finer differences between the voices could have been masked

by the Griffim-Lim artefacts. This scale only measures naturalness, but intelligibility

may have been affected. In subsequent chapters a different sequence model and a high

quality neural vocoder are used without Griffin-Lim.

There was a 23.5% relative drop in the naturalness score when DC-TTS was trained

on graphemes (let) rather than phones from the full lexicon (100combi), from 51.8 to

39.6. They were significantly different with p < 0.0005. In phonetic corruption terms,

there was no significant difference in the naturalness scores of let and the phone-based

systems trained with 25% WER (100neur).

The differences between the three best performing systems 100combi, 50cart,

and 50neur were not significant. While this equivalence could be interpreted as sug-

gesting that training transcripts with a WER corruption of up to 15% bear negligible

degradation generally, the proportion of the words with plausible variants was unclear.

3Predicting the correct pronunciation of homographs may require additional linguistic features [171].
These potentially pose another challenge to E2E-TTS with text-input (see Section 6.2.6)

4As may be heard in samples online: https://jonojace.github.io/SSW19-comparison

https://jonojace.github.io/SSW19-comparison
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Figure 2.8: MUSHRA results. Solid red lines are medians, dashed green lines are

means (also numerically labeled), blue boxes show the 25th and 75th percentiles, and

whiskers show the range of the ratings, excluding outliers which are plotted with +.

Percentages below system names indicate phone WER of their respective training tran-

script.

Incorrectly predicted phones could have been acoustically similar to the correspond-

ing speech data and may not have greatly degraded the acoustic model. Unfortunately,

teasing apart which predictions are viable and which are implausible (i.e those inaccru-

ate phones that would have a detrimental effect in training) is non-trivial. Nevertheless,

the naturalness scores of systems let, 100cart and 100neur were significantly lower

than of system 100combi.

2.6.4 Related Work

2.6.4.1 Grapheme- or Text-input is not a Learned Text Encoding

With the adoption of S2S models for SPSS, context features have been shown to be re-

dundant by the use of a learned text encoding when using S2S models [3]. By learned

text encoding, the authors of this paper mean the substitution of framewise context

features for a text-encoder consuming character input to learn speech in context. The

authors of [3] do not mean the use of text-input since all systems in their experiments

use phone-input.
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Work Language Dataset Character Encoder Vocoder Sig. Improvements with Phones?

[111] English 20 hours – single speaker (proprietary) Deep Voice 3 (CNN) Griffin-Lim ✓(mispronunciation test)

[174] English 18 hours - single speaker (LJ subset) DC-TTS (CNN) Griffin-Lim ✓(MUSHRA)

[140] English 385 hours – multi-speaker (proprietary) Tacotron 2 (CNN + LSTM) WaveRNN ✓(MOS)

Spanish 97 hours – multi-speaker (proprietary) ✓(MOS)

Mandarin 68 hours – multi-speaker (proprietary) ✓(MOS)

[173] English 17 hours - single speaker (Nancy) Tacotron 2 (CNN) WaveNet ✓(MOS)

Modified Tacotron (CBHL) ✗(MOS)

[4] English 39 hours - single speaker (proprietary) Tacotron (CBHG) Griffin-Lim ✗(MOS)

WaveRNN ✗(MOS)

Flowcoder ✗(MOS)

Wave-Tacotron (CBHG + LSTM) n.a ✓(MOS)

[20] English 260 hours – multi-speaker (proprietary) EATS (CNN + RNN) n.a ✓(MOS)

Table 2.5: A comparison of E2E-TTS with text- and phone-input. With the Deep Voice

3, DC-TTS and Tacotron 2 systems phones are significantly better, even in the Spanish

multi-speaker model. In [173] it was proposed that the simplified CNN encoder adopted

in Tacotron 2 [7] contained fewer parameters in the model and was less effective at

disambiguating G2P relations in English. The non-significant finding with the CBHL

encoder in [173] was repeated with the CBHG encoder using Griffin-Lim, WaveRNN and

Flowcoder in [4]. However, when the CBHG was used in a fully E2E system in Wave-

Tacotron there was a significant difference between text- and phone-input. The multi-

speaker EATS model also found a significant improvement when using text- instead

of phone-input. These results suggest a larger number of parameters may increase

grapheme disambiguation during training. A systematic comparison across dataset

size and languages with differing G2P complexity is suggested as future work.

2.6.4.2 Discussion Comparing Text- and Phone-input

In the above listening test, a significant difference was found between text- and gold-

standard phone-input. The text-input system performed with naturalness similar to

a training transcript with a WER of 25% when using DC-TTS with the Combilex

lexicon, phoneset and G2P models. Subsequent works in S2S acoustic modelling for

E2E-TTS have also compared text- and phone-input with different architectures. A

summary of these works is provided in Table 2.5. The results on aggregate suggest

that Tacotron 2 models that use CNN encoders consistently underperform when using

text-input, as corroborated by results in [111], [172], [173].

However, there is evidence to suggest the ability to disambiguate character contexts

in English spelling may depend on the encoder used. In English, the most systematic

review conducted between architecture-type and character-input has been [173]. In

this study, the convolution bank (CB), highway network [175] (H) and gated recurrent
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unit [176] (G) components used in Tacotron (together: CBHG) were compared to the

simplified CNN architecture of Tacotron 2. In their experiments G was replaced with

an LSTM (CBHL). In a MOS test, a significant difference between graphemes and

phones was observed when using the CNN encoder but not when using the CBHL en-

coder. The authors proposed that with more parameters, the CBHL had the capacity

to better disambiguate difficult G2P relations in English during training which leads

to naturalness scores akin to using phone-input5. A non-significant difference was

also observed with a CBHG encoder in [4], when using Griffin-Lim, WaveRNN and

Flowcoder for waveform generation. For the implicit task of disambiguating English

spelling during training, these findings suggest that by increasing the number of pa-

rameters in the model, disambiguation via character-input is improved. This suggests

E2E-TTS may have to consider a trade-off between reducing parameter size in a model

and using grapheme or phone-input for overall quality.

Relatedly, successful learning from text-input may also depend on the method of

waveform generation. When the authors of [4] tested their proposed Wave-Tacotron

method using a normalizing flow decoder instead of a neural vocoder, a significant dif-

ference between grapheme- and phone-input was observed. Also in the multi-speaker

EATS model (which used a spectrogram discriminator in a generative Adversarial Net-

work (GAN)), phone-input significantly outperformed grapheme-input.

The comparison between text- and phone-input could be broken down further.

What effect does dataset size play on the performance of either text- or phone-input?

What about the difference between single-speaker and multi-speaker models? The re-

sults of [20], [172] suggest that when using a large amount of data (in the hundreds of

hours), phones are more helpful than multi-speaker models. But how accurate must the

phone labels be in multi-speaker models to outperform text-input? Can a G2P model

suffice or is a pronunciation lexicon needed for labelling? Are surface-form phones

required or could phones from a mismatched lexicon be used? Would an approach

based on metaphonemes be more efficient for multi-speaker E2E-TTS?

What about differing G2P complexity across language (as shown in Figure 2.2)? In

[172], the multi-speaker model trained on Spanish data still found significant improve-

ments with phones. This result is particularly interesting since Spanish has relatively

less complex G2P rules than English. Why do phones help in Spanish?

These are important questions which matter in appraising the value of the pro-

5A similar observation was made in the Tacotron paper where the authors noted that the CBHG
module made fewer mispronunciations than a multi-layer RNN [2]
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nunciation lexicon in E2E-TTS. A systematic study of the interactions between text-

or phone-input and the following design decisions would make for interesting fu-

ture work: the encoder type (CNN, CBHG), dataset size (see [155]), single-/multi-

speaker modelling, waveform generation (fully E2E or with separate neural vocoder),

the phoneme type (surface-form phones or metaphonemes), the accuracy of phone la-

bels (from a pronunciation lexicon matching speaker-accent or from a G2P model).

The only work in Table 2.5 to use a targeted test was [111]. The authors cre-

ated a set of 100 sentences which represented text normalisation and pronunciation

challenges for deployment (e.g. abbreviations like FBI). The authors found that when

trained on text-input, there were 19 cases of character skipping and 35 mispronuncia-

tions as opposed to 3 cases of character skipping and 4 mispronunciations when mixing

representations with grapheme and phone-input (see Chapter 5). This finding comple-

ments the mispronunciation results shown in Table 2.3 in DC-TTS. Mispronunciations

and differences in stress were also noted as the primary cause of perceived differences

with natural speech in Tacotron 2 which was trained on normalized text sequences. Us-

ing the same 100 sentences as in [111], 6 sentences contained mispronunciations and

23 exhibited incorrect prosody. The MOS/MUSHRA tests presented in Table 2.5 do

not explicitly evaluate the pronunciation of difficult words. The issue of general listen-

ing tests diluting the effects of potentially important differences between TTS systems

was a point also made in [177]. Targeted stimuli are thus important to assess implicit

pronunciation modelling of E2E-TTS. With targeted stimuli in [111], the use of phones

under representation mixing explicitly improved pronunciations in output speech. The

value of the pronunciation lexicon may more concretely be shown by using targeted

stimuli.

The targeted stimuli in my own analysis were error words from a S2S G2P model.

In the DC-TTS system with text-input, there were issues in implicit G2P generalisa-

tion around morpheme boundaries such as loophole and goatherd. In the former, the

graphemes ph were pronounced [f], and in the latter th was pronounced [D]. Could

S2S G2P modelling be improved by using explicit morphological information? Could

morphological information also improve E2E-TTS performance? These are questions

tackled at the start of the next chapter.

It could be argued that given sufficient data a G2P model will learn to sufficiently

generalise to unseen words such as loophole and pothole above. Indeed, via my own

anecdotal observation, I notice words that contain ambiguous G2P relations can still be

pronounced correctly. The issue lies in the reliability of G2P generalisation. Let us take
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another example. Compare the pronunciation of karate with the word rate in English.

If karate or other Japanese words with the subword rate are unseen in training, how is a

G2P model to know from local character context alone how to pronounce karate? The

correct pronunciation is not necessarily inferable from surrounding text. For certain

words (foreign names and proper names make good examples), no matter how much

data is used to train the model, the reliability that the pronunciation will be correct

is less than when using phones. Therein lies the ultimate need for the pronunciation

lexicon.

In Chapter 3, I also present work in French where pronunciations may not be easily

predicted from local character context. Liaison is the insertion of sounds between

word boundaries. In the traditional TTS front-end, liaison would fall under a post-

lexical module. In the experiments, G2P error words and cases of disallowed liaison

in French are tested.

2.7 Summary

2.7.1 Chapter Contributions

1. How does implicit G2P modelling work in E2E-TTS?

Since the G2P model in E2E-TTS is learnt implicitly in a joint encoder-decoder

framework, E2E-TTS models are exposed to a narrower word coverage than tradi-

tional G2P models trained on pronunciation lexica. There is no established evaluation

protocol to measure pronunciation modelling in E2E-TTS. In this chapter the implicit

G2P models were simulated using explicit G2P models trained on the word coverage

of common E2E-TTS datasets. This allowed for an evaluation of pronunciation mod-

elling in E2E-TTS with WER and PER.

2. How do implicit G2P models compare to G2P models trained on a pronunciation

lexicon?

G2P models trained on LJ, Nancy and VCTK performed with lower WER than

when trained on the Combilex pronunciation lexicon. Error-prone foreign words and

names in the simulated G2P models were also error prone when synthesised by the

E2E-TTS model. G2P error words could serve as test cases for text-input E2E-TTS

pronunciation models.
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3. Is there a difference in DC-TTS when training on text- or phone-input?

Yes, a statistically significant decrease in naturalness was observed when using

text-input. Subsequent studies have shown this finding does not generalise to all E2E-

TTS models as elaborated in section 2.6.4.2, but importantly phone-input offers con-

trollability over pronunciation.

2.7.2 Summary Remarks

In this chapter pronunciation modelling in E2E-TTS was analysed via a simulation

with G2P models. The G2P models trained on E2E-TTS datasets scored higher er-

ror rates than a baseline G2P model trained on a lexicon. Stimuli containing G2P

error words were synthesised to demonstrate similarities between explicit G2P models

trained on E2E-TTS datasets, and DC-TTS trained with text-input. Mispronunciations

for difficult G2P words were observed in DC-TTS trained with text-input.

Results from a MUSHRA comparison between text- and phone-input to DC-TTS

were presented. While a significant difference between gold standard phone-input and

text-input was observed, stimuli selected according to G2P error demonstrated pro-

nunciation errors in DC-TTS with text-input. These results were placed in the context

of subsequent work with newer architectures trained with more data. In light of fur-

ther listening test results comparing text- and phone-input in E2E-TTS models, a large

scale, systematic review of text- and phone-input across datasets and architectures was

motivated (for the researcher(s) with the means to conduct such a large scale evalua-

tion). However, implicit G2P modelling in E2E-TTS faces the challenge of reliably

generalising to unseen character contexts where pronunciations may not be easily pre-

dictable from text as in foreign words and proper names.

In the next chapter, the role of the pronunciation lexicon is brought back into ques-

tion with investigations on 2 areas where pronunciations may not be easily learnable

from context. First, an investigation is conducted into the use of morphological bound-

aries in sequence-to-sequence G2P modelling, following the observation that separate

morphemes in the pronunciation of words such as pothole and goatherd were not iden-

tified (as shown in Table 2.3). Second, an investigation is conducted into the pronun-

ciation of difficult G2P words and the post-lexical phenomenon of liaison in French.

Both investigations use an implementation of Tacotron that predicts mel spectrograms

with a WaveRNN neural vocoder.



Chapter 3

TTS Experiments with Tacotron

In the previous chapter, it was argued that poor implicit G2P generalisation could cause

mispronunciations in output speech of E2E-TTS systems with text-input. For TTS in

deployment, reproducing adequate pronunciations for particular words may be very

important. Following the observation from Chapter 2 that character clusters such as th

and ph pose a generalisation problem for G2P in English, morphological boundaries

are investigated here for S2S-G2P and E2E-TTS. In defence of the point that local G2P

ambiguity in character contexts pose an inherent generalisation problem for pronun-

ciation modelling with S2S models, results from preference tests in French are also

presented. The E2E-TTS model in this chapter is an implementation of Tacotron that

predicts mel spectrograms with a WaveRNN neural vocoder (see Section 3.3.5).

3.1 Motivation

In Chapter 2, G2P models trained on E2E-TTS datasets scored higher error rates than

a G2P model trained on the Combilex GAM lexicon. G2P predictions of error-prone

words were mirrored as mispronunciations in DC-TTS with text-input. In particu-

lar, mispronunciations at morphological boundaries (such as th in the word pothole

or goatherd) were observed. It was also noted that learning correct stress could be

problematic (e.g. regina and for longer words such as sorrowfulness or incorrigibility).

Character clusters such as th and ph pose a problem for G2P in English, and pronun-

ciation could be improved with decomposition of such words into their underlying

morphemes or subword-units.

67
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3.2 Research Questions

1. Does morphology improve G2P with S2S models?

2. What effects does morphology have on E2E-TTS audio?

3. Does morphology improve implicit pronunciation modelling in Tacotron?

3.3 Morphology for Subword Decomposition

Subword decomposition has shown improvements in sequence-to-sequence modelling

for speech and language related tasks such as neural machine translation (NMT) [178],

[179] text normalisation [49], [55], language modelling [180] and in ASR [18], [19],

[181]–[183].

In NMT, subword decomposition improved the translation of rare or unseen source-

target words, since components of such compound words were seen. For instance, in

German solar system is one word sonnensystem, but the components sonnen and sys-

tem occur as standalone words and as components in other compound words. When

component words are delineated in sequence models, they become a recurring subse-

quence or unit1.

Morphology should delineate meaningful sub-word units to resolve some pronun-

ciation confusion in TTS arising from English spelling. For instance, hanger is com-

posed of the root hang and bound morpheme er. These may attach to the root coat to

derive coathanger. The characters th and ng are ambiguous in pronunciation: th could

be confused for its pronunciation in the ([D] in IPA), ‘ng’ could be confused for the

pronunciation in range ([dZ]). To a G2P model, the pronunciation of the sequences th

and ng in {coat}{hang}>er> are clearer than in coathanger. Subword decomposition

delineates phone contexts which should be unambiguous. Further examples of this

delineation are shown in column Format in Table 3.1. As the V column in Table 1

shows, across the entire dataset the vocabulary is more than halved due to morpholog-

ical boundaries.

By removing ambiguity from character contexts, delineating recurring subsequences

is akin to using spaces to delineate words, except morphemes can appear in multiple

words and thus be delineated into higher frequency subsequences. To further under-

1The use of the term unit should not be confused with the choice of grapheme or phone which may
be interpreted as units. Here, it meant either word or morpheme units.



Chapter 3. TTS Experiments with Tacotron 69

0 5000 10000
Rank of Most Frequent Unit Types

100

101

102

103

104

U
ni

t T
yp

e 
Fr

eq
ue

nc
y 

(lo
g 

sc
al

e)

Words
Morphemes

Figure 3.1: Total counts of most frequent units: words and morphemes in LJ. Splitting

into morphemes reduces the vocabulary and increases the counts of seen units.

stand the proportion of words to morphemes for TTS in English, the number of recur-

ring subsequences as words and morphemes were counted in LJ.

In Figure 3.1, the x-axis is the rank of the recurring subsequences (Words or Mor-

phemes) - the rank runs in descending order, from left to right. The y-axis shows the

frequency of the recurring subsequences in log-scale for ease of visualisation. The

blue (Words) curve falls at higher frequency units more vertiginously than the orange

(Morphemes) curve. It also has a long tail indicating a high total of recurring sub-

sequences. The Morphemes curve stays above the Word curve as it kinks, indicating

that the recurring subsequences of Morphemes occur with a higher frequency than of

words. The Morphemes curve also has a shorter tail, demonstrating the set of recurring

subsequences is fewer than the set of words.

3.3.1 Interpretability of Neural Models

Understanding the consequences of higher counts of smaller recurring subsequences

on sequence-to-sequence learning is difficult. The weights of S2S models do not eas-

ily permit an explanation of explicit knowledge being modelled. Explaining implicit

knowledge in neural network models is a complex task [184], [185]. Attempts to ex-
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Input Base Unit Format V

G Graphemes p o t h o l e s 13981

GM Graphemes { p o t } { h o l e } >s > 5202

P Phones p o t h ou l z 12631

PM Phones { p o t } {h ou l } >z > 5606

Table 3.1: Description of the various types of input fed to Tacotron. V is the total vocab-

ulary size, i.e. number of unique units (words or morphs), comprised of graphemes or

phones. Note the input is still at the character level. In the TTS systems in this thesis,

word boundaries are delineated using a word boundary token.

plain hidden units in TTS were covered in Chapter 1 in an attempt to observe phonetic

context learning in E2E-TTS. Some other work, for instance in ASR has focused on

recognising phone units in embedded representations of speech [186], [187]. Devel-

oping methods to improve the interpretability of neural models is also the focus of the

BlackBoxNLP workshop [188], [189].

However, for the purposes here, in practice, multiple factors could influence the

effect of using morphology such as the kind of subword decomposition (syllable, mor-

pheme, unsupervised unit), dataset size, the language being modelled or the encoder

type. When plotting training loss curves for the Tacotron models used, models that

used morphology had more vertiginous drops in training loss than models without

morphological information, as shown in Figure 3.2. But at the end of training, there

were no large differences in training loss. Since these models were trained using a

recipe in PyTorch without an explicit validation set, the validation loss curves for thse

Tacotron models were unavailable.

An explanation of latent decision making when using morphology in neural models

was not the aim of this experiment, but would be interesting future work. Following the

method of [8], where a trained E2E-TTS model was treated as a classifier for phones,

positional features and POS tags, contrasting inputs with graphemes, phones and mor-

pheme boundaries could provide further insight. The main focus here however, is to

analyse whether morphology improves G2P predictions and pronunciations in output

audio.



Chapter 3. TTS Experiments with Tacotron 71

3.3.2 Morphology in Unisyn

Though it does not feature in all lexica (e.g. CMUdict), morphological composition

is indicated for all words contained in both Unisyn and Combilex. Unisyn provides

entries interspersed directly with morpheme boundaries. For instance, the word unan-

swered has prefix <un–, root {answer}, and suffix –ed>. The entry with both letters

and morphemes appears as <un<{answer}>ed> in Unisyn notation. Unisyn contains

phones, syllable boundaries, lexical stress markers and POS tags. Its morphology

is very simple to predict. While this enables a relatively easy application to out-of-

vocabulary (OOV) words, a more detailed and fine-grained notation of morphology

could potentially add further benefit. For instance, canonical morphology [190] mod-

ifies each detected unit to one of a standardised set. Take acquirability: its surface

representation in Unisyn is <a{cquir}>abil >ity >, but canonical segments would be

more consistent:<{acquire}>able>ity >, and thus increase the frequency even more

of the Morphemes curve in Figure 3.1. Further information on the approach taken to

morphology in Unisyn is provided in [191].

3.3.3 Supervised and Unsupervised Morphological Decomposition

The following experiments with morphology were conducted with Unisyn IV words.

In practice, morphology would have to be predicted for OOVs. Supervised learning

could be employed for morphological decomposition with S2S models. For example

in [192], [193], the authors used an LSTM to segment text into morphemes. In [194]

the author compared using uni- and bi-directional LSTM RNNs, CNNs with and with-

out copy-attention and transformer models, bi-directional LSTM RNNs achieving the

highest accuracy. Unsupervised morphological segmentation is also implemented in

packages such as Morfessor [195]. Another common approach for subword decom-

position is byte pair encodings (BPE - [178]). More recently, multiple methods for

subword decomposition have been made available for researchers via SentencePiece

[196]. In [197], BPE was compared to gold standard morphological boundaries in

S2S-G2P models. While morphological boundaries led to significant improvements in

WER, this was not the case with BPE. Whether subword units need to be linguistically

symbolic is an area for future work (see Section 6.3).

Morphological decomposition (or segmentation) is separate from the task of mor-

phological re-inflection. In reinflection, root words (e.g. run) are reinflected according

to linguistic tags (e.g. the present participle running). Morphological re-inflection has
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Figure 3.2: Training loss of G, GM, P and PM. In the first 400 epochs in the training

schedule loss is reduced for GM and PM at a faster rate but by the end of training dif-

ferences were small. An explicit validation set was not provided in the implementation.

been the subject of multiple SIGMORPHON challenges [198]–[201].

3.3.4 G2P Models

The effect of morphological boundaries was first evaluated in an explicit G2P model.

The baseform lexicon of Unisyn was used. This lexicon was designed to be accent-

independent and contained 160,000 entries. Prior to training the models, two partitions

of the data were created as random and disjoint sets. For the random test set, 20% and

5% of Unisyn entries were randomly selected for the validation and test sets respec-

tively. For the disjoint test set, entries were grouped according to the primary root

morpheme of the words, and the validation and test sets were selected such that they

contained distinct sets of root morphemes. For example, the root {hiccough} may

have been in the training set with associated entries such as {hiccough}> ed> and

{hiccough}> ing>, but {cough} is a separate root morpheme and could appear in the

test set with derivations such as {cough}> ed> and {cough}> ing>. Note the sets were

made entirely disjoint in terms of root morphemes from one another· {hiccough} or

any its derivations/inflections could not appear in the test set. In this way, the G2P
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Random Disjoint

WER PER WER PER

G2P_G 9.9 2.3 32.6 5.9

G2P_GM 7.9 1.9 23.4 3.9

Table 3.2: G2P error (%) with (GM) and without (G) morphemes

model’s ability to generalise to unseen root morphemes was tested. The same G2P

model architecture and training schedule was described in Section 2.4.4.

3.3.5 TTS Models

Out of the total 13,100 utterances in LJ speech (24 hours), 9871 utterances with IV

items were used, totalling approximately 18 hours of speech. Utterances containing

OOVs were left out to ensure consistent and correct morphological composition was

available for each word in every utterance. Although predicting morphological fea-

tures for OOVs is straightforward and relatively accurate, this would have added un-

necessary complication for the intended purpose of understanding how, in principle,

morphology effects E2E-TTS quality.

An implementation of Tacotron [202] was used. This implementation of Tacotron

used a linear pre-net with dropout and a CBHG module to encode a series of one-hot

input characters from a sequence into a single representation. The implementation

also uses Location Sensitive Attention (LSA) from Tacotron 2 to reduce instability

in output speech [7]. As noted in Chapter 1, S2S models with attention mechanisms

sometimes babble, or fail to produce intelligible speech. Each Tacotron was trained

for 350k, training steps, with a batch size of 32, learning rate of 0.001 following the

default training schedule.

The implementation uses a WaveRNN vocoder based on [113]. A single vocoder

on ground truth features was trained for use with the Tacotron models. A sampling rate

of 16kHz was used.

3.3.5.1 MUSHRA Design

A MUSHRA listening test was conducted to test naturalness from 4 systems and a

natural utterance as a hidden reference. 20 utterances were randomly selected from LJ

that contained OOVs. The OOVs with correct morphology were added to the test text-

and phone-input. As noted in Chapter 1, naturalness scores performed on a held-out
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G input GM input G Pronunciation (Incorrect) GM Pronunciation (Correct)

coathanger {coat}{hang}>er> [k@"DeInÃ@] ["koUthæN@ô]

pothole {pot}{hole} ["pAD@l] ["pAthoUl]

goatherd {goat}{herd} ["gA:D@d] ["goUth3ôd]

loophole {loop}{hole} [lu:"f@Ul] ["luphoUl]

upheld {up}{held} [2"fEld] [2p"hEld]

cowherd {cow}{herd} ["kaU@ôd] ["kaUh3ôd]

gigabytes <giga<{byte}>s> [gI"ga:bIts] ["gIg@baIts]

wobbliest {wobble}>y»est> ["wAblist] ["wAbliIst]

optimisers {optim==ise}>er»s > ["AptImIz@z] ["AptImaIz@ôz]

synchronizable {syn==chron==ize}>able> [sI"traIz@bl] [siNkr@"naIz@bl]

Table 3.3: Improvements in TTS pronunciation by adding morphology: systems G and

GM. Listen to speech samples online. The IPA is used to broadly transcribe synthetic

speech samples in an American accent.

test set do not test implicit pronunciation modelling directly. Targeted stimuli are used

in Section 4.4. Nevertheless, given general performance increases when using subword

information in other S2S tasks, a naturalness test was deemed worthwhile.

Example inputs to the 4 systems are shown in Table 3.1. The baseline was the

grapheme-based (G) system, with base graphemes (text) only. The graphemes en-

hanced with morphology (GM) are interspersed with morphological boundaries. P and

PM are the equivalent but using phones provided by Unisyn.

A closely-controlled listening test was held. The BeaqleJS platform was used 2 to

implement a MUSHRA listening test [203]. The software randomised the systems in a

latin-square design. It also ensured every sample was listened to before listeners could

proceed. The tests were conducted in purpose-built sound-insulated booths, and play-

back volume was kept consistent across all tests. 30 native speakers were employed

with no known hearing impairments, who were paid £7 to listen to and score 20 ut-

terances from each of the 4 systems over a 45 minute period. Scores were aggregated

identically to the MUSHRA in Chapter 2.

3.3.6 Results

The G2P results are presented in Table 3.2. On the random set, the WER was improved

by 2% with the addition of morphological boundaries (from 9.9% to 7.9%). Moreover,

the WER improved by 9.2% on the disjoint set containing unseen roots (from 32.6% to

2Available from: https://github.com/ZackHodari/beaqlejs

https://github.com/ZackHodari/beaqlejs
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Figure 3.3: Range of scores from MUSHRA listening test of each system with phones

or grapheme-based input with or without morphology

23.4%). These findings demonstrate that G2P modelling is improved when providing

knowledge of morphological information on input. The margin was larger with a test

set of words containing unseen root morphemes.

On a side-note, the WER for the random set appears comparatively low because

there is a high amount of root morpheme cross-over between the training and test

sets. Around 80% of Unisyn entries are derived from words with pre-existing root

morphemes.

The average and spread of scores for each system in the MUSHRA is shown in

Figure 3.3. Importantly, the MUSHRA is designed to demonstrate comparative results

between systems. As such, the score for any one system should be interpreted relative

to another, not as an absolute in itself. The hidden reference for this experiment was

natural speech, and all the models exhibited unnatural intonation patterns due to a

process of F0 averaging (see [134], [204] for attempts at improving the problem of F0

averaging with VAEs). The overall quality of speech samples was high – samples are

available3.

Supplementing both text- and phone-input with simple boundaries led to improve-

ments. The differences in mean between systems G and GM are significant with a p-

value <0.05. These results show augmenting input with morpheme boundaries also

3Listen at: http://homepages.inf.ed.ac.uk/s1649890/morph/

http://homepages.inf.ed.ac.uk/s1649890/morph/
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Word GM (Incorrect) PM (Correct)

untypable ["2ntIp@bl] [2n"taIp@bl]

pyjama ["pæÃ@m@] [p@"Ãæm@]

flaubert ["flA:b@t] [fl@U"ber]

karate [k@"reIt] [k@"rA:ti]

eduardo [e"dOrdu] [e"dwA:rd@U]

macao [meI"keU] [m@"kaU]

crimea ["kraImi] [kraI"mi:@]

labyrinth ["leIb@ôInT] ["læb@rInT]

ASCII [@"si:] ["æski]

Table 3.4: Improvements in TTS pronunciation from using phones: systems GM and

PM

substantially improves neural TTS quality with this Tacotron implementation.

Error words from the LJ Tokens G2P model in the previous chapter were also

synthesised. The system GM disambiguated pronunciation over grapheme clusters that

system G pronounced incorrectly. Table 3.3 shows how adding morphology improves

pronunciation of such words as coathanger, upheld, and wobbliest. A larger scale

evaluation of G2P error words is conducted in Chapters 4 and 5.

System P system outperformed system G, but less so than the use of morpholog-

ical boundaries. The improvement with P contrasts with the MOS test results of [4],

[173] where similar Tacotron models reported no difference when using text- or phone-

input. Direct comparison between these works is difficult however due to differences

in datasets, quality of phone labels, encoder/vocoder architectures, and listening test

(MOS/MUSHRA) types. This result further motivates a systematic review of input

representations and as suggested in Section 2.6.4.2 but with the additional factor of

subword decomposition. A template for such an analysis could be the analysis con-

ducted in [18], where grapheme, phoneme and wordpiece units were systematically

compared across the switchboard and LbiriSpeech datasets in E2E-ASR [18].

3.3.7 Targeted Stimuli

The above analysis of morphology contained a specific test with explicit G2P models

and a naturalness test in Tacotron. The pronunciations of some anecdotal stimuli were

also transcribed to demonstrate mispronunciations. To specifically measure implicit
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pronunciation modelling in Tacotron, linguistically motivated stimuli such as words

of inaccurate G2P may reveal more differences than naturalness scores from held-out

sentences. To this end, a larger set of targeted stimuli is used in Section 4.4 for an

intelligibility evaluation using ASR transcriptions.

3.3.8 Discussion of Morphological Input

In Table 2.5, it was noted that the learning from grapheme-input may depend on inter-

actions between the encoder type and the waveform generation method (single-stage

or with a separate neural vocoder). In light of subsequent work, further questions

were asked about the interaction between the kind of data/ architecture and input rep-

resentations used. In [18], [19] comparisons of grapheme- phoneme and unit types

(characters v wordpieces) was conducted in ASR. An analogous study would also be

worthwhile to quantify the value of subword decomposition in E2E-TTS: in particular

the effectiveness of unsupervised methods for subword decomposition such as BPE or

Morfessor (see Section 6.3).

Another interesting area of future work could be to adopt the approach taken in

[8] to use a trained E2E-TTS model as a classifier to the tasks of G2P modelling or

morphological decomposition to gain a more in-depth understanding of how much

linguistic knowledge is implicitly learnt when text sequences are augmented with mor-

phological boundaries.

3.3.9 Summary of Morphology Experiments

1. Does morphology improve G2P with S2S models?

Yes. G2P models performed with significantly lower WER and PER with morpho-

logical input (GM) on both random and disjoint test sets. Whether unsupervised forms

of morphology (e.g. subword units) offer the same improvements would require further

experimentation.

2. What effects does morphology have on E2E-TTS audio?

The GM Tacotron system performed with a statistically significant improvement in

naturalness over system G and the speech sounded more fluent. In particular pronun-

ciation errors over morpheme boundaries with the G model were corrected with the GM

model. However, further experimentation would be required to discover how important

gold-standard morphology is to this improvement over unsupervised methods.
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3. Does morphology improve implicit pronunciation modelling in Tacotron?

Yes, in this experimental setup (with gold-standard morphology). For deploy-

ment however several factors need consideration: an effective subword delin-

eation or grapheme-to-morpheme predictor would be required. It is unknown

whether similar benefits could be offered if the morpheme boundaries were pre-

dicted rather than gold-standard. This would be an interesting avenue for future

work.

3.4 Other Languages

3.4.1 Text- or Phone-input?

To what extent is text-input a source of mispronunciation in other languages? As

mentioned in Chapter 1, text normalisation is necessary in many languages for TTS

in deployment (see [55]) . However, the extent of the normalisation may be related to

the writing system in question.

In Eastern-Asian languages, text can be written with large sets of non-alphabetic

characters. In Mandarin, a conversion from logographs to pinyin (a romanized, ap-

proximately phonetic alphabet) is necessary. This process is known as Grapheme-to-

Phoneme (G2P) conversion but is applied to all input text for TTS, not only for OOVs

as in English [205].

Interestingly in Mandarin, pinyin characters correspond to different tones depend-

ing on semantic context. The tones carry meaningful distinctions but are not easily

predictable from the context alone. Therefore some semantic information is required

beyond the phonetic level for correct pronunciation. This is known as the problem of

polyphone disambiguation. Polyphone disambiguation is similar to homograph dis-

ambiguation in English4 except polyphonic characters are commonplace in all text in

Mandarin.

Manual rule-writing based on semantic context is very expensive and the number

of interacting rules become difficult to scale in a similar way to G2P in English. While

some works have proposed S2S models to generalise polyphone disambiguation [205]–

[207], these still do not perform with 100% accuracy.

What of alphabetic languages other than English? G2P modelling in English is

4The pronunciation of bass depends on whether one is referring to a kind of fish or a musical instru-
ment
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particularly difficult due to irregular spelling, but it is notorious in this respect. In [5],

no difference was found in using graphemes or phones when testing a Tacotron model

in French. These findings are addressed in the next set of experiments in this chapter.

3.4.2 Subword Decomposition

What potential effects could input subword decomposition have on pronunciation mod-

elling in other languages? Subword decomposition arguably benefits agglutinative lan-

guages (which exhibit extensive inflection and compounding of morphemes) more than

English. Similar experiments to those conducted above in English were performed on

Kiswahili data in [208].

In Kiswahili, text-based pronunciation ambiguities occur in the agglutination of

foreign words such as English loan words. For example, in the phrase ‘zinatake place’

(they take place), the English word take adopts the English pronunciation [teIk], but

usually the letter ’a’ in Kiswahili is pronounced [A] not [eI]. Furthermore, the letter ’e’

is always pronounced in open syllables. In an error analysis, subword information im-

proved the pronunciation of specific loan words. G2P WERs were improved by using

morphological and syllabic boundaries. Furthermore, the morphological boundaries

(from Morfessor) and syllabic information significantly improved naturalness over a

text-input baseline.

As mentioned above, when training E2E-TTS for non-alphabetic languages, a con-

version to phones is preferred to avoid large character sets. In Japanese, the hiragana

and katakana syllabaries are phonetic and the logographic kanji can be converted to

one of these alphabets. However, neither the writing system nor a phonetic sequence of

characters denote pitch accents. Pitch accents are meaningful in Japanese and must be

predicted from context [209]. This usually requires complex, rule-based text-analysis

[210]. When implementing Tacotron for Japanese, contextual linguistic features such

as the mora, syllable can improve naturalness, but not as much as pitch accent infor-

mation [173]. The contribution of subword decomposition may also however depend

on the particular evaluation set-up in each work, as in English. Future research could

investigate the value of subword decomposition in Japanese and non-alphabetic lan-

guages further.

However, in other languages it may not only be a matter of correct phones- or sub-

word decomposition. Other linguistic information which is derived manually is still

required and presents a barrier to E2E-TTS without resources. It is not just English
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with a problematic orthography. Modelling correct pronunciations from local charac-

ter contexts may require linguistic information, as semantic information for polyphone

disambiguation in Mandarin, or pitch accent information in Japanese. Below, an-

other difficult-to-model-from-context pronunciation phenomenon is investigated: dis-

allowed liaison in French.

3.5 Experiments in French

3.5.1 Motivation

As shown in Figure 1.4, the authors of [5] observed single graphemes in context can

map to multiple phone sounds. Indeed, E2E-TTS models implicitly learn character

contexts and correspondingly different pronunciations. The authors of [5] conducted a

MUSHRA evaluation comparing text- and phone-input to a Tacotron implementation

with a CBHG module. Listeners were also asked to rate the pronunciation of the sam-

ples on a scale from 1-5 in a MOS-style test. Text- and phone-input performed with

no-significant differences in these tests. In addition, tongue twisters were included to

test pronunciations also with no significant difference found. This suggests a pronun-

ciation lexicon may add no benefit for E2E-TTS in French.

However, pronunciation phenomena are not easily generalisable from the local

character context alone. The authors also noted that the system with either text- and

phone-input produced errors in the pronunciation of liaison. Liaison is a process where

linking sounds are inserted between words. Traditionally, it occurs during the “post

lexical” module of the TTS front-end, after an initial phone string has been obtained

from a lexicon lookup or G2P model. The plural possessive mes before a following

consonant has no pronunciation corresponding to the s grapheme: mes chats - [me .

Sa]. But before a following vowel, the s grapheme corresponds to the pronunciation

[z]: mes amis - [me. za. mi]. The rules governing liaison operate at a deep linguistic

level which are difficult to model. For instance, liaison cannot occur after a subject

noun and a verb, e.g.: mes amis arrivent - [me. za. mi /0 a.Kiv]. While data modelling

of liaison has been tested with decision trees [211] and templates [212], the process is

complicated further because its use is often stylistic and optional [213], consequently

hand-written rules are often used for TTS.

The interesting question here is whether liaison produced by a Tacotron model

is appropriate: i.e. avoided in particular disallowed linguistic contexts (liaison inter-
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Figure 3.4: Total unique words in SIWI and CSS10 French TTS Datasets. The datasets

cover fewer unique words than the lexicon used by MaryTTS which contained 112,130

unique word types. Unusual G2P relations not covered in the training data may not be

predicted accurately, such as for foreign names.

dite). The French language has a highly active normative body called the Academy

(l’Académie Française) who maintain a strict standard form of the language prohibit-

ing insertion of liaison sounds in certain contexts, such as before the aspirated-h in

combinations like les haricots or les hérissons (see Figure 3.6). If sounds are in-

serted in these contexts it is not considered le bon usage (proper usage) of the French

language. While speakers do not strictly obey all rules, the ability to control the pro-

nunciation in such a context could be important to certain users/ in deployed use cases.

Since liaison is not an easily predictable phenomenon from local character sequences,

it provides targeted stimuli for a comparison of text- and phone-input to a Tacotron

model. Since the use of liaison is optional in many contexts, the listening test focuses

on cases of disallowed liaison. These are cases where sounds should not be inserted.

Another model was also trained to test the effectiveness of syllable boundaries on

the quality of the Tacotron with phone-input in French. Following the benefits of mor-

phology above in English and the use of syllables in Kiswahili in [208], Syllables were

chosen for another interesting pronunciation phenomenon in French: enchaînement.

Enchaînement occurs when the final sound of one word transfers to the first syllable

of the next word. For instance, in mon cher ami the final rhotic of the word ‘cher’ is

the onset to the syllable of the next word ami - [mõ . SE . Ka . mi] with a consequent

difference in stress. Could enchaînement be improved with syllable boundaries?
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3.5.2 Research Questions

1. Does Tacotron in French with text-input mispronounce words with challenging

G2P relations?

2. Does Tacotron in French with text-input learn cases of disallowed liaison?

3. Do syllable boundaries improve the pronunciation of enchaînement in French?

3.5.3 French Resources

To answer the above questions, preference tests with targeted stimuli in Tacotron mod-

els were conducted. A TTS front-end in French was required that would provide ac-

curate phone strings during training and testing. In [5], eSpeak was used. This pack-

age generates phonestrings via rule-based G2P modelling without liaison post-lexical

rules. Another front-end for French was available in MaryTTS, which outputs linguis-

tic metadata such as syllables, and Part of Speech (POS) tags. The lexicon was based

on the database Lexique [214], each word wherein was phonetized and syllabified us-

ing LIA PHON [215] whose PER is 1.3% (the syllable error is unknown). The default

French voices in MaryTTS do not provide post-lexical rule-based phonetization such

as liaison. Liaison post-lexical rules were therefore manually based upon the guide

available in [216]. POS tagging was a core input attribute for the liaison module so

the French MaryTTS front-end was modified to use the Stanford POS tagger [217] to

ensure as high accuracy as possible5. The front-end of MaryTTS is designed on an

XML-based Document Object Model and details on updating modules in MaryTTS

pipelines is provided in [218]. For the phone-input systems below, the French front-

end from MaryTTS was used, with its default lexicon and G2P model enhanced with

liaison post-lexical rules.

19 hours of audiobook data recorded by Gilles G. Le Blanc were used for training,

distributed as part of the open source CSS10 dataset [161]. 5% of the data from which

test stimuli were randomly sampled were held-out for the CSS10 AB listening test.

As in Chapter 2, the numuber of unique word types per hour in the CSS10 and SIWI

datasets were counted and averaged. The CSS10 dataset was chosen for its larger

and wider coverage of unique word types. The lexicon used by MaryTTS contained

112,130 unique word types. The distribution of word types is shown in Figure 3.4. The

5The maintainer of MaryTTS (Sébastian le Maguer) made the modifications to the POS tagger as
described.
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riched with syllable boundaries (S). The significance level at p = 0.05 is shown by the

black dotted line at x=57.

proportion of words with irregular G2P relations such as foreign names in the lexicon

and datasets is unknown.

3.5.4 Listening Test Design

The AB preference tests were run on 10 sentences held-out from the CSS10 dataset

between:

1. grapheme- (G) and phone- (P) input;

2. phone- (P) and phone-input enriched with syllable boundaries (S)

To test pronunciation with targeted stimuli, a G2P model was trained using the

CSS10 data to identify words with difficult G2P relations. These words were then

synthesised by the Tacotron model. The OpenNMT architecture was used as previously

except with the lexicon from MaryTTS. 10 error words from the test set were placed

in the carrier sentence: "Il a dit ... encore une fois" = "He said ... again.".

To test liaison, 10 sentences, each containing impossible or disallowed liaisons

were synthesised. As noted in [5], impossible cases of liaison are problematic for
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Figure 3.6: Results from targeted preference Test. The first tier shows G2P results, the

second tier shows liaison. The last 3 tiers show results from the test with enchaînement

stimuli.

Tacotron - for example where an s can be inserted before an aspirated-h as in les_haricots.

The test compared output from the G and P models.

To test enchaînement, 10 sentences were created, each containing cases where the

word-final consonant becomes the onset of the following word-initial syllable. The

samples were compared from the P and S models.

AB preference tests were built in Qualtrics. Due to social distancing policies, an

online listening test was held using the Prolific platform. In-person tests have the

advantage of controlling listening conditions but there is evidence that online tests can

lead to consistent results. For example, there were high correlations across 5 different

sets of listeners across 5 different days in [219]. However, crowd-sourcing of TTS

evaluations can be affected by noise, such as street noise and background TV-noise

[220]. For control, participants were only allowed to take the test on a desktop and not

a mobile phone. 30 participants took part. Participants were paid £5 per 30 minutes

of their time. Participants were native French speakers and had no known hearing

difficulties. For the general and targeted preference tests the accompanying question

on each screen was: Which clip has better pronunciation?/ (Quel clip a la meilleure

prononciation?)6.

6Samples are available at: http://homepages.inf.ed.ac.uk/s1649890/fren/

http://homepages.inf.ed.ac.uk/s1649890/fren/
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Word G (Incorrect) P (Correct)

Miguel de Cervantès [digɛl də sɛʁvãtz ] [ migɛl də sɛʁvãtɛz ]

Les Coopers [te skopə] [le kypɛ]

Monica Lewinsky [pwanika lewẽsi] [monika lywinski]

Rio de Janeiro [tʁio də ʒanero] [ʁio də ʒanero]

McLaren [klaʁno] [məklaʁɛn]

Table 3.5: IPA transcriptions of words of inaccurate G2P included in preference test.

Mispronunciation of names by the G model are highlighted in bold. The pronunciations

contained unusual sounds with some skipping for unusual character contexts such as

Lewinsky. How are character contexts unseen in training data handled implicitly by

G2P models?

3.5.5 Results

3.5.5.1 CSS10 Stimuli

The results from the general AB listening test are shown in Figure 3.5. No significant

differences were found between the G and P systems, nor between the P and S systems.

System S had been expected to perform with a significant preference over system P

since the distribution of recurring subsequences when using syllables was lower than

using words. However, as mentioned in Section 3.3.1, a comprehensive explanation

of latent decision making is difficult. However there was an observed preference for S

when testing the pronunciation of enchaînement.

3.5.5.2 G2P Error Words

The results from the targeted AB listening test are shown in Figure 3.6. The phone-

input models had accurate phone labels for this targeted preference test. Listeners sig-

nificantly preferred P over G in the G2P preference test. Some incorrect pronunciations

by system G are shown in Figure 3.5. Listening to samples, there were mispronuncia-

tions for unusual grapheme sequences in French such as cooper, rio. Sounds were also

skipped such as the ’k’ in Lewinsky. There was also an inexplicable [o] sound inserted

in McLaren. Increased skippings and mispronunciations were found with the targeted

test of difficult words in [111] in English.

The mispronunciations are further evidence that gold standard phone-input can be
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Input Labels

G Les haricots pousseront plus efficacement en plein air.
Il a mis une chemise.

P [ le  aʁiko pusəʁõ plys efikasəmã  ã plẽn ɛʁ ]
[il  a mi  yn ʃəmiz ]

Table 3.6: Liaison inserts sounds at word boundaries according to complex rules, but

inadequate insertion such as following an aspirated-h or between a past participle and

a determiner was dis-preferred. Inadequate liaisons are highlighted in bold.

better for words with difficult G2P relations (earlier examples have been provided in

Tables 2.3 and 3.4). A pronunciation is helpful for words with difficult G2P relations

as presented.

Given the poorer quality of these 10 G2P error words for system G, it is surprising

that G was given some preference by some listeners for some sentences. Indeed, it was

difficult to control the listening conditions of listeners since the test was conducted via

a crowd-sourcing platform.

3.5.5.3 Liaison Stimuli

Listeners significantly preferred P over G. In each case, G inserted liaison sounds where

they should not have been inserted. It is interesting to note that some listeners did

not mark G down. Speakers do not strictly obey all rules of le bon usage in French

and liaison is often mis-used. It is difficult to know whether G was sometimes instead

preferred due to differences in listening conditions (or other uncontrollable factors).

Nevertheless, the scores demonstrate that system P (which did not pronounce liaison)

was still preferred overall.)

3.5.5.4 Enchaînement Stimuli

No significant differences were observed, but there was a preference for system S over

system P. With syllable boundaries replacing word-boundaries, prosodic breaks oc-

curred between syllables and less so at word boundaries. Some examples of the differ-

ences in the breakdown are shown in Table 3.7.
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Input Labels

G Le <> ciel <> est <> bleu <> et <> la <> mer <> aussi
Les <> sept <> enfants <> ont <> raconté <> une <> histoire <> amusante

P lə <>  sjɛl <> ɛ <> blø <> e <> la <> mɛʁ <> osi
le <> sɛt <> ãfã <> õ <> ʁakõte <> yn <> istwaʁ <> amyzãt

S lə . sjɛ . lɛ . blø . e . la . mɛ . ʁo . si
le . sɛ . tã . fã . õ . ʁa . kõ . te . y . ni . stwa . ʁa . my . zãt

Table 3.7: Input string differences with syllable boundaries. ’<>’ denote word bound-

aries, ’.’ denote syllable boundaries. The boundaries in the S system cross the word

boundaries between ’ciel-est’, ’mer-aussi’, ’sept-enfants’ and ’histoire-amusante’.

3.6 Discussion on Pronunciation Evaluation

So far, pronunciation errors have been shown when using text-input in the E2E-TTS

models DC-TTS and Tacotron. In particular, cases where pronunciations are not easily

learnt from local character context have been analysed. The listening test in French

sought to demonstrate that by using stimuli targeted to aspects of a language in ques-

tion, differences could be observed between text- or phone-input not observable in

other kinds of listening tests (such as MUSHRA or MOS).

However, the targeted stimuli in these experiments have been small in number (in

terms of stimuli and listeners) and subjective (online/in-person). Whilst an objective

evaluation was presented with simulated G2P models in Chapter 2, insights from G2P

modelling are limited. The most convincing evidence of mispronunciations in E2E-

TTS have been anecdotally observed (e.g. placenames and foreign words in Tables 2.3

and 3.3). Ideally, evaluations could be conducted on diverse kinds of stimuli without

the cost of running large scale listening tests. With the introduction of social distancing

in early 2020, conducting evaluations without in-person tests became important. The

next chapter assesses the reliability of ASR in measuring intelligibility of TTS output.

In particular, an E2E-ASR model based on a Transformer from ESPnet [153] is

employed that does not use a pronunciation lexicon. Since E2E-ASR models have

been observed to make errors for difficult G2P words in a similar way to E2E-TTS

with text-input (e.g. see [17]), its reliability for exactly these kinds of words is also

analysed.
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3.7 Summary

3.7.1 Summary of French Experiments

1. Does Tacotron in French with text-input mispronounce words with challenging

G2P relations?

Yes, foreign words were mispronounced with system G. It is important to note that

phone-based systems may also mispronounce such words if phones are predicted via a

G2P model instead of being hand-labelled.

2. Does Tacotron in French with text-input learn cases of disallowed liaison?

No, cases of disallowed liaison were mispronounced. The rules governing liaison

are linguistically complex and Tacotron learns a generalised pattern rather than the

underlying rules.

3. Do syllable boundaries improve the pronunciation of enchaînement in French?

In this listening test there was a small preference but further work is needed to

establish benefits (if any) of syllable boundaries.

3.7.2 Summary Remarks

This chapter presented experiments using text-, phone- and subword unit- inputs to a

Tacotron model. Morphological boundaries in English were found to improve TTS

quality. Preferences were observed for phone-input in samples of G2P error words and

disallowed liaison in French. Targeted stimuli revealed differences between systems

that were not observed with stimuli from regular TTS test sets.

The need for a reliable objective metric to efficiently conduct large-scale evalua-

tions was also mentioned. To this end, in the next chapter an analysis of ASR as an

objective intelligibility metric for TTS (and in particular for pronunciation evaluation)

is conducted.



Chapter 4

TTS Evaluation using ASR

This chapter investigates the use of automatic speech recognition (ASR) to evaluate in-

telligibility in TTS. The adoption of this approach to measure TTS performance (e.g.

as in [4]) is a demonstration of the improvements in ASR in recent years. Whereas

works (e.g. [21]) typically make use of a free ASR API, the analyses in this chapter

make use of an open sourced Transformer-based model available from ESPnet [153].

This model does not use a pronunciation lexicon, which allows for an interesting com-

parison in how E2E-ASR and E2E-TTS deal with words of difficult G2P relations

simultaneously. It could be argued that transcription of difficult G2P relations by an

E2E-ASR system is not a sensible method of evaluation. But if there are no issues in

pronunciation modelling by E2E-ASR and E2E-TTS systems, then there should be no

problems.

4.1 Motivation

In this thesis, evaluations of pronunciations with targeted stimuli have so far been on a

small scale and subjective. G2P as an objective metric was used in Chapters 2 and 3,

but as explained, there were differences between simulated G2P models and E2E-TTS

audio output. ASR could be used to transcribe E2E-TTS output audio, thereby offering

an intelligibility-like metric.

Recently, authors have analysed TTS performance using ASR [4]. However, to

my knowledge the reliability rankings according to intelligibility had not been inves-

tigated. Furthermore, insights from the evaluation of more stimuli than feasible in

human listening tests had not been analysed in detail.

89
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4.2 Research Questions

1. How does ASR compare to paid listeners when transcribing synthetic speech in

the Blizzard Challenge?

2. How do confidence intervals over ASR WERs change as the number of TTS test

stimuli is increased?

3. Do ASR transcriptions identify the same significant differences between system

pairs as the paid listeners?

4. Are there any benefits to increasing the number of stimuli for ASR transcription?

4.3 Blizzard Challenge Re-evaluation

4.3.1 Objective Metrics

The development of objective evaluation metrics is crucial to the field of text-to-speech

synthesis (TTS). Traditional listening tests conducted under controlled conditions are

expensive, and the data collected may require extensive quality control [221], [222].

The drive for simpler and less expensive means for evaluation have resulted in use of

metrics such as PESQ [223], MCD [224] and ViSQOL [225]. Recent work has also

focused on the prediction of MOS for TTS [226]–[228] and voice conversion [229],

[230] systems using neural networks.

However, an intelligibility metric measurable by WER or CER could potentially

capture details of mispronunciations in TTS systems not captured in naturalness met-

rics (see Section 4.4.4). Previous work on objective intelligibility measurement has

focused on speech in noise to evaluate speech enhancement algorithms [231]. This

was the subject of the Hurricane Challenge [232]. Recent progress in ASR has en-

abled the use of ASR transcription as a more interpretable metric for intelligibility.

A phone-based ASR system outperformed other objective intelligibility measures for

evaluating speech enhancement in [233].

The use of large, open vocabulary continuous speech recognition (LVCSR) to sub-

stitute human listening evaluations is a recent innovation. For instance, an open source

LVCSR system available from [153] was also used to evaluate TTS intelligibility in

[234]. Previously, only closed vocabulary ASR had been used for transcription tasks,
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as in [235]. Recently, ASR has also been used for other tasks in TTS such as the auto-

matic selection of “clean” training utterances and speakers [236], and for transcription

of training recordings in [166].

Little work has so far sought to establish the reliability of ASR for measuring TTS

intelligibility. [21] found strong correlations between human word error rate (WER)

collected from Amazon Mechanical Turk (MTurk) to the WER of 3 different ASR sys-

tems (IBM Watson, Google API and wit.ai). [237] also found correlations between

MTurk, these ASR systems and MCD when building DNN-based TTS voices in Mer-

lin. However, it remains unknown whether explicit ASR-derived rankings of multiple

TTS systems correlate with those derived from paid, in-lab human transcribers.

4.3.2 Data

The Blizzard Challenge [104] provides evaluation data for the development of objec-

tive metrics [238]–[242]. The Blizzard Challenge is an annual event where participants

are provided with a speech dataset for voice building and are asked to submit a defined

set of synthetic samples for evaluation. The focus of the challenge changes from year

to year; for example, samples were evaluated at varying noise levels in 2010, while

the challenge was focused on Mandarin TTS in 2019. Each year, a large-scale human

listening evaluation is conducted and participants submit samples of semantically un-

predictable sentences (SUS) for a human transcription task that measures intelligibility.

The test samples and evaluation data are available for download 1. This resource was

used to compare WERs computed using in-lab and online human transcriptions with

objective ASR transcriptions. Specifically, I compare rankings of systems submitted to

the Blizzard Challenge in 2011, 2012, 2013, 2016, 2017 and 2018. The relevant data

for 2016, 2017 and 2018 was unavailable from the website and I worked with Blizzard

Challenge organisers to format the results from the latter years for analysis. See the

Blizzard Challenge summary papers [243]–[248] for more detail on and results from

each challenge. The years 2014, 2015, 2019 and 2020 were excluded as these used

languages other than English. I discuss the potential research directions with other

languages in Sections 4.3.11 and 6.2.

Each year a section of the evaluation focuses on measuring the intelligibility of

submitted systems. Paid listeners are recruited who type-in transcriptions in purpose-

built sound booths under controlled conditions. These listeners are known as EP or
1The data is available from this link: https://www.cstr.ed.ac.uk/projects/blizzard/data.

html

https://www.cstr.ed.ac.uk/projects/blizzard/data.html
https://www.cstr.ed.ac.uk/projects/blizzard/data.html
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EE depending on the year of the challenge. Participating teams also recruit their own

speech experts and online volunteers to conduct an evaluation. Known as ES and ER

respectively, these are mainly composed of non-native speakers of English. In 2011,

Amazon Mechanical Turk (AMT) was also used for evaluation.

Each year a new test set of SUS stimuli is submitted as well as the test sets of the

previous two years. For each challenge 3 test sets were analysed in the ASR maximum

stimuli sets (henceforth Extra ASR): 2011 (700 stimuli), 2012 (800), 2013 (900), 2016

(600), 2017 (600), 2018 (600). The data from the EH1 challenge for each year and for

EH2 from 2013 were included. The test stimuli were created using a SUS generator

and do not appear in the LibriSpeech dataset for the ASR system used (see below).

The data were pre-processed to exclude punctuation, and all comparisons were made

on upper-cased text.

Systems are randomly allocated a different anonymized letter each year. Some

systems did not submit the 3 SUS test sets in a given year (such as system N in 2017)

and those systems were excluded from analysis. System A is always natural speech

but since recordings of the SUS sentences do not exist, they were not included in

the analysis. Years 2017 and 2018 included systems based on neural text encoders

and WaveNet-based vocoders, with earlier years including previous Unit Selection and

SPSS-based TTS. Statistics were computed using the Scikit-learn Python package.

4.3.3 ASR Model

The ASR model was a pretrained LibriSpeech Transformer model available from Es-

pNet [153]. This had the advantages of being open-sourced, accessible and trained

end-to-end (E2E) on a large (1,000 hours) multi-speaker corpus [249]. It performed

with a WER of 4.9% on the LibriSpeech clean test set. As an E2E model, it had

the disadvantage that extracting recognised phone strings to measure phone error rate

(PER) was not possible, which may otherwise have offered insights into the reliability

of ASR for TTS intelligibility. For example, [250] found ASR PER to be a superior

means of TTS model selection than common loss functions. The reliability of using

an E2E-model versus a hybrid model for TTS evaluation (in particular for implicit

pronunciation modelling) could be an interesting topic for future work. For exam-

ple, with what reliability could post-lexical pronunciations (e.g. liaison) be transcribed

with phone recognition? Another interesting question also arises over the transcription

of homophones (e.g. shoes and shoos): in [19], it was argued that a higher WER was
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Figure 4.1: WER of systems for SUS stimuli used in the Blizzard Challenge 2018. The

x-axis shows the WER for Paid Listeners (EP). The y-axis shows WER for the same

stimuli from Speech Experts (ES), Online Volunteers (ER) and ASR (ASR). A linear

regression line of best fit was added to aid visualisation for each evaluation type. The

scales of x- and y-axis are different because the range of WERs was wider for ES

and ER than EP. The dotted grey line is through the origin (0,0) and would represent

correlation in WERs to EP. ES and ER demonstrated higher WERs than ASR.

observed for phone-based E2E models due to a less robust handling of homophones

than graphemes.

4.3.4 Calculating WERs

For the Blizzard Challenge re-evaluation WER measured intelligibility as used in the

Blizzard Challenge. As will be explained in Section 4.3.11, character error rate (CER)

is more sensible since the E2E-ASR model operates at the character level. CER is used

in further experiments later in this chapter.

For each system in the Blizzard Challenge data, the WER was computed across

all stimuli used in a set, including all human and ASR transcriptions. For the human

evaluation, any blank entries were disregarded from analysis. In-depth verification of

human transcriptions was infeasible due to the number of transcriptions such a verifi-

cation would involve. The WER was computed using the fastwer package.
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4.3.5 Visualising WERs

In order to draw conclusions about the validity of using ASR for ranking TTS sys-

tems, an aggregate analysis of multiple systems across multiple years of the Blizzard

Challenge would be required. An initial method of visualisation is shown in Figure 4.1

which shows results for the year 2018. Paid in-lab participants (EP) were treated as

gold standard in terms of evaluation quality, since they provided the lowest WERs and

performed the transcriptions in controlled conditions. The letters in the figure refer to

the competing systems as they appeared in the Blizzard Challenge. The x-axis labels

the WER obtained by systems when samples were transcribed by EP. The same system

evaluated by all listener types always has the same x-coordinate. The y-axis presents

system WERs according to the transcriptions produced by speech experts (ES), online

volunteers (ER) and ASR (ASR). The rankings by each listener type vary along the

y-axis.

A perfect correlation of EP to a listener type would entail the same distance in

magnitude along the x- and y-axes between systems. Ideally, the systems would be

spread out along the grey line which would have exact correlation. The relative rank-

ings by each listener type is indicated by the height difference between the letters. To

aid visualisation, a linear regression fits for each listener type was also plotted.

Consistently all ES and ER scored higher WERs than EP. All EP were native speak-

ers, but ES and ER conducted their test online and included non-natives. Noticeably,

ASR consistently achieved lower WER than the ES and ER, a trend that is repeated in

all years analysed (see Figure 4.2).

This method of WER visualisation did compare listener types but the letters were

difficult to read (for instance the letters ’G’, ’E’ and ’I’ for ASR in Figure 4.2) and ob-

serving the rank of systems vertically seemed counter-intuitive. Furthermore, a figure

had to be created for each year and analysed separately. Instead, the WERs were aver-

aged for each system in each year for the EP, ES, ER, ASR groups. This is presented

in Figure 4.2 alongside Extra ASR.

Figure 4.2 shows the difference in WER from EP for each year analysed. Each

listener type is denoted by colour and the scores are offset around a year label to aid

visualisation. Each bar represents the mean and 2 standard deviations difference in

WER from EP. The bars are colour coded according to the transcription method. The

ASR bars in blue are the same stimuli as transcribed in the formal human evaluations,

ranging between 25-40 stimuli depending on the year. As noted above, the Extra ASR
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Figure 4.2: Aggregate Difference in WER from Paid Participants. Each bar shows the

mean and 2 standard deviations for each listener type: Speech Experts (ES), Online

Volunteers (ER), Amazon Mechanical Turkers (MTurk ), the same stimuli ranked by ASR

(ASR) and the maximum number of test SUS synthesised each year (Extra ASR)

bars in orange correspond to 3 SUS test sets (600-900 stimuli per year) Note, since

Extra ASR contained additional stimuli, direct comparison between Extra ASR and the

other methods was not possible. However, Extra ASR bars in Figure 4.2 were included

to show that with more stimuli of the same genre, WERs remained similar between

Extra ASR and EP.

ASR performance is close to EP in WER for every year except 2011, where MTurk

achieved lower WERs. ASR gives consistently lower WERs than the ES and ER. The

latter groups have high WERs as their evaluations are conducted more informally than

for the EP and non-natives are consistently above 60% of listeners each year. Similar

WER averages and spreads are achieved by the ASR and Extra ASR sets. This was as

expected since the genre of text was similar. The mean of the Extra ASR bar for 2013

EH2 was below the mean of EP.

This Figure shows ASR achieved similar WERs to human participants when tran-

scribing SUS stimuli from the Blizzard Challenge. Since this work, the authors of

[22] too conducted a re-evaluation of multiple years of the Blizzard Challenge with a

large scale MOS test. In their analysis, ASR was used as an objective metric along-

side Signal-to-Noise ratio and MOSNet. ASR WER was found to exhibit the strongest
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Figure 4.3: Bootstrapped WER confidence intervals averaged across Extra ASR stimuli.

The bootstraps were conducted in steps of 20 stimuli. At each step, the mean and

variance confidence interval in WER of all systems in a year were computed. A solid

line represents the mean confidence interval for a year as stimuli were increased. The

shaded bands represent 2 standard deviations in the confidence intervals of all systems

in a year.

(negative) correlation to MOS scores out of the objective metrics tested. The low

WERs from ASR and Extra ASR were encouraging, but questions still remained about

the confidence and stability of these scores.

4.3.6 Bootstrapping ASR Confidence Intervals

WERs fluctuate across stimuli thus the confidence in the WERs come into question.

Measuring confidence in the WER metric is thus important if it is to rank differences

between TTS systems. In particular, can confidence intervals of WERs narrow as

the number of stimuli is increased? During this analysis, a bootstrap method [251]

for confidence intervals was attempted inspired by [252]. A bootstrap of ASR WER

involves sampling WERs from a bag of stimuli to remove possible effects of sentence

ordering on the metric. For simplicity, from Section 4.4 2 standard deviations were

instead used as a confidence interval.

The bootstrap was successively run in steps of 20 stimuli up to the size of the Extra

ASR test sets for each year. By using the Extra ASR set, confidence intervals for a
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larger number of stimuli could be reviewed. For each step (of 20 stimuli) individual

WER scores were resampled with replacement. 1000 model simulations of WER were

computed in each step. The simulated WERs were sorted and the 95% confidence in-

terval was plotted using the 25th and 975th percentiles at each step (2.5% either side of

the distribution). These upper and lower bounds formed the bootstrapped confidence

interval around the WER given a certain number of stimuli. The confidence inter-

vals allowed visualisation of statistically valid differences between TTS systems and

datasets as the number of stimuli under test increased.

Figure 4.3 shows the average WER confidence interval after bootstrapping. The

confidence interval for each year is an average of the confidence interval of all systems

at each step. The confidence intervals in a single year were averaged across all systems.

The lines are the mean interval at each step of 25 stimuli, the shaded area shows 2

standard deviations around the mean. The means begin to stabilise around 500 stimuli

to around 4%. In 2016, the range of confidence intervals was more diverse than other

years, but its mean score was similar to other years.

Narrowing confidence intervals show systems may be more reliably scored with

Extra ASR stimuli. Below the effect of increased stimuli on significance testing is

examined.

4.3.7 Visualising Significance in Rankings

4.3.7.1 Kendal-tau

Initially, rankings were compared from each listener type using the Kendall-Tau rank

correlation statistic [253]. However, this statistic computes correlations on the raw

rankings. Since many systems exhibited no significant differences between one an-

other, the correlation coefficient and p-value were misleading. They would have been

indicative if every system had a significant difference between itself and its neighbour-

ing ranked systems.

4.3.7.2 Rankings by Pairwise Wilcoxon Signed-Rank Test p-Values

The Blizzard Challenge uses the pairwise Wilcoxon signed-rank test for significance.

This statistic computes a matrix of p-values between systems in a ranked order. In

a matrix, each cell is a p-value between a pair of systems. Figure 4.4 simplifies two

such matrices using a p-value threshold of 0.005 where blue indicates a significant pair,

while red represents pairs above the threshold.
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Figure 4.4: Heatmap of pairwise p-values for systems ranked by EP with 25 stimuli (Top)

and Extra ASR (600 total - bottom) for the Blizzard Challenge 2017. Blue indicates a p-

value below 0.005 between the pair. Red indicates no-significance has been identified.

Systems appear along axes in order according to transcription method (EP on top, Extra

ASR on bottom). With extra stimuli p-values were lower.
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G E I O J D N K C M L B H2018 EP: 

D J O E I G K N M C L B HASR:

G D N O E C J I K M B L Hextra ASR: 

D L M G J I C P H K B Q F O2017 
EP: 

L D M P I J G H C B Q K F OASR:

L D M J G I H C B K P Q F Oextra 
ASR: 

F L C M G B I O J K E P H N2016 
EP: 

F L C K I G B M O J E H N PASR:

F C L G K M I B O E J P H NExtra
ASR: 

C I M H L K F N P2013
EH1 EP: 

I C K H M F L N PASR:

C M H K L F N Pextra 
ASR: 

C I K F M H G L O E N D J2013
EH2 EP: 

I C K L H M O G E F N D JASR:

I C H M K G L F E N O D JExtra
ASR: 

C I H F D B G K J E2012
EP: 

H C D B K I F G E JASR:

H C D F B I G K E Jextra 
ASR: 

F G M D C K E L H J B I2011
EP: 

M C D F G E H I L B K JASR:

C D F M G H E K I B L Jextra 
ASR: 

C F D G M H L E B K J IAMT:

Year Paid Listeners ASR Extra ASR

2018
G E I O J D N K C M L B H D J O E I G K N M C L B H G D N O E C J I K M B L H

2017
D L M G J I C P H K B Q F O L D M P I J G H C B Q K F O L D M J G I H C B K P Q F O

2016
F L C M G B I O J K E P H N F L C K I G B M O J E H N P F C L G K M I B O E J P H N

2013 
EH2

C I K F M H G L O E N D J I C K L H M O G E F N D J I C H M K G L F E N O D J

2013 
EH1

C I M H L K F N P I C K H M F L N P C M H K L F N P

2012
C I H F D B G K J E H C D B K I F G E J H C D F B I G K E J

2011
F G M D C K E L H J B I M C D F G E H I L B K J C D F M G H E K I B L J

Figure 4.5: Groups of no-significance for Paid Listeners (EP), ASR and Extra ASR.

Each line represents a unique grouping of systems as found in the p-value heatmaps.

For the Pairwise Wilcoxon signed-rank test, the significance level was set at a p-value

of 0.005. When stimuli only used in the formal evaluation were included (Paid Listen-

ers and ASR), the groups of no-significance encompass more systems than with extra

stimuli (Extra ASR). ER, ES and MTurk groupings were omitted from this Figure due

to space considerations and ease of visualisation - these also had long groups of no-

significance such as the Paid Listeners and ASR. Note that systems which did not have

3 SUS test sets available were excluded from analysis.
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Aggregate statistics using the pairwise Wilcoxon signed-rank matrices for each

listener type were computed. The top heatmap shows the rankings and p-values for

EP in 2017. The bottom one shows the ranking and p-values according to Extra ASR.

The order of systems along the axes represent the ranks by the transcription method in

question (e.g. EP on the top and Extra ASR on the bottom).

The heatmaps display overlap of no-significance between systems with partial rows

of red cells. The less red in the heatmaps, the finer the significance between the sys-

tems. I sought to visualise the groups of no-significance across the systems. Groups

of no-significance were extracted programmatically. Overlapping bubbles were at-

tempted as used to report results for the voice conversion challenge (e.g. Figure 3 in

[254]). However, the number of bubbles to demonstrate each overlapping group of

no-significance made the figures illegible. Furthermore, a figure for each listener type

would have been necessary and it would have been difficult to visualise effects across

years.

Instead, the rankings were tabulated and lines were plotted for each overlapping

group of no-significance as shown in Figure 4.5. Each of the unique partial rows of

no-significance in the heatmaps translate to a blue line in Figure 4.5. The first partial

row in the heatmaps above spans systems D to P (the top line in Figure 4.4), the second

partial row spans systems D to H. Hence these are the first two lines in the 2017 Paid

Listeners (EP) cell in Figure 4.5. For each challenge 3 rankings are shown (EP, ASR

and Extra ASR).

Consistently, the rows of no-significance are similar for EP and ASR but longer than

in Extra ASR. Figure 4.5 consistently shows that Extra ASR indeed found similar sig-

nificance groups to EP and more significant differences when stimuli were increased.

Figure 4.5 also shows that some systems which are further than 1 step away in

a rank may be in a similar group of no-significance. For example, system Q in the

top line of ASR 2017. Although the mean performance of a system gives a particular

ranking, the spread in its performance might result in no statistical significance when

tested. The mean score of system Q was skewed by 2 low quality outlier stimuli.

Such stimuli may be very important to examine for systems in deployment, and wide

variance is also observed when using increased stimuli with higher confidence such as

with system I in Extra ASR 2018 and with systems C and E in Extra ASR 2011. The

problems resulting from smoothing out the effects of certain individual stimuli was

the focus of [177] where the authors proposed evaluating systems on samples with the

largest differences in audio output. Alternately, differences in systems may be revealed
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Figure 4.6: Frobenius norm of pairwise Wilcoxon rankings varying according to number

of stimuli included in significance tests. The desideratum was a convergence level for

each curve. This level would demonstrate the number of stimuli where the amount of

discovered significance was optimised with as few stimuli as possible.

using targeted stimuli as demonstrated in [111], and as argued throughout this thesis.

4.3.7.3 Frobenius norm of p-value matrices

How did significance levels change as the number of stimuli under consideration was

increased? Could an optimum point be found where significance was maximised with

as few stimuli as possible? To visualise how significance varied, the Frobenius norm

was calculated of each pairwise Wilcoxon p-value matrix as the number of ASR stimuli

was increased. The Frobenius norm is the square root of the sum of all the squared

values of a matrix. In Figure 4.6 the Frobenius norms are plotted as the stimuli for

each challenge were increased.

The falling curves reflect falling p-values overall. There is a fall for all challenges,

but to a differing degree for each. The absolute value of the norm is dependent upon

the total number of systems (e.g. 2013 EH1 contained the fewest systems and has

the lowest Frobenius norm curve). More noteworthy is the relative gradient change

for each curve and to find where they converge - this level indicates where optimal

significant differences between systems in a challenge were found.
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The curves fall the most in the first 200 stimuli. 2013 EH1 falls further after 400

stimuli when reaching a subset of the Extra ASR stimuli. Each curve has its own

relative convergence level arising from the performance on the Extra ASR stimuli, the

number of systems, and the relative quality of each in a challenge. Levelling can be

observed from between 400-800 stimuli, although this is less clear for 2013 EH2 where

the curve increases after 400 stimuli until it drops further around 700 stimuli. The test

stimuli included can effect whether a convergence level is found.

4.3.8 Summary of Blizzard Challenge Re-evaluation

1. How does ASR compare to paid listeners when transcribing synthetic speech in

the Blizzard Challenge?

As shown in Figure 4.2 ASR and Extra ASR obtain WERs that are between 5-10%

higher than paid listeners (EP) for SUS stimuli in English. Performance on other

languages would be interesting future work.

2. How do confidence intervals over ASR WERs change as the number of TTS test

stimuli is increased?

As shown in Figures 4.3 and 4.4 confidence intervals narrow and p-value estimates

decrease as the number of stimuli is increased. This is an advantage over human lis-

teners as more stimuli can be automatically evaluated with a resulting higher statistical

confidence in the results obtained.

3. Do ASR transcriptions identify the same significant differences between system

pairs as the paid listeners?

As shown in Figure 4.5 EP, ASR and Extra ASR identify similar groupings of no

significance across multiple years of the SUS stimuli.

4. Are there any benefits to increasing the number of stimuli for ASR transcription?

The frobenius norm was used to find the plateaux in p-values as the number of

stimuli were increased. Figure 4.6 shows finer-grained significant differences

can be obtained with increasing stimuli, sometimes to a plateau. Were the EP

transcriptions available it would be interesting to conduct similar analyses for

other text genres (e.g. news).
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4.3.9 Conclusions

The above analysis showed that ASR performed reliably for evaluating intelligibil-

ity of TTS systems in the Blizzard Challenge - indeed on a comparable level to the

challenge’s paid listeners (EP). Using increased stimuli, Extra ASR also detected more

statistically significant differences between pairs of systems, which would have been

expensive to find in the human evaluations. ASR can be a reliable and convenient met-

ric to measure intelligibility of SUS sentences in the Blizzard Challenge, as long as a

sufficiently large number of stimuli are used.

Demonstration of similar significant groupings in the Blizzard challenge may val-

idate the use of E2E-ASR to a degree, but there remain further questions regarding its

reliability, in particular the reliability of transcription of words exhibiting difficult G2P

relations.

4.3.10 Further Research Questions

1. What are the qualitative differences between ASR and human-transcription?

2. What kind of transcription errors does E2E-ASR make?

3. How fair is the evaluation of pronunciations of difficult G2P words by E2E-

ASR?

4. Are significant differences observed between input-types when targeted stimuli

are used at scale?

There may remain further questions from the reader such as what is the effect of

implicit language modelling or text genre/expressiveness in transcription? Due to the

exponential avenues to ponder, the rest of this chapter intends only to provide insight

toward the questions above.

4.3.11 Human/E2E-ASR Transcriptions and the CER

EP was considered gold-standard in the previous analysis but its imperfections should

still be noted as the use of humans is inherently subjective: humans get tired, can be

inconsistent, can disagree, or not transcribe properly. Furthermore, in online tests such

as crowdsourcing, the researcher has little control over the audio environment of a

listener - such as differing levels of background noise or their equipment (earphones,

headphones, laptop speakers).
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Nevertheless, ASR also exhibits imperfections as a method of transcription - par-

ticularly for differences in text normalisation when evaluating purely on text. For

instance, word compounds can be represented as one or two words: e.g. beerman or

beer man. Also, ASR may recognise the wrong word out of a pair of homophones

(boil/boyle, eyeblinks/iblinks). There may be differences in spelling too: in one case it

was observed the ASR model outputted foretel with only one l, while the reference text

contained two: foretell. ASR in deployment may undergo Inverse Text Normalisation

(ITN) - reformatting of characters to readable text (see [255], [256]) which may help

with some of these issues but which was not implemented here. Text normalisation

differences between transcriptions and reference text could artificially inflate WER.

Furthermore, E2E-ASR possesses an imperfect pronunciation model that is prone to

mis-recognise non-standard words and difficult G2P (or P2G) words such as foreign

words and proper names. Attempts to improve pronunciation modelling of difficult

words in E2E-ASR include [257]–[259]. For this reason, it was more sensible to use

CER to avoid penalising minor spelling differences at the word level. CER offers a

proxy for PER to a closer degree than WER. The rest of the ASR results presented in

this chapter therefore use the CER.

Another noteworthy difference between human and ASR transcription for TTS

evaluation is the effect of babbling on WER scores as insertions. The attention mech-

anism in S2S-TTS models can fail with the consequence of babbling audio. This is a

problem that has been tackled in works such as [16], [260]. When an attention failure

occurs, the ASR outputs a random string of words and characters. For example:

Reference Text:

FOR AGE RELATED HEALTH PROBLEMS

ASR on TTS Babble:

FOR AGES RELATED HOW A H M H M H M H M H M

The large number of insertions skewed the error rate across a test set consider-

ably. By checking for outlier-lengths of text-strings in all transcriptions below, all

cases of babbling were excluded from the CER calculations. The considerations above

deserved mention now before proceeding to evaluate the Tacotron systems below.
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4.4 Analysis for Pronunciation Evaluation

The objective of transcribing the following test sets was to assess the reliability of E2E-

ASR transcription for words with difficult G2P relations. Simultaneously, this section

also compares the CER of text- and phone-input to Tacotron when synthesising such

words.

4.4.1 Systems

The rest of this chapter explores ASR transcription to evaluate input-types (G and P)

to Tacotron. The same E2E-ASR model was used as in the Blizzard Challenge re-

evaluation. This model transcribes in English and was trained on a large corpus with

multiple speakers. It would be interesting to evaluate TTS in French on a larger scale

but an E2E-ASR model trained on French data was unavailable. The English systems

from Chapter 3 were used: G, P, GM and PM.

4.4.2 Test Set Description

The two sets described here were created to test the pronunciation of words with dif-

ficult G2P relations. These contained 3,000 words each. Originally 6,000 words were

used, however this was decreased due to time considerations as these sets were used

with 28 systems in Chapter 5.

1. In-LJ. 3,000 words were randomly selected from LJ speech inserted into the

carrier sentence "Now we will say ... again".

2. Out-LJ. 3,000 words were selected that were mispronounced by the LJ Token

G2P model from Chapter 2. Each word was inserted into the carrier sentence

"Now we will say ... again." This set contained words with difficult G2P relations

and words of multiple morphemes.

The In-LJ and Out-LJ sets were recorded with natural speech (N). Due to social dis-

tancing policies, they were recorded in a quiet, consistent environment (home-office)

with a high quality microphone. Each content word was recorded and then artifi-

cially sandwiched within a single recording of the carrier sentence "Now we will say

... again".
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Index 1 2 3 4 5 6

Reference 1 NOW WE WILL SAY RESULT AGAIN

Reference 2 NOW WE WILL SAY RURAL AGAIN

Reference 3 NOW WE WILL SAY BEERMAN AGAIN

Index 1 2 3 4 5 6 7

Hypothesis 1 NOW WE WILL SAVE RESULT AGAIN n.a

Hypothesis 2 NOW WELL SAY RURAL AGAIN n.a n.a

Hypothesis 3 NOW WE WILL SAY BEER MAN AGAIN

Index 1 2 3 4 5-> -2 -1

Hypothesis 1 NOW WE WILL SAVE RESULT AGAIN

Hypothesis 2 <TOK> NOW WELL SAY RURAL AGAIN

Hypothesis 3 NOW WE WILL SAY BEERMAN AGAIN

Reference Transcriptions

Raw E2E-ASR Hypotheses

Normalised E2E-ASR Hypotheses

Index
mismatches

Substitutions/deletions
in carrier sentences

Capture 5 to -2 and 
remove whitespace

Insert artificial tokens to normalize 
length of carrier preamble

Compute CER with index 5 from 
Reference Transcriptions

Ignore 
substitutions

Figure 4.7: Normalisation of E2E-ASR hypotheses for keyword spotting of content

token(s). Tokens were delineated by whitespace but this was problematic for substi-

tions/deletions in the carrier sentence. For consistency, the length of the carrier pream-

ble was normalised with artificial tokens and any tokens between indices 5 and -2 were

used. Whitespace was removed from the captured indices. This method did not handle

where say or again were merged with the the content token(s).
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4.4.3 CER with Targeted Stimuli

The In-LJ and Out-LJ sets required additional preprocessing for evaluation. To control

for differences in the recognition of the word tokens in the carrier sentence, the CER

was computed on the content token(s) in each sentence rather than on the entire sen-

tences as with the SUS test sets in the Blizzard Challenge. However capturing only the

content token(s) was not straightforward.

ASR would sometimes mistranscribe aspects of the carrier sentence either as a

substitution (e.g. SAVE or SEE for "SAY"), or a deletion (e.g. WELL for "WE WILL",

WOOZY for "WE WILL SAY"). Occasionally the predicted word merged with the pre-

ceding word "SAY" or the final word "AGAIN". For instance "NOW WE WILL SAY

LERWICK AGAIN" was transcribed NO WOOL SAILOR RICK AGAIN and "NOW

WE WILL SAY PENTHOUSES AGAIN" was transcribed NOW WE WILL SAY TEN

THOUSAND. It was not fair to compute CER on the entire sequence due to examples

such as these, thus it became necessary to compute CER on the content token(s) only.

The issue is akin to keyword spotting [261]–[264]: how to extract a word from

a longer sequence of audio. A keyword spotting method could have been used here

to extract the content token(s) but such a method would not have solved the problem

of merges with surrounding words such as SAILOR RICK above. Indexing based on

whitespace was a simpler, heuristic approach. This approach did still require the tran-

scription of the carrier sentence to be as consistent possible, but it had the advantage

over other key-spotting methods of simplicity.

Deletions were most problematic because the indices of the content tokens would

change and a deletion of "AGAIN" would put the content token at the end of the sen-

tence. Therefore, a solution was to artificially add tokens at the start of the sentence

until each contained at least 6, and then to evaluate the content-portions after the first

4 tokens and the penultimate token. This process is illustrated in Figure 4.7. The

penultimate index could not simply be used since there may have been spaces in the

transcription of the content (e.g. "BEERMAN" and BEER MAN) which would have

gone uncaptured.

All content tokens in the reference sentences were single words without whites-

pace. To ensure content tokens with whitespace were included, all whitespace was

removed from the content-portions after the first 4 words and before the penultimate

word.

While this approach may still be biased against examples where "SAY" or "AGAIN"
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were merged, a more complicated approach would not have solved this problem of

merges. As will be seen by the consistency with which the target tokens were captured

in examples below, the heuristic approach taken here overall worked well. By adding

artificial tokens to the front and only taking tokens between the fifth and penultimate

token, the content word was still captured consistently. The approach is illustrated in

Figure 4.7.

4.4.4 Results

4.4.4.1 Natural Speech (N)

Let us analyse the differences between In-LJ and Out-LJ with natural speech (N) first

to gain an understanding of the reliability of E2E-ASR transcription on gold-standard

speech. The CER for In_LJ was 7.3 ± 3 and for Out_LJ was 14.8 ± 5.4. The CER

was higher for Out-LJ than for In-LJ notably but not significantly according to the two

standard deviations.

Table 4.1 shows example errors in both sets. The highest CERs for both sets came

with words mistranscribed (near-) homophonically. For instance from the In-LJ set the

word "CIRCULATORY" was transcribed as A CIRCULAR TREE and "DISMAYED"

was transcribed THIS MAID. More examples of near-homophonic transcription are

shown in the In-LJ columns. For Out-LJ, DO SIT AS AN EYES was observed for

"DECITIZENIZE" and WHO LOOK IN EYES was observed for "HOOLIGANISE".

Notably for Out-LJ, certain foreign words and proper names were also mistranscribed

(like "BODEGA", "BOTSWANA", "RHODESIA"). Understandably E2E-ASR tran-

scription is less reliable for the Out-LJ than the In-LJ set. The scores were consistently

higher for the Out-LJ set for all TTS systems as well.

The test words placed in carrier sentences are out of context, which in part may

be a cause of ASR mistranscription and arguably may not reflect a real-world use

case. However, what of E2E-ASR as a relative measure of pronunciation? Although

this method of transcription is unreliable in absolute terms, on aggregate what are the

differences between the systems? With a high number of stimuli, can some proxy of

pronunciation still be inferred amongst mistranscriptions?

4.4.4.2 Reliability for E2E-TTS pronunciation evaluation

Since E2E-ASR transcription is unreliable for natural speech, how reliable could it be

to evaluate pronunciations by E2E-TTS systems? In the rest of this chapter, I analyse
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In-LJ Out-LJ

Reference N Hypothesis Reference N Hypothesis

HOURLY NOW I BE DECITIZENIZE DO SIT AS AN EYES

ANATOMY AND AFTER ME BOTSWANA WHAT ONE EARTH

DISSOLVED IT IS OLD HOOLIGANISE WHO LOOK IN EYES

CIRCULATORY A CIRCULAR TREE HOMEOMORPHIC WHOM I AM MORE FIT

DISMAYED THIS MAID CENTENARY SEVENTEEN EIGHTY

ADEPTS THE DEPTHS BODEGA THE DAGGER

BUOYED BOYS BINOMIALLY BY NO MEANS

LIED LIGHT BICENTENNIALS BY SENTINELS

MORPHOLOGICAL MORE PHILOLOGICAL SCHIZOPHRENICALLY SKITS ARE PHRENICALLY

MACCLESFIELD MACKELSFIELD BAGATELLE BACK TO TELL

KAY K REGIONALIZE REGION LESS

TENTS TENSE RHODESIA RADIO

RESIDENCE RESIDENTS UNCATALOGUED UNCANNY GLOGGED

MISFIRES MISS FIRES EMOTIONALIST THE MOTION LIST

CRISSCROSSING CHRIS CROSSING OBSTRUCTIONISTIC OBSTRUCTION IS STICK

DYE DIE UNCOMFORTABLEST UNCOMFORTABLE LIST

INN IN WELFARISTS WELL FAIREST

AFFAIR A FAIR PRONOUNCEABLE PRONOUNCIBLE

TAILORS TAYLORS CONSCIOUSNESSES CONSCIOUSNESS IS

FAMILIARIZE FAMILIARISE INSTITUIONALIZING INSTIUTIONALISING

Table 4.1: Example transcriptions from the In-LJ and Out-LJ sets with natural speech.

Note: whitespace was removed from hypotheses before calculating CER. Errors in

both sets arise with words that are transcribed with alternative characters homophon-

ically (CIRCULATORY for "A CIRCULAR TREE", THIS MAID for "DISMAYED"). Out-

LJ words exhibit mistranscription with unusual character contexts in English such as

"BOTSWANA", "BOGEGA" and "RHODESIA". E2E-ASR transcription of words with

difficult G2P contexts is unreliable.
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Reference G P GM PM

DEMEANOR DEMEANOUR DEMEANOUR DEMEANOUR DEMEANOUR

PEAL PEEL PEEL PEEL PEAL

REGULARISATION REGULARIZATION REGULARIZATION REGULARIZATION REGULARIZATION

AUSTRALIAN AUSTRALIA AUSTRALIA AUSTRALIA AUSTRALIA

INSTITUTIONALISING INSTITUTIONALIZING INSTITUTIONALIZING INSTITUTIONALIZING INSTITUTIONALIZING

LEFTIST LEFTUS LEFTUS LEFTUS LEFTUS

BETAS BETUS BETUS BETUS BETUS

HOPWOODS UPWARDS UPWARDS UPWARDS UPWARDS

Table 4.2: Some examples of consistent mistranscriptions across 4 TTS systems. The

differences in spelling are in bold under the Reference column. Each TTS system had

the same difference in spelling from the reference. Although mistranscriptions are com-

mon in the Out-LJ set (which penalise P and PM), consistencies in mistranscriptions

permit a relative comparison between TTS systems when using a large number of stim-

uli.

the transcription of these sets by the English TTS systems from Chapter 3.

The errors from N showed that E2E-ASR mistranscribed (near-) homophonically

for words which do not have a clearly defined homophone partner. For instance,

DECITIZENIZE and DO SIT AS AN EYES may not traditionally be thought of as ho-

mophones but their inferable pronunciations are very similar. Furthermore, (near-) ho-

mophonic pairs were observed to be consistently mistranscribed across TTS systems.

Examples of these are shown in Table 4.2. For instance, "PEEL" was mistranscribed

as PEAL consistently by G, P, GM and PM. The relative transcriptions between systems

may therefore offer further insight into the reliability of E2E-ASR transcription. If G is

to be prone to mispronounce words from the Out-LJ set, should not the transcriptions

of G obtain higher CERs than P?

I observed a problem between the relative transcriptions of systems G and P for

some particular words where learning the pronunciation from character contexts would

be insufficient to learn the correct pronunciation. Some examples are shown in Table

4.3 from similar systems that appear in Chapter 5. Mispronunciations of difficult G2P

words can be masked by E2E-ASR mistranscription. If a word spelling exhibits diffi-

cult or rare G2P relations, then a mispronunciation may actually be transcribed at the

character level correctly. Or likewise, a correct pronunciation for a word with unusual

G2P relations may not be correctly transcribed, thereby putting P at a disadvantage.

Let us look at examples. Table 4.3 shows mispronunciations by a TTS system

trained on text-input (grapheme-only from Chapter 5) that received equal or lower

CERs than correct pronunciations by a system trained with phone-input (Trigram-500
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- trained with mixed representations but using phone-input at test time). The reader

is encouraged to listen to the corresponding audio samples online2 for the examples

presented in the rest of this chapter.

For instance, "CRINGING" was pronounced with the voiced velar nasal [N] by

grapheme-only instead of the dental nasal and affricate [ndZ] by Trigram-500. The

mispronounciation was transcribed with the characters NG which masked the pronun-

ciation error. Although "CRINGING" was mispronounced by grapheme-only, both

grapheme-only and Trigram-500 received 0 CER. This illustrates how an E2E-

TTS system with text-input may have mispronunciations unnoticed with E2E-ASR

transcription. "OBESENESS" is another example where both graphemes-only and

Trigram-500 have the same transcription but the pronunciation of grapheme-only

was correct despite a mispronunciation.

In "COXSWAIN" and "SALISBURY", the correct pronunciation by Trigram-500

obtains a higher CER than the same words mispronounced by grapheme-only. These

samples illustrate how E2E-ASR simultaneously lets mispronunciations from a TTS

system with text-input go undetected while penalising a better pronunciation of a word

with difficult G2P relations that is not "readable".

The pronunciation of "COXSWAIN" by G was [kA:ksweIn] instead of the correct

pronunciation by P: [kA:ks@n]. However, the transcription for G was COX WENT

whereas for P it was COXON, with a higher CER. "SALISBURY" is another exam-

ple.

In essence, this E2E-ASR system presents a biased metric in the evaluation of pro-

nunciations by text- and phone-based TTS systems. In practice, pronunciation evalu-

ation via characters is unfair because mistranscriptions by E2E-ASR potentially mask

mispronunciations and penalize correct pronunciations.

Another issue with the relative comparison between systems is that sometimes both

transcriptions may be wrong, thus it can be difficult to compare the pronunciations by

the TTS systems. For instance, in Table 4.4, the word CHAMOMILE is transcribed

as CHUMMY for grapheme-only and CANNIBAL for Trigram-500. Both CERs

were high, neither resemble the reference transcription, even though the pronunciation

of Trigram-500 is more adequate. Other examples of high CERs are given in OS-

CILLOGRAPHS and SUGARCANE. While differences in CER on aggregate may be

observed between TTS systems, ultimately these numbers are not reliable in absolute

terms for the evaluation of difficult pronunciations.

2Samples are available here: https://homepages.inf.ed.ac.uk/s1649890/chap4/

https://homepages.inf.ed.ac.uk/s1649890/chap4/
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Reference
grapheme-only

Pronunciation
grapheme-only

Hypothesis
grapheme-only

CER
Trigram-500

Pronunciation
Trigram-500

Hypothesis
Trigram-500

CER

CRINGING [krININ] CRINGING 0 [krIndZIN] CRINGING 0

OBESENESS [@bIzn@s] A BUSINESS 33.3 [oUbisn@s] A BUSINESS 33.3

COXSWAIN [kA:ksweIn] COX WENT 57.1 [kA:ks@n] COXON 80

SALISBURY [sOlIzb@ri] SALISBURY 0 [sOlzb@ri] SOLSPIRY 50

Table 4.3: Masked pronunciation errors from grapheme-only and mistranscription of

better pronunciations by Trigram-500 (a mixed representation system using phones).

Pronunciations are given in broad IPA and errors are shown in bold. White space

was removed before caluclating CER. Errors from graphemes-only can be masked

by evaluating CER on text, as shown by the lower CERs for graphemes-only than

Trigram-500. E2E-ASR transcription for pronunciation evaluation penalises some

correct word pronunciations. The reader is once again encouraged to listen to audio

samples.

The conclusion that CER is unreliable for this purpose is potentially important to a

work such as [4] where the authors use ASR CER to compare grapheme- and phone-

input to their system.

4.4.5 TTS System Results

What about the relative differences in CER scored between TTS systems? The results

for G and P are shown alongside N in Table 4.5. G scored higher CERs than N and P for

both sets but the relative increase in CER from In-LJ to Out-LJ was higher for G than P

and N. The CER increased by 20.2% for G and but by only 13.6% for P. To understand

the differences between the outputs better, Table 4.6 shows pronunciation errors made

by the G system3. While the pronunciation of P was more intelligible than G, there

were still mistranscriptions for P as in "PHARMACOPEIA". The transcriptions for G

were less similar to the reference. Despite the imperfections of ASR transcription (in

particular the favourable bias from masking mispronunciations) G scored a relatively

higher CER than P for Out-LJ. Partly this is due to incorrect implicit G2P generali-

sation (e.g. "FOGGINESS" is pronounced with the [dZ] sound instead of [g] sound,

or the start of "SCHIZOPHRENICALLY" is pronounced with a [S] sound instead of

correct [k] sound. However, with the G sounds would often also be skipped, lead-

ing to high CERs. For example, "PHARMACOPEIA" was pronounced [fArm@k@p@S]

3More TTS samples are available at this link: https://homepages.inf.ed.ac.uk/s1649890/
chap4/more_samples.html

https://homepages.inf.ed.ac.uk/s1649890/chap4/more_samples.html
https://homepages.inf.ed.ac.uk/s1649890/chap4/more_samples.html
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Reference
grapheme-only

Pronunciation
grapheme-only

Hypothesis
grapheme-only

CER
Trigram-500

Pronunciation
Trigram-500

Hypothesis
Trigram-500

CER

CHANEL [tSeIn@l] CHANNEL 14.2 [Sæn@l] SHINAL 50

CHAMOMILE [tSæm@maIl] CHUMMY 83.3 [kæm@maIl] CANNIBAL 87.5

FALSIFIERS [fAlsIfI@~z] FALSIFERS 11.1 [fAlsIfaI@~z] FALL THE FIRES 50

OSCILLOGRAPHS [A:skIl@græfs] OSCAR THE GREX 75 [@s@l@graefs] SOLID RAFTS 80

SUGARCANE [sIgA:keIn] THE BARKING 70 [SUg@keIn] TO HER KING 77.8

Table 4.4: Masked pronunciation errors from grapheme-only and mistranscription of

better pronunciations by Trigram-500 (a mixed representation system using phones).

Pronunciations are given in broad IPA and errors are shown in bold. White space

was removed before caluclating CER. Errors from graphemes-only can be masked

by evaluating CER on text, as shown by the lower CERs for graphemes-only than

Trigram-500. E2E-ASR transcription for pronunciation evaluation penalises some cor-

rect word pronunciations. The reader is encouraged to listen to audio samples at the

aforementioned link.

which is nonsensical. Consequently there is a high CER (75%) for the transcription:

FARMER PUSH IT.

The example presents a further issue of using E2E-ASR as a metric for pronun-

ciation modelling. One cannot tell whether a high CER is due to character skip-

ping/unstable speech or a G2P generalisation error. In the targeted stimuli evaluation

for Deep Voice 3 [111], such errors were manually labelled and errors were categorised

according to mispronunciations, skipping and repetitions. The nuanced categories of

error are lost with E2E-ASR CER alone.

Although we see differences according to statistical significance across the sets,

it is unclear whether at scale these differences are due to mispronunciations by the

TTS systems or mistranscriptions by the E2E-ASR system. The metric is not reliable

enough to be certain at scale, despite numerous examples presented in in Table 4.6.

Table 4.7 shows the CER for In-LJ and Out-LJ with systems including morphology.

These systems performed with lower CERs for both sets than G and P. GM performed

significantly better than G and P on In-LJ, showing that with morphology this TTS

system has lower CERs. The columns of Table 4.8 show differences in transcription

with the use of morphology.

With text-input, intelligibility of words with multiple morphemes was improved

in both sets. G did not learn pronunciation contexts in longer words as well as GM as

shown. For instance, "MAGNIFYING" was pronounced without the plosive [g] and

the transcription was: MAY NOT FIND. These are nuances in pronunciation which



Chapter 4. TTS Evaluation using ASR 114

Dataset N G P

In_LJ 7.3 ±3 30.7 ±3.2 17.9 ±3.4

Out_LJ 14.8 ±5.4 50.9 ±4.2 31.5 ±5.4

Table 4.5: CER results for In-LJ and Out-LJ for N, G and P. The CERs for Out-LJ are

consistently higher than for In-LJ across all TTS systems. However, the gaps are larger

for TTS systems than N and the gap is larger for G than for P. When testing with difficult

words, G was less intelligible than P by a larger margin.

Reference G Hypothesis G CER (%) P Hypothesis P CER (%)

ANTIPODES AND IT PUT IT 60 ANTIPATHIES 36.4

APPLETON APLATOON 37.5 APPLETON 0

AZALEA AND SLEEP 62.5 AZALEA 0

BAGATELLE THE DEVIL 100 ABOUT TO TELL 63.6

BICENTENNIALS THE TENANTS 80 BY SAINT DENIALS 42.9

BINOMIALLY BENIGNLY 62.5 BY NOMILIA 44.4

BODEGA A BODY 80 GOODBYE 71.4

EXTRADITE EXTRICATED 40 EXTRADITE 0

FOGGINESS FUDGES 83.3 FIVE MINUTES 63.6

HUMIDIFIED WHO MAY FIGHT 72.7 HUMAN FIGHT 60

MEPHISTOPHELES MISTER PHILIS 58.3 MEPHISTOPHOLES 7.1

PHARMACOPEIA FARMER PUSH IT 75 FARMER COPEER 50

REGIONALIZE ORIGINALISE 36.4 REGIONALISED 16.7

RESALABLE REASONABLE 30 RESALABLE 0

SACERDOTAL SIR TO PAUL 66.7 SASSER DOUGLASS 50

SCHIZOPHRENICALLY SHES FREINDLY 83.3 SKITS OF FRENICALLY 35.3

SUNDIALS SUNDERS 42.9 SUN DIALS 0

UPHOLSTERS OF HOLSTERS 20 UPHOLSTERS 0

Table 4.6: Sample of transcriptions with higher CER for G than P. Note CERs are pre-

sented in percentages and it is possible to surpass 100% where the length of the ref-

erence is longer than the hypothesis. CERs were computed without whitespace. The

pronunciations are intelligible for P but mistranscription causes a positive CER. Impor-

tantly, the CER was still higher for G than P consistently as in "MEPHISTOPHOLES"

and "SCHIZOPHRENICALLY". Word pronunciations are still approximately inferred us-

ing CER despite imperfect transcription. The mispronunciation of "UPHOLSTERS" with

[f] is inferred from the G transcription OF HOLSTERS. For limitations of inferring pro-

nunciations via characters, see Section 4.4.6. Even with E2E-ASR mistranscription, P

scored a lower CER than G.
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Dataset GM PM

In_LJ 13.9 ±3.8 12.1 ±3

Out_LJ 32.7 ±4.4 24.4 ±3.2

Table 4.7: Results of In-LJ and Out-LJ for GM, PM.

In-LJ Out-LJ

Reference G GM Reference G GM

ASTONISHED ITS FINISHED ASTONISHED COMMEMORATIONAL COMISERATION COMMEMORATIONAL

EDITORS WHAT IT IS EDITORS DEMAGNETISED TO MANETIST DEMAGNETISED

INTESTINES INTESTINGS INTESTINES HYPNOTISABLE HICKS NOTICEABLE HYPNOTIZABLE

INADEQUACY INECCLES INADEQUACY ISLAMICIZE AS LEMON HES ISLAM AS IT IS

MAGNIFYING MAY NOT FIND MAGNIFYING OPTIMISES UP TO MISSUS UP TO MYSES

REINFORCE RAIN FORCE REINFORCE SORROWFULNESS SO RUFFLEDNESS SORROWFULNESS

REORGANIZING WHERE IT IS IN REORGANIZING UNNAMEABLE UNANIMABLE UNNAMABLE

Table 4.8: Words in In-LJ and Out-LJ that have higher CER for G than GM. In both sets,

GM pronounces words of multiple morphemes with higher intelligibility. Since Out-LJ

contains more multi-morpheme words than In-LJ, the CER for Out-LJ is lower than it

is for G. Some pronunciations can be inferred from the E2E-ASR transcription such as

incorrect stress/pronunciation from G for "HYPNOTISABLE" (NOTICEABLE) and "IS-

LAMICIZE" (LEMON HES) and "SORROWFULNESS" (SO RUFFLEDNESS). Despite

differences in transcription normalisation (e.g. "UNNAMEABLE" and UNNAMABLE, the

transcriptions of GM were more accurate than G.

may not be picked up in general naturalness tests as with surrounding context of other

words and at a sufficient speed the effect may be masked (as argued in [177]). Pronun-

ciation errors were still observed where morpheme boundaries did not disambiguate

for instance "SHEPHERDING" was transcribed as SHEFFORDING and "DUMBLY"

as DOUBLY since "SHEPHERD" and "DUMB" were the morphemes and were not

decomposed around confusing letters (PH and MB respectively).

Between GM and PM, no significant difference is recorded with the In-LJ set. For

the Out-LJ set, P performed at a similar CER to GM. GM scored a significantly higher

CER than PM but both were significantly lower than system G in Table 4.5. PM scored

notably lower CERs than P but the difference was not statistically significant.

4.4.6 Can E2E-ASR detect Correct Pronunciation?

The examples presented in Tables 4.3, 4.4 and 4.6 demonstrate how implicit pronun-

ciation modelling unsuccessfully generalises to words where the pronunciation is dif-
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ficult to predict from context. Examples are also shown where with information from

the pronunciation lexicon pronunciations can sound more adequate.

However, as mentioned in Section 4.4.4.2, the token words in carrier sentences

present a contrived context for E2E-ASR transcription. Token words pronounced in

citation form may not represent a deployed use-case since citation form may not be

the only viable pronunciation. For instance, a pronunciation that transcribes "REIN-

FORCE" as RAINFORCE is acceptable.

E2E-ASR is ultimately too limited in capturing pronunciation variation (e.g. differ-

ent vowel qualities across accents of English). Speech in context may drop sounds. In

[28] the example is given that the words I don’t know could have multiple realisations

which are each valid and intelligible in context:

[aI d@Unt n@U]

[aI dUn@U]

[dUn@]

[@̃@̃@̃]

Since E2E-ASR creates a text transcription, the nuance in phonetic realisation is

not explicitly detailed and acceptable elision may lead to transcription errors of valid

pronunciations.

Due to these limitations combined with issues resulting from text-normalisation

(e.g. homophonic transcription) E2E-ASR does not provide a reliable transcription in

absolute terms. At best, E2E-ASR can detect relatively better pronunciations when

testing on a large scale, but even then E2E-ASR is liable to mistranscription for words

of difficult G2P relations (as shown in the examples of Table 4.3).

4.4.7 What is Correct Pronunciation?

Implausible pronunciations by TTS systems with text-input have been exemplified in

multiple tables across preceding chapters - including pronunciations which are diffi-

cult to predict from the immediate surrounding context alone (such as foreign words).

The term "pronunciation correction" could be interpreted as adopting a prescriptivist

approach to language use. This would be the case if this thesis analysed pronunciations

by humans. However, when the term is used here, the aim is to improve implausible

pronunciations from TTS systems with text-input. In the next chapter, representation

mixing is examined to improve upon implausible pronunciations from TTS systems

with text-input.



Chapter 4. TTS Evaluation using ASR 117

4.5 Summary

4.5.1 Summary of ASR for Pronunciation Evaluation

1. What are the qualitative differences between ASR and human-transcription?

ASR may transcribe TTS babble resulting in misleading accuracy scores without

intervention.

2. What kind of transcription errors does E2E-ASR make?

Errors were observed relating to text normalisation (see Section 4.3.11). and (near-

)homophonic transcription (see section 4.4.4.1).

3. How fair is the evaluation of pronunciations of difficult G2P words by E2E-ASR?

While the transcription of natural speech of the difficult G2P words had high accu-

racy (N in Table 4.5), examples in Tables 4.3 and 4.4 show that transcription via text

introduces a bias that favours the mispronunciation of difficult G2P words.

4. Are significant differences observed between input-types when targeted stimuli

are used at scale?

Tables 4.5 and 4.7 show significant improvements with phones and morphological

input (PM) over text-input alone (G). However pronunciation evaluation via text disre-

gards nuances that may matter in real communicative contexts as explained in Sections

4.4.6 and 4.4.7.

4.5.2 Summary Remarks

An analysis of E2E-ASR as an objective measure of TTS intelligibility was presented.

E2E-ASR system based on a Transformer model was found to be more reliable to

compare intelligibility of SUS stimuli in the Blizzard Challenge than the Challenge’s

non-native speech experts (ES) and online volunteers (ER). Similar significant group-

ings were identified by Paid Listeners (EP) and ASR, and more fine-grained differences

were observed when increasing the number of stimuli in Extra ASR.

The chapter proceeded with an analysis of E2E-ASR to transcribe words of difficult

G2P relations and multiple morphemes. Pronunciations of TTS systems from two sets

of words (In-LJ and Out-LJ) were compared. Transcriptions were unreliable for these
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sets due to differences in text normalisation, spelling, (near-) homophonic transcription

and a bias towards the transcription of words with difficult G2P relations. However,

further examples were presented of mispronunciations from an E2E-TTS trained with

text-input (G) and on aggregate this system obtained higher CERs than systems which

made use of the pronunciation lexicon (either phones or morphemes). An additional

factor in the unreliability of ASR transcription is that word pronunciations are not

fixed and can change according to speaker and communicative contexts. In Chapter

5, improvements in pronunciation modelling are assessed with as small a lexicon as

possible under representation mixing.



Chapter 5

Representation Mixing for

Pronunciation Correction

Mispronunciations in E2E-TTS can be corrected using representation mixing where

text-input is substituted for phone-input when necessary [111]. Since the pronuncia-

tion lexicon presents an obstacle to fully E2E-TTS, it would be desirable to minimise

the number of word entries in the lexicon needed for this purpose. In this chapter,

experiments are conducted aiming to minimise the size of the lexicon required for pro-

nunciation correction when using LJ Speech for training Tacotron in English. A small-

scale subjective evaluation is contrasted to a large scale objective evaluation using the

E2E-ASR model from the previous chapter.

5.1 Motivation

Representation mixing involves training on a mixture of text- and phone-input, with

each input word represented either as graphemes or phones. With the option of us-

ing phone-input, it becomes possible to control pronunciations at test time without the

need for a complete lexicon of all words in the training data. To my knowledge, the first

proposal of representation mixing for E2E-TTS was in the Deep Voice 3 paper [111].

The approach was also described in [23]. However, previous work on representation-

mixing had not empirically studied the robustness of pronunciation control or cor-

rection. For a functional phone corrector, a certain amount of training data must be

labelled with phones. However, building a high-quality pronunciation lexicon can be

costly. The rational behind the following experiments was to discover how much pro-

nunciation correction was possible with lexica of different sizes.

119
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5.2 Research Questions

1. How much pronunciation correction is possible with as small a lexicon as possi-

ble?

2. Is pronunciation correction possible with only single occurrences of phone-labels

during training?

5.3 Representation Mixing

5.4 Method

We1 closely followed the representation-mixing training approach detailed in [23].

During training, a word in text-input can be replaced by its phone string. This occurs at

a fixed mixture probability of pmix only for words in the lexicon being used. We sim-

ulated lexica of different sizes and word types as subsets of Unisyn. Representation-

mixing was incorporated into the Tacotron [7] implementation used in Chapter 3 [202].

The Tacotron model predicts mel-spectrogram frames, from which we use WaveRNN

[113] (a single model trained on the LJ Speech corpus is used in all models) to gener-

ate waveforms. The same default training schedule was used as before and each model

was trained on a single Nvidia GTX 1080.

We analysed 3 factors in pronunciation correction: the number of word types that

are phone-labelled in the training data, the criteria according to which these word

types are selected (randomly, or by frequency), and whether coverage-based selec-

tion algorithms can reduce the amount of phone-labelling needed. We obtained phone

sequences from the Unilex GAM pronunciation lexicon, for its wide phone coverage

(167,000 entries), consistency in phone labelling and additional linguistic metadata

(stress and syllable boundary information) which we used in our experiments. The

phoneset consisted of 56 phones (55 of which were found within LJ Speech). The x

phone as in loch was missing. All models were trained with the full LJ Speech dataset

of 24 hours, instead of the IV subset used in Sections 2.6 and 3.3.5.
1This work was co-authored with Jason Fong who wrote the code for the representation mixing and

trained the Tacotron models. He also designed and wrote the code for the algorithm behind the phone,
bigram and trigram models. The listening test was conducted together. After our initial experiment,
additional TTS stimuli were generated and then evaluated using the E2E-ASR model from the previous
chapter.
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5.4.1 Simulated Lexica

To investigate the limits of how well representation-mixing can perform pronuncia-

tion correction, we simulated a range of pronunciation lexica differing in number and

choice of word types. The word types contained in a given lexicon were phonetised

according to the mixture probability, pmix. Three reference lexica were designed as

follows:

• grapheme-only: an empty lexicon; training a representation-mixing model with

this lexicon was equivalent to training with grapheme- or text- only input. This

model was used to determine mispronunciations in Tacotron.

• oracle-14: contained 14 word types. This was the smallest possible lexicon

that covered all 55 phones that occur in LJ Speech at least once. We used this

lexicon to discover whether minimal phone coverage was sufficient to enable

pronunciation control. Note, it is named with oracle since phone labels of the

complete LJ dataset were required to build this reference.

• full-13049: all 13,049 word types that co-occur in LJ Speech and Unilex. Note

this was not equivalent to a phone-based model (e.g. P in previous chapters).

Recall each word token during training is input as either graphemes or phones

according to pmix, so long as the word token belongs to the set of word types in

the lexicon.

We additionally devised 5 word type selection methods that each lead to a lexicon

of n entries. We compared models trained with these lexica to determine the most

effective size and contents for a resource-limited lexicon. For each of the word type

selection methods, we varied the number of types n, in the lexicon. We selected the

following values for n: 500, 2000, 4000 and 6000. Each word type selection method

was thus tested to determine an effective lexicon size for pronunciation correction. The

5 word type selection methods were:

• rand-n: randomly selected n word types. This selection method functioned as a

baseline in terms of a word selection method.

• freq-n: selected the top n most frequently occurring word types in LJ Speech.

This selection method investigated the effect of choosing types to cover the most

tokens during training.
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• phone-n, bigram-n and trigram-n: these attempted to achieve wide phone

coverage during training. phone-n greedily selected n frequently occurring word

types while also trying to achieve a wide phone coverage. It employed the full

lexicon to obtain phonetic knowledge. In bigram-n and trigram-n, wider con-

texts from surrounding graphemes are used to replace the oracle knowledge from

the lexicon. For details of this algorithm, see our paper [265].

We trained one model for each reference lexicon – grapheme-only, oracle-14,

full-13049 – and one model for each combination of word type selection method and

value of n in {500,2000,4000,6000}, for a total of 23 models.

In our original experiment, 5 supplemental models were trained using the full-13049

lexicon to answer further questions not related to lexica size or composition:

• mixprob-up and mixprob-down: linearly varied pmix so that the probability

a word was phonetised during training depended on the frequency rank of the

word. mixprob-up phonetised the most common word in LJ Speech with pmix =

0.5, and the least common word with pmix = 0.9. These values were swapped

for mixprob-down. These models investigated whether phonetising the most or

least frequent words more often would benefit pronunciation correction.

• syllable, stress, and stress-syllable: these models additionally include

a word type’s stress and/or syllable information when it was phonetised during

training. Since analyses in previous chapters observed mispronunciations relat-

ing to subword units and stress, these models investigated whether additional

linguistic markup would benefit pronunciation correction. Note, syllables and

stress markup was extracted from Unilex between phones not graphemes. For

instance, the entry for speechless was /s p ii ch 1 | lw @ s 0/, where dig-

its encoded syllable stress and the | symbol represented syllable boundaries.

Table 5.1 shows how many tokens in LJ Speech were covered by each lexicon

(expressed as a percentage of the tokens covered by full-13049). Each of these

tokens were randomly phonetised during training.

5.4.2 Test Sets

In our original experiment, we created 3 test sets of words. Each word was placed in

the carrier sentence "Now we will say ... again." as previous targeted stimuli in this

thesis. The test sets are described below
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n 500 2000 4000 6000

rand 3% 19% 43% 56%

freq 69% 86% 93% 96%

bigram 55% 75% 85% 90%

trigram 44% 49% 65% 72%

phone 66% 81% 90% 94%

Table 5.1: Number of word tokens in LJ Speech covered by each resource-limited lex-

icon expressed as a percentage of the 223179 tokens covered by full-13049. Addi-

tionally: oracle-14 covers 41 tokens (0.018% of full-13049).

• In−LJsmall: 50 words that occurred in LJ Speech but were mispronounced by

the grapheme-only model. Despite being in the training data, they were mis-

pronounced. This set investigated pronunciation correction for word types seen

(as either graphemes or phones) during training.

• Out − LJsmall: 50 words that did not occur in LJ Speech, and were mispro-

nounced by the grapheme-only model. These represented the key challenge

of generalising to words without spoken examples in training.

• Cor−LJsmall: 50 words that occurred in LJ Speech and were pronounced cor-

rectly by the grapheme-only model. This test set checked that representation-

mixed training preserved correct output from the grapheme-only model. All

models except oracle-14 scored 47/50 or above. This suggested representation-

mixing did not negatively impact pronunciations that a grapheme-only model

already pronounced correctly, although the results suggest that a lexicon of at

least 2000 word types may be required in practice (see below).

Judgements of pronunciation correctness require careful listening so we used 2

expert listeners in our original experiment. The listeners judged whether the pronunci-

ation was correct for each sample in every set. The samples were presented in random

order. The listeners were provided with the intended pronunciation for each stimulus.

In cases of disagreement, they discussed and re-listened to reach an agreement.

After this experiment, samples were subsequently generated from two sets used in

Chapter 4: In-LJ and Out-LJ. These sets used the same carrier sentence. In_LJ con-

tained 3,000 words randomly selected from LJ Speech. Whereas In−LJsmall contained

seen words that grapheme-only mispronounced, the words in In-LJ were randomly
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In-LJ
small (/50)

OO-LJ
small (/50)

In-LJ
(Acc%)

OO-LJ
(Acc%)

oracle-14 0 0 14.1 ±.8 14.1 ±.7

full_13049 47 38 86.7 ±0.9 70.1 ±2.0

syllable 47 48 89.3 ±.7 79.6 ±1.0

stress 31 33 66.5 ±2.4 52.6 ±2.1

stress-syllable 46 45 84.3 ±1.5 73.9 ±1.4

Table 5.2: Results from listening test and ASR. ± indicates 2 standard deviations of the

95% confidence interval.

selected from LJ Speech without the pre-requisite of a mispronunciation. Out-LJ con-

tained 3,000 words of inaccurate G2P according to the LJ Token G2P model in Chap-

ter 2. For In-LJ and Out-LJ the CER method (described in Section 4.3.11) was used to

calculate the accuracy of the target words. Accuracy was presented to ease interpreta-

tion between Figures 5.1 and 5.2. While this model was shown to be unreliable for the

transcription of specific words, at scale differences in overall speech quality may still

be observed as was shown in Section 4.4.5.

5.5 Results

5.5.1 Syllable and Stress Results

The results2 for the models using the reference lexica and linguistic metadata are pre-

sented in Table 5.2. The minimal phone coverage model oracle-14 scored 0 on

In−LJsmall and Out −LJsmall . It also scored the lowest accuracy on In-LJ and Out-

LJ. Evidently, the coverage was insufficient to perform any pronunciation correction -

the output was unintelligible. Thus, pronunciation correction with only 14 word types

phonetised during training fails.

The grapheme-only model scored 0/50 for In − LJsmall and Out − LJsmall and

76.9%±2.3 and 53.1%±1.7 accuracy for In-LJ and Out-LJ. The score for Out-LJ was

similar to the G model from Chapter 4 but the CER for In-LJ was significantly lower.

Performance was expected to be better for these models since grapheme-only was

2Samples are available at https://jonojace.github.io/IS20-repmixing-limits

https://jonojace.github.io/IS20-repmixing-limits
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trained on approximately 25% more data than G. The scores for both sets were signifi-

cantly lower than P from Chapter 4.

The full-phone coverage model (full-13049) performed with 47/50 for In−LJsmall ,

38/50 for Out −LJsmall and with 86.7% and 70.1% accuracy for In-LJ and Out-LJ re-

spectively. full-13049 can be treated as a baseline for pronunciation correction. Due

to lack of context, it is unrealistic to expect 50/50 or 100% accuracy with carrier sen-

tences.

The accuracy for In-LJ was higher (but not significantly higher) than P from Chap-

ter 4, trained solely on phone-input. This may be caused by increased dataset size.

Another explanation could be that the combination of grapheme- and phone- input im-

prove overall pronunciation modelling. Recent work such as [149] used a combination

of graphemes and phones in a BERT encoder which they argue improves prosody and

pronunciation of Tacotron.

Syllable matched full-13049 on In−LJsmall and outperformed full-13049 on

the other 3 test sets. This suggests pronunciation modelling with phone-input can be

further improved with syllable boundaries. The increase in accuracy was relatively

higher (9.5% rather than 2.6%) for Out-LJ than for In-LJ, although following the anal-

ysis of Section 4.4 it is unclear from the CER metric alone to what this difference may

be attributed at scale (overall improved speech quality with fewer skips/deletions or

better G2P generalisation?). Listening to samples, the speech sounds more natural.

Future work could explore whether unsupervised methods for subword decomposi-

tion improve implicit pronunciation modelling under representation mixing: do units

need to be linguistically symbolic (e.g. syllables, morphemes) or can units be based on

frequency of character contexts (e.g. BPE)?

Stress scored beneath full-13049 on all test sets. When stress markers were

used in combination with syllable boundaries (stress-syllable), the performance

was lower than when using syllablic boundaries without stress (the syllable model).

Stress markers do not improve pronunciation modelling or correction under represen-

tation mixing.

Results for mixprob-up (In−LJsmall:47/50, Out−LJsmall: 42/50, In-LJ: 87.9%±2.1,

Out-LJ: 75.2%±1.6) demonstrate that phonetising lower frequency words with a higher

pmix during training slightly improved pronunciation control for Out-LJ words, com-

pared to the uniform pmix = 0.5 across all word types used in the full-13049 re-

sults above. Results for mixprob-down (In− LJsmall: 48/50, Out − LJsmall: 39/50,

In-LJ: 86.1%±0.8, Out-LJ: 71.6%±1.8) were very similar to full-13049, indicat-
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Figure 5.1: Listening test results of models trained using resource-limited lexica gener-

ated by the word type selection methods.

ing phonetising lower rather than higher frequency words with a higher pmix during

training is more beneficial.

5.5.2 Word Type Selection Results

5.5.2.1 Listening Test Results

Figure 5.1 visualises the listening test results when word selection method types were

scored by two expert listeners. The left of Figure 5.1 shows scores (out of 50) for In-LJ

Small. For the test sets in Figure 5.1, graphemes-only scored 0.

The representation mixing models scored higher accuracy on In−LJsmall than on

Out − LJsmall , as expected. Overall, pronunciation correction was higher the larger

the n word types phonetised, particularly when n was increased from 500 to 2000.

Trigram-500 outperformed the other word type selection methods with n = 500.

For Out − LJsmall , representation mixing with full-13049 achieved 38/50 as a

platform. This score was only improved upon when using syllable boundaries (48/50).

As mentioned above, the use of syllable boundaries could be investigated further to

find out whether subword units need to be linguistically symbolic to improve pronun-

ciations of difficult words (for example to disambiguate ’th’ in words like pothole and

goatherd).

The above results indicate that pronunciation correction is possible from a lexicon

of potentially only 500 words. However, what insights did the ASR evaluation bring?
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Figure 5.2: ASR results of models trained using resource-limited lexica generated

by the word type selection methods. The accuracy and confidence interval of

graphemes-only is shown by the dotted lines and shaded areas. Representation

mixing with n > 4000 consistently obtains higher character accuracy for Out-LJ than

graphemes-only. Trigram-500 obtained the highest accuracy amongst the methods

with n=500. Some examples of corrected pronunciations are shown in Table 5.3. The

accuracy of n = 500 for In-LJ are lower than graphemes-only indicating that repre-

sentation mixing with too small a lexicon worsens intelligibility.

5.5.2.2 ASR Evaluation Results

Figure 5.2 shows the transcription accuracy of word type selection methods according

to size n of lexicon. The accuracy and confidence interval of graphemes-only are

shown by the shaded dotted lines in each subfigure. Note the In-LJ set for the ASR

evaluation did not select words for G2P difficulty as in In− LJsmall . The In-LJ set

contained words randomly selected from the training data of LJ speech.

On In-LJ the models with n = 500 scored lower accuracy than graphemes-only

except for trigram-500. While the small test with Cor−LJsmall did not show exten-

sive pronunciation errors, the models have lower accuracy when transcribing random

words (from In-LJ) using ASR. The indication is that with only 500 word types phone-

tised, intelligibility when using phones is below using graphemes-only. This means

that for most word selection methods, n = 500 is detrimental to pronunciation mod-

elling. However, all models with n ≥ 2000 matched or exceeded graphemes-only in

accuracy on In-LJ (except for Freq-2000). However, the gap between graphemes-only

and the models with n≥ 2000 are small in some cases insiginificant (e.g. bigram-2000,

Trigram-2000, phone-6000). These results suggest that there may be some small im-
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Reference graphemes-only Hypothesis graphemes-only Acc Trigram-500 Hypothesis Trigram-500 Acc

BLOODS BLOWS 60 BLOODS 100

CAGYNESS TUGGING US 33.3 CASHINESS 66.7

CHICAGOS CHUCKED US 44 CHICAGOS 100

DOOGLEBUG DONT LOOK AT IT 25 DO THE BOAT 33.3

HEINRICH HE RICH 66.7 HEINRICH 100

LIECHTENSTEIN LAKE AND SANE 0 LIECHTENSTEIN 100

LOGANBERRY LA GAMBORE 44.4 LOW AND BEGGARY 61.5

MEGALOMANIAC MC GILL AMMUNIE 38.5 MY DOLOMANIA 63.6

MOVEABLE MOVE YOU WILL 45.5 MOVABLE 85.7

OESOPHAGUSES WAS THE PAGES 27.3 ASSOPHODACES 50

PHILOSOPHIZERS PHYLLOSOPHYSORS 66.7 PHILOSOPHIZERS 100

PIGEONHOLE PUDGEN HALL 50 PIGEON HOLE 100

PORTSMOUTH POURED A MOUTH 66.7 PORTSMOUTH 100

SIMONS SUMMONS 71.4 SIMONS 100

SPONGED FOND 0 SPONGE 83.3

THAILAND NOTHING 14.3 TALL AND 71.4

TOOTHACHE TO FETCH 28.6 TO THEE 33.3

WALES WAS 33.3 WAILS 60

WISEST WIZARD 33.3 WISEST 100

Table 5.3: E2E-ASR transcription of graphemes-only and Trigram-500 representtion

mixing model. Some mispronunciations can be observed in the E2E-ASR transcrip-

tion such as PORTSMOUTH with the word MOUTH [maUT]. Note: whitespace was

removed before calculating accuracy. Accompanying audio samples are available at

https://homepages.inf.ed.ac.uk/s1649890/chap5/

provements with representation mixing for random words, but the overall effect size is

small.

What about pronunciation correction for the Out-LJ set? Recall from Chapter

4 when transcribing natural speech, the ASR accuracy scores were: 7.7%±2.9 and

13.6%±6.3 for In-LJ and Out-LJ respectively, which was a decrease in accuracy by

5.9% when transcribing more difficult words. As with other models in Section 4.4.5,

the accuracy scores for Out-LJ were lower than for In-LJ. However, accuracy was re-

duced more for graphemes-only than for Trigram-500 and all models with n ≥ 2000

(except for Freq-2000). The larger gap between graphemes-only and these mod-

els for Out-LJ show improved pronunciation modelling with representation mixing.

Despite the imperfections in using E2E-ASR transcription to evaluate pronunciation

modelling, the gap between graphemes-only and the models with n ≥ 2000 overall is

larger when transcribing words of difficult G2P relations. E2E-ASR is still detecting

larger differences in quality for these sets of words when using representation mixing.

Some examples of ASR transcription of words from Out-LJ (with difficult G2P rela-

https://homepages.inf.ed.ac.uk/s1649890/chap5/
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tions) are presented in Table 5.3. The reader is encouraged to listen to samples via the

link in the Table’s caption.

Table 5.3 shows that the implicit G2P model of graphemes-only incorrectly gen-

eralises pronunciations of difficult words. Table 5.3 also shows that better pronuncia-

tions from Trigram-500 were transcribed with higher accuracy.

One main takeaway from this analysis is that E2E-ASR identifies larger gaps be-

tween graphemes-only and the word type selection methods for difficult G2P words

(Out-LJ) than for random words (In-LJ). The other main takeaway is that pronunci-

ation correction is possible with n = 500 if the word types are selected to obtain a

wide phonetic coverage as in the trigram method. Overall, representation mixing

with a pronunciation lexicon is beneficial for E2E-TTS, but a large lexicon may not

necessarily be required to correct pronunciations.

5.6 Summary

5.6.1 Summary of Pronunciation Correction Experiments

1. How much pronunciation correction is possible with as small a lexicon as pos-

sible?

With judicious selection of word types (exemplified by trigram-500), a high de-

gree of pronunciation correction was possible with only 500 words in a lexicon. How-

ever, with other selection methods (e.g. random word type selection) a lexicon of at

least 4,000 words more reliably rendered pronunciation correction.

2. Is pronunciation correction possible with only single occurrences of phone-

labels during training?

No. Single occurrences of phone labels (in the oracle-14 model) rendered unintelli-

gible speech with no pronunciation correction.

5.6.2 Summary Remarks

Pronunciation correction using representation mixing was analysed in a small-scale

expert-based listening test and in a large-scale evaluation using ASR. A lexicon of

500 words in trigram-500 was shown to correct mispronunciations made by a model

trained only on text-input graphemes-only. Pronunciation correction was improved
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the most by incorporating syllable boundaries with phones during training and test-

ing. Despite the imperfections with the E2E-ASR model to evaluate difficult pronun-

ciation phenomena, significant improvements in accuracy were still observed over a

graphemes-only model with representation mixing using lexica of n ≥ 2000. The

next chapter presents my thesis, some concluding remarks and directions for future

work.



Chapter 6

Conclusions

In the foregoing chapters, I have analysed pronunciation modelling in DC-TTS and

Tacotron to assess the viability of E2E-TTS without the need for a pronunciation

lexicon. In Chapter 2 initial attempts to evaluate implicit pronunciation modelling

via G2P and a MUSHRA were conducted. Simulation of the implicit pronunciation

model via G2P revealed words that were subsequently mispronounced by DC-TTS

(and Tacotron). The chapter concluded that stimuli containing G2P error words would

be suitable to evaluate the need for a pronunciation lexicon in English.

In Chapter 3, further G2P experiments were conducted finding an improvement

to the implicit pronunciation model with gold-standard morphological labels at input.

Experiments were also conducted in French concluding that other aspects of the tradi-

tional TTS front-end (post-lexical rules) are still beneficial for the control of linguistic

phenomena such as liaison. The chapter called for a more objective and scalable eval-

uation method for pronunciation in speech to assess the value of the lexicon (and the

broader front-end) for Tacotron.

In Chapter 4 ASR was assessed for pronunciation evaluation. Across multiple years

of the Blizzard Challenge, ASR transcriptions were found to be more reliable than

untrained listeners. However, for the specific task of pronunciation evaluation, text

transcriptions were shown to mask pronunciation errors made by Tacotron. Despite

this bias, when Tacotron used phone-input on a large set of G2P error words ASR

transcriptions were still more accurate than when Tacotron used text-input.

In Chapter 5, the low-resource solution of representation mixing for pronunciation

correction was investigated. Both a small-scale expert listening test and a large-scale

ASR evaluation showed representation mixing can successfully be used to correct pro-

nunciations with a lexicon of only 4,000 words, and potentially with only 500 words

131
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if these are selected judiciously for phonetic coverage. The takeaway messages from

these chapters are presented as my thesis below.

6.1 Thesis

• Pronunciation control is desirable in certain deployable TTS applications to en-

sure correct pronunciation.

• The pronunciation of some words cannot be predicted by generalising from sur-

rounding character contexts alone. To accurately guide the correct pronunciation

of these words requires prior knowledge as represented in a lexicon.

• E2E-ASR transcription can be more reliable than transcription by unreliable

judgements from untrained listeners to approximately evaluate the intelligibility

of TTS systems. However, E2E-TTS transcription can be unreliable for words

of difficult G2P relations.

6.2 Current answers to anticipated questions from the

reader

Certain questions will have occurred to the reader during the course of the preceding

chapters. In this section, the most obvious questions are addressed leading to directions

for future work.

6.2.1 Is correct pronunciation important?

As described in Sections 4.4.6 and 4.4.7, what is understood to be an adequate pronun-

ciation may depend on a communicative context. This may lead the reader to question

the utility of gold-standard phone labels: why should slight mispronunciations be con-

sidered unacceptable? Does it really matter if karate is pronounced [k@reIt] or pothole

is pronounced with a [D] sound?

The answer depends on the researcher’s resource allocation decisions and the fre-

quency with which a language exhibits pronunciations not reliably predictable from

character context. In a high resource language such as English in a deployed use-case

such as smartphone voice applications, correct pronunciation of words with difficult

G2P relations may be very important (as also argued in [111]).
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6.2.2 Why use the pronunciation lexicon when the idea of E2E is

not to use manually created resources?

Work on E2E-TTS can employ a G2P model instead of a pronunciation lexicon to

obtain phone strings. However, this approach may still provide an unsatisfactory pro-

nunciation guide. This is important to point out when works such as [5], [173] question

the value of using phones in E2E-TTS. The value of gold-standard phone labels goes

hand-in-hand with the issue of one’s available resources and the importance one allo-

cates to control over pronunciation.

A related question may ask that since word pronunciations are not fixed and may

vary on communicative context, why should one have to specify the pronunciation?

The answer depends on the importance one attaches to the pronunciation of some

words.

On the value of the pronunciation lexicon for words with difficult G2P relations,

some recent work on E2E-ASR should also be mentioned. Despite non-significant

differences in performance in E2E-ASR with text- or phone-input, there are proposals

to improve transcription of difficult G2P words in E2E systems [257], [266]. However,

these offer improvements but do not provide the assurance of a lexicon.

6.2.3 Does more data improve pronunciations of E2E-TTS?

This point requires objective clarification, perhaps through a systematic study as con-

ducted for ASR in [18]. The results of a CBHL encoder [173] with 24 hours of LJ and

a CBHG module using 39 hours of training data in [4] were shown to have similar per-

formance between text- and phone-input. However in the results with a CBHG module

in Chapter 3, a MUSHRA (which assesses the same test stimulus directly alongside all

systems under test - unlike a MOS test) showed a difference in performance when

trained on only 18 hours of data. The dataset may interact with other features too

(the language, the audio quality, single or multi-speaker). Given these different but

difficult-to-compare results, future work suggests a systematic comparison that takes

into account potentially interactive factors too (see Section 6.3 below).
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6.2.4 Is a pronunciation lexicon needed in languages other than

English?

The relative benefit of a lexicon may lie in the relationship between G2P relations (or

LTS rules) and the number of words in a lexicon, as shown in Figure 2.2. Comparing

the relative G2P performance of pre-trained E2E-TTS text encoders systematically in

different languages (with a variety of datasets sizes) would be an interesting path for

future work (see Section 6.3).

Beyond the pronunciation lexicon, some manually written resources may provide

better assurances than predictions based on sequence modelling such as with text nor-

malisation, pitch accent types in Japanese, or semantic rules for polyphone disam-

biguation in Chinese.

Another related question is how TTS systems should pronounce foreign names in

a language. Is nativisation required (where foreign names may be pronounced with

the phonotactics of their language of origin [103])? It is unclear how well nativisation

works across multiple languages in E2E-TTS.

6.2.5 Why are text- and phone-input regarded as equivalent?

Why do researchers adopt the view that there is no difference between text- and phone-

input in E2E-TTS? Firstly, the adoption of S2S acoustic models allowed for improved

contextual learning from character-input.

Text-encoders were shown to learn the context of input characters, for example in

[5], [8]. Furthermore, in [3] the authors concluded that with a learned text encoding in

DC-TTS, explicit context features previously used in SPSS were effectively redundant.

The implication of this finding it that S2S acoustic models with characters improves

contextual pronunciation modelling. Since some ambiguous G2P relations may be

learnt by surrounding character contexts given enough data and a large enough model

parameter size, so the thinking goes, the gap in performance between text- and phone-

input close. This has been shown to an extent empirically with MOS test scores in [4],

[173] with CBHL/G encoders (see Section 2.6.4.2)

However, some pronunciations are not learnable from the context contained within

a single text-audio pair alone. For instance, it is difficult to generalise pronunciations to

words of foreign origin which do not follow the typical G2P patterns of the language’s

orthography. Examples are provided throughout the preceding chapters in Tables 2.3,

3.3, 3.4, 3.5, 3.6, 4.3, 4.6, and 5.3. To illustrate this point here, let us take one further
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example. The G2P model prediction (translated into the IPA) for karate from the

LJ Types G2P model was [k@reIt]. More knowledge than the surrounding character

context would inform the model that it is a word of Japanese origin with different G2P

relations. Knowledge about the word’s pronunciation simply has to be known.

The second reason it is argued text-input is no different from phone-input is be-

cause standard listening test data does not adequately test for differences between the

input-representations. Since the claim of "difficult to distinguish from human speech”

has been made [7, p.1], the specific key competence of pronunciation is often disre-

garded as an issue amongst broader tasks such as improving intonation or prosody for

expressive TTS. Evaluations on a held-out set often tests a general but vague notion

of naturalness whereas stimuli specifically selected according to criteria can offer fur-

ther insight. In this thesis, words selected for ambiguous G2P relations have shown

differences between text- and gold-standard phone-input.

A related point was made in [177] that large-scale evaluations can mask small but

potentially important differences in TTS systems. In their approach, they proposed a

selection of stimuli according to acoustic dis-similarity between TTS systems. This

approach could be incorporated in the future to evaluate pronunciations in TTS sys-

tems. The point of contention here is: if an error is masked in a large scale evaluation,

then is it unimportant? In certain deployment cases (for instance smartphone applica-

tions) the pronunciation of certain words such as names may be very important for the

user.

The third reason is researchers may be using phone labels from a G2P model. A

G2P model may equally have generalisation issues for words that are not easily pre-

dictable from character context. In Chapter 2, G2P models trained on words from

E2E-TTS datasets had higher error rates than a G2P model trained on the Combilex

lexicon. Even with improved S2S G2P generalisation (be it from more data or im-

proved deep learning model architectures), the pronunciation for some words cannot

be predicted from generalised G2P relations based on character contexts alone.

The fourth reason text- and phone-input are treated with equivalence is when En-

glish is cast aside from other languages for its irregular orthography. However, predict-

ing pronunciations from character context in an input-string can pose issues in other

languages too. For instance, the incorrect insertion of disallowed liaison in French (see

Table 3.6) or the pronunciation of compound words in Kiswahili - see Section 3.4.2).

Some languages have a large set of input graphemes (e.g. logographies) which require

a conversion to a phonetic alphabet - such as Mandarin or Japanese.
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6.2.6 How does the performance of implicit G2P modelling differ

across E2E-TTS architectures?

Another salient question from the reader may be that of the interplay between archi-

tecture choice and learning from text. Besides the comparison of the CBHL and CNN

encoders in [173], how are pronunciations handled in more novel architectures that po-

tentially exploit implicit semantic context such as BERT? In [171] a machine learning

approach to homograph disambiguation used part-of-speech (POS) features. How suc-

cessful is homograph disambiguation in E2E-TTS? Does the use of a BERT network

[149] exploit implicit semantic information to learn the difference between (sea-)bass

and (musical-)bass?

There are more interesting questions waiting to be answered. What is the effect of

dataset size on the performance between text encoders trained with text- and phone-

input? How beneficial are gold-standard phone labels compared with predicted labels

from an external G2P model? How are pronunciations modelled in context in multi-

speaker synthesis across accents? In EATS [20], phone-input was observed to be sig-

nificantly better but which dialectal variants cannot be learnt from context alone? As

mentioned in Section 2.6.4.2, a systematic review of text- and phone-input across dif-

ferent E2E-TTS architectures would be insightful. However, ultimately certain words

cannot be modelled from character context alone.

6.2.7 How could latent pronunciation knowledge in E2E-TTS mod-

els be made interpretable?

The reader may also question the nature of the latent knowledge inextricably entwined

in the parameters of neural networks. How can this knowledge be made interpretable

and differences in input representations be contrasted in TTS? Interpretability of neu-

ral networks ultimately seeks an explicit, contradictory-free set of explanations for

combined latent decision making by the set of all weights. Fundamentally, a full ex-

planation defeats the object of employing such an approach in the first place. Only

vague insights can be learnt, the complete rule-based answer will not be revealed.

Notwithstanding this limitation, further work on understanding how language is

implicitly learnt would be interesting future work - in particular to study the effect of

subword decomposition on neural sequence modelling in more detail. Do subword

units for TTS need to be linguistically symbolic (syllables/ morphemes) or can they be
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unsupervised (BPE or Morfessor units)? Is there an interaction here with the language

being processed?

By adopting the taken approach in [8], E2E-TTS can be treated as classifiers of

morphological boundaries to understand how much morphological knowledge is learnt.

More broadly, the approach could also be applied to different architectures. Phones

could be classified from text-input and the pronunciations for words with difficult word

pronunciations could be evaluated in this way similarly to the implicit G2P models of

Chapter 2.

6.2.8 What are future research directions for TTS evaluation with

ASR?

In practise, ASR evaluation via APIs (as used in [21]) will be more robust than the

E2E-ASR used in this thesis since they will use a pronunciation lexicon and inverse

text normalisation. The findings that ASR is reliable only in a general sense at an

aggregate level (and not for particular words) is a warning to researchers that pronun-

ciation analysis at an individual level may still have to be manual.

Nevertheless, a re-evaluation of the Blizzard Challenges in Mandarin would be

low-hanging fruit. ESPnet contains an E2E-ASR model for Mandarin and the evalua-

tion data for the Blizzard Challenges in 2019 and 2020 are also freely available online.

6.3 Future work

There remain several interesting unanswered questions about pronunciation modelling

in E2E-TTS and E2E-ASR. What I think could be the most insightful directions to

better understand the value of expertly created linguistic resources on pronunciation

modelling at the current moment are summarised here:

1. To better understand the learning of ambiguous character contexts during train-

ing in E2E-TTS, I recommend a systematic evaluation similar to [173] but with

varying amounts of training data in multiple languages. The models trained with

varying amounts of data, could be treated as classifiers for the task of G2P (for

the languages presented in Figure 2.2 or for polyphone disambiguation in Man-

darin).

2. How much morphological information is implicitly learnt in E2E-TTS encoders?
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A similar experimental setup to the above suggesting but where encoders instead

classify morphological boundaries could be an interesting start-point. Do sub-

word units need to be linguistically symbolic (e.g. syllables or morphemes) or

can unsupervised units (e.g. BPE) be used?

3. How might implicit G2P performance in English vary according to architectures

that exploit implicit semantic context such as BERT? In [149], BERT was used

in conjunction with phone-input but which is more beneficial for pronunciation

modelling: BERT or phone-input?

4. An analysis of input representations in multi-speaker E2E-TTS models would

also be interesting. In particular, a contrast between text-, phone- and metaphoneme-

input. To what extent do each of these guide pronunciations optimally? How

much keyword phonology is learnt in E2E-TTS models?

5. I would recommend a re-evaluation of the Blizzard Challenges in Mandarin for

2019 and 2020 using Automatic Speech Recognition, for comparable analysis to

the re-evaluation conducted in English in Chapter 4.

6.4 Some Concluding Remarks

The above directions for future work may bring further insight into the value of ex-

pertly created resources in pronunciation modelling, but evidence throughout this the-

sis shows that a high quality pronunciation lexicon is still more reliable than implicit

G2P generalisation from text.

One final point will bring this thesis to a close. Control over pronunciation is impor-

tant not only for intelligibility but also because an utterance may intentionally express

nuances in pronunciation. Speakers may want to highlight how they pronounce words

differently across accents, as in the well-known George and Ira Gershwin classic: Let’s

call the whole thing off. Throughout the song, the singers contrast their separate pro-

nunciations of words in two accents (e.g. either and neither). However in the lyrics,

the words may be written identically:

"You say either and I say either,

You say neither and I say neither.

Either, either neither, neither
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Let’s call the whole thing off. - George and Ira Gershwin [267]

It simply has to be known that the first word in each pair is pronounced with an [i]

sound and the second word with an [aI] sound. So as the song goes: we "better call the

calling off off " since there is still a place for the pronunciation lexicon.
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