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Abstract

Anisotropy plays a crucial role in a wide variety of magnetic systems. In

low-dimensional materials it can stabilise magnetic structures, overcoming the

tendency for thermal fluctuations to disorder the magnetic correlations. It can

also give rise to exotic dynamics such as nonlinear excitations and amplitude

fluctuations that are not present in purely isotropic magnets. The origin of

magnetic anisotropy lies in the physics of the individual magnetic ion and

the crystallographic environment in which it finds itself. The nature of the

magnetocrystalline anisotropy is therefore highly dependent on both the crystal

structure and the species of magnetic ion. This dependence on the particulars of

the system gives rise to starkly different phenomena in different compounds.

In this Thesis, the physics of a number of anisotropic 3d transition metal

compounds will be investigated, with a particular focus on the interplay between

the single-ion physics and correlated phenomena. The Thesis begins with a

discussion of the nature of magnetic interactions in the solid state, focusing on the

quantum mechanical nature of the spin and orbital degrees of freedom that give

rise to magnetism. Chapter 2 then provides an overview of neutron scattering

– the principle experimental technique employed in this Thesis. This chapter

concentrates on the instrumentation and neutron scattering theory required to

interpret the results detailed in the later chapters and includes sections on both

time-of-flight and triple-axis spectroscopy.

Following the two introductory chapters, Chapter 3 explores the low energy

dynamics of quasi-one-dimensional, large-S quantum antiferromagnets with easy-

axis anisotropy. Such a situation is present in some 3d transition metal

compounds based on ions such as Fe3+ or Mn2+. A description of these

systems is developed using a semiclassical nonlinear σ model. The saddle point

approximation leads to a sine-Gordon equation which supports soliton solutions.

These correspond to the movement of spatially extended domain walls. Long-
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range magnetic order in spin chain compounds is typically a consequence of a weak

inter-chain coupling. Below the ordering temperature, the coupling to nearby

chains leads to an energy cost associated with the separation of two domain

walls. From the kink-antikink two-soliton solution, an effective confinement

potential is computed. At distances that are large compared to the size of the

solitons the potential is linear, as expected for point-like domain walls. At small

distances the gradual annihilation of the solitons weakens the effective attraction

and renders the potential quadratic. By numerically solving the effective one-

dimensional Schrödinger equation with this nonlinear confinement potential,

the soliton bound state spectrum is computed. The theory is then applied to

CaFe2O4, an anisotropic magnet based upon an antiferromagnetic zig-zag network

of 3d5 Fe3+ ions with S = 5/2 and L = 0. Neutron scattering measurements are

able to resolve seven discrete energy levels for spectra recorded slightly below the

Néel temperature TN ≈ 200 K. These modes are well described by the nonlinear

confinement model in the regime of large spatially extended solitons.

Chapter 4 concerns a jeff = 1
2

magnet α-CoV2O6, where spin-orbit coupling

is much larger than the inter-ion coupling and hence the jeff = 1
2

manifold is

well separated from spin-orbital levels. Here, the anisotropy originates from a

small crystallographic distortion which can be treated as a small perturbation

motivating an effective S = 1/2 Hamiltonian with an Ising/uniaxial symmetry.

Low temperature magnetisation data show the existence of magnetisation

plateaux, yet these are not accompanied by Bragg peaks in neutron diffraction

data and hence are not indicative of transitions to new phases of long-range

magnetic order. By application of the Lieb-Schultz-Mattis theorem, the existence

of these magnetisation plateaux is reconciled with the absence of corresponding

Bragg peaks in α-CoV2O6. This analysis relates the underlying symmetries of the

ground state to the magnetisation. The presence of uniaxial anisotropy is shown

to stabilise metastable short-range magnetic order at different field strengths and

temperatures, constructed from antiphase boundaries.

Remaining on the theme of metastable antiphase boundary order, Chapter 5

returns to the S = 5/2 antiferromagnet CaFe2O4 which exhibits two magnetic

orders that show regions of coexistence at some temperatures. By applying

neutron scattering and a Green’s function formalism, the spin wave excitations

in this material are characterised, elucidating the relevant terms in the spin

Hamiltonian. In doing so, it is suggested that the low temperature A phase

order (↑↑↓↓) finds its origins in the freezing of antiphase boundaries created by
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thermal fluctuations in a parent B phase order (↑↓↑↓). The low temperature

magnetic order observed in CaFe2O4 is thus the result of a competition between

the exchange coupling along c, which favors the B phase, and the single-ion

anisotropy, which stabilises thermally-generated antiphase boundaries, leading to

static metastable A phase order at low temperatures.

In Chapter 6, an iron-rich sample of the two-dimensional van der Waals itinerant

ferromagnet Fe3GeTe2 is investigated using neutron scattering. The excitations

are shown to be predominantly two-dimensional in nature and broadened, as

expected for an itinerant magnet. The anisotropy strength is shown to be greater

in magnitude than has been reported in a recent study of iron-deficient samples,

hinting at a crucial role of the iron concentration in the single-ion properties of

Fe3GeTe2. A model of domain walls is developed and the extracted exchange

parameters from the neutron scattering results are used to calculate the expected

domain wall width, based on bulk exchange parameters. This is then compared

with scanning tunnelling microscopy (STM) data which are reflective of the

surface physics. Strong agreement is found with the STM data suggesting that

the surface properties are similar to that of the bulk.

Chapter 7 concerns another two-dimensional van der Waals ferromagnet, VI3.

Unlike the 3d5 transition metal compound discussed in the preceding chapter,

VI3 is formed from a honeycomb of 3d2 V3+ ions which carry an orbital degree

of freedom. Here the Green’s function formalism is extended to treat systems

with an orbital degree of freedom, treating the spin-orbit coupling and crystal

distortions explicitly. Neutron scattering is used to understand the nature of the

low energy spin dynamics in VI3, demonstrating the existence of two qualitatively

different low energy modes. The neutron data are then modelled using the Green’s

function formalism, allowing a connection to be made between the spectrum

and the crystallographic structure and indicating the presence of two differently

distorted domains. It is shown that the anisotropy arising due to the cooperative

effect of spin-orbit coupling and crystal distortions allows for the stable two-

dimensional magnetism at finite temperature.

Finally, in Chapter 8 the Green’s function formalism is extended to treat

noncollinear structures. This formalism is then applied to the noncollinear charge-

ordered antiferromagnet RbFe2+Fe3+F6 – a system of mixed valance formed by

two coupled networks of Fe2+ (3d6) and Fe3+ (3d5) chains. The spin-orbit coupling

and effect of crystal distortions on the Fe2+ ion are considered explicitly and the

neutron scattering response is calculated using the noncollinear Green’s function

iii



formalism. In addition to spin-orbit excitons, it is shown that the low symmetry

of the Fe2+ coordination may give rise to low energy amplitude fluctuations that

are not captured by linear spin wave theory. It is suggested that noncollinear

magnets with low local symmetry may provide candidate systems for stable low

energy amplitude modes in condensed matter systems.
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Chapter 1

Introduction

This Thesis aims to address the nature of magnetic order and excitations in

crystalline materials comprising ions belonging to the 3d group of elements.

Though magnetism has been observed and exploited for millennia [25], its origin

is deeply rooted in the quantum mechanical nature of matter. In crystals, there

exists an interplay between the physics governing the behaviour of individual

ions in the material and the correlation between these ions in a macroscopic

sample, often leading to novel phenomena that differs from that of the constituent

elements. A full quantum mechanical treatment of the many-body problem

scales exponentially with the system size – this remains one of the fundamental

difficulties in condensed matter physics. Nonetheless, methods have been

developed that reduce the scale of the problem and shed light on the behaviour

of many-body quantum systems. These approaches rely on approximations that

reduce the number of degrees of freedom, treating only those deemed most

important in describing the problem.

Neutron scattering remains the principle probe of magnetic excitations in crystals.

By fully characterising the magnetic excitation spectrum, one can write down

a Hamiltonian describing the system and gain an insight into the dominant

interactions present in the material. This can offer insight into novel physical

processes and further the collective understanding of magnetic materials. Though

neutron scattering interrogates the correlation between spins in the system, there

are identifiable signatures of single-ion physics present in the neutron scattering

data. Through neutron scattering experiments and complementary theoretical

analysis, this Thesis will outline how the neutron data can be interrogated for
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these single-ion effects, offering insights into order, the interplay of spin and

orbital degrees of freedom and opportunities for control of magnetic properties

by materials engineering. It will be shown that single-ion effects play a central

role in the correlated states of matter emerging in magnetic systems.

This chapter will begin with an outline of the types of interactions present in

magnetic crystals, beginning with the single-ion physics. There will then be a

discussion of the magnetic interactions between ions that occur in solids and the

order and excitations resulting therefrom. A full exposition of the influence of

single-ion physics on the correlated behaviour in magnetic systems will be deferred

to the later chapters, with reference to specific transition metal compounds.

These discussions will be accompanied by neutron spectroscopic measurements

and complementary theoretical analysis, demonstrating the manifestation of

single-ion physics in the spectra.

1.1 Single-ion physics

Magnetism in solids is primarily a result of the magnetic moment associated

with electrons in the unfilled outer shells of ions. The contribution from the

nuclear magnetic moment is typically much smaller, since the magnetic moment

is proportional to 1
m

and the mass of a nucleus is orders of magnitude greater

than that of an electron [26]. The consequences of the electron magnetic moment

for ions in solids will now be discussed. This discussion will follow a number of

seminal texts on the subject [21, 26–28] and will predominantly concern the 3d

(Iron group) ions, although much of this analysis can be readily adapted to the

4f (Lanthanide) or 5f (Actinide) groups, with an appropriate reordering of the

hierarchy of single-ion energy scales.

1.1.1 Angular momentum

The discussion of electron magnetism is begun by taking the simple case of a

single electron of charge −e orbiting a nucleus of charge Ze. This system can be

described by the Schrödinger equation(
− ~2

2µ
∇2 − Ze2

r

)
ψ(r) = Eψ(r) (1.1)
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where µ is the reduced mass of the composite system and r is the distance between

the electron and the nucleus. The Laplace operator can be written in spherical

coordinates [29]

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂φ2
. (1.2)

By performing a separation of variables ψ(r) = R(r)Θ(θ)Φ(φ),

1

r2

d

dr

(
r2 dR(r)

dr

)
− β

r2
R(r) +

2µ

~2

[
E +

Ze2

r

]
= 0 (1.3a)

d2Φ

dφ2
= −m2Φ (1.3b)

1

sinθ

d

dθ

(
sinθ

dΘ(θ)

dθ

)
− m2

sin2θ
Θ(θ) + βΘ(θ) = 0 (1.3c)

the Schrödinger equation can be solved [28] and admits quantised energy levels

En = −µZ
2e4

2~2n2
. (1.4)

The solutions to Eqns. 1.3a, 1.3b and 1.3c are given by [28]

R(r) = −

√(
2Z

na0

)3
(n− l − 1)!

2n[(n+ 1)!]3
e−

ρ
2ρlL2l+1

n+l (ρ) (1.5a)

Φ(φ) =
1√
2π
eimφ (1.5b)

Θlm(θ) =

√
(2l + 1)(l − |m|)!

2(l + |m|)!
P
|m|
l (cos(θ)) (1.5c)

with ρ = 2Zr
na0

and a0 = ~2
µe2

and where P
|m|
l (cosθ) and L2l+1

n+l (ρ) are the associated

Legendre and associated Laguerre polynomials. The product of the angular parts

of the wavefunction (Eqns. 1.5b and 1.5c) are proportional to the spherical

harmonic function Y l
m = eimφPm

l (cosθ). By examining Eqn. 1.5b, it is clear

that m ∈ Z in order that Φ(0) = Φ(±2π). Finally, from Eqns. 1.5a and 1.5c the
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following allowed values can be found

n = 1, 2, 3, ... (1.6a)

l = 0, 1, 2, ..., n− 1 (1.6b)

m = −l,−l + 1, ..., l − 1, l. (1.6c)

The wavefunction can thus be fully defined by three quantum numbers, |n, l,m〉.
The orbital angular momentum operator, L = −i~r × ∇ satisfies the following

eigenvalue equations [30]

L̂2Y m
l = ~2l(l + 1)Y m

l (1.7a)

L̂zY
m
l = m~Y m

l . (1.7b)

The operators, L̂2 and L̂z commute with the Hamiltonian and thus H, L̂z and L̂2

form a complete set of commuting observables.

The discussion outlined above does not capture the full number of degrees of

freedom that are present for an atom of a hydrogen-like system. This is apparent

when a magnetic field is applied, which linearly splits the atomic levels, an effect

known as the Zeeman effect. The magnetic field couples to the spin degree of

freedom of the electron, which has the quantum mechanical operator

Ŝ2 |s,ms〉 = ~2s(s+ 1) |s,ms〉 (1.8a)

Ŝz |s,ms〉 = ~ms |s,ms〉 (1.8b)

with ms = ±1
2
. The presence of a spin degree of freedom was first conclusively

demonstrated by Stern and Gerlach by passing silver atoms through a magnetic

field and observing the trajectory under the resultant Zeeman field [31]. The

atoms were observed to bifurcate, striking the detector in two places above and

below the path of the initial beam, depending on the sign of ms.

1.1.2 Spin-orbit coupling

Having introduced the spin and orbital angular momentum degrees of freedom,

there will now be a discussion about the interaction between the spin and orbital

moments. This interaction, known as spin-orbit coupling can be rigorously
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derived using the Dirac equation [32], however an illustrative and reasonably

accurate derivation can be performed using the Bohr model [27]. For the ease of

comprehension, this simple derivation will be presented, since in practice the

factors dictating the strength of the spin-orbit interaction will be treated as

parameters to be found experimentally. Let us consider a single electron orbiting

a nucleus with charge Ze. If the electron moves with velocity v it will experience

a magnetic field [27]

H =
Ze

c

r× v

r3
. (1.9)

This field couples to the spin moment of the electron giving rise to a Zeeman

term in the Hamiltonian

H = gµB
Ze~
mc

s · l
r3

(1.10)

where it has been used that r × v = ~l, that is to say, that ~l is simply the

angular momentum of the orbiting electron. Since the electric field of the nucleus

causes the electron to accelerate, the electron is in a non-inertial reference frame

and should ideally be treated relativistically. Doing so results in the “Thomas

correction” [32], the full details of which will not change the subsequent discussion,

therefore the equality can be replaced with a proportionality. Summing over all

electrons one has

HSO ∝ Z
∑
i

si · li
r3
i

. (1.11)

The total spin and total angular momentum are then

Si =
∑
i

si (1.12a)

Li =
∑
i

li. (1.12b)

Electron spins tend to align1 and so in a system containing fewer electrons than

orbital levels (n < 2l+1) this allows the replacement si = 1
n
S = 1

2S
S. If n > 2l+1,

all orbital states (from +l to −l) will be occupied with si parallel to S and hence

the sum over li for the spins parallel to S will go to zero. The only nonzero terms

in the sum will originate from spins anti-aligned with S, thus si = − 1
2S

S. Overall

this leads to a spin-orbit interaction of the form

HSO = λL · S (1.13)

1The origin of this alignment will be discussed further in the section regarding Hund’s rules.
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where the sign of λ depends on whether the shell is more or less than half-

filled [27]. The eigenstates of the spin-orbit Hamiltonian can be readily calculated

by rewriting Eqn. 1.13 as

HSO = λL · S =
λ

2

(
(L + S)2 − L2 − S2

)
. (1.14)

The eigenvalues of S2 and L2 are S(S + 1) and L(L+ 1) respectively, so that

HSO =
λ

2
(J(J + 1)− L(L+ 1)− S(S + 1)) (1.15)

where a new angular momentum operator, J = L + S, has been defined – the

total angular momentum. The total angular momentum quantum number can

take integer values between J = L + S and |L − S|. In some systems where

the spin-orbit coupling is large, J is a good quantum number and the single-ion

eigenstates are well described by the total angular momentum quantum numbers.

Such a situation is typical of the iridates [33] but not the 3d ions, although one

particular example where this is the case is discussed in Chapter 4.

1.1.3 Hund’s rules and the Aufbau principle

Having discussed the spin and orbital quantum numbers, the discussion now

turns to how the ground state of a many-electron atom is determined. There

exists a list of rules known as Hund’s rules that form a set of principles for the

determination of the ground state of an atom, which should be applied in order.

But first one must consider how electrons arrange themselves within atoms. As

discussed in the last section, the state of an electron can be described by four

quantum numbers |n, l,m,ms〉. Electron shells labeled with s, p, d, f, g, h,... have

l = 0, 1, 2, 3, 4, 5,... and can hold 2(2l + 1) electrons. There are two principles

that dictate how these shells are filled.

1. The Aufbau principle: Shells are to be filled from the lowest available energy

state, filling each shell entirely before populating the next.

2. Madelung’s rule: The lowest energy shell has the smallest value of n+ l. If

two shells have the same value of n + l, the smallest n shell is filled first.

This rule is visually depicted in Fig. 1.1.

Using these principles, the electronic configuration of many electron atoms can
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Figure 1.1 The order of electron orbital shell filling according to Madelung’s
rule.

be written down. The Madelung rule applies to the filling of atomic electron

shells, however when atoms form ions, this rule can be violated. Typically the 3d

elements lose the 4s2 electrons before those in the 3d shell, as seen in Co2+ [21].

As an example, below are listed the electron configurations for ions of relevance

to this Thesis.

Fe2+: 1s22s22p63s23p63d6

Fe3+: 1s22s22p63s23p63d5

V3+: 1s22s22p63s23p63d2

Co2+: 1s22s22p63s23p63d7

Given the electronic configuration of an atom, Hund’s rules can be used to

determine the quantum numbers that describe the ground state. The rules will

first be summarised before explaining their origin in more detail.

1. The ground state is that which maximises the value of S. In other words,

electrons seeks to align themselves.

2. Within the states of maximal S, the state with largest the L value is lowest

in energy.
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3. Pursuant to Hund’s first two rules, the total angular momentum is given

by J = |L± S|, with the sign being positive (negative) if the outer shell is

more than (less than) half full.

Hund’s first rule is a consequence of the Pauli exclusion principle. Aligned

spins are unable to come close to one another and hence provide little screening

of the attractive Coulomb potential from the nucleus. Anti-aligned spins are

not precluded from coming close to one another and therefore can give rise to

a screening of the Coulomb potential. Thus the configuration where electron

spins are aligned is the minimum energy state. The second of Hund’s rules

can be understood by considering the picture of orbiting electrons in the Bohr

model. Electrons orbiting in the same direction encounter each other less and

therefore provide less screening of each other than if they were to travel in

opposite directions. This means that the state with where electron orbital angular

momenta have the same sign leads to a lower energy configuration. This argument

is analogous to that of Hund’s first rule, demonstrating the similar behaviour of

the spin and orbital moments [26]. Finally, the last of Hund’s rules finds its

origin in spin-orbit coupling. The spin-orbit coupling term H = λL · S, splits

the spectrum into levels based on the total angular momentum, J. The order of

the energy hierarchy of these levels depends on the spin-orbit coupling parameter

λ, which is positive for less than half-filled shells and negative if the shell is

greater than half-filled. Having assigned the quantum numbers in accordance

with Hund’s rules, the ground state can be described by its term symbol 2S+1LJ,

where the indices are given in terms of their numerical value and L is S, P, D,...

for a ground state that has an orbital quantum number of 0,1,2,... following the

standard orbital labelling convention. It is important to note that the energy

scale of the spin-orbit coupling is typically much lower than that of the Coulomb

interaction between electrons [21]. In fact, for the 3d ions considered in this

Thesis, there is a another term in the single-ion Hamiltonian which is larger in

magnitude.

1.1.4 Crystal field

Typically in the 3d ions the strength of the spin-orbit coupling is exceeded by

that of the crystalline electric field. This contribution is a result of the Coulomb

potential created by the local environment of surrounding ions, (ligands) and

hence is often termed the ligand field. The effect of this crystal field is to
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lower the degeneracy of the fivefold degenerate d orbitals, and often permits the

projection onto a lower dimensional manifold, described by an effective orbital

angular momentum smaller than that of the free ion. This splitting is dependent

on the local symmetry of the crystal field and hence the coordination of the central

ion. All of the systems discussed in this Thesis are octahedrally coordinated and

comprise a central metal ion X surrounded by six ligands, L, such that the local

coordination is XL6. It is typical to discuss the crystal field in terms of the real

space basis functions of the atomic orbitals. For d electron system, this gives

rise to five orbital levels, which are split by an octahedral crystal field into a

ground state triplet of three |t2g〉 levels and an excited doublet of two |eg〉 levels.

The discussion that follows will use the language of the “intermediate crystal field

picture” as appropriate for the 3d ions and will consider octahedrally coordinated

3d ions. A more complete exposition of crystal fields can be found in Ref. [34].

The crystal field Hamiltonian can be written as

HCEF = −e
N∑
i=1

V (ri) (1.16a)

V (r) =
1

4πε0

∫
ρ(R)

|r−R|
d3R (1.16b)

where the sum is over the electrons in the outer shell of the central ion and

ρ(R) is the charge at position R. The potential can be expanded in terms of

the tesseral harmonics. These functions are related to the spherical harmonics

and form a more convenient basis in which to expand the crystal field potential.

The correspondence between the tesseral and spherical harmonics can be found

in Appendix A

V (r) =
∞∑
k=0

k∑
q=−k

rkZq
k(r)

1

2k + 1

∫
d3R

ρ(R)Zq
k(R)

ε0Rk+1
. (1.17)

Following Ref. [34], Eqn 1.16a can be conveniently written as

HCEF =
∑
kq

γqkH
q
k (1.18a)

γqk =
1

2k + 1

∫
d3R

ρ(R)Zq
k(R)

ε0Rk+1
(1.18b)

Hq
k =

N∑
i

rki Z
q
k(ri) (1.18c)
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Table 1.1 Sign of B4 for different filling factors [21].

d1, d3, d6, d8 B4 positive
d2, d4, d7, d9 B4 negative

where the operator Hq
k is a polynomial. Such polynomial operators are

inconvenient to work with, however there exists a mapping between these

polynomials and equivalent quantum mechanical operators. This mapping can be

verified by checking that the equivalent quantum mechanical operators transform

according to the same irreducible representation of the rotation group as the

polynomial. The equivalent operators for a number of polynomial functions

relevant to crystal field theory were first calculated by Stevens [35]. The crystal

field, in terms of quantum mechanical operators takes the form

HCEF =
∑
kq

Bq
kO

q
k (1.19a)

Oqk =
(
pqkΘk〈rk〉

)−1
Hq
k (1.19b)

Bq
k = −epqk〈r

k〉γqkΘk. (1.19c)

The quantum mechanical operator equivalent “Stevens operators”, Oqk, are listed

in Appendix B. The coefficients pqk are numerical factors associated with the

tesseral functions and the factors Θk depend on the 3d electron wavefunctions and

for k = 2, 4, 6 are the well-known Stevens coefficients αJ , βJ , γJ [36]. In general,

one should sum over all even k and all q < k, however in highly symmetric

environments many of the Stevens parameters, Bq
k, vanish [34]. All compounds

in this Thesis feature 3d ions in an octahedral coordination, which is naturally

favoured for its stability. For a perfectly octahedral environment only the O0
4 and

O4
4 components survive such that the crystal field takes the form [21]

HCEF = B4

(
O0

4 + 5O4
4

)
. (1.20)

The crystal field spectrum then depends on the orbital ground state (determined

using Hund’s rules) and the sign of B4 which depends on the filling of the outer

shell. The sign for 3d ions is listed in Table 1.1 for octahedral coordination. The

case of half-filling, d5, is not listed since the ground state is already an orbital

singlet and hence does not experience any crystal field splitting, to first order.

The spectrum for both the D and F ground states is shown in Fig. 1.2. The

ground state degeneracy is ultimately determined by the sign of B4. For example
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Figure 1.2 Crystal field splitting for the D and F states.

in a 3d6 ion with B4 > 0 the crystal field gives rise to an orbital triplet ground

state, as is the case for a 3d2 ion with B4 < 0 [21]. Typically if the splitting

between this ground state orbital triplet and the excited multiplets is large, a

projection onto an effective orbital angular momentum of l can be performed

since the inter-multiplet matrix elements are negligible. The projection onto an

effective orbital angular momentum will be discussed at greater length in later

chapters.

1.1.5 Crystallographic distortions

In the previous section, the nature of the crystalline electric field for an

octahedrally coordinated 3d ion was discussed. In many 3d transition metal

compounds, the local environment is distorted away from that of a perfect

octahedron. Such a distortion can typically lower the configurational energy by

lowering the local symmetry and reducing the orbital degeneracy – a phenomenon

often referred to as the Jahn-Teller effect [37]. As a result of this, systems with a

ground state degeneracy are typically unstable to distortions, leading to the the

breaking of this degeneracy and the quenching of the orbital angular momentum

〈L〉. The orbital quenching follows from the fact that the crystal field Hamiltonian
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has real eigenfunctions, yet the operator L is pure imaginary. Therefore it follows

that 〈L〉 is imaginary. Since the operator is Hermitian its diagonal elements must

be real and thus 〈GS|L |GS〉 = 0 if the ground state |GS〉 is non-degenerate [27].

In principle, one need not make the distinction between the octahedral crystalline

electric field and the distortion term, since the origin is the same for both.

However, if the distortion is sufficiently small, it can be treated as a perturbation

and one can take advantage of a projection onto the effective orbital angular

momentum operator l as described in the previous section. The precise form

of the distortion Hamiltonian depends on the local symmetry. In 3d transition

metal compounds, tetragonal or trigonal distortions are typical. Both distortion

Hamiltonians are proportional to O0
2 and can be written as

Hdis = Γ
(

3L̂2
z − L(L+ 1)

)
(1.21)

which can readily projected onto the manifold of l. In the case of a ground state

orbital triplet, a tetragonal or trigonal distortion breaks the degeneracy giving

rise to a singlet and doublet. Further terms may be considered if the symmetry

is lowered [38], for example a rhombic distortion gives rise to terms proportional

to O2
2 [21]. These low symmetry terms break the doublet degeneracy and give

rise to three energetically separated singlets.

To this point the physics governing the ions surrounded by a local ligand field

has been discussed. As was seen in the previous section, the interaction between

electrons in the unfilled outer shell, both among themselves and with their

neigbouring cations gives rise to a hierarchy of energy scales. In the following

section the physics that governs the interaction of magnetic ions with one another

will be discussed. Some reference will be made to the influence of the local

degrees of freedom on this cooperative magnetic behaviour from a perturbative

perspective.

1.2 Cooperative magnetism

Attention is now turned to the interaction between neighbouring magnetic ions.

The focus will be on orbitally non-degenerate magnetic ions. As discussed in

the previous section, the Jahn-Teller effect generally works to remove the ground

state orbital degeneracy in the 3d ions thus such a simplification is sufficient to
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describe most systems discussed in this Thesis. These cooperative interactions

ultimately determine the magnetic order and excitations present in 3d transition

metal compounds.

1.2.1 Exchange interactions

There are two predominant means by which magnetic ions couple, both of which

lead to an inter-ion Hamiltonian of the form first introduced by Heisenberg [39].

The first of which, known as direct exchange, finds its origin in the Heitler-London

theory of molecular bonding [40] and gives rise to a spin-spin coupling between

neighbouring ions with overlapping electron wavefunctions.

To illustrate the origin of direct exchange, a toy model comprising two hydrogen

atoms is now considered. The electronic wavefunction can be written as a linear

combination of the wavefunctions of the electrons from atom 1 and atom 2,

ψs,a(r1, r2) =
1√

2(1± | 〈I|II〉 |2
(φI(r1)φII(r2)± φI(r2)φII(r1)) , (1.22)

with the normalisation 〈I|II〉 =
∫
φI(r)φ∗II(r)dr. The spin state for the two

electron system is either a singlet or triplet state [41, 42],

|s〉 =
1√
2

(|↑↓〉 − |↓↑〉) (1.23a)

|t1〉 = |↑↑〉 (1.23b)

|t2〉 =
1√
2

(|↑↓〉+ |↓↑〉) (1.23c)

|t3〉 = |↓↓〉 . (1.23d)

The Pauli exclusion principle dictates that the total wavefunction must be

antisymmetric with respect to electron exchange. Therefore, the antisymmetric

electron wavefunction implies the symmetric triplet state and the symmetric

electron wavefunction the antisymmetric spin singlet. The Hamiltonian has

contributions from the Coulomb interaction between each electron and the two

nuclei, as well as an electron-electron repulsion term. The energy of the states
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with a symmetric and antisymmetric electron wavefunction are then [41, 42]

E =
〈ψs,a|H |ψs,a〉
〈ψs,a| | |ψs,a〉

= 2E0 +
C ± A
1± S

(1.24a)

C =
e2

4πε0

∫ ( 1

|RI −RII|
+

1

|r1 − r2|
− 1

|r1 −RI|
− 1

|r2 −RII|

)
× |φI(r1)|2|φII(r2)|2dr1dr2

(1.24b)

A =
e2

4πε0

∫ ( 1

|RI −RII|
+

1

|r1 − r2|
− 1

|r2 −RI|
− 1

|r1 −RII|

)
× φ∗I (r1)φI(r2)φII(r1)φ∗II(r2)dr1dr2

(1.24c)

S =

∫
φ∗I (r1)φI(r2)φII(r1)φ∗II(r2)dr1dr2. (1.24d)

The first term in Eqn. 1.24a is the ionisation energy of the two hydrogen atoms,

whilst A and C are known as the exchange and Coulomb integrals respectively.

The difference in energy between the singlet and triplet states is thus

Et − Es =
1

2
J = 2

CS − A
1− S2

(1.25)

where the “exchange constant”, J , has been introduced2. The exchange constant

quantifies the energy difference between the parallel spin arrangement and the

anti-parallel spin configuration. A Hamiltonian which gives rise to this spectrum

is now sought. As discovered by Heisenberg [39], the spin-spin interaction

H = Js1 · s2 (1.26)

gives rise to the required splitting, up to a constant term. The above argument

can be extended to multi-electron atoms where the electron wavefunction is given

by the Slater determinant. If one assumes that the overlap of the single electron

wavefunctions is negligible, then S = 0 and J is always negative and hence

ferromagnetic [43].

It has long been known that the theory of direct exchange is insufficient to

describe the magnetic interactions in the 3d ions [44]. As far back as 1949,

whilst neutron spectroscopy was still in its infancy, Shull and Smart reported

that the neutron diffraction pattern of MnO was consistent with a doubling of

2Note that in the literature the sign on the definition of J is frequently swapped from that
defined here and the factor of 1

2 omitted. Here the definition is chosen to be consistent with
the models used in the rest of the Thesis and in keeping with modern convention.
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the crystallographic unit cell – a direct measurement of a hitherto illusive ordered

phase of matter, the antiferromagnet [45]. A more complete account of the origin

of this behaviour was given in 1959 by P.W. Anderson [46] in his description

of the superexchange interaction. To sketch out the arguments of Anderson, an

orbitally non-degenerate ground state is now considered, with each atomic site

contributing a single electron. Such a situation can be readily described by a

Hubbard model [47]

H = −t
∑
〈i,j〉σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓. (1.27)

The operators ĉ
(†)
iσ are the creation (annihilation) operators for an electron of spin

σ on site i, and obey the fermionic anticommutation relation {ĉiσ, ĉ†jσ′} = δσσ′δij.

The first term describes electron hopping between neighbouring sites and the

second the Coulomb repulsion which must be overcome to doubly occupy one

site. The large magnitude of the Coulomb repulsion in 3d ions (U � t) dictates

that the lowest energy state is that in which each site is occupied by a single

electron. Treating the hopping term perturbatively, at second order one has the

contribution to the ground state energy [48]

∆E2 =
∑
n

| 〈0|H′ |n〉 |2

E0 − En
(1.28)

where the sum is over all excited states and H′ is the first term in Eqn. 1.27,

treated as the perturbation. If one concentrates on two neighbouring sites (Fig.

1.3), the excited state comprises one empty site and one doubly occupied by anti-

aligned electrons. In this case, the perturbative correction (Eqn. 1.28) describes

the virtual hopping of one electron to a neighbouring site and back again. The

energy associated with this process is −2 t
2

U
with the multiplicity factor coming

from the fact that there are two excited states possible (i.e. where the left/right

site is doubly occupied). It is important to note that this process is forbidden by

the Pauli Exclusion Principle if the electron spins are coaligned (Fig. 1.3 (a)),

thus the superexchange interaction favours antiferromagnetic alignment (Fig. 1.3

(b)). A transformation to spin operators [49] is now introduced

ŝα =
1

2

(
ĉ†↑ ĉ†↓

)
σα

(
ĉ↑

ĉ↓

)
. (1.29a)
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Forbidden

Allowed

Intermediate state
a)

b)

Hopping process

Figure 1.3 Virtual electron hopping process giving rise to the superexchange
interaction. For coaligned spins (a) the hopping process is forbidden
by the Pauli Exclusion Principle. If the electrons are anti-aligned
(b), the ground state energy is lowered by ∆E = − t2

U , promoting the
formation of antiferromagnetic order.

The matrices σα are the Pauli matrices which means the spin operators obey

the usual spin commutation relations, s × s = is. Using these spin operators in

the limit that U � t the Hamiltonian takes the form of the familiar Heisenberg

model

H = J
∑
〈i,j〉

si · sj (1.30)

with the exchange constant J = 4t2

U
[49]. In contrast to the case of direct

exchange discussed above, J > 0 hence the superexchange interaction promotes

the anti-alignment of neighbouring spins and an antiferromagnetic order. In the

3d ions the superexchange interaction is typically the dominant form of magnetic

exchange [48].

Further to the direct and superexchange discussed above, there are a number of

other indirect exchange process that occur in magnetic compounds which depend

specifically on the energetics of the single-ion physics and orbital overlap, giving

rise to both ferromagnetic and antiferromagnetic couplings. A full discussion of

these is beyond the scope of this Thesis, however further details can be found in

the literature [48]. Accurate quantitative calculations of the exchange interaction

strength are difficult to perform. In practice, spectroscopic and structural studies
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are used to determine the magnetic order and nature of interactions in systems

of interest, with the exchange parameter, J , being treated as a parameter to be

determined experimentally. However, the consideration of a general Heisenberg

model

H =
∑
ij

JijSi · Sj (1.31)

is still insufficient to describe all but the simplest magnetic systems. The effects of

single-ion physics can be observed in the dynamics of the spin moments and give

rise to additional features in the spectrum. In the following sections, additional

terms will be added to the spin Hamiltonian (Eqn. 1.31) by considering the

perturbative effects of the local single-ion terms, noting the approximations made.

In subsequent chapters, examples will be given where these approximations are

not valid and alternative approaches will be discussed that allow for the treatment

of single-ion terms in a non-perturbative manner.

1.2.2 Spin anisotropy

The presence of non-trivial single-ion physics most commonly manifests itself

in the breaking of spin-rotational symmetry via anisotropic terms in the spin

Hamiltonian. The derivation of the spin anisotropy begins by considering an

ion with a quenched orbital angular momentum and hence a non-degenerate

orbital ground state. Such a situation can be achieved in the presence of strong

symmetry-lowering crystallographic distortions. The spin-orbit coupling, which

partially restores the orbital angular momentum [27], is then

H′ = λL · S. (1.32)

Treating the spin-orbit coupling to second order in perturbation theory, the

energy correction to the ground state is [27]

∆E2 = −λ2
∑
µν

ΛµνŜµŜν (1.33a)

Λ =
∑
n

〈0| L̂µ |n〉 〈n| L̂ν |0〉
En − E0

(1.33b)

The decision is made to leave the spin as an operator and transitions due to the

orbital angular momentum operator are calculated. This is because the inter-ion

Hamiltonian depends only on the spin operators. In this way a term dependent
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only on spin operators can be found that captures the spin-orbit interaction

perturbatively. By writing Eqn. 1.33a in terms of its Cartesian components,

one can isolate the single-ion anisotropy term [27]

H =− λ2

[
1

3
(Λx + Λy + Λz)S(S + 1)

+
1

3
[Λz −

1

2
(Λx + Λy)][3Ŝ

2
z − S(S + 1)]

+
1

2
(Λx − Λy)(Ŝ

2
x − Ŝ2

y)
] (1.34)

which, neglecting constant terms, gives rise to the spin anisotropy terms

Hanis = DŜ2
z + E(Ŝ2

x − Ŝ2
y). (1.35)

These terms, referred to as the single-ion anisotropy terms, break spin-rotational

symmetry, promoting the alignment of the spins along a particular direction or

within a particular plane. Such terms are key in low-dimensional systems which

lack spontaneous symmetry breaking [50] as the explicit breaking of continuous

spin-rotational symmetry allows for the development of long-range magnetic

order. The existence of single-ion anisotropy is often marked by a spectral gap in

the neutron scattering spectrum proportional to the magnitude of the anisotropy

parameter.

Whilst single-ion anisotropy is frequently observed in many transition metal

compounds, Eqn. 1.35 vanishes for S = 1/2. Nonetheless, anisotropic spin terms

exist in these systems, occurring at higher order. Consider two neighbouring ions

with spin-orbit coupling and an inter-ion exchange term,

H = λL1 · S1 + λL2 · S2 + S1 · S2 (1.36)

At third order in perturbation theory, for S = 1/2 ions one has the term [27]

∆E3 = −
∑
µν

(
Ŝ1µΓ(1)

νµS1 · S2Ŝ1ν + Ŝ2µΓ(2)
νµS1 · S2Ŝ2ν

)
(1.37a)

Γ(1)
µν = 2λ2

∑
n1n′

1

〈g1| L̂µ |n1〉 J(n1g2, n
′
1g2) 〈n′1| L̂ν |g1〉

(En1 − Eg1)(En′
1
− Eg1)

. (1.37b)

The sum is performed over intermediate states |n〉 and |n′〉 with the initial and

final states on sites 1 and 2 being |g1〉 and |g2〉 respectively. J is the exchange
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integral and generally gives rise to a nonzero Γ even in a perfectly octahedral

environment [27]. The correction to the isotropic Heisenberg model is then [27]

Hanis = −1

4

i=1,2∑
µν

[
(Γ(i)

µν + Γ(i)
νµ)− δµν(Γ(i)

xx + Γ(i)
yy + Γ(i)

zz )
]
Ŝ1µŜ2ν . (1.38)

This correction refers to a process where one ion is excited by the spin-orbit

coupling, interacts with a neighbouring unexcited ion via the exchange interaction

and is returned to the ground state by the spin-orbit interaction.

1.2.3 Dzyaloshinskii-Moriya interaction

The final spin Hamiltonian term that will be considered is the Dzyaloshinskii-

Moriya (DM) interaction [51, 52], often referred to as antisymmetric exchange.

This has a similar origin to the anisotropic exchange interaction, however in the

case of the DM interaction, both ions are simultaneous excited by spin-orbit

coupling before interacting via the exchange Hamiltonian and being returned to

their ground states by the spin-orbit coupling. Following Ref. [27] this term is

equal to

HDM =2λ
∑
µ

(∑
n1

J(n1g2, g1g2) 〈g1| L̂1µ |n1〉 [Ŝ1µ,S1 · S2]

En1 − Eg1

+
∑
n2

J(n2g2, g1g2) 〈g2| L̂1µ |n2〉 [Ŝ2µ,S1 · S2]

En2 − Eg2

)
.

(1.39)

Since [S1,S1 · S2] = −iS1 × S2 this correction can be written as

H = D · S1 × S2 (1.40a)

D =− 2iλ
(∑

n1

〈g1|L1 |n1〉
En1 − Eg1

J(n1g2, g1g2)

−
∑
n2

〈g2|L2 |n2〉
En2 − Eg2

J(g1n2, g1g2

). (1.40b)

The non-zero components of D can be determined by the local symmetry and

examination of Eqn. 1.40b shows that all components of D vanish if a centre

of inversion exists between the two ions. This can be seen by equating Eqn.

1.40b with the same expression with the ion labelling reversed. Defining the line

between ions 1 and 2 as the line AB with bisection point C, the general rules
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governing the the existence of these terms can be written as follows [52]

1. When C is a centre of inversion, D = 0.

2. When a mirror plane perpendicular to AB passes through C, D ⊥ AB.

3. When A and B lie in a mirror plane, D ⊥ mirror plane.

4. When a two-fold axis ⊥ AB passes through C, D ⊥ two-fold axis.

5. When an (n ≥ 2)-fold axis lies along AB, D ‖ AB.

1.3 Final remarks

In Section 1.2, a number of key results in the construction of spin interaction

Hamiltonians was presented. The approach was to treat the single-ion physics,

either implicitly through assumptions about the nature of the crystal field ground

state, or perturbatively in the case of the spin-orbit coupling. However, as

presented in Section 1.1, these single-ion terms depend greatly on both the

species of the magnetic ion and the local crystallographic environment. In fact,

it is not evident a priori that these on-site degrees of freedom can be treated

perturbatively for all the 3d ions. In later chapters, a number of cases will

be discussed for which the single-ion and exchange energy scales are not well

separated and the validity of the perturbative approach fails.

Whilst Section 1.2 discusses, at length, the considerations that must be made to

write down a spin Hamiltonian describing the interaction of local spin moments,

strategies for solving these spin Hamiltonians have yet to be presented. On the

face of it, this is a formidable task. The Hilbert space of the spin Hamiltonian is

(2S+ 1)N where N is the system size. For typical crystalline samples comprising

∼ 1023 atoms, the Hilbert space becomes prohibitively large, hence exact quantum

mechanical treatments are limited to systems sizes N ≤ 100 or most typically

molecular magnets and oligomers comprising few ions. Luckily there exist a

variety of toolkits to approach these problems, ranging from discrete fermionic
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and bosonic transformations [53] to continuum field theories [54]. Each of

these methods carries its own sets of assumptions and limits of validity. A full

presentation of the many-body theoretical techniques relevant to this work is

deferred to the later chapters where each will be discussed in the context of the

physical problems against which they are brought to bear.
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Chapter 2

Neutron scattering

In this Thesis, neutron scattering is used to elucidate the nature of magnetic

interactions in 3d transition metal compounds. The aim of the following chapter

is to present a general overview of the technique, covering both spallation and

continuous sources. This chapter follows the classic texts of Squires [55], Shirane

[56], Boothroyd [57], Carpenter & Loong [58] and Lovesey [59], with additional

references noted explicitly in the text. Further details of data analysis and

modelling specific to the experiments performed for this Thesis are deferred to

later chapters where they are discussed in the context of concrete examples.

2.1 Neutron sources

There are two commonly used methods of neutron production for the purpose of

neutron scattering. The first of these is achieved by employing nuclear fission.

Typically at reactor neutron sources, 235U is used as the fissionable material. The

absorption of a neutron by this heavy nucleus creates an instability leading to

decay into smaller nuclei (Fig. 2.1), with the release of energy (∼ 2 MeV) and an

excess of neutrons to sustain a chain reaction [57]. This neutron production occurs

continuously, hence reactor sources are often referred to as continuous sources.

The energy scale of the neutrons produced is far too high to be used to probe

the fundamental excitations in solids, which are < 1 eV. The emitted neutrons

are therefore passed through a moderator where the neutrons thermalise to a

Maxwellian distribution of energies determined by the moderator temperature.
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The moderator material is chosen depending on the energy scale of interest and

hence whether cold (0.1-10 meV) or thermal (5-100 meV) neutrons are required.

Cold sources typically use liquid hydrogen or liquid deuterium as a moderator

with thermal neutrons produced using graphite or heavy water as a moderator.

Modern reactor-based neutron facilities typically have both thermal and cold

sources allowing for a wide variety of spectroscopy instruments utilizing both

thermal and cold neutrons. Fig. 2.2 shows a schematic of the Institut Laue-

Langevin (ILL) reactor core identifying the different beam ports for cold, thermal

and hot neutrons. Whilst this Thesis concerns the use of neutron spectroscopy,

it is important to note that attached to beam ports, viewing both hot and cold

sources, are a variety of diffractometers for the investigation of structure and order

in condensed matter. In particular, cold neutron diffraction is well suited to the

study of long d-spacings which is particularly useful in the study of magnetism

due to the fall-off of the magnetic form factor at large Q.

+n
n
n
n

235U 236U

89Kr

144Ba

Figure 2.1 Nuclear fission of a 235U nucleus, as takes place in reactor sources.

Though continuous sources historically held a monopoly on neutron science,

significant investment led to the development of a number of pulsed neutron

sources around the world in the latter part of the 20th century. The operating

principle of these facilities is to produce pulses of neutrons through the process

of spallation. A synchrotron is employed to accelerate protons produced by a

linear accelerator to extremely high velocities (in the case of ISIS Neutron and

Muon Source, the protons are accelerated to 0.84c [60]). The high energy protons
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Figure 2.2 Schematic of the ILL reactor with the beam ports connected to
the hot, thermal and cold sources rendered in red, green and blue
respectively. Figure reproduced from Ref. [6].

collide with a heavy metal target, often tungsten. The heavy metal ion undergoes

a process known as spallation: the proton is absorbed, exciting the metal nucleus,

which then decays releasing neutrons. The number of neutrons released in this

process is variable but is typically around thirty, each having an energy of about

2 MeV [57]. The produced neutrons pass from the target through a moderator,

such as solid methane, water, or liquid hydrogen [7] and then down beam tubes

to the beam ports at which the instruments are situated.

The protons produced by the linear accelerator are produced in pulses resulting

in a discontinuous neutron flux from the source1. The neutron pulse shape is

highly irregular, with a strong peak from the fast neutrons and a secondary,

broader peak from thermal neutrons arriving at the instrument at a later time.

There exists a finite frame overlap between those late arriving thermal neutrons

and the fast neutrons of the next pulse which typically arrive ∼ 100µs later [57],

leading to spurious signals in the neutron scattering data as the energy transfer

cannot be determined unambiguously. Frame overlap can be limited by employing

frame overlap choppers which reduce the frame overlap at the expense of lowering

1Whilst spallation sources produce pulsed neutron beams, the Swiss Spallation Source
(SINQ) [61] and the IBR-2 reactor (Dubna, Russia) [62] have a pulse rate high enough to
render the beam continuous.
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Figure 2.3 Schematic of the spallation source at ISIS Pulsed Neutron and Muon
Source in Didcot, Oxfordshire. Protons pass from the synchrotron
to two target stations. The instruments are rendered according to
instrument type. Figure reproduced from Ref. [7].

the effective repetition rate of the pulsed source, or by employing frame overlap

mirrors which reflect long wavelength neutrons out of the beam.
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2.2 Scattering theory

2.2.1 The scattering triangle

At neutron facilities, the interrogation of the sample is performed by the

scattering of neutrons from matter. This scattering occurs in instruments

connected to beam ports, where the scattered neutrons are detected and offer

insights into the structure and dynamics of the sample. These instruments are

highly optimised to probe phenomena of a specific nature and energy scale, but

the underlying operating principle is similar. In this section, the physics of

neutron scattering will be presented.

The results below will be presented without rigorous proof. Readers are referred

to texts such as Refs. [55–57, 59] for full mathematical details. The arguments

presented below were developed first in the context of x-ray scattering by

father and son William Henry and Lawrence Bragg [63]. There exist important

differences between the scattering of neutrons and x-rays from matter – in fact

the fundamental physics of the interaction is very different. Nonetheless, the

qualitative picture is substantially similar and it is the intensity of the scattering

that differs for the different probes. This Thesis will focus only on the case of

neutron scattering with only passing reference to x-ray scattering for the purpose

of pointing out the key differences.

A neutron scattering experiment is performed when a neutron incident on the

sample, with wavevector ki is scattered through a scattering angle 2θ, resulting

in a final neutron wavevector kf . The difference between the initial and final

wavevector is given by the scattering vector

Q = ki − kf . (2.1)

The difference between the neutron’s incident and final energy is

∆E =
~2

2m

(
k2
i − k2

f

)
(2.2)

which can be zero (elastic scattering) or nonzero (inelastic scattering). If the

scattering is elastic, the magnitude of the initial and outgoing wavevector must

be equal, |ki| = |kf |. In order for scattering from a sample to occur, the Laue
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condition must be satisfied, that is G = ki−kf , or in other words, the scattering

vector must be a reciprocal lattice vector (Fig. 2.4 (a)). This fact follows directly

from Bragg’s law

nλ = 2dsinθ (2.3)

upon the insertion of the lattice spacing d = 2π
|G| and wavelength λ = 2π

|k| . Here n

is an integer, allowing for higher order scattering. If the scattering is elastic, the

scattering triangle is isosceles (Fig. 2.4 (a)).

(a) (b)

Figure 2.4 Scattering triangles for the case of (a) elastic and (b) inelastic
scattering. The reciprocal lattice points are shown in black.

So far, no mention of dynamics has been made. In the case of inelastic scattering,

an incoming neutron may gain or lose energy from its interaction with the sample.

In this case |ki| 6= |kf |. The term “inelastic scattering” is, in some sense, a

slight misnomer. Both energy and momentum are in fact conserved, as one

would expect. The inelasticity of the interaction is only from the perspective

of the neutron, rather than the system as a whole. It is conventional to refer to

elastic scattering as “diffraction” and inelastic scattering as simply “scattering”.

This Thesis will mainly be concerned with the latter, which will be referred to

throughout as neutron scattering or neutron spectroscopy. In a neutron scattering

experiment, the change in energy of the neutron is equal to the energy of the

excitation, ∆E = ~ω. The scattering triangle in this case is shown in Fig.

2.4 (b). The fact that the scattering triangle shown in Fig. 2.4 (b) must close

places constraints on the wavevector and energy transfers accessible on a given
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spectrometer. By geometry, the magnitude of the scattering vector is given by

Q =
√
k2
i + k2

f − 2kikfcos2θ. (2.4)

Given the energy transfer

∆E =
~2

2m

(
k2
i − k2

f

)
(2.5)

the scattering wavevector can be related to the energy transfer

~2Q2

2m
= 2Ei −∆E − 2cos2θ

√
Ei (Ei −∆E) (2.6a)

~2Q2

2m
= 2Ef + ∆E − 2cos2θ

√
Ef (Ef + ∆E) (2.6b)

both in terms of the incident neutron energy and the final neutron energy. The

first of which is relevant for direct geometry spectrometers and the latter for

indirect geometry spectrometers. The specifics of spectrometer design will be

discussed at length in Section 2.3 .

2.2.2 Neutron interaction with matter

Neutrons interact with matter predominantly through the strong nuclear force

with nuclei or electromagnetically with the magnetic flux in the sample owing to

the magnetic dipole moment of the neutron. Let it be supposed that the incident

neutron sees a potential, V (r), and one has an initial state of the composite

system of neutron and sample |i〉 and final state |f〉. If the potential is weak, the

first Born approximation is valid and Fermi’s golden rule can be used to evaluate

the transition rate

Γi→f =
2π

~
| 〈f | V̂ |i〉 |2g(Ef )

dΩ

4π
(2.7)

where Ef + Eλf = Ei + Eλi with Eλi the initial energy of the sample and Ei the

initial energy of the neutron [57]. The density of states of the scattered neutron

is given by g(Ef ) and dΩ is the solid angle element.

The quantity of interest in neutron scattering is the partial differential cross

section. This is defined as the number of neutrons scattered into the solid angle

element within the energy interval Ef +dEf . The partial differential cross section
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is given by (
d2σ

dΩdEf

)
(ki,σi)→(kf ,σf )

= lim
dΩ,dEf→0

∑
λi
pλi
∑

λf
Γi→f

Φ0dΩdEf
(2.8)

where σ is the polarisation state of the neutron and Φ0 is the incident neutron

flux. The flux is defined as the number of neutrons per second entering a unit

area and for neutrons with speed v = ~ki
mn

is given by Φ0 = ~ki
V0mn

. The probability

of the state with energy λi is pλi . Inserting the transition amplitude (Eqn. 2.7)

and the neutron density of states, g(E) = V0mnk
2π2~2 , one finds the master equation(

d2σ

dΩdEf

)
(ki,σi)→(kf ,σf )

= lim
dΩ,dEf→0

V 2
0

kf
ki

( mn

2π~2

)2∑
λi

pλi

×
∑
λf

| 〈f | V̂ |i〉 |2δ(Eλf − Eλi − ~ω)
(2.9)

which forms the basis of all of the scattering formulae that will be used in this

Thesis. The central challenge now is to calculate the matrix element 〈k|V |i〉.
The states |i〉 are indexed by the neutron wavevector ki, the target wavefunction

λi and the neutron polarisation state σi. An integration is first performed over r

〈kf | V̂ |ki〉 =

∫
dr3e−ikf ·rV (r)eiki·r = V (ki − kf ) = V (Q) (2.10)

to yield the Fourier transform of the interaction potential. One can thus

replace | 〈k| V̂ |i〉 |2 with | 〈σfλf | V̂ (Q) |σiλi〉 |2. One might wish that the partial

differential cross section were written in terms of system observables. Though it

might not be clear from the form of Eqn. 2.9, the partial differential cross section

can be written as a correlation function, dependent on observables of the system.

In order to make this clear, the definition of the delta function is introduced in

terms of exponential functions

δ(Eλf − Eλi − ~ω) =
1

2π~

∫ ∞
∞

dt

{
exp

(
iEλf t

~

)
exp

(
−iEλit

~

)
e−iωt

}
(2.11)

and the Heisenberg operator, Â(t), is defined as

Â(t) = e
iHt
~ Âe−

iHt
~ =

( mn

2π~2

)
〈σf | V̂ (Q, t) |σi〉 (2.12)

where the static operator Â is simply the interaction potential V̂ . Substituting

Eqns. 2.11 and 2.12 into Eqn. 2.9. one finds that the cross section can
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be conveniently cast in terms of a temporal Fourier transform of a correlation

function (
d2σ

dΩdEf

)
=
kf
ki
S(Q, ω) (2.13a)

S(Q, ω) =
1

2π~

∫ ∞
−∞
〈Â†(0)Â(t)〉e−iωtdt (2.13b)〈

Â†(0)Â(t)
〉

=
( mn

2π~2

)2 〈
〈σi| V̂ †(Q) |σf〉 〈σf | V̂ (Q, t) |σi〉

〉
(2.13c)

where the dynamical structure factor, S(Q, ω), has been introduced. The

dynamical structure factor depends only on the physics of the system under

investigation and not on the neutron probe. The calculation of the dynamical

structure factor is the central problem of much of the work in this Thesis. The

following section will detail the properties of the dynamical structure factor.

2.2.3 The dynamical structure factor

As described above, neutrons interact with matter both through the strong

nuclear interaction with the nuclei of the sample and through the electromagnetic

interaction with the magnetic fields present in the sample [57]. Since this Thesis is

predominantly concerned with magnetic dynamics, the contribution from nuclear

scattering is quoted without derivation; a full discussion is presented in Ref. [57].

The interaction potential governing the nuclear interaction is commonly repre-

sented by a delta function: the Fermi pseudopotential. Although the true form

of the interaction potential is likely more complicated, at large separations, the

weak interaction between the neutron and sample nucleus is well captured [57].

The nuclear scattering has a coherent and an incoherent contribution

Scoh(Q, ω) =
1

2π~

∫ ∞
−∞

e−iωt
∑
jk

β†jβk〈e−iQ·r̂jeiQ·r̂k(t)〉dt (2.14a)

Sinc(Q, ω) =
1

2π~

∫ ∞
−∞

e−iωt
∑
j

(
|βj|2 − |βj|2

)
〈e−iQ·r̂jeiQ·r̂j(t)〉dt. (2.14b)

Above, the operator β̂j(t) = 〈σf | b̂j(t) |σi〉 has been defined using the operator

b̂ which, when applied to the up |+〉 and down |−〉 spin states, yields the

neutron scattering length, b̂± |±〉 = b̂± |±〉. The neutron scattering length varies

non-monotonically with the atomic number in contrast to the x-ray scattering
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length. This consideration often helps inform the choice of probe for a given

material, particularly in diffraction experiments where one is not concerned with

the kinematics associated with probing low energy excitations.

The primary cause of magnetic neutron scattering from matter is the interaction

between the neutron’s dipole moment and the magnetic flux density in the sample

VM(r) = −µn ·B(r) (2.15)

where the neutron dipole moment is given by µn = −2γµNs. The magnetic field

from a single electron has a spin and orbital contribution [57, 59]

VM(r) = −µn · [BS(r) + BL(r)] (2.16a)

BS(r) = −2µB
µ0

4π
∇×

(
s× r

r3

)
(2.16b)

BL(r) = −2µB
µ0

4π~
p× r

r3
(2.16c)

where p is the electron momentum, s is the electron spin and r is the position

vector. For a system comprising many electrons, in Fourier space, the magnetic

interaction potential is then [57, 59]

VM(Q) = −4γµ0µBµNsn ·
∑
j

(
Q̂× (sj × Q̂) +

i

~Q
(pj × Q̂)

)
eiQ·rj (2.17)

where for the purpose of clarity, the neutron spin is labeled as sn. Q̂ is the unit

vector along the direction of Q. It can be shown that the magnetic field that the

neutron interacts with the perpendicular component of the Fourier transformed

sample magnetisation [64]

VM(Q) = 2γµNµ0sn ·M⊥(Q). (2.18)

In general the total magnetisation has contributions from both the orbital and

spin moments, M(r) = ML(r) + MS(r). The matrix elements of 〈λf |M(Q) |λi〉
are complicated to calculate in general [55, 57], but under the assumption that

|Q| is small [65],

M(Q) ≈ −2µB [〈j0(Q)〉S + 〈j2(Q)〉L] (2.19)

where 〈jn(Q)〉 is the radial integral of the nth order spherical Bessel function [29].

If the spin-orbit coupling is large compared to a weak crystal field, the total
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angular momentum is a good quantum number and the magnetisation is

proportional to J. This is often the case in the 4f and 5f compounds [66–68]. In

such systems the magnetisation is [57]

M(Q) ≈ −µBgJf(Q)J (2.20)

where gJ is the Landé g-factor and f(Q) is a magnetic form factor, depending

on the radial average of the spherical Bessel function. In this Thesis, all systems

considered are composed of 3d ions, for which the crystal field is typically of

intermediate strength. In these systems, the orbital moment is typically quenched

to some degree. The magnetisation in the 3d ions can therefore be written as

M(Q) ≈ −gµBf(Q)S (2.21)

where g = 2 if the orbital moment is entirely quenched by the crystal field. Armed

with this relationship between the magnetisation and the spin operator, S, (as

appropriate for 3d ions), the dynamical structure factor can be written in terms of

the local degrees of freedom of the sample. This is most straightforwardly done

by inserting the expression for the magnetic interaction potential (Eqn. 2.18)

into the correlator (Eqn. 2.13c) using Eqn. 2.21. The matrix elements in Eqn.

2.13c, 〈σf | V̂ (Q) |σi〉, depend on the initial and final polarisation states of the

scattered neutron. This allows for polarisation analysis, where an incident beam

is polarised along a particular axis and the final polarisation state of the scattered

neutron is measured in order to extract further information about the source of

the scattering.

In the case where the incident beam is unpolarised, the incident neutron is equally

likely to be in each polarisation state |±〉. Calculating the matrix elements of

the neutron spin operator, 〈σf | sn |σi〉, one finds that the correlator in the case of

unpolarised neutrons is proportional to 〈M†
⊥M⊥(t)〉 [59]. All that remains is to

put all of these components together. For the 3d systems discussed in this Thesis,

the structure factor is given by

S(Q, ω) = g2µ2
Bf

2(Q)
∑
αβ

(δαβ − Q̂αQ̂β)Sαβ(Q, ω) (2.22a)

Sαβ(Q, ω) =
1

2π~

∫
dte−iωt〈Ŝα(Q, 0)Ŝβ(−Q, t)〉. (2.22b)
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The structure factor has been broken into the partial dynamical structure factor

(Eqn 2.22b) which has nine components representing the combinations of the

Cartesian basis vectors, x, y and z. The factor in front of the partial dynamical

structure factor (Eqn. 2.22a) is known as the polarisation (or orientation) factor,

that selects the component of the magnetisation perpendicular to the scattering

wavevector Q. Assuming the excitations are isotropic, the dynamical structure

factor can be approximated by one of the diagonal components, S(Q, ω) ∼
Sxx(Q, ω) [69].

2.2.4 The principle of detailed balance

In the derivation of the structure factor S(Q, ω), transitions between an initial

and final neutron state were considered. In a neutron scattering event, the initial

neutron state σi can be higher or lower in energy than the final state. Let the

initial energy of the neutron to be higher than the final neutron energy, i.e. the

energy loss channel, with the dynamical structure factor, S(Q, ω)σi→σf . The

corresponding reverse process has a structure factor S(−Q,−ω)σf→σi . There

exists a relationship between the response functions for these two processes [55]

S(−Q,−ω)σf→σi = e
− ~ω
kBT S(Q, ω)σi→σf (2.23)

where the prefactor on the right is the Boltzmann distribution. This relation,

known as the principle of detailed balance, reflects the fact that neutron energy

gain processes (where energy is transformed from the system to the neutron)

require that excited states be thermally populated. At T = 0 K a peak is measured

on the energy loss side only and as temperature increases, the intensity on the

energy gain side grows.

2.3 Neutron instruments

The previous sections lay out the basic theory of inelastic neutron scattering.

Attention will now be paid to the design of instruments that exploit the

phenomenon of neutron scattering in order to probe the magnetic dynamics of

crystalline materials. There are typically a wide variety of experiments that can

be performed on a given instrument, but each spectrometer is designed to strike a

balance between a number of competing desirable properties. Some spectrometers
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are designed to be high resolution, such as IRIS [70], whereas some, like MERLIN

[71], are designed to optimise neutron count, or reduce background as with

MARI [9]. The decision of the optimal instrument for a particular experiment

is often a complicated trade-off between the required (Q, E) resolution, neutron

flux and the dynamic range. The choice may also depend on the physics under

investigation and sample details, for example one may need to make use of out-

of-plane detectors if the excitations perpendicular to the scattering plane are

of interest. Moreover, the necessary Q coverage required depends both on the

nature of the sample and whether one is probing phonons or magnons. In the

following sections there will therefore be a focus on the application of these

instruments to the study of low energy magnetic excitations in single crystal

samples, as is relevant to the physical problems discussed in this Thesis. The

instruments of interest are typically referred to as spectrometers, distinguishing

them from diffractometers (used to probe structure) and neutron spin echo (NSE)

spectrometers (employed to measure very long timescale dynamics such as domain

wall dynamics).

2.3.1 Triple-axis spectrometers

monochromator analyser

sample

collimator

detectors

Figure 2.5 Schematic of a triple-axis spectrometer. The name is derived
from the three axes that define the angles θM , θA and 2θ. The
monochromator selects the incident wavevector, ki and the analyser
crystal selects the scattered wavevector kf . The scattered neutrons
are then incident on a detector. Collimators reduce the beam
divergence, improving the instrument resolution. Depicted is a
bank of neutron detectors as employed on MACS [8]. Many such
instruments employ a single-wire detector.

The first category of spectrometer is also the most physically intuitive. The
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triple-axis spectrometer (TAS), first developed at Chalk River by Brockhouse

[72] has been employed at continuous sources since the genesis of neutron science

and remains in use at modern continuous sources [8, 73]. The operating principle

of the TAS is simple; a monochromator crystal selects the incoming neutron

wavevector, ki and an analyser crystal selects the final scattered wavevector,

kf (Fig. 2.5). In defining the incident and final wavevectors, the scattering

wavevector Q, is fixed allowing the full neutron flux to be directed to a particular

wavevector and energy of interest. This makes triple-axis spectrometry a powerful

tool in studying high symmetry directions.

The monochromator is usually a “mosaic crystal” made from many small crystals

with slight misorientations [56] such that the scattering angle has some angular

distribution. This is because the neutron beam divergences at scattering facilities

is typically larger than the angular width of the diffracted beam from a perfect

crystal. The crystals themselves are chosen to have a large reflectivity, low

neutron absorption and a small incoherent cross section to limit background.

Whilst there are a number of materials that fulfill these criteria, pyrolytic graphite

(PG) [74, 75] is most commonly used [56] as it does not suffer from the problems

associated with other candidate materials, such as double Bragg scattering or

small mosaicity [56]. PG is effectively randomly oriented in all planes other than

the (00l) plane, but the (002) peak can have a mosaicity of . 0.5◦ which is well

suited for a monochromator, along with high neutron reflectivity [56]. Many of

the considerations for the selection of a monochromating crystals apply to the

selection of the analyser crystal which plays a similar role in selecting a given

wavevector and energy. Further optimisation can be performed by introducing a

curvature to the monochromator and analyser, boosting the intensity by focusing

the neutron beam [56]. For a monochromator using the reflection (h, k, l) with

a lattice plane spacing dhkl, there is the possibility of contamination from higher

order reflections from lattice planes with spacing dhkl/n which reflect neutrons of

wavelength λ/n. This higher order contamination can give rise to spurious peaks

and must be eliminated by filters which are chosen to absorb scattered neutrons

within a certain energy window. For example, Be and BeO filters are employed

on the MACS spectrometer at NIST [8] and cut out neutrons below λ ≈ 3.5 Å

and λ ≈ 4.5 Å respectively [56]. Fast neutron filters such as sapphire can also be

employed to reduce the background resulting from high energy neutrons [76].

Once the scattered neutrons Bragg reflect from the analyser, they are then

incident on a detector allowing the measurement of the neutron differential cross
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section (Eqn. 2.13a). Detector design can vary between instruments, with the

early spectrometers implementing a single-wire detector acting as a single detector

pixel. Other spectrometers, like MACS at NIST [8], employ a large bank of

detectors so that multiple final energies can be recorded at the same time (Fig.

2.5). Neutron detector tubes are filled with a gas which, upon absorption of a

neutron, emits charged particles. Typically 3He is used

3He + n→ 3H + 1H + energy (2.24)

which releases tritium, a proton and energy [77]. The charged particles ionise

the surrounding atoms and the displaced electrons move towards a metal wire,

causing current to flow. The electrical signal is then amplified and registered as

a neutron scattering event.

The design of a TAS offers the ability to control both the incoming and outgoing

neutron wavevector and energy. Thus one can operate the instrument in a number

of “modes” by controlling the orientation of the monochromator and analyser

crystals. The most common mode of operation is the constant-kf mode, where

Ef is fixed by the analyser crystal and the monochromator is rotated to vary Ei.

It is also possible to fix Ei and vary Ef , operating a constant-ki scheme, however

normalisation of the neutron intensity is more difficult in this mode compared with

the constant-kf which can be straightforwardly normalised by monitor count.

2.3.2 Time-of-flight spectrometers

At pulsed neutron sources, a different type of instrument is typically employed.

These instruments rely on the relationship between a neutron’s energy and

the time taken for the neutron to traverse a known distance. The pulsed

nature of spallation neutron production makes these facilities optimal for the

implementation of time-of-flight (ToF) spectrometry where the separation of

incident neutron into pulses is necessary such that neutron energies can be

distinguished according to their arrival time. That being said, ToF spectrometers

can be employed at continuous sources, where choppers are used to create a pulsed

structure for the incident neutrons. Examples of this include IN5 [78] at the

Institut Laue-Langevin and DCS [79] at the NIST Center for Neutron Research.

ToF instruments fall into two broad categories based on the geometry of their

construction. Broadly speaking these two geometries correspond to the two modes
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of operation in triple-axis spectrometers. Direct geometry spectrometers fix ki in

a manner similar to the constant-ki TAS mode, with kf determined by a time-

of-flight analysis. Indirect spectrometers do precisely the opposite, with the kf

fixed and the initial wavevector determined by time-of-flight methods.

chopper

Fermi 
chopper

monitor
sample

position-
sensitive 

detector bank

moderator/pulsing chopper

(a) Direct geometry

chopper monitor
sample

detector

moderator/pulsing chopper

(b) Indirect geometry

analyser

filter

Figure 2.6 (a) Schematic of a direct geometry time-of-flight spectrometer. The
distance between the moderator and Fermi chopper, which selects
ki, is L0. (b) Schematic of an indirect geometry time-of-flight
spectrometer. The distance between the moderator and sample in
both geometries is L1. The flight distance between the sample and
the detectors is L2. Note that in the case of indirect geometry,
L2 includes the path from the sample to the analyser and from the
analyser to the detector.

Direct geometry

As discussed in Section 2.1, at a pulsed source, the neutrons produced via

spallation enter a moderator, thermalising with a Maxwellian distribution , before

passing down the beam tube to the instrument, and ultimately the sample. The
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distance between the moderator and the sample is typically on the order of tens

of meters, with L1 = 12 m on MAPS [20], MARI [9] and MERLIN [71]. Direct

geometry ToF spectrometers employ a series of neutron choppers that shape

the beam (Fig. 2.6 (a)). The first of which, the t0 chopper, is synchronised

with the proton hitting the target, meaning that very high energy neutrons, that

contribute significantly to the background, are blocked from proceeding towards

the instrument. The t0 chopper is a useful tool in reducing the background at

spallation sources, but is omitted at continuous source ToF instruments such

as IN5 [78] and DCS [79], which employ pulsing choppers to shape the beam

originating at a reactor cold source. For instruments with a long flight-path, such

as LET at ISIS [80], the t0 chopper can be omitted since the fast neutrons have

slowed significantly by the time they reach the instrument. After the t0 chopper

some instruments incorporate a disk chopper to reduce frame overlap leading

to a reduced background. This is the case on the MAPS [20], MARI [9] and

MERLIN [71] spectrometers. The disk chopper can engineered to serve a dual-

purpose, not only reducing background, but allowing multiple neutron energies to

pass through the subsequent Fermi chopper. This process, known as repetition

rate multiplication, allowing for multiple incident neutron energies to be used

simultaneously [20, 80–82].

After the t0 chopper (and disk chopper, if present), there is a Fermi chopper which

plays the role of the monochromator in a TAS and selects the ki of the incident

beam. The Fermi chopper is usually a cylinder with “slats” made of strongly

neutron absorbing material such as borated aluminium [83] and slits that allow

the transmission of neutrons. The chopper rotates at an integer multiple of the

source frequency with the phase determining the the incident energy. For cold

spectrometers like IN5 [78] and LET [80], the Fermi chopper is often replaced

by a fast disk chopper which has a better transmission profile. Removing the

Ei-defining chopper renders the incident beam polychromatic (known as running

in “white beam mode”), allowing a direct geometry spectrometer to function as a

diffractometer. This process is typically conducted prior to a neutron scattering

experiment to help align the crystal by rotating it about the vertical axis.

Having passed the choppers, the neutrons pass through a monitor which is used

to normalise the neutron count and determine the true Ei before scattering off the

sample and being detected by an array of position sensitive detectors, pixelated

such that the detector tubes offer sensitivity to the out-of-plane angle2. The

2The MARI spectrometer at ISIS Neutron and Muon Source does not have a pixelated
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L2 for each pixel then allows the determination of Ef from the neutron arrival

position by time-of-flight analysis. The detectors are typically gas tube detectors

(e.g. 3He) such as on MAPS [20] or scintillation detectors (such as ZnS scintillator

strips ) [85], with the decision of detector type depending on a number of factors

including spatial resolution, stability, efficiency and cost.

Indirect geometry

The geometry described above can be inverted such that polychromatic neutrons

are incident on the sample and the time-of-flight analysis is carried out only

on the scattered side in the so-called indirect (or inverted) geometry (Fig. 2.6

(b)). These spectrometers select the wavevector and energy on the scattered side

akin to a TAS instrument operating in constant-kf mode. The Fermi chopper

is therefore not required in this geometry, however indirect spectrometers may

employ a bandwidth chopper to reduce the number of low energy neutrons from

prior pulses contaminating the signal and contributing to the background.

There are several ways that the final energy is selected in these instruments

including analyser crystals and filter-difference systems. The crystal analyser

spectrometer, (depicted in Fig. 2.6 (b)) operates by selecting a known Ef from

Bragg scattering from a crystal analyser, usually PG(002) as employed on many

TAS instruments. The analyser crystal is typically cooled to low temperatures

to reduce thermal diffuse scattering resulting from population of phonon modes,

which adds to the background. To reduce the background, Be filters can be

used (as implemented on TOSCA [86]) to cut out high energy neutrons and

suppress the contamination from higher order scattering. Time-of-flight analysis

can then be used to calculate the energy and wavevector transfer. Examples

of this type of design can be found on TOSCA [86] and IRIS [70] at the ISIS

Neutron and Muon Source. Alternatively, filter-detector spectrometers employ

a filter, usually Be (at 77 K), on the scattered side to create an cutoff for Ef ,

usually ≈ 5 meV [58] defining a larger neutron energy acceptance window than

crystal analyser instruments. This window can be narrowed by comparing the

spectra with that recorded using a BeO filter (at 300K), defining a smaller

effective energy acceptance window [58]. These instruments can be designed

detector bank, but a low and high angle detector bank [84]. Each of the detector tubes cover a
different scattering angle which is directly related to the magnitude of the scattering wavevector,
|Q|, making MARI well-suited to the studying of powder samples where only the magnitude of
the scattering wavevector is of any relevance.
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to be compact, offering a large angular detector coverage, and the large energy

acceptance window can result in a large gain in intensity at comparable resolution

towards the high energy transfer regime3. It is on this basis that a Be-filter

indirect spectrometer has been proposed at the Spallation Neutron Source at

Oak Ridge National Laboratory, to support the crystal analyser spectrometer,

VISION [87].

For indirect geometry instruments, neutrons within a wide energy band are

incident on the sample and are reflected by the analyser crystal onto the detector.

This has the consequence that indirect geometry instruments are typically high

intensity [88] if equipped with a large-area crystal-analyser. The trade-off is that

indirect instruments experience background from both the structures behind the

analyser and the thermal diffuse scattering from the analyser itself.

Time-of-flight analysis

The following section will detail how time-of-flight analysis can be used to

determine the energy and wavevector transfer in a ToF spectrometry experiment.

In terms of the distances labeled in Fig. 2.6, the incident and final neutron

energies can be written as

Ei =
L2

1mn

2t21
(2.25a)

Ef =
L2

2mn

2t22
(2.25b)

where tµ is the time taken for the neutron to traverse the distance Lµ and mn is

the neutron mass. The energy of the excitation is therefore (in the energy loss

channel)

~ω =
mn

2

(
L2

1

t21
− L2

2

t22

)
. (2.26)

In ToF spectrometers the conversion of neutron counts to the partial differential

cross section is performed in a different manner from the approach in TAS

instruments. For a TAS, the instrument defines the two wavevectors, ki and kf

from which the scattering vector Q and energy E = ~ω can be calculated. The

detector therefore directly measures the differential cross section, d2σ
dΩd~ω [57, 58].

In a ToF spectrometer, the instrument measures the number of neutron counts

3At large energy transfers the energy resolution is determined predominantly by the time
resolution of the detector and the time-of-flight, rather than the energy acceptance window [87].
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per solid angle in discretised time intervals. The detector thus measures the

differential cross section, d2σ
dΩdt

. This can be straightforwardly related to the

differential cross section previously defined (Eqn. 2.8), and hence the dynamical

structure factor

S(Q, ω) =
t42

t1mnL2
2

d2σ

dΩdt
. (2.27)
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Figure 2.7 (a) The dynamical range calculated for a direct geometry ToF
spectrometer calculated in 2◦ steps of 2θ from 12◦ to 135◦ (the
2θ coverage of the MARI spectrometer at ISIS [9]). (b) Inverse
geometry dynamical range, with 2θ in 2◦ steps from 11◦ to 148◦ (the
2θ coverage of the OSIRIS spectrometer at ISIS [10]). Ef was chosen
to be 7.38 meV consistent with the PG(004) analyser in operation
on OSIRIS [10].

Choosing a spectrometer

The specificities of the design of individual ToF and TAS instruments makes each

individual instrument well-suited to answering particular physical questions. In

the course of this chapter, the basic operating principles of direct and indirect

ToF spectrometers and TAS instruments have been covered, however there are

a plethora of design details that optimise different aspects of the instrumental

operation. For TAS instruments these include specialised analysers and filters to

cut down background and multiple scattering [75, 76] and multiplexing analyers

to increase energy coverage [89, 90]. For ToF spectrometers, much innovation

has centered around optimising the neutron guide to increase neutron flux [20,

91] and the implementation of repetition rate multiplication which offers access

to multiple incident energies [80–82]. The dynamic range required must also
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be considered when choosing a spectrometer. This differs from spectrometer

to spectrometer and depends on the geometry, the incident and final energies

accessible and the detector coverage. Pictured in Fig. 2.7 is the dynamical range

accessible on two ToF instruments of different geometries.

One consideration when choosing a spectrometer is whether polarisation analysis

can be of use. Polarisation analysis can be implemented on TAS instruments

such as IN20 [92] and SPINS [93], as well as ToF instruments, HYSPEC [94] and

LET [80]. Polarisation analysis allows for the separation of the longitudinal and

transverse components of the dynamical structure factor and so can be used to

identify exotic excitations in quantum magnets [95] and shed light on chiral spin

dynamics [96]. Polarisation analysis also allows one to unambiguously determine

whether scattering has a magnetic or structural origin, offering insight into the

interplay of competing degrees of freedom [97]. Polarisation analysis was not used

in any of the experiments presented in this Thesis. Extensive discussions of the

use of this technique can be found in classic neutron scattering texts [55–57].

Whilst each instrument differs slightly in design and purpose, a number of general

comments can be made. TAS instruments at continuous sources typically have

a higher neutron flux than ToF spectrometers at pulsed sources. This has been

particularly useful in the study of the van der Waals two-dimensional magnets

VI3 and Fe3GeTe2 where single crystal samples are small and many need to be

coaligned to produce a sample of sufficient mass to study. Where large single

crystals exist, ToF spectrometers are extremely useful in generating a broad

survey in (Q, E). This is of particular use in three-dimensional systems and

those in which the nature of the excitations is completely unknown. Typically,

the advantages of using ToF instruments come at the cost of relatively low neutron

flux compared to continuous sources. This is set to change when the high flux

European Spallation Source (ESS) [98], currently under construction in Lund,

comes online in late 2027 [99].

2.3.3 Single crystal alignment

The first challenge when beginning a neutron scattering experiment is orientating

the crystal such that a direction of interest lies within the scattering plane.

In principle this can be achieved by placing the sample in the beam with the

chopper removed meaning that all incident wavevectors are permitted (known as

a white beam) and finding and identifying a Bragg peak based on the d-spacing

42



extracted from time-of-flight analysis. The sample can then be aligned such that

ki is parallel to a given direction by rotating the sample. However, the sample

environment often places restrictions on how the sample can be manipulated.

Most sample sticks only allow for the rotation of the sample about one axis. It is

for this reason that samples need to be aligned prior to arrival on the instrument.

Some user facilities also provide access to dedicated beam lines prior to the start of

the experiment. These instruments, such as ALF at ISIS [100] and OrientExpress

at the ILL [101], were commissioned in the hope that they would allow users to

make best use of their beam time with less time spent aligning their sample at

the beginning of the experiment.

In the following section a protocol for aligning single crystal samples at the

alignment facility, ALF [100], at ISIS Neutron and Muon Source will be discussed.

A software package, principally designed and built by Z. Liu at the University of

Edinburgh [3], will now be presented.

ALF instrument design

ALF has been constructed on beam port N2 at Target Station 1 at ISIS Neutron

and Muon Source (Fig. 2.3) and views a liquid methane moderator. The total

flight path is 13.86 m with no monochromating chopper on the incident side,

hence the neutrons that reach the sample are polychromatic and the instrument

functions solely in white beam mode. Scattered neutrons are detected by a bank

of 37 position sensitive detector tubes, each 1m long, with the centre point 1.32

m from the sample. The angular coverage of the detectors is 20.2◦ < 2θ < 60.3◦

in the horizontal scattering plane. A three-axis goniometer rests in the sample

position. This goniometer allows the position and height of the sample to be

adjusted, both parallel and perpendicular to the incident beam. The goniometer

design is depicted in Fig. 2.8. The lower rail is aligned along the x-axis and

the upper rail along the y-axis. Both rails are mounted on a rotation axis which

allows the assembly to rotate about the z-axis.

Since a white beam is incident on the sample, if Bragg’s law is satisfied for

any wavevector, ki, a reflection will occur, and a Bragg spot observed if the

reflected beam is incident on the detector. This principle is employed in Laue

diffractometers, where the characteristic (Laue) diffraction pattern, measured on

large area, high-performance detectors [101], is used to fully characterise the

crystal structure. On ALF, since there are no analysers on the scattered side,
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Figure 2.8 The layout of the goniometer and definition of the laboratory frame.
The sample is depicted by a blue square at the origin, O. The
flight path of the scattered neutron is shown in red. The incident
wavevector ki is along the x-axis and the final wavevector kf is
directed towards the activated detector pixel, P. Figure adapted from
Ref. [3].

it is assumed that all measured neutrons are scattered elastically. The energy

of the scattered neutrons is determined using a time-of-flight analysis. Since

the scattering is assumed to be elastic, |ki| = |kf |, with the scattering vector,

Q = ki − kf . The energy of the scattered and incident neutron is

E = ~2k2/2m =
1

2
mv2 =

1

2
m(

l

t
)2 (2.28)

where t is the time-of-flight and l is the length of the flight path. From Bragg’s
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law one has that

|Q| = 2|ki|sinθ (2.29)

where θ is half the angle between ki and kf . Using Bragg’s law, the time-of-flight

of a neutron detected at each pixel of the position sensitive detector determines

the momentum transfer.

Visualisation

For a given goniometer setting, a diffraction pattern will be recorded on the

position sensitive detector bank. It will now be detailed how these can be

mapped onto a common coordinate system so that multiple detector images can

be analysed at the same time. First consider the Ewald sphere centered on the

M

N

G

O

P

Figure 2.9 The Ewald sphere with radius |ki| centered on the crystal at the
origin, O. OP intersects the sphere at M and the x-axis intersects

the sphere at N. G is a point on the sphere such that the vector
−−→
OG

bisects
−−→
ON and

−−→
OM . Figure adapted from Ref. [3].

crystal (Fig. 2.9). The Ewald sphere is a sphere of radius |ki| = |kf | constructed
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such that the Bragg condition is satisfied only for reciprocal lattice points lying

on the surface of the sphere separated by a distance |Q|. The vector
−→
OG lies in

the scattering plane and bisects the vectors
−−→
OM and

−−→
ON such that it makes an

angle θ with both ki and kf . The vector
−→
OG is always perpendicular to the plane

of atoms from which the diffraction occurs meaning this vector can be used to

determine the orientation of the crystal. The rotations of the crystal achievable

by the three-axis goniometer can be described by three rotation matrices which

represent the crystal rotations about its base and along the lower and upper

goniometer rails respectively

Grotated = R
rot
R
lower

R
upper

Glab (2.30)

where the rotation matrices are defined as

R
rot

=

cosλ −sinλ 0

sinλ cosλ 0

0 0 1

 (2.31a)

R
upper

=

1 0 0

0 cosµ −sinµ

0 sinµ cosµ

 (2.31b)

R
lower

=

cosτ 0 −sinτ

0 1 0

sinτ 0 cosµ

 (2.31c)

with the rotation angles, λ, µ and τ are the rotation angles about the z, x and

y axis respectively (Fig. 2.10). The column vectors, Glab and Grotated describe

the vector
−→
OG in the laboratory and rotated frames. The rotation matrices, R

rot
,

R
upper

and R
lower

do not, in general, commute, although since the goniometer

arcs are constructed on top of one another, it does not matter in which order the

user drives the angles as the final configuration will be the same, regardless of

order of operation.

The pixel location, P, can be described with the three variables, (l, α, β) where

l is the distance from the crystal to the pixel and α and β are two rotation

angles around the x and z axes respectively. In terms of these variables, the pixel
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Figure 2.10 Rotation angles as defined in the rotation matrices, R
rot

, R
upper

and R
lower

. The path of the incident neutron is indicated in
red, with the detector bank indicated by the blue square. Figure
reproduced from Ref. [3].

location is defined as

P = A B

 l0
0

 (2.32)
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with the rotation matrices defined as

A =

1 0 0

0 cosα −sinα

0 sinα cosα

 (2.33a)

B =

cosβ −sinβ 0

sinβ cosβ 0

0 0 1

 (2.33b)

The coordinates of Grotated can be calculated by geometry. Since
−→
OG and

−→
OP lie

in the same plane, the coordinate G can be rotated onto the x-y plane by rotating

by the angle α, clockwise about the x-axis. The vector
−→
OG bisects

−−→
OM and

−−→
ON ,

so by further rotating by angle β
2

about the z-axis,
−→
OG is aligned with the y-axis,

G
rotated

= A Ω

0

1

0

 (2.34)

with the rotation matrix defined as

Ω =

cosβ
2
−sinβ

2
0

sinβ
2

cosβ
2

0

0 0 1

 . (2.35)

Eqn. 2.30 and Eqn. 2.34 can then be combined to find Glab in terms of the pixel

location and goniometer settings

Glab = R−1

upper
R−1

lower
R−1

rot
A Ω

0

1

0

 . (2.36)

The rotation matrices in Eqn. 2.36 depend on the three goniometer angles and

the two pixel angles. However, the vector Glab is uniquely defined by two spherical

coordinates, (ϑ, φ). Therefore, by scanning the five angles (α, β, µ, τ, λ) which are

defined for each detector image, a two-dimensional colour map can be built up

from a multiple detector images. This method of data visualisation is known as

a pole figure and can be particularly useful if there are few strong Bragg spots

that are visible in a given detector image. A software package that automates

this process has been developed at the University of Edinburgh and can be found

at [102]. A full demonstration of the use of this software package to co-align a
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single crystal of Pb(Mg1/3Nb2/3)O3 is given in Ref. [3].
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Chapter 3

Nonlinear soliton confinement in

weakly coupled antiferromagnetic

spin chains

3.1 Introduction

Confinement and deconfinement of particles, topological defects or fractionalised

excitations are recurring motifs in many areas of physics. A famous example

is the quark-gluon plasma, which is predicted to form at extremely high

temperatures. In this new state of matter the quarks and gluons, which under

normal conditions are strongly confined in atomic nuclei, behave as asymptotically

free particles [103]. Another example of a confinement-deconfinement transition is

the Berezinskii-Kosterlitz-Thouless transition [104, 105] in two-dimensional XY

magnets that is driven by an unbinding of thermally excited vortex-antivortex

pairs.

Spin-charge separation in one dimension [106–108] can be viewed as a fraction-

alisation of the electrons into holons and spinons, carrying the charge and spin

degrees of freedom, respectively. If local repulsions lead to charge localisation, the

insulating system is well described by the antiferromagnetic S = 1/2 Heisenberg

model. In the presence of Ising exchange anisotropy, spinons can be viewed as

domain walls in the antiferromagnetic order and are created in pairs by a single

spin flip (Fig. 3.1(a)). They are therefore fractionalised excitations that carry
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half of the spin-1 quantum of a magnon excitation [109]. If spinons are free

to propagate, these pairs are expected to form a triplet excitation continuum.

Such continua are predicted theoretically [110–112], building on the analytical

Bethe Ansatz solution [113], and observed experimentally in a number of quasi

one-dimensional S = 1/2 antiferromagnets [114–117].

Staggered g-tensors and Dzyaloshinskii-Moriya interactions can lead to an

unusual field dependence, such as an induced gap [118, 119], ∆ ∼ H2/3, and field

dependent soft modes at incommensurate wave vectors [120, 121], as predicted

by spinon and Bethe Ansatz descriptions [122–124]. Through a procedure of

bosonisation [125], the dynamics of such systems can be shown to be governed

by the quantum sine-Gordon model which admits soliton and breather solutions,

corresponding to propagating and oscillating domain walls, respectively [119, 126].

This suggests that spinons can be viewed as quantum solitons [127] and therefore

exhibit chirality, which was indeed confirmed by polarised neutron scattering

[128]. Soliton and breather modes have been identified in neutron scattering

[129, 130] and electron spin resonance [131, 132] experiments.

The effect of a weak inter-chain interaction is twofold. Firstly, it sets the

temperature scale TN at which two or three-dimensional long-range order

develops. Secondly, it generates an effective attraction between spinons below

TN since the separation of domain walls will frustrate inter-chain interactions

with an associated energy cost that grows linearly with their distance. Such

a linear confinement potential gives rise to spinon bound states, leading to a

quantisation of the excitation continuum into discrete energy levels, as observed

in BaCo2V2O8 [133], SrCo2V2O8 [115, 134], and Yb2Pt2Pb [116]. These systems

all consist of weakly coupled Ising-Heisenberg antiferromagnetic (XXZ) chains

of S = 1/2 moments and the measured spinon bound state energies are almost

perfectly described by the eigenvalues of a one-dimensional Schrödinger equation

with an attractive linear potential.

Linear confinement due to weak inter-chain coupling is not specific to spinons in

S = 1/2 quantum antiferromagnets but occurs generically for any type of kink-like

domain wall excitations. In CoNb2O6, a quasi-one-dimensional Ising ferromagnet,

the two-kink continuum breaks up into discrete bound state excitations below the

magnetic ordering temperature, with the same characteristic level spacing as in

the spinon case [135].

In this chapter, the domain wall confinement in large-S spin chain antiferromag-
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nets with easy axis, single-ion anisotropy will be analysed. This work is motivated

by the observation of discrete energy levels in the anisotropic antiferromagnet

CaFe2O4 [11], an S = 5/2 system consisting of weakly coupled zig-zag networks

of Fe3+ (3d5) ions. As expected for confinement due to frustrated inter-chain

coupling, the bound states form below the the Néel temperature TN ≈ 200 K.

However, the energy levels do not follow the negative zeros of the Airy function,

as predicted for a linear confinement potential.

In the large-S limit, the low energy effective field theory of the quantum

antiferromagnet is the nonlinear σ model. Starting from this semiclassical

description, Haldane demonstrated that the spin dynamics of the one-dimensional

quantum antiferromagnet with easy-axis anisotropy is governed by a sine-Gordon

equation which supports soliton solutions [136], hence the domain walls in the

antiferromagnetic chain are chiral solitons. In these spin textures the staggered

magnetisation rotates between the two favoured orientations in a clockwise or

anti-clockwise direction over a typical distance ξ (Fig. 3.1 (b)). Since the overall

chirality in the system is conserved, the domain walls are created in pairs of

soliton (kink, K) and anti-soliton (anti-kink, K).

In this chapter, the confinement potential V (y) will be computed from the

KK two-soliton solution of the sine-Gordon equation showing that the extended

nature of semiclassical solitons gives rise to a crossover as a function of the domain

wall separation |y|. At large separations, |y| � ξ, the solitons can be considered

as point-like objects, giving rise to a linear confinement potential, V (y) ∼ |y|. For

|y| < ξ the soliton and anti-soliton overlap, leading to a gradual annihilation of the

defects and preventing the staggered magnetisation between domain walls from

fully rotating to the other easy direction. This reduces the inter-chain frustration

energy, corresponding to a weakening of the effective confinement potential. It

will be shown that at small distances, |y| � ξ, the confinement potential is

rendered quadratic, V (y) ∼ y2.

The bound state spectrum will be obtained from the numerical solutions of a one-

dimensional Schrödinger equation with the computed potential V (y). Because of

the crossover in V (y), the energies of tightly-bound states are almost equidistant,

as expected for a harmonic oscillator, while for the weakly bound states at

higher energies they approach Airy function behaviour as predicted for linear

confinement.

In order to test this theory of nonlinear soliton confinement, the computed spectra
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is compared to those obtained in neutron scattering experiments on high-quality

single crystals of CaFe2O4. Slightly below the Néel ordering temperature, it is

possible to resolve seven bound states which are well described by the theory of

nonlinear confinement of spatially-extended solitons.

The outline of this chapter is as follows. Beginning with insights gained

in the author’s MSci project, in Section 3.2 a generic spin Hamiltonian and

resulting low energy, nonlinear σ model description of a system of weakly coupled

antiferromagnetic chains with single-ion Ising anisotropy is introduced. It is

shown that the saddle-point approximation results in a sine-Gordon equation

and briefly review the one and two-soliton solutions. In Section 3.3 the energy of

a single spin chain with a pair of domain walls from the kink-antikink solution

is computed, treating the inter-chain coupling at mean-field level. Extending

previous work, the bound state energies are obtained from numerical solutions

of the effective Schrödinger equation with the effective nonlinear confinement

potential. Experimental details and results of inelastic neutron scattering

experiments performed on CaFe2O4 by C. Stock are presented in Section 3.4.

It is demonstrated that the measured bound state energies are well described by

this theoretical model. Finally, in Section 3.5 the results are summarised and

discussed.

3.2 Theoretical model

The starting point is a generic spin model of weakly coupled chains with

antiferromagnetic Heisenberg coupling J between nearest neighbours along the

chains and J⊥ � J between the chains. Each spin is subject to a single-ion,

easy-axis anisotropy α > 0. The Hamiltonian of the system is given by

Ĥ = J
∑
i,m

Si,m · Si+1,m − α
∑
i,m

(
Ŝzi,m

)2

+J⊥
∑
i,〈m,n〉

Si,m · Si,n, (3.1)

where i labels the positions in the chains, m,n the different chains, and 〈m,n〉
denotes nearest-neighbour bonds between adjacent chains. In this minimal

model, longer-range exchanges are neglected and the inter-chain couplings are

assumed to be the same in all directions. For simplicity, exchange anisotropy
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(b)(a)

Figure 3.1 Staggered magnetisations of antiferromagnetic spin chains with Ising
anisotropy in the presence of two domain walls (red). (a) For the
S = 1/2 chain, a spin-flip excitation fractionalises into a pair of
spinons. The energy cost due to the coupling to nearby chains scales
with the number of spins between the domain walls, giving rise to a
linear confinement potential, V (y) ∼ |y|. (b) For large-S spin chains
the domain walls are semiclassical chiral solitons of size ξ. Shown
are different time instances of the collision of a soliton (K) and anti-
soliton (K) obtained from the KK two-soliton solution of the sine-
Gordon equation. The spatial extent of the domain walls causes them
to annihilate gradually, rendering the effective confinement potential
quadratic at small distances, V (y) ∼ y2.

between different spin components and Dzyaloshinskii-Moriya interactions have

been neglected. Such terms are not relevant in the case of calcium ferrite

(S = 5/2, L = 0) because of the lack of any orbital degrees of freedom. A

discussion of single-ion anisotropy in systems with quenched orbital moment can

be found in Ref. [27].
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3.2.1 Nonlinear σ model

Firstly attention is focused on an isolated antiferromagnetic chain (J⊥ → 0) and

the chain index is dropped for brevity. The effective long-wavelength, nonlinear σ

model is obtained using a path integral in imaginary time τ ∈ [0, β], β = 1/(kBT ),

and resolving the identities between adjacent time slices in terms of over-complete

spin-coherent states, |Ni(τ)〉. These states are parametrised by unit vectors Ni(τ)

and have the property 〈Ni(τ)|Si|Ni(τ)〉 = SNi(τ).

In order to perform a spatial continuum limit, the staggered Néel order-parameter

field ni(τ) is introduced through the relation Ni(τ) = (−1)ini(τ) + aLi(τ),

where a denotes the lattice constant and Li(τ) describes the spin fluctuations

perpendicular to ni(τ). The latter fluctuations are massive and can therefore be

integrated out. After taking the continuum limit, this procedure leads to the

nonlinear σ model [54, 136, 137],

S =
ρS
2

∫ β

0

dτ

∫ ∞
−∞

dx

{
(∂xn)2 +

1

c2
(∂τn)2 − κn2

z

}
, (3.2)

with spin stiffness ρS, spin wave velocity c and easy-axis anisotropy κ. A

derivation of Eqn. 3.2 is given in Appendix C. These parameters are related

to the microscopic parameters in the spin Hamiltonian (Eqn. 3.1),

ρS = JS2a, c =
√

2JSa, and κ =
2α

a2J
. (3.3)

In the absence of anisotropy, κ = 0, the relativistic field theory gives rise

to a linear dispersion ω = ck, corresponding to spin wave excitations of

the antiferromagnet. This is also reflected by the saddle-point approximation

δS/δn(x, t) = 0 in real time t = −iτ , which gives rise to the classical wave

equation ∂2
xn− 1

c2
∂2
t n = 0.

3.2.2 Sine-Gordon equation and soliton solutions

In the presence of anisotropy, it is useful to express the unit vector field n(x, τ)

in terms of spherical coordinates, n = (sin θ cosφ, sin θ sinφ, cos θ) since the
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anisotropy only depends on the polar-angle field θ(x, τ),

S =
ρS
2

∫ β

0

dτ

∫ ∞
−∞

dx

{
(∂xθ)

2 +
1

c2
(∂τθ)

2

+sin2θ
[

(∂xφ)2 +
1

c2
(∂τφ)2

]
− κ cos2θ

}
. (3.4)

The equations of motion are obtained from the saddle-point equations δS/δφ(x, t) =

0 and δS/δθ(x, t) = 0. For the azimuthal angle, a classical wave equation is

obtained, ∂2
xφ− 1

c2
∂2
t φ = 0. Since this work concerns soliton excitations and not

spin waves, it is assumed that φ(x, t) = const. In a system with z-axis Ising

anisotropy the free energy is independent of the choice of this constant. This

removes all dependence of the action (Eqn. 3.4) on φ and the dynamics for the

polar angle is governed by the sine-Gordon equation,

∂2
xθ −

1

c2
∂2
t θ =

1

2
κ sin(2θ), (3.5)

which is known to admit soliton solutions [138, 139]. In terms of dimensionless

length and time,

x̃ :=
√
κx, and t̃ :=

√
κct, (3.6)

the 1-soliton solutions are given by

θ1,K/K(x̃, t̃) = 2 arctan
[
e±γ(x̃−ṽt̃)+δ0

]
, (3.7)

where γ = 1/
√

1− ṽ2 denotes the Lorentz factor and ṽ = v/c the velocity of the

relativistic soliton excitation in units of the spin wave velocity c, which plays the

role of the speed of light. The different signs in the exponent correspond to kink

(K) and antikink (K), respectively. δ0 is a constant that is determined by the

initial conditions. A derivation of the soliton solutions is given in Appendix D.

New soliton solutions can be generated from known solutions via transformations

from one pseudospherical surface to another [140]. By application of such a

transformation, known as a Bäcklund transformation, one can generate multiple-

soliton solutions from the single soliton [141]. Important for this analysis is the

“kink-antikink” (KK), 2-soliton solution [142]

θ2,KK(x̃, t̃) = 2 arctan

 sinh
(

ṽt̃√
1−ṽ2

)
ṽ cosh

(
x̃√

1−ṽ2

)
 , (3.8)
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where the initial conditions have been chosen such that θ2,KK(x̃, t̃ = 0) = 0,

corresponding to a perfectly ordered chain n(x) ≡ êz with no defects. The KK

solution (3.8) therefore describes the creation of a soliton and anti-soliton at

x = 0 at t = 0 that propagate outwards in opposite directions for t > 0. This

situation is therefore similar to the creation of two spinons by a single spin flip in

the S = 1/2 antiferromagnetic chain. The staggered magnetisations for outwards

propagating solitons are shown in Fig. 3.1 and compared with point-like domain

walls. A derivation of the 2-soliton solution is found in Appendix D.

Another class of 2-soliton solutions that satisfy the sine-Gordon equation (Eqn.

3.5) are the breathers [139, 142]. These can be obtained directly from the KK

solution by analytic continuation to imaginary values of the velocity ṽ. By doing

so, one arrives at the breather solution

θ2,B(x̃, t̃) = 2 arctan

[√
1− ω̃2

ω̃

sin
(
ω̃t̃
)

cosh
(
x̃
√

1− ω̃2
)] . (3.9)

Such semiclassical breathers correspond to two domain walls which oscillate

anharmonically within a maximum distance. Crucially, both the breather and

KK solutions have spatially-extended domain walls and so the annihilation of a

soliton and an anti-soliton happens gradually (Fig. 3.1 (b)).

3.3 Soliton confinement

The theory of linear confinement of spinons in weakly coupled S = 1/2

antiferromagnetic chains with XXZ-Ising exchange anisotropy [115, 116, 133, 134]

or of domain walls in quasi one-dimensional Ising ferromagnets [135] is based on

the assumption that domain walls are point-like. In this case, the inter-chain

frustration energy cost associated with the separation of two domain walls is

simply proportional to the number of spins Ny = |y|/a between two domain

walls with distance |y|. This gives rise to a linear confinement potential V (y) '
J⊥S

2n⊥|y|/a, where n⊥ denotes the number of neighbouring chains and J⊥ is the

nearest-neighbour inter-chain coupling. The bound state spectrum obtained from

a one-dimensional Schrödinger equation with an attractive linear potential indeed

gives a convincing description of the experimental data [115, 116, 133–135].

Here this approach is generalised to describe the nonlinear confinement of
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spatially-extended soliton domain walls. This semiclassical path integral ap-

proach allows us to treat the finite width of domain walls and to drop the

assumption of Ising alignment. As will be shown, in the limit of strong Ising

anisotropy, the theory of linear confinement is recovered.

3.3.1 Effective confinement potential

For a given spin profile along the chain, described by a field θ(x̃) and constant

φ(x̃) = φ0, the energy of the chain is given by

E‖ =
ρS
√
κ

2

∫ ∞
−∞

dx̃
{

(∂x̃θ)
2 −

(
cos2 θ − 1

)}
, (3.10)

where the energy of a fully polarised chain (θ(x̃) ≡ 0), which diverges in the

thermodynamic limit, is subtracted. The inter-chain coupling is treated at mean-

field level, introducing the staggered magnetisation M =
∣∣∣〈Ŝzi,m〉∣∣∣. The resulting

energy contribution per chain is given by

E⊥ =
ρS

2
√
κ
g⊥

∫ ∞
−∞

dx̃
{

1− cos θ
}
, (3.11)

where the contribution for a fully polarised chain has again been subtracted and

defined the coupling

g⊥ =
2n⊥MJ⊥
a2SJ

, (3.12)

with n⊥ the number of neighbouring chains and J⊥ the inter-chain coupling.

Because of the dependence on the magnetic order parameter M , the coupling g⊥

vanishes above TN.

The effective confinement potential V (y) between a soliton and an anti-soliton

can be obtained by evaluating the total energy E‖+E⊥ for the KK solution (Eqn.

3.8) at given times t0 corresponding to a distance y = 2vt0 between the domain

walls.

Note that θ2,KK is obtained for g⊥ = 0, neglecting the feedback of the inter-chain

coupling on the soliton dynamics of the spin chain. This approximation is justified

in the limit J⊥ � J or slightly below the ordering temperature where M � 1.

For larger g⊥ one would have to self-consistently determine the soliton solutions

in the presence of the mean field from ordered neighbouring chains. In this case

the equation of motion is a double sine-Gordon equation which is not, in general,
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Figure 3.2 Optimum dimensionless soliton velocity, ṽ = v/c, as a function
of dimensionless domain wall separation ỹ, obtained by minimising
V‖(ỹ) with respect to ṽ.

integrable but nonetheless can be solved numerically [143, 144].

Using the solution θ2,KK of the isolated chain, the confinement potential V (y) =

V‖(y) + V⊥(y) can be computed analytically. As a function of the dimensionless

separation ỹ =
√
κy

V‖(ỹ)

E0

=
√

1− ṽ2
A(ỹ)2

1 + A(ỹ)2

(
1 +

arcsinhA(ỹ)

A(ỹ)
√

1 + A(ỹ)2

)

+
1√

1− ṽ2

(
1− arcsinhA(ỹ)

A(ỹ)
√

1 + A(ỹ)2

)
(3.13)

V⊥(ỹ)

E0

=
g⊥
κ

√
1− ṽ2

A(ỹ)arcsinhA(ỹ)√
1 + A(ỹ)2

, (3.14)

where the potential has been normalised by the rest energy

E0 = mc2 = 2ρS
√
κ (3.15)

of a single soliton and the function A(ỹ) = ṽ−1sinh(ỹ/2
√

1− ṽ2) has been defined.
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The effective potential still depends on the dimensionless velocity ṽ. This

parameter can be expressed as a function of the domain wall separation ỹ if

the energy of the isolated chain, E‖ = V‖(ỹ), is minimised with respect to ṽ. The

resulting function ṽ(ỹ) is determined numerically and plotted in Fig. 3.2. While

for ỹ → 0 the velocity approaches a constant ṽ0 ≈ 0.725, for large domain wall

separations the velocity decays exponentially, ṽ ' 2.85 exp(−|ỹ|/2).

The asymptotic behaviour of the contributions V‖ (Eqn. 3.13) and V⊥ (Eqn. 3.14)

to the potential is first investigated. At large distances (|ỹ| → ∞), the intra-chain

contribution V‖(ỹ) approaches the energy 2E0 of two free solitons at rest, while

the inter-chain contribution grows linearly,

V⊥(ỹ)

E0

≈ g⊥
κ
|ỹ|. (3.16)

This is the same behaviour as for point-like domain walls. This is expected

since at large distances the spatial extent ξ of the solitons becomes irrelevant.

Expressed in terms of the microscopic parameters, using Eqns. 3.3, 3.12 and the

definition of E0 (Eqn. 3.15),the asymptotic result can be expressed in terms of

the microscopic parameters to recover V ∼ n⊥J⊥|y|/a.

At small separations (ỹ � 1), both contributions are quadratic,

V‖(ỹ)

E0

≈ 4− 3ṽ2
0

6ṽ2
0

√
1− ṽ2

0

3 ỹ
2 ≈ 2.35 ỹ2, (3.17)

V⊥(ỹ)

E0

≈ 1

4ṽ2
0

√
1− ṽ2

0

g⊥
κ
ỹ2 ≈ 0.69

g⊥
κ
ỹ2, (3.18)

which is the result of the gradual annihilation of the extended soliton and anti-

soliton.

The intra-chain contribution V‖(ỹ) and the full confinement potential V (ỹ) =

V‖(ỹ)+V⊥(ỹ) are shown in Fig. 3.3 as a function of the dimensionless domain wall

separation ỹ =
√
κy. They display the asymptotic behaviour discussed above.

The crossover from linear to quadratic behaviour of V (ỹ) occurs at ỹ = 1. Since

the crossover is expected to occur when the solitons start to overlap (Fig. 3.1 (b)),

the size of the solitons can be identified as

ξ ' 1√
κ

= a

√
J

2α
. (3.19)
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This equation shows that the size of the solitons is controlled by the relative

strength of the Ising anisotropy, α/J . In the case of strong Ising anisotropy, the

size of the solitons is of the order of the lattice spacing a. On the other hand,

in systems with very weak anisotropy, the spatial extent of soliton domain walls

can be of the order of hundreds of lattice spacings.
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Figure 3.3 (a) In-chain KK potential V‖(ỹ) as a function of dimensionless
separation ỹ =

√
κy. At large separations, V‖ approaches the energy

2E0 of two free solitons. Due to the gradual destructive interference
of the solitons, V‖ is rendered quadratic at small distances. The
crossover occurs at ỹ = 1, corresponding to a soliton size ξ =
1/
√
κ. (b) The same crossover is found in the effective confinement

potential V (ỹ) = V‖(ỹ)+V⊥(ỹ). At large separations the potential is
linear, V (ỹ)/E0 ≈ (g⊥/κ)|ỹ|, while at small separations the potential
is quadratic due to the gradual annihilation of the extended solitons.
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3.3.2 Bound state spectrum

The gradual destructive interference of extended solitons at separations y < ξ

weakens the confinement potential and renders it quadratic. In the following the

solitons will be considered as point-like particles interacting with the effective

nonlinear potential V (y) and determine the discrete bound state spectrum from

the solution of the one-dimensional Schrödinger equation

− ~2

2µ

d2ψ

dy2
+ V (y)ψ = εψ (3.20)

for the effective one-body problem for the relative coordinate y of the soliton pair.

Here µ = m/2 denotes the reduced mass in terms of the single-soliton mass m.

As a point of reference, the limit of very strong Ising anisotropy is first considered.

In this case the potential is linear down to lattice scale, V (y) = λ|y|, and the

theory of linear confinement [115, 116, 133–135] applies. The resulting bound

state energies are given by [134]

ε>j = 2E0 + ξjλ
2/3

(
~2

µ

)1/3

, (3.21)

where ξj are the negative zeros of the Airy function, Ai(−ξj) = 0, ξ1 ≈ 2.338,

ξ2 ≈ 4.088, ξ3 ≈ 5.520, . . ..

In the limit of very weak anisotropy on the other hand, the confinement potential

is quadratic over a significant range, V (y) ' 1
2
µω2y2, giving rise to equidistant

energy levels

ε<j = ~ω
(
j +

1

2

)
. (3.22)

Due to the crossover of V (y) from quadratic behaviour at short distances to

linear behaviour at large distances, a related crossover in the energy level spacing

of the bound states is expected. The strongly bound states at low energies will be

almost equidistant, as described by ε<j (Eqn. 3.22), while the weakly bound states

at higher energies will approach the sequence ε>j (Eqn. 3.21). This crossover is

controlled by the strength of the Ising anisotropy α/J .

In order to obtain the bound state spectrum for the full confinement potential
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Figure 3.4 (a) Soliton-antisoliton bound state energies εj in units of the single
soliton energy E0 for different ratios g⊥/κ and S = 5/2. The
corresponding confinement potentials are shown in the inset. (b)
The same spectra but normalised by the energy ε1 of the first bound
state. For larger values of g⊥/κ the level spacing becomes more
harmonic oscillator like (dashed line).
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the Schrödinger equation (Eqn. 3.20) is transformed to dimensionless units,

− 1

2S2

d2ψ

dỹ2
+ Ṽ (ỹ)ψ = ε̃ψ, (3.23)

with ỹ =
√
κy, ε̃ = ε/E0 and Ṽ (ỹ) = V‖(ỹ)/E0 + V⊥(ỹ)/E0. The potential

functions are defined by Eqn. 3.13 and Eqn. 3.14. The Schrödinger equation

is then numerically solved using the finite-element method implemented in

Mathematica [145].

In Fig. 3.4 (a) the resulting bound state energies εj/E0 for S = 5/2 (value for

CaFe2O4) and different values of g⊥/κ are shown. In the regime of large g⊥/κ, the

dominant contribution to the confinement potential comes from the frustrated

inter-chain coupling. The tightly bound states have almost equidistant energy

levels with spacing ∆ε/E0 ≈ (1.17/S)
√
g⊥/κ, as expected for the asymptotic

quadratic form of the potential at small distances, Ṽ (ỹ) ≈ Ṽ⊥(ỹ) ≈ 0.69(g⊥/κ)ỹ2.

At higher energies, the level spacing is reduced because of the crossover of the

potential to a linear form at large distances. Normalising the energies by the

energy ε1 of the first bound state (Fig. 3.4 (b)), it is apparent that the spectrum

becomes more like that of a harmonic oscillator if the value of g⊥/κ is increased.

3.4 Application to calcium ferrite

In this section the theory of nonlinear soliton confinement will be applied to the

S = 5/2 antiferromagnet CaFe2O4. Recent neutron scattering experiments [11]

found signatures of solitary magnons in this material with a sequence of nine

quantised excitations below the magnetic ordering transition at TN ≈ 200 K.

CaFe2O4 has a complex magnetic phase diagram due a competition between two

different spin arrangements, termed the A and B phases [146]. The magnetic

structure of the B phase, which dominates at high temperatures, consists of

antiferromagnetic zig-zag chains along the b axis (Fig. 3.5). The moments are

oriented along b due to a small easy-axis anisotropy. In Fig. 3.5 only the two

shortest bonds are plotted to illustrate the antiferromagnetic zig-zag chain pattern

formed by the magnetic ions in the B phase. A full analysis of the nature of the

magnetic interactions in CaFe2O4 is given in Chapter 5.

The A phase might coexist with the B phase over the full temperature range but
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becomes clearly visible only below 170 K, which has been identified as its onset

temperature in early studies [146]. The two phases are distinguished by their

c-axis stacking of ferromagnetic b-axis stripes: the B phase consists of stripes

with antiferromagnetic alignment within the zig-zag chain, (↑↓)(↑↓), while in

the A phase the zig-zag chains are ferromagnetic with stacking (↑↑)(↓↓) along

c [146]. It has been suggested [11] that the gradual increase of the A phase

component is linked to antiphase domain boundaries along c, combined with a

continuous change of the Fe-O-Fe bond angle which controls the strength and sign

of the superexchange [147, 148] between the two legs forming the zig-zag chain.

This scenario is supported by the presence of diffuse scattering rods along the

L direction and spin wave excitations that show magnetic order in the ab-plane

with short-ranged correlations along c [11]. The magnetic order in CaFe2O4 will

be investigated further in Chapter 5 using neutron scattering and complementary

theoretical analysis.

Figure 3.5 Magnetic structure in the high temperature B phase of CaFe2O4

[11], showing antiferromagnetic zig-zag chains along the b axis. The
system exhibits a weak easy-axis anisotropy along b. Calcium ferrite
is based upon an orthorhombic unit cell (space group 62 Pnma) with
dimensions a = 9.230 Å, b = 3.017 Å, and c = 10.689 Å[12, 13].

From now on, focus is concentrated on the B phase that completely dominates

at high temperatures where the discrete excitations are observed. As pointed out

in Ref. [11], the level spacing of the excitations cannot be explained based on the

linear confinement picture. This led the authors to speculate that the discrete
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nature of the excitations is not due to interaction-driven bound state formation

but instead a result of spatial confinement along the c-axis. Here it is shown that

an effective nonlinear interaction potential arising from the extended nature of

solitons in CaFe2O4 would lead to a bound state spectrum that is consistent with

the data.

The discrete energy-level spectrum presented in Ref. [11] is first inspected more

closely. The excitations can only be observed above the spin wave anisotropy gap,

which shows a strong temperature dependence. The gap opens below TN ≈ 200 K

and saturates to a value of ∆ ≈ 3 meV below 100 K. For this reason, the lowest

energy excitation can only be resolved slightly below TN where strong fluctuations

almost completely fill in the gap. The data at 200 K show six discrete energy

levels below 2 meV. At 150 K the spin wave gap almost completely masks this

energy range. Instead three energy levels become visible above around 1.8 meV.

In Ref. [11] it was assumed that the discrete excitations energies have a negligible

temperature dependence and that the three levels observed at 150 K are the

continuation of the energy sequence at 200 K.

If the discrete excitations were due to soliton bound state formation one would

expect the excitation spectrum to depend on temperature. Based on this theory,

it is expected that the main temperature dependence enters through the effective

mean-field coupling g⊥ to neighbouring chains. Since g⊥ is proportional to the

magnetisation of the system, it increases as temperature is lowered and the

magnetisation saturates. This would explain why the bound states at 150 K

have a larger level spacing than those at 200 K.

Moreover, magnetoelastic effects and small changes to the Fe-O-Fe bond angle

close to the threshold at which the superexchange would change sign could give

rise to a non-negligible temperature dependence of magnetic exchange couplings

[24]. Finally, the gradual onset of the A phase could give rise to additional effects

which might obscure the soliton signal in the neutron scattering experiment.

3.4.1 Experimental results

Here are presented previously unpublished data that were collected alongside

those published in Ref. [11] by C. Stock and collaborators. Instead of combining

measurements at different temperatures, focus is concentrated on T = 200 K,

allowing the consideration of excitations down to very low energies. This also
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mitigates against any potential temperature dependence of the bound state

spectrum.

The experiments were performed on single crystals of CaFe2O4 grown using a

mirror furnace. High momentum and energy resolution data was obtained using

the OSIRIS backscattering spectrometer located at the ISIS Neutron and Muon

Source [10]. A white beam of neutrons was incident on the sample and the final

energy of the scattered neutrons was fixed at Ef = 1.84 meV using cooled graphite

analysers. A cooled beryllium filter was used on the scattered side to reduce

background. The default configuration is set for a symmetric dynamic range of

±0.5 meV, however by shifting the incoming energy band width using a chopper

the dynamic range was extended into the inelastic region. For this experimental

setup, the elastic energy resolution (full-width) was 2δE = 0.025 meV. Due to

kinematic constraints, the measurements are focused around Q = (2, 0, 0) (r.l.u)

so that the quantised excitations could be tracked up to energy transfers of ∼
3 meV.

As shown in Fig. 3.6 (a), at 200 K, there are seven discrete excitations in low

energy scattering data below 2 meV, located at Q = (2, 0, 0) and with a weak

quadratic dispersion along L. The intensities are integrated over a small window

of 2± 0.05 r.l.u. in the H direction. The excitations have an almost linear level

spacing ∆ε ≈ 0.3 meV, in very good agreement with previous results [11].

In comparison, at 125 K the spin wave gap masks the excitations below 2 meV but

three discrete excitations at ε̃1, ε̃2 and ε̃3 are visible above this energy (Fig. 3.6

(b)). The modes are at slightly higher energies than those identified at 150 K

in Ref. [11], suggesting that there might exists a non-negligible temperature

dependence. In the following, the excitations above 2 meV are discarded since

they cannot be resolved at 200 K.

In Fig. 3.6 (c), the scattering intensity at 200 K as a function of energy at

Q = (2, 0, 0) is shown. Peaks at the energy levels ε2, . . . ε7 are very clearly

visible. The first excitation ε1 is beneath the incoherent background in the

OSIRIS data and cannot be resolved in the energy cut. However, the energy

ε1 can be estimated thanks to the weak quadratic dispersion along L (see dashed

yellow lines in Fig. 3.6 (a)).
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Figure 3.6 (a) High resolution low energy data recorded on OSIRIS at T =
200 K, showing seven clearly discernible excitations εj at Q =
(2, 0, 0) (r.l.u.). The modes show a weak quadratic dispersion along
L, highlighted by dashed yellow lines. (b) At T = 125 K the
spin wave gap masks excitations below 2 meV. Above this energy,
three additional excitations ε̃j are visible. (c) Scattering intensity at
Q = (2, 0, 0) as a function of energy. Peaks at ε2, . . . , ε7 are clearly
resolved. The energy ε1 is below the elastic line.

3.4.2 Fitting to nonlinear confinement model

It is now investigated whether the seven discrete excitations measured at 200 K

can be explained in terms of soliton bound state formation. In this section, the

one-dimensional soliton confinement model is applied to the case of CaFe2O4.

Despite the convenience of such a description, it should be noted that the

magnetic interactions in CaFe2O4 are more consistent with two-dimensional

zig-zag networks which are weakly coupled along the c-axis (as described in

Chapter 5). Nonetheless, the nonlinear σ model can be trivially extended

to higher spatial dimensions [137], yielding a sine-Gordon equation in d + 1

dimensions. Neglecting the effect of damping, the solutions of the equation of

motion in 2+1 dimensions are solitons with a number of different two-dimensional

geometries such as lines and circular or elliptical rings [149–152]. Crucially, the

domain wall profile takes the shape of a soliton and the solutions can be considered
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to behave as extended one-dimensional solitons [150]. In the construction of the

nonlinear confinement potential, one takes the difference between the maximally

polarised state and the soliton-populated state and hence one is sensitive to

the domain wall profile which takes the same shape as in the one-dimensional

case. Therefore it should be expected that the physics in higher dimensions

is qualitatively similar to the one-dimensional case. Owing to its qualitative

similarity and conceptual simplicity, in this chapter the one-dimensional model

will be applied to the case of CaFe2O4.

The quantised excitations εj extracted from the neutron scattering experiment

are shown as open circles in Fig. 3.7. For the levels j = 2, . . . , 7 the experimental

error δεj is estimated from the full peak width at half maximum. For the lowest

energy state, which is masked by the incoherent background of the elastic line, a

larger uncertainty of δε1 ≈ 0.15 meV is assumed, given that the bottom of this

mode is estimated from the dispersion away from the zone centre.

As point of reference, a linear confinement potential is first assumed. In this case

the soliton bound state energies would be given by εj = A+Bξj, where ξj are the

negative zeros of the Airy function and the energies A and B are related to the

soliton rest mass and the slope of the linear potential, as defined in Eqn. 3.21.

Here A and B are used as free fitting parameters, not imposing any additional

constraints. The resulting best case scenario for the linear-confinement model

(dashed magenta line in Fig. 3.7) strongly deviates from the data, showing that

the discrete excitations in CaFe2O4 cannot be understood in terms of a linear

confinement of solitons.

The bound state spectra obtained from the effective nonlinear confinement

potential depend on two parameters, the soliton rest energy E0 = 2ρS
√
κ and

the dimensionless ratio g⊥/κ. For a given value of g⊥/κ the best fit to the data

{εj ± δεj} is obtained by minimising

χ2 =
∑
j

(
εthj (E0)− εj

δεj

)2

(3.24)

with respect to E0, where {εthj } refers to the spectrum obtained from this

theoretical model.

As shown in Fig. 3.7, the fits improve with increasing values of g⊥/κ, corre-

sponding to decreasing optimum values of E0. A good description of the data is
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Figure 3.7 Comparison between the measured excitation energies (open circles)
and the soliton bound state energies calculated from the nonlinear
confinement model. The figure shows best fits to the data for different
values of g⊥/κ. The quality of the fits improves with increasing
values of g⊥/κ and decreasing soliton energy E0. Good agreement
is achieved for g⊥/κ ≥ 50. For comparison, the best fit of the linear
confinement model is shown in magenta.

obtained for g⊥/κ = 50 and E0 = 0.061 meV. Although for larger values of g⊥/κ

the fits continue to improve slightly, the soliton size ξ = 1/
√
κ = 2ρS/E0 would

eventually become too large for this theoretical description to be valid.

For g⊥/κ = 50 the levels are almost equidistant, showing that the first seven levels

fall in the harmonic potential regime. To check consistency, the average mean-

square displacement of the soliton bound states, dj =
√
〈ŷ2〉j, is calculated using

the approximate quadratic potential (Eqn. 3.17) at small distances, y < ξ. For

the highest level resolved experimentally d7/ξ ≈ 0.55 < 1 is obtained, indicating

a significant overlap of the bound solitons.

The parameters ρS, g⊥ and κ describe the long-wavelength, low energy behaviour

of the system. This effective continuum description is completely generic and

applies to any system of weakly coupled antiferromagnetic spin chains in the the

large-S limit.
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For illustrative purposes, a minimal spin model (Eqn. 3.1) has been considered

and established how the effective parameters in the continuum field theory depend

on the exchange couplings and single-ion anisotropy of the lattice Hamiltonian

(see Eqn. 3.3 and Eqn. 3.12). However, this model is too simplistic for CaFe2O4,

e.g. it neglects the ferromagnetic exchange along the legs of the zig-zag chains,

which is likely to be non-negligible. Unfortunately, spin wave excitations at

T = 200 K, which would allow for an unambiguous determination of the spin

wave stiffness in the regime considered in this chapter, have not been measured.

Neutron scattering measurements performed at T = 175 K and T = 5 K are

presented in Chapter 5, demonstrating the true nature of the magnetic order

in CaFe2O4 and indicating that the nature of the magnetic interactions is more

complicated than the simple chain model applied here.

However despite the simplifications used, close to the Néel transition collective

fluctuations are very strong, leading to universal behaviour detached from

microscopic details. The spin stiffness is expected to vanish continuously at

TN, satisfying Josephson scaling ρS ∼ (TN − T )(d−2)ν [153, 154], where ν is

the correlation-length exponent and d the spatial dimension. The bound states

are observed slightly below TN where the stiffness is strongly reduced. If

ρS/a ≈ 3 meV is assumed, which is of the order of the gap and about a tenth of

the spin wave bandwidth at low temperature, a soliton size of about 100 lattice

constants, ξ/a = 2(ρS/a)/E0 ≈ 100 would be obtained.

As suggested in Ref. [11], quantised excitations in CaFe2O4 could also arise

from antiphase boundaries along the c-axis that separate the two competing

magnetic phases and lead to spatial confinement. This mechanism is unlikely

to be relevant close to TN where the phase boundaries are dynamic and the A

phase is almost completely absent. At low temperatures, however, the antiphase

domain boundaries become static and carry an uncompensated moment that can

be tuned by a magnetic field [15]. The presence of uncompensated spins at phase

or domain boundaries is also confirmed by thin-film experiments [155]. Isolated

clusters of such orphan spins would provide a natural explanation of the discrete

magnetic excitations observed at very low temperatures below the spin wave gap

[15].
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3.5 Conclusion

To summarise, a theory for the confinement of solitons in weakly coupled, large-

spin antiferromagnetic chains with easy-axis anisotropy has been developed.

Below the Néel transition the frustrated inter-chain coupling generates an

attractive potential that leads to the formation of soliton-antisoliton bound

states. This mechanism is analogous to the confinement of spinons in S = 1/2

antiferromagnetic XXZ chains [115, 116, 133, 134] or of domain wall kinks in

ferromagnetic Ising chains [135]. But while for these systems the domain wall

defects can be considered as point-like, leading to a linear confinement potential,

semiclassical solitons have a significant spatial extent. This renders the effective

confinement potential quadratic on length scales smaller than the size of the

solitons, giving rise to a crossover in the energy level spacing of the bound states.

The S = 5/2 antiferromagnet CaFe2O4 is a good candidate system to test this

theory since this material shows a sequence of discrete low-energy excitations [11]

below TN and exhibits a magnetic structure that consists of antiferromagnetic zig-

zag networks, subject to a weak Ising anisotropy [146]. The inelastic neutron

scattering experiments, performed slightly below TN, confirmed the existence

of seven discrete excitations below 2 meV with an almost linear level spacing.

This analysis shows that the quantised excitations can be explained well by

the nonlinear confinement of large, spatially-extended solitons. It is argued

that strong collective fluctuations close to TN play a crucial role, collapsing the

anisotropy gap and strongly reducing the spin stiffness.

There are many possible ways in which this theory can be extended to describe

a rich variety of physical systems. To model materials with strong inter-chain

coupling one can include the feedback of the effective field from neighbouring

chains on the soliton dynamics. Such a staggered field changes the equation

of motion to a double sine-Gordon equation which is no longer integrable but

nonetheless can be solved numerically [143, 144]. Staggered fields could also

be generated by applying external fields in systems with staggered g tensors

[118, 119]. Since solitons and antisolitons have opposite chirality it would be

interesting to study the effects of a weak Dzyaloshinskii-Moriya interaction which

would introduce chirality in the antiferromagnetic background. Finally, one might

include finite-lifetime effects due to collisions of bound soliton pairs and the

interactions with spin wave excitations.

72



Thanks to recent advances in crystal growth and neutron scattering technology

it is now possible to resolve soliton bound states at very low energies. The

relevant theoretical parameters in the effective long-wavelength description, such

as the spin stiffness, spin wave velocity and staggered magnetisation, vanish

at the continuous Néel transition, showing characteristic power-law behaviour.

The measurement of soliton bound states close to the transition could therefore

provide a novel route to study universal critical behaviour in inelastic neutron

scattering experiments.
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Chapter 4

Metastable and localised Ising

magnetism in α-CoV2O6

magnetisation plateaux

4.1 Introduction

In a classical Néel magnet, the magnetisation is expected to vary continuously

with an applied field, rotating to align with the field direction in order to

minimise the Zeeman energy. The situation is more complicated in quantum

antiferromagnets [156, 157] and those exhibiting magnetic frustration [158] where

the magnetisation-field curve can exhibit steps or plateaux, where Ŝztotal =
∑

i Ŝ
z
i

remains unchanged despite a varying applied magnetic field [159]. These plateaux

often accompany phase transitions between long-range ordered plases [160–163].

In this chapter, the magnetisation of the jeff = 1
2
α-CoV2O6 in an applied field is

analysed based on neutron diffraction measured by L. Edwards, C. Stock and S.

Giblin and magnetisation data taken by C. Paulsen, E. LHotel and M. Songvilay.

It will be shown that α-CoV2O6 exhibits a cascading series of spatially short-

ranged periodicities which are characterised by a plateaux in the magnetisation

data.

In insulating magnets, the presence of a plateau in the magnetisation indicates

an energy gap in the spin wave spectrum. This is the case in S = 1 compounds

which exhibit a Haldane gap [164–166]. Such a gap is not expected in S = 1/2
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compounds like KCuF3 which exhibit gapless spectra [167–169] in accordance

with the Haldane conjecture [136]. Nonetheless, dimerised S = 1/2 magnets do

display a spectral gap and hence can display magnetisation plateaux [170–172].

This is perhaps not so surprising if one views each strongly coupled dimer as an

effective S = 1 subsystem whose spectrum comprises a singlet and three triplet

states. On general grounds, based on the Lieb-Schultz-Mattis theorem [173], it

has been proposed that analogous Haldane gapped phases are possible, even for

half-integer spin systems [174]. These arguments can indicate the criteria for

the observation of magnetisation plateaux and hence shed light on the nature

of underlying magnetic interactions. This explanation has been advanced to

predict spatially short-ranged dilute dimer phases in half-integer spins [175].

Other explanations for the observation of these magnetisation plateaux have been

suggested, including order-by-disorder [176–178] – a mechanism whereby a ground

state is selected through quantum fluctuations.

There have been a number of insulating compounds where magnetisation

plateaux have been reported [179–193] as well as in materials with continuous

symmetry [194–197] where field-induced magnetic transitions are observed. In

many of these examples, the magnetisation steps define phase transitions between

states with long-range magnetic correlations, which are accompanied by new

Bragg peaks. These systems can generally be understood in terms of a magnetic

Hamiltonian with competing exchange interactions, where the influence of the

Zeeman field lowers the energy of a particular magnetically ordered state

below that of the previous ground state. In this chapter another situation

will be discussed – where the magnetisation plateaux are defined by short-

range and metastable order, rather than long-range magnetic correlations. The

experimental results will first be briefly discussed before the Lieb-Schultz-Mattis

theorem is applied to α-CoV2O6 in order to understand the nature of magnetic

order in this system.

α-CoV2O6 crystallises in the centrosymmetric monoclinic space group C2/m ,

with lattice parameters a = 9.2283(1) Å, b = 3.50167(5) Å, c = 6.5983(1) Å,

β = 112.0461(7)◦ differing from the triclinic γ-CoV2O6 polymorph [198], which

exhibits two inequivalent Co sites. The structure is based on Co2+ (S = 3/2, L = 2)

ions sited on an anisotropic triangular motif [199–203]. The small exchange

coupling between the spins relative to the anisotropy energy [14], is suggestive of

an underlying Ising/uniaxial symmetry.

The Co2+ ions exist within a local environment of octahedrally coordinated
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oxygen ions. An intermediate crystal field, as is typical in the 3d ions, leaves

an orbital triplet ground state [21]. The orbital triplet ground state is split by

spin-orbit coupling, H = αλl · S, into jeff = 1
2
, 3

2
, 5

2
levels. The energy spacings

of these jeff levels, follow the Landé interval rule, with a jeff = 1
2

ground state

separated from the jeff = 3
2

by ∆ = 3
2
αλ (Fig. 4.1). In α-CoV2O6 the spin-orbit

coupling is observed to be much greater in magnitude than the exchange coupling

strength |λ| � |J | justifying the projection onto the jeff = 1
2

multiplet [204, 205],

in contrast to the rocksalt CoO, where a large exchange constant induces strong

mixing between the jeff spin-orbit levels [206–208]. A local crystalline distortion

further supports an Ising anisotropy in the spin orientation [209, 210], evidenced

by a gap in the neutron scattering spectrum [14] and and a critical scaling

exponent consistent with Ising symmetry.

4.2 Experiment

4.2.1 Experimental setup

In this section, the experimental results of L. Edwards, C. Stock and S. Giblin

will be briefly summarised in order to set the scene for a discussion of the

magnetic order present in α-CoV2O6. Further experimental details can be

found in Ref. [2]. Flux-grown single crystals [211] and powder samples [212]

were characterised using the WISH (ISIS, UK) [213] diffractometer. Kinematic

constraints on WISH combined with the magnetic field and detector layout

required that the field have a significant b-axis component in order that the

reciprocal space around the (101
2
) magnetic Bragg peak could be accessed. A

refinement of the UB matrix from nuclear and magnetic Bragg peaks indicated

that the the vertical magnetic field was orientated with components of 2.1◦, 15.2◦

and 85.3◦ along the a, b and c axes respectively. Further measurements were

carried out on the cold triple-axis spectrometer RITA II (PSI, Switzerland) [214]

using a horizontal magnet such that the field could be aligned along the c-axis.

Ei = Ef = 5.0 meV was chosen for the diffraction experiment, with the sample in

a dilution fridge so that temperatures of less than 1 K could be achieved. Further

diffraction measurements were also performed on the TASP spectrometer (PSI,

Switzerland) on a pressed pellet powder sample with Ei = Ef = 3.0 meV. The

magnetisation experiments were performed by colleagues at the Insitut Néel using

a low temperature superconducting quantum interference device (SQUID) and a

76



Figure 4.1 Single-ion energy levels in Co2+. In an intermediate octahedral field
the 4F ground state is split, with an orbital triplet ground state. The
effect of spin-orbit coupling splits this triplet into three jeff levels,
with a jeff = 1

2 ground state. A tetragonal distortion, related to
an elongation of the octahedron has no effect on the ground state
manifold. Finally, the application of a molecular mean field, arising
due to inter-ion coupling, splits the two-fold degeneracy of the ground
state. Maximal values of Γ and αλ have been taken from Ref. [14].
Spin wave excitations were observed to be resolution limited and it
was estimated that J/λ ≈ 0.05 which would likely lead to a mean
field on the lower end of the plotted range. The jeff = 1

2 is well
separated from the excited levels, justifying the projection onto the
jeff = 1

2 manifold.

Physical Properties Measurement System (PPMS).

4.2.2 Results

The WISH results on the single crystal samples in the (h0l) scattering plane are

shown in Figs. 4.2(a − c)1. Fig. 4.2(a) shows data measured at T = 0.1 K

and µ0H = 0.015 T after zero-field cooling. A peak is observed at k = (101
2
)

consistent with a doubling of the unit cell along the c-axis. Here the notation

1The WISH data have been background-subtracted using a high magnetic field measurement
(µ0H=6 T). In such a scan, the magnetic moment is saturated hence it can be used as a measure
of background due to the instrument and sample environment.
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Figure 4.2 Low temperature (T = 0.1 K) diffraction maps on single crystal
CoV2O6 at (a) µ0H = 0.015 T and (b) µ0H = 2.75 T starting from a
zero field cooled state. (c) Scan at T = 1.6 K at µ0H = 2.6 T. Yellow
regions indicate the cut directions. The corresponding magnetic
periodicity is shown for each scan in panels (d − f), with moment
directions fixed to that of the refined zero field structure. Figure
reproduced from Ref. [2].

〈T̂ q〉 is introduced to represent the translational symmetry of a given periodicity

in real space, with 〈T̂ 2〉 =↑↓ representing a doubling of the real space periodicity,
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associated with the (101
2
) peak [215, 216] (Fig. 4.2(d)). Upon increasing the

field to µ0H = 2.75 T, additional momentum broadened peaks at k = (1
2
01

4
)

are observed, characteristic of spatially short-range correlations of 〈T̂ 4〉 =↑↑↓↓
or 〈T̂ 4〉 =↑↑↑↓ translational periodicity. From the momentum dependence it is

ambiguous which of these two spin arrangements is present. In contrast, in the

high field case, at T = 1.6 K, only peaks at k = (2
3
01

3
) are observed indicating

the presence of 〈T̂ 3〉 =↑↑↓ periodicity, consistent with previous magnetic field

powder diffraction in the literature [215, 216]. These peaks are momentum

resolution limited, consistent with long-range spatial correlations. The WISH

data (Fig. 4.2(a − c)) indicate a uniaxial arrangement of Co2+ spins along the

[h0h
2
] direction (highlighted in yellow) with 〈T̂ 2〉, 〈T̂ 3〉 and 〈T̂ 4〉 translational

symmetry, depending on both magnetic field and temperature. The cuts along

the [h01
2
h] direction (denoted by the yellow shading in Fig. 4.2) are plotted

in Fig. 4.3, showing the momentum broadened peaks that appear on cycling

the field up and then down. The situation is somewhat different in the powder

diffraction data (Fig. 4.4(a − d)) where a more complex pattern of diffraction

peaks is observed due to the spherical averaging of the magnetic field direction

relative to the moment orientation. Nonetheless, the peaks indicate the presence

of all three periodicities 〈T̂ 2〉, 〈T̂ 3〉 and 〈T̂ 4〉 in agreement with the single crystal

data.

Single crystal diffraction was carried out on the triple-axis spectrometer, RITA

II, this time with the field parallel to the c-axis (Fig. 4.4(e − h)). Here only

spatially long-range 〈T̂ 3〉 order was observed. This contrasts with the WISH

data where it was shown that if the magnetic field is tilted away from the c-

axis a 〈T̂ 4〉 periodicity can be established. It should be noted that both 〈T̂ 4〉
orders, ↑↑↓↓ and ↑↑↑↓, can be constructed from an underlying 〈T̂ 3〉 order with

antiphase boundaries [11]. In fact, coexisting 〈T̂ 2,3,4〉 order can be created from an

underlying 〈T̂ 3〉 order with antiphase boundaries as can be seen by considering the

following example of an antiphase boundary between 〈T̂ 3+〉 =↑↑↓ and 〈T̂ 3−〉 =↑↓↓
order

〈T̂ 3+T̂ 3+T̂ 3−T̂ 3−〉 =↑↑↓↑↑↓↓↓↑↓↓↑= 〈T̂ 3+T̂ 4T̂ 2T̂ 3−〉. (4.1)

The antiphase boundaries here differ from those in large-spin antiferromagnets

such as CaFe2O4 [1, 15] in that they are not spatially-extended but instead are

expected to be sharp owing to the jeff = 1
2

Ising nature of the magnetism in

α-CoV2O6.

To summarise the results of the single crystal neutron diffraction experiments,
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Figure 4.3 (T = 0.1 K) scans along [h0h2 ] from WISH. On increasing the

field, momentum broadened ~k = (1
201

4) (panel b) peaks draw intensity

from ~Q = (101
2). On decreasing the field from saturation, these are

replaced by momentum broadened peaks at ~k = (2
301

3). At low fields

(panel (d)), the zero-field structure characterised by ~k = (101
2). Red

bars indicate the momentum resolution. Figure reproduced from Ref.
[2].

with the magnetic field H ∦ c the magnetic ground state upon zero-field cooling

is marked by spatially long-ranged 〈T̂ 2〉 order, indicated by resolution-limited

Bragg peaks. Upon ramping the magnetic field, momentum broadened peaks
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Figure 4.4 (a−d) powder data from TASP at T = 0.1 K with a vertical magnetic
field showing the presence of both 〈T̂ 3〉 and 〈T̂ 4〉. (e−h) single crystal
data taken on RITA II in the (h0l) plane with the field aligned along
the c-axis at T = 0.1 K showing 〈T̂ 3〉 and no observable 〈T̂ 4〉 order
in this field geometry. Figure reproduced from Ref. [2].

at k = (1
2
01

4
) appear, drawing their intensity from the (101

2
) Bragg peak. This

indicates the development of short-range correlations with the periodicity 〈T̂ 4〉.
When the magnetic field is then cycled down, the Bragg peak loses all intensity

and momentum broadened peaks are measured at k = (2
3
01

3
) and k = (4

3
01

3
),

consistent with entirely short-range magnetic order with a periodicity 〈T̂ 3〉.
Finally, as the magnetic field is reduced to zero, a momentum broadened peak

is observed at (101
2
) indicating that the magnetic order reverts back to a 〈T̂ 2〉

periodicity but the correlations are spatially short-ranged. In contrast, if H ‖ c
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as achieved on RITA II, only long-range 〈T̂ 3〉 order is observed.

Finally, it should be noted that the critical scaling exponent, β = 0.16(2), was

extracted [2] according to |M |2 ∝ |T − TN |2β, confirming the Ising nature of the

magnetic order [217, 218].

Figure 4.5 (a) Low temperature magnetisation data in the same field
arrangement as the WISH experiments. The thermodynamic data
is compared against the (b) intensity and (c, d) correlation lengths
extracted from WISH single crystal diffraction. Data is presented
for field increasing and decreasing experiments where 〈T̂ 4〉 and 〈T̂ 3〉
periodicities are observed. (e) Line cut along [h0h2 ]. (f, g) Cuts

perpendicular to [h0h2 ]. Figure reproduced from Ref. [2].

Attention is now paid to the low temperature magnetisation measurements of

α-CoV2O6, which were performed in the same field configuration as the WISH

experiments. Fig. 4.5 presents the magnetisation data alongside the WISH data,

identifying the diffraction peaks measured at each field strength. The field is

ramped from zero to saturation and back down again, with the correlation length

indicated both parallel (ξ‖) and perpendicular (⊥) to the scan direction2 Figs.

4.4 (e− g) show cuts along the stacking direction (e) and perpendicular direction

(f − g) demonstrating that order is short-range (with correlation length of just

a few unit cells) along the stacking direction but long range along [0k0], further

indicating the role of short-range correlations along the stacking direction.

A series of plateaux are observed in the magnetisation data as the field is cycled. A

2The correlation length was calculated by L. Edwards from a fit to lattice Lorentzians,
characteristic of exponentially decaying spatial correlations. Further details of this can be
found in Ref. [2] and Refs. [219, 220].
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large plateau at zero magnetisation is observed before the magnetisation begins to

increase at µ0H ≈ 2.75 T. A small plateau is seen at around 3.0 T (M/MS = 0.25)

before a large plateau at 3.25 T (M/MS = 0.5). One final kink is seen around 4.5

T (M/MS = 0.75) before the magnetisation saturates. On cycling the field back

down, a plateau is seen around 4.0 T (M/MS = 0.75) but no further plateaux are

observed below this field, save for a slight kink around 0.75 T (M/MS = 0.25).

4.3 Origin of magnetisation plateaux

Theoretical work performed on the Ising model [221] reports the existence

of an infinite number of commensurate and collinear magnetic phases at low

temperatures, based on the presence of antiphase boundaries. This was found to

be supported when the anisotropic next-nearest neighbour interaction (ANNNI)

satisfies −J2
J1

> 1
2
. With decreasing temperature, it is observed that both 〈T̂ 3〉

(↑↑↓) and spatially short-range 〈T̂ 4〉 (↑↑↓↓) can be stabilised. In future studies,

it will be interesting for lower temperatures to be pursued to determine if further

periodicities can be be stabilised. Judging from the spatially short-range nature

of the 〈T̂ 4〉 periodicity with neutron diffraction, such phases may be too weakly

correlated or short-lived to observe [222]. These results suggest that strongly

Ising-like α-CoV2O6 may have the correct balance of exchange couplings to

support an infinite series of commensurate phases with decreasing temperature.

However, α-CoV2O6 displays low temperature magnetisation plateaux built upon

metastable, spatially short-range, and commensurate magnetic correlations that

do not break long-range translational symmetry owing to the finite spatial

correlation lengths. These are not phase transitions with a well defined Bragg

peak and these plateaux cannot be understood in terms of the competing

exchange interactions as reported in some localised magnets (for example in Ref.

[196, 223]). The presence of a plateau is indicative of an energetic gap, yet

translational symmetry is not broken in α-Co2V2O6. This apparent dichotomy is

now discussed.

Following Ref. [174], on general grounds, without specifying the particular form

of the microscopic magnetic Hamiltonian, the origin of discrete steps in the

magnetisation will now be discussed in terms of the underlying translational

symmetry of the Hamiltonian. This underlying symmetry places restrictions

on the values of the complex geometric phase acquired when rotating the spins
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around an axis of symmetry. Given the Ising nature of α-CoV2O6 and observed

anisotropy gap [14], the Hamiltonian can be assumed to be invariant under

rotation about the magnetisation axis ẑ. A unitary rotation about the ẑ-axis

can be written as

Û = exp

(
−i

L∑
j=1

(
2πj

L

)
Ŝzj

)
(4.2)

for a system size, L. By acting on a state |ψ〉 which has the energy ε, with the

operator Û , one can rotate onto a new state with energy ε′

H
(
Û |ψ〉

)
= ε′

(
Û |ψ〉

)
. (4.3)

With some algebraic manipulation,

〈ψ|
(
Û †HÛ −H

)
|ψ〉 = ε′ − ε = δε (4.4)

where the difference in energy between the initial state and rotated state is defined

as δε = ε′ − ε. By expanding the unitary rotation operator

〈ψ| [(1 +O(1/L))H (1 +O(1/L))−H] |ψ〉 = δε =⇒ δε ∼ O(1/L) (4.5)

it can be seen that there is an excited state with energy ∼ O(1/L). This is the

case unless Û |ψ〉 is not orthogonal to |ψ〉 – in this case ε = ε′. This can be seen by

considering the two eigenstates of the Hamiltonian, |ψ1〉 and |ψ2〉, with energies

ε1 and ε2 respectively

〈ψ2|H |ψ1〉 = ε1 〈ψ2|ψ1〉 (4.6a)

〈ψ1|H |ψ2〉 = ε2 〈ψ1|ψ2〉 . (4.6b)

Eqn. 4.6a can be equated with the Hermitian conjugate of Eqn. 4.6b

ε2 〈ψ1|ψ2〉 = ε1 〈ψ2|ψ1〉 . (4.7)

It can be seen that Eqn. 4.7 can only be satisfied if ε1 = ε2 or 〈ψ2|ψ1〉. In

other words, for two energy eigenvalues to be different, the eigenstates must be

orthogonal. Therefore, after the rotation, in order for there to be a low-lying state

with a different energy to the ground state, |ψ〉 and Û |ψ〉 must be orthogonal.

For a Hamiltonian invariant under a site translation H 7→ T̂HT̂−1, a norm
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preserving unitary rotation of the spins using the operator Û (Eqn. 4.3) generates

a geometric phase under the gauge transformation

T̂ Û T̂−1 = Ûe2πi(S−m), (4.8)

where m = 1
L

∑L
i=1 Ŝ

z
i . This is akin to that gained by a Foucault pendulum as it

undergoes a unitary transformation about the Earth’s axis. For (S−m) /∈ Z, the

rotated state must be orthogonal to the ground state and represent an excited

state with an infinitesimally larger energy in the thermodynamic limit [174].

These states lead to a gapless continuum as Haldane suggested [164]. In the case

of integer values, states are gapped and cannot be smoothly transformed through

with the application of field, leading to the emergence of magnetisation plateaux

and a Bloch state analogue of the quantum Hall effect [174, 224, 225]. This is

the Lieb-Mattis-Shultz theorem [173] which states that a spin chain can have an

energy gap without breaking translational symmetry when the magnetisation per

spin satisfies (S −m) ∈ Z. In the case that (S −m) = p/q, where p and q are

coprime, T̂ q preserves gauge invariance and the ground state is endowed with T̂ q

symmetry. This new magnetisation-induced symmetry can give rise to modulated

ground states, though the stability of such states is ultimately determined by the

interaction terms present in the microscopic Hamiltonian.

The presence of a strong spin-orbit splitting between the jeff = 1
2

ground state

doublet and the excited jeff = 3
2

and jeff = 5
2

multiplets allows the inter-site

interaction Hamiltonian to be written in terms of effective spin-half operators,

S̃i = γ j̃i, where γ is a projection factor [21]. Using the general arguments

discussed previously, one can assign a value of p/q to each of the magnetisation

plateaux and hence extract the translational symmetry of the ground state.

Considering first the plateau associated with the saturation of the magnetic

moment. After projection onto the jeff = 1
2

manifold, the spin value is S = 1/2.

At saturation the magnetisation is m = 1/2 and hence (S − m) = 0. The

Hamiltonian therefore satisfies T̂ 1 symmetry, as expected in a fully saturated

state. In contrast, at zero magnetisation, m = 0 and hence (S −m) = 1
2
. In this

case (S −m) = p/q, where p and q are coprime. The denominator q = 2 reveals

that the plateau at zero magnetisation is consistent with a twofold periodicity,

〈T̂ 2〉. The plateau at M/MS = 1
3

arises when the magnetisation is one third of

the magnitude of the spin value, S = 1/2. It therefore occurs at a magnetisation

value m = 1
6

leading to p/q = 1
3
. From the arguments of the Lieb-Schultz-Mattis
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theorem, this plateau is therefore consistent with 〈T̂ 3〉. Finally, the plateau at

M/MS = 1
2

can thus be understood as corresponding to m = 1
4

and hence p/q = 1
4
.

This plateau is thus consistent with 〈T̂ 4〉 order. The corresponding values of p/q,

M/MS and the implied magnetic order 〈T̂ q〉 are reproduced in Table 4.1.

Table 4.1 Values of (S − m) = p/q for each of the magnetisation plateaux
observed in Fig. 4.5 (a).

S −m = p/q M/MS 〈T̂ q〉
1
2
− 1

2
= 0 1 〈T̂ 1〉 =↑↑

1
2
− 0 = 1

2
0 〈T̂ 2〉 =↑↓

1
2
− 1

6
= 1

3
1
3

〈T̂ 3〉 =↑↑↓
1
2
− 1

4
= 1

4
1
2

〈T̂ 4〉 =↑↑↓↓, ↑↑↑↓

Regarding the hysteresis found in Fig. 4.5, given the insulating nature [226] and

the requirement of gauge invariance, this change in the ground state, despite

completing a closed loop of unitary transformations, maybe indicative of a non-

trivial underlying topological structure. A violation of the adiabatic theorem is

not expected given the large excitation gap (∼ 1 meV) in comparison to the

applied fields (1 T ∼ 0.1 meV), however a highly degenerate ground state is

expected for Ising spins on a triangular motif [227]. In further analogy to the

Hall effect, It should be noted that hysteresis effects have been reported in the

fractional quantum Hall effect [228, 229]. The hysteresis here is distinct from the

very slow critical behaviour observed in Ca3Co2O6 [178] where a phase transition

occurs, yet occurs on the timescale of hours.

4.4 Conclusion

In this chapter, neutron diffraction and magnetisation results on the jeff = 1
2

Ising magnet α-CoV2O6 have been presented. The magnetisation data show

the emergence of a number of discrete plateaux at fractions of M/MS which do

not correspond to distinct long-range ordered magnetic phases which would be

accompanied by resolution limited Bragg peaks. Instead these plateaux are are

marked by the emergence of momentum broadened peaks which indicate a short

correlation length.

In search of an explanation for the cascade of plateaux observed, the Lieb-Schultz-

Mattis theorem was applied, linking the magnetisation plateau and the underlying
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translational symmetry of the ground state. This analysis demonstrates the

presence of multiple commensurate periodicities that are absent from powder

samples [216]. The transitions are observed to be hysteretic in nature, with

〈T̂ 4〉 observed on an upward field sweep but not seen on the downward sweep.

Using the insight gained from the Lieb-Schultz-Mattis theorem in concert with

the observation of momentum broadened peaks, the multiple commensurate

periodicities are understood in terms of metastable antiphase boundaries. The

underlying field-induced order is thus understood to be 〈T̂ 3〉 =↑↑↓, consistent

with the field-induced phase observed in powder samples [215, 216]. Antiphase

boundary creation in this 〈T̂ 3〉 order was shown to give rise to 〈T̂ 4〉 and 〈T̂ 2〉
locally, thus explaining the coexistence of these peaks in the finite field neutron

data (Fig. 4.5). The absence of the emerging 〈T̂ 4〉 order in powder samples

can thus understood to be due to the spherical averaging of the magnetic field.

Given the short-range nature of correlations in α-CoV2O6, the stabilisation of

metastable antiphase boundaries in field offers a more compelling explanation

for the magnetisation plateaux than order-by-disorder which has been used to

explain the 1/3 plateau in other triangular systems [161, 230–232] where the

plateaux typically accompany long-range magnetic phase transitions.

Further neutron scattering experiments would likely further elucidate the nature

of the magnetic interactions in α-CoV2O6. Given the small bandwidth of the

spin wave excitations in α-CoV2O6, an instrument such as the indirect geometry

crystal-analyser spectrometer OSIRIS [10] would be required. This experiment

would likely present considerable challenges owing to the small crystal size and

rod-like geometry [14], necessitating the coalignment of many single crystals.
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Chapter 5

Metastable antiphase boundary

ordering in CaFe2O4

5.1 Introduction

The manipulation of the domain wall motion of ferromagnets via a coupling to

external fields has been suggested as a promising mechanism for the design of

logic gates [233] and racetrack memory devices [234, 235] for the next generation

of quantum devices. Additional attention has been paid to the control of

antiferromagnetic domain walls, which overcome the practical difficulties of the

large stray fields associated with their ferromagnetic counterparts, yet cannot be

controlled with a simple external field [236]. Nonetheless, mechanisms have been

suggested for the control of antiferromagnetic domain walls ranging from thermal

activation [237] to spin-orbital torques [238] and magnon-driving [239].

One antiferromagnetic system which may prove instructive in the study of

magnon-soliton interactions and antiphase boundary effects is the S = 5/2 anti-

ferromagnet CaFe2O4. Polarised neutron diffraction data show the existence of

spatially-extended Bloch walls separating antiphase regions of antiferromagnetic

order [15]. The antiphase boundaries have been found to carry an uncompensated

local moment and are hence tunable in field [15]. Furthermore, the low energy

magnetic excitation spectrum was found to exhibit discrete modes [11], perhaps

indicative of confinement of solitons within a nonlinear potential which arises

due to frustration between domains on weakly coupled chains [1], as discussed in
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Chapter 3. Knowledge of the microscopic spin Hamiltonian is a necessity before

a full understanding of the antiphase boundaries can be gained, yet a consistent

picture of the magnetic interactions in CaFe2O4 has proved elusive.

CaFe2O4 exhibits two magnetically ordered phases. The high temperature B

phase, consists of two-dimensional networks of coupled zig-zag chains which are

stacked along c in the (↑↓↑↓) pattern (see Fig. 5.1 (a)). As temperature is

decreased, the A phase develops, which differs only in its (↑↑↓↓) c-axis stacking

[11, 146]. These two phases are observed to coexist, yet the temperature range of

this coexistence and the ultimate low temperature structure differ between single

crystal and powder samples [24, 240]. In single crystals the ordered moment

does not saturate at 5µB, with spectral weight redistributed to momentum-

broadened rods of scattering along c∗, confirmed by polarisation analysis to

be magnetic in origin [11], indicative of antiphase boundaries along c. From

polarised diffraction data of the momentum-broadened component, at T = 5 K the

correlation length along c was determined to be ∼ 1− 2 unit cells [11] indicating

highly localised correlations. The ability to measure magnetic diffuse scattering

in powders without polarisation analysis or a large amount of diffuse spectral

weight is limited, making the presence of antiphase boundaries in powder samples

difficult to detect. However, the ordered moment is observed to be suppressed in

polycrystalline samples [24]. A full characterisation of the magnetic excitations

at both high and low temperature has not yet been presented.

In this chapter, the nature of the magnetic order in CaFe2O4 is addressed

and an explanation is offered for the differing behaviour observed in powders

and single crystals. The low temperature A phase is shown to be metastable,

with short-range correlations, analogous to the field-induced metastable states

recently reported in CoV2O6 [2] and discussed in Chapter 4, in which antiphase

boundaries order to form a new phase with a different translational symmetry

[221]. These arguments are supported by neutron scattering data at both high

and low temperatures, demonstrating the nature of the magnetic fluctuations

in single crystal CaFe2O4. Finally, using a random phase approximation (RPA)

Green’s function formalism, the magnetic excitations in CaFe2O4 are modelled

and the spin Hamiltonian determined.
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5.2 Antiphase boundaries

5.2.1 Structure

CaFe2O4 crystallises in the orthorhombic Pnma space group (a=9.230Å, b=3.017Å,

c=10.689Å), with coupled zig-zag chains of Fe3+ (S=5/2, L=0) ions in the a− b
plane [12, 13, 146, 241]. Previous studies have reported the stabilisation of two

competing magnetic orders below TN ≈ 200 K [11, 24, 146, 240, 242]. In the

low temperature A phase (Fig. 5.1 (a)) the stacking along c is (↑↑↓↓) with the

couplings J2a and J2b connecting parallel spins. In the high temperature B phase

(Fig. 5.1 (b)), the c-axis stacking is (↑↓↑↓) with J2a and J2b coupling antiparallel

spins.

The behaviour observed is qualitatively different between powder and single

crystal samples and is summarised in Table 5.1. To examine the magnetic

structure of the powder samples, the BT-1 diffractometer at the NIST Center for

Neutron Research (NCNR) [243] was used, with wavelength λ=2.0782 Å (Ge 311

monochromator). The low and high temperature diffraction patterns are shown

in Fig. 5.2 (a) and (b) respectively. In the powder samples, B phase order, as

indicated by the presence of the Q = (1, 0, 1) peak, is observed on cooling below T

≈ 200 K and is maximal at T ≈ 175 K. Below this temperature, the Q = (1, 0, 2)

peak begins to accumulate spectral weight, overtaking the B phase in intensity at

T ≈ 150 K (Fig. 5.2 (c)). The B phase peaks are observed to disappear at around

T = 125 K after a brief temperature window of coexistence between T ≈ 125 K

and T ≈ 175 K. The powder diffraction data would thus indicate a preferential

A phase ordering at low temperature, with (↑↑↓↓) stacking along c, rather than

the B phase order with its (↑↓↑↓) arrangement. This result is in agreement with

the findings of Songvilay et al [24] who have further shown that chemical doping

with Cr prevents the stabilisation of A phase order, observing only the B phase in

CaCr0.5Fe1.5O4. Pure CaCr2O4 shows an altogether different magnetic structure,

with an incommensurate cycloidal propagation vector [244–246].

The story is somewhat different in single crystal samples. Between T ≈ 200 K and

T ≈ 100 K, B phase magnetic order is dominant as seen in Fig. 5.1 (d). This is

confirmed by magnetic susceptibility measurements [240] showing a feature at the

onset of B phase order. Below T ≈ 100K the A phase becomes the more prevalent

magnetic order (Fig. 5.1 (d)). The existence of a transition to the A phase is
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Figure 5.1 Structure of CaFe2O4 in the A (a) and B (b) phases, which differ
in their c-axis stacking. Red arrows identify Fe3+ spins pointing
along +b and blue arrows identify spins pointing along −b. The
couplings J1a and J1b link parallel spins along b, with the J2a and
J2b linking parallel and antiparallel spins in the A and B phases
respectively. The exchanges J3 and J4 define antiferromagnetically
aligned chains in both phases. (c) Magnetic structure along the c-axis
showing the (↑↑↓↓) and (↑↓↑↓) configuration of the A and B phases
respectively. The effect of an antiphase boundary (APB) in the B
phase order is illustrated, giving rise to local A phase order (golden
rectangle). The mapping onto the matrix M is demonstrated, with
each spin pair mapped onto ±1. (d) Temperature dependence of the
order parameters of the A and B phases, Q=(1,0,2) and Q=(1,0,1)
respectively. Black points show the temperature dependence of the
static component, α, of neutron spin echo (NSE) at Q=(1,0,1.5),
data reproduced from Ref. [11].

argued on the grounds of the appearance of the peak at Q = (1, 0, 2), however it

is important to note that no thermodynamic measurements have been reported

showing the existence of a second phase transition, and only a single order

parameter was detected in the Mössbauer spectroscopy measurements, showing

a power law temperature dependence [155]. Observing the relative intensities of

the (1, 0, 2) and (1, 0, 1) peaks, the two phases can be seen to saturate in a 2:1
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Table 5.1 Magnetic structures observed in CaFe2O4. Data from Cr doped
sample reproduced from Ref. [24].

Sample B phase A phase Coexistence?
CaFe2O4 single crystal 200-5 K 175-5 K 175-5 K

CaFe2O4 powder 200-150 K 175-5 K 175-150 K
CaCr0.5Fe1.5O4 powder 200-5 K × ×

ratio at low temperature (Fig. 5.1 (d)).

It has previously been suggested that the phase coexistence could originate from

a fine balancing of the exchange parameter J2a/b on the ferromagnetic/antiferro-

magnetic threshold which is sensitive to subtle changes in the bond angle as a

function of temperature [24]. However, these arguments rely on an element of

exchange disorder to account for the persistence of B phase order down to low

temperatures in the single crystal samples, and the region of phase coexistence in

the high temperature phase of the powder. Moreover, the discrepancy between the

powder and single crystal data remains unexplained. An alternative explanation

for the temperature dependence of the phase coexistence based on antiphase

domain formation is now presented.

Firstly, single crystal samples are discussed, before turning attention to the

powder samples. The single crystals described in this chapter are the same as

those used in Refs. [1, 11, 15] and were grown using a mirror furnace, as described

in the Supplemental Material of Ref. [11]. Previous studies of these single crystals

[11, 15] have demonstrated the presence of rods of diffuse magnetic scattering

along [0,0,L] indicating that correlations along c are short-range. Furthermore,

at T = 200 K neutron spin echo (NSE) measurements reveal the dynamical nature

of this diffuse scattering [11, 15], with the static component increasing rapidly

as the sample was cooled below T = 100 K (Fig. 5.1 (d)). By examining the

magnetic structure in the two phases, it can be seen that the creation of an

antiphase domain boundary in global B phase order gives rise to a local A phase

stacking (and vice versa) as demonstrated in Fig. 5.1 (c) [15]. Consequently, it

is argued that the phase coexistence at low temperature can be understood as

arising due to the freezing-in of antiphase boundaries in a parent B phase order.

In order to demonstrate this, the following toy model of domain formation is

introduced.

The chain along c is split into pairs of spins, with each pair assigned the value of

+1 or -1 depending on the orientation of the spin pair (Fig. 5.1 (c)). In a pure
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Figure 5.2 (a) Neutron diffraction data of a powder sample of CaFe2O4

measured on BT-1 at (a) T = 7 K and (b) T = 230 K. (c) Magnetic
moment of the Q = (1, 0, 1) and Q = (1, 0, 2) Bragg peaks in the
powder sample. The small window of coexistence and loss of the B
phase at low temperature shows a qualitatively different behaviour to
the single crystal sample [11]. Diffraction measurements performed
by E. E. Rodriguez.

B phase arrangement the magnetic structure can be represented by the infinite

array, M = ±[1, 1, 1, 1, ...]. Where± labels the two degenerate spin configurations

(of which the positive state is selected from now on, to be explicit). To introduce

a domain wall at position i, the signs from position i + 1 onwards are flipped,

M = [1, 1,−1,−1, ...], for example. Let F(i, p) be the operator that has a p(%)

chance of flipping the signs on all sites after site i, hence creating an antiphase

boundary at site i. After operating on each element of the array with the nonlocal

operator

M′ =
N∏
i

F(i, p)M, (5.1)

the local order is then analysed by examining the relative signs on each site. Each

occurrence of the pattern M′ = [...,±1,±1, ...] can be assigned to the B phase,

with M′ = [...,±1,∓1, ...] belonging to the A phase, leading to an array of length

N − 1, P = [A,B,B,A, ...], for example, describing the local order.

For p = 67%, the ratios of A to B phase are found to be 2:1 in agreement with the

low temperature neutron diffraction data [11]. The B phase magnetic unit cell

consists of along two spins along c (or one element of M) and hence a flipping

ratio of p = 67% gives rise to domains with an average size of 1.5 elements,

corresponding to 1.5 unit cells, in agreement with the measured correlation length

93



of 1-2 unit cells, from neutron diffraction [11]. The same analysis can be applied

to a parent A phase order, with p = 33%, leading to an average domain size of

four elements of M which, again corresponds to a correlation length of 1.5 unit

cells (owing to the doubled magnetic unit cell of the A phase). However, the

appearance of the Q = (1, 0, 1) peak at TN along with a significant component

of magnetic dynamical diffuse scattering, which becomes static on the onset of

A phase order is suggestive of the former scenario. It is thus concluded that the

single crystal data are consistent with a parent B phase order with antiphase

domain boundaries that freeze-in at low temperature leading to local A phase

order. This is still suggestive of a small J2a/b so that the energy cost of creating

an antiphase boundary is of the order of the temperature, but it is concluded that

this bond must be strictly antiferromagnetic, in order that the parent magnetic

order is B phase.

The persistence of the B phase (1, 0, 1) peak down to low temperature in the single

crystal sample is indicative of domain pinning effects arising due the presence of

oxygen vacancies, known to be present in CaFe2O4 single crystals1 [240]. If the

flipping ratio were to tend towards p = 100%, pure A phase order would be

expected at low temperature and a disappearance of the B phase Bragg peaks,

precisely as observed in the CaFe2O4 powder samples [24]. This is to be expected

if the powder samples were to have fewer oxygen vacancies and hence facilitate the

full conversion of B phase to A phase order. The magnetisation measurements of

Das et al [240] demonstrate that vacancy-driven disorder alone cannot account for

the discrepancy between the powder and single crystal samples, indeed another

ingredient is needed.

Crucial to the survival of the low temperature A phase is the presence of an

anisotropy gap that stabilises the A phase structure at low temperature despite

the frustration of J2a/b. It is notable that the neutron scattering measurements

of Songvilay et al suggest a significant reduction in the anisotropy gap in the Cr

doped samples [24], which may explain the failure to stabilise A phase order at

low temperatures. In the 3d5 high spin complexes, owing to the absence of an

orbital moment, the spin Hamiltonian is expected to be isotropic. The observed

anisotropy gap is thus evidence of the mixing of higher energy multiplets into the

ground state orbital singlet, 6S. This mixing occurs due to higher order processes

such as a second order process involving the spin-spin interaction and an axial

crystal field via the 6D state [247] or to fourth order via squares of the spin-orbit

1To the author’s knowledge, no samples with excess oxygen have been reported.
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and distortion terms [248]. Ultimately, the anisotropy terms that appear in the

effective spin Hamiltonian must respect the crystal symmetry [249] and hence

should be proportional to the Steven’s parameter, µ ∼ B0
2 [21, 27]. The vital role

of the axial distortion term in mixing higher order multiplets into the 6S ground

state indicates that the anisotropy should couple strongly to strain in CaFe2O4,

which exhibits a significant distortion of the local octahedral environment [13]. It

is therefore unsurprising that doping suppresses the magnitude of the anisotropy

[24] and that the magnetic behaviour shows a strong dependence on the density

of oxygen vacancies [240], since both processes affect the local axial crystal

field. The role that anisotropy plays in the stabilisation of the A phase in turn

suggests an explanation for the differing behaviour in powder and single crystal

samples. In powder samples, the grinding process introduces strain which would

indicate an enhancement of the single ion anisotropy parameter, µ, promoting the

stabilisation of A phase order. The temperature dependence of the anisotropy

gap in single crystal samples is now further explored using neutron scattering

measurements made by C. Stock and Ch. Niedermayer.

5.2.2 Anisotropy

Temperature dependent constant Q scans at the Q = (−1, 0, 2) position were

conducted on the RITA II triple-axis spectrometer at the Paul Scherrer Institute

(Villigen, Switzerland) [250] (Fig. 5.3 (a)). The asymmetric lineshape arises from

the finite resolution and the curvature of the dispersion curve. The peaks are

resolution limited and for convenience the asymmetric lineshape is approximated

with an antisymmetric Lorentzian function,

I(E) ∝ [n(ω) + 1]

(
1

1 +
(
E−Ω0

Γ

)2 −
1

1 +
(
E+Ω0

Γ

)2

)
(5.2)

whose peak width is allowed to vary sigmoidally

Γ(E) =
2Γ0

1 + exp [a(E − Ω0)]
(5.3)

such that the degree of asymmetry is controlled by a single parameter, a and for

a = 0, the width becomes symmetric, Γ = Γ0 [251]. The value of the asymmetry

parameter, along with Γ0, Ω0 and an overall scaling factor were fitted using the
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Figure 5.3 (a) Temperature dependence of the gap at Q = (−1, 0, 2) measured
on the RITA II spectrometer. Solid lines are fits to asymmetric
Lorentzians. (b) Anisotropy gap at T=1.5 K with ∆ = 3.14(5)meV.
A low intensity peak at 1 meV is seen originating from in-gap mode,
discussed in Ref. [15] in addition to a discrete mode at 3.9 meV
originating from non-classical excitations [1, 11, 11]. (c) Extracted
magnitudes of the gap as a function of reduced temperature, t. The
data have been corrected for the Bose-Einstein population factor at
each temperature.

Horace package [252]. The value of the gap follows a power law behaviour,

vanishing above T ≈ 200 K, concomitant with the loss of order along c. This is

in good agreement with the temperature at which the Q = (1, 0, 1) peak vanishes

(Fig. 5.1 (d)). At T = 1.5 K a second peak is seen above the gap ∼ 4 meV, in Fig.

5.3 (b), which can be understood in terms of the discrete non-classical excitations

reported previously in this system [1, 11, 15] and discussed at length in Chapter

3. By plotting the gap as a function of reduced temperature t = (T − Tc)/Tc, a

96



dimensionless scaling exponent and critical temperature can be fitted according to

∆ ∼ |t|β. The fitted value of β = 0.28(3) is below the expected scaling exponent

for the 3d Ising model (β = 0.3265(15)) [253]. The departure of the gap’s scaling

exponent from the expected critical exponent of the order parameter indicates the

presence of some temperature dependence of the anisotropy parameter, beyond

a simple renormalisation due to a thermal fluctuation-driven reduction of the

magnetisation, and hence a decoupling of the magnetic order parameter and the

anisotropy parameter. Such a temperature dependence has been observed in

other ferrites and materials exhibiting strong magnetostrictive effects [254–256].

The ramifications of this temperature dependence of the anisotropy parameter

will be discussed further later in the chapter. The phonon excitations are now

analysed, which would be sensitive to any structural domains.

5.2.3 Acoustic phonons

The spin wave analysis presented here shows that the magnetic excitations in

CaFe2O4 can be consistently understood in terms of the same exchange constants

in the high (B phase) and low (A phase) temperature phases, up to a small

temperature renormalisation. To confirm the lack of temperature dependent

structural effects, the transverse acoustic phonons are discussed.

The lifetime and energy positions of acoustic phonons are sensitive to the

formation of structural defects or localised structural domains. This has been

shown in scattering studies of, for example, localised polar domains [257] in

relaxor ferroelectrics such as Pb(Zn,Mg)1/3Nb2/3O3 [258–261] and the disordered

perovskite K1−xLixTaO3 [262]. To confirm the lack of any structural domains

forming that may drive either the antiphase boundaries discussed above or

the transition from the B phase to the A phase, on cooling, the temperature

dependence of transverse acoustic phonons propagating both along c and a axes

in CaFe2O4 was investigated. Acoustic phonon measurements were performed

on the EIGER triple-axis spectrometer (PSI, Switzerland) [73] by C. Stock and

U. Stuhr. The incident neutron beam was monochromated with a vertically

focused PG(002) monochromator defining Ei and the final energy was fixed to

Ef = 14.6 meV with a PG(002) analyser, with the energy transfer defined by

E = Ei − Ef . Collimation was set to 80 minutes before and after the sample

position and a pyrolytic graphite filter was used after the sample to remove higher

order contamination of the neturon beam. The sample was aligned such that
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Figure 5.4 The transverse acoustic phonons propagating along (a) the c and (b)
the a axes. The resolution is depicted by the solid horizontal lines.
(c) illustrates the temperature dependence of both phonon modes. No
measurable anisotropy or temperature dependence is observed.

Bragg reflections of the form (H,K, 0) lay within the horizontal plane.

Constant momentum cuts through the transverse acoustic phonons propagating

along the c and a axes are illustrated in Fig. 5.4 (a) and (b). The solid line is

a fit to a damped simple harmonic oscillator characterised by the antisymmetric

Lorentzian lineshape (Eqn. 5.2), with Ω0 defining the energy position of the

phonon and Γ the half-width in energy, inversely proportional to the lifetime

τ . The full width 2Γ is shown in Fig. 5.4 (c) for phonons propagating along

both directions. The function defined in Eqn. 5.2 consists of the Bose factor

multiplying an odd function which ensures that the scattering cross section
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satisfies the principle of detailed balance [56].

In analogy to the relaxor ferroelectrics mentioned above where nanoregions of

polar order are present, one would expect that phonons travelling along the

caxis, where antiphase domain boundaries exist, to possibly be damped and this

damping to be temperature dependent. Fig. 5.4 shows three key results; first,

the acoustic phonons are not measurably broader than the resolution defined

by the spectrometer; second, there is no observable temperature dependence to

the linewidth; third, there is no observable anisotropy to the linewidth with

phonons travelling along both the a and c axes showing similar responses. While

constraints are placed by the energy resolution of the spectrometer and also the

possibility that any effect from the domains affects lower energy phonons, this

result does support the idea presented in this chapter that there is no observable

structural changes with temperatures that drive the magnetism.

5.3 Fluctuations and neutron scattering

The arguments presented in Sect 5.2 rely on knowledge of the exchange

parameters in the spin Hamiltonian. In order to validate the model of A phase

formation through antiphase boundary freezing attention is now paid to the low

energy dynamics.

Neutron scattering data are now presented for CaFe2O4 showing the magnetic

fluctuations in both the high and low temperature phases. Following Refs.

[207, 263–265], a Green’s function formalism is applied to model the low energy

excitations in both phases, demonstrating the utility of this method in systems

without an orbital degree of freedom. A complete derivation of the Green’s

function for a general collinear system can be found in Appendix G. In applying

the Green’s function formalism to CaFe2O4, it is shown that, in the case of a

single-ion Hamiltonian that consists solely of a mean field term, the Green’s

function collapses to a simple expression allowing the calculation of the dispersion

relation and dynamical structure factor. Finally, the neutron scattering data

are fitted, extracting exchange constants and determining the microscopic spin

Hamiltonian.
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a) LET, T= 5 K b) LET, T= 190 K

c) MERLIN, T= 5 K d) MERLIN, T= 175 K

e) MERLIN, T= 5 K f) MERLIN, T= 175 K

Figure 5.5 Dispersion along c∗ at (a) T = 5 K and (b) T = 190 K. Overlaid is
the calculated low temperature dispersion, with the fitted exchange
constants from Section 5.3.2. Spectral weight is concentrated in
the mode whose minimum is at Q = (2, 0, 0). As temperature is
increased, the signal broadens and becomes incoherent as correlations
along c are lost. (c) Dispersion along H at T = 5 K and (d) 175 K,
measured on MERLIN. (e) Dispersion along K at T = 5 K and (f)
175 K. The intensities for both datasets on each instrument have
been corrected for the Bose-Einstein population factor.

5.3.1 Magnon excitations

The dynamics of CaFe2O4 are now discussed. Previous studies have shown

the presence of rods of diffuse scattering, indicating the presence of antiphase
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boundaries and revealing the short range nature of correlations along c [11, 15].

Despite this, at low temperature, a measurable dispersion along L is observed

[11]. Data are now presented from the cold chopper spectrometer LET [80] at

ISIS Pulsed Neutron and Muon Source (Didcot, UK), measured by C. Stock, R.

I. Bewley and D. J. Voneshen, concerning the low energy dynamics along L. The

incident energy was selected to be Ei = 8 meV, with the high flux chopper in the

280/140 configuration, giving an elastic resolution of ∆E = 0.2 meV.

At T = 5 K, a broad gapped low energy mode is observed, extending up to ∼ 7

meV as seen in Fig. 5.5 (a). The gap is ∼ 3 meV, in agreement with the data from

RITA II (Fig. 5.3 (b)). Upon heating to T = 190 K, the gap closes in agreement

with the RITA II data (Fig. 5.3 (c)), and the scattering broadens becoming

incoherent, consistent with the loss of correlations along c. It is important to

note that these calculations for the dispersion (in both the pure A phase and

pure B phase structures) suggest that two modes are present, crossing at L = 0.5

(Fig. 5.5 (a)). Only one of these modes is observed to carry any spectral weight.
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Figure 5.6 (a) Cut along [H,-H] at T = 5 K, showing the presence of two modes,
with non-trivial structure factor variation. (b) Constant Q cut at the
zone boundary. Red line is the fit to the Green’s function model. (c)
Constant energy cut at E = 27.5 meV with fitted Green’s function
model. (d)−(f) T = 175 K data showing a broadening of excitations
and a small bandwidth renormalisation. The intensities for both
datasets have been corrected for the Bose-Einstein population factor.

In order to map out the excitations to higher energies in the (H,K) plane, neutron
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scattering was carried out on the time-of-flight spectrometer MERLIN at ISIS

Neutron and Muon Source (Didcot, UK) [71]. The sample was cooled to T =

5 K and an incident energy of 70 meV was selected, with a gadolinium chopper

spinning at ν = 300 Hz, allowing for an elastic resolution of ∆E = 3.6 meV.

Strongly dispersive modes were observed along H (Fig. 5.5 (c)), extending up to

∼ 35 meV, in agreement with Ref. [11]. Steeply dispersing spin waves were also

measured along K (Fig. 5.5 (e)) confirming the three-dimensional nature of the

spin waves in this system.

The sample was then warmed to T = 175 K and the measurement repeated (Fig

5.5 (b, d, f)). The excitations broaden at this temperature, along with a small

renormalisation of the bandwidth. The dispersion remains qualitatively similar

at this temperature, with similar structure factor modulation. Fig. 5.6 shows

the dispersion along [−H,H]. At low temperature, two modes are seen with two

peaks observed at the zone boundary (Fig. 5.6 (b)). At high temperature, once

again the dispersion looks qualitatively similar, but the broadening obscures many

of the features seen at low temperature, and the two peaks at the zone boundary

are no longer resolved. A microscopic spin Hamiltonian is now constructed to

model the spin wave excitations measured at high and low temperatures.

5.3.2 Theory

The Fe3+ (S = 5/2, L = 0) ions in CaFe2O4 are surrounded by an octahedron

of oxygen ions [13]. The distorted nature of these octahedra allows for the

presence of an easy-axis anisotropy term µ ∼ B0
2 [21, 27], breaking spin-rotational

symmetry and aligning the spins along b. The dependence of the anisotropy

parameter on the Steven’s parameter, B0
2 , suggests an origin for the anomalous

temperature dependence of the anisotropy gap presented in Section 5.2.2, as

the anisotropy parameter is coupled to the local crystalline environment of the

Fe3+ spins due to the mixing of higher energy multiplets into the ground state

orbital singlet [247–249]. As such, very subtle changes in lattice parameters

originating from magnetoelastic coupling, as reported for CaFe2O4 in Ref. [24],

can be expected to have a marked effect on the strength of the anisotropy, despite

having only a small effect on the Fe-O-Fe bond angle.
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The absence of an orbital degree of freedom motivates a spin-only Hamiltonian,

H =
∑
ij

JijSi · Sj + µ
∑
i

(
Ŝzi

)2

(5.4)

where µ < 0 represents an easy-axis single-ion anisotropy. The existence of two

crystallographically inequivalent Fe3+ sites, in conjunction with the magnetic

order, necessitates the use of an enlarged magnetic supercell of four sites in

the B phase. The breaking of inversion symmetry in the low temperature A

phase further enlarges the unit cell to eight sites and necessitates the averaging

of the spin-inverted structure factors since S+−(q, ω) 6= S−+(q, ω). The spin

Hamiltonian can be separated into single and inter-ion terms, H = H1 +H2, by

performing a mean field decoupling, Si,γ → 〈Siγ〉 + δSiγ and discarding terms

∼ O(δSiγ)
2

H1 =
∑
iγ

Ŝziγ

(
2
∑
jγ′

Jγγ
′

ij 〈Ŝzjγ′〉+ 2µ〈Ŝziγ〉

)
(5.5a)

H2 =

γγ′∑
ij

J γγ′

ij Ŝziγ

(
Ŝzjγ′ − 2〈Ŝzjγ′〉

)

+
1

2

γγ′∑
ij

J γγ′

ij

(
Ŝ+
iγŜ
−
jγ′ + Ŝ−iγŜ

+
jγ′

)
.

(5.5b)

The first term is a Zeeman term describing the molecular mean field felt by each

site H1 =
∑

iγ h
MF
iγ Ŝziγ. This splits the 2S + 1 degenerate energy levels (Fig.

5.7). The commutators [Ŝαi′γ̃,H] can be calculated to mean field level; only the

transverse elements survive

[Ŝ+
i′γ̃,H] =

∑
jγ′

Aγ̃γ
′

i′j Ŝ
+
jγ′ (5.6a)

Aγ̃γ
′

i′j = −hMF
i′γ̃ δi′jδγ̃γ′ + 2J γ̃γ′

i′j 〈Ŝ
z
i′γ̃〉. (5.6b)

This commutator can be inserted into the Green’s function equation of motion

(Appendix G) to yield the Green’s functions,

ωG+−
γ̃γ̃′ (i

′j′, ω) =〈[Ŝ+
i′γ̃, Ŝ

−
j′γ̃′ ]〉

+
∑
jγ′

Aγ̃γ
′

i′j G
+−
γ′γ̃′(jj

′, ω). (5.7)
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This can be written as∑
jγ′

G+−
γ′γ̃′(jj

′, ω)
[
ωδi′jδγ̃γ′ − Aγ̃γ

′

i′j

]
= 〈[Ŝ+

i′γ̃, Ŝ
−
j′γ̃′ ]〉.

(5.8)

Taking the Fourier transform and performing the summation, Eqn. 5.8 can

be written as a matrix equation. On doing so, the Green’s functions take the

convenient form

G+−(q, ω) = B
[
Iω − A(q)

]−1
. (5.9)

where Bγ̃γ̃′ = δγ̃γ̃′〈Ŝγ̃〉. This expression for the transverse Green’s function is

similar to the expression found by dynamical mean field theory [266], where the

correlation function is found from the Landau-Lifshitz equation. The dispersion

relation can be found analytically by diagonalising the matrix Aγ̃γ̃
′
(q) and the

Green’s function found by calculating the matrix product on the right-hand side

of Eqn. 5.9 on a grid in energy-momentum space. The dynamical structure factor

can then be calculated via the fluctuation-dissipation theorem [57]

S(q, ω) = − 1

π
(1 + n(ω)) Im [G(q, ω)] . (5.10)

The calculation of the transverse Green’s function (Eqn. 5.9) requires knowledge

of the matrix elements, Aγ̃γ̃
′

and Bγ̃γ̃′ . The low temperature A phase structure

necessitates an eight site model, owing to the broken inversion symmetry. The

matrix B encodes the magnetic structure of the ground state in each phase (Fig.
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5.1 (a, b)), and can be written as

B
A

=



−S 0 0 0 0 0 0 0

0 −S 0 0 0 0 0 0

0 0 S 0 0 0 0 0

0 0 0 S 0 0 0 0

0 0 0 0 S 0 0 0

0 0 0 0 0 S 0 0

0 0 0 0 0 0 −S 0

0 0 0 0 0 0 0 −S


(5.11a)

B
B

=



S 0 0 0 0 0 0 0

0 −S 0 0 0 0 0 0

0 0 S 0 0 0 0 0

0 0 0 −S 0 0 0 0

0 0 0 0 S 0 0 0

0 0 0 0 0 −S 0 0

0 0 0 0 0 0 S 0

0 0 0 0 0 0 0 −S


(5.11b)

in the A and B phase respectively, where S = 5/2. The matrix for the B phase

can be written as a scalar matrix whose elements are 4 × 4 matrices, reflecting the

inversion symmetry of the B phase magnetic structure. The mean molecular field

can be calculated by expanding the spin operators around their expectation values

(Eqn. 5.5). The presence of the bond inequivalence, J1a 6= J1b, and J2a 6= J2b,

gives rise to two molecular mean field terms,

hMF
a =− 2J1aS + 2J2aS + 2J3S + 2J4S − 2µS (5.12a)

hMF
b =− 2J1bS + 2J2bS + 2J3S + 2J4S − 2µS (5.12b)

where the minus sign in front of the first term reflects the fact that J1a and

J1b couple parallel spins, whilst the other exchanges couple spins that are anti-

parallel. The matrix Aγ̃γ
′
(q) consists of a contribution from the molecular mean

field and from the Fourier transform of the exchange interaction, A = AMF +
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Aexch. Its matrix elements can be calculated using Eqn. 5.6b

AMF

A
=



−hMF
a 0 0 0 0 0 0 0

0 −hMF
a 0 0 0 0 0 0

0 0 hMF
b 0 0 0 0 0

0 0 0 hMF
b 0 0 0 0

0 0 0 0 hMF
b 0 0 0

0 0 0 0 0 hMF
b 0 0

0 0 0 0 0 0 −hMF
a 0

0 0 0 0 0 0 0 −hMF
a


(5.13a)

AMF

B
=



hMF
a 0 0 0 0 0 0 0

0 −hMF
a 0 0 0 0 0 0

0 0 hMF
b 0 0 0 0 0

0 0 0 −hMF
b 0 0 0 0

0 0 0 0 hMF
b 0 0 0

0 0 0 0 0 −hMF
b 0 0

0 0 0 0 0 0 hMF
a 0

0 0 0 0 0 0 0 −hMF
a


. (5.13b)

Finally, the contribution from the exchange term can be calculated by taking the

product of 2B and the Fourier transform of the exchange interaction, which is

the same for both phases,

Aexch
A/B

= 2B
A/B
· J (q). (5.14)

By diagonalising the matrix A one can obtain an expression for the spin wave

dispersion and the Green’s function can be calculated using Eqn. 5.9.

A small imaginary offset is added to the energy, ω → ω + iε to give the intensity

peak a finite width. The resultant lineshape takes the form of a Lorentzian of

width 2Γ = 2ε, which in the low temperature analysis will be set to a value

smaller than the instrument resolution.

The six shortest bonds have bond lengths of between 3.01-3.66 Å, therefore it

is not clear by distance alone which should be the strongest. The shortest two

bonds J1a and J1b are of the same length, both linking parallel spins along b,

but are crystallographically inequivalent, with J1a and J1b forming the legs of
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a) b) c)

Figure 5.7 (a) Visualisation of the splitting of the 2S + 1 single-ion energy
levels for an S = 5/2, L = 0 ion, due to a molecular mean field. The
separation between energy levels is given by ω01 = ω1 − ω0. (b), (c)
The effect of the operation of Ŝ− on sites in the ↑ (b) and ↓ (c) state
[16].

the blue and cyan zig-zag chains respectively. The presence of antiphase domain

boundaries, and the near 90◦ Fe-O-Fe exchange path along a shared octahedral

edge, indicates that the next two shortest bonds J2a and J2b are likely to be small

[48]. The measurable dispersion along H and L (Fig. 5.5) is suggestive of a

non-negligible J3 and J4. Thus in order to write down the minimal physically-

motivated model, the six shortest bonds can be included (Fig. 5.1 (a)),

J =



J1a J2a 0 J3 0 J4 0 0

J2a J1a J3 0 J4 0 0 0

0 J3 J1b J2b 0 0 0 J4

J3 0 J2b J1b 0 0 J4 0

0 J4 0 0 J1b J2b 0 J3

J4 0 0 0 J2b J1b J3 0

0 0 0 J4 0 J3 J1a J2a

0 0 J4 0 J3 0 J2a J1a


. (5.15)

The MERLIN data at T = 5 K were fitted using Horace [252] with values of µ,

J2a and J2b fixed. The Tobyfit package was used to account for the resolution

function on MERLIN and contributions from the guide, chopper and moderator

were considered. In accordance with the conclusion that the underlying magnetic

order is B phase, a B phase only model was used. These parameters were then

refined by fitting the LET data using the values obtained from the MERLIN fit.

This process was iterated until good agreement was achieved. The effect of taking

J2a 6= J2b is to open a gap at the crossing point along L (Fig. 5.8). Such a gap

is not seen in the data so the assignment is made J2a = J2b = J2. The refined
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values of the exchange constants are listed in Table 5.2. The dominant exchange

Table 5.2 Fitted exchange constants, Ji, and anisotropy parameter, µ, for the
bonds labelled in Fig. 5.1 (a).

Ji Distance (Å) Value (meV)
J1a 3.018 0.03(1)
J1b 3.018 0.38(1)
J2a 3.077 0.047(2)
J2b 3.096 0.047(2)
J3 3.570 3.4(3)
J4 3.659 3.2(3)
µ - -0.035(1)

couplings were determined to be J3 and J4, with J2 confirmed to be small. The

frustrated nature of the bonds J1a and J1b gives rise to the arch-like dispersion at

(-2,0,L) (Fig. 5.6), which is well reproduced in this model (Fig. 5.9) . Crucially,

J2 was determined to be small, J2 < 0.05 meV, meaning that the creation of an

antiphase boundary carries a small energy cost and thermal fluctuations at high

temperature can overcome this barrier, thus explaining the significant fraction of

dynamical diffuse scattering [15].

The effect of nonzero J2 warrants some consideration. In one of the two magnetic

structures, this bond is expected to be frustrated and hence two copies of the

dispersion curve along c∗ would be expected (with a different gap and bandwidth)

if both phases were to contribute to the signal along c∗. No such duplication of

modes is observed (Fig. 5.8 (a)). Furthermore, it can be ruled out that J2 < 0

since the mode whose minimum lies at Q = (2, 0, 0) carries the most spectral

weight contrary to the calculation (Fig. 5.8 (c)). This is in agreement with the

conclusion based on the neutron diffraction data. Finally, the dispersion along all

other directions, along with the measured anisotropy gap put strong constraints

on the values of the exchange parameters. With positive J2, the magnitude of

anisotropy required to stabilise spin waves in the A phase is inconsistent with

the observed gap from RITA II (Fig. 5.3), LET (Fig. 5.5 (a, b)) and MERLIN

(Fig. 5.5 (c − f)). It is thus concluded that the low temperature A phase is

metastable in this single crystal sample. This phase obtains a long lifetime due to

the anisotropy, which prevents the relaxation of the antiphase domain boundary

disordered high temperature state into the B phase ground state structure. The

extracted exchange constants do not give rise to stable A phase spin waves, as

shown in Fig. 5.8 (d). Note that in the powder samples, the story need not

be identical, with an expected increased value of µ due to the inevitable finite
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a) LET data b) B phase

c) A phase d) A+B phase

Figure 5.8 Comparison of calculated dispersion along c∗ against (a) the data
from LET at T = 5 K for a model consisting of (b) B phase order
with antiferromagnetic J2, (c) A phase order and (d) A and B
phase order in a 2:1 ratio. It is clear that for J2 < 0 the mode
that is maximal at Q = (2, 0, 0) lights up, in contrast to the data.
Furthermore, for J2 > 0 the A phase leads to imaginary eigenvalues
(red dispersion) using the fitted values unless µ is large.

strain induced by the grinding of the powders, it may in fact be possible to

stabilise spin waves in the A phase, despite the lower energy of the B phase

configuration. Indeed, the smaller magnitude of the anisotropy gap measured in

the low temperature phase [24] as compared to single crystals (Fig. 5.3) could

be due to the suppression of the gap originating from the frustrated J2 bond.

Attention is now turned to the T = 175 K data.
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Figure 5.9 (a) Constant Q plot of a path through reciprocal space at T =
5 K, showing strongly dispersing excitations in the (H,K) plane.
(b) Simulation of the data using the resolution convoluted Green’s
function model and the fitted parameters. (c) T = 175 K data. (d)
Simulation at T = 175 K. The intensities for both datasets have been
corrected for the Bose factor.

It was explained earlier in Section 5.2.1 how the magnetic A phase arises, not as a

distinct phase in the bulk but locally in antiphase boundaries between different B

phase domains. This explanation, of the low temperature A phase not existing in

bulk, means that its formation is not driven by, for example, a change in sign of J2

arising from a change in crystal structure. It should be noted that, although the c

lattice constant does show some temperature dependence [24], this is on the order

of 10−2Å and hence is unlikely to affect either the sign or magnitude of J2. In

the absence of temperature dependence of the exchange parameters, the primary

effects of the increased temperature should be the damping and renormalisation

of the spectrum due to higher order terms in the Dyson series. The damping

can be accounted for phenomenologically by increasing the value of ε, thereby

increasing the Lorentzian linewidth [267]. The renormalisation takes the form of

a reduced spin moment and can be treated straightforwardly by renormalising

the exchange parameters and the anisotropy parameter, {Jij, µ} → {γJij, γµ},
where γ is some constant between zero and unity. This follows from the fact

that S is a dimensionless parameter and so only appears in the dispersion as a

multiple of an exchange or anisotropy parameter, allowing the renormalisation

factor to be absorbed into the exchange parameters. As discussed in Section

5.2.2, the anisotropy gap shows an anomalous temperature dependence and so a

further suppression of µ beyond that expected by spin moment renormalisation

alone is expected. Fixing the fitted low temperature exchange parameters and
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setting ε = 2.5 meV, an overall renormalisation factor, γ = 0.930(4), was fitted

showing excellent agreement with the data (Fig. 5.9). At high temperature, the

Q = (1, 0, 1) neutron diffraction peak is not resolution limited and the width

is expected to vary in both energy and momentum due to magnon-magnon and

magnon-soliton interactions [268]. The value of ε was selected according to the

approximate width of the peak at the zone boundary. Using the value of the

anisotropy gap at T = 175 K, the Hamiltonian was diagonalised with the fitted

renormalised exchange parameters and solved for the high temperature anisotropy

parameter µ175K = −0.0098(2) meV.

From the fitted exchange parameters the Curie-Weiss temperature can be

estimated

kBΘCW =
1

3
S(S + 1)

∑
n

Jn, (5.16)

where the sum is over nearest neighbours. Due to the inequivalence of J1a and

J1b, the average of their fitted values is taken. The expression above stems from a

mean field treatment of the single-ion, and hence a minus sign is attached to the

frustrated J1a and J1b bonds. Evaluating Eqn. 5.16, it is found that ΘCW ≈ 435

K. It should be noted that this is significantly larger than that found by Das et

al [240], and much larger than the magnetic ordering temperature of T ≈ 200

K. However, one should note that the loss of correlations along c, owing to the

small value of J2 renders CaFe2O4 quasi-two-dimensional at high temperatures.

The absence of spontaneous symmetry breaking for d ≤ 2 [50] thus makes long-

range order marginal. Long-range order is stabilised by the presence of single-ion

anisotropy, however the vanishing of the gap at T = 200 K, due to the cooperative

effect of spin moment renormalisation and subtle magnetoelastic changes to the

local crystalline environment, precludes any long range magnetic order above

this temperature. The large Curie-Weiss temperature also explains the relatively

modest renormalisation of the bandwidth, with an observed moment reduction of

∼ 10% at T = 175 K, despite the proximity to the magnetic ordering temperature.

5.4 Conclusion

In this chapter it has been shown that the magnetic phase coexistence in CaFe2O4

can be understood as originating from a parent B phase magnetic order with

local A phase order arising due to the freezing of antiphase boundaries which

become static below T ≈ 100 K. This is consistent with the lack of temperature
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dependence of the acoustic phonon linewidth, which is sensitive to instabilities

in the crystal structure which would lead to changes in the magnetic structure.

Neutron scattering data have been presented showing the temperature dependent

opening of the anisotropy gap, which stabilises the low temperature A phase order.

It was then shown that the magnon excitations are qualitatively consistent at high

and low temperature, albeit broadened at high temperature by the dynamical

antiphase boundaries. Using a Green’s function formalism, it was shown that

the spectrum can be modelled with the same exchange constants in both phases,

save for a renormalisation factor at high temperature, but with two different

anisotropy parameters owing to the anomalous temperature dependence of µ.

The extracted exchange constants are consistent with the picture of antiphase

boundary freezing, with a small value of J2. By analysis of the spectrum, it was

shown that stable spin waves cannot exist in the A phase and that this phase

is metastable, frozen-in at low temperatures due to the growth of the single-

ion anisotropy. The anisotropy acts to lock the antiphase boundaries in place,

preventing relaxation of the magnetic structure back to the ground state B phase

order.
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Chapter 6

Anisotropy induced domain walls in

the 2-d ferromagnet Fe3GeTe2

6.1 Introduction

Magnetism in two dimensions is rare owing to the restrictions of the Mermin-

Wagner theorem [50] which precludes the spontaneous breaking of continuous

symmetry in d < 3. Stable magnetism in low-dimensional materials at finite

temperature is therefore usually contingent on magnetic interactions which

explicitly break spin-rotational symmetry, or a weak inter-layer coupling. An

instructive example is the case of CaFe2O4, discussed in Chapters 3 and 5, where

the coupling along c is very weak. At temperatures exceeding the characteristic

temperature of the c-axis coupling, where the correlations are essentially quasi-

two-dimensional, magnetism is stabilised by the magnetic anisotropy. At

temperatures greater than the energy scale of the magnetic anisotropy, the gap

in the magnon spectrum is observed to close and magnetism is lost [5].

In the van der Waals magnet CrI3, magnetism is stabilised by a second-nearest

neighbour DM interaction which breaks spin-rotational symmetry and favours

alignment of the spins out of the plane [269]. These interactions find their origin

in the single-ion physics of the Cr3+ ions, specifically the spin-orbit interaction, as

detailed in Chapter 1. Another trihalide compound will be discussed in Chapter

7 which owes its magnetic order to a single-ion anisotropy [4].

The understanding of magnetism in two dimensions is of great interest owing
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to the significant advances in heterostructure fabrication which promise to

lead to a growing field yielding novel quantum devices that exploit magnetic

interactions [270]. In this chapter, the nature of two-dimensional magnetic order

in the itinerant ferromagnet Fe3GeTe2 is explored. Using neutron scattering

the low energy spin wave excitations in the (H,H,L) plane are mapped out,

demonstrating a significant broadening away from the magnetic zone centre. The

nature of the bulk magnetism is then compared with the surface by modelling the

magnetic domain walls classically. By comparing the expected domain wall profile

with that extracted from the STM measurements of C. Trainer, O. Armitage, I.

Benedičič and P. Wahl, the bulk-surface correspondence is examined showing

little difference in exchange and anisotropy strength.

Fe3GeTe2 is a layered van der Waals magnet, comprising layers of two-dimensional

sheets of Fe3Ge, weakly bonded by van der Waals coupling to the intervening Te

layers. The crystal structure is best understood as a hexagonal Fe3+ lattice

but with one of the two sublattices duplicated along the c-axis (Fig. 6.1).

The compound can be synthesised in a number of different ways, including flux

growth [271, 272], molecular beam epitaxy [273], solid state solution [274] and

chemical vapour transport [275, 276]. The crystals have a hexagonal morphology

and differ in size depending on the growth method with the flux-grown samples

typically bigger than those grown by chemical vapour transport [272], for example.

The difference between flux-grown samples and those grown via vapour transport

are not limited to the size, but also the composition, with an off-stoichiometry

(Fe3−yGeTe2) that varies between samples. For flux-grown samples, a large Fe

deficiency is typical with y ≈ 0.3 [271, 272, 277]. In samples grown by vapour

transport, the samples can in fact be almost stoichiometric [272, 275]. The known

properties of Fe3GeTe2 are now discussed, with particular reference paid to the

influence of synthesis technique and Fe concentration.

Magnetisation measurements show that Fe3GeTe2 orders ferromagnetically below

room temperature, in the range T = 150-230 K. The ordering temperature varies

between different samples, with flux-grown samples typically ordering at a lower

temperature [271, 277] and those grown by molecular beam epitaxy [273], solid

state solution [274] and chemical vapour transport [275, 276] ordering at higher

temperature. The stoichiometric sample was found to order at T = 220 K [275].

Samples with increased Fe concentration, Fe3.10GeTe2, have a yet higher ordering

temperature of T = 232 K [271]. The ferromagnetic transition appears to be

somewhat sharper in the samples that order at a higher temperature [17, 275] than
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those which order at a lower temperature [271, 272]. Specific heat measurements

(a) (b)

(d)(c)

B

A

Bu

Bd

A

Fe
Te
Ge

Figure 6.1 (a) Schematic of the crystal structure of a single layer of Fe3GeTe2

as viewed from above, with only the Fe3+ ions plotted. Fe-Fe bonds
are indicated in blue and show a hexagonal structure when viewed
from above. Labelled are the two sublattices conventionally defined
for the hexagonal lattice. (b) The crystal structure as viewed from
the a-axis. A doubling of the B sublattice along c is seen and each of
these sites are given a subscript Bu/d. (c) A perspective view of the
Fe bonds, demonstrating the quasi-hexagonal structure. (d) Crystal
structure of Fe3GeTe2 with all atoms in the unit cell plotted. The
structure takes the form of Fe3Ge planes with Te between the layers.

have been performed on both flux-grown [271] and chemical vapour transport

grown samples [275]. In the vapour transport grown samples [275], a clear

feature is observed at the ferromagnetic transition temperature. In contrast,

measurements on flux-grown samples [271] show a much smaller anomaly at

the ferromagnetic transition temperature, suggesting a broader transition to
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ferromagnetic order, in agreement with magnetisation measurements. The

fitted Sommerfeld coefficient is broadly consistent across samples grown by both

techniques [271, 275], γ ≈ 130mJ/mol/K2, and is significantly larger than that

observed in Ni3−xGeTe2, γ ≈ 10mJ/mol/K2 [271], potentially indicating a large

contribution from spin fluctuations.

Neutron diffraction measurements determined the magnetic structure of Fe3GeTe2

to be ferromagnetic, with spins oriented along c and a ferromagnetic inter-layer

coupling [271]. In the study by May et al [271] no difference in the magnetic

structure was found in samples of differing iron concentrations, save for an

decreased intensity of the magnetic Bragg peaks in the iron deficient samples [271],

consistent with a reduced magnetic moment on the Fe sites.

A key difference between iron rich and iron deficient sampled appears to be the

magnetic moment, in that both magnetisation measurements [271, 272, 274, 275]

and neutron diffraction [271, 272] indicate a decreased magnetic moment in the

iron deficient samples. A further complication is suggested in the iron rich samples

where magnetic refinements [271] and neutron scattering data [277] indicate the

possibility of inequivalent Fe sites and a mixed valance structure [274, 276].

Inelastic neutron scattering experiments have been performed on flux-grown

samples [272, 277] yet none have been carried out on those grown by vapour

transport. This is likely due to the typical relative size of flux and vapour

transport grown samples, with those grown by flux significantly larger in size

than the vapour-grown crystals [272]. The excitations are shown to be broad

in nature, reflecting the itinerant character of the magnetism in Fe3GeTe2. A

parabolic dispersion is observed out of the magnetic zone centre, consistent with

ferromagnetic interactions. A gap in the neutron scattering spectrum is seen,

consistent with single-ion anisotropy. The magnitude of the gap was initially

reported to be ∆ ≈ 3.7 meV [277], but a later study on a compound of similar

stoichiometry suggested that the excitations were almost gapless (∆ ∼ 0.5

meV) [272]. The apparent inconsistency was suggested to be the result of using a

large integration range along c∗, given a finite out-of-plane dispersion [272]. There

is some disagreement regarding the strength of correlations between layers, with

Ref. [277] concluding that the excitations are essentially two-dimensional and

Ref. [272] suggest a sizable inter-layer coupling. Away from the high symmetry

point, extending above 100 meV, a columnar continuum of scattering is observed,

indicative of particle-hole scattering between spin-up and spin-down bands [272]

– a consequence of the the itinerant nature of the magnetism. The key influence
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of itinerance on the coherent spin-wave excitations is also seen in the weakening

of Kondo screening at high temperatures [272]. This surprising effect leads to

a sharpening of excitations as the temperature is increased and the electrons

that screen local moments become less tightly bound. Evidence of Kondo lattice

behaviour has also been observed in angle-resolved photoemission spectroscopy

(ARPES) measurements, where the electron screening at low temperature is seen

by the increase in the effective electron mass [278].

The properties of the sample used in this study are now summarised. Neutron

diffraction measurements were carried out by E. Chan at the Institut Laue-

Langevin on the hot neutron four-circle diffractometer D9 [279]. The nuclear

and magnetic structure was refined with nuclear space group P63/mmc. An iron

stoichiometry of 3 − y = 2.86(3) was found from the 60 K data set. The best

refinement of the magnetic structure was achieved with the P63/mm
′c′ magnetic

space group, indicating a ferromagnetic alignment along the c-axis. In contrast

to Refs. [274, 276, 277] the magnetic moments for both Fe sites were found

to be equal with a magnetic moment µ = 1.6(2)µB at T = 30 K. By tracking

the intensity of the Bragg peak, the ordering temperature was extracted and

determined to be T = 215(2) K, much larger than in the flux-grown samples

studied in previous neutron scattering experiments [272, 277].

6.2 Experimental details

Neutron scattering measurements were performed on the MACS cold triple

axis spectrometer (NIST, Gaithersburg) [280]. Single crystals of Fe3GeTe2

with varying size were edge-aligned on aluminium plates, using the hexagonal

morphology as a guide1. A coating of hydrogen-free Fomblin oil was applied

to the crystals to attach them to the mount and prevent degradation in air.

The sample mount was positioned such that the (H,H,L) reflections lay in

the horizontal scattering plane. The sample was then cooled to T = 5 K in

a 100 mm bore Orange Cryostat. Ef was fixed to 3.7 meV by 20 PG(002)

double bounce analyzers and Ei was varied between 4.3 meV and 13.7 meV by

a vertically focused PG(002) monochromator, giving access to energy transfers

between 0.5 meV and 10 meV. Cooled BeO filters were placed on the scattered

side of the sample to remove contamination from higher order scattering. This

1The vectors along the hexagonal bonds in real space correspond to the a∗ and b∗ axes in
reciprocal space.
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experimental configuration allowed for an energy resolution of approximately 0.17

meV (FWHM) at the elastic line.
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Figure 6.2 Constant energy cut with E = 2.0 meV. The background has been
subtracted as described in the text. Scattering is seen at the
(−2,−2,±2) positions, with spurious signal visible proximate to this
positions.

6.3 Magnetic excitations

Background subtraction was performed by assuming the background intensity

to be dependent only on the scattering angle (2θ) – conventionally referred

to as A4 on TAS instruments. A region of scattering, far from any signal,

was taken and the intensity was radially averaged in steps of constant |Q| to

produce a background for each Ef . This differs from the standard approach on

TAS instruments where an empty can measurement is typically used but was

necessitated due to the complex nature of the scattering caused by the Fomblin
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and sample mount geometry. Such an approach has been used with great success

for other similar coaligned crystal mounts [18, 19]. Fig. 6.2 shows the scattering

at a fixed energy transfer ∆E = 2.0 meV. Scattering can be seen emanating from

the (−2,−2,±2) positions, with evidence of a spurious signal on the −H side.

Given the proximity to the Bragg peak, it is likely that this is a Bragg tail [56]

resulting from the resolution function overlapping with the Bragg peak.

A two-dimensional map of the scattering intensity for (H,H,−2) was constructed

by integrating over c∗ in a 0.3r.l.u. window about L = −2 (Fig. 6.3). The

scattering in the [H,H] direction is shown to be ferromagnetic in nature,

dispersing quadratically from (0, 0,−2). The excitations are observed to be broad

in nature, as expected for a magnet whose spins are not entirely localised and show

a degree of itinerance. This itinerant nature is also manifested in a reduced spin

moment, resolved by neutron diffraction to be µ = 1.6(2)µB [17], consistent with

an effective spin magnitude of S = 0.8. There is a small spectral gap ≈ 1 meV,
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Figure 6.3 Dispersion for (HH − 2) showing broad excitations emanating from
the (0, 0,−2) Bragg point. The data indicate an anisotropy gap ≤ 1
meV.
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indicative of a single-ion anisotropy. It should be noted that the anisotropy gap

is slightly larger that measured in Ref. [272]. It should once again be noted that

the anisotropy gap reported in Ref. [277] is even larger ∆ = 3.7 meV, though this

may be an artifact from the integration range chosen, as discussed earlier. Fig.
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Figure 6.4 Dispersion along (00L), showing broad magnetic excitations
emanating from (00− 2).

6.4 shows the scattering for (0, 0, L), which appears to be very broad in nature. It

should also be noted that the slope of the dispersion is much shallower than in the

[H,H] direction. This is more clearly displayed in Fig. 6.5 in which (H,H,−2)

and (0, 0, L) constant-q cuts are plotted on axes with scales adjusted for the

reciprocal space periodicity. The shallower nature of the excitations for (0, 0, L)

indicates a much-reduced bandwidth compared with the scattering in the (H,H)

plane. The excitations are also observed to be significantly broader (Fig. 6.5).

This indicates the nature of magnetism in Fe3GeTe2 to be predominantly two-

dimensional in nature, yet with a finite dispersion along L. The data presented

here differ from the findings of Ref. [272] where the spin wave stiffness both

in and out of the plane were found to be comparable. Such a dependence on
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Figure 6.5 Dispersion along (a) (H,H,−2) and (b) (0, 0, L). The x-axis range
of (a) is half that of (b) to reflect the fact that each unit cell contains
two Fe3Ge sheets (Fig. 6.1 (d)).

the iron concentration is to be expected, given the large distance between Fe3Ge

layers and intervening Te layers, which suggests that any interaction is likely to

be be indirect, facilitated by the itinerant electrons. This may in turn explain

why the excitations out of the plane are so broad in nature. In passing it is noted

that Density Functional Theory calculations support this suggestion and show

that the bands of minority character are three-dimensional in nature, whilst the

majority character bands are two-dimensional. The minority spin bands carry a

significant weight from the Te ions, particularly above the Fermi level [17].

Motivated by the predominantly two-dimensional nature of the excitations in

Fe3GeTe2 a two-dimensional spin wave model is now introduced. Since STM

measurements are only sensitive to the surface, the data will be modelled using a

simple hexagonal lattice model. The validity of the mapping of Fe3GeTe2 onto a

hexagonal model depends on the fact that the crystal structure has the P63/mmc

space group, the inter-layer coupling is weaker than the intra-layer coupling and

the intinerant nature of the excitations, which dictates that only the small-q limit

is modelled. In practice, any qualitative difference in the dispersion between a

hexagonal model and the true lattice model (including the duplication along c)
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is confined to the zone boundary, far out of the kinematic range of the cold

triple-axis spectrometer. A full exposition of the validity of the mapping onto the

hexagonal spin model is given in Appendix E.

The Hamiltonian for a hexagonal ferromagnet with a nearest-neighbour ferro-

magnetic Heisenberg coupling and easy-axis anisotropy is given by

H = J

j∈{0,1,2}∑
r

SA(r) · SB(r + aj) +K[(ŜzA(r))2 + (ŜzB(r))2]. (6.1)

Here, J is the nearest-neighbour interaction, K > 0 is an easy-axis magnetic

anisotropy, SA,B is the spin operator acting on sublattice A or B and the

vectors a0 = (0, 0), a1 = (0, 1) and a2 = (1, 1) span between the unit cells

containing nearest-neighbour spins (in the P63/mmc space group). Further

nearest neighbours are neglected since their effect in the limit of small |q| is

a simple renormalisation of the spin-wave velocity and anisotropy gap. The

eigenvalues obtained from the model are

E±q = vS ± |γq| (6.2)

with vS = −(3JS + 2KS) and γq = JS
∑

j e
iq·aj where S is the spin [281, 282]

(a full derivation is given in Appendix E). With a wavevector of q = (H,H),

where H is here used to parametrise the reciprocal lattice vector, the dispersion

is quadratic for small H,

E ≈ vS ± 3JS ± 4π2JSH2. (6.3)

For the purpose of extracting the exchange parameters and anisotropy, Gaussian

peaks have been fitted to a series of constant energy cuts in the (H,H,−2) plane

through the MACS data to obtain the magnon dispersion (Fig. 6.6 (a)). The

exchange coupling can be determined from the prefactor, 4π2JS, of the quadratic

term. Taking the reduced value of S = 0.8(1), the fit yields J ≈ 43(10) meV

and |K| ≈ 0.6(1) meV. The magnetic anisotropy is non-negligible, consistent

with previous reports [276, 283]. This would indicate a small difference between

vapour-grown and flux-grown samples, since the neutron experiments in Ref.

[272] performed on the latter were unable to resolve a spin gap and surmised

that the anisotropy gap must be ∆ ≈ 0.5 meV [272]. The difference in implied

single-ion anisotropy strength between the samples in this study with y = 0.14
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and the more iron deficient samples studied in Ref. [272] (with y = 0.28) cannot

be accounted for solely by the difference in spin magnitude since the spin moment

in the flux-grown samples is reduced by approximately 10-20% [271] whereas the

observed gaps differ by around a factor of two [272].

6.4 Domain walls
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Figure 6.6 (a) Neutron scattering measurements of the spin wave dispersion
of Fe3GeTe2 around q = (H,H,−2). The green line represents a
parabolic fit to the data. The fit results in J ≈ 43(10) meV and K ≈
0.6(1) meV. (b) A ferromagnetic domain wall imaged using spin-
polarised STM (Vs = 100 mV, Is = 125 pA). The domain wall runs
diagonally through the image. (c) The same region of the sample as
in (b) imaged with a spin-polarised STM tip with the opposite spin
polarisation from that used in (b) (Vs = 100 mV, I = 125 pA). (d)
A line profile z(x) taken through the difference of images (b) and (c)
perpendicular to the domain wall. The red line shows the calculated
domain wall profile (Appendix F) from the bulk exchange parameter.
(e) The height difference ∆z recorded between oppositely polarised
areas as a function of applied bias voltage. (f) dI/dV spectra (blue
curve) recorded on either side of the domain wall shown in (b) and
(c) (Vs = 400 mV, I = 250 pA, Vmod = 3 mV). The spectroscopy
set-point was chosen at a bias voltage where the domain wall was not
visible. The resulting spin polarisation determined from the dI/dV
spectra is shown by the red curve. Figure reproduced from Ref. [17].

Attention is now turned to the domain wall dynamics of Fe3GeTe2. The formation

123



of ferromagnetic domain walls is driven by the minimisation of the magnetic field

energy. The termination of the magnetisation at a surface gives rise to a magnetic

field, which can be minimised by the formation of domains which minimise

the divergence of the magnetisation such that the resulting magnetic energy is

similarly minimised [284]. The width of the induced domain walls is a function

of the competition between the exchange stiffness, which promotes coalignment

(and therefore a gradual rotation of spins such that Si ·Sj is maximised) and the

anisotropy energy, which would favour a sharp domain wall with spins aligned

closely to the easy-axis.

Given that the domain wall width is dictated by the exchange and anisotropy

energy scales, it is therefore possible to infer the relative strengths of these two

contributions by directly measuring the domain wall width on the surface of

the crystal. However, it should be noted that one would expect the extracted

exchange and anisotropy energies to be different on the surface in comparison to

the bulk. Näıvely, one might expect the exchange stiffness to be different at the

surface than in the bulk, as the indirect exchange paths are reduced owing to the

termination of the crystal structure at the surface. Additionally, the anisotropy

is likely to be stronger owing to the extreme asymmetry present at the surface.

In this section, the parameters extracted from neutron scattering (reflective of

the bulk exchange and anisotropy values) are compared to those implied by

the measured surface domain wall widths extracted from STM measurements.

By comparing the expected domain wall width based on the bulk exchange

parameters with the STM measurement, one can compare the relative strengths

of the anisotropy and exchange stiffness both in the bulk and at the surface.

STM measurements were performed by C. Trainer, O. Armitage and I. Benedičič

at the University of St Andrews. The measurements were taken using instru-

mentation constructed at the University of St Andrews [285, 286] operating at

temperatures down to 1.5 K. Further details can be found in Ref. [17]. STM

measurements probe the local electronic density of states via dI
dV

, the derivative of

the tunnelling intensity with respect to the tip voltage. Spin-polarised STM was

used to directly image the domain walls in Fe3GeTe2. By employing a feedback

system to hold the current (and hence tunnelling intensity) and voltage constant

by varying the tip height [287], the spin polarisation of the sample can be probed.

The height of the tip relative to the equilibrium position is plotted in Fig. 6.6

(b − c) for both tip polarisations. As expected, the two figures appear inverted

with respect to one another. A domain wall is clearly visible running diagonally
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across the image. Fig. 6.6 (d) shows a cut through the domain wall. Plotted is the

difference between the two polarisations such that the zero polarisation position is

normalised to ∆z = 0. It was further found that the domain wall height exhibited

a strong dependence on the bias voltage (Fig. 6.6). By measuring the electronic

density of states either side of the domain wall, the polarisation of the sample can

be calculated, revealing a sharp peak at the Fermi level. A detailed discussion of

the insights gained into the electronic structure is beyond the scope of this Thesis

but can be found in Ref. [17], along with additional measurements.

Having presented the STM measurements, a model of magnetic domain walls is

now introduced. From the nearest-neighbour Heisenberg model on the hexagonal

lattice (Eqn. 6.1), the continuum limit is taken, treating the spins as classical

vectors on the surface of a sphere of unit length S = Sn(r). One finds the

exchange energy and the anisotropy energy

Hexch =
ρS
2

∫
d2r
{

(∂xn)2 + (∂yn)2} (6.4a)

Hanis = κ

∫
d2r
{

(nz(r))2} (6.4b)

with the spin stiffness ρS = 3JS2d2n.n
2Asite

and anisotropy constant κ = KS2

Asite
. dn.n refers

to the distance between nearest neighbours on the hexagonal lattice and the area

occupied by each site on the lattice (i.e. the area of the primitive unit cell) is

Asite. By subtracting the energy of the fully polarised state, the energy of the

domain wall can be calculated

EDW =

∫
d2r
{ρS

2
(∂yθ)

2 + κ
(
1− cos2θ

)}
. (6.5)

Note the similarity with the expression for the parallel component of the

confinement energy in Chapter 3 (Eqn. 3.10). The saddle-point solutions may

be found from Eqn. 6.5, yielding an expression for the z component of the unit

vector field n. The result is merely quoted here, but a full derivation is presented

in Appendix F,

nz(y) = tanh

[√
2κ

ρS
(y − y0)

]
(6.6)

where y is the direction perpendicular to the domain wall and y0 is the position

of the centre of the wall. The width of the domain wall is thus controlled by the

ratio κ/ρS. As one might guess from the similarity between Eqns. 6.5 and 3.10,

θ(y) has the form of a soliton solution (Appendix F).
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Since the lineshape of the domain wall is a tanh function, the domain wall

width is ill-defined. At large distances, the height of the function approaches ±1

asymptotically and hence some arbitrary cut-off must be chosen for the definition

of a domain wall width. For ease of comparison with previous studies [287, 288],

the domain wall width is defined according to

nz(y) = tanh
(πy
δ

)
(6.7a)

δ = π

√
ρS
2κ
. (6.7b)

It should be noted that this definition gives the same width as would be obtained

if the domain wall were to be modelled using a cosine function, under the

assumption that the angle of rotation of the spins varied continuously across

the domain wall [289]. Such an assumption fails on the grounds that the spins

rotate more rapidly close to the centre of the domain wall, where the anisotropy

energy is large. Indeed, the shape of the domain wall (Fig. 6.6 (d)) is clearly

better described by a tanh function than a cosine. Choosing to define the domain

wall width in this manner amounts to placing the cutoff at ycutoff = ±0.92.

Whilst the choice of a cutoff may seem somewhat arbitrary, the precise cutoff

is unimportant so long as the definition used is consistent. The STM-measured

domain wall width is now compared with the expected domain wall width based

on Eq. 6.6 from the bulk values of the exchange coupling and anisotropy constant,

extracted from neutron scattering. The calculated and measured domain wall

profile is plotted in Fig. 6.6 (d). The fitted domain wall width δfit = 2.6 (±0.5)nm

is slightly smaller than the expected domain wall width δbulk = 6.0 (±1.2)nm, yet

is of the same order of magnitude. This in itself is somewhat surprising given the

different physics expected at the surface, where a significantly smaller domain wall

width might be expected do to an increased magnetocrystalline anisotropy [290].

However, it should be noted here that the domain wall analysis presented in this

chapter is sensitive only to the ratio K/J .

6.5 Conclusion

In this chapter, neutron spectroscopic measurements of the two-dimensional

itinerant ferromagnet, Fe3GeTe2 have been presented. The excitations have been

shown to be predominantly two-dimensional in nature with a large exchange
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constant J ≈ 43(10) meV and a small single-ion anisotropy |K| ≈ 0.6(1)meV.

The excitations are shown to be broad in nature, with a parabolic dispersion out of

the zone centre as is consistent with an itinerant ferromagnet. The neutron data

were modelled with a localised hexagonal nearest-neighbour Heisenberg model in

the limit of small wavevector, where the excitations are expected to be local in

nature [59].

The correspondence between the physics of the bulk and of the surface was

then explored by contrasting neutron scattering measurements with STM data.

The extracted domain wall profile from spin-polarised STM measurements was

compared with the expected domain wall profile, based on a classical field

theoretical model of a hexagonal Heisenberg ferromagnet. The measured domain

wall width at the surface (as measured by STM) was shown to be slightly reduced

from the expected domain wall width, yet of the same order of magnitude. This

is despite the expected increase in anisotropy at the surface due to reduced

symmetry [290]. It is also not a priori evident that the surface exchange strength

is consistent with that of the bulk and a relaxation of the exchange coupling

may be justified [282, 291]. It was thus concluded that the ratio K/J is of

the same magnitude at the surface of Fe3GeTe2 as in the bulk, with a slight

reduction, consistent with an increased surface anisotropy or decreased edge

coupling. This is of particular importance in the study of topological edge

modes in Fe3GeTe2 [282, 291] where the relaxation of the magnetic exchange

coupling at edges and surfaces can change the nature of topological surface

excitations [282, 291]. Since the analysis presented here is sensitive only to the

ratio K/J , further measurements of the surface physics, for example by magnon

interference spectroscopy [292], would likely be required to unambiguously

determine the relative contributions of exchange and anisotropy.

The neutron results further demonstrate a difference between chemical vapour

transport grown and flux-grown samples, with a larger anisotropy gap measured

in these chemical vapour transport grown samples than in Ref. [272]. The nature

of the excitations in this Chapter also differ from previous studies on flux-grown

samples, with a finite L dispersion measured, in contrast to Ref. [277], yet the

inter-layer coupling was found to be weaker and less coherent than in Ref. [272].

This is taken as evidence of the crucial role played by the iron concentration in

determining the magnetic properties of Fe3GeTe2, yet it hints that the nature of

magnetic interactions may not smoothly vary as a function of iron concentration,

although one cannot conclusively rule out other sample dependent characteristics
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such as defects. Further spectroscopic studies of chemical vapour transport grown

Fe3GeTe2 are needed to map out excitations to higher energy and fully elucidate

the role played by iron concentration on the properties of this material. It has

also been demonstrated that the combination of bulk spectroscopic probes such as

neutron scattering with surface measurements can offer insight into domain wall

physics and layer-dependent magnetism. It is expected that these multi-probe

studies will provide an important perspective as the family of van der Waals

magnets is expanded.

128



Chapter 7

Two-dimensional ferromagnetic

spin-orbital excitations in

honeycomb VI3

7.1 Introduction

Order in two dimensions is forbidden by the Mermin-Wagner theorem [50, 293–

295] in isotropic ferromagnets. Although Ising magnetic anisotropy has been

theoretically shown to stabilise long-range magnetic order in two dimensions

[296, 297], achieving a strong enough single-ion anisotropy to overcome thermal

fluctuations has been difficult to achieve in real materials. The discovery of

stable, spatially long-range ferromagnetism in two-dimensional materials [298–

300] such as CrI3,[269, 301–305] Cr2Ge2Te6,[306, 307] and Fe3GeTe2,[271, 275,

277, 278, 308] has opened up the possibility of designing materials useful to

spintronic applications [309, 310] and for exotic two-dimensional physics to be

explored such as topologically protected edge and surface modes [281, 282, 311].

In this chapter, two-dimensional ferromagnetism in a non-itinerant system is now

discussed, illustrating the effects of an orbital degree of freedom on the magnetic

Hamiltonian and it is shown that it can provide the necessary anisotropy to induce

magnetic order.

VI3 is unique amongst the two-dimensional van der Waals honeycomb ferromag-

nets as V3+ (S=1) has degeneracy in the lower energy t2g orbitals [312, 313],
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resulting in an entanglement of spin-orbital degrees of freedom that are coupled to

the local structural environment [314, 315]. The structure of VI3 (Fig. 7.1 (a, b))

is built upon V3+ ions forming a layered honeycomb arrangement with an R3

symmetry, stacked along c with an ABC arrangement. [312, 315] This stacking

results in a rhombohedral superstructure [316], though other symmetries have

been discussed. [317, 318] The c-axis stacking results in domains in large single

crystals as evidenced by the scans of the (1, 1, 0) structural Bragg peak (indexed

on an R3 unit cell in Fig. 7.1 (c)) showing a splitting. Given the interest in the

two-dimensional properties of V3+, an average R3 structure is considered here.

Below Ts ≈ 79 K, a structural transition away from the R3 is observed. [317]

Magnetisation and diffraction on VI3 report a ferromagnetic transition (Tc ≈ 50

K) [312, 314, 315, 317–320], in agreement with Density Functional Theory [321,

322]. Nuclear Magnetic Resonance (NMR) [314], which probes the local V3+

environment, has found the existence of two different ferromagnetic domains at

low temperatures with differing local crystalline electric fields surrounding the

V3+ sites. This has further been supported theoretically [323, 324] and also by

diffraction [315]. To understand the magnetic coupling and spin-orbital ground

state, neutron spectroscopy is now applied to probe the magnetic correlations at

low temperatures.

7.2 Experiment

Over 1000 ∼ 1 mg single crystals of VI3 were grown by C. Stock at the University

of Edinburgh, using chemical vapour transport [325] and edge-aligned using the

hexagonal morphology (Fig. 7.1 (d)). The crystals were coated in hydrogen-free

Fomblin oil on aluminium plates given their hydroscopic nature [326].

Using the MAPS time-flight spectrometer (ISIS, Didcot, UK) [20], the low

temperature magnetic fluctuations are first characterised in Fig. 7.2. Ei was set

at 50 meV, with the Fermi chopper spinning at 200 Hz, giving an elastic energy

resolution of 2.3 meV (FWHM). The data were combined with the Mantid/Horace

packages [252, 327]. Figures 7.2 (a − c) display constant energy cuts within the

a − b plane showing dispersive magnetic excitations. Figure 7.2 (d) shows a

momentum-energy slice displaying the dispersive magnetic excitations up to the

zone boundary at ∼ 20 meV.
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Figure 7.1 (a) Structure of VI3 in the a-b plane showing the honeycomb lattice
of V3+ ions (gray) with an octahedral coordination of iodine ions
(green). For this work, an R3 unit cell is taken. (b) VI3 structure
showing the stacking of two-dimensional sheets. (c) (1,1,0) Bragg
peak measured at SPINS, showing the existence of two domains
at T=90 K. (d) Aluminium sample mount showing co-aligned VI3

crystals covered in Fomblin grease and mounted to one of the
nineteen panels.

Low energy magnetic fluctuations were measured using the cold neutron spec-

trometer MACS (NIST, Gaithersburg, USA) [280]. The scattered neutron energy

Ef was fixed at 3.5 meV while the incident energy Ei was varied, providing an

elastic resolution of 0.25 meV (FWHM). Fig. 7.2 (e) displays the dispersion

along c illustrating little dispersion along this direction and affirming the two-

dimensional nature of the magnetic excitations and validating the consideration
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of a R3 unit cell. This is confirmed in Fig. 7.3 (a) which plots a constant

energy slice in the (H,H,L) plane illustrating a rod of scattering correlated in the

(H,H, 0) (in-plane) direction but extended along (0, 0, L). The decay of intensity

with increasing momentum transfer along (0, 0, L) follows the V3+ magnetic form

factor [328], implying the scattering is magnetic. It should be noted that there

is also a weak dispersion along L (Fig. 7.2 (e)) which also results in a decay of

intensity for a fixed energy transfer. The magnetic in-plane coupling is illustrated

in Figs. 7.3 (b) and (c) with cuts along (H,H) showing dispersive excitations

at energies of 4.5 meV and 8 meV. Fig. 7.3 (d) displays a (0, 0, L) integrated

momentum-energy slice that shows two magnetic excitations dispersing along

(H,H) with gaps of ∆ ∼ 4 and ∆ ∼ 7 meV.

Figure 7.3 displays two gapped excitations indicative of local anisotropy which

requires a finite energy to overcome. However, the intensity variation with

momentum transfer of the two modes is different. The lower mode has a strong

response near the zone centre, but the intensity decays quickly away from Q =

0 and is less dispersive. The upper mode is fully mapped out in Fig. 7.2 and

extends to higher energy and has a much more uniform intensity distribution

across the Brillouin zone.

The differing energy-momentum dependence of the two branches is suggestive

of excitations from differing ground states. Corroborating this is a comparison

to the excitations in RbFe2+Fe3+F6 [23] where the Fe2+ (S=2, L=2) and Fe3+

(S=5/2, L=0) display spatially long-range charge and orbital order. In this

case, two branches originating from the two different orbital iron ground states

result in a weakly dispersive mode with intensity concentrated near the zone

centre and another mode that disperses more strongly throughout the zone

with an even intensity distribution. Motivated by this comparison and previous

diffraction [315], NMR [314], and theoretical work [323] indicative of two orbital

domains, the magnetic excitations of VI3 are now investigated in the context of

the spin-orbital properties of V3+.

7.3 Single-ion physics

Given the near universality of the spatially-localised crystalline electric parame-

ters for transition metal ions, the single ion V3+ Hamiltonian is first analysed with

the goal of establishing the magnetic ground state of V3+ that needs to be coupled
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in VI3 and hence define the parameters to be extracted from experiment. With

the presence of an orbital degree of freedom and the low-temperature crystalline
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distortion and ferromagnetism, there are four single-ion Hamiltonian terms,

HSI = HCEF +HSO +Hdis +HMF . (7.1)

This includes the octahedral crystalline electric field (HCEF ), spin-orbit coupling

(HSO), the structural distortion away from a perfect octahedron (Hdis), and the

local molecular field (HMF ) imposed by ferromagnetic order. Each term in this

Hamiltonian is discussed (Fig. 7.4 (a)) and its effect on the single-ion magnetic

ground state.

7.3.1 HCEF -Octahedral field

In VI3, the d2 electrons forming a free ion 3F are surrounded by six I− ions

imposing a crystalline electric field on V3+. In terms of Stevens operators [34,

329], this lattice potential is written as HCEF = B4(O0
4 + 5O4

4) [330] with the 3F

orbital ground state being energetically lowered by 360B4 (Fig. 7.4 )a)), with an

expected B4 ∼ 3.8 meV [21, 22]. Refs. [323, 324] have alternatively discussed

the single-ion properties of VI3 using the strong crystal field approach [48, 331],

whereby the crystalline electric field splits the five-fold d orbital degeneracy into

a ground state triplet t2g, and excited doublet, eg. Either approach leads to a

ground state projected (L = αl) orbital triplet (l=1). Given that other inorganic

3d metal complexes are typically in a high-spin state, the intermediate crystalline

electric field basis is chosen here, with a projection factor α = −3
2

[332]. In

practice, owing to a finite mixing of excited states, the projection factor lies in

the range −3
2
≤ α ≤ −1 [333, 334]. For V3+ it is expected that the magnitude of

this projection factor is reduced from the maximal value [21]. The next excited

state is 480B4 ∼1.8 eV [206, 335–339] which fixes the magnetic ground state of

V3+ to be |l = 1, S = 1〉.

7.3.2 HSO-Spin-orbit coupling

The effect of spin-orbit coupling on the |l = 1, S = 1〉 ground state, with

H = αλl · S, is shown in Fig. 7.4 (a) and results in three levels with effective

angular momentum values of jeff = 0, 1, 2. These spin-orbit levels are spaced

according to the Landé interval rule. The spin-orbit coupling is reported to be
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λ=12.9 meV for a free V3+ ion [21], however significantly reduced spin-orbit

coupling constants are measured in systems with covalent bonding. For example,

in vanadium ammonium alum, λ = 7.9 meV is observed [21, 340]. Given that

V3+ with d2 electrons is less than half filled, it is expected that λ > 0, implying

λ̃ = αλ < 0. The ground state is jeff=2 separated from jeff=1 by 2αλ [21, 341].

7.3.3 Hdis-Structural distortion

VI3 is distorted from an ideal octahedron (Fig. 7.1 (b)). Given orbitally

driven transitions are primarily tetragonal [306, 342–344], this is parameterised

as a distortion along ẑ of the octahedra with Hdis = ΓI,II

(
l̂2z − 2

3

)
where Γ is

proportional to strain. This additional energy term results in two possible orbital

ground states, with Γ < 0 (flattened octahedra), an orbital ground state doublet

while Γ > 0 (elongation) is a ground state singlet. In the strong crystal field

basis [323] one ground state is a doublet with the lower energy dxy orbital and

one of the degenerate dxz, dyz orbitals occupied, and for an elongated octahedron,

a singlet ground state is found with a hole in the dxy orbital. Given results in

Refs. [207, 264, 345, 346], it is expected that |Γ| ∼ 10 meV. Structural studies

suggest that the octahedra are compressed in VI3 [317], indicated that Γ < 0, as

found in the vanadium spinels [333].

7.3.4 HMF -Molecular field

The final HSI term is the molecular field present in the T < Tc ∼ 50 K

ferromagnetic phase from neighbouring ordered spins inducing a Zeeman field on

a V3+ site. The HMF = hMF Ŝz term splits the degenerate spin-orbit levels and is

fixed by the spin exchange which induces a molecular field hMF =
∑

j Jij〈Ŝzj 〉 =

3JS (Fig. 7.1 (a)). Ferromagnetic exchange is expected based on 90◦ bonds

between nearest V3+ neighbours and validated by calculations [323]. Molecular

orbital calculations [313] predict J ∼ -7 meV, implying hMF ∼ -20 meV. This

is of a similar magnitude to the spin-orbit coupling and induces many single-ion

levels with a similar energy scale (Fig. 7.4).
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Exciton model:

b) MACS

c) MAPSc) MAPS

a) V3+ single ion

Figure 7.4 (a) Energy of V3+ ion under a crystal field HCEF , spin-orbit
coupling HSO, tetragonal distortion Hdis, and molecular field HMF .
(b) S(Q, ω) calculation of the MACS data (Fig. 7.3 (d)) using the
fitted values of exchange parameters. (c) Model of the MAPS data
(Fig. 7.2 (d)) using Horace [20] to account for the finite integration
ranges and detector coverage. Overlaid points were extracted from
fitting Gaussian peaks to constant energy cuts.

7.4 Multi-level spin waves

The dispersive excitations shown in Figs. 7.2 and 7.3 are indicative of coupled V3+

ions with the Hamiltonian H = HSI +Hexchange, where Hexchange =
∑

j JijSi ·Sj,
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describes an isotropic Heisenberg interaction between neighbouring V3+ ions.

The usual method of parameterising such excitations is based on standard spin

wave theory where transverse deviations of an angular momentum vector of

fixed magnitude are considered. This is based on a ground state, energetically

separated from other single-ion levels and is a valid approximation in many

compounds with an orbital degeneracy [2, 14, 208, 347, 348] where spin-orbit

coupling is a perturbation and is parameterised through anisotropic terms [27].

With the presence of spin-orbit coupling of a similar magnitude to the exchange

coupling, as in VI3, this approach is not valid due to the mixing (Fig. 7.4

(a)) of single-ion spin-orbit levels [349] and necessitates a multi-level approach

to the excitations. Below, such a methodology is applied based on single-ion

eigenstates where anisotropy terms are incorporated explicitly through the single-

ion Hamiltonian described above.

Figs. 7.2 and 7.3 are fitted with four parameters - J , λ̃ = αλ and ΓI,II (note

hMF is fixed by J). The Green’s function equation of motion [207, 263, 264]

is used, in terms of the eigenstates of HSI to calculate the neutron response

via the fluctuation-dissipation theorem S(Q, ω) ∝ −f(Q)2Im [G(Q, ω)]. This is

consistent with other multi-level spin wave theories [350, 351]. Within the random

phase approximation, the transverse Green’s functions for nearest neighbour

coupling is (Appendix G),

G+−
µν (Q, ω) =g+−

µ (ω) + g+−
µ (ω)Jµν(Q)G+−

µν (Q, ω) (7.2)

where Jµν(Q) =
∑

ij Jµνe
iQ·δij is the Fourier transform of the exchange

interaction between nearest sites ν and µ, and gαβµ is the single-site susceptibility,

defined as

gαβµ (ω) =
∑
mn

〈m| Ŝαµ |n〉 〈n| Ŝβµ |m〉
ω − (ωn − ωm)

. (7.3)

The energies, ωn, are the eigenvalues of HSI , with |n〉 the single ion eigenstates.

VI3 exhibits ABC stacking along c (Fig. 7.1 b) [317] requiring six sites µ, ν =

{1, 2, ..., 6}.

Based on Refs. [314, 315, 323, 324], two domains are considered with differently
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distorted octahedra - ΓI < 0 and ΓII < 0. The sign of both distortions is

chosen to be negative, consistent with a trigonal or tetragonal compression. For

simplicity the volume ratio is fixed to ΓI/ΓII=1. Fig. 7.3 (a) and Fig. 7.2

(e) indicate J/Jc ≈ 17, therefore coupling along c is neglected, considering the

nearest-neighbour in-plane exchange J equal in both domains. In terms of the

momentum-energy structure of the magnetic excitations, the parameter J tunes

the dispersion of the magnetic modes and ΓI,II controls the size of the gap of the

two excitations in Fig. 7.3. Including more complex structural deviations has

the effect of changing this gap size. Akin to anisotropy terms incorporated into

conventional spin wave theory, ΓI,II describe the effects of the local single-ion

anisotropy from a distortion away from a perfect octahedral environment.

Fig. 7.4 displays a four parameter fit with J = −4.37 (±0.01) meV, λ̃ = −8.4

(±0.26) meV, ΓI = −45 (±3.56) meV and ΓII = −11.1 (±0.50) meV. The upper

mode is from the domain with a more distorted octahedron (domain I) and the

lower from the less distorted domain (domain II). Despite the different energy

bandwidths of the two modes, a common value of the nearest-neighbour J is

sufficient to describe the dispersion in both domains, with the different dispersion

bandwidths originating from the interplay of the orbital and spin degrees of

freedom. A reduced strength of the spin-orbit coupling constant is found, as

expected in the case of covalently bonded systems [340]. The presence of covalency

effects in VI3 has been suggested by Density Functional Theory calculations [322].

The multi-level spin wave model captures the rapid intensity decay of the lower

mode away from the zone centre, however, no intensity is observed near the

zone boundary in experiment, in disagreement with model calculations. This

can be understood by finite lifetime effects due to disorder which have been

both theoretically and experimentally found to disproportionately affect shorter

wavelength excitations away from the magnetic zone centre [267, 352–354]. This

indicates stronger disorder for the less distorted domain V3+ (domain I). The

stability of a flattening of the octahedron around the V3+ site is consistent with

results found for other V3+ compounds [333, 355, 356]. Two distinct V3+ domains,

with one disordered, is also consistent with NMR results [314].

The multi-level model coupling single-ion states determined by spin-orbit cou-

pling, distorted octahedra, and a molecular field, results in gapped excitations

consistent with the data with two distortion parameters - ΓI,II and a common

exchange constant J and spin-orbit coupling constant λ for both domains. This is

in contrast with traditional spin wave theory that would require two very different
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exchange parameters, for the differing domains, with the ratio scaling with the

magnon bandwidths. Such a large difference in exchange constants is difficult to

justify through the local bonding environments and small deviations away from

an average R3 unit cell.

The energy cost of excitations is determined by the energy gap at Q = 0. This

is ≈ 5 meV = 58 K, similar to the Curie temperature in VI3, which defines

ferromagnetic order. This anisotropic gap, which facilitates magnetic order,

originates from spin-orbit coupling. It is noted that other two-dimensional van der

Waals magnets which lack spin-orbit coupling do not display spatially long-range

order with NiGa2S4 an example. [357–360] The situation is different in CrI3 [269]

and CrBr3 [361] where Cr3+ lacks an orbital degeneracy. It is interesting that CrI3

has a large Curie temperature, but is comparatively three-dimensional in terms

of the magnetic exchange coupling [269] and critical properties. [301, 319, 362]

Spin-orbit coupling therefore can provide a route for creating a strong enough

anisotropy that magnetic order is stable in two dimensions.

7.5 Conclusion

To summarise a neutron spectroscopy study of the effects of an orbital degree of

freedom on the honeycomb van der Waals ferromagnet VI3 has been presented in

this chapter. Two modes are observed at low energy. The lower mode exhibits a

gap∼ 4 meV and the upper mode has a gap∼ 7 meV. The upper mode is observed

to have a greater bandwidth than the lower mode. The lower mode is observed

to broaden significantly away from the zone centre. The two modes are thus

observed to be qualitatively different. The two modes have been parameterised in

terms of two differently distorted domains and multi spin-orbit level calculations

have been presented to model the inelastic neutron scattering response with good

agreement. It has been demonstrated that both magnetically ordered domains are

stabilised, despite the two-dimensional nature of the magnetism, by the presence

of anisotropy derived from the cooperative effect of crystallographic distortions

and spin-orbit coupling.

The Green’s function formalism, used in Chapter 5 to describe the spin-only

antiferromagnet CaFe2O4, was extended to treat a system with an orbital degree

of freedom. The formalism allows for the explicit treatment of spin-orbit

coupling and crystal distortions. These on-site degrees of freedom are ultimately
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responsible for the single-ion anisotropy measured in coupled spin systems. This

technique therefore provides a method for understanding the origin of anisotropy

in terms of the parameter that describe the underlying single-ion physics.
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Chapter 8

Excitonic transverse and amplitude

fluctuations in the noncollinear and

charge-ordered RbFe2+Fe3+F6

8.1 Introduction

The concept of spin waves was first introduced by Bloch to describe the

renormalisation of the spontaneous magnetisation of the simple ferromagnet [363].

Since this initial work, subsequent contributions by Dyson [364], and Holstein and

Primakoff [365] have further expanded the understanding of the quasi-particle

spectrum in magnetically ordered insulators. The importance of spin wave theory

expanded significantly towards the latter part of the 20th century, following the

advent of neutron scattering techniques by Shull and Brockhouse which offered

a way of directly probing the fundamental spin wave excitations of magnetic

systems through the spin-spin correlation function. To this day, linear spin wave

theory (LSWT) remains one of the primary means of investigating long range

magnetically ordered phases of matter as a means of understanding the underlying

interactions. Its success in understanding spin interactions in insulators has

resulted in several widely used computer routines for modelling neutron scattering

data including SpinWave [366, 367], SpinWaveGenie [368], and SpinW [369]. Such

programmes have opened up neutron scattering to a broader user based and have

contributed significantly to the success of new neutron instrumentation and the

expansion of the user community.
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LSWT is fundamentally a semiclassical technique and results from the expansion

in 1/S about a classical ground state. Physically, it can be interpreted as

describing transverse fluctuations of an ordered magnetic moment around a fixed

direction. It therefore enjoys greatest success in describing large-S systems, where

corrections to the leading order theory are small and the ground state is not

dominated by quantum fluctuations [370]. For small-S systems there exist many

fundamental excitations which are not well-described by LSWT such as spinons,

breathers, and solitons [130, 371, 372] as seen in Chapter 3. Nonetheless, LWST

has been surprisingly successful in describing physics away from the large-S, long-

range ordered limit [373–376].

The typical LSWT treatment of coupled magnetic ions directly treats the

spin degree of freedom based on a Hamiltonian with dominant Heisenberg

terms. The effect of single-ion terms, such as spin-orbit coupling, in the

magnetic Hamiltonian can be included perturbatively via Dzyaloshinskii-Moriya

interactions and anisotropy terms. [27] However, this treatment precludes the

possibility of longitudinal amplitude fluctuations of the order parameter [377, 378]

which give rise to new types of excitations given that the observable Ŝz does not

commute with the magnetic Hamiltonian. Furthermore, the integrating out of

the orbital degree of freedom can leave behind the incorrect single-ion ground

state given the mixing of orbital and spin degrees of freedom.

Recently, effects of spin-orbit coupling on the magnetic excitations have been

of intense interest in 4d or 5d transition metal ions [33, 379, 380]. However,

given that the spin-orbit coupling scales as the atomic number squared (λ ∼
Z2) [381], the energy scale for spin-orbit coupling is reduced for 3d transition

metal ions, introducing the possibility of mixing of spin and orbital degrees of

freedom on a energy scale measurable with neutron scattering [382]. In such a

situation, treatment of the magnetic excitations needs to incorporate the single-

ion properties of the local crystalline electric field which define the eigenstates of

the magnetic ions of interest.

In this chapter, the spin excitations previously reported in RbFe2+Fe3+F6 [23,

383] are revisited. RbFe2+Fe3+F6 has a structure related to the α pyrochlores

A2B2X6X
′, but with a vacancy on one out of two A cations and another on the

X ′ anion site that does not contribute to the BX6 octahedra. Several compounds

with similar structures have been reported in the literature [384, 385]. Charge

order originates from the two different iron sites which have differing valences of

Fe2+ and Fe3+. While the magnetic ground state of Fe3+ is S = 5/2 with each of
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the five d-orbitals half filled following Hund’s rules and the Pauli principle, the

situation for Fe2+ is slightly more complicated with an extra electron occupying

one of the t2g states with S = 2 and an effective l = 1 (which are discussed in

more detail below). As a direct result of this orbital degeneracy [21, 386, 387], the

Fe2+F6 octahedra are considerably more distorted than the Fe3+F6 octahedra.

The goal of this chapter is to investigate the spin fluctuations in RbFe2+Fe3+F6,

specifically the role of orbital contributions, which are coupled to the spin response

via spin-orbit coupling, in the neutron cross section. To understand the spin

fluctuations and the role of the differing spin and orbital contributions from

each of the iron sites, an extension to the Green’s function formalism treating

coupled multi-level sites is presented to account for noncollinear magnetic order.

This formalism is applied to the noncollinear charge-ordered antiferromagnet

RbFe2+Fe3+F6, calculating the excitation spectrum. The low energy excitations

are discussed and the results compared to previous neutron experiments. The

fluctuations in the amplitude of the order parameter resulting from the noncon-

servation of Ŝz are then examined.

This chapter is divided into five sections including this introduction. In Section

8.2 the structure factor is defined in terms of Green’s functions and the Green’s

function formalism presented in previous chapters, and derived in Appendix G,

is extended to treat noncollinear magnetic structures. This section illustrates the

role of single-ion physics in modelling neutron spectra and magnetic fluctuations.

In Section 8.3 this is applied to the situation in RbFe2+Fe3+F6 and the single-ion

physics is discussed for Fe2+ and Fe3+ relevant in defining the ground state that

is coupled via the Random Phase Approximation (RPA) in this Green’s function

approach. In Section 8.4 the neutron response is calculated and the chapter is

ended with a discussion and concluding remarks in Section 8.5.

8.2 Green’s function

In this section the calculation of the Green’s function in a noncollinear magnet is

discussed along with its relation to neutron spectroscopy. The Green’s function

formalism allows for the treatment of multi-level systems in a manner similar to

SU(N) spin wave theory and the flavor wave expansion approach [351, 377, 388–

391]. By formulating the calculation in terms of response functions, a direct

connection can be made to the neutron scattering intensity.
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8.2.1 Relation to neutron spectroscopy

The intensity measured with neutron scattering is directly proportional to the

structure factor S(Q, ω),

S(Q, ω) = g2
Lf

2(Q)
∑
αβ

(δαβ − Q̂αQ̂β)Sαβ(Q, ω), (8.1)

corresponding to a product of the Landé-g factor gL, the magnetic form factor

f(Q), a polarisation factor providing sensitivity to the component perpendicular

to the momentum transfer Q, and the dynamic spin structure factor Sαβ(Q, ω).

This itself corresponds to the Fourier transform of the spin-spin correlations

Sαβ(Q, ω) =
1

2π

∫
dteiωt〈Ŝα(Q, t)Ŝβ(−Q, 0)〉, (8.2)

where α, β = x, y, z. Sαβ(Q, ω) as written above considers only the spin

contribution to the neutron scattering cross section. The contributions from

orbital fluctuations are ignored given that the expectation value of the orbital

angular momentum 〈L〉 ≡ 0 via quenching for d-orbitals [27]. The assumption to

only consider the spin part of the neutron cross section depends on the experiment

remaining in a single |L,mL〉 multiplet and this is justified given the energy scales

under consideration. Total moment sum rule analysis confirms that the spin

contribution to the scattering cross section is dominant in RbFe2+Fe3+F6 [392].

As discussed in the following sections, orbital contributions to the structure enter

via the spin-orbit (L · S) coupling term in the magnetic Hamiltonian.

The relation of the structure factor Sαβ(Q, ω) to the response function is given

by the fluctuation-dissipation theorem

Sαβ(Q, ω) = − 1

π

1

1− exp(ω/kBT )
Im
[
Gαβ(Q, ω)

]
, (8.3)

and allows the magnetic neutron cross section to be defined in terms of a

Green’s response functionGαβ(Q, ω) [393]. Recognising that the neutron response

function is proportional to the temperature dependent Bose factor multiplied by

the Fourier transform of the retarded Green’s function shows that calculating the

Green’s function response provides a means of modelling the neutron response.
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Building on previous work [4, 5, 207, 263, 394], the Green’s function formalism is

now extended to treat noncollinear magnetic structures of arbitrary unit cell size.

The derivation of the collinear Green’s function formalism is given in Appendix

G and is discussed in previous chapters. This serves as the starting point for the

derivation of the rotating frame formalism.

8.2.2 Rotating frame formalism

The scheme presented in Appendix G cannot treat general noncollinear magnetic

structures since, in the lab frame, (x, y, z), each unit cell has a different mean

field Hamiltonian (and hence different gγγ(ω)) up to the period of the magnetic

supercell. This deficiency can be overcome by transforming to a reference frame

that rotates with the magnetic structure [395], (x̃, ỹ, z̃). In this rotating frame,

the magnetic moment at each site is orientated along the z̃ axis. The spin vector

in the lab frame can be related to the rotating frame by the rotation

Siγ = RiγS̃iγ (8.4)

where S̃iγ are the spin operators in the rotating frame. The rotation can be

broken into two parts, the rotation of the spins within the unit cell onto a common

coordinate system for the unit cell and a rotation of each unit cell onto a common

rotating frame coordinate system, Riγ → RiRγ. In order to relate Ri to the

magnetic ordering wavevector, Q, and spin rotation plane, n, one can make use

of the Rodrigues formula

Ri = eiQ·riT + e−iQ·riT ∗ + nnT (8.5a)

T =
1

2

(
1− nnT − i[n]×

)
. (8.5b)

The matrix elements of the skew symmetric matrix can be conveniently written

using the Levi-Civita symbol in Einstein notation, [[n]×]ij = εi
jknk.
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In the rotating frame, the inter-site exchange Hamiltonian becomes

Hint =
1

2

γγ′∑
ij

STiγJ
γγ′

ij Sjγ′

=
1

2

γγ′∑
ij

S̃TiγR
T
γR

T
i J

γγ′

ij RjRγ′S̃jγ′ .

(8.6)

To proceed with the calculation, Siγ is written using the basis vectors of the space

formed by the tensor product of the sublattice space and R3, V3N = VN ⊗ R3,

where N is the number of sites in the unit cell. Though competing Heisenberg

exchange can give rise to noncollinear order, many noncollinear magnetic systems

in nature arise due to more complicated exchange terms including Dzyaloshinskii-

Moriya and other off-diagonal couplings. These terms can be motivated on

symmetry grounds [51] and arise due to third order processes, involving exchange

between excited spin-orbital levels [27, 52]. These can be readily incorporated

into this model by defining the exchange matrix in the full 3N × 3N -dimensional

space V3N as

J γγ′ =



J11
xx J11

xy J11
xz J12

xx

J11
yx J11

yy J11
yz J12

yx . . .

J11
zx J11

zy J11
zz J12

zx

J21
xx J21

xy J21
xz

. . .
...

JNNxx JNNxy JNNxz

JNNyx JNNyy JNNyz

JNNzx JNNzy JNNzz


(8.7)

forming a 3N × 3N matrix. Note that for Heisenberg coupling, only the diagonal

elements of each 3 × 3 block are nonzero. In order that the rotation Riγ acts

only within R3, a projection into V3N is performed, so that T3N = I3 ⊗ T .

Since the rotation matrices are unitary, RT
i Rj = Rij, and the corresponding

exponential factors from the Rodrigues formula (Eqn. 8.5a) can be absorbed into

the definition of the Fourier transform of the exchange interaction. Expressed in
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the 3N × 3N product space, the full inter-site Hamiltonian can then be written

Hint =
1

2

∑
q

~̃
STq

{
X ′Dq

[
J (q + Q)T3N

+ J (q−Q)T ∗3N + J (q)(I3 ⊗ nnT )
]
D−qX

}
~̃
S−q

(8.8a)

[
J (q)

]
γγ′

=
∑
ij

J γγ′

ij
e−iq·(ri−rj) (8.8b)

X = diag (R1, R2, ..., RN) (8.8c)

X ′ = diag
(
RT

1 , R
T
2 , ..., R

T
N

)
(8.8d)

[Dq]γγ′ = eiq·δγδγγ′ (8.8e)

where
~̃
STq = (S̃x1 (q), S̃y1 (q), ..., S̃zN(q)). The contents of the braces, {}, can be

identified as a rotated exchange parameter, J̃ (q), defined such that, Hint =

1
2

∑
q
~̃
STq J̃ (q)

~̃
S−q. Even for Heisenberg coupling, this is no longer diagonal in R3

and contains terms that couple orthogonal modes. The matrix Dq originates from

the expression of the spin operator at each site in terms of the Fourier transform

Siγ =
∑

q e
iq·riγSγ(q). By separating the position vector into a unit cell vector

and a vector describing the position within the unit cell, riγ = ri + δγ, one can

define the matrix [Dq]γ (Eqn. 8.8e) which acts as a form factor, resulting in

interference between the ions in each unit cell.

In this rotated coordinate system, the calculation can be performed in a manner

similar that outlined in previous chapters, except in the new coordinate frame the

coupling is not in general a diagonal Heisenberg coupling. The Green’s function

can be written down by inspection of Eqn. G.8 by noting that, in this new

rotating frame, J̃ can couple orthogonal modes, hence

G̃αβ
γ̃γ̃′(q, ω) = gαβγ̃γ̃′(ω)δγ̃γ̃′

+

µν∑
γγ′

J̃ µν
γγ′(q)gαµγ̃γ (ω)G̃νβ

γ′γ̃′(q, ω)
(8.9)

where G̃(q, ω) is the Green’s function in the rotating frame. This can be solved

as a matrix equation in a manner similar to that described in Chapters 5 and 7.
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All that remains is to rotate back into the lab frame

G(q, ω) = (I3 ⊗ nnT )XG̃(q, ω)X ′(I3 ⊗ nnT )

+T ∗3NXG̃(q + Q, ω)X ′T ′3N

+T3NXG̃(q−Q, ω)X ′T ∗′3N

where T ′3N = (I3⊗T T ) and T ∗′3N = (I3⊗T †) and the translational invariance of the

correlation function has been used. If the ordering wavevector is Q = (0, 0, 0),

then the Green’s function in the lab frame is simply G(q, ω) = XG̃(q, ω)X ′.

8.3 Application to rubidium iron fluoride

Attention is now turned to to the low energy magnetic fluctuations in the non-

collinear antiferromagnet RbFe2+Fe3+F6. The crystal structure of RbFe2+Fe3+F6

is in the Pnma space group (No. 62), with lattice parameters a = 6.9663(4)

Å , b = 7.4390(5) Å and c = 10.1216(6) Å at T = 4 K. The charge order

originates from the differing valence on the two Fe sites, with one site occupied

by an Fe2+ ion and the other by an Fe3+ ion, (henceforth referred to site A and B

respectively). Consequently, the two ions have different single-ion ground states,

the former having an orbital degree of freedom, with (S = 2, L = 2) and the

latter being an orbital singlet, (S = 5/2, L = 0). As a result, whilst a projection

onto a spin-only Hamiltonian is well-justified for the Fe3+ ions, the same is not

necessarily true of the Fe2+ ions, where evidence of the influence of orbital physics

in the correlated magnetic behaviour has already been reported [390].

The advantage of formulating the calculation in the manner described above is

that one can explicitly treat the single-ion physics of the coupled magnetic ions,

thus capturing the entangled nature of the spin and orbital degrees of freedom.

Not only can inclusion of these single-ion terms change the energetics of the

elementary excitations of the system, but terms such as spin-orbit coupling can

lead to the non-conservation of Ŝz giving rise to correlated fluctuations of the

spin amplitude in the form of longitudinal modes. Such modes are absent from

conventional linear spin wave theory treatments. Attention is now paid to the

single-ion physics of the Fe ions present in RbFe2+Fe3+F6.
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Figure 8.1 (a) Tanabe-Sugano diagram for a d6 ion. Dq/B ≈ 1.1 [21, 22],
hence one cannot neglect orbital angular momentum and instead
one has a (S=2, L=2) ground state. The Racah parameter, C ≈
0.5 eV [22]. (b) Tanabe-Sugano diagram for a d5 ion, showing the
high spin to low spin transition at Dq/B ≈ 3. For Fe3+ ions in
an octahedral environment, Dq/B≈ 1.6 [21, 22] motivating a spin
only (S = 5/2, L = 0) ground state. The Racah parameter C ≈ 0.6
eV. (c) single-ion energy levels for an Fe2+ ion under the influence
of spin-orbit coupling, crystallographic distortions and a molecular
mean field term, following the intermediate crystal field splitting
which gives rise to the l = 1 ground state. (d) Crystal structure
of RbFe2+Fe3+F6, showing the octahedral FeF6 coordination. Red
octahedra surround Fe3+ ions and yellow octahedra surround Fe2+

ions.

8.3.1 Single-ion physics

Whilst both Fe2+ and Fe3+ ions in the unit cell are surrounded by an octahedral

environment of fluorine, the different sublattices are occupied by ions with a
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differing valence and local distorted environments. As a result, the ground state

differs between sublattice A (Fe2+) and sublattice B (Fe3+). In this section

(schematically outlined in Fig. 8.1) the single-ion physics on both these sites

is discussed, which defines the eigenstates that are coupled up using the random

phase approximation discussed above.

Sublattice A - Fe2+ single-ion physics

Sublattice A is occupied by Fe2+ ions which are in the 3d6 configuration. Since

the 3d ions experience an intermediate ligand field [22], the single-ion ground

state can be determined by the application of the Pauli exclusion principle and

Hund’s rules. Correspondingly, the ground state of the Fe2+ ions is 5D (S=2,

L=2, or |L = 2,mL;S = 2,mS〉) (Fig. 8.1 (a)).

Consideration is first paid to the strong crystalline electric field imposed on the

Fe2+ by the locally coordinated fluorine atoms, denoted as HCEF , on the orbital

component and then the effects of spin-orbit coupling are discussed below. Using

Stevens operators [35, 329], for a d6 ion in an octahedral crystal field this can be

written as

HCEF = B4(O0
4 + 5O4

4). (8.10)

The five-fold degenerate |L = 2,mL〉 states are split into a ground state orbital

triplet and an excited doublet. The crystal field splitting for 3d ions is on the

order of ∼ 1 eV making this the largest single-ion energy scale. It should be noted

that simplistic point charge calculations enjoy limited success in the treatment of

the 3d ions owing, in part, to the significant role played by covalency effects [396].

Nonetheless, by measuring the crystal field splitting using optical spectra or RIXS,

approximate values for the Steven’s parameters can be extracted. The crystal

field splitting in octahedrally-coordinated Fe2+ was determined to be 10Dq ≈
1.2 eV [397], corresponding to B4 ≈ 10 meV. A similar energy scale has been

reported [338, 339] in the oxides CoO [206] and NiO [337]. Writing the Stevens

parameters in terms of the orbital angular momentum operators and using the

notation for changing between |L,mL〉 and the crystal field bases written in Refs.
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[207, 264], one can diagonalise the crystal field Hamiltonian

ECEF = C−1HCEFC = B4


−48 0 0 0 0

0 −48 0 0 0

0 0 −48 0 0

0 0 0 72 0

0 0 0 0 72

 (8.11)

and verify that the ground state orbital triplet is well separated from the

excited orbital doublet. This is verified by the Tanabe-Sugano diagram for Fe2+

reproduced in Fig. 8.1 (a) with Dq/B ≈ 1.1 [21, 22] called the weak-intermediate

crystal field limit. This orbital ground state is referred to as 5D in Fig. 8.1 (c).

Given the ground state is an orbital triplet, one is justified in projecting the

single-ion Hamiltonian into an effective l = 1 manifold. This transformation

carries a projection factor L = αl [21] which can be read off the l = 1 block of

the L̂z operator projected into the space spanned by the eigenvectors of HCEF

C−1L̂zC =


−1 0 0 0 0

0 0 0 0 2

0 0 1 0 0

0 0 0 0 0

0 2 0 0 0

 (8.12)

thus α = −1. Similar transformations for L̂x,y show that this orbital triplet

follows the correct commutator and Lie algebra for angular moment operators

with l = 1. It should be noted that this is not guaranteed based on degeneracy

alone as discussed in Ref. [18] for the case of Ce3+ in CeRhSi3 in a comparatively

anisotropic crystal field.

Having defined the orbital ground state, new basis states are defined to include

spin as |l = 1,ml, S = 2,ms〉. The next term to be considered is the spin-orbit

interaction, denoted as HSO in Fig. 8.1 (c) acting on the projected orbital triplet

with spin S = 2 (|l = 1,ml;S = 2,ms〉) (referred to as 5D in Fig. 8.1 (c)). In

terms of the projected orbital angular momentum, this can be written as

HSO = λL · S = αλl · S (8.13)
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where λ is the spin-orbit coupling constant, which is negative for a greater-than-

half-full outer shell [27]. For the free Fe2+ ion αλ ≈ 12.4 meV. [21, 22] This value

is expected to be reduced due to the bonding with surrounding ligands, however

this correction is expected to be small and is difficult to disentangle from the

effects of Jahn-Teller distortions [21], so this correction will be neglected from

the analysis. The spin-orbit coupling splits the triply degenerate l = 1 level into

three jeff levels

C−1HSOC = αλ

−3I3 0 0

0 −I5 0

0 0 2I7

 (8.14)

that follow the Landé interval rule. For a 3d6 ion, the ground state is the triply

degenerate jeff = 1 level, with an excited quintet and septet.

Further to the octahedral crystal field described earlier, the effect of distortions

away from the perfect octahedral coordination must be considered. The

octahedron surrounding the Fe2+ is subtly compressed with four Fe-F bonds of

length ≈ 2.1Å and two of length ≈ 2.0 Å. A tetrahedral distortion of this kind

can be described in terms of the Stevens operator

Hdis = B0
2O0

2 = Γ

(
l̂2z −

2

3

)
. (8.15)

The parameter Γ is negative for an octahedral compression. This term breaks

the triplet orbital degeneracy, leading to a doublet ground state with an excited

singlet. In addition to this distortion, the octahedra are twisted in a manner which

destroys the fourfold axial symmetry. Since the point group of the octahedron

surrounding the Fe2+ ion is the low symmetry C1h = Cs group, in principle, other

terms of the form

HCEF =
∑
kq

Bq
kO

q
k (8.16)

are possible. The number of terms that must be considered can be reduced by

a number of symmetry and physical considerations. The first being that since

the Stevens operators depend on the tesseral harmonics, only terms for which the

tesseral harmonics respect the point symmetry of the local crystal environment

(C1h) are nonzero [38]. The next consideration is that terms with k > 4 vanish in
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the 3d ions since the matrix elements of the crystal field Hamitonian depend on

the product of two spherical harmonics Y −m2 (R)Y m
2 (R) (where k = 2 since these

are d electrons). From the Clebsch-Gordon expansion of this product, one finds

that the terms with k > 4 vanish [34]. The Stevens parameters are given by [34]

Bq
k = −|e|pqk〈r

k〉γqkΘk (8.17a)

γqk =
1

2k + 1

∫
d3R

ρ(R)Zq
k(R)

ε0Rk+1
(8.17b)

where Zq
k are the tesseral harmonics, with related numerical coefficients pqk, ρ is

the electrostatic charge density and Θ is a numerical factor originating from

the conversion between polynomials and their operator equivalents [34]. For

k = 2, 4, 6, Θk are the well-known Stevens coefficients αJ , βJ , γJ [35]. The

evaluation of the integral (Eqn. 8.17b) is not a simple task. Practical calculations

generally rely on vast simplifications such as a point-charge approximation which,

as discussed previously, does not lead to quantitatively accurate predictions. It is

therefore more appropriate to treat Bq
k as experimentally determined parameters.

Since the magnitude of Bq
k scales as 1

Rk+1 , where R is the distance from the central

ion to the charged ligand, the higher order terms can be excluded since their effect

will be small, therefore terms with k > 2 are excluded. Finally, the crystal field

potential must satisfy time reversal symmetry [398], hence there is one further

possible distortion term left

H′dis = Γ′
(
l̂2+ + l̂2−

)
(8.18)

where a conversion to operator equivalent terms has been performed and all

factors have been collected into a single distortion parameter [399]. The effect of

this term is to break the remaining degeneracy of the orbital doublet. Notice that

the additional term has the same form as the perturbation in the widely-studied

Lipkin model [400], which exhibits an exceptional point and a transition from

a phase with an avoided crossing to one with a degeneracy [401]. In fact, this

term gives rise to avoided crossings at hMF ≈ 12.5meV, hMF ≈ 13.5meV and

hMF ≈ 13.9meV (Fig. 8.2), suggesting the presence of an exceptional point in

the complex plane of (Γ′, hMF ), close to the real axis [402]. These three identified

instances of level repulsion also indicate that the single-ion eigenfunctions are
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strongly mixed between the jeff = 1 and jeff = 2 and the jeff = 2 and jeff = 3

manifolds.

Figure 8.2 Energy diagram for Fe2+ with spin-orbit coupling and crystallo-
graphic distortions. The black line represents a tetragonal distortion
(Eqn. 8.15). The red lines indicate a distortion of the type described
by Eqn. 8.18. A tetragonal distortion gives rise to an orbital doublet.
The asymmetric distortion give rise to splitting of the orbital triplet.
Other qualitative differences can be seen, for example there are
avoided crossings at around 12.5 meV, 13.5 meV and 13.9 meV
for the asymmetric distortion (indicated by the blue arrows). The
level repulsion at 12.5 meV is between the jeff = 1 and jeff = 2
multiplets.

The final term that must be considered in the single-ion Hamiltonian is the

molecular mean field. The exchange interaction between magnetic ions results
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in an effective Zeeman term from the single-ion perspective. In order that the

expansion is performed around the correct single-ion ground state, a mean field

decoupling must be performed Si → 〈Si〉 + δSi to quantify the strength of

this effective Zeeman field. As outlined in the discussions above, in general a

Heisenberg model can be written as

H =
1

2

γγ′∑
ij

J γγ′

ij STiγ · Sjγ′ . (8.19)

One can perform a mean field decoupling and discard terms ∼ O(δSi)
2. In the

rotating frame, one has

HMF =
1

2

γγ′∑
ij

(
[S̃Tiγ −

1

2
〈S̃Tiγ〉]J̃

γγ′

ij
〈S̃jγ′〉

+ 〈S̃Tiγ〉J̃
γγ′

ij
[S̃jγ′ −

1

2
〈S̃jγ′〉]

)
,

(8.20)

where J̃ γγ′

ij
= RT

γR
T
i J

γγ′

ij RjRγ′ . Neglecting constant terms, this expression can

be simplified considerably, using the Rodrigues rotation formula

HMF =
1

2

γγ′∑
ij

S̃Tiγ

(
J̃ γγ′

ij
+ J̃ γ′γ

ji

)
〈S̃jγ′〉

=
∑
iγ

S̃Tiγ
∑
jγ′

Re
[
J̃ γγ′

(Q)
]
〈S̃jγ′〉.

(8.21)

In the rotating frame, the expectation value of the spin operators only have

nonzero z-components. For the 3d ions, the inter-ion coupling is predominantly

described by a spin-spin Heisenberg model, owing to the breaking of the ground

state orbital degeneracy due to crystallographic distortions or spin-orbit coupling

[44]. This motivates a spin-only inter-ion interaction.

Collecting all of these single-ion terms together, one finds the single-ion Hamil-

tonian on sublattice A,

HA
1 = HSO +Hdis +H′dis +HMF . (8.22)

The presence of Hdis and HSO terms in the single-ion Hamiltonian results in

the non-conservation of Ŝz. Thus longitudinal transitions are allowed between

different single-ion energy levels. Longitudinal modes are present in noncollinear
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magnets due to the loss of spin-rotational symmetry about ẑ [354] and give rise

to anharmonic scattering terms corresponding to coupling between transverse

magnons and the two particle continuum. Systems with non-trivial single-ion

physics offer an exciting opportunity for the observation of correlated amplitude

fluctuations, since the fundamental excitonic spectrum includes a longitudinal

component.

The effect of spin-orbital transitions between different jeff levels has been

observed in, for example, α, γ-CoV2O6 [14], α-Co3V2O8 [208], CoTiO3 [403],

Na3Co2SbO6 or Na2Co2TeO6 [404, 405], and CoO [206, 208]. The spin-orbit

splitting is typically on the order of≈ 30 meV in 3d ions and hence these spin-orbit

excitons may be expected to be short-lived due to a large kinematically-allowed

decay region. The intensity of such modes depends strongly on the single-ion

physics and whilst these spin-orbit transitions have been observed in Co2+ ions,

they are not observed in some other 3d ions such as V3+ [4].

The propensity for longitudinal modes to decay can be overcome by moving these

amplitude fluctuations out of the kinematically-allowed decay region. Therefore,

the search for long-lived amplitude fluctuations at low energy may be fruitful.

Amplitude fluctuations may be observed in other 3d ions where the excitonic

modes originate not from the jeff → jeff transitions but from a smaller splitting

due to Hdis. The intensity of these transitions depends strongly on the nature of

the distortion.

It is now demonstrated that crystallographic distortions offer a mechanism for

longitudinal excitons in 3d ions, but that a large molecular Zeeman field reduces

the longitudinal transition amplitude for many of the transitions in Fe2+ ions.

The neutron scattering intensity is proportional to the transition amplitude

Izz = |〈1| Ŝz |m〉|2. In Fig. 8.3, Izz is plotted for the both the tetragonal and

the asymmetric distortions introduced above. For both distortions, longitudinal

transitions from the jeff = 1 to jeff = 2 have finite amplitude. For a tetragonal

distortion, the transition A1 is the sole longitudinal transition. In the case of the

asymmetric distortion, the B1 transition loses intensity with increasing hMF and

is overtaken by B2. For the asymmetric distortion, an inter-multiplet mode is also

observed, B3. As the mean field is increased, the intensity of most longitudinal

modes decreases, although an increase in the intensity of B2 is observed, along

with an increase in B3 at large values of hMF , as the single-ion energy landscape

changes.
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Figure 8.3 (a) Single-ion energy levels for Fe2+ in a distorted octahedral
environment. (b) Longitudinal (or amplitude) transition amplitudes,
Izz = |〈1| Ŝz |m〉|2, for the excitations out of the ground state. As
hMF is increased the amplitude of the transitions A1, B1 and B3

decreases. For a tetragonal/trigonal distortion (Γ), only the spin
orbit transition has non-negligible intensity. For the low symmetry
distortion (Γ′), the high intensity transition B3 corresponds to a
transition within the ground state jeff = 1 multiplet. As the mean
field increases, the inter-multiplet transition B2 turns on and at large
values of hMF the intensity B3 begins to increase again.

The longitudinal excitations described in this chapter result from the non-

conservation of Ŝz. In other words, they correspond to amplitude fluctuations

of the order parameter, in this case the spin operator. This motivates an

analogy [406, 407] with the Higgs mechanism from particle physics, where

amplitude fluctuations of the order parameter [378] in the presence of a gauge

field give rise to the celebrated Higgs boson [408]. The case here is somewhat

different, owing to the lack of a coupling of the order parameter to a gauge field

as in the Higgs mechanism. Therefore these excitations will be referred to as

“amplitude modes” to distinguish them both from the true gauge-field-coupled

phenomena such as the Higgs boson [408], plasmons [409], the Meissner state in

superconductors [410], and from other longitudinal excitations whose origins are

fundamentally different, such as spinons and multi-magnon continua [411, 412].
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Sublattice B - Fe3+ single-ion physics

In the case of a 3d5 ion in a perfectly octahedral environment, the ground state

is an orbital singlet, (S = 5/2, L = 0), hence one should only expect a mean

molecular field contribution to the single-ion Hamiltonian. However, in many 3d5

systems, a spectral gap is measured, consistent with a single-ion anisotropy term

[5, 277, 413]. This gap arises due to mixing of higher orbital energy levels into the

ground state, facilitated by the cooperative effect of crystallographic distortions

and spin orbit coupling [247–249]. This is phenomenologically accounted for in

the model by adding a single-ion anisotropy term to the Fe3+ spin Hamiltonian,

HB
1 =HMF +Hanis (8.23a)

Hanis =µS̃2
z . (8.23b)

8.3.2 Spin Hamiltonian

Attention is now turned to the spin Hamiltonian that describes the interaction of

ions on neighbouring sites. The Fe ions in RbFe2+Fe3+F6 form two interpenetrat-

ing chain networks running perpendicular to one another (Fig. 8.4). The Fe2+

ions lie on a chain parallel to a with spins pointing along ±b̂, with Fe3+ ions on

a chain parallel to a with spins along ±â. RbFe2+Fe3+F6 can be described with

a unit cell comprising eight spins (Table 8.1).

Table 8.1 Definition of ions in the unit cell.

Index Sublattice Valence Position vector
1 B 3+ (0,0,0)
2 B 3+ (0,0.5,0)
3 B 3+ (0.5,0,0.5)
4 B 3+ (0.5,0.5,0.5)
5 A 2+ (0.1986,0.75,0.2698)
6 A 2+ (0.6986,0.75,0.2302)
7 A 2+ (0.3014,0.25,0.7698)
8 A 2+ (0.8014,0.25,0.7302)

A minimal model of nearest neighbour exchange for both inter- and intra-chain

bonds is now considered. The exchange interactions are summarised below in

Table 8.2. The intra-chain bonds are confined to the upper-left and lower-right
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Fe2+

Fe3+
J1
J2

J3
J4

Figure 8.4 (a, b) Crystallographic structure of RbFe2+Fe3+F6, displaying the Fe
ions and Fe-Fe bonds. Yellow arrows indicate Fe2+ spins and red
arrows indicate Fe3+ spins. The Fe2+ ions form chains of spins
along the a-axis and the Fe3+ ions lie in chains along the b-axis. J1

and J2 are intra-chain bonds whilst J3 and J4 couple spins lying on
different chains.

blocks, with inter-chain bonds coupling sites {1-4} with sites {5-8}. Following

the approach outlined above, the Fourier transform of the exchange interaction

is now taken. In the rotating frame one needs to calculate the matrix

J̃ (q) =X ′Dq

[
J (q + Q)T3N + J (q−Q)T ∗3N

+ J (q)(I3 ⊗ nnT )
]
D−qX.

(8.24)

Since the propagation vector is Q = (0, 0, 0), the rotation of each unit cell need

not be performed and instead one has J̃ (q) = X ′J (q)X. The matrices, X and

X ′ describe the matrices which rotate the spins in the unit cell onto a common

axis. Since, in the lab frame, the spins lie in the a-b plane, one can define a
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Table 8.2 Inter-site bonds considered in the minimal model. J1 and J2 represent
intra-chain bonds with J3 and J4 coupling sites on different chains.

1 2 3 4 5 6 7 8
1 0 J1 0 0 J3 J4 J4 J3

2 J1 0 0 0 J3 J4 J4 J3

3 0 0 0 J1 J4 J3 J3 J4

4 0 0 J1 0 J4 J3 J3 J4

5 J3 J3 J4 J4 0 J2 0 0
6 J3 J3 J4 J4 J2 0 0 0
7 J4 J4 J3 J3 0 0 0 J2

8 J3 J3 J4 J4 0 0 J2 0

rotation matrix

U(θ) =

0 sinθ cosθ

0 −cosθ sinθ

1 0 0

 (8.25)

that rotates spins by angle θ in the a-b plane. In terms of this rotation matrix,

one has

X =



U−a 0 0 0 0 0 0 0

0 Ua 0 0 0 0 0 0

0 0 Ua 0 0 0 0 0

0 0 0 U−a 0 0 0 0

0 0 0 0 Ub 0 0 0

0 0 0 0 0 U−b 0 0

0 0 0 0 0 0 U−b 0

0 0 0 0 0 0 0 Ub


, (8.26)

where Ua = U(0), U−a = U(π) and U±b = U(±π
2
), such that

Ua

0

0

1

 =

1

0

0

 (8.27a)

U−a

0

0

1

 =

−1

0

0

 (8.27b)

Ub

0

0

1

 =

0

1

0

 (8.27c)
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U−b

0

0

1

 =

 0

−1

0

 . (8.27d)

Using these rotation matrices, one can write down the molecular mean field

Hamiltonian for each site. In this minimal model the mean field, is the same

for all spins on each sublattice,

HMF =
∑
iγ

hMF (i, γ)S̃ziγ (8.28a)

hMF (i, γ ∈ A) =− 2J2〈SA〉 = −4J2 (8.28b)

hMF (i, γ ∈ B) =− 2J1〈SB〉 = −5J1. (8.28c)

The molecular mean field does not depend on the inter-chain bonds since the

spins on sublattice A are perpendicular to sublattice B.

The matrix DqJ (q)D−q =
∑

ij J
γγ′

ij
eiq·(riγ−rjγ′ ) can be constructed from Tables

8.1 and 8.2, [
DqJ (q)D−q

]
12

=J1

(
eiq·(r2−r1) + eiq·(r2−r1−[0,1,0])

)
[
DqJ (q)D−q

]
25

=J3e
iq·(r5−r2)[

DqJ (q)D−q

]
26

=J4e
iq·(r6−r2−[1,0,0])[

DqJ (q)D−q

]
27

=J4e
iq·(r7−r2−[1,0,0])[

DqJ (q)D−q

]
28

=J3e
iq·(r8−r2−[1,0,1])[

DqJ (q)D−q

]
34

=J1

(
eiq·(r4−r3) + eiq·(r4−r3−[0,1,0])

)
[
DqJ (q)D−q

]
35

=J4e
iq·(r5−r3−[0,1,0])[

DqJ (q)D−q

]
36

=J3e
iq·(r6−r3−[0,1,0])[

DqJ (q)D−q

]
37

=J3e
iq·(r7−r3)[

DqJ (q)D−q

]
38

=J4e
iq·(r7−r3)[

DqJ (q)D−q

]
45

=J4e
iq·(r5−r4)[

DqJ (q)D−q

]
46

=J3e
iq·(r6−r4)[

DqJ (q)D−q

]
47

=J3e
iq·(r7−r4)[

DqJ (q)D−q

]
48

=J4e
iq·(r8−r3)
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[
DqJ (q)D−q

]
56

=J2

(
eiq·(r6−r5) + eiq·(r6−r5−[1,0,0])

)
[
DqJ (q)D−q

]
78

=J2

(
eiq·(r8−r7) + eiq·(r8−r7−[1,0,0])

)
.

The corresponding elements in the lower left triangle can be found by reversing

position vector labels, hence the matrix is Hermitian. The exchange matrix in

the lab frame contains only diagonal elements but on transforming to the rotating

frame acquires components that couple y and z components of spins on different

sublattices.

8.4 Dynamical structure factor calculations

8.4.1 Parameter choice

The rotating frame Green’s function formalism is now used to calculate the

dynamical structure factor of RbFe2+Fe3+F6. Samples of RbFe2+Fe3+F6 produced

using hydrothermal growth techniques are typically small rod-like crystals, with

the long-axis coinciding with the crystallographic b-axis [23, 383]. Neutron

scattering experiments thus necessitate the coalignment of many single crystals

and a broad integration of spectral weight along directions perpendicular to

the scattering wavevector, offering sensitivity to fluctuations along all three

directions. Consequently, the polarisation factor in the structure factor is dropped

and a sum over all components of the partial dynamical structure factor is

performed, Stot(q, ω) =
∑

αβ S
αβ(q, ω). The parameters of the model are

summarised in Table 8.3. Exchange parameters J1-J4 are taken from Ref. [23],

along with the phenomenological anisotropy parameter µ. The value of λ was

chosen in accordance with perturbative calculations and paramagnetic resonance

of Fe2+ in MgO [414, 415]. The distortion parameter, Γ, is chosen to be small,

on the order of meV (Γ = −1.5 meV), consistent in scale with the parameter

extracted from fits to neutron data in Co2+ [207, 346] and V3+ [4] compounds.

In the case of a purely tetragonal or trigonal distortion, the sign of the distortion

parameter can be inferred from the crystal structure, with Γ < 0 corresponding to

a compression of the octahedron and an orbital doublet ground state [333, 416].

The term originating from the low symmetry nature of the local environment,

appearing in H′dis, has no such intuitive interpretation. However, this term fully

breaks the degeneracy of the l = 1 ground state and hence result in an orbital
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Figure 8.5 Dynamical structure factor calculation for RbFe2+Fe3+F6. In the
right hand column is the longitudinal component in the rotating
frame which contains the contribution from amplitude fluctuations.
Panels (a-c) show the calculated response with exchange parameters
taken from Ref. [23], along with a tetragonal compression, Γ =
−1.5 meV. Panels (d-f) show the corresponding calculation with an
asymmetric distortion Γ′ = −1.5 meV.

singlet ground state, regardless of the sign of this distortion. This distortion is

therefore taken to be negative along with the tetragonal distortion.

Parameter Value (meV)
J1 1.9
J2 1.4
J3 1.4
J4 0.75
αλ 12.4
Γ -1.5
µ -0.075

Table 8.3 Summary of the parameter values used in the Green’s function
calculation of the dynamical structure factor.
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8.4.2 Neutron scattering response

The neutron scattering response is plotted in Fig. 8.5 (a, b) for a tetragonal

distortion (Eqn. 8.15) and Fig. 8.5 (d, e) for an asymmetric distortion (Eqn.

8.18). For both distortion types the spectra are qualitatively similar to the

measured neutron response [23] with a gapped upper dispersive mode which

reaches the zone boundary at around E ≈ 10 meV. A further low energy mode

is seen at around E ≈ 2.5 meV. This mode has a smaller gap and bandwidth,

with a spin wave velocity that approaches zero away from the zone centre. Both

modes are observed to split for this set of parameters, in agreement with Ref. [23].

The splitting of both modes shows some difference between the two distortions,

reflecting the quantitative difference between the Fe2+ single-ion energy levels for

each distortion.

The presence of these dispersive modes in the linear spin wave calculation for

RbFe2+Fe3+F6 [23] indicates a predominant transverse component, which is also

captured by the Green’s function formalism presented here.

8.4.3 Amplitude fluctuations

A particular aspect of this analysis is the prediction of amplitude fluctuations

in the neutron scattering response to first order in the Dyson expansion where
d〈Ŝz〉

dt
6= 0. Such excitations are not present in conventional spin wave theory

based on the Landau equation. In this section, the key ingredients that allow such

fluctuations to exist to first order in the neutron scattering response are analysed.

It is important to note that these excitations appear in the zz component of the

rotating frame, where the spins are coaligned and fluctuations in the magnitude of

the order parameter appear along the common ẑ-axis. Upon rotating back to the

laboratory frame, these fluctuations are no longer confined to the zz component

of the structure factor. The structure factor will therefore be examined in the

rotating frame so that the longitudinal, S̃zz(q, ω), and transverse components

can be distinctly identified. The longitudinal component for both distortions is

plotted in Fig. 8.5 (c, f). With Γ′ = −1.5 meV, a weak longitudinal component

can be observed (Fig. 8.5 (f)), manifested in a flat mode with E ≈ 17 meV. The

nature of these amplitude modes will now be further investigated.
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Inter-multiplet spin-orbit excitons

Regardless of the nature of the distortion, longitudinal transitions between the

jeff = 1 and jeff = 2 multiplet are permitted (Fig. 8.3). These modes generally

occur at a higher energy scale than the dispersive magnon excitations, since

the energy scale of these excitations are ∼ λ as per the Landé interval rule.

These modes are particularly susceptible to decay since there is often a large

kinematically allowed decay region. The longitudinal component in the rotating

frame is plotted in Fig. 8.6 for both of the distortion terms, with Γ = −1.5 meV

and Γ′ = −1.5 meV respectively. For each of these distortions, a high energy

spin-orbit exciton is seen at E ≈ 28 meV.

Figure 8.6 Spin-orbital exciton at E ≈ 28 meV for both types of distortion
allowed by symmetry in RbFe2+Fe3+F6. (a) In the case where
Hdis = O0

2, the spin-orbit exciton is the only amplitude fluctuation
that carries any intensity. (b) The distortion ∼ O2

2 exhibits a further
flat mode at around 17 meV.

Intra-multiplet distortion modes

In Fig. 8.6, (b) a second flat mode can be seen at E ≈ 17 meV, originating from

the intra-multiplet transition permitted by an asymmetrically distorted crystal

field. This mode is weak, in agreement with Fig. 8.3, which suggests that the

intensity of this amplitude mode is suppressed by the molecular field. It should

also be noted that this mode is likely susceptible to decay owing to the fact that

it lies at an energy that is less than two times the magnitude of the expected

magnon bandwidth [23].

The nature of the asymmetric distortion is now further explored. Fig. 8.7 (a)
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Figure 8.7 (a) Longitudinal component of the structure factor in the rotating
frame for J2 = 1.4 meV and Γ′ = −1.5 meV. Both the high energy
spin-orbital exciton and a flat weak intra-multiplet mode are visible.
(b) Amplitude fluctuations with J2 = 1.4 meV and Γ′ = −10 meV.
Upon increasing the magnitude of the distortion, the flat intra-
multiplet mode gains intensity. A very weak dispersive lower mode
appears around E ≈ 12 meV. (c) Upon decreasing the molecular
mean field hMF by decreasing J2, the lower two modes hybridise and
the intra-multiplet mode increases in intensity.

shows the longitudinal component of the structure factor for the asymmetric

distortion H′dis, with Γ′ = −1.5 meV. A weak flat mode at E ≈ 17 meV is visible.

Upon increasing the magnitude of the distortion parameter to Γ′ = −10 meV,

the flat mode gains spectral weight and a very weak dispersive amplitude mode

at lower energy appears (Fig. 8.7 (b)). Finally, after reducing the magnitude of

J2 and hence |hMF |, the intensity of the intra-multiplet modes can be seen to

increase in Fig. 8.7 (c) (in agreement with Fig. 8.3) and the flat intra-multiplet

mode hybridises with the lower dispersive mode.

8.5 Conclusion

An excitonic description of the spin excitations in insulating RbFe2+Fe3+F6

has been presented, applying a multi-level formalism with Green’s functions.

This approach differs from semiclassical descriptions which focus on transverse

perturbations of a spin of fixed magnitude. While such approaches incorporate

local anisotropy through anisotropic and antisymmetric terms, the Green’s

function approach applied here explicitly incorporates single-ion physics and spin-

orbit coupling. Bringing in spin-orbit coupling (∝ l·S) is particularly important as
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the observable operator Ŝz no longer commutes with the Hamiltonian [H, Ŝz] 6= 0

and therefore the expectation value 〈Ŝz〉 is no longer explicitly a conserved

quantity (implying d〈Ŝz〉
dt
6= 0). This allows unusual types of excitations such

as amplitude fluctuations to become allowed and observable with the dipolar

selection rules of neutron scattering. As discussed above, such excitations are no

longer forbidden in RbFe2+Fe3+F6 owing to the presence of an orbitally degenerate

ground state of Fe2+ (as schematically illustrated in Fig. 8.1).

One of the issues with experimentally observing amplitude modes resulting from

excitonic magnetic excitations is that they typically occur at higher energies

than the lower energy transverse excitations. Typically, these modes then decay

and appear experimentally as an energy and momentum broadened continuum

of scattering, not a temporally sharp underdamped excitation like a harmonic

spin wave. Such a situation has been analysed theoretically and experimentally

in the fourth row transition metal ion compound Ca2RuO4 [264, 406]. In this

particular situation the amplitude mode was kinematically allowed to decay into

lower transverse modes resulting in a continuum of scattering observable with

the combination of polarised neutrons and the mapping capabilities afforded by

modern neutron spectrometers. It should be noted that given the formalism

presented here, and applied in Ref. [264], only corresponds to first order mean

field theory, it does not capture such decay process which require higher order

terms in the Dyson expansion. This is beyond the scope and the goal of this

analysis presented here.

In this context, it is interesting, to apply this to the case of RbFe2+Fe3+F6. As

experimentally reported in Ref. [23], the magnetic excitations consist of two

components - a temporally well defined underdamped component and also a

component that is broadened in both energy and momentum. Such a component

may originate from quantum fluctuations owing to noncommuting observables

reported in low-spin chains, however it is not expected to be strong in large

spin components such as S = 2 of Fe2+ or S = 5/2 of Fe3+. This leads to the

suggestion that it may originate from amplitude fluctuations allowed by the low

local symmetry of the Fe2+ ion and the presence of spin-orbit coupling.

This work illustrates that there are two components required required for

the presence of observable amplitude fluctuations at accessible low energies in

intermediate field third-row transition metal ions. The first is spin-orbit coupling

like found here in Fe2+ or present in V3+ or Co2+ which allows fluctuations in the

order parameter amplitude 〈Ŝz〉 to occur.
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The second key component is the presence of low symmetry, permitting single-ion

terms such as ∼ O2
2 which are not present in tetragonal, trigonal or hexagonal

symmetry [34]. A distortion of this form can permit amplitude fluctuations,

both in the form of spin-orbit excitons (∼ λ) and lower energy intra-multiplet

modes which can disperse. While tetragonal distortions can give rise to amplitude

fluctuations, these are present at higher energies, close to the single-ion energy

scale of the spin-orbit transitions (∼ λ), which is ∼ 30 meV in 3d transition metal

ions. Such fluctuations are less relevant as it is much more difficult to tune to

such energy scales or stabilise them. Therefore, it is suggested that amplitude

modes in 3d transition metal ions are best sought in compounds with low local

symmetry and based on magnetic ions with an orbital degeneracy like Fe2+, V3+,

or Co2+.
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Chapter 9

Conclusions

In this Thesis, the impact of local degrees of freedom on the correlated magnetic

behaviour of 3d transition metal compounds has been examined, both in

terms of order and excitations, through the use of neutron spectroscopy and

complementary theoretical analysis. The local degrees of freedom, originating

from the single-ion physics of the magnetic ions, give rise to magnetic anisotropy,

influencing the dynamics and stabilising ordered phases of matter. The

work contained within this Thesis demonstrates that anisotropy gives rise to

unconventional magnetic excitations, not captured by linear spin wave theory

and stabilises magnetic order in systems for which thermal fluctuations might

be expected to preclude order due to low-dimensionality. Detailed in this Thesis

is a framework for modelling the neutron scattering spectrum in systems where

the local degrees of freedom cannot be neglected. This framework, based on the

calculation of Green’s functions, has been generalised, allowing for the treatment

of noncollinear magnetically ordered systems of arbitrary unit cell size.

In Chapter 3, the low energy dynamics of large-spin anisotropic quasi-one-

dimensional antiferromagnets were examined. It was shown that the presence of

anisotropy gives rise to nonlinear excitations analogous to the spinons measured

in spin-1/2 chain compounds. The equation of motion governing the dynamics

in these systems was shown to admit kink-antikink soliton solutions, describing

the movement of extended domain wall pairs. By considering the effect of

a weak inter-chain coupling, a nonlinear confinement potential was developed,

which captured the gradual annihilation of colliding domain walls owing to their

spatially-extended nature. By treating the domain walls as point-like particles
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and the confinement potential as a potential well, the bound state spectrum was

found numerically, showing the emergence of two regimes based on the ratio of

anisotropy to inter-chain coupling strength. This theoretical model was then

used to successfully model the bound state spectrum in CaFe2O4. This chapter

demonstrated that the presence of anisotropy – a consequence of local single-ion

physics – can give rise to exotic excitations usually only observed in spin-1/2

systems.

Chapter 4 concerned the antiferromagnetic compound, CoV2O6, where a series

of magnetisation plateaux are observed in the absence of Bragg peaks which

would indicate transitions between distinct long-range ordered phases of matter.

Owing to the large spin-orbit coupling in this system, compared with a small

inter-ion exchange coupling, this system was mapped onto a jeff Ising model. By

considering the restrictions placed on the allowed values of the magnetisation by

translational symmetry, the Lieb-Schultz-Mattis theorem was applied to infer the

ground state symmetries for each observed magnetisation plateau. The implied

ground state periodicity from this analysis was then shown to be consistent with

the appearance of momentum broadened peaks in diffraction data. The cascade

of magnetisation plateaux was therefore shown to stem from metastable antiphase

boundary order between domains with a three-site symmetry. The ultimate series

of ground states achieved as the magnetic field is varied in CoV2O6 rely on the

uniaxial symmetry afforded by the Ising anisotropy and the presence of a jeff = 1
2

ground state. The magnetisation plateaux can thus be taken as a strong example

of how local degrees of freedom conspire to give different correlated states of

matter than would be achieved in a purely isotropic system.

In Chapter 5, the magnon dynamics and magnetic order in the S = 5/2

antiferromagnet CaFe2O4 was investigated. This system exhibits two magnetic

phases, characterised by the c-axis stacking. Using neutron spectroscopy, the

low energy dynamics were measured at high temperature where a single phase

is observed, and low temperature where the phases coexist. A Green’s function

analysis was performed to model the spectrum and extract exchange parameters

for both phases. Both phases were modelled with a common set of exchange

parameters, with a temperature renormalisation factor at high temperature.

Through the Green’s function analysis and a toy model of domain formation,

the low temperature phase coexistence was shown to be the result of a freezing

of thermally-activated dynamical antiphase domain boundaries, as the sample is

cooled. The antiphase domain boundaries are stabilised by a single-ion anisotropy
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which prevents the relaxation into the ground state magnetic structure and thus

the magnetic phase at low temperature is a metastable state that would not exist

if not for single-ion anisotropy from local crystal distortions.

Chapter 6 detailed an investigation into the two-dimensional itinerant ferromag-

net Fe3GeTe2. Neutron spectroscopy was performed to map out the low energy

spin waves. The spin waves were shown to be broad, indicative of itinerance. The

spin waves were modelled in the small-q limit, where the localised approximation

is valid. The value of the spin stiffness was extracted, along with an anisotropy

gap. By modelling domain walls in Fe3GeTe2, the expected domain wall width,

based on the bulk exchange parameters, was extracted and compared with STM

measurements on the surface. The expected width was observed to be close to

the measured surface domain wall width, indicating that the surface exchange

and anisotropy parameters may be close to those of the bulk.

In Chapter 7, using both a cold triple-axis and a thermal chopper spectrometer,

the spin waves in the two-dimensional ferromagnet VI3 were mapped out to the

zone boundary. Two modes were observed with differing bandwidths, anisotropy

gaps and intensities throughout the Brillouin zone. V3+ exhibits an orbitally

degenerate crystal field ground state, with an effective orbital degree of freedom.

The Green’s function analysis used in Chapter 5 was extended to account for

the orbital degree of freedom in VI3. The neutron data were modelled with

two different distorted domains and a single exchange parameter. The results

of this work showed that crystal distortions are able to stabilise magnetism in

two dimensions, overcoming the restrictions of the Mermin-Wagner theorem by

explicitly breaking spin-rotational symmetry.

Chapter 8 discussed the extension of the Green’s function analysis to treat

noncollinear systems. By placing the calculation on the rotating frame, a general

formalism is provided to treat any single-Q magnetic structure of arbitrary

unit cell size and magnetic configuration. The magnetic excitations of the

noncollinear charge-ordered antiferromagnet RbFe2+Fe3+F6 were then revisited

using the Green’s function formalism. It was further shown that the asymmetric

distortion present in RbFe2+Fe3+F6 gives rise to the possibility of an asymmetric

distortion term, not frequently considered in magnetic systems. It was then

demonstrated that the presence of spin-orbit coupling gives rise to amplitude

fluctuations of the order parameter which are not described by linear spin wave

theory. The addition of an asymmetric distortion not only allows for longitudinal

spin-orbital excitons but also dispersive low energy intra-multiplet excitations.
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Chapter 8 thus demonstrates that by manipulating the local environment of the

magnetic ions, unconventional collective magnetic excitations can be achieved.
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Appendix A

List of tesseral harmonics

The tesseral harmonics, Znα, are widely used to define the crystal field potential

[34, 36, 417]. They are related to the spherical harmonics, Y α
n by the relations

Zn0 = Y 0
n (A.1a)

Znα = Zc
nα =

1√
2

(
Y −αn + (−1)αY α

n

)
(α > 0) (A.1b)

Znα = Zs
nα =

i√
2

(
Y α
n − (−1)αY −αn

)
(α < 0). (A.1c)

The tesseral harmonics up to fourth order (as is relevant to the 3d ions) are

tabulated below [417]

Z00 =
1√
4π

Zs
11 =

√
3

4π

y

r

Z10 =

√
3

4π

z

r

Zc
11 =

√
3

4π

x

r

Zs
22 =

1

4

√
15

π

2xy

r2

Zs
21 =

1

2

√
15

π

yz

r2

Z20 =
1

4

√
5

π

3z2 − r2

r2
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Zc
21 =

1

2

√
15

π

xz

r2

Zc
22 =

1

4

√
15

π

x2 − y2

r2

Zs
33 =

√
35

32π

3x2y − y3

r3

Zs
32 =

√
105

16π

2xyz

r3

Zs
31 =

√
21

32π

y (5z2 − r2)

r3

Z30 =

√
7

16π

z (5z2 − 3r2)

r3

Zc
31 =

√
21

32π

x (5z2 − r2)

r3

Zc
32 =

√
105

16π

(x2 − y2) z

r3

Zc
33 =

√
35

32π

x3 − 3xy2

r3

Zs
44 =

3

16

√
35

π

4 (x3y − xy3)

r4

Zs
43 =

3

8

√
70

π

(3x2y − y3) z

r4

Zs
42 =

3

8

√
5

π

2xy (7z2 − r2)

r4

Zs
41 =

3

4

√
5

2π

yz (7z2 − 3r2)

r4

Z40 =
3

16

1√
π

35z4 − 30z2r2 + 3r4

r4

Zc
41 =

3

4

√
5

2π

xz (7z2 − 3r2)

r4

Zc
42 =

3

8

√
5

π

(x2 − y2) (7z2 − r2)

r4

Zc
43 =

3

8

√
70

π

(x3 − 3xy2) z

r4

Zc
44 =

3

16

√
35π

x4 − 6x2y2 + y4

r4
.

175



Appendix B

List of Stevens operators

In this Thesis, the crystalline electric field Hamiltonian is written in terms of the

Stevens operators [21, 34, 35, 329]. These can be written in terms of angular

momentum operators

X̂ = L(L+ 1)

O0
0 = 1

O−1
1 =

−i
2

(
L̂+ − L̂−

)
O0

1 = L̂z

O1
1 =

1

2

(
L̂+ + L̂−

)
O−2

2 =
−i
2

(
L̂2

+ − L̂2
−

)
O−1

2 =
1

2

(
L̂yL̂z + L̂zL̂y

)
O0

2 = 3L̂2
z − X̂

O1
2 =

1

2

(
L̂xL̂z + L̂zL̂x

)
O2

2 =
1

2

(
L̂2

+ + L̂2
−

)
O−3

3 =
−i
2

(
L̂3

+ − L̂3
−

)
O−2

3 =
−i
4

[(
L̂2

+ − L̂2
−

)
L̂z + L̂z

(
L̂2

+ − L̂2
−

)]
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O−1
3 =

−i
4

[(
L̂+ − L̂−

)(
5L̂2

z − X̂ −
1

2

)

+

(
5L̂2

z − X̂ −
1

2

)(
L̂+ − L̂−

)]
O0

3 = 5L̂3
z −

(
3X̂ − 1

)
L̂z

O1
3 =

1

4

[(
L̂+ + L̂−

)(
5L̂2

z − X̂ −
1

2

)
+

(
5L̂2

z − X̂ −
1

2

)(
L̂+ + L̂−

)]
O2

3 =
1

4

[(
L̂2

+ + L̂2
−

)
L̂z + L̂z

(
L̂2

+ + L̂2
−

)]
O3

3 =
1

2

(
L̂3

+ + L̂3
−

)
O−4

4 =
−i
2

(
L̂4

+ − L̂4
−

)
O−3

4 =
−i
4

[(
L̂3

+ − L̂3
−

)
L̂z + L̂z

(
L̂3

+ − L̂3
−

)]
O−2

4 =
−i
4

[(
L̂2

+ − L̂2
−

)(
7L̂2

z − X̂ − 5
)

+
(

7L̂2
z − X̂ − 5

)(
L̂2

+ − L̂2
−

)]
O−1

4 =
−i
4

[ (
L̂+ − L̂−

)(
7L̂3

z −
(

3X̂ + 1
)
L̂z

)
+
(

7L̂3
z −

(
3X̂ + 1

)
L̂z

)(
L̂+ − L̂−

) ]
O0

4 = 35L̂4
z −

(
30X̂ − 25

)
L̂2
z + 3X̂2 − 6X̂

O1
4 =

1

4

[ (
L̂+ + L̂−

)(
7L̂3

z −
(

3X̂ + 1
)
L̂z

)
+
(

7L̂3
z −

(
3X̂ + 1

)
L̂z

)(
L̂+ + L̂−

) ]
O2

4 =
1

4

[(
L̂2

+ + L̂2
−

)(
7L̂2

z − X̂ − 5
)

+
(

7L̂2
z − X̂ − 5

)(
L̂2

+ + L̂2
−

)]
O3

4 =
1

4

[(
L̂3

+ + L̂3
−

)
L̂z + L̂z

(
L̂3

+ + L̂3
−

)]
O4

4 =
1

2

(
L̂4

+ + L̂4
−

)
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Appendix C

Derivation of nonlinear σ model

In Chapter 3, the large-spin antiferromagnetic chain was mapped onto the

nonlinear σ model. Here is presented a derivation of the action (Eqn. 3.2)

starting from a Heisenberg spin Hamiltonian for a chain with nearest-neighbour

interactions and easy-axis anisotropy

H = J
∑
i

Si · Si+1 − α
∑
i

(
Ŝzi

)2

(C.1)

with α > 0 and J > 0. Assuming that the spin magnitude is large, the spin can be

represented as a semiclassical vector moving on the surface of a sphere, S = SN,

where N is a vector on a unit sphere. In order to perform a path integral over the

system’s phase space, it is convenient to define a coherent state representation

of the system [137]. The Heisenberg model spin geometry allows such a state

to be constructed very simply by defining a maximally polarised state |ψ0〉 and

performing unitary rotations about this reference state

|N〉 = eΩ |ψ0〉 (C.2)

where Ω = zŜ+−z∗Ŝ− and z = θ
2
e−iφ. The spin coherent state for the entire chain

is then formed from a product state of each constituent spin whose position on the

surface of the sphere is parameterised by some parameter, τ . In the continuum

limit, the state of the chain becomes

|N(x, τ)〉 = |S1,m1〉⊗ |S2,m2〉⊗ ...⊗ |SN ,mN〉 = |N1(τ),N2(τ), ...,NN〉 . (C.3)
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The partition function is then

Z =

∫
dNδ

(
|N|2 − 1

)
〈N| e−βH |N〉 (C.4)

where β = 1
kBT

. The integral is performed over the unit sphere,
∫

dNδ (|N|2 − 1)

=
∫

dµ(N), summing over all possible states. The Boltzmann distribution is then

split into M small imaginary time steps, ∆τ = β/M , making use of the Suzuki-

Trotter decomposition eA+B = limN→∞(eA/NeB/N)N and inserting the resolution

of the identity between each imaginary time-step evolution operator. One can

therefore write down the partition function as a product of transitions, taking the

chain from a state at imaginary time-step, Nn, to a state at the next time-step

Nn+1,

Z = N
∫

dµ(N) 〈N0| e−∆τH |N1〉 〈N1| e−∆τH |N2〉 ... 〈NM−1| e−∆τH |N0〉 (C.5)

with the normalisation factor N = 2S+1
4π

. The transition amplitudes can be

calculated by expanding the state, |N(τ + ∆τ)〉 for a small time step

〈Nn| e−∆τH |Nn+1〉 = 1 + 〈N(τ)| ∂
∂τ
|N(τ)〉∆τ −∆τH(SN). (C.6)

The expansion can be re-exponentiated and summed over τ to find the partition

function

Z =

∫
dµ(N)e−

∫ β
0 dτ{−〈N(τ)| ∂

∂τ
|N(τ)〉+H(SN)} =

∫
dµ(N)e−(SH−SB) (C.7)

which separates into a contribution from the Hamiltonian action SH and the

Berry action SB. The quantity 〈N(τ)| ∂
∂τ
|N(τ)〉 is a complex geometric phase,

often termed the Berry phase [418], acquired when adiabatically transporting a

system about a closed loop in parameter space. The Berry phase action can be

computed using Eqn. C.2 and the definition of the derivative of an exponential

operator [419, 420]

d

dτ

[
eÂ(τ)

]
=

∫ 1

0

e(1−u)ÂdÂ

dτ
euÂdu (C.8)

which introduces a new variable, u, parameterising the path of N. The integral

yields the geometric interpretation that the Berry phase is the surface area of the
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cap swept out by the spin vector on the unit sphere∫ β

0

dτ

{
〈N(τ)| ∂

∂τ
|N(τ)〉

}
= iS

∫ β

0

dτ

∫ 1

0

du

(
∂N

∂u
× ∂N

∂τ

)
. (C.9)

As described in Chapter 3, the staggered Néel order parameter is introduced

through the transformation

Ni(τ) = (−1)ini(τ) + aLi(τ) (C.10)

where the field, Li(τ) describes fluctuations perpendicular to ni(τ). Inserting

Eqn. C.10 into Eqn. C.1 via Si = SNi and integrating over u, one finds

Z = e−(SH−SB) (C.11a)

SH =

∫ β

0

dτ

∫ ∞
−∞

dx

{
J

2
S2a (∂xn)2 − αS2

a
n2
z + aJS2L2 − αaS2L2

z

}
(C.11b)

SB = S ′B − iS
∫ β

0

dτ

∫ ∞
−∞

dx

{
L ·
(

n× ∂n

∂τ

)}
(C.11c)

where it has been used that τ is periodic, L is a small smoothly varying field, and

n ⊥ L. S ′B is a rapidly oscillating term which alternates sign on neighbouring

sites. Since the spin texture is smooth, this term is taken to interfere destructively

and thus can be neglected. All that remains is to integrate out the fluctuating field

L which can be performed by completing the square and performing a Gaussian

integral, yielding

Z = exp

(
−
∫ β

0

dτ

∫ ∞
−∞

dx

{
J

2
S2a (∂xn)2 − αS2

a
n2
z +

1

4aJ
(∂τn)2

})
. (C.12)

With the identification c =
√

2JSa, ρS = JS2a and κ = 2α/a2J , one finds the

action of the nonlinear sigma model

S =
ρS
2

∫ β

0

dτ

∫ ∞
−∞

dx

{
(∂xn)2 +

1

c2
(∂τn)2 − κn2

z

}
. (C.13)
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Appendix D

Derivation of soliton solutions

In Chapter 3, the nonlinear σ model for the field n with the anisotropy term

−κn2
z, under the saddle point approximation was shown yield a polar angle, θ,

which obeys the sine-Gordon equation

∂2
xθ −

1

c2
∂2
t θ =

1

2
κsin(2θ) (D.1)

admitting soliton solutions. In this appendix, those soliton solutions are obtained,

starting with the single soliton solution.

D.1 Single soliton solution

Assuming a travelling wave solution of the form θ(x, t) = 1
2
f(x− vt) = f(ξ) the

sine-Gordon equation (Eqn. D.1) becomes(
1− v2

c2

)
d2f

dξ2
= κsinf. (D.2)

Multiplying both sides by df
dξ

and integrating one finds

(
df

dξ

)2

=

(
1− v2

c2

)−1

(−2κcosf + 2κK) (D.3)

where K is a constant of integration. The constant of integration is chosen to be

K = 1 such that df
dξ
→ 0 as f → 0. After rearranging and integrating, f can be
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found in terms of ξ

2ln

[
tan

(
f

4

)]
= ± 2

√
κ√

1− v2

c2

(ξ − ξ0) (D.4)

and therefore the spatial and temporal dependence of the angle

θ(x, t) = 2arctan

exp

± √
κ√

1− v2

c2

(x− vt− x0)

 . (D.5)

D.2 Two soliton solution

The derivation of multi-soliton solutions is somewhat more involved. The typical

approach is to exploit the properties of the sine-Gordon equation to generate

N -soliton solutions from a known N − 1 soliton solution [141, 142, 421]. Such

a method can in fact be applied to generate the single-soliton solution from the

vacuum solution. In this section, the two-soliton solution will be gained from the

kink soliton solutions introduced in the previous section.

The sine-Gordon equation was first introduced in the study of pseudospherical

surfaces [421, 422] as an equation which describes spaces of constant negative

Gaussian curvature [423]. A great deal of mathematical interest has been

focused on the properties of pseudospherical surfaces [141, 421], in particular,

it has been shown that one can transform between different pseudospherical

surfaces by employing a particular form of transformation known as a Bäcklund

transform [421]. The full mathematical details are beyond the scope of this Thesis

and can be found in more extensive texts [141, 421]. Instead, here is presented

only the requisite details for the derivation.

As in the case of the single-soliton solution, one assumes a travelling wave solution,

f(ξ, τ), depending on ξ = 1
2
(x+ct) and τ = 1

2
(x−ct). The allows the sine-Gordon

equation to be rewritten as [142]

d2f

dξdτ
=

1

η2
sinf (D.6)

where η =
√

(1− v2/c2)/κ. If one assumes two solutions to the sine-Gordon

equation, ψ and φ, the Bäcklund transformation can be written as [141, 142, 421]

182



∂ξψ − ∂ξφ =
2a

η
sin

(
ψ + φ

2

)
(D.7a)

∂τψ + ∂τφ =
2

aη
sin

(
ψ − φ

2

)
(D.7b)

where a parameterises the transformation. The derivation now makes use of

Bianchi’s theory of permutability [142, 421], which dictates that the result of the

Bäcklund transform with parameter a1 followed by a second Bäcklund transform

with parameter a2 is the same function as generated with the two Bäcklund

transformations swapped. This statement is summarised by a Bianchi diagram

(Fig. D.1).

Figure D.1 A Bianchi diagram, demonstrating the permutability of two
subsequent Bäcklund transforms, parameterised by a1 and a2.

Just considering the ξ-component at first, the Bäcklund transform associated

with each leg can be written down

∂ξψ1 = ∂ξψ +
2a1

η
sin

(
ψ1 + ψ

2

)
(D.8a)

∂ξψ2 = ∂ξψ +
2a2

η
sin

(
ψ2 + ψ

2

)
(D.8b)

∂ξψ12 = ∂ξψ1 +
2a2

η
sin

(
ψ12 + ψ1

2

)
(D.8c)

∂ξψ21 = ∂ξψ2 +
2a1

η
sin

(
ψ21 + ψ2

2

)
. (D.8d)

Since the operation is commutative, i.e. ψ12 = ψ21 = ψ′ one can eliminate the
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terms that contain derivatives with respect to ξ by equating ∂ξψ12 and ∂ξψ21

2a1

η

[
sin

(
ψ + ψ1

2

)
− sin

(
ψ2 + ψ′

2

)]
2a2

η

[
sin

(
ψ1 + ψ′

2

)
− sin

(
ψ + ψ2

2

)]
= 0.

(D.9)

This can be rearranged using the law of addition of sine functions

a1sin

[
1

4
{(ψ′ − ψ)− (ψ1 − ψ2)}

]
= a2sin

[
1

4
{(ψ′ − ψ) + (ψ1 − ψ2)}

]
(D.10)

such that the expressions takes the form of the law of sines. By constructing a

A

C

B

Figure D.2 A geometric depiction of Eqn. D.10 with Bäcklund transformation
parameters a1 and a2 identified, along with the angles α, β and γ.

geometrical representation of Eqn. D.10 (Fig. D.2), and if one chooses

α =
1

4
[(ψ′ − ψ)− (ψ1 − ψ2)] (D.11a)

β =
1

4
[(ψ′ − ψ) + (ψ1 − ψ2)] , (D.11b)

Eqn. D.10 can be rearranged using the well-known law of tangents a−b
a+b

tan
(
α+β

2

)
=

tan
(
α−β

2

)
to find

tan

(
ψ′ − ψ

4

)
=
a2 + a1

a2 − a1

tan

(
ψ2 − ψ1

4

)
. (D.12)

By choosing ψ = 0 (the vacuum solution) and by choosing ψ1 and ψ2 to be the
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travelling wave single-soliton solutions (Eqn. D.5), one finds

tan

(
ψ′

4

)
=
a2 + a1

a2 − a1

(
e(x+vt)/η − e(x−vt)/η

1 + e2x/η

)
=
a2 + a1

a2 − a1

sinh (vt/η)

cosh (x/η)

(D.13)

where the transformation back to (x, t) has been performed. Attention now

turns to the relationship between Bäcklund parameters a1, a2. The Bäcklund

transformation can be employed to generate the single-soliton solution from

the vacuum solution. By employing Eqn. D.7a and Eqn. D.7b one finds by

integrating∫
dψ

sin
(
ψ
2

) =

∫
2adξ

η
=⇒ 2ln

[
tan

(
ψ

4

)]
=

2aξ

η
+ f1(τ) (D.14a)∫

dψ

sin
(
ψ
2

) =

∫
2dτ

aη
=⇒ 2ln

[
tan

(
ψ

4

)]
=

2τ

aη
+ f2(ξ). (D.14b)

By setting the two equations to be equal, one finds

f1(τ) =
2τ

aη
+ C (D.15a)

f2(ξ) =
2aξ

η
+ C (D.15b)

where C is a constant. These can be substituted into the expression for ψ

ψ(x, t) = 4arctan

[
exp

(
aξ

η
+

τ

aη
+
C

2

)]
(D.16)

and the single-soliton solution recovered. This expression can be compared to

the single-soliton solution found previously (Eqn. D.5), to read off the relation

between the Bäcklund parameter a and the physical parameters of the model.

Doing so, reveals
v

c
=

1− a2

1 + a2
. (D.17)

Since v1 = −v2 = v, it follows that a2 = 1/a1 =
√

(c+ v)/(c− v). Performing

the substitution, one can then find θ(x, t) = 1
2
f(x, t) in terms of the parameters

of the model

θ(x, t) = 2arctan

 csinh v
√
κt√

1− v2
c2

vcosh
√
κx√

1− v2
c2

 (D.18)
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where the substitution η =
√

(1− v2/c2)/κ has been performed.
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Appendix E

Spin-wave calculations for Fe3GeTe2

In Chapter 6, neutron scattering measurements on the van der Waals itinerant

ferromagnet Fe3GeTe2 were presented. The excitations were modelled using

a hexagonal lattice Heisenberg model. In this appendix, linear spin wave

calculations are presented to supplement the discussion given in Chapter 6.

Firstly, the dispersion relation of the hexagonal lattice ferromagnet is derived

using linear spin wave theory. Secondly, a model which provides a more realistic

description of the Fe3GeTe2 crystal is presented. Finally, the correspondence

between the two models in the long wavelength limit is found, motivating the use

of the simpler model in Chapter 6 for comparison with STM measurements.

E.1 Linear spin wave theory on the hexagonal

lattice

The starting point is the Heisenberg model on the hexagonal lattice. The

hexagonal lattice can be described by two basis vectors, ê1 and ê2. These basis

vectors are chosen to be non-orthogonal, separated by an angle of 120◦. The

hexagonal lattice has two sites per unit cell, which can be assigned a label, A or

B

H = J

j∈{0,1,2}∑
r

SA(r) · SB(r + aj) +K[(ŜzA(r))2 + (ŜzB(r))2] (E.1)

where J is the nearest neighbour interaction, K is the magnetic anisotropy and

SA,B is the spin operator on site A or B. The vectors are defined as a0 = (0, 0),
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a1 = (0, 1) and a0 = (1, 1) in the P63/mmc space group. In order to proceed, a

Holstein-Primakoff transformation [365] can be performed

Ŝ+
α (r) =

√
2S − b̂†rαb̂rαb̂rα (E.2a)

Ŝ−α (r) = b̂†rα

√
2S − b̂†rαb̂rα (E.2b)

Ŝzα(r) = S − b̂†rαb̂rα (E.2c)

where the operators, b̂rα obey the bosonic commutation relations, [b̂rα, b̂
†
r′β] =

δrr′δαβ. It can be verified that this transformation and the accompanying

bosonic algebra reproduces the standard spin commutation relations, [Ŝµiα, Ŝ
ν
jβ] =

δijδαβεµνηŜ
η
iα. By performing the transformation and discarding terms of order

three and higher (the harmonic approximation), the Hamiltonian can be written

as

H = JS
∑
r

[
b̂A(r)b̂†B(r + aj) + b̂†A(r)b̂B(r + aj)

− b̂†A(r)b̂A(r)− b̂†B(r + aj)b̂B(r + aj)
]

− 2KS
∑
r

[
b̂†A(r)b̂A(r) + b̂†B(r)b̂B(r)

]
.

(E.3)

Since the transformed Hamiltonian contains no anomalous terms, it can be

diagonalised straightforwardly by a Fourier transform. In reciprocal space, the

Hamiltonian (Eqn. E.3) can be written as

H =
(
b̂†A(q) b̂†B(q)

)(vS γq

γ∗q vS

)(
b̂A(q)

b̂B(q)

)
(E.4)

with vS = −(3JS + 2KS) and γq = JS
∑

j e
iq·aj , yielding the dispersion relation

E±q = vS ± |γq|. (E.5)

E.2 Linear spin wave theory for Fe3GeTe2

Having presented the derivation of the dispersion relation for the Heisenberg

model on the hexagonal lattice, a more realistic model of Fe3GeTe2 is now

introduced. As discussed in Chapter 6, the crystal structure is best understood

in terms of a hexagonal lattice with one of the sublattices duplicated at ±δc.
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These sublattices will be labelled Bu and Bd in the following. Consequently, the

A and B sites now have a coordination of six and four respectively.

The spin wave Hamiltonian can now be written as

H =J

α∈{u,d}
j∈{0,1,2}∑

r

SA(r) · SBα(r + aj) + J
∑
r

SBu(r) · SBd
(r)

+K

α∈{u,d}∑
r

[(ŜzA(r))2 + (ŜzBα(r))2].

(E.6)

A Holstein-Primakoff transformation can be performed and the Hamiltonian

written in momentum space as

H =
∑
q

{(
γqb̂
†
A(q)b̂Bu(q) + γqb̂

†
A(q)b̂Bd

(q) + JSb̂†Bu
(q)b̂Bd

(q)
)

+ h.c.

− 6JSb̂†A(q)b̂A(q)− 4JS
[
b̂†Bu

(q)b̂Bu(q) + b̂†Bd
(q)b̂Bd

(q)
]}

− 2KS
∑
q

{
b̂†A(q)b̂A(q) + b̂†Bu

(q)b̂Bu(q) + b̂†Bd
(q)b̂Bd

(q)
}
.

(E.7)

As above, γq = JS
∑

j e
iq·aj . This Hamiltonian can be written in the compact

form, H =
∑

q Ψ†qMΨq, where Ψ†q = (b̂†A(q), b̂†Bu
(q), b̂†Bd

(q)) and

M =

−6JS − 2KS γq γq

γ∗q −6JS − 2KS JS

γ∗q JS −4JS − 2KS

 . (E.8)

This Hamiltonian can be diagonalised by a Bogoliubov transformation [424], or

by diagonalising the matrix gM , where g = [Ψq,Ψ
†
q] is the metric that enforces

the bosonic commutation relations [425], which in this case is just the identity

matrix

g = [Ψq,Ψ
†
q] =

1 0 0

0 1 0

0 0 1

 . (E.9)

After diagonalising gM , the dispersion relation for the two dispersive modes along
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(H,H) can be written as

E±(H,H) =−
(

9

2
JS + 2KS

)
± 1

2
JS
√

33 + 32cos(2πH) + 16cos(4πH).

(E.10)

E.3 Correspondence between the two models

The motivation behind mapping Fe3GeTe2 onto a hexagonal spin model comes

from the lack of sensitivity to magnetic correlations along the c-axis afforded by

STM and the relatively broad c∗ axis integration employed in neutron scattering.

Since Fe3GeTe2 is itinerant, the localised spin model is only valid in the limit of

small q. The spin wave dispersion for each of these models is now compared in

this limit by expanding about the high symmetry Γ-point.

Expanding the lower mode of the hexagonal model dispersion relation (Eqn. E.5)

one finds for small q = (H,H), E ≈ −2KS−4π2JSH2. Now for the more realistic

model (Eqn. E.10), one finds E ≈ −2KS − 16π2

3
JSH2. Therefore the extracted

exchange parameters fitted from both models differ by a simple constant in the

limit of small q.
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Appendix F

Domain wall calculations for

Fe3GeTe2

A derivation of the domain wall profile of a hexagonal lattice Heisenberg model is

now presented. It will then be shown that the more realistic model of Fe3GeTe2

presented in Section E.2 gives consistent results, justifying the use of the simple

hexagonal model used in Chapter 6.

F.1 Continuum limit of spin model

The Heisenberg model on the hexagonal lattice, with nearest-neighbour coupling

can be written as

H = J

j∈{0,1,2}∑
r (unit cells)

SA(r) · SB(r + aêj), (F.1)

where the sum is over all unit cells. By representing the spins as classical vectors

of length S, a continuum description of the magnetisation can be developed. The

transformation S(r) = Sn(r) can be introduced, dropping the site index in the

spirit of a classical treatment of the spin degree of freedom. Neglecting constant

terms, Eqn. F.1 can be written as

H = −JS
2

2

j∈{0,1,2}∑
r (unit cells)

[n(r + dnnêj)− n(r)]2 . (F.2)
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Figure F.1 Definition of the basis vectors êi (i = 1 . . . 3) for a honeycomb lattice,
as used in Chapter 6.

The basis vectors êj can readily be converted from the non-orthogonal P63/mmc

rhombohedral coordinate system into Cartesian coordinates.

In Cartesian coordinates one has ê1 = (−
√

3
2
, 1

2
), ê2 = (

√
3

2
, 1

2
) and ê3 = (0,−1)

(Fig. F.1), and hence

[n(r + dnnê1)− n(r)] = −
√

3

2
dnn∂x (n) +

1

2
dnn∂y (n) (F.3a)

[n(r + dnnê2)− n(r)] =

√
3

2
dnn∂x (n) +

1

2
dnn∂y (n) (F.3b)

[n(r + dnnê3)− n(r)] = dnn∂y (n) . (F.3c)

Performing the sum over j one finds

H = −3JS2

2

∑
r (unit cells)

dnn

[
(∂xn)2 + (∂yn)2] . (F.4)

Finally the continuum limit
∑

r →
1

Aunit

∫
d2r, (where Aunit is the area of the

unit cell) is taken to find a classical field theory of the Heisenberg model on the

hexagonal lattice

H =
ρS
2

∫
d2r
{

(∂xn)2 + (∂yn)2} (F.5)

where the spin stiffness is ρS = 3JS2d2nn
Aunit

= 3JS2d2nn
2Asite

. Asite is the area occupied by

one site and is hence half the value of Aunit for a hexagonal lattice. Performing
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the continuum limit of the single ion anisotropy term, one finds

Hanis =K

(unit cells)∑
r

[
(SzA(r))2 + (SzB(r))2] = KS2

(sites)∑
r

[nz(r)]2

= κ

∫
d2r
{

(nz(r))2} (F.6)

with the anisotropy parameter κ = 2KS2

Aunit
= KS2

Asite
.

F.1.1 Domain wall solutions

The terms originating from exchange (Eqn. F.5) can be seen as representing the

stiffness of the spin field, penalising the canting of spins away from ferromagnetic

alignment. In a domain wall, these terms compete against the single-ion

anisotropy terms (Eqn. F.6), the former favouring a spatially extended domain

wall such that the spins remain closely aligned, and the latter favouring a rotation

of spins over a short length scale when θ is far from 0 or π.

Following the general approach outlined in Ref. [284], an expression for the

domain wall shape on the hexagonal lattice will be derived. For comparison with

the STM data, a one-dimensional cut through the domain wall is required, which

can be assumed to occur along ŷ (Fig. F.2), assuming that the spins rotate in

a common rotation plane (x, z) defined by the angle θ, n(r) = (sinθ(r), cosθ(r)).

In terms of this rotation angle, the energy of a domain wall can be written as

EDW =

∫
d2r
{ρS

2
(∂yθ)

2 + κ
(
1− cos2θ

)}
. (F.7)

Note here that it has been assumed that ∂xθ = 0, as required for a domain wall

along ŷ. Using the domain wall Lagrangian L = ρS
2

(∂yθ)
2 + κsin2θ, the static

Euler-Lagrange equation, d
dy

(
∂L
∂θ̇

)
= dL

dθ
, (where θ̇ = ∂θ

∂y
) can be written down

and solved for the domain wall profile. Using the boundary condition dθ
dy
→ 0 as

y → ±∞, one finds

θ(y) = 2arctan

(
e

√
2κ
ρS

(y−y0)
)
. (F.8)

This is known as the kink soliton, and reflects the conflict between the exchange

stiffness energy and the anisotropy energy in the domain wall. The spins rotate

little between nearest neighbours at the edges of the domain wall, where the

anisotropy energy is small, before rotating much more between adjacent sites
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Figure F.2 Visualisation of a Néel domain wall on the 2-d hexagonal lattice.
The blue and red arrows indicate spins on the A and B sublattices
respectively. The angle between the direction in which the spin is
pointing locally and ẑ is given by θ. The canting angle between
neighbouring spins is δθ, which is smaller close to the edges of the
domain wall. Both θ and δθ are shown here for the second row of
atoms parallel to the domain wall, where θ = δθ (in the first row
θ = 0, and the spins are parallel to ẑ). Different colours represent
spins on different sublattices.

when this energy increases at the centre of the wall. Using Eqn. F.8, the z-

component of the spin field can be written down

nz(y) = tanh

[√
2κ

ρS
(y − y0)

]
= tanh

[√
4K

3Jd2
nn

(y − y0)

] (F.9)

which takes the shape of a step function with a width that depends on
√

K
J

.

Finally the equivalence of modelling the data using both the hexagonal model

and the more realistic model presented in Section E.2, in the limit of small q,

will be demonstrated, so long as the choice of model is consistent for both the

neutron and the STM data.

The spin model for the full crystallographic structure of Fe3GeTe2 is given by Eqn.
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E.6. As in the previous section, the spins in the continuum limit are represented

by a vector field S(r) = Sn(r), where the site index is dropped and the spins on

the u and d sublattices are assumed to be coaligned. Neglecting constant terms

one has

H = −JS2

j∈{0,1,2}∑
r (unit cells)

[n(r + dnnêj)− n(r)]2 (F.10a)

Hanis =
3

2
KS2

(sites)∑′

r

[nz(r)]2 (F.10b)

where ′ indicates that the sum is performed over the sites of the hexagonal lattice

since the sum over the u and d sublattices has already been explicitly performed.

By comparing these expressions with the analogous expressions for the hexagonal

model Eqns. F.2 and F.6, it is possible to map from one model to the other,

ρhexS =
1

2
ρFGTS (F.11a)

κhex =
2

3
κFGT (F.11b)

thus δFGT =
√

4
3
δhex. Examination of the small-q expansion of the dispersion

along (H,H) for the two models

εhex+ ≈ −2KS − 4π2JhexSH
2 (F.12a)

εFGT+ ≈ −2KS − 16

3
π2JFGTSH

2 (F.12b)

shows that Jhex = 4
3
JFGT , therefore any consistent treatment of the STM and

neutron data using either model in the small-q limit, as described above, yields

consistent results.
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Appendix G

Green’s function formalism for a

collinear system

The Green’s function equation of motion in the laboratory frame is defined as

Gαβ
γ̃γ̃′(i

′j′, t) = −iΘ(t)〈[Ŝαi′γ̃(t), Ŝ
β
j′γ̃′ ]〉 (G.1)

The indices α and β label the spatial components in Cartesian coordinates, whilst

γ̃ and γ̃′ label the atom site within the unit cell. Causality is enforced by the

Heaviside step function Θ(t), which precludes negative values of t. Taking the

derivative of both sides with respect to time and multiplying by a factor of i, one

finds that

i∂tG
αβ
γ̃γ̃′(i

′j′, ω) =δ(t)〈[Ŝαi′γ̃(t), Ŝ
β
j′γ̃′ ]〉

− iΘ(t)〈[i∂tŜαi′γ̃(t), Ŝ
β
j′γ̃′ ]〉.

(G.2)

Taking advantage of the Heisenberg equation of motion, i∂tŜ
α
iγ(t) = [Ŝαiγ(t),H],

and performing a Fourier transform in time, Eqn. G.2 can be written as

ωGαβ
γ̃γ̃′(i

′j′, ω) =〈[Ŝαi′γ̃, Ŝ
β
j′γ̃′ ]〉+

Gγ̃γ̃′([Ŝ
α
i′γ̃,H], Ŝβj′γ̃′ , ω).

(G.3)
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For a system which consists of coupled multi-level sites, one can separate the

Hamiltonian into single-ion and inter-ion terms

H =
∑
iγ

H′(i, γ) +Hint, (G.4)

where H′(i, γ) contains all of the manifestly single-ion terms such as spin-orbit

coupling and the crystalline electric field whilst Hint describes the inter-ion terms

such as the exchange interaction between sites and is therefore a sum over all

bonds. In order that the correct single-ion ground state is expanded about, a

mean field decoupling is now performed Siγ → 〈Siγ〉 + δSiγ, discarding terms ∼
O(δSiγ)

2. Following this decoupling, the single-ion Hamiltonian gains a molecular

mean field Zeeman term which breaks spin-rotational symmetry.

Assuming an interaction Hamiltonian of the form Hint = 1
2

∑γγ′

ij J
γγ′

i,j Siγ · Sjγ′ ,
where J γγ′

i,j is a Heisenberg exchange parameter, the decoupled Hamiltonian

becomes

H =H1 +H2

H1 =
∑
iγ

{H′(iγ) +
∑
jγ′

J γγ′

ij [Siγ −
1

2
〈Siγ〉]〈Sjγ′〉}

H2 =
1

2

γγ′∑
ij

J γγ′

i,j Siγ · Sjγ′

−
γγ′∑
ij

J γγ′

ij [Siγ −
1

2
〈Siγ〉]〈Sjγ′〉

.

The projection of the spin operators onto the space spanned by the eigenvectors

of the single-ion Hamiltonian, H1 can be written as

Ŝαiγ =
∑
pq

Sγαpq ĉ
†
p(i)ĉq(i), (G.5)

where the sum extends over all eigenstates, |p〉, of the Hamiltonian and Sγαpq =

〈p| Ŝαγ |q〉. The operators ĉ†q create the single-ion eigenstate q. Now one must

calculate the commutator on the right hand side of Eqn. G.3 using the projected

spin operator. The terms in the commutator are quartic in bosonic operators,
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however a random phase decoupling [426] can be performed,

ĉ†p(i)ĉq(i)ĉ
†
m(j)ĉn(j) =fp(i)δpq ĉ

†
m(j)ĉn(j)

+ fm(j)δmnĉ
†
p(i)ĉq(i),

(G.6)

where fp(i) is the Bose occupation factor of level p on site i. In Cartesian

coordinates, the commutator can be written as [Ŝαi′γ̃,H] =
∑4

s=1 Cs, with the

individual terms given by,

C1 =

lkpq∑
jγγ′

φqp(i
′)ĉ†k(j)ĉl(j)S

γ̃
αqpS

γ
xpqS

γ′

xklJ
γγ′

ij (G.7a)

C2 =

lkpq∑
jγγ′

φqp(i
′)ĉ†k(j)ĉl(j)S

γ̃
αqpS

γ
ypqS

γ′

yklJ
γγ′

ij (G.7b)

C3 =

lkpq∑
jγγ′

φqp(i
′)ĉ†k(j)ĉl(j)S

γ̃
αqpS

γ
zpqS

γ′

zklJ
γγ′

ij (G.7c)

C4 =
∑
pq

(ωp − ωq) ĉ†q(i′)ĉp(i′)S γ̃αqp, (G.7d)

where φqp(i
′) = (fq(i

′) − fp(i′)). It should be noted that J γγ′

ij has been taken to

be a Heisenberg coupling but off-diagonal terms can readily be considered and

give rise to terms ∼ S γ̃αqpS
γ
ηpqS

γ′

νkl, where η 6= ν. By substituting Eqns. G.7a, G.7b

and G.7c into Eqn. G.3 and performing a spatial Fourier transform one recovers

an expression for the Green’s function equation of motion

Gαβ
γ̃γ̃′(q, ω) = gαβγ̃γ̃′(ω)δγ̃γ̃′

+
∑
γγ′

Jγγ′(q)gαxγ̃γ (ω)Gxβ
γ′γ̃′(q, ω)

+
∑
γγ′

Jγγ′(q)gαyγ̃γ (ω)Gyβ
γ′γ̃′(q, ω)

+
∑
γγ′

Jγγ′(q)gαzγ̃γ (ω)Gzβ
γ′γ̃′(q, ω),

(G.8)
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with the single ion Green’s function given by

gαβγ̃γ̃′(ω) =
∑
qp

S γ̃αqpS
γ̃′

βpqφqp

ω − (ωp − ωq)
, (G.9)

where translational symmetry has been used to drop the site index on φqp.

The magnon propagator itself satisfies a Dyson equation and hence by performing

this calculation in terms of Green’s functions, one can go beyond the single

magnon picture and calculate the effect of magnon-magnon scattering on the

inelastic neutron response by using Feynman diagram rules. The effect of these

higher order terms is, at one-loop level, to dress the magnon propagator with a

self energy depending on the magnon density. At higher orders in perturbation

theory one adds corrections this self energy. Two irreducible topologically distinct

Feynman diagrams can be written down [427], with their interaction potentials

calculable from the Dyson Maleev or Holstein Primakoff Hamiltonian [428, 429],

since the single-ion physics has been treated in the bare magnon propagator, and

the spin correlator can equally be written in terms of magnon creation operators.

These higher order terms each carry a factor of 1/S per vertex [428] and are small

for S →∞. The two-loop diagram (Fig. G.1 (b)) provides a real contribution to

the self energy [427] and hence it renormalises the spectrum. The next diagram

contains a real part and an imaginary part which represents a damping term.

This gives an energy broadening to the magnon linewidth, which depends on

momentum [427].

In some cases, there are further vertices that should be considered. In systems

where gzz(ω) is nonzero, that is to say, 〈Ŝz〉 is not conserved, the extension

beyond the harmonic approximation yields vertices where three lines meet. These

terms are absent from spin-rotationally symmetric models, as is evident from

the absence of cubic terms in the Holstein Primakoff Hamiltonian for collinear

systems. Similar terms appear in noncollinear systems where SO(2) symmetry is

broken [354]. These terms represent two magnon decays into a single magnon or

vice versa. Using Wick’s theorem [430], any n-point correlator can be decomposed

into a sum of all possible contractions of the two-point correlators, thus one can

calculate the effect of these decay vertices from the Green’s functions evaluated
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by the approach outlined here (Eqn. G.8),

S(q, ω) ∝ −Im

[∑
θφτν

{∫
dq1

∫
dq2

∫
dω1

∫
dω2G

θφ(q1, ω1)Gτν(q2, ω2)

×δ(ω − ω1 − ω2)δ(q− q1 + q2)
}]
,

(G.10)

where conservation of momentum and energy has been ensured. The decay

a)

b)

c)

Figure G.1 (a) Feynman diagrams showing the Dyson series structure of the
expression for the Green’s function obtained in Eqn. G.8. (b)
Dyson series for the magnon Green’s function showing the first and
second order perturbative corrections to the magnon propagator for
a collinear spin system. (c) Decay and source channels for three
magnon interactions.

amplitudes are governed by kinematics. In particular, it has been argued that
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the the longitudinal mode, Gzz is particularly susceptible to decay into two lower

energy transverse spin waves [137]. Though the calculation of these terms has

been simplified by formulating the spin wave calculation in terms of Green’s

functions, it still remains a formidable task to evaluate this integral in systems

which disperse in more than one direction. This is especially true for the fitting

of neutron scattering data measured on a time-of-flight spectrometer where one

typically integrates over a finite window in momentum space to improve statistics.
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[141] C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations:
Geometry and Modern Applications in Soliton Theory , Cambridge Texts
in Applied Mathematics (Cambridge University Press, 2002).

[142] S. Cuenda, N. Quintero, and A. Sanchez, Discrete Contin. Dyn. Syst. - S
4, 1047–1056 (2011).

[143] Physica D 19, 165 (1986).

[144] V. A. Gani and A. E. Kudryavtsev, Phys. Rev. E 60, 3305 (1999).

[145] “Wolfram research, inc., mathematica, version 12.1, champaign, il (2020).”
https://www.wolfram.com/mathematica.

[146] L. M. Corliss, J. M. Hastings, and W. Kunnmann, Phys. Rev. 160, 408
(1967).

[147] Y. Mizuno, T. Tohyama, S. Maekawa, T. Osafune, N. Motoyama, H. Eisaki,
and S. Uchida, Phys. Rev. B 57, 5326 (1998).

[148] T. Shimizu, T. Matsumoto, A. Goto, T. V. Chandrasekhar Rao,
K. Yoshimura, and K. Kosuge, Phys. Rev. B 68, 224433 (2003).

[149] P. L. Christiansen and O. H. Olsen, Phys. Scr. 20, 531 (1979).

[150] J. D. Gibbon and G. Zambotti, Nuov. Cim. B 28, 1 (2008).

[151] K. K. Kobayashi and M. Izutsu, J. Phys. Soc. Jpn 41, 1091 (1976).

[152] A. G. Bratsos, J. Comput. Appl. Math. 206, 251–277 (2007).

[153] N. Goldenfeld, Lectures on Phase Transitions and the Renormalization
Group (CRC Press, Taylor & Francis Group, Boca Raton, 2019).

[154] A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).

[155] S. Damerio, P. Nukala, J. Juraszek, P. Reith, H. Hilgenkamp, and
B. Noheda, npj Quantum Mater. 5, 33 (2020).

[156] A. V. Chubukov and D. I. Golosov, J. Phys.: Condens. Matter 3, 69 (1991).

[157] M. E. Zhitomirsky and T. Nikuni, Phys. Rev. B 57, 5013 (1998).

[158] K. Penc, N. Shannon, and H. Shiba, Phys. Rev. Lett. 93, 197203 (2004).

[159] C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated Magnetism
(Springer, New York, 2010).

210

http://dx.doi.org/10.1103/PhysRevA.45.R5369
http://dx.doi.org/10.1103/PhysRevA.45.R5369
http://dx.doi.org/https://doi.org/10.1016/0034-4877(86)90027-3
http://dx.doi.org/10.1017/CBO9780511606359
http://dx.doi.org/10.1017/CBO9780511606359
http://dx.doi.org/10.3934/dcdss.2011.4.1047
http://dx.doi.org/10.3934/dcdss.2011.4.1047
http://dx.doi.org/https://doi.org/10.1016/0167-2789(86)90019-9
http://dx.doi.org/10.1103/PhysRevE.60.3305
http://dx.doi.org/10.1103/PhysRev.160.408
http://dx.doi.org/10.1103/PhysRev.160.408
http://dx.doi.org/ 10.1103/PhysRevB.57.5326
http://dx.doi.org/ 10.1103/PhysRevB.68.224433
http://dx.doi.org/10.1088/0031-8949/20/3-4/032
http://dx.doi.org/10.1007/BF02722800
http://dx.doi.org/10.1143/JPSJ.41.1091
http://dx.doi.org/10.1016/j.cam.2006.07.002
http://dx.doi.org/10.1103/PhysRevB.49.11919
http://dx.doi.org/ 10.1038/s41535-020-0236-2
http://dx.doi.org/10.1088/0953-8984/3/1/005
http://dx.doi.org/10.1103/PhysRevB.57.5013
http://dx.doi.org/10.1103/PhysRevLett.93.197203


[160] J. S. White, C. Niedermayer, G. Gasparovic, C. Broholm, J. M. S. Park,
A. Y. Shapiro, L. A. Demianets, and M. Kenzelmann, Phys. Rev. B 88,
060409 (2013).

[161] Y. Kamiya, L. Ge, T. Hong, Y. Qiu, D. L. Quintero-Castro, Z. Lu, H. B.
Cao, M. Matsuda, E. S. Choi, C. D. Batista, M. Mourigal, H. D. Zhou,
and J. Ma, Nat. Commun. 9, 2666 (2018).

[162] Y. Shirata, H. Tanaka, A. Matsuo, and K. Kindo, Phys. Rev. Lett. 108,
057205 (2012).

[163] H. Tsujii, C. R. Rotundu, T. Ono, H. Tanaka, B. Andraka, K. Ingersent,
and Y. Takano, Phys. Rev. B 76, 060406 (2007).

[164] F. D. M. Haldane, Phys. Lett. 93A, 464 (1983b).

[165] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59,
799 (1987).

[166] M. Oshikawa, Phys. Rev. Lett. 84, 1535 (2000).

[167] A. Vasiliev, O. Volkova, E. Zvereva, and M. Markina, NPJ Quantum Mater.
3, 18 (2018).

[168] D. A. Tennant, T. G. Perring, R. A. Cowley, and S. E. Nagler, Phys. Rev.
Lett. 70, 4003 (1993).

[169] J. Villain, Physica B 79, 1 (1975).

[170] I. S. Jacobs, J. W. Bray, H. R. Hart, L. V. Interrante, J. S. Kasper, G. D.
Watkins, D. E. Prober, and J. C. Bonner, Phys. Rev. B 14, 3036 (1976).

[171] M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).

[172] Y. H. Matsuda, N. Abe, S. Takeyama, H. Kageyama, P. Corboz,
A. Honecker, S. R. Manmana, G. R. Foltin, K. P. Schmidt, and F. Mila,
Phys. Rev. Lett. 111, 137204 (2013).

[173] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).

[174] M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett. 78, 1984
(1997).

[175] K. Totsuka, Phys. Rev. B 57, 3454 (1998).

[176] C. L. Henley, Phys. Rev. Lett. 62, 2056 (1989).

[177] A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida,
M. Hagiwara, A. Y. Shapiro, and M. E. Zhitomirsky, Phys. Rev. Lett.
119, 047204 (2017).

[178] S. Agrestini, C. L. Fleck, L. C. Chapon, C. Mazzoli, A. Bombardi, M. R.
Lees, and O. A. Petrenko, Phys. Rev. Lett. 106, 197204 (2011).

211

http://dx.doi.org/ 10.1103/PhysRevB.88.060409
http://dx.doi.org/ 10.1103/PhysRevB.88.060409
http://dx.doi.org/ 10.1038/s41467-018-04914-1
http://dx.doi.org/ 10.1103/PhysRevLett.108.057205
http://dx.doi.org/ 10.1103/PhysRevLett.108.057205
http://dx.doi.org/10.1103/PhysRevB.76.060406
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.84.1535
http://dx.doi.org/10.1038/s41535-018-0090-7
http://dx.doi.org/10.1038/s41535-018-0090-7
http://dx.doi.org/10.1103/PhysRevLett.70.4003
http://dx.doi.org/10.1103/PhysRevLett.70.4003
http://dx.doi.org/0378-4363(75)90101-1
http://dx.doi.org/ 10.1103/PhysRevB.14.3036
http://dx.doi.org/10.1103/PhysRevLett.70.3651
http://dx.doi.org/10.1103/PhysRevLett.111.137204
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1103/PhysRevLett.78.1984
http://dx.doi.org/10.1103/PhysRevLett.78.1984
http://dx.doi.org/10.1103/PhysRevB.57.3454
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/ 10.1103/PhysRevLett.119.047204
http://dx.doi.org/ 10.1103/PhysRevLett.119.047204
http://dx.doi.org/ 10.1103/PhysRevLett.106.197204


[179] T. Takagi and M. Mekata, J. Phys. Soc. Jpn. 64, 4609 (1995).

[180] H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa,
K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Phys. Rev. Lett. 94,
227201 (2005).

[181] H. Kageyama, K. Yoshimura, K. Kosuge, M. Azuma, M. Takano,
H. Mitamura, and T. Goto, J. Phys. Soc. Jpn. 66, 3996 (1997a).

[182] H. Kageyama, K. Yoshimura, K. Kosuge, H. Mitamura, and T. Goto, J.
Phys. Soc. Jpn. 66, 1607 (1997b).

[183] V. Hardy, M. R. Lees, A. Maignan, S. Hebert, D. Flahaut, C. Martin, and
D. M. Paul, J. Phys. Condens. Matter 15, 5737 (2003).

[184] Y. B. Kudasov, Phys. Rev. Lett. 96, 027212 (2006).

[185] E. V. Sampathkumaran and A. Niazi, Phys. Rev. B 65, 180401(R) (2002).

[186] S. Niitaka, K. Yoshimura, K. Kosuge, M. Nishi, and K. Kakurai, Phys.
Rev. Lett. 87, 177202 (2001).

[187] V. Hardy, C. Martin, G. Martinet, and G. André, Phys. Rev. B 74, 064413
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