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Abstract

Medical imaging has revolutionised the diagnosis and treatments of diseases since the first

medical image was taken using X-rays in 1895. As medical imaging became an essential tool

in a modern healthcare system, more medical imaging techniques have been invented, such

as Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Computed

Tomography (CT), Ultrasound, etc. With the advance of medical imaging techniques, the

demand for processing and analysing these complex medical images is increasing rapidly.

Efforts have been put on developing approaches that can automatically analyse medical im-

ages. With the recent success of deep learning (DL) in computer vision, researchers have

applied and proposed many DL-based methods in the field of medical image analysis. How-

ever, one problem with data-driven DL-based methods is the lack of data. Unlike natural

images, medical images are more expensive to acquire and label. One way to alleviate the

lack of medical data is medical image synthesis.

In this thesis, I first start with pseudo healthy synthesis, which is to create a ‘healthy’ looking

medical image from a pathological one. The synthesised pseudo healthy images can be used

for the detection of pathology, segmentation, etc. Several challenges exist with this task. The

first challenge is the lack of ground-truth data, as a subject cannot be healthy and diseased at

the same time. The second challenge is how to evaluate the generated images. In this thesis,

I propose a deep learning method to learn to generate pseudo healthy images with adversarial

and cycle consistency losses to overcome the lack of ground-truth data. I also propose several

metrics to evaluate the quality of synthetic ‘healthy’ images. Pseudo healthy synthesis can be

viewed as transforming images between discrete domains, e.g. from pathological domain to

healthy domain. However, there are some changes in medical data that are continuous, e.g.

brain ageing progression.

Brain changes as age increases. With the ageing global population, research on brain ageing

has attracted increasing attention. In this thesis, I propose a deep learning method that can

simulate such brain ageing progression. Specifically, longitudinal brain data are not easy to



acquire; if some exist, they only cover several years. Thus, the proposed method focuses on

learning subject-specific brain ageing progression without training on longitudinal data. As

there are other factors, such as neurodegenerative diseases, that can affect brain ageing, the

proposed model also considers health status, i.e. the existence of Alzheimer’s Disease (AD).

Furthermore, to evaluate the quality of synthetic aged images, I define several metrics and

conducted a series of experiments.

Suppose we have a pre-trained deep generative model and a downstream tasks model, say

a classifier. One question is how to make the best of the generative model to improve the

performance of the classifier. In this thesis, I propose a simple procedure that can discover

the ‘weakness’ of the classifier and guide the generator to synthesise counterfactuals (syn-

thetic data) that are hard for the classifier. The proposed procedure constructs an adversarial

game between generative factors of the generator and the classifier. We demonstrate the ef-

fectiveness of this proposed procedure through a series of experiments. Furthermore, we

consider the application of generative models in a continual learning context and investigate

the usefulness of them to alleviate spurious correlation.

This thesis creates new avenues for further research in the area of medical image synthesis

and how to utilise the medical generative models, which we believe could be important for

future studies in medical image analysis with deep learning.
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the prior distribution p(z); and the Decoder obtains reconstruction x̂ from the
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Chapter 1
Introduction

Medical imaging has revolutionised ways of diagnosing and treating diseases since the first

medical image was taken using X-rays in 1895. As medical imaging became an essential tool

in the modern healthcare system, more medical imaging techniques have been invented, such

as Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Computed

Tomography (CT), Ultrasound, etc. With the advance of medical imaging techniques, the

demand for processing and analysing these complex medical images is increasing rapidly.

Conventionally, medical images are analysed by clinical experts who have been trained for

years, and the processing can be time-consuming depending on the tasks. For example, for

medical image segmentation, the medical expert has to label out pixel by pixel where are

different organs or where is the target pathology, based on prior medical knowledge. Further-

more, the variations of different imaging techniques and different pathologies, as long as the

potential fatigue, introduce more difficulty, risks and expenses into the analysis of medical

images. As such, the desire of developing automated computer systems to process medical

images has become prevalent.

The core of these computer-assisted techniques is to find informative features that can well

represent the patterns inherent in medical images. Previously, these task-related features

were mostly designed by human experts based on their own medical knowledge. However,

the design of these hand-crafted features can be limited by the variations and biases of these

experts, and the designed features may not be suitable for all diseases or imaging techniques.

However, the rise of deep learning in recent years has provided an opportunity to overcome

this challenge. With more layers and computational power, deep learning models are able

to learn these informative features by themselves [17]. As these deep neural networks have

the potential to discover inherent features which are difficult for human to notice, they have

become the state-of-the-art in many medical imaging analysis tasks, such as pathology seg-

mentation, pathology detection, medical image registration, medical image reconstruction,
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etc [18]. However, most deep learning based methods require a large number of medical data

and corresponding annotations to train the models. In practice, medical data and annotations

are difficult to acquire, which hampers the performance of these DL methods. One way to

alleviate the lack of data is to synthesise medical images.

1.1 Motivation

This thesis focuses on one branch of medical imaging analysis, medical image synthesis. In

the general computer vision field, the goal of image synthesis is to generate an image that

is perceptually realistic. However, in the medical imaging field, in addition to the need for

perceptual realism, we also focus on the quantitative accuracy of the synthesised images,

i.e. these images have to be clinically meaningful for target tasks such as diagnosis, plan-

ning, prognosis, etc. A good definition of medical image synthesis is given as: ‘the ability to

abstract or summarise (synthesise) knowledge from a collection of examples that are repre-

sentative of a wider population, phenotype or phenomenon’ [19].

There are many benefits of medical image synthesis. First, medical images are difficult and

expensive to acquire. Therefore, deep learning models always have to utilise limited data, e.g.

the ISLES dataset [20] only contain 76 volumes while a natural dataset like ImageNet [21]

contains millions of images. If we could synthesise medical images with high fidelity, we

could perhaps use the synthetic data to improve the training of deep learning models for other

tasks (e.g. segmentation, classification, etc.) or even for clinical training purpose. Second,

sometimes it is nearly impossible to obtain some medical images, for example, if we have

a brain image of a subject who has brain tumour or a neuro-degenerative disease, but we

want to see how their brains should look like if they are healthy to evaluate the effect of the

diseases. In this case, the ‘healthy’ version of the diseased brain image is nearly impossible

to obtain using CT or MRI machine, because a subject cannot be both healthy and diseased.

Similarly, if we want to see how a person’s brain should look like in ten years if they have

or do not have Alzheimer’s Disease, instead of waiting for ten years and then scanning her

brain, we could use medical image synthesis to predict their brain images. Furthermore, the

ability to synthesise medical images considering different medical factors (e.g. age, gender,
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smoking history, or even DNA type) implies that the model has implicitly learnt the complex

interplay of these factors and their effect on organs. This could be useful for both research

and clinical applications.

As such, the main task of this thesis is to investigate medical image synthesis with different

conditions. Specifically, we first investigate ‘pseudo healthy’ synthesis, i.e. the creation of a

‘healthy’ image from a pathological one, with the presence or absence of disease as a discrete

factor. Then we focus on a more complex task, i.e. the synthesis of aged brain images,

with age as a continuous factor and the status of Alzheimer’s Disease as a discrete factor.

Finally, we show that we can utilise a pre-trained generative model with adversarial training

to improve a downstream task..

1.2 Challenges

The first challenge for medical image synthesis is the lack of sufficient training data. Nor-

mally, for natural image synthesis tasks, deep learning models are trained on millions of

natural images to get good performance. Compared to natural images, medical image data

are more difficult to acquire, and the size of medical datasets is always limited. Therefore,

it is easy for deep synthesis models to fall into over-fitting or mode collapse due to lack of

training data.

The second challenge lies in evaluation. For natural image synthesis such as the synthesis of

face images, it is easy for people to tell if a synthetic face image is realistic or not, because

people are familiar with and sensitive to faces. However, for medical image synthesis, as

most people are not familiar with MRI or CT images, it requires either medical experts or

ground-truth target images to evaluate the synthetic results. Inviting medical experts to help

is not easy and is expensive, and in some cases, there are no ground-truth target images, e.g.

the synthesis of a ‘healthy’ image from a pathological one.

The third challenge of medical image synthesis are the strict requirements for the synthetic

images. For natural image synthesis, most methods only need to show the fidelity of the

synthetic images. However, for medical image synthesis, the synthetic images have to be
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both realistic and clinically meaningful.

1.3 Overview and Technical Contributions

An overview of the contributions of this thesis is provided below. Recall that the ultimate goal

of this work is to find methods that can synthesise medical images under different clinical

conditions. We first start with a simple task, i.e. synthesising a ‘healthy’ brain image from

a pathological one. Then we proceed by involving ‘age’ as a continuous factor and simulate

‘aged’ brain images given different target ages. At last, we propose an adversarial procedure

to utilise pre-trained generative models for downstream tasks.

In chapter 4, an adversarial deep learning model is proposed to synthesise ‘healthy’ images

from a pathological image. The proposed approach mainly contains three components: the

Generator, the Segmentor and the Reconstructor. The Generator transforms a pathological

image to a ‘healthy’ image, and adversarial loss is used to train the Generator as there is

no ground-truth available. To maintain subject identity, the cycle-consistency loss is applied.

However, when transforming between a domain that contain more information (e.g. patholog-

ical domain) and a domain that has less information (e.g. healthy domain), there is a problem

called ‘one-to-many’ problem. Because if the ‘healthy’ image is truly healthy, then there will

be not diseased information in the ‘healthy’ image to reconstruct the diseased image. Nor-

mally, the deep model tends to hide the pathological information in ‘healthy’ image to allow

reconstruction, which affects the image quality. To alleviate the ‘one-to-many’ problem, the

Segmentor is used to obtain the pathological information in the form of binary segmenta-

tion. Then the Reconstructor combines the ‘healthy’ image and pathological segmentation

to reconstruct the pathological image. The contribution of this chapter is a new method to

synthesise ‘healthy’ image by solving the one-to-many problem.

Chapter 4 is based on the following publications:

• Tian Xia, Agisilaos Chartsias, and Sotirios A. Tsaftaris. “Adversarial Pseudo Healthy

Synthesis Needs Pathology Factorization”. In International Conference on Medical

Imaging with Deep Learning, pp. 512-526. PMLR, 2019.
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• Tian Xia, Agisilaos Chartsias, Sotirios A. Tsaftaris, “Pseudo-healthy synthesis with

pathology disentanglement and adversarial learning”, Medical Image Analysis, Volume

64, 2020, 101719, ISSN 1361-8415.

The code for this chapter is publicly available at https://github.com/xiat0616/

pseudo-healthy-synthesis.

In Chapter 5, a deep learning model is proposed to simulate the ageing of the brain without

longitudinal data. The model mainly contains an Encoder, a Decoder and a Transformer. The

Encoder extracts the anatomical features of a young brain images, and the Transformer makes

changes to the features conditioned on a target age, and then the Decoder produces the aged

images. The contribution of this chapter is the first model to achieve brain ageing synthesis

without the use of longitudinal data.

Chapter 5 is based on the following publications:

• Tian Xia, Agisilaos Chartsias, and Sotirios A. Tsaftaris, for the Alzheimer’s Disease

Neuroimaging Initiative. “Consistent Brain Ageing Synthesis”. In: Shen D. et al.

(eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019.

MICCAI 2019. Lecture Notes in Computer Science, vol 11767. Springer, Cham.

https://doi.org/10.1007/978-3-030-32251-9-82

• Tian Xia, Agisilaos Chartsias, Chengjia Wang, Sotirios A. Tsaftaris. “Learning to syn-

thesise the ageing brain without longitudinal data”, Medical Image Analysis, Volume

73, 2021, 102169, ISSN 1361-8415. .

The code for this chapter is publicly available at https://github.com/xiat0616/

BrainAgeing.

In Chapter 6, a simple approach is proposed to utilise pre-trained generative models for

downstream tasks. Specifically, I choose the classification of Alzheimer’s Disease as the

downstream task and use the brain ageing model in Chapter 5 to improve the classification.

The proposed approach formulates an adversarial game between the conditional factor (tar-

get age), on which the generative model is conditioned, and the AD classifier. This can be
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viewed as finding the ‘weakness’ of the AD classifier and force the classifier to overcome its

‘weakness’. The contribution is a simple adversarial approach to utilise pre-trained generative

models.

Chapter 6 is to be submitted to MICCAI 2022 or a CV conference.

1.4 Thesis structure

An overview of the thesis structure is provided below. Chapter 2 introduces medical back-

ground. Chapter 3 summarises the technical background. Chapter 4 describes the work on

‘pseudo healthy’ synthesis. Chapter 5 describes the work of brain ageing synthesis. Chap-

ter 6 introduces the adversarial procedure to utilise pre-trained generative models. Finally,

Chapter 7 concludes the manuscript, discussing limitations and future works.
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Chapter 2
Medical Imaging and Clinical

background

This thesis mainly focuses on Magnetic Resonance Imaging (MRI), a non-invasive technique

using magnetisation to image soft tissues. Although the machine learning approaches in this

thesis do not consider the physics of the MRI image acquisition, some fundamentals of MRI

are briefly introduced in Section 2.1. Since this thesis mainly focuses on brain image analysis,

a general introduction of brain anatomy is provided in Section 2.2. Then a background of

several brain pathologies is presented in Section 2.3, as well as a background of brain ageing

in Section 2.4. Finally, a summary of the brain MRI datasets used in this thesis is presented

in Section 2.5.

2.1 Magnetic resonance imaging

MRI has played an increasingly important role in modern healthcare due to its noninvasive

characteristic and ability to generate versatile contrasts for different organs. The history of

MRI can be dated back to 1946, when Bloch and Purcell independently discovered the nuclear

magnetic resonance (NMR) phenomenon, for which they were awarded the Nobel Prize for

Physics in 1952 [22, 23]. In the 1970s, Lauterbur et al. [24] and Mansfield et al. [25] made

fundamental contributions to MRI making its clinical applications a reality, for which they

were awarded the Nobel Prize for Medicine in 2003. As techniques evolved rapidly, the first

clinical MRI images were produced in Nottingham and Aberdeen in 1980 [26, 27]. Since

then, MRI has become an essential clinical tool.

The secret of MRI lies in hydrogen, which is the most abundant element in the human body.

The hydrogen nucleus, 1H , possess a property known as “spin”, which can be analogously

conceived as the nucleus spinning around its own axis. The spin of the hydrogen nucleus
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generates a local magnetic field. Without an external magnetic field, the directions of these

local magnetic fields are random, as shown in Figure 2.1(a). However, when a strong, external

magnetic field B0 is applied, the protons will be aligned either in parallel with or anti-parallel

to the external field, as shown in Figure 2.1(b). This results in a macroscopic magnetization

M parallel to the external field. The protons spin in one of two energy states: a low-energy

state (oriented parallel to the magnetic field) and a high-energy state (orientated anti-parallel

to the magnetic field direction). Note that the protons do not orient completely parallel or

anti-parallel to the field but rotate around the field direction at a frequency known as “Larmor

frequency”. The Larmor frequency is given by:

fL =
γ

2π
B0, (2.1)

where γ is the gyromagnetic ratio which is a constant for a specific nucleus, e.g. for protons,

γ = 267.5 MHz/T. When nuclei are placed under the static magnetic field B0, they can be

excited by the application of an electromagnetic radiofrequency pulse (RF pulse) B1 which

is applied perpendicular to B0 and oscillates at the Larmor frequency. As shown in Fig-

Z
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magnetic	field	

𝐵"
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(a) No external magnetic field. (b) External magnetic field in Z direction. 

𝑀

Figure 2.1: Illustration of protons’ magnetic moment. (a) When there is no external magnetic

field, the protons’ magnetic moments are in random directions; (b) when an external magnetic

field is applied, the protons’ magnetic moments precess around the axis of the magnetic field.
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Figure 2.2: The RF pulse B1 tilts the macroscopic magnetisation M towards the xy plane

with a flip angle α, resulting in a non-zero component Mxy in the xy plane.

ure 2.2, the oscillating magnetic field B1 will tilt the macroscopic magnetisation M towards

the transverse xy plane with a flip angle α that depends on the duration and amplitude of B1.

Consequently, M will have a component in the xy plane, i.e. Mxy, and a component in the

z axis, i.e. Mz. This process is called the excitation phase, during which a number of nuclei

absorb energy and change from low energy state to high energy state.

After the RF pulse B1 ends, the nuclei return to the initial equilibrium state, with the macro-

scopic magnetisation M returning to its original state. This process is called the relaxation

phase. Specifically, Mz regrows to its equilibrium value M , and Mxy decays to its original

value of zero, which can be described by:

Mz(t) = Mz(0)(1− e−
t
T1 )

Mxy(t) = Mxy(0)e
− t

T2 ,

where T1 is called the T1 relaxation time, or spin-lattice relaxation time, after which about

63% (1 − 1/e ≈ 63%) of the magnetisation alongside z axis has recovered; and T2 is called

the T2 relaxation time, or spin-spin relaxation time, after which the transverse magnetisation

decreases to about 37% ofMxy(0). During the relaxation process, nuclei release the absorbed

energy in electromagnetic waves that can be measured by the MRI scanner using multiple

RF receiver coils. The MRI scanner does not acquire the image directly but gathers the

information of the signal in frequency or K-space. Finally, the medical image is obtained
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Figure 2.3: Example of a brain MRI image obtained from K-space. Image is taken from [1].

from the K-space array by inverse Fourier transform. An example K-space array and its

corresponding medical image are shown in Figure 2.3. A K-space array is a 2D array that

is comprised of vectors (or points) (kx, ky) containing spatial frequency information of the

image.

To determine the spatial location of the received signal, MRI requires the application of ad-

ditional magnetic field gradients, which leads to spatially varying magnetic fields. Different

RF pulses and magnetic gradients form different MR sequences, resulting in different image

contrasts. Commonly used MR sequences include T1-weighted, T2-weighted, Fluid Attenu-

ated Inversion Recovery (FLAIR) weighted and the Diffusion-weighted sequences, etc. With

this variability, an MRI scanner can obtain medical images with various contrasts (or modal-

ities) for different clinical and research purposes. However, MRI images are expensive and

time-consuming to obtain, resulting in the limited size of available MRI datasets that can be

used to train machine learning methods. Therefore, synthesising MRI data that are realistic

and diverse can be helpful for MRI analysis with machine learning. This thesis uses brain

MRI images as research materials to train and evaluate our deep learning methods. In the

following section, we introduce some basic knowledge about the brain, the organ of focus in

this thesis.
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2.2 Brain anatomy

The human brain can be divided into three parts: cerebrum, cerebellum and brainstem [28].

An example image of the brain with marked grey matter, white matter and lateral ventricles

is shown in Figure 2.4. The cerebrum is the largest part of the brain and consists of two parts,

i.e. the left and right cerebral hemispheres. The surface of each cerebral hemisphere is called

the cerebral cortex, which consists of billions of neurons and is central to cognitive activities,

e.g. motor function, language processing, determining personality, etc. The cerebral cortex

is also called grey matter due to its greyish brown appearance. The cortex has a folded

appearance that allows more neurons to fit inside the skull. Each fold is called a gyrus, and

each valley between folds is a sculcus. Beneath the cortex are long nerve fibres connecting

brain areas to each other, which affects learning and is called white matter due to its relatively

light appearance. There are hollow cavities inside the brain, called ventricles, which are filled

with cerebrospinal fluid (CSF), a fluid that flows within and around the brain and protects it.

The cerebellum is also called little brain and is located under the cerebrum [29]. The func-

tions of the cerebellum include maintaining balance, coordinating muscle movements, and

working memory. Like the cerebrum, the cerebellum is made up of two hemispheres, which

are connected through vermis. The brainstem is located in front of the cerebellum and is

made up of three structures: pons, medulla oblongata and midbrain [30]. It plays a role as

a relay station connecting the cerebrum and cerebellum to the spinal cord. The brainstem is

the centre of many primitive functions that are essential for survival, such as breathing, heart

rhythms, swallowing, etc.

2.3 Brain pathology

In Chapter 4, we propose a deep learning method to perform pseudo healthy synthesis, i.e.

generating subject-specific ‘healthy’ images from pathological ones. To train and evaluate

the proposed method, we use two brain MRI datasets covering ischemic stroke and brain

tumours. Here we provide a brief background of stroke in Section 2.3.1 and brain tumours in

Section 2.3.2.
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Figure 2.4: Example of a brain T1-weighted MRI image. Lateral ventricles, grey matter and

white matter are marked with red arrows; examples of sulcus and gyrus are dotted in red and

blue, respectively. This image is taken from the Cam-CAN dataset [2].

2.3.1 Stroke

Stroke is a leading cause of death worldwide, ranking second after ischemic heart disease [31].

A stroke happens when the blood supply to part of the brain is interrupted or reduced, hinder-

ing brain tissues from getting oxygen and nutrition and resulting in brain cell deaths in hours

or even minutes. There are three major types of strokes differing in their causes. Ischemic

stroke is the most common stroke, accounting for about 85% of all cases, and is caused by

the blockage in the blood vessels of the brain. The second most prevalent stroke is Haemor-

rhagic stroke, caused by the blood vessel burst of the brain. Another type of stroke, Transient

ischemic attack (sometimes called ‘mini stroke’), is similar to ischemic stroke, and the dif-

ference is that the brain is only blocked for a short period, normally for several minutes. As

this thesis uses brain data of ischemic stroke, we mainly focus on this stroke in the rest of this
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(a) Brain CT image with 
ischemic stroke

(b)  Brain CT angiographic image 
with ischemic stroke

Figure 2.5: Example of a brain with ischemic stroke: (a) a brain CT image with arrows

pointing out slight abnormal differentiation of grey and white matter in the basal ganglia; (b)

a brain CT angiographic image with arrows showing the occlusion of the first segment of the

right middle cerebral artery. Images are taken from [3].

section.

Stroke can occur at any age, although the incidence of stroke and a poor outcome increases

markedly with age [32]. Age is de facto one of the most important risk factors for all types

of stroke, including ischemic stroke [33]. It has been reported that 75-89% of strokes occur

after the age of 65 [34], and the likelihood of stroke doubles every successive decade after 55

years old [35]. As the global population is ageing, the worldwide impact and cost of stroke

are increasing as well, highlighting the importance of studies on the treatment and prevention

of stroke.

Typical signs and symptoms of ischemic stroke include vision problems, sudden numbness or

weakness in face, arm or leg, sudden confusion or loss of coordination, etc. Ischemic stroke

is typically characterised and initially assessed by sudden onset of neurological impairments.

However, diagnosis based on signs and symptoms is not certain, and computed tomography

(CT) and MRI are required for further diagnosis and treatment. CT is faster, more widely

available and less expensive than MRI, but MRI is more sensitive for detecting ischemic

stroke, especially in the first hours after it occurs [35]. Figure 2.5 presents an example of
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(a) FLAIR (b) T1 (c) DWI

Figure 2.6: Example MRI images of a brain with ischemic stroke in (a) FLAIR, (b) T1 and (c)

DWI modalities. We can observe the stroke in all modalities, marked by red circles. Images

are taken from Ischemic Stroke Lesion Segmentation (ISLES) challenge 2015 dataset.

brain CT and CT angiographic images with ischemic stroke, where we can observe slight

signs of stroke. Figure 2.6 shows a brain with ischemic stroke in FLAIR, T1 and DWI -

weighted MRI images, from which we can clearly observe the shape and location of the brain

region affected by the ischemic stroke.

Successful treatment of ischemic stroke requires fast diagnosis involving the acquisition of

the information of the stroke lesion presence, extent, location and other factors from brain

medical images. Therefore, an automated approach that can locate, segment and quantify the

brain lesion areas is of great value, which is the motivation of the Ischemic Stroke Lesion

Segmentation (ISLES) challenge 2015. However, such automated approaches often suffer

from limited training data, a problem that besets the medical imaging research community,

which could be alleviated by medical image synthesis by generating realistic data. In Chapter

4, we propose a method that generates ‘healthy’ images from pathological ones, and we

validate our method on a brain MRI dataset that contains patients with ischemic stroke.

2.3.2 Brain tumour

In Chapter 4, we also validate our method on brain images with tumours. Here we give a brief

introduction to brain tumours. Brain tumours result from abnormal growth of cells within the

brain or supporting tissues and can heavily impair the brain and its function, posing a severe
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threat to life. Brain tumours can be categorised into four grades based on their severity:

grades 1 and 2 are low-grade or benign, while grades 3 and 4 are high-grade or malignant.

The main difference between benign and malignant brain tumours is that malignant brain

tumours spread quickly in the brain and seriously threaten life, while benign brain tumours

are milder with a slower growth rate and do not pose a serious threat to life at least at the time

of assessment.

There are more than 150 different types of brain tumours that can be mainly classified into

two groups: metastatic and primary. Metastatic brain tumours originate from somewhere else

in the body and then transfer to the brain, typically via the blood vessels. This type of brain

tumour is malignant and recognised as cancer. In fact, almost one-quarter of cancer patients

suffer from metastatic tumours to the brain. By contrast, primary brain tumours originally

occur in the brain or its supporting tissues. The primary brain tumours can be further grouped

as glial (if consisting of glial cells) and non-glial (if developed in the structures of the brain,

e.g. nerves and blood vessels). Unlike metastatic brain tumours, a primary brain tumour can

be malignant or benign, depending on its extent and impact.

Gliomas are the most common primary brain tumours, accounting for more than three-

quarters of malignant brain tumours. These tumours develop from a kind of supporting cells

called glia, which can be subdivided into astrocytes, ependymal cells and oligodendroglial

cells (or oligos). Depending on which glial cells they originate from, gliomas can be fur-

ther categorised into different subtypes. Among them, astrocytomas are the most frequent

gliomas, accounting for nearly 50% of primary brain tumours. This category of gliomas

grows from astrocytes, a kind of star-shaped glial cells, which are part of the supportive tis-

sue of the brain. Astrocytomas mostly occur in the cerebrum and can develop at all ages

but more in adults. For children, these tumours are mostly low-grade, while for adults most

are high-grade. Eponymous are much less frequent than astrocytomas, accounting for only

two to three per cent of brain tumours. These tumours develop from ependymal cells that

line the ventricular system, and most of them are benign. Glioblastoma multiforme (GBM)

is the most aggressive type of glial tumours, which normally grows and spreads to other tis-

sue rapidly, resulting in poor outcomes. This kind of gliomas may consist of different types

of cells, such as astrocytes and oligodendrocytes. Other types of gliomas include oligoden-
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(a) FLAIR (b) T1 (c) T2

Figure 2.7: Example MRI images of a brain with a tumour in (a) FLAIR, (b) T1 and (c) T2

modalities. We can observe the tumour in all modalities, marked by red circles. Images are

taken from Multimodal Brain tumour Segmentation (BraTS) 2018 Challenge [4].

drogliomas which are derived from the cells comprising myelin and Medulloblastomas which

usually develop in the cerebellum.

Common signs and symptoms of brain tumours include headache, vomiting, drowsiness,

mental decline, behaviour changes, vision or speech problems, etc. Although the exact cause

of brain tumours is still unknown, there are some identified risk factors. The incidence of

getting a brain tumour increases with age, while some brain tumour types are more common

in children [36]. Exposure to therapeutic doses of ionizing radiation is also found associ-

ated with brain tumour risk [37]. Moreover, some genetic conditions are found to increase

the risk [36]. The diagnosis of brain tumours may involve inquiry of the above-mentioned

symptoms and risk factors, but the definite diagnosis will need the use of medical imag-

ing techniques, especially MRI. Although CT is cheaper and faster than MRI, it can neglect

some structural lesions, particularly in the posterior fossa, or non-enhancing tumours like

low-grade gliomas [36]. By contrast, MRI can provide more image details and thus becomes

the better choice for brain tumour diagnosis despite its higher expense and less availability.

Examples of MRI images of brains affected by tumours are presented in Figure 2.7. Note that

the tumours may displace normal brain tissues. The deformation induced by growing brain

tumours is so-called mass effect, which distinguishes brains affected by tumours from those

affected by stroke. In Chapter 4, we propose a deep learning-based procedure that aims to

generate ‘healthy’ images with fixing deformations induced by brain tumours.
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2.4 Brain ageing

In Chapter 5, we propose a deep learning-based model that can simulate brain progression

by synthesising MRI brain images. Here we briefly introduce brain ageing, as well as the

anatomical and cognitive changes of this process.

An ageing population across the world has brought several challenges and burdens to modern

healthcare systems [38]. Although the ageing process is complex and its underlying mech-

anisms are still being investigated, it is suggested that ageing increases the risks of major

human pathologies, including cancers, cardiovascular disorders and neurodegenerative dis-

eases [39]. Among all the negative aspects of growing old, deterioration of brain function

is probably the most fearful one for many people, especially those approaching older. The

human brain constantly changes structurally and functionally throughout the whole lifes-

pan. Even for elderly people considered cognitively normal, their brains still go through

age-related changes resulting in brain volume reduction and function degeneration.

2.4.1 Cognitive decline

Brain cognitive abilities can be classified into two types: crystallised abilities and fluid abil-

ities [40, 41]. Crystallized abilities refer to the skills and knowledge accumulated from past

learning and experience [41]. Typical examples of crystallised abilities include verbal abil-

ity, mathematical skills and general knowledge. Fluid abilities refer to the ability to think,

reason and solve problems, with minimal dependence on previous education, skills and ex-

perience [41]. Typical examples of fluid abilities are classifying figures, solving puzzles and

coming up with problem-solving strategies. In short, fluid abilities determines how fast and

well we learn new knowledge, and the learnt knowledge forms the crystallised abilities.

Ageing has different effects on these two kinds of cognitive abilities [42]. Specifically, the

fluid abilities such as processing speed, reasoning and memories decline from young age

onward [43]. In contrast, the crystallised abilities are less affected by ageing until very late

age [44, 45]. As a consequence, people find it harder to memorise new knowledge and process

new tasks since early adulthood, but once they acquire new skills and new knowledge, their
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crystallised intelligence increases [46]. However, after a specific age, e.g. age 60, they

begin to forget things that they have learnt in early life, and crystallised mental abilities

decrease [44].

Among all age-associated cognitive changes, memory deterioration might be the most ob-

served one, particularly for elderly people [47, 48]. Specifically, episodic memory and seman-

tic memory are the two sections of memory function that are most affected by ageing [48].

The episodic memory is the mental capacity to recall and re-experience episodes of one’s

personal life, i.e. when, where and how things happened [49, 50]. An example of episodic

memory could be that on the first day of primary school, you learnt bread is made from flour.

Semantic memory is a long-term memory of concept-based knowledge [49, 50]. An example

of semantic memory could be knowing that bread is made from flour. It has been found that

both episodic and semantic memories decline from middle age onward. Other typical age-

associated cognitive changes include slower reaction times, lower attention levels, slower

mental speed, worse perceptual functions, etc [48].

However, why and how these cognitive changes occur is not fully explored yet [48, 51, 52].

The development of MRI has offered opportunities to study the relationship of cognitive

decline and structural changes of the brain during ageing [47, 53, 54].

2.4.2 Structural changes

Studies have shown that there is a decline in brain volume and weight as age grows at a

gross level, accompanied by an increase in ventricular volume and cerebrospinal fluid [55].

However, ageing does not affect the brain uniformly. The ageing trajectories for different

brain structures are different. Some brain structures are preserved well even in late life, while

others decrease substantially [47, 56]. Some brain structures start to change even from early

adulthood, while others deteriorate after mid age [47, 56].

The grey matter (GM) has been found to decrease with age even, and the decline begins in

early life [57, 47, 58, 59]. Specifically, the prefrontal cortex suffers from the most prominent

atrophy, followed by frontal cortex [47, 59]. This is consistent with previous studies that

executive functions, which heavily depend on the frontal neural circuits, are the most affected
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by ageing among cognitive functions [47, 53]. The temporal cortex and other GM areas are

also affected by ageing though the effect is less than that of the frontal cortex [47, 60].

White matter (WM) plays an important role in central cognitive activities, as it transfers infor-

mation between different cortical areas [47, 61, 62, 63, 64]. The deterioration of WM could

impair the integration of information from distant cortical areas. It has been found that the

effect on WM is different from on GMr [65, 66, 67, 68]. The WM volume remains relatively

stable since adulthood but starts to decrease after about age 70 [69, 70, 71]. Although the

reduction of WM volume occurs later than that of GM, the WM atrophy is more rapid than

GM atrophy and accelerates with age [72, 73]. Eventually, the WM atrophy exceeds the GM

atrophy [47, 73].

The cerebellum is less affected by ageing than the cerebrum [74, 75, 47]. To be specific,

the cerebellar WM observes a linear development for the first part of the lifespan, and the

decline accelerates after a relatively old age [76, 47]. The cerebellar GM, on the other hand,

is found linearly correlated with age, though the decrease rate is relatively slow [47]. Studies

also found that hippocampus is affected by aging, possibly resulting in reductions in episodic

memory [77, 78, 79, 80].

Examples of a young brain and an old brain are shown in Figure 2.8. It is now widely ac-

cepted that brain volume reduces as age grows, but such reduction is not uniform. Brain

structures have different ageing trajectories. Studies have shown that structural changes of

some brain regions are correlated with specific cognitive performances [78, 47, 81]. However,

more efforts are needed to better reveal the relationship between brain structural changes and

cognitive decline. Most previous works were cross-sectional studies that suffer from con-

founding caused by cohort difference [82, 83, 84]. Different generations could differ in their

lifestyles, culture, education and daily diet, implicitly affecting the cross-sectional conclu-

sions [47]. Even the longitudinal studies are subject to cohort bias [85]. The subjects that

remain in the follow-up study tend to be the healthiest and have the best cognitive scores [85].

Besides, since the subjects repeat the same test more than once, it is possible that they could

maintain or even improve the test scores even with cognitive decline [85, 44]. The limitations

of these studies are the motivation of our work in Chapter 5, where a deep learning method is

proposed to simulate subject-specific ageing trajectories age by age.
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(a) A brain at age 24 (b) A brain at age 80 

Figure 2.8: Examples of a young brain and an old brain. Structural changes such as volume

reduction and ventricular enlargement can be observed. Images are taken from CamCAN [2].

2.4.3 Neurodegenerative diseases

Apart from normal ageing, the brain could suffer from neurodegenerative diseases that cause

pathologically structural and cognitive changes. Typical examples of neurodegenerative dis-

eases include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease,

Creutzfeldt–Jakob disease, etc. Among them, the most prevalent neurodegenerative disease

is AD, followed by PD.

Similar to normal ageing, AD is associated with a series of cognitive and structural changes.

Since normal ageing affects most of the brain, it is not realistic to find brain areas that are

affected only by AD but not by normal ageing. In fact, age is an important risk factor for AD.

The brain changes caused by AD are normally intertwined with those by normal ageing, with

similarities and differences. In general, the brain regions that are affected by AD undergo

accelerated atrophy compared to normal ageing, but the effect is not uniform: some brain

regions are more affected by AD and degenerate faster than others. Specifically, the effects of

AD are most predominant in the medial temporal structures (e.g. the hippocampus, entorhinal

cortex, retrosplenial cortex, parahippocampal gyrus, etc.) that play a crucial role in episodic

memory [47, 86]. This is in line with previous studies suggesting that AD heavily impacts

the episodic memory [87, 88]. As a result, a typical event for AD patients could be that they
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(a) A healthy brain at age 71 (b) An AD brain at age 73 

Figure 2.9: Examples of a CN brain and an AD brain. Regions largely affected by AD have

been marked out with red arrows. Images are taken from ADNI [5].

forget a conversation occurring a day ago. In addition, the lateral temporal cortex, particularly

the medial and superior temporal gyrus, is also largely affected by AD [89], while the frontal

cortex supporting executive functions witnesses less AD effect. Examples of a healthy brain

and an AD brain are shown in Figure 2.9. However, the mechanisms of AD are yet not fully

understood, and more data are required to uncover its secret.

Parkinson’s disease (PD) is the second most common neurodegenerative disease. Individuals

with PD can suffer from difficulty with walking, talking, balance and coordination. Although

the cause of PD is still to be fully revealed, studies have found that PD is associated with

abnormal (accelerated) volume decrease in several brain areas such as hippocampus, thalamus

and anterior cingulate.

In general, people with neurodegenerative diseases exhibit more severe cognitive declines

accompanied by the accelerated atrophy of particular brain areas. The difficulty with diag-

nosing these diseases lies in the fact that they mostly occur in later life and thus are tangled

with the effects of normal ageing or even with each other.
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2.5 Datasets

In this thesis we use four public medical datasets to validate the proposed approaches.

2.5.1 Ischemic Stroke Lesion Segmentation (ISLES) 2015 Challenge

Ischemic Stroke Lesion Segmentation (ISLES) [20] dataset consists of 28 subjects that are

imaged in T1w, T2w, FLAIR, and DWI sequences. The MRI sequences were skull-stripped

using BET2 [90], resampled to an isotropic spacing of 1mm3, and rigidly co-registered to the

FLAIR sequences using the Elastix toolbox [91]. The segmentation annotations were labelled

by experts on FLAIR sequences. All volumes were taken from subjects suffering from sub-

acute ischemic stroke lesions. The ISLES dataset is used in Chapter 4 for evaluating our

pseudo healthy synthesis model.

2.5.2 Multimodal Brain tumour Segmentation (BraTS) 2018 Challenge

Multimodal Brain tumour Segmentation (BraTS) [4] dataset consists of patients with high

and low-grade gliomas. The MRI images were obtained from different centres using MR

scanners from different vendors with different scanning settings. The subjects were imaged

in T1w, T1c, T2w and FLAIR sequences. All volumes were skull-stripped [92], re-sampled

to 1 mm3 resolution, and rigidly co-registered to the T1c sequences using the ITK tool [93].

The BraTS dataset is used in Chapter 4 for evaluating our pseudo healthy synthesis model.

2.5.3 Cambridge Centre for Ageing and Neuroscience (Cam-CAN)

Cambridge Centre for Ageing and Neuroscience [2] (Cam-CAN) is a cross-sectional dataset

containing normal subjects aged from 18 to 87. This dataset is large-scale with approximately

700 subjects and contains multi-modal data, including MRI. All MRI images were collected

at the Medical Research Council (UK) Cognition and Brain Sciences Unit (MRC-CBSU)

using a 3 T Siemens TIM Trio scanner. In this thesis, Data pre-processing were performed

on the Cam-CAN data before using them for experiments. The data were first skull-stripped
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using DeepBrain1 and then linearly registered to Montreal Neurosciences Institute (MNI)

152 space using FSL-FLIRT [94]. The Cam-CAN dataset is used in Chapter 4 for learning a

pathology-free distribution and in Chapter 5 for learning to simulate brain ageing progression.

2.5.4 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Alzheimer’s Disease Neuroimaging Initiative [5] (ADNI) is a large-scale dataset containing

longitudinal studies. The subjects are cognitively normal (CN), mildly cognitive impaired

(MCI) or with Alzheimer’s Disease (AD). This dataset provides multiple types of informa-

tion, including clinical data, MR images (processed and unprocessed T1-w and T2-w images

and functional MRI), PET images, etc. In this thesis, brain MRI data are used for experi-

ments after preprocessing. Similar to Cam-CAN data, the ADNI data are first skull-stripped

and then linearly registered to MNI 152 space. The ADNI dataset is used in Chapter 5 for

learning to simulate brain ageing progression considering health state and evaluating our

model using longitudinal data.

2.6 Data preprocessing

In this thesis, several techniques have been used to preprocess the brain MRI data. Note

BraTS and ISLES were preprocessed by their providers, and we only preprocess Cam-CAN

and ADNI data in this tehsis.

2.6.1 Brain extraction (skull stripping)

Brain extraction refers to the process of accurately segmenting brain from non-brain tissue,

e.g. skull. This is beneficial to many applications, where we only want to focus on the brain.

In this thesis, we focus on the change of a brain from pathological to ‘healthy’ (Chapter 4)

and the change of a brain with age (Chapter 5). As such, we choose to first remove non-brain

tissues from MRI images.

1https://github.com/iitzco/deepbrain
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The brain extraction (or skull stripping) technique used in this thesis is Brain Extraction Tool

(BET) [95, 90]. BET first estimates a rough brain/non-brain threshold based on intensity

histogram. The threshold is then used to measure the centre of gravity and mean radius

of brain. After that, the initial surface model is created as a tessellated sphere, which is then

updated iteratively calculating within-surface vertex spacing, surface smoothness control, and

brain surface selection term. The final brain is obtained using the brain surface model. For

more details please refer to [95, 90]. In this thesis, we use FSL-BET, i.e. BET algorithm

provided by the FSL software.

We also use DeepBrain, which is a Python package for medical image processing, available at

https://github.com/iitzco/deepbrain. The brain extraction function of Deep-

Brain is achieved by training a U-Net model on a variety of manual-verified skull-stripping

datasets. DeepBrain is slightly faster than FSL-BET as it enables the use of GPU for compu-

tation.

2.6.2 Registration

Image registration refers to aligning multiple images, in order to compare and observe the

spatial features of anatomy across images [96]. In this thesis, we choose to register the skull-

stripped brain MRIs to a common space, i.e. the MNI 152 space, in order to better observe

changes in synthetic brain images.

Registration can be classified into two types: linear/rigid registration and non-linear/non-rigid

registration. Linear registration involves six-parametric rigid transformation, i.e. rotation and

translation on x, y and z coordinate axes, or 12-parametric affine transformation, i.e. rotation,

translation, scaling, and shearing on x, y, and z coordinate axes. Non-linear registration

involves non-linear transformation such as local deformations. In this thesis, we use linear

registration to pre-process brain MRIs, as it maintains the anatomical structure of brains.

Specifically, we use FSL-FLIRT [94] with 12-parametric affine transformation, with the

following parameter settings: bins=’256’, cost=’ corratio’ , searchrx=’ -90 90’, searchry=’

-90 90’, searchrz=’ -90 90’, dof=’ 12’, interp=’ trilinear’.
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2.7 Summary

This chapter provided background material Magnetic Resonance Imaging (MRI), as well as

different MR sequences that are widely used. A brief introduction of brain anatomy and the

brain ageing process was also presented. Then a description of two types of brain pathology,

ischemic stroke and brain tumours, was provided. Finally, datasets used throughout this thesis

were introduced. The next chapter focuses on the technical part, as well as a literature review

of recent image synthesis with deep learning methods.

25



Chapter 3

Technical background

3.1 Machine learning

Artificial intelligence (AI) has been a thriving research field in recent years with a large num-

ber of applications [97, 17, 98]. The aim of AI is to create artificial beings (e.g. computers)

that can simulate human intelligence and solve tasks that are either tiresome or difficult for

human beings [98]. It is ironic that some abstract and formal tasks that are difficult for human

beings turn out to be among the easiest for computers, such as playing chess and complex

calculations. By contrast, some tasks that are naturally easy for human beings are difficult

for computers, such as conversation and recognizing objects [97]. Dealing with everyday

life requires a massive amount of knowledge about the world, and most of this knowledge

is subjective and intuitive. Incorporation of this informal information into computers or any

other intelligent machines becomes the key to realizing artificial intelligence [97].

The earliest attempts to achieve AI sought to hard-code informal knowledge about the world

into formal computer languages. This is called the knowledge base approach. A famous

example is Cyc [99], which is an inference engine with a large database of statements called

CycL. These linguistic statements are manually entered by human experts, which is tedious

and time-consuming labour. Describing the world with enough complexity and accuracy

using formal language that can be understood by computers has always been a troublesome

task. There is always something missing or some situations not considered, resulting in

failures of AI system even in a seemingly simple task. For example, the Cyc system failed

to understand a story about a man called Fred shaving in the morning [97]. It detected an

inconsistency in this story: people do not have electrical parts, and Fred was holding an

electric razor while shaving. Therefore, it threw a question that sounds strange: was Fred

still a person while he was shaving? Since it is nearly impossible to hard-code all knowledge
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into AI systems, one may ask if it is probable to let these AI systems acquire knowledge by

themselves. This approach is known as machine learning.

Machine learning is a subfield of AI, where algorithms automatically learn to make predic-

tions or decisions without being explicitly programmed to do so. A typical machine learning

scenario involves a dataset of N pairs of data points {(x, y)}N1 , where x is a sample from the

input distribution: x ∈ X , y is the corresponding target output from the output distribution:

y ∈ Y , and the aim is to find a mapping function: f : X → Y . A simple example of such

mapping functions could be using logistic regression to determine whether to recommend

cesarean delivery or not [100]. Early machine learning algorithms such as logistic regression

and naı̈ve Bayes do not make predictions from raw data such as MRI scans but from hand-

crafted features of the input data, where a feature could be a piece of information such as

the presence of a uterine scar. As a result, the performance of these simple machine learning

approaches largely depends on the quality of the features or the representation of the data.

However, for some tasks, it could be difficult to decide which features should be used. For

example, if we need to make a program to detect cats in photos, what features should we use?

Clearly, a cat should have two eyes, two ears, one mouth, four claws, and a tail. But if we

simply use these features to detect cats, may get a number of dogs as they also possess the

same features. Furthermore, how do we detect say eyes of cats? It is hard to say what cat eyes

are like in pixel values. we know that cats’ eyes are (nearly) round-shaped in geometry, but

what if a cat in a photo happened to close her eyes? One solution to overcome the difficulty

of designing hand-crafted features is to use machine learning to discover the features. One

approach to extract features from raw data is to use Artificial Neural Networks (ANN).

Inspired by biological brains, ANN consist of artificial neurons and edges. Each neuron takes

inputs and produces an output that can be provided to other neurons, whilst each edge con-

nects two neurons by transmitting the output of one neuron to another and is assigned with

a weight representing its relative importance. The neurons and edges are normally arranged

into a series of stacked layers. When the number of the stacked layers is beyond 2, the result-

ing neural network is termed deep neural network (DNN), and the corresponding learning

process is termed deep learning.
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Recent years have witnessed great success of deep learning in many tasks, including image

recognition [101, 102], speech recognition [103], drug discovery [104], particle accelerator

data analysis [105], and medical image analysis [18]. The success of deep learning in the

recent decade is largely due to the rapid development of computational power and much

more availability of digital data. Deep learning can be classified into supervised learning,

semi-supervised learning and unsupervised learning, based on the availability of input-output

pairs in the training dataset and the type of pairing. Taking advantage of the abundance of

data, the most common form of deep learning is supervised learning, where each input sample

has a corresponding target output (also called a target label). By contrast, when there are no

pairs of input and output samples, the learning process will learn patterns from the input data

distribution and is named unsupervised learning. Semi-supervised learning concerns a mixed

situation where only a part of input data have target labels.

Although supervised learning has achieved considerable success in many fields, it requires

a large amount of training data with annotated labels. In some fields, e.g. medical imaging

analysis, the image data and corresponding labels can be very expensive and time-consuming

to acquire. As a result, medical datasets are relatively small, with the size of thousands or

even less than a hundred, while natural image datasets normally contain millions of images.

Supervised learning approaches that work well on larger natural datasets may perform worse

on the limited medical datasets. One approach to alleviate such data scarcity is image synthe-

sis. In the following sections, we will briefly introduce and discuss image synthesis models

and then review recent works in pseudo healthy synthesis and brain ageing synthesis.

3.2 Generative Adversarial Networks

In the machine learning context, a generative model aims to capture the distribution of a

training dataset in order to generate new data with variations. Normally, it is unrealistic

to learn the exact distribution of the training data. Therefore, most existing approaches try

to model a distribution that is as close to the true data distribution as possible. One great

example could be Gaussian Mixture Models (GMMs), where the underlying data distribution

is approximated using a weighted sum of K Gaussian distributions. For one-dimensional
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data x, the probability functions can be represented as:

p(x) =
K∑

n=1

φiN (x|µi, σi), (3.1)

where φi, µi and σi are the weight, mean and variance of the i-th Gaussian distribution,

and
∑K

n=1 φi = 1. When K is known, we can use the Expectation Maximisation (EM)

algorithm [106] to estimate the parameters of the model. During inference time, new data

are synthesised by simply sampling from the learned mixed Gaussian distributions. Although

classical approaches such as GMMs work well for low-dimensional data, they fail to represent

the distributions of very high dimensional data such as MRI images. Techniques such as

dimensionality reduction could be used to help with dealing with high dimensional data.

The rise of deep learning has offered an alternative solution, where deep neural networks are

used to approximate the underlying complex distributions of training data. In this thesis, we

develop the proposed models in Chapter 4 and 5 based on a popular deep generative model,

Generative Adversarial Networks (GANs) [107].

3.2.1 Formulation of GANs

Generative adversarial networks (GANs) [107] are deep generative models that are trained

within an adversarial process. A typical GAN consists of two components: a generative

model G that aims to characterise the data distribution, and a discriminator model D that

measures the likelihood of a sample coming from the real data distribution or produced by

the generative model. These two sub-networks are trained simultaneously and adversarially,

which is analogous to a min-max two-player game. In the optimal case, an equilibrium can

be achieved with G capturing the training data distribution and D predicting 1
2

for all samples.

A schematic of GAN is shown in Figure 3.1.

Let us define the data distribution as pdata(x) and the prior distribution of the random vari-

able as pz(z), where the prior distribution pz(z) is typically a multivariate Gaussian pz(z) ∼
N (0, I). For vanilla GAN [107], the generator transforms a random variable z into a data

space G(z), and the aim is to encourage the generator’s distribution pg match the data distri-
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Figure 3.1: Schematic of a Generative Adversarial Network (GAN). The generator takes as

input a random variable sampled from a known distribution and tries to produce output data;

the discriminator classifies between real and generated data. The generator and discriminator

are trained adversarially, with the discriminator trained to tell apart real and fake data and the

generator trained to produce data that can be misclassified as real by the discriminator.

bution pdata. The discriminator outputs a single scalar D(x) which represents the probability

of a sample x coming from the true data distribution pdata rather than from pg. The generator

and discriminator are deep neural networks that can be trained with a two-player min-max

game. The loss function is [108]:

min
G

max
D

V (G,D) = min
G

max
D

Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z))] . (3.2)

The training is performed in a successive procedure. When training the generator, the weights

of the discriminator are frozen and not updated. Similarly, the weights of the generator are

frozen when updating the discriminator. If G is fixed, the optimal discriminator is:

D∗(x) =
pdata(x)

pdata(x) + pg(x)
. (3.3)

If an optimal discriminator in Eq. 3.2 is considered, this min-max game can be reformulated
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as:

V (G,D∗) = Ex∼pdata(x) [logD∗(x)] + Ez∼pz(z) [log(1−D∗(G(z))]

= Ex∼pdata(x) [logD∗(x)] + Ex∼pg(x) [log(1−D∗(x)]

= Ex∼pdata(x)

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Ex∼pg(x)

[
log

pg(x)

pdata(x) + pg(x)

]
= Ex∼pdata(x)

[
− log(2) + log

pdata(x)

(pdata(x) + pg(x))/2

]
+ Ex∼pg(x)

[
− log(2) + log

pg(x)

(pdata(x) + pg(x))/2

]
= − log(4) +DKL

(
pdata

∣∣∣∣∣∣∣∣ pdata
pdata + pg

)
+DKL

(
pdata

∣∣∣∣∣∣∣∣ pg
pdata + pg

)
,

(3.4)

where DKL is the Kullback-Leibler (KL) divergence. The two KL terms in the previous

equation can also be expressed by the Jensen-Shannon divergence (JSD) between pg and

pdata:

V (G,D∗) = − log(4) + 2 · JSD(pdata||pg). (3.5)

This means that when the discriminator is optimal, the generator is trained to minimise the

JSD between the generated distribution and the true data distribution. By definition, the

JSD is symmetric, i.e. JSD(pdata||pg) = JSD(pg||pdata), and non-negative. Specifically,

JSD(pdata||pg) is zero if, and only if, pdata = pg. Hence, the training convergence of GAN

is achieved when the generator can produce a probability distribution equal to the true data

distribution, pg = pdata. In this ideal case, the discriminator is unable to tell apart true and

generated data, and D(x) = 1
2
.

3.2.2 Issues with GANs

However, in practice the training of GANs is challenging, and the global optimality (i.e. pg =

pdata) is difficult to achieve [108]. Common problems with GANs include mode collapse,

non-convergence and vanishing gradients.

When mode collapse happens, the generated distribution only contains a single or several

modes of the true distribution. In mode collapse, the generator produces a limited variety of
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samples that are realistic enough to cheat the discriminator. Since the discriminator is cheated

by these generated samples, it will not back-propagate gradients to correct the generator. In

short, the generator is stuck in local optimality.

The generator improves with training while the discriminator performance becomes worse as

it is harder to classify between real and fake samples. Imagine the generator is trained per-

fectly, then discriminator outputs 1
2

for everything, which means the discriminator is flipping

a coin for every sample. This raises an issue for the convergence of GAN: if the generator

continues training after the discriminator offers completely random predictions, the perfor-

mance of the generator could drop because it trains on junk feedback. As a result, the GAN

training oscillates, and convergence is often a fleeting, rather than stable, state.

Recall that when the discriminator is optimal, the objective function becomes Eq. 3.5, which

aims to minimise the JSD between distributions of true data pdata and generated data pg.

However, if the overlap between pg and pdata is little or even does not exist, the JSD will

saturate, resulting in a negligible gradient being back-propagated to the generator [108]. In

this case, the generator gradients vanish, and the generator learns nothing. When the discrim-

inator trains too successfully and becomes optimal before pg learns to match pdata to some

extent, the vanishing gradient problem is highly likely to occur.

In order to solve the problems discussed above, considerable effort has been placed on pro-

posed different approaches to improve the training of GANs.

3.2.3 Different ways to improve GAN training

As mentioned in the previous section, training GANs is difficult and unstable. A great amount

of research has focused on improving the training stability of GANs. In this thesis, we take

advantage of these works to improve and stabilise the training of our models. Below we give

a brief introduction of recent works that focus on improving GAN training.

As an example, Deep Convolutional GAN (DCGAN) has been proposed in [109] which im-

proves the vanilla GAN by modifying the network architecture. Specifically, the authors

replaced the fully-connected layers of G and D with deep convolutional networks and also
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replaced pooling layers with strided convolutions, which improved the training stability and

image size and quality.

Furthermore, many developments on improving GAN training attempted to replace the origi-

nal binary cross-entropy training loss. For example, Least Squared GAN (LSGAN) has been

proposed in [110] which uses Least-squared (LS) loss as the training loss in [110] to provide

smooth and non-saturating gradients. With the LS training loss, the generator trains to min-

imise the squared distance between generated samples and decision boundary, and hence the

samples that are far away from the decision boundary are heavily penalised. The objective

functions of the LSGAN are as below:

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)[(D(x)− b)2] +

1

2
Ez∼pz(z)[(D(G(z))− a)2],

min
G
VLSGAN(G) =

1

2
Ez∼pz(z)[(D(G(z))− c)2],

(3.6)

where a and b are the labels for fake and real data, and c is the value that G wants D to

predict for fake data. Common choices for these parameters include a = −1, b = 1, c = 0 or

a = −1, b = 1, c = 1.

In [108], the authors provided a convincing theoretical analysis of the training of GANs,

pointing out problems with using JSD as GAN loss. To solve these problems, the same

authors proposed to replace the JSD with the Wasserstein distance as the training loss in

[111]. The Wasserstein distance is also called Earth-Mover (EM) distance, which measures

the least cost to transport one distribution to another distribution by moving the ”mass”,

where cost is mass times transport distance. The advantage of the Wasserstein distance is that

it is differentiable almost everywhere. Hence, the Wasserstein distance can provide stable

gradients in cases where the JSD is locally saturated. This has been shown theoretically and

empirically to help solve the vanishing gradient problem. Nevertheless, in order to compute

the Wasserstein distance in a tractable way, the discriminator functions f(x) are required to

be 1-Lipschitz. 1 To enforce the Lipschitz constraint, the authors constrained the weights

by simply clipping all weights to a fixed range, e.g. [−0.01, 0.01], after each update step.

1No lines connecting any two points on the function have a gradient greater than 1: |f(x1) − f(x2)| ≤
|x1 − x2|.
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However, the authors admitted that clipping weight is not a good way to enforce the Lipschitz

property. When the clipping parameter is small, it can lead to the vanishing gradient problem.

By contrast, a large clipping parameter could result in gradients exploding. When the clipping

range is selected well, the resulting Wasserstein Generative Adversarial Network (WGAN)

proves to be stable and effective. The objective functions of WGAN are:

min
D

VWGAN(D) = Ez∼pz [D(G(z))]− Ex∼pdata [D(x)],

min
G
VWGAP (G) = −Ez∼pz [D(G(z))].

(3.7)

To solve the issues of weight clipping, gradient penalty has been proposed in [112] as a

‘soft’ way to enforce Lipschitz constraint, by applying a penalty on the gradient norm of the

discriminator2 output with respect to its input. To penalise the gradient norm, they omitted

Batch Normalization layers in the discriminator. The penalty of gradient norm naturally

pushes the discriminator towards 1-Lipschitz and hence enables stable training. The resulting

Wasserstein GAN with Gradient Penalty (WGAN-GP) has been shown to perform better

than the original WGAN and train stably for a variety of GAN architectures without careful

hyperparameter tuning. The objective functions of the WGAN-GP are:

min
D

VWGAN−GP (D) = Ez∼pz [D(G(z))]− Ex∼pdata [D(x)] + λEx̂∼Px̂
[(|| 5x̂ D(x̂)||2 − 1)2],

min
G
VWGAN−GP (G) = −Ez∼pz [D(G(z))],

(3.8)

where x̂ = εx + (1− ε)G(z), ε ∼ U [0, 1], and λ is the weight for the gradient penalty term,

set as 10 in [112].

Some works also use auto-encoders as discriminators for GAN training, such as Energy-

Based Generative Adversarial Networks (EBGAN) [113] and Boundary Equilibrium Gen-

erative Adversarial Networks (BEGAN) [114]. These auto-encoder like discriminators first

extract latent features of input data and reconstruct the input using these features. The idea

is that poorly generated images can result in large reconstruction errors since they miss the

2In [112] the discriminator is called as critic.
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latent features that are required by the decoder for reconstruction. In contrast, a realistically-

looking image should have low reconstruction errors. Hence, these approaches measured the

divergence between reconstruction losses of real and fake samples, and the generator aimed

to minimise the divergence either measured in energy-based metric [113] or in Wasserstein

distance [114]. The objective functions of EBGAN are:

min
D

VEBGAN(D) = Ex∼pdata [D(x)] + Ez∼pz [m−D(G(z)]+,

min
G
VEBGAN(G) = Ez∼pz [D(G(z))],

(3.9)

where [·]+ = max(0, ·), m is a pre-defined positive margin, and D(x) is the reconstruction

loss, e.g. Mean Squared Error (MSE) in [113]: D(x) = MSE(Dec(Enc(x)), x). From

these objective functions, we can see that the auto-encoding Discriminator to achieve low

reconstruction loss for real samples. Here the Discriminator is encouraged to reduce the

reconstruction error for real data and increase the reconstruction error for fake data if is

below margin m. By contrast, the Generator is encouraged to produce samples that achieve

low reconstruction errors.

The objective functions of BEGAN are:

min
D

VBEGAN(D) = Ex∼pdata [D(x)]− kt · Ez∼pz [D(G(z)],

min
G
VBEGAN(G) = Ez∼pz [D(G(z))],

kt+1 = kt + λk(γEx∼pdata [D(x)]− Ez∼pz [D(G(z)]),

(3.10)

where kt is involved to maintain equilibrium between generator and discriminator, λk is the

learning rate for k, γ is called diversity ratio which controls the trade-off between image

diversity and quality, and D(x) is the auto-encoding reconstruction loss. Similar to EBGAN

(Eq. 3.10), the discriminator of BEGAN has two goals: achieving low reconstruction loss

for real samples and high reconstruction loss for fake data, and the generator aims to lower

the fake reconstruction loss by improving the quality of fake data. Regardless of the use

of kt term, we could observe similarities between Eq. 3.9 and the objective functions of

WGAN (Eq. 3.7). The difference is that BEGAN measures the Wasserstein distance between

the reconstruction loss distributions of real and fake samples, while WGAN leverages the
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Wasserstein distance of data samples. Besides, BEGAN does not require Lipschitz constraints

on the discriminator.

Since images are complex and high dimensional, instead of directly modelling whole images,

prior studies [115, 116] proposed to first model low-resolution images and then gradually in-

crease the image resolution to learn more complex data distribution. To be specific, Laplacian

Generative Adversarial Networks (LAPGAN) [115] combines a Laplacian pyramid represen-

tation [117] with GANs by using a set of generative models to capture the distributions of

natural images at different levels of the Laplacian pyramid. Similarly, Progressive Growing

GANs (PGGAN) [116] started from training on low-resolution images and then added layers

to existing neural networks as image resolution increased in a smooth way, i.e. fade in new

layers gradually. In short, these multi-scale approaches first learn a global abstract of natural

images and then fine-tune the details.

In summary, most techniques to improve the training of GANs focused on alleviating unsta-

ble training issues, by modifying architectures, by replacing the original objective functions,

or by optimizing training strategies. Other techniques that help GAN training include spectral

normalization [118] which constrains the discriminator to be Lipschitz continuous, memory

replay [119] which presents previously generated images to the discriminator to prevent for-

getting, and data augmentation [120, 121] which helps prevent over-fitting of both generator

and discriminator.

3.2.4 GAN variants

The original GAN [107] generates data from random latent vectors but does not control what

data to generate. To enable more fine-grained control of what contents to generate, different

variants of GANs have been proposed. In this thesis, we also modified the structure of GANs

to suit our tasks. Below we provide a brief review of GAN variants.

Conditional GAN: Conditional Generative Adversarial Networks (conditional GANs, or

cGANs) are a popular variant of GANs. First proposed in [122], conditional GANs con-

dition the Generator and Discriminator on some extra information y. The objective function
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Figure 3.2: A schematic of pix2pix GAN [6]. Here the aim is to learn a mapping from a map

to an aerial photo. The discriminator learns to classify between a fake pair consisting of a

generated aerial photo G(y) and the input map y and a real pair consisting of a ground-truth

aerial photo x and the input map y.

of conditional GANs in [122] is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))], (3.11)

where x is the real data sample, z is the random latent code, and y is the extra information

on which the Generator and Discriminator are conditioned. Depending on different types of

information y, conditional GANs can be used to generate data samples conditioned on class

labels [123, 124], text [125, 126, 127], and bounding box [128].

Conditional GANs can also be used in the context of image-to-image translation by taking

the extra information y in the form of images. Specifically, pix2pix GAN has been proposed

in [6] (see Figure 3.2) that aims to learn a mapping from an observed image y to output image

G(y), for instance, from a map to an aerial photo.

For cGANs in [122], the Generator takes a random vector z as input and produces a data

sample y (e.g. an image). By contrast, pix2pix GAN [6] do not involve a random noise z.

Instead, the Generator of pix2pix GANs learns a mapping from a given image y to an output
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image of desired properties. The objective function of pix2pix GAN is:

min
G

max
D

V (D,G) = Ex∼pdata,y∼py [logD(x, y)] + Ey∼py [log(1−D(y,G(y)))]

+ λEx∼pdata,y∼py [||x−G(y)||1],
(3.12)

where an l1 term is applied to encourage G(y) to be close to x. Instead of mapping from a

latent space to image space, pix2pix learns a mapping from an image space to another image

space, which offers more controllability compared to original GANs and cGANs in [122].

Following the same spirit, pix2pixHD [129] adopts cGANs and uses feature matching loss

for image synthesis and semantic manipulation.

Image-based cGANs like pix2pix require the pairing of image y and x, e.g. pairing of a map

and an aerial photo. However, acquiring such pairs of image data often needs human effort

and can be laborious and extremely difficult, which hinders the availability of paired training

data. To solve this problem, CycleGAN has been proposed in [130] to learn unpaired image-

to-image translation, as detailed below.

CycleGAN: As a special type of conditional GAN, CycleGAN was proposed in [130] with

the aim of learning image-to-image mappings from unpaired data. Concurrently, Disco-

GAN [131] and DualGAN [132] were proposed independently, sharing nearly the same

framework and spirit as CycleGAN. Given a set of images in the domain X and a differ-

ent set in the domain Y , CycleGAN learns a mapping G from X to Y , such that the output

ŷ = G(x), x ∈ X , is indistinguishable from images in the Y domain, y ∈ Y . This is learnt

by adversarial training with a discriminator to classify between ŷ and y. However, such trans-

lation alone does not guarantee a meaningful pairing between X and Y , and there are many

mappings G that can satisfy G(x) ∈ Y . For instance, the model can simply learn a mapping

to the same sample y ∈ Y , no matter which x is given, which is known as mode collapse.

In order to solve this problem, CycleGAN leverages the idea cycle consistency, i.e. the trans-

lated output ŷ = G(x) should be able to be translated back to x. Hence, CycleGAN involves

another mapping F from Y to X , such that x ≈ F (ŷ) = F (G(x)). Here G and F should

be inverse of each other, and the mappings should be bijections. Similarly, we can lever-

age a sample from Y domain, y ∈ Y , as input, and get a generated sample in X domain,

x̂ = F (y). Then we can translate x̂ back to domain X , ŷ ≈ G(x̂) = G(F (x)). A schematic
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Figure 3.3: A schematic of CycleGAN. Here domain X represents Monet’s style paintings,

and domain Y denotes landscape photos. On top, a Monet painting is first translated to a

photo and then translated back to the Monet domain; on bottom, a landscape painting is

translated to Monet domain and then back to photo domain.

of CycleGAN is presented in Figure 3.3.

Let us denote the data distributions as x ∼ px(x) and y ∼ py(y). There are two Generators

representing two mappings G : X → Y and F : Y → X , and two discriminators DX and

DY , where DX aims to classify between images {x} and translated images {F (y)}, and DY

classifies between images {y} and {G(x)}. For the mapping function G : X → Y , the

adversarial objective function is:

min
G

max
DY

LGAN(G,DY ) = Ey∼pdata(y)[logDY (y)] + Ex∼pdata(x)[log(1−DY (G(x)))],

(3.13)

where G tries to translate images x to G(x) that are similar to images in domain Y , and DY

aims to classify between translated images G(x) and real images y of domain Y . Similarly,
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the adversarial objective is:

min
F

max
DX

LGAN(F,Dx) = Ex∼pdata(x)[logDX(x)] + Ey∼pdata(y)[log(1−DX(F (y)))],

(3.14)

where F tries to translate images y to F (y) that are similar to images in domain X , and DX

aims to classify between translated images F (y) and real images x of domain X .

In line with the adversarial losses, there is cycle consistency loss:

min
G,F

Lcyc(G,F ) = Ex∼pdata(x)[||F (G(x))− x||1] + Ey∼pdata(y) [||G(F (y))− y||1], (3.15)

where the aim is to minimise the errors between input and reconstructions. Combining the

above equations, the overall objective function of CycleGAN is:

LcycleGAN = min
G

max
DY

LGAN(G,DY ) + min
F

max
DX

LGAN(F,Dx) + λmin
G,F

Lcyc(G,F ),

(3.16)

where λ controls the relative importance of cycle consistency.

The advantage of CycleGAN is that it can capture specific characteristics of one image do-

main and translate these characteristics to another image domain without requiring any paired

data. This lowers the data requirements to train an image-to-image translation model. As a

result, CycleGAN has been widely used in image translation tasks. However, not all image

domains contain the same amount of information. For example, if we want to translate a

colourful image to a grey-scale image, there would be information loss since a colourful im-

age naturally contains more information than its grey-scale counterpart. In this case, when

we translate the greyish image back to colour, the colourful information has to either be in-

vented by the model or hidden in the greyish image in a way that can be overlooked by the

discriminator. This is also known as the ”one-to-many” problem.

GANs with an encoder: The original GAN only has the mapping from latent features to
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Figure 3.4: Schematic of BiGAN/ALI structure [7, 8]. The Generator is used to map a latent

vector z to a generated data G(z). The Encoder is used to map data x back to the latent space

E(x). The Discriminator takes as input a pair of data and its corresponding latent code. For

real data, this pair is {x,E(x)}; for generated data, the pair is {G(z), z}.

data but does not learn the inverse mapping, i.e. projecting data back to the latent space.

To solve this problem, Bidirectional GANs (BiGANs) was proposed in [7] by adding an

encoder to GANs. The encoder was used to learn the inverse mapping, and the resulting

learned feature representations were shown to be useful. Similarly, the Adversarially Learned

Inference (ALI) model has been proposed in [8], which also applies an encoder to learn latent

features. A schematic of ALI and BiGAN is shown in Figure 3.4. The objective functions of

BiGAN/ALI are:

min
G,E

max
D

VBiGAN/ALI(G,E,G) = Ex∼pdata(x)[logD(x,E(x))]

+ Ez∼pz(z)[log(1−D(G(z), z))],

(3.17)

where x is a data sample, z is a latent code, E is the Encoder, D is the Discriminator, and

G is the Generator. For BiGAN/ALI, the generator can be also viewed as a decoder since it

maps from latent space to data space.

Similar to the idea of using an encoder to model the latent distribution, DeliGAN [133] uses

a mixture of Gaussians to model the latent distribution and learns the mixture components by

maximising the likelihood of generated samples under the data generating distribution. For

encoding-decoding models, the decoder output, or the reconstruction, should be similar to the

input, which regularises the latent space and encourages samples that are similar in data space

to have similar latent vectors. Despite the ability to interpolate between real data samples,
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Figure 3.5: A schematic of AAE. The Encoder generates a latent vector ẑ from a data sample

x; the Discriminator classifies whether the generated vector ẑ is from the prior distribution

p(z); and the Decoder obtains reconstruction x̂ from the latent vector ẑ. The adversary en-

courages the generated vector ẑ to be similar to random vectors from the prior distribution.

the image quality of the synthesised/reconstructed output of BiGAN/ALI is poor.

GANs with VAEs: There are a group of GAN variants that are based on both GANs and

Variational AutoEncoders (VAEs) [134]. For instance, Adversarial Autoencoders (AAE) was

proposed in [135], where a discriminator is applied on the latent space to tell if a latent vector

is generated by the Encoder or randomly drawn from a prior distribution. A schematic of

AAE is presented in Figure 3.5.

Similar to VAE, AAE first encodes a data sample x to a latent space, which is imposed on a

prior distribution, and then decodes the latent sample ẑ back to the data space. The difference

is that VAE uses KL divergence to enforce the latent distribution q(z) to be close to the

prior p(z), while AAE approaches this using adversarial training. The loss function for AAE

is [135]:

min
E,Dec

max
D

V (E,E,Dis) = Ex∼pdata|x−Dec(E(x))|1

+ λ{Ez∼pz [logD(z)] + Ex∼pdata [log(1−D(E(x)))]},
(3.18)

where E is the Encoder, Dec is the Decoder, the Discriminator is denoted as D to differ from

Dec, and λ controls the relative importance of adversarial training.
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While AAE leverages adversarial training to impose the latent space on the prior distribution,

UNsupervised Image-to-image Translation network (UNIT) was proposed in [136] which

combines GAN and VAE by using VAE to enforce a smooth latent space and using adversarial

training to improve reconstruction quality. Furthermore, Adversarial Variational Bayes [137]

utilises adversarial training for pairs of latent vector and data sample in the VAE framework,

and the learned feature representations in the GAN discriminator is used as a bias for VAE

reconstruction [138].

3.3 Medical image synthesis

In the previous section, several popular deep generative models were introduced. This section

will give a brief introduction to medical image synthesis using traditional machine learning

or deep learning models. Then two sub-topics will be discussed: pseudo healthy synthesis

and brain ageing synthesis that are directly related to the proposed approaches.

Medical image synthesis represents approaches that aim to model mappings from some given

source images or even latent vectors to the unknown target images [139]. For instance,

the source images can be low-dose Computed Tomography (CT) images of relatively lower

quality, and the target images can be the corresponding full-dose images of higher quality.

Such image transformation could enhance image quality and reduce the scanning cost. Also,

some approaches attempted to synthesise medical images of one modality, say CT, to another

modality, say MRI T1. These approaches could capture helpful information in the source

modality and present this information in the target modality without further scanning the

subject.

Conventional approaches for medical image synthesis include dictionary learning [140] and

random forest [141], which process hand-crafted medical image features manually selected

by experts during the synthesis. However, the quality of their synthesised outputs heavily

depends on these hand-crafted features, which often have limited capacities to represent the

complex information in the medical images. In recent years, the rise of deep learning has

offered a promising solution to this issue through automatically learning the powerful features

for synthesising desired medical images.
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Most deep learning-based medical image synthesis approaches adopted convolutional neural

networks (CNN) based architectures. These approaches can be mainly classified into two

classes based on their applications, image quality enhancement and creation of unknown im-

ages. As exemplified above, low-dose CT images were transformed to full-dose counterparts

using CNN-based methods in [142, 143, 144]. Similarly, CNNs were utilised for super-

resolution or image quality enhancement of MRI and PET images in [145, 146, 147, 148].

These approaches were mostly trained in a supervised manner where target outputs of higher

quality or resolution are available.

Another group of medical synthesis methods tried to estimate unknown images. For instance,

a 3D CNN was used to predict CT images from MRI images in [149]. Similarly, an encoder-

decoder framework was proposed in [150] to translate images across multiple modalities .

Other similar works include [151, 152, 153], all used CNN-based methods for image synthe-

sis from one modality to another. However, these approaches required the pairing of source

and target images, limiting their utility when data pairing is not easily available. To solve

this issue, CycleGAN was used to learn mappings between medical modalities without using

paired data in [154, 155, 156].

In some cases, it is nearly impossible to obtain a ground-truth target image. For example,

suppose we have a medical image of a patient who has brain tumour, and the aim is to generate

a medical image of this patient when he/she is healthy. This patient’s ‘healthy’ image could

allow us to check to which extent the brain tumour affects his/her brain. However, there

is almost no way to obtain such a ‘healthy’ image in clinical practice. The synthesis of a

‘healthy’ version of pathological image is also known as pseudo healthy synthesis, which we

will discuss in the following section.

3.3.1 Pseudo healthy synthesis

Pseudo healthy synthesis is a sub-field of medical image synthesis with the aim of creating

a ‘healthy’ version of a pathological medical image. One challenge with pseudo healthy

synthesis is the lack of ground-truth ‘healthy’ data, i.e. finding a pathological and a healthy

image of the same subject remains difficult, since a subject cannot be healthy and diseased
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at the same time. Another challenge is the preservation and evaluation of subject identity,

i.e. how to ensure that the synthesised ‘healthy’ image belongs to the same subject as the

original image when there is no ground-truth data. Below we briefly review the literature of

pseudo healthy synthesis. More details are presented in Chapter 4.

Non-deep learning based methods: Prior to deep learning, conventional machine learning

approaches to this task focused on learning manifolds between ‘healthy’ and ‘diseased’ local

regions at the patch [9, 157] or voxel [158, 159] level. In [9], the task was defined as generat-

ing a target image S in the desired domain given a source image I in the source modality. To

achieve this, the authors first constructed a dataset, or dictionary, which contains N exemplar

pairs of source and target images: T = {(In, Sn)}Nn=1, where In is a medical image in the

source domain, Sn is an image in the target domain, and In and Sn are spatially aligned. They

made an assumption that similarities between I and {In} would lead to similarities between

S and {Sn}. Hence, S was synthesised using I and the dictionary T through patch-based

nearest neighbour search, i.e. finding the closet patch in {In} for each patch of I and propa-

gating the corresponding patch in {Sn} to construct S. Specifically, they synthesised T2 brain

MRI images with tumours from T1 brain MRI images and subtracted the resulting ‘pseudo

healthy’ T2 images from the ground-truth T2 images to detect the tumour regions. Here,

the synthesis of ‘healthy’ images is based on the premise that tumours are less visible in T1

images, and hence the transformation from T1 to T2 could reduce the intensity abnormality

of tumours. Figure 3.6 presents the visual results taken from [9], comparing with a method

termed ‘Warped Atlas’ [10].

Similarly, a dataset was constructed in [157] which consists of chest radiographs diagnosed

as ‘normal’ by experts. For a given input chest radiographs, the proposed algorithm searched

for the most similar patches within the normal dataset and then constructed a pseudo normal

image using these patches. The resulting ‘healthy’ image was then subtracted from the input

chest radiograph to detect lung nodules. A main difference between [157] and [9] is that

the dictionary of [9] contains pairs of source and target images, while the dictionary of [157]

only consists of target (normal) images. Instead of dictionary-based learning, [158, 159] used

voxel-wise kernel regression to learn a direct mapping between healthy T1-w and FLAIR

intensities within each voxel. Then the learnt regression model was used to synthesise pseudo
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Figure 3.6: Visual results taken from [9]. Pseudo healthy T2 images were generated from

T1 input and subtracted from original T2 images to obtain abnormality maps. ‘Warped Atlas’

is a comparison method [10]. MP (short for Modality Propagation) refers to the proposed

method.

healthy FLAIR images from T1-w images. The success of pseudo healthy synthesis relied

on the premise that the pathology is less visible in T1-w images, and the regression model is

trained on healthy pairs of T1-w and FLAIR images.

However, these methods heavily depend on either the variation and size of the learnt dictio-

nary [9, 157], or the capacity of the regression model [158, 159], which limits their ability to

scale up to large medical images. Furthermore, pseudo healthy synthesis of [9, 158, 159] is

also based on the premise that the target pathology is not dominant in some modalities but

obviously visible in others, which may not be true for all kinds of pathology.

Autoencoder-based methods: This group of approaches scaled up patches to the image

level using deep convolutional neural networks [160, 161, 162, 163, 164, 165, 166, 167,

11]. The main principle is to learn representations of the normal anatomy in an encoding-

decoding manner, i.e. learning to compress and recover healthy data. There is an implicit
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Figure 3.7: A schematic of autoencoder-based methods for pseudo healthy synthesis. A)

Training a model on healthy data only; B) Pseudo healthy synthesis of a pathological image

and pathology segmentation by subtracting the pseudo healthy image from original image.

Figure taken from [11].

assumption that if the model is trained only on normal (healthy) data, it will only produce

images within the normal distribution even when given pathological inputs. During inference,

pseudo healthy images are generated by compressing and recovering pathological images,

and these pseudo healthy images are then used for detection or segmentation of lesions. A

schematic of these approaches is taken from [11] and presented in Figure 3.7.

Specifically, an Adversarial Autoencoder (AAE) based method was proposed in [160] to

reconstruct healthy brain MRI images. Apart from the AAE loss function (see Eq. 3.18), they

also proposed a regularization term to impose representation consistency:

Lreg = ||zh − z′h||2, (3.19)

where zh is the latent representation of the healthy image xh, and z′h is the latent projection

of the reconstructed image x′h. During inference, the pseudo healthy images are obtained by

simply feeding pathological images to the model, and the resulting images are then compared

with the input to detect pathology.

Similarly, Gaussian Mixture Variational Auto-Encoder (GMVAE) was used in [161, 167] to

learn the manifold of healthy images, and the pseudo healthy images were obtained using
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the learnt manifold through a Maximum-A-Posterior (MAP) restoration model. Furthermore,

VAE-based models were used in [164, 166] to capture the normal manifold, while Bayesian

Autoencoder was adopted in [162]. Specially, a GAN was used in [163] to learn the manifold

of normal data. However, as GAN only learnt the mapping from a latent vector z to data x:

G(z) = z → x but did not learn the inverse mapping: x → z, they proposed an iterative

process to find the corresponding z for a given input image, by backpropagating a proposed

loss measuring errors between G(z) and x to z.

However, there is no loss to ensure that subject identity, i.e. the synthetic output and input

images should belong to the same subject, will be maintained, and the generation of pseudo

healthy synthesis is based on the assumption that these models only produce outputs within

the normal distribution, but there is no explicit loss to guarantee this assumption to be true.

Generative models: The rise of Generative Adversarial Networks [107] (GANs) has pro-

vided new opportunities to pseudo healthy synthesis. The original GAN can learn a mapping

from the latent space to the data space, but it does not learn the inverse mapping from data to

latent space. Hence, it does not fit in the context of pseudo healthy synthesis where the goal is

to transform a pathological image to its ‘healthy’ version. Although some iterative algorithms

could be used to find the latent vector for a given image, it is not neat and computationally

expensive. To solve this problem, variants of GANs have been proposed [122, 130, 6].

Specifically, Conditional GAN [122] in its simplest form can transform a pathological image

to the healthy domain trained in an unpaired manner. However, there is no loss to enforce

subject identity, and it is likely that the model learns to transform a pathological image of one

subject to a healthy image of another subject. To help maintain identity, pix2pix GAN [6]

used pairs of source and target images as input to the discriminator and adopted an l1 recon-

struction loss. Nevertheless, pix2pix GAN required access to paired data, which is difficult

to acquire in the context of pseudo healthy synthesis.

Due to the lack of paired data, VA-GAN [12] adopted the form of a Conditional GAN, with

a regularization loss between the input (pathological) and the output (pseudo healthy) to help

preserve identity. Specifically, they treated the disease effect as a separate additive factor

and formulated the image transformation problem as adding or subtracting a residual map,
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Figure 3.8: Schematic of VA-GAN. M(x) refers to the generative network that produces the

disease effect map, andD(x) refers to the discriminator that judges if a given input is realistic

and within the target domain. Image taken from [12].

termed disease effect map, to a healthy or pathological image. They defined two classes

c ∈ {0, 1}, a source class and a target class. The distribution of images from class c = 0 was

defined as pd(x|c = 0). Similarly, pd(x|c = 1) was the distribution of images from c = 1.

Mathematically, the task is defined as:

ŷ = x+M(x), (3.20)

where x refers to an image from the source class, say c = 1, ŷ is the synthetic image which

should be within the target class c = 0, and M(x) is the additive map that contains the

features distinguishing x from the other class. A schematic of VA-GAN is taken from [12]

and presented in Figure 3.8.

VA-GAN adopted the Wasserstein GAN loss [111] for the adversarial training. The objective

functions are defined as:

min
D

VV A−GAN(D) = Ex∼pd(x|c=1)[D(x+M(x))]− Ey∼pd(y|c=0)[D(y)]

+ λ1Ex̂∼Px̂
[(|| 5x̂ D(x̂)||2 − 1)2],

min
M

VV A−GAN(M) = −Ex∼pd(x|c=1)[D(x+M(x))] + λ2Ex∼pd(x|c=1)||M(x)||1,

(3.21)

where x̂ = ε · +(1 − ε) · y, ε ∼ U [0, 1], and λ1 is the weight for the gradient penalty term;

||M(x)||1 is a regularisation on M that aims to encourage the identity consistency between

x and x + M(x), and λ2 is the weight for the regularisation. λ1 and λ2 are both set as 10 in

[12]. Notice that there are two main differences between Eq. 3.21 and the objective functions
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of WGAN-GP (Eq. 3.8): the discriminator in Eq. 3.21 takes the sum of x and Mx as input,

and there is a regularisation loss Lreg = ||Mx||1 to help maintain subject identity.

However, there exists one potential problem for VA-GAN, i.e. the regularisation loss may

conflict with the synthesis process. The focus of [12] was on the visual attribution of Alzheimer’s

Disease, where the disease effect is subtle and diffuse. But for other pathologies such as

glioblastoma and ischemic stroke, the disease effect could be significant and localised, and

thus it could be hard to balance the adversarial loss (which tries to make the input image

‘healthy’) and the regularisation loss (which tries to minimise the change).

Instead of an l1 regularisation loss, CycleGAN [130] proposed the cycle consistency term to

enforce identity preservation in the unpaired training. See Section 3.2.4 for more introduction

of CycleGAN. CycleGAN has been used for pseudo-healthy synthesis [168, 169, 170, 171].

However, CycleGAN faces the one-to-many problem when one domain contains less infor-

mation than the other [172]. Consider the case of pseudo healthy synthesis, if we transform a

pathological image xp to its healthy version x̃h perfectly, then the information of the pathol-

ogy is lost. A question rises: how can we transform x̃h back to x̂p without knowing the

pathology information? To solve this problem, auxiliary information can be provided when

synthesising x̂p, such as [169, 170] where they added a pathological residual to the healthy

image to obtain the pathological image. But as discussed above, not all pathology can be

considered as additive factors. Nevertheless, our approach in Chapter 4 aims to address the

above shortcomings by disentangling images in pathological and anatomical factors. More

details are presented in Chapter 4.

3.3.2 Brain ageing synthesis

As introduced in Chapter 2, our body goes through age-related changes when age increases [39].

Predicting future medical images based on current and past observations is another sub-field

of medical image synthesis where the ground-truth paired data are extremely difficult to ac-

quire. Consider the following question: how will my face look like when we grow older, or

more difficult, how will my brain look like when we get older? One way to answer these

questions could be to collect images of different ages and obtain a template representing
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group-level changes. But an individual’s ageing trajectory may differ from the group-average

trajectory due to many factors. Thus, a method that can simulate subject-specific ageing

trajectories could better solve the problem. Another question could be, what makes a good

synthesis in the context of brain ageing synthesis. In general, a good synthetic brain image

in the context of brain ageing should be realistic, accurate in age, and of the same subject

identity. This section will briefly review literature that aims to model brain ageing. As face

also undergoes age-related changes and there is more literature in face ageing synthesis, we

also introduce recent works in the face ageing field.

Non-deep learning methods: Conventional approaches normally constructed group-average

atlases to characterise the brain ageing progression. For instance, Zhang et al. [173] first used

group-wise non-linear registration [174] and kernel regression to form an age-specific com-

mon space FP which represented the average anatomy of infant brains of specific age points.

Then they used the GLIRT group-wise non-linear registration [174] to align the templates

in FP to obtain a longitudinal common space FL. Finally, a spatio-temporal atlas was con-

structed with patch-based dictionary learning and frequency domain sparse representation.

Similarly, a group-wise non-rigid image registration method [175] and partial least squares

regression is used in [176, 177] to construct a spatio-temporal reference model characterising

brain ageing. A kernel regression method based on image dissimilarities was proposed in

[178] to estimate brain images representative for different ages. In [179], the authors used

pairwise non-rigid regression and kernel regression with adaptive kernel widths to construct

a 4D spatio-temporal atlas of the developing brain. In [180], brain ageing was represented

using linear mixed-effects modelling, and a brain image atlas was constructed using diffeo-

morphic registration parameterised by stationary velocity fields (SVFs). The constructed atlas

represented normal ageing evolution and was used to separate the effect of normal ageing and

the Alzheimer’s disease. Following the same idea, a deformation based model conditioned on

both age and disease was used to capture brain ageing considering the effect of Alzheimer’s

disease [181]. Similarly, approaches of [182, 183, 184] followed the similar manner of con-

structing average atlases using non-rigid registration, while biophysical models were used to

simulate brain ageing in [185, 186]. However, these models relied on group-average atlases

and thus could not model brain ageing specific to individuals.
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Deep learning methods: Recent studies have tried to utilise deep generative models to

simulate brain ageing trajectories. For example, a conditional GAN with Wasserstein training

loss was used to generate a synthetically aged brain image given a baseline image [187].

Similarly, in [188, 189] the authors used conditional GANs to predict the evolution of white

matter hyperintensities in brain MRI images. However, these approaches simply treated the

problem as a domain transfer problem with two domains: young and old, and thus they could

not explicitly synthesise brain images that are conditioned on some target ages. Although

in [187] the generator was applied recursively to synthesise images of different ages, the age

accuracy of the generated images was not encouraged by any loss. A deformation-based deep

network was used to synthesise future brain images using longitudinal training data [190].

The authors of [191, 192] used a conditional adversarial autoencoder to simulate brain ageing

trajectories, following recent work in face ageing generation [193], but they required longi-

tudinal data to train the model and thus only covered several years of age spans. In [194],

a GAN-based model was trained to add or remove atrophy patterns to brain images using

image arithmetics. However, this approach was based on assumptions that atrophy patterns

across ages could be modelled linearly and morphological changes were the same for all

subjects. In [195], the authors utilised Variational Autoencoders to synthesise aged brain im-

ages, but they did not have control on the target ages, and the outputs appeared blurry. A

structural casual model based on VAE was developed in [196] to generate brain aged images.

However, this method did not provide quantitative evaluations of the synthetic results, and

the resolution of the qualitative results was relatively low. In [197], the authors leveraged a

VAE to disentangle spatial information from temporal progression and used the first layers

of the trained VAE to improve brain age estimation. To summarise, most of previous works

either built average atlases [173, 176, 198, 179, 180, 181] or required longitudinal training

data [188, 189, 191, 192, 187]. Other did not evaluate morphological changes in detail and

did not consider subject identity [194, 195, 196, 197].

To solve the aforementioned issues, in chapter 4, we propose a conditional adversarial ap-

proach that learns to synthesise subject-specific ageing brains without the need for longitudi-

nal data.
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3.3.3 Face ageing synthesis

Here we also briefly review some related work in face ageing generation, where the goal is to

generate older face images given baseline ones. There are several similarities between face

and brain ageing generation: first, they both aim to generate visual predictions of given cur-

rent images; second, subject identity needs to be maintained for both tasks, i.e. the synthetic

images should be from the same subject as the inputs; third, the synthetically aged images

need to be realistic. As such, approaches for face ageing synthesis have the potential to be

applied in the field of brain ageing. For example, the method of [193] has been adopted by

the authors of [191, 192] for brain ageing synthesis. In the original work [193], the authors

used one-hot vectors to represent different age spans and concatenated the age vector to the

latent vectors produced by the encoder. Similarly, a few approaches [199, 200, 201] adopted

the conditional GAN framework to generate aged face images. However, these approaches

encoded age with one-hot vectors for different age spans, e.g. from 40 to 50. The one-hot

encoding of age inherently treated face ageing synthesis as a multi-class synthesis problem

with a class representing a specific age span and thus ignored the inherent ordering of age.

3.4 Evaluation metrics

One particular challenge for image synthesis is how to evaluate if a synthetic image is good

or not. For instance, the original GAN [107] generates an image from a latent vector, and

thus there are no ground truth target images to evaluate the synthetic results. Furthermore,

due to the adversarial training, the objective functions of GANs could not be used to evaluate

its performance. Evaluation measures have surfaced with the emergence of new generative

models. Some measures emphasized qualitative ways such as visual comparisons and hu-

man tests. An example of qualitative evaluation is to let human observers judge if synthetic

images are realistic or not, and successfully fooling a person implies the satisfactory quality

of generated images. However, this type of measure may not reflect the variety of synthetic

images and could be circumvented by mode collapse, i.e. generated images are of a small

selection. Other measures focused on evaluating the performance of generative models in an

objective way. Quantitative measures normally extract features from generated images and
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real images using pre-trained deep neural networks and then calculate numeric metrics on the

extracted features. Common quantitative metrics include Inception Score (IS) [202], Fréchet

Inception Distance (FID) [203], Modified Inception Score (m-IS) [133], AM score [204], etc.

In general, most of these quantitative metrics focus on two aspects: fidelity, i.e. how realis-

tic the synthetic image looks like, and versatility, i.e. how diverse the synthetic images are.

Readers are referred to a review paper of evaluation metrics of GANs for more details [205].

Ground-truth paired data are the golden standard if available. When ground-truth paired data

are not available, the evaluation becomes challenging. Below we will introduce quantitative

metrics that are commonly used to measure image quality.

Let us define 2D images x, x̂ ∈ X , where x is a real image and x̂ is a synthetic image from

some models, and X ⊂ RH×W with H and W being the height and width of the image,

respectively. Then we can define these metrics as follows.

Mean Squared Error (MSE) is the mean squared difference between two images and is

defined as:

MSE(x, x̂) =
1

H ×W
∑
h∈H

∑
w∈W

[x̂(h,w)− x(h,w)]2. (3.22)

Mean Absolute Error (MAE) is the mean absolute difference and is defined as:

MAE(x, x̂) =
1

H ×W
∑
h∈H

∑
w∈W

|x̂(h,w)− x(h,w)|. (3.23)

Structural Similarity Index (SSIM) [206] measures the similarity between two images and

also reflects image quality. Denote µx and σx as the mean and variance of real image x, µx̂

and σx̂ as the mean and variance of the synthetic image x̂, and σx̂x as the covariance between

x and x̂. SSIM is given by:

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
, (3.24)
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where c1 and c2 are two variables that stabilise the division with weak denominator.

Peak Signal to Noise Ratio (PSNR) [207] measures the ratio between the maximum pos-

sible power of a signal and the power of corrupting noise. PSNR also reflects image quality

and is defined as:

PSNR(x, x̂) = 10 · log10

(
MAX2

x

MSE(x, x̂)

)
, (3.25)

where MAXx is the maximum pixel value of the image.

Mutual Information (MI) [208] stems from information theory and is a measure of of the

mutual dependence between two signals. It was first proposed in [209] to measure registration

for multi-modality images assuming that regions of similar tissue (and similar gray values)

in one image should correspond to regions in the other image that also consist of similar gray

values (though the values may be different from those of the first image). MI is measured by:

I(x, x̂) = H(x) +H(x̂)−H(x, x̂), (3.26)

where H(x) and H(x̂) are the entropy of images x and x̂, respectively, and H(x, x̂) is the

joint entropy of x and x̂.

Note SSIM and MI both measure the matching of two images. Their difference is that SSIM

focuses more on the perceived similarity between two images and thus requires these two

images to share the same modality, while MI does not require pixel values to be the same

in the two images and is a measure of how well you can predict pixels in the second image,

given pixel values in the first image. In this thesis, we use SSIM to measure the similarity

between two images, as we only focus on one modality in a single task. However, if we want

to measure the alignment or similarity between images of different modalities, e.g. a T1 and

a T2 MRI image, we should use MI as the metric.

For some specific image synthesis tasks such as pseudo healthy synthesis, evaluation needs

to consider more than fidelity and versatility. For instance, in the context of pseudo healthy

synthesis, when translating a medical image from pathological to healthy domain, despite

fidelity we also care about if the translated image belongs to the same subject as the orig-

inal image. For proposed metrics specific for our tasks please refer to Section 4.4.4 and
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Section 5.4, respectively.

3.5 Summary

This chapter introduced and discussed the technical background of this thesis. We first briefly

introduced machine learning and motivated image synthesis. Then we gave an overview

of deep generative methods focusing on image synthesis, Generative Adversarial Networks

(GANs). Moreover, we introduced the concepts of pseudo healthy synthesis and brain ageing

synthesis and reviewed recent progress in these fields. Finally, we introduced the evaluation

metrics for image synthesis tasks, particularly focusing on the evaluation for pseudo healthy

and brain ageing synthesis.
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Chapter 4
Pseudo Healthy Synthesis1

4.1 Introduction

In this chapter, we focus on pseudo healthy synthesis. As we briefly introduced in Chapter

1 and 3, the goal of pseudo healthy synthesis is to generate subject-specific ‘healthy’ images

from pathological ones. By definition, a good pseudo healthy image should both be healthy

and preserve the subject identity, i.e. belong to the same subject as the input. The synthesis

of such ‘healthy’ images has many potential applications both in research and clinical prac-

tice. For instance, synthetic ‘healthy’ images can be used for pathological segmentation, e.g.

ischemic stroke lesion, by comparing the real with the synthetic image [9, 159]. Similarly,

these ‘healthy’ images can be used for detecting which part of the brain is mostly affected by

neurodegenerative diseases, e.g. in Alzheimer disease, a more challenging task because of

the global effect of these diseases [12].

However, devising methods that achieve the above task remains challenging. Methods relying

on supervised learning are not readily applicable, as finding both pathological and healthy

images of the same subject for training and evaluation is not easy, since a subject cannot

be ‘healthy’ and ‘unhealthy’ at the same time. Even though the use of longitudinal data

could perhaps alleviate this, the time difference between observations would introduce more

complexity to the task by adding as a confounder ageing alterations on the images beyond the

manifestation of the actual disease.

1This chapter is based on the following papers:

• Tian Xia, Agisilaos Chartsias, and Sotirios A. Tsaftaris. “Adversarial Pseudo Healthy Synthe-
sis Needs Pathology Factorization”. In International Conference on Medical Imaging with Deep
Learning, pp. 512-526. PMLR, 2019.

• Tian Xia, Agisilaos Chartsias, Sotirios A. Tsaftaris, “Pseudo-healthy synthesis with pathology dis-
entanglement and adversarial learning”, Medical Image Analysis, Volume 64, 2020, 101719, ISSN
1361-8415.

57



Pseudo Healthy Synthesis

As introduced in Section 3.3.1, prior to the rise of deep learning, approaches were focused on

learning manifolds between ‘healthy’ and ‘diseased’ local regions at the patch [9, 157] or even

voxel level [158]. However, the extent that these methods could capture global alterations of

appearance, due to disease, remained limited. Recently though, the advent of deep learning in

medical imaging [210] has led to new approaches to pseudo healthy synthesis. Some recent

works [163, 160] for example, scaled up the approach of manifold learning to the image level

with convolutional architectures. More recently, adversarial approaches allowed learning

mappings between the healthy and pathological image domains [12, 171] .

4.1.1 Motivation for our approach

We follow the same spirit, but differently from previous works our method focuses on disen-

tangling the pathological from the healthy information, as a principled approach to guide the

synthetic images to be ‘healthy’ and preserve subject ‘identity’. Figure 4.1(a) illustrates an

example of identity loss. Thus, while our goal is to come up with an image that is healthy

looking, we also aim to preserve identity such that the generated image belongs to the same

input subject.

We use cycle-consistency [130] to help preserve identity but this introduces the so-called one-

to-many problem (detailed description in Section 4.3.2), where due to lack of information in

the pseudo healthy image we may now lose identity in the reconstructed image (see Fig-

ure 4.1(b)). Our approach, by disentangling the information related to disease in a separate

segmentation mask, circumvents this and helps enable many-to-many mappings (see Figure

4.1(c)).

4.1.2 Overview for our approach

A simple schematic of our proposed 2D method is shown in Figure 4.2. The proposed net-

work contains three components to achieve our goal during training: the Generator (G) trans-

forms a pathological image to a pseudo healthy one; the Segmentor (S) segments the pathol-

ogy in the input image; finally, the Reconstructor (R) reconstructs the input pathological
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image by combining the ‘healthy’ image with the segmented mask and closes the cycle. The

segmentation path is important to preserve the pathological information, and the reconstruc-

tion path involving the cycle-consistency loss contributes to the preservation of the subject

identity. Note that during inference we only use the Generator and Segmentor.

The proposed method can be trained in a supervised manner using paired pathological im-

pathological pseudo healthy reconstructed

Identity 
loss

Our method

One-to-many 
problem

(a)

(b)

(c)

Figure 4.1: The challenge of preserving identity. (a) shows an example of identity loss in the

generated ‘healthy’ image. (b) shows a failure example of one-to-many problem (described in

Section 4.3.2). (c) shows an example obtained by our method which preserves identity well.

From left to right are the pathological image, pseudo healthy image and the reconstructed

image (if any), respectively. The example is taken from the ISLES dataset.
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Figure 4.2: Schematic of our approach. A pseudo healthy image x̃h is generated from the

input pathological image xp by the Generator (G); a pathological mask m̃p is segmented from

xp by the Segmentor (S); finally a reconstructed image x̂p is reconstructed from x̃h and m̃p

by the Reconstructor (R).

ages and masks. However, since manually annotating pathology can be time-consuming and

requires medical expertise, we also consider an unpaired setting, where such pairs of images

and masks are not available. Overall, our method is trained with several losses including a

cycle-consistency loss [130], but we use a modified second cycle where we enforce healthy-

to-healthy image translation to help preserve the identity.

4.1.3 Contributions

The main contributions of this chapter are the following:

• We propose a method for pseudo healthy synthesis by disentangling anatomical and

pathological information, with the use of supervised and unsupervised (adversarial)

costs.

• Our method can be trained in two settings: paired in which pairs of pathological images

and masks are available, and unpaired in which there are no corresponding segmenta-

tions for the input images.

• We introduce quantitative metrics and subjective studies to evaluate the ‘healthiness’

and ‘identity’ of the synthetic results, and present extensive experiments comparing
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with four different methods (baselines and recent models form the literature), as well

as ablation studies, on different MRI modalities.

• We observe that our method may have the capacity of correcting brain deformations

caused by high grade glioma, and propose a metric to assess this deformation correc-

tion.

• We introduce a subjective study where human raters evaluate the quality of created

images.

The rest of this chapter is organised as follows: Section 4.2 reviews the literature related

to pseudo healthy synthesis. Section 4.3 presents our proposed method. Section 4.4 de-

scribes the experimental setup and Section 4.5 presents the results and discussion. Finally,

Section 4.6 concludes the chapter.

4.2 Related work

The concept of medical image synthesis is defined by [211] as ‘the generation of visually real-

istic and quantitatively accurate images’, and the corresponding task has attracted significant

attention recently. Here we briefly summarise literature related to pseudo healthy synthesis

(refer to Section 3.3.1 for a more detailed review), and discuss the differences between our

method and these approaches.

4.2.1 Non-deep learning methods

Early methods learned local manifolds at the patch or pixel level [9, 157]. Patches were used

together with dictionary learning to learn a linear mapping of source (pathological) and tar-

get (healthy) patches. Then, pseudo healthy synthesis can be performed by searching for the

closest patches within the dictionary and propagating the corresponding healthy patches to

the synthetic ‘healthy’ image. However, these methods heavily rely on the variation and size

of the learned dictionaries. When input pathological patches are not similar to the training
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patches, these methods may not find suitable healthy patches to generate the ‘healthy’ im-

age. Furthermore, these methods are limited by the linear approximation of the dictionary

decomposition.

4.2.2 Autoencoder methods

Aiming to scale up the receptive field of these methods and to permit more complex non-

linear mappings, deep learning methods were employed first by learning compact manifolds

in latent spaces to represent healthy data employing autoencoders [163, 164, 165, 161, 160].

These approaches assume that when abnormal images are given to a neural network trained

with healthy data, they are transformed (via the reconstruction function of the autoencoder)

to images within the normal (healthy) distribution. Usually non-healthy data are not used in

training and guarantees that the synthetic images will maintain subject identity and be indeed

within the manifold of the healthy distribution are thus not given. Furthermore, recently the

correctness of modelling an input (normal) distribution to detect abnormal, out-of-distribution

data has been questioned [212].

4.2.3 Generative models

To involve abnormal data, Generative Adversarial Network (GAN) [107] and its variants [213,

130] can be used. For instance, in [6] and [12] an `1 regularization loss and an adversarial

loss were used to help preserve subject identity. But they either required paired data [6]

or apply strong regularization that could conflict with the synthesis process [12] . Another

approach to help preserve identity in the unpaired setting is the cycle-consistency loss of Cy-

cleGAN [130]. CycleGAN has been adopted for pseudo healthy synthesis of glioblastoma

brain images [168, 169, 170] and for liver tumours [171]. However, when one domain con-

tains less information than the other, CycleGAN faces the one-to-many problem (described

in Section4.3.2, which affects the quality of synthetic images, as mentioned in Section 4.1.1

and highlighted in Figure 4.1 (b). In order to alleviate this problem, pathology was provided

as residual and treated tumour as an additive factor in [169, 170]. However, their focus is

on segmentation, instead of the quality of synthetic images. Our approach differs from these
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methods by treating pathology as a complex factor that can affect the whole brain. In addi-

tion, part of the training process involves the Cycle H-H, detailed in Section 4.3.5, to help

synthesis.

4.2.4 Our approach

Our approach aims to address the above shortcomings. Similar to CycleGAN, our approach

uses cycle-consistency losses to encourage identity preservation, however it also addresses the

one-to-many problem by disentangling images in pathological and anatomical factors. Thus,

we aim to control both processes. In addition, in our effort to demonstrate the capabilities of

adversarial approaches, we use as healthy domain images from a different unrelated dataset.

This helps correct deformations caused by tumour masses. Finally, as we also noted in Sec-

tion 4.1, we directly evaluate images explicitly with new metrics, as well as with an observer

study, rather than implicitly evaluating quality with performance in downstream tasks.

4.3 Methodology

4.3.1 Problem overview and notation

We denote a pathological image as xpi , i indicating a subject. xpi belongs to the pathological

distribution, xpi ∼ P . The goal is to generate a pseudo healthy image x̃hi
for the pathological

image xpi , such that x̃hi
lies in the distribution of healthy images, x̃hi

∼ H. We also want the

generated image x̃hi
to maintain the identity of subject i. Therefore, pseudo healthy synthesis

can be formulated as two major objectives: remove the disease of pathological images, and

maintain the identity and realism. For ease and unless explicitly stated, in the rest of the

chapter, we omit the subscript index i, and directly use xp and xh to represent samples from

P andH distributions, respectively.
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4.3.2 The one-to-many problem: for pathology disentanglement

The transformation of a pathological image xp to its healthy version x̃h means that x̃h does

not have the information of pathology present in the image. The question that arises is then:

How can CycleGAN reconstruct xp from x̃h when this pathology information is lost? There

could be many xp with disease appearing in different locations that correspond to the same

x̃h. Given this information loss from one domain to the other, CycleGAN has to either hide

information within the domain data [172] and/or somehow within the extra capacity of the

network to ‘permit’ it to invent the missing information. An example failure case can be seen

in Figure 4.1 (b). We observe that the location and shape of the ischemic lesion is different

between the original and reconstructed image. This is because the pseudo healthy image does

not contain, anymore, lesion information to guide the reconstruction of the input image.

Recent papers [214, 215, 216] have shown that auxiliary information can be provided in the

form of a style or modality specific code (a vector) to guide the translation and permit now a

well-posed one-to-one mapping. Our work follows a similar idea and considers the auxiliary

information to be spatial, and specifically stores the location and shape of the pathology in the

form of a segmentation map. This then overcomes the one-to-many problem, and prevents

the decoder from storing disease related features in the weights and the encoder from the need

to encode pathology information in the pseudo healthy image.

4.3.3 Proposed approach

An overview of our approach including the training losses is illustrated in Figure 4.3. The

proposed method contains three components, the architectures of which are shown in Figure

4.4: the Generator, the Segmentor (S) and the Reconstructor (R). The Generator and the

Segmentor comprise the pseudo healthy part of our approach, and disentangle a diseased

image into its two components, the corresponding pseudo healthy image and the segmentation

mask.

64



Pseudo Healthy Synthesis

8??E

8<=>E

8??E

8<=>F

8??F

89:;∑\∏πI∫ªc

!"

!$%

!)"

/0

{!%}

/A

{&"}

&'"

&"

&%E

!%E

&.%E

/0

!̅%E

!)%E

C
yc

le
 H

-H
C

yc
le

 P
-H *

,

+

89:;∏πI∫ªc

+

*

,

{!%F}

Figure 4.3: Training the proposed method. In Cycle P-H, a pathological image xp is firstly

disentangled into a corresponding pseudo healthy image x̃h and a pathology segmentation m̃p.

Synthesis is performed by the generator network G and the segmentation by the segmentor

S. The pseudo healthy image and the segmentation are further combined in the reconstructor

network R to reconstruct the pathological image x̂p. In Cycle H-H, a healthy image xh and

its corresponding pathology map (a black mask) mh are put to the input of the reconstructor

R to get a fake ‘healthy’ image, denoted as x̄h to differ from the pseudo healthy image x̃h

in Cycle P-H. This ‘healthy’ image x̄h is then provided to G and S to reconstruct the input

image and mask, respectively.

4.3.3.1 Generator

The Generator transforms diseased to pseudo healthy images. The Generator architecture

has long skip connections between downsampling and upsampling blocks. This helps better

preserve details of the input images and results in sharper outputs. The detailed architecture

of the Generator is shown in Figure 4.4.
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image 
and 

mask
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image
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Figure 4.4: Detailed architectures of three main components in our method. The Genera-

tor G and Reconstructor R are modified residual networks [13] with long skip connections

between up- and down-sampling blocks. The difference between the Generator and the Re-

constructor is that the first takes a one-channel input (image), whereas the second takes a

two-channel input (image and mask). The Segmentor is a U-net [14] with long skip con-

nections. All convolutional layers use LeakyReLU as activation function, except for the last

layers which use sigmoid.

4.3.3.2 Segmentor

The Segmentor predicts a binary disease segmentation map.2 This map helps localise and de-

lineate disease in the reconstructed image. The Segmentor follows a U-net [14] architecture,

shown in Figure 4.4.

4.3.3.3 Reconstructor

The Reconstructor takes a pseudo healthy image and a corresponding segmentation mask of

the disease, concatenates them in a two-channel image, and reconstructs the input, patholog-

ical, image. The architecture of the Reconstructor is the same as the one of the Generator,

except that Generator takes one-channel input but Reconstructor takes a two-channel input.

Image reconstruction is key for our method since it helps preserve subject identity.

2We also investigated using a single neural network with shared layers and two outputs to perform this
decomposition, but found that using two separate networks enables more stable training. This architectural
choice is in line with other disentanglement methods [217, 218].

66



Pseudo Healthy Synthesis

4.3.3.4 Discriminators

Our method involves two discriminators that are used in adversarial training. One is the

discriminator for pseudo healthy images (denoted as Dx) which encourages generation of

realistic pseudo healthy images. The other is used to help learn a manifold for the pathol-

ogy mask (denoted as Dm) which is used to train the Segmentor when paired pathological

images and masks are not available (more details in Section 4.3.5). The architecture of both

discriminators follow the design used by [12]. The adversarial training is performed with a

Wasserstein loss with gradient penalty [112].

4.3.4 Model training

Inspired by [130], we involve two cycles to train our model, which are shown in Figure 4.3.

The first cycle is Cycle P-H, where we perform pseudo healthy synthesis. The Generator

G first takes a pathological image xp as input, and produces a pseudo healthy image: x̃h =

G(xp). Similarly, the Segmentor S takes xp as input and outputs a mask m̃p indicating where

the pathology is: m̃p = S(xp). The Reconstructor R then takes both x̃h and m̃p as input and

generates a reconstruction of the input image: x̃p = R(x̃h, m̃p).

The second cycle is Cycle H-H which is designed to stabilise training, help preserve input

identity, and further encourage disentanglement of disease from the pseudo healthy image.

The Reconstructor first takes as input a healthy image xh and a ‘healthy’ mask mh , i.e.

an image of all zeros, and produces a fake healthy image: x̄h = R(xh,mh). This fake

healthy image x̄h is then passed as input to the Generator G, x̂h = G(x̄h), and Segmentor to

reconstruct the input healthy image and mask, m̂h = S(x̄h), respectively.

The design of Cycle H-H is due to several reasons. First, we want to ensure that the Recon-

structor does not invent pathology when given a healthy mask as input. Second, we encourage

the Generator to better preserve identity, i.e. when the input to G is a ‘healthy’ image, the

output should be the same ‘healthy’ image. Similarly, when given a ‘healthy’ image, the

Segmentor should not detect any pathology. When the predicted output is not a black map, it

means that either the Reconstructor is not trained well, i.e. it creates pathology-like artefacts,

or the Segmentor is not trained well, i.e. it finds non-existing pathology. In this case, the
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Reconstructor and Segmentor are penalised. This in turn also encourages the Segmentor not

to hide information useful for reconstruction, and thus any anatomical information is only

contained in the pseudo healthy image.3

4.3.5 Paired and unpaired settings

There are two settings of training the Segmentor (S) considering the availability of ground-

truth pathology labels.

In the first, termed paired setting, we have paired pathological images and ground-truth

masks. In this setting, we train the Segmentor directly using the ground-truth pathology

masks with a differential analogue of the Dice segmentation loss.

In the second, termed unpaired setting, we do not have pairs of pathological images and

masks. In this setting, since supervised training is not feasible, we involve a Mask Discrimi-

nator termed as Dm that distinguishes segmented masks from real pathology masks, and thus

learns a prior on the pathology shape. The Segmentor is then trained adversarially against this

Mask Discriminator. The real pathology masks used for training are ground-truth pathology

masks chosen randomly from other subjects. The losses are described mathematically for

each setting in Section 4.3.6.3.

4.3.6 Losses

The training losses can be divided into three categories, adversarial losses, cycle-consistency

losses and segmentation losses, the details of which are described below.

3We note here that we could also have considered a cycle where we could take a pseudo healthy image and
pass it through the segmentor and penalise if any disease pixels are detected. We found that this is less stable:
either the segmentor could have thrown a false positive or the generator made an error. We found the design
of the current Cycle H-H more robust and our experiments show that the pseudo healthy images rarely contain
detectable, by a judge segmentor, disease pixels.
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4.3.6.1 Adversarial losses for images

The synthesis of pseudo healthy image x̃h (x̃h = G(xp)) in Cycle P-H is trained using the

Wasserstein loss with gradient penalty [112]:

LGAN1 = max
Dx

min
G

Exp∼P, xh∼H[Dx(xh)−Dx(G(xp))

+λGP (‖∇ẋh
(ẋh)‖2 − 1)2],

(4.1)

where xp is a pathological image, G(xp) is its corresponding pseudo healthy image, xh is a

healthy image,Dx is the discriminator to separate real and fake samples, and ẋh is the average

sample defined by ẋh = ε xh + (1 − ε)G(xp), ε ∼ U [0, 1]. The first two terms measure the

Wasserstein distance between real healthy and synthetic healthy images; the last term is the

gradient penalty loss involved to stabilise training. As in [112] and [12], we set λGP = 10.

Similarly, we have LGAN2 for the fake ‘healthy’ image x̄h (x̄h = R(xh,mh)) in Cycle H-H:

LGAN2 = max
Dx

min
R

Exh1
∼H, xh2

∼H,mh2
∼Hm [Dx(xh1)

−Dx(R(xh2 ,mh2)) + λGP (‖∇ẋh
(ẋh)‖2 − 1)2],

(4.2)

where xh1 and xh2 are two different healthy images drawn from the healthy image distribution

H,mh2 is the corresponding pathology mask of xh2 , i.e. a black mask,R(xh2 ,mh2) is the fake

‘healthy’ image reconstructed with xh2 , and ẋh is defined as ẋh = ε xh1 +(1−ε)R(xh2 ,mh2),

ε ∼ U [0, 1].

4.3.6.2 Cycle-consistency losses

We involve cycle-consistency losses to help preserve the subject identity of the input images.

For Cycle P-H, we have:

LCC1 = min
G,R,S

Exp∼P [‖R(G(xp), S(xp))− xp‖1], (4.3)

where xp is a pathological image, G(xp) is the pseudo healthy image produced by Generator,

S(xp) is the segmented pathology mask by Segmentor, R(G(xp), S(xp)) is the reconstructed
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pathological image by Reconstructor given G(xp) and S(xp). Similarly with [130], we use `1

loss rather than `2, to reduce the amount of blurring.

Similarly, for Cycle H-H, we have:

LCC2 = min
G,R,S

Exh2
∼H,mh2

∼Hm [‖G(R(xh2 ,mh2))− xh2‖1

+‖S(R(xh2 ,mh2))−mh2‖1],

(4.4)

where xh2 andmh2 are a healthy image and the corresponding mask, respectively,R(xh2 ,mh2)

is the fake ‘healthy’ image obtained by Reconstructor given a healthy image xh2 and a

healthy mask mh2 as input, G(R(xh2 ,mh2)) is the reconstructed image by Generator given

R(xh,mh2), and S(R(xh2 ,mh2)) is the segmented mask that corresponds to R(xh2 ,mh2).

Here we use `1 loss for the reconstructed mask instead of the Dice loss as it is not well

defined when the target masks are all black.

4.3.6.3 Segmentation losses

As described in Section 4.3.5, there are two training settings for the Segmentor. For the paired

setting where we have access to paired pathological image and masks, we use a supervised

loss to train the Segmentor:

Lsegpaired = min
S

Exp∼P,mp∼Pm [Dice(mp, S(xp))], (4.5)

where xp and mp are paired pathological images and masks, S(xp) is the predicted mask by

Segmentor S, and Dice(.) represent the dice coefficient loss [219].

In the unpaired setting, there are no paired images and masks, and we use an adversarial loss

to train the Segmentor:

Lsegunpaired
= max

Dm

min
S

Exp1∼P,mp2∼Pm [Dm(S(xp1))−Dm(mp2)

+λGP (‖∇m̄pD(m̄p)‖2 − 1)2],

(4.6)
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where xp1 is a pathological image, mp2 is a pathological mask randomly drawn from subjects

other than xp1 , Dm is the discriminator to classify between the segmented mask S(xp1) and

the randomly chosen mask mp2 , and m̄p is the average sample defined by m̄p = εmp2 + (1−
ε)S(xp1), ε ∼ U [0, 1].

4.4 Experimental setup

4.4.1 Data and pre-processing

Data: In this work we use 2D slices from three datasets: ISLES, BraTS and CamCAN, which

are described in Section 2.5. Here we detail the modalities and number of subjects of each

dataset that are used for our experiments.

• Ischemic Stroke Lesion Segmentation challenge 2015 (ISLES) contains 28 volumes.

All volumes have lesion segmentation annotated by experts. We use T2 and FLAIR

modality for our experiment.

• Multimodal Brain Tumor Segmentation Challenge 2018 (BraTS) [4] dataset contains

high and low grade glioma cases. In this work we select 150 volumes which contain

high grade glioma/glioblastoma (HGG). The ‘healthy’ slices in BraTS may not be re-

ally healthy, since the glioblastoma may affect areas of brain where it is not present [4],

for an example see Figure 4.7. We therefore involve Cam-CAN dataset as a healthy

dataset, as described below.

• Cambridge Centre for Ageing and Neuroscience (Cam-CAN) [220] dataset contains

normal volumes from 17 to 85 years old. We randomly selected 76 volumes for our

experiment. We chose to involve this dataset as ‘healthy’ data when performing pseudo

healthy synthesis to avoid the possible deformations of brain tissues in BraTS images.

Since Cam-CAN only contains T1 and T2 modalities, we also use T1 and T2 from

BraTS.

Pre-processing: Initially, we skull-stripped the Cam-CAN volumes using FSL-BET [90].

We then linearly registered the Cam-CAN and BraTS volumes to MNI 152 space using
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FSL-FLIRT [221]. We normalised the volumes of all datasets by clipping the intensities

to [0, V99.5], where V99.5 is the 99.5% largest intensity value in the corresponding volume, and

rescaled to the range [0, 1]. We then selected the middle 60 2D axial slices from each volume,

and cropped each slice to the size [208, 160]. Note the training and testing are performed on

these selected 2D slices, instead of all available 2D slices, because some 2D slices do not

contain any brain parts or only contain a small portion and thus do not provide much infor-

mation. For ISLES, we label a slice as ‘healthy’ if its corresponding lesion map is black,

otherwise as ‘pathological’. We label all slices from Cam-CAN as ‘healthy’, and label a slice

from BraTS as ‘pathological’ if its corresponding pathology annotation is not a black mask,

i.e. the glioblastoma is present in this slice.

Histogram check: To check the feasibility of training on the two datasets, we first checked

the histogram similarity between BraTS and Cam-CAN. Specifically, we normalised each

histogram to a probability density distribution (PDF), and computed the Jensen–Shannon

(JS) divergence [222] between the PDFs of the two datasets. We calculated a JS divergence

of 0.009 between BraTS ‘healthy’ slices (slices with no segmentations) and Cam-CAN slices,

0.011 between BraTS ‘healthy’ and BraTS ‘pathological’ slices, and 0.015 between BraTS

‘pathological’ and Cam-CAN slices. This implies that after pre-processing, the difference

between histograms of Cam-CAN and BraTS is minimal, and thus intensities distributions of

them are close.

4.4.2 Baselines and methods for comparison

We compare our method with the following four approaches. These methods are introduced

in Section 3.2.1 and 3.3.1. Here we briefly describe how they are comparable to our method :

1. Conditional GAN: We first consider a baseline that uses adversarial training and a

simple conditional approach of [122]. This is a GAN in which the output is condi-

tioned on the input image and does not use segmentation masks. This baseline uses a

generator and a discriminator with the same architectures as our method for appropriate

comparison.
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2. CycleGAN: Another baseline we compare with is the CycleGAN [130], where there

are two translation cycles: one is P to H to P, and the other is H to P to H (‘P’ refers

to the pathological and ‘H’ refers to the healthy domain). We do not use segmentation

masks. The generators and discriminators of CycleGAN also share the same architec-

ture as our proposed method.

3. AAE: We implement and compare with a recent method that aims to address a similar

problem [160]. We trained an adversarial autoencoder (AAE) only on healthy images

and performed pseudo healthy synthesis with the trained model. This approach does

not use segmentation masks and data with pathology.

4. vaGAN: We compare with [12], another recent method for pseudo healthy synthesis,

using the official implementation4 but modified for 2D slices. This method produces

residual maps, which are then added to the input images to produce the resulting pseudo

healthy images. An `2 loss on the produced maps acts as a regulariser. This approach

does not use segmentation masks.

4.4.3 Training details

In the paired setting, the overall loss is:

Lpaired = λ1LGAN1 + λ2LGAN2

+λ3LCC1 + λ4LCC2 + λ5Lsegpaired ,
(4.7)

where the λ parameters are set to: λ1 = 2, λ2 = 1, λ3 = 20, λ4 = 10 and λ5 = 10.

In the unpaired setting, the loss is:

Lunpaired = λ1LGAN1 + λ2LGAN2

+λ3LCC1 + λ4LCC2 + λ5Lsegunpaired
,

(4.8)

where λ1, λ2, λ3 and λ4 are set as above, while λ5 is set to 1. The values of the λ parameters

are set experimentally as follows. The λ for Cycle P-H are double the λ for Cycle H-H, i.e.

4https://github.com/baumgach/vagan-code
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λ1 = 2λ2 and λ3 = 2λ4, since our focus is on pseudo healthy synthesis. Furthermore, the

λ for LCC is 10 times larger than the one for LGAN to balance the loss values, i.e. λ3 =

10λ1 and λ4 = 10λ2. Finally, λ5 in paired setting is set to 10 to encourage an accurate

segmentation, since segmentation is a challenging task. The λ values for the unpaired setting

are set similarly, except λ5 that is set to 1, since this is a GAN loss, and a balance between the

segmentor and mask discriminator losses is sought. The values of λs were set experimentally.

In practice, we found the model is sensitive to loss weights and other hyper-parameters, which

could be due to the instability of GAN training and the use of multiple losses.

We train all models for 300 epochs. Following [107] and [111], we updated the discrimi-

nators and generators in an alternating session. As Wasserstein GAN requires the discrimi-

nators to be close to optimal during training, we updated the discriminators for 5 iterations

for every generator update. Initially in the first 20 epochs, we update the discriminators

for 50 iterations per generator update. We implemented our methods using Keras [223].

We trained using Adam optimiser [224] with a learning rate of 0.0001 and β1 equal to 0.5.

We made the implementation publicly available at https://github.com/xiat0616/

pseudohealthy-synthesis.

The results of Section 4.5 are obtained from a 3-fold cross validation. For ISLES, each split

contains 18 volumes for training, 3 volumes for validation and 7 volumes for testing. For

BraTS, each split contains 100 volumes for training, 15 for validation and 35 for testing.

For Cam-CAN, each split contains 50 volumes for training, 8 for validation and 18 for test-

ing. This is to ensure that the ‘pathological’ slices from BraTS have similar number as the

‘healthy’ slices from Cam-CAN. We fine-tuned the architecture of the pre-trained segmentor

and classifier based on the validation set.

4.4.4 Evaluation metrics

Since paired healthy and pathological images of the same subjects are difficult to acquire, we

do not have ground-truth images to directly evaluate the synthetic outputs.

As we mentioned previously in Section 4.1.3, image quality has been rarely directly evalu-

ated. To address this, we propose two numerical evaluation metrics to assess the ‘healthiness’
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and ‘identity’ of synthetic images [225]. Since brain tumours can cause deformations in the

brain, we also propose a new metric to evaluate how well the deformations are corrected in

BraTS. Furthermore, we perform human evaluation studies on a subset of our experiments

regarding these metrics. Below we introduce the quantitative metrics used in this work.

Healthiness (h): To evaluate how ‘healthy’ the pseudo healthy images are, we measure the

size of their segmented pathology as a proxy. To this end, we pre-trained a segmentor to

estimate pathology from images. We then used this segmentor as a judge to assess pathology

from the pseudo healthy images and checked how large the estimated pathology areas are.

Note that for each split we trained a segmentor on the training data and fine-tuned it on the

validation set. Formally, healthiness is defined as:

h = 1− Ex̂h∼H[N(fpre(x̂h))]

Emp∼Pm [N(fpre(xp))]
= 1−

Exp∼P [N(fpre(G(xp)))]

Emp∼Pm [N(fpre(xp))]
, (4.9)

where xp is a pathological image, fpre is the pre-trained segmentor, and N(.) is the number

of pixels that are labelled as pathology by fpre. The denominator uses the segmented mask

of the pathological image fpre(xp), instead of the ground truth mp, to cancel out a potential

bias introduced by the pre-trained segmentor. We subtract the term from 1, such that when

pathology mask gets smaller, h increases.

Identity (iD): This metric represents how well the synthetic images preserve subject identity,

i.e. how likely they come from the same subjects as the input images. This is achieved by

evaluating their structural similarity to the input images outside the pathology regions, using a

masked Multi-Scale Structural Similarity Index (MS-SSIM)5 with window width of 11 [206].

Formally, identity is defined as:

iD = MS-SSIM [(1−mp)� x̃h, (1−mp)� xp]

= MS-SSIM [(1−mp)�G(xp), (1−mp)� xp],
(4.10)

where xp is a pathological image, mp is its corresponding pathology mask, and � is pixel-

by-pixel multiplication.

5Due to its use of MS-SSIM this metric also reflects image quality.
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Deformation correction (DeC): In some cases (BraTS dataset), a brain may also deform

due to the presence of a large cancerous mass. The difficulty is that, to fix the deformation

caused by the tumour, we need to not only change the abnormal intensities, but also to make

necessary changes to the structure of the brain. This poses a significant challenge for evaluat-

ing subject identity. The identity metric above does not measure well whether this tissue has

recovered (because it relies on pixel correspondence). Herein we attempt to define a proxy

metric that aims to assess whether such correction has taken place.6

As Cam-CAN and BraTS were acquired differently, and could potentially have intensity dif-

ferences, we pre-processed all brain slices using the Canny edge detector in order to remove

any intensity bias. An example of a BraTS image and its extracted edge map are shown in

Figure 4.5, where we can observe the deformations as pointed out by the red arrows. We

then pre-trained a classifier to classify edge maps of BraTS ‘healthy’ slices, i.e. images with

no tumour annotation, and Cam-CAN slices. The pre-trained classifiers, achieved an average

accuracy of 89.7%, and were used as a judge on pseudo healthy images from BraTS slices.

This means that the classifiers were able to discriminate between BraTS ‘healthy’ edges and

Cam-CAN edges mostly relying on the presence of deformations. The output of this classi-

fier is a continuous number between 0 and 1, representing the probability of an image to be

deformation-free. DeC in the testing set is then defined as the probability of synthetic images

being deformation-free, i.e. more Cam-CAN like.

Human evaluation: To highlight the difficulty of defining quantitative metrics, and the over-

all difficulty of assessing image ‘quality’ in such synthesis tasks, we introduce an expert

evaluation to further assess the above criteria of healthiness, identity and deformation correc-

tion on a small subset of the experiments. We purposely did not ask raters to assess overall

image quality, as quality can be a combination of factors (which can vary across experts).7

We randomly selected 50 slices from BraTS, obtained the pseudo healthy outputs of all com-

parison methods, and then asked four medical image analysis researchers and a clinical neu-

6We note that this is a very hard task and our attempts to use a non-linear registration-based approach where
we measured the amount of deformation between different diseased and pseudo healthy images was not met
with success because it gave lots of false positives when identity was completely lost.

7We also note the difference of our study design compared to the ones commonly encountered in the image-
to-image translation community [130] where users are asked to decide if an image is ‘real’ or ‘fake’.
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Figure 4.5: An example of BraTS ‘healthy’ image and its edge map. Observe the deforma-

tion in the brain and edge as pointed out by the red arrows. Note that this brain image does

not have pathology in its corresponding segmentation map, but the deformation still exists.

rologist to independently score each synthetic image arranged in panels (details below) on

each criterion using a binary score. We provided instructions as to what each criterion should

reflect. Specifically the definitions were: “Healthiness: assess if the synthetic image appears

healthy (1) or not (0)”; “Identity: assess if the synthetic image belongs to the same subject as

the original image (1) or not (0)”; “Deformation correction: assess if the deformation caused

by a cancerous mass has been corrected in areas outside the mass (1) or not (0)”.

Each panel was a montage of: input diseased image; ground truth segmentation mask; pseudo

healthy images obtained as outputs of the tested algorithms. The raters were blinded to which

algorithm generated each image and image arrangement was randomised (for every panel

shown). The raters knew though that the first image was the input to the algorithms.

Overall each rater reviewed 50 panels, each containing 6 images, with a score for 3 metrics,

providing a total of 900 scores. Across the four raters 3600 scores were available. We asked

raters to limit time spent on a panel to be less than 3 minutes.

Real v.s. fake test: As our approach focuses on image synthesis, we performed a human

experiment where we requested raters to tell apart real from synthetic images. Specifically, we
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randomly selected 50 pathological slices, and used the methods discussed herein to generate

corresponding pseudo healthy images. As a result, we generated 300 images in total. Then,

we randomly selected 300 real healthy images, and presented all images in a random order to

four researchers who classified them as real or fake. We used a standardised viewing setting

(screen size, distance from screen, illumination, monitor brightness) and limited evaluation

time to 1 minute per image, and measured ‘realness’ as the ratio of images labelled ‘real’.

4.5 Results and discussion

All results reflect testing sets and we report both averages and standard deviation. We use

bold font to denote the best performing method (for each metric) and an asterisk (*) to denote

statistical significance compared to the best performing baseline or comparison method (to

keep in check multiple comparisons). We use a simple paired t-test to test the null hypothesis

that there is no difference between our methods and the best performing baseline, at the

significance level of 5%. We found that differences are normally distributed in the quantitative

metrics based on the D’Agostino and Pearson’s normality test [226, 227]).

4.5.1 Pseudo healthy synthesis for ischemic lesions

Here we perform pseudo healthy synthesis on ISLES dataset, which contains diseased sub-

jects with ischemic lesions. These lesions should not alter the brain’s shape distal to the lesion

much [20], but rather manifest as hyper-intense regions in T2 and FLAIR modalities. As de-

scribed in Section 4.4.1, all methods are trained with a ‘healthy’ set containing images that

do not have an annotated lesion mask, and with a ‘pathological’ set containing the remaining

images. The exception is the AAE [160], which requires only ‘healthy’ images for training.

For our method in the unpaired setting, we used approximately 100 masks from 3 subjects for

training the mask discriminator. Standard spatial augmentations have been applied to prevent

overfitting of the discriminator on the real masks. Note that the baseline and comparison

methods do not require pathological masks for training.

We compare our method with the methods of Section 4.4.2 qualitatively and quantitatively.
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Numerical results of identity (iD) and healthiness (h), defined in Section 4.4.4, are sum-

marised in Table 4.1, and examples of synthetic images are shown in Figure 4.6.

In Table 4.1 we can see that our method trained in the paired setting achieves the best re-

sults, followed by our method trained in the unpaired setting. Both paired and unpaired ver-

sions outperform all others. A key reason behind our methods’ improved performance is the

pathology disentanglement, which enables the accurate reconstruction of the input patholog-

ical images without hiding pathology information in the pseudo healthy images. We can also

observe from Figure 4.6 that our methods produce sharp and lesion-free images, evidenced

also by the superior healthiness values in Table 4.1. The synthetic images also preserve de-

tails of the input images, which points that subject identity is preserved along with image

quality.

Furthermore, we observe (Table 4.1) that CycleGAN achieves the third best results in terms of

identity, which showcases the benefit of cycle-consistency loss in preserving subject identity.

However, as described in Section 4.3.2, CycleGAN suffers from the one-to-many problem,

which misleads it to generate artifacts in synthetic images. As a result, the healthiness of

CycleGAN is not as good as the ones of vaGAN and Conditional GAN, which do not need to

Method
T2 FLAIR

iD h iD h

AAE 0.630.07 0.710.14 0.660.06 0.810.09

vaGAN 0.720.05 0.770.11 0.750.04 0.850.08

Cond. GAN 0.750.06 0.740.12 0.730.05 0.830.12

CycleGAN 0.820.04 0.760.11 0.830.05 0.810.08

Ours (unpaired) 0.93∗0.04 0.84∗0.09 0.870.04 0.88∗0.06

Ours (paired) 0.97∗0.04 0.85∗0.08 0.94∗0.03 0.89∗0.07

Table 4.1: Numerical evaluation of our method and baselines on ISLES dataset in terms of

identity iD and healthiness h. For each metric, 1 is the best and 0 is the worst. The best mean

values are shown in bold. Statistical significant results (5% level) of our methods compared

to the best baseline are marked with an asterisk (*).
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‘hide’ pathology information in the pseudo healthy images.

Although vaGAN involves a `1 loss between the input and synthetic images, we do not see

significant improvements over Conditional GAN, where such a regularization loss is not used.

In Figure 4.6, we also observe a loss of subject identity in both vaGAN and Conditional GAN.

Even though vaGAN produces results that maintain the outline of the brain, these results

lack refined details. On the contrary, Conditional GAN changes the outline of the brain but

maintains inner details.

In addition, AAE often loses subject identity, and the produced synthetic images may present

artifacts within the pathological areas of the input images. This is because there is no explicit

loss to force the synthetic images to maintain the subject identity, neither a loss to explicitly

ensure that the network learned to transform the pathological area to be ‘healthy’.

4.5.2 Pseudo healthy synthesis for brain tumours

Here we apply our method on the BraTS dataset where volumes have high grade glioma. As

described in Section 4.5.1, for the case of ischemic lesions we used ‘healthy’ images from

the same dataset. However, as shown in Figure 4.7, BraTS slices with no tumour annotations

may still exhibit deformations. As such, training with ‘healthy’ slices might only adjust the

intensities within in the tumour areas, but was not able to fix the deformations caused by

tumours. We therefore use a second healthy dataset, Cam-CAN, to extract 2D healthy slices,

which we used for model training, after confirming its suitability by comparing its intensity

distribution with the one of BraTS (see Section 4.4.1). For our method in the unpaired setting,

and to train the mask discriminator, we used approximately 950 masks from 70 subjects that

were not part of the training, validation and test sets. Standard spatial augmentations were

applied to prevent overfitting of the discriminator on the real masks.
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Pathological 
images

AAE vaGAN Conditional 
GAN

CycleGAN Ours
(unpaired)

Ours
(paired)

Figure 4.6: Experimental results of five samples (each in every row) for ISLES data. The

columns from left to right are the original pathological images, and the synthetic healthy

images by AAE, vaGAN, Conditional GAN, CycleGAN, and the proposed method in the un-

paired and paired setting, respectively.
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T1 T2 FLAIR
Figure 4.7: An example of BraTS images where glioblastoma is not present, but the brain

tissues are still affected by deformations. From left to right are the same slice in T1, T2 and

FLAIR modalities, respectively. The red arrows point to the affected areas, i.e. the left half

of the brain.
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Figure 4.8 shows visual comparisons between the methods considered. We observe that our

method produces realistic results and preserves details, while other methods are more sus-

ceptible to losing subject identity. CycleGAN can better preserve identity, although image

quality is deteriorated (see the bottom of the brain). In addition, CycleGAN creates some

artifact inside the pathological region. It is possible that this artifact may indeed be the infor-

mation that CycleGAN hides to enable input reconstruction. Furthermore, Conditional GAN

and vaGAN produce images that are darker and do not match details of the input alluding to

possible identity loss. This could be attributed to the lack of losses to help preserve identity,

thus making it ‘easier’ for Conditional GAN and vaGAN to learn a mapping from a patho-

logical to a healthy image of a different subject. Finally, AAE outputs appear blurry and with

visible artifacts inside the diseased region.

Quantitative results are shown in Table 4.2, employing now three metrics including one that

also assesses deformation correction, as previously described in Section 4.4.4.

Pathological 
images

AAE vaGAN Conditional
GAN

CycleGAN Ours
(unpaired)

Ours
(paired)

Figure 4.8: Experimental results of three samples, each in every row, for BraTS data. The

columns from left to right are the original pathological images, and the synthetic healthy

images by AAE, vaGAN, Conditional GAN, CycleGAN, and the proposed method in the un-

paired and paired setting, respectively.
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As expected, identity of our methods, as measured by iD, has dropped compared to Table

4.1. This is because our methods try to alter the structure of brains to fix the deformations.

Indeed, when employing the new metric DeC, our methods achieve higher probability of

generated images classified as ‘healthy’. For healthiness, h, our methods still outperform the

other methods, indicating that the generated images do not contain detectable disease.

4.5.3 Results of expert evaluation on pseudo healthy synthesis for brain

tumours

In recognition that our metrics may partially reflect image quality as perceived by expert ob-

servers, herein we report the results of our observer study. We aggregated the scores for each

approach and averaged across raters to obtain a single consensus score per method per image,

for which we used to calculate standard deviation and perform statistical analysis. Given that

categorical scores of the human raters and their differences are not normally distributed we

instead use a bootstrapped paired t-test [228] to test the null hypothesis described in Sec-

tion 4.5.1. The human raters consist of members (and previous members) of our group, i.e.

Dr. Valerio Giuffrida, Dr. Haochuan Jiang, Dr. Spyridon Thermos, Mr. Grzegorz Jacenkow,

Dr. Gabriele Valvano and Mr. Xiao Liu, and an anonymous expert. They all work in medical

imaging analysis with years of experience. We also invite Dr. Dafan Yu, a clinical neurologist

affiliated with the Third Affiliated Hospital of Sun Yat-sen University, for helping to evaluate

the results.

The results of this analysis are shown in Table 4.2. We observe that our methods still outper-

form baselines and other methods, with a significant improvement for all metrics. In addi-

tion, we observe that the methods ranking order is mostly preserved compared to the ranking

obtained by the quantitative metrics. Intriguingly, CycleGAN can ‘fool’ the pre-trained Seg-

mentor which measures healthiness in the ‘h’ metric but not expert observers in how they

assess healthiness. These observations suggest that while numerical evaluation is generally

consistent with expert evaluation, there can be room for improvement. We note here the stan-

dard deviations for all methods are relatively high, which is due to the binary scoring system

used for experiment. Furthermore, we obtained the point biserial correlation [229] between

85



Pseudo Healthy Synthesis

the values produced by our metrics and the human evaluation study to be 0.35, 0.32, and 0.36

for iD, h, and DeC, respectively. This implies a positive correlation between quantitative

and human metrics.

To further evaluate the quality of synthesised images, we requested human observers to dis-

criminate between real and generated ‘healthy’ images, as described in Section 4.4.4. We

calculated the ‘realness’ score to be 0.43±0.33 for AAE, 0.48±0.36 for vaGAN, 0.44±0.30

for Conditional GAN, 0.47 ± 0.31 for CycleGAN, 0.51 ± 0.31 for our method (unpaired),

0.54 ± 0.25 for our method (paired), and 0.63 ± 0.32 for ground-truth healthy images as

upper benchmark. Observe that our approaches were the closets to benchmarks.

4.5.4 Segmentation results

Here we evaluate the use of pseudo healthy synthesis on segmentation of T2 BraTS images.

Specifically, we compared the pseudo healthy images with the ground-truth pathological im-

ages, and obtained the segmentation masks from the difference maps using a threshold of 0.1.

For our method, and since segmentation is explicitly performed, we test with masks obtained

both from the pseudo healthy images, and from the Segmentor. We calculated Dice scores

on the test sets to be 0.34 ± 0.11 for AAE, 0.53 ± 0.13 for vaGAN, 0.51 ± 0.14 for condi-

tional GAN, and 0.63 ± 0.16 for CycleGAN. Our approach in the unpaired setting obtained

0.74±0.14 when using the Segmentor output, and 0.70±0.13 when using the pseudo healthy

images. In both cases our approach achieved statistically significant better results compared

to the other benchmarks.

4.5.5 Ablation studies

4.5.5.1 Semi-supervised learning

In this section, we evaluate the effect of the amount of supervision by performing a semi-

supervised experiment. Specifically, we vary the number of masks used in the supervised loss

of Equation 4.5, while keeping the number of images fixed. The edge cases when all images

have paired masks, and vice versa, correspond to the paired and unpaired setting respectively.
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Ratio of

paired samples 0% (unpaired) 20% 40% 60% 80% 100% (paired)

iD 0.870.04 0.880.05 0.900.06 0.910.05 0.930.04 0.940.03

h 0.880.06 0.870.06 0.890.05 0.880.06 0.890.08 0.890.07

Table 4.3: Numerical evaluation of our method on ISLES FLAIR dataset when the ratio of

paired samples changes. Here x% means that x% of the training pathological images have

corresponding ground-truth pathology masks.

Also, the number of segmentation masks used by the unsupervised loss of Equation 4.6 is

fixed in all cases. The training strategy is that if the input image has a ground-truth pathology

mask, then we use this mask to train the segmentor, with Equation 4.7. When the input image

does not have a ground-truth pathology mask, we use the mask adversarial loss to train the

network, with Equation 4.8. The results are presented in Table 4.3.

We can observe that for all paired sample ratios, our method can achieve synthetic images

of great quality in terms of identity and healthiness. Nevertheless, we can observe that the

iD, i.e. identity score, increases as the ratio of the paired samples also increases. This could

be attributed to the effect of more stable training of the Segmentor. For the ISLES dataset,

the Generator needs to learn an identity mapping for healthy regions and a pseudo healthy

function for pathological regions. The Segmentor performance has a direct effect on the

Reconstructor and an indirect effect on the Generator through back-propagation. With less

supervision, the training of the Segmentor is noisier, and the segmented pathological region,

that Generator and Reconstructor focus on, is also noisier. Therefore, learning an identity and

pseudo healthy function is harder. This affects the identity score, as the Generator must learn

to synthesise a whole brain image, and cannot reliably learn an identity function for some

parts. On the contrary, the healthiness score, which is directly punished by the adversarial

training loss, is not significantly affected. Finally, in order to perform a fair comparison,

we trained models at a fixed number of epochs. Even though all models have converged, the

noisier training due to the smaller amount of supervision have resulted in a different optimum

and therefore the decrease of the identity metric.
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4.5.5.2 Unsupervised segmentation and importance of cycle-consistency loss

A pre-requisite for an accurate pseudo healthy synthesis that does not contain traces of patho-

logical information, is for the Segmentor S to be able to accurately extract masks, such that

they can be used for the reconstruction of the input pathological images. This should be

possible in the unpaired setting as well, where the Segmentor is not trained with any super-

vision cost. In this setting, the Segmentor is trained using the adversarial loss of the mask

discriminator (Equation 4.6), as well as the cycle-consistency loss (Equation 4.3) of the input

images.

We evaluate the accuracy of S in the paired and unpaired setting on FLAIR images from

ISLES: we obtain respectively an average Dice score of 0.87 (0.15) and 0.79 (0.17) in the

testing sets. The results show that even in the unpaired setting, our method can still achieve

good segmentation. Results appear to be on par with the numbers provided in [169]. To

demonstrate the importance of the cycle-consistency loss (Equation 4.3), we perform an ab-

lation study where we train S only with the adversarial loss of the mask discriminator (i.e.

only with Equation 4.6). We found that this achieves a Dice of 0.66 (0.19) which is much

lower than before. This highlights that just matching the adversary is not enough and that the

cycle-consistency loss, by backpropagating additional gradients to the segmentor originating

from this cost, encourages further the segmented mask to be correct (in place and size) to

enable better reconstruction of the input pathological image.

4.5.5.3 Usefulness and design of Cycle H-H

Our method includes a second training cycle, Cycle H-H, that reconstructs healthy images

and masks. This cycle improves the identity preservation of the input images and ensures that

our method does not invent disease when a healthy image is given.

Here we perform two ablation studies. For the first ablation study, we train our methods

without Cycle H-H, i.e. train the network only with Cycle P-H. For the second ablation study,

we change Cycle H-H to a new cycle, termed Cycle H-P, which translates healthy images to

synthetic diseased ones. The difference between Cycle H-H and Cycle H-P is that Cycle H-H

translates a healthy image and a healthy mask to a fake healthy one, and then reconstructs the
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Method iD h

without Cycle H-H 0.850.05 0.930.04

With Cycle P-H, instead of H-H 0.890.06 0.890.04

Replace Wasserstein with LS-GAN loss 0.920.03 0.970.04

Ours (Cycle H-H & Wasserstein) 0.940.03 0.990.03

Table 4.4: Ablation studies. Here we compare our model with ablated models where we train

in the paired setting on ISLES: without Cycle H-H; train with a modified Cycle H-P cycle;

and also train with Least Square discriminator loss. See text for more details.

input healthy image and mask; while Cycle H-P translates a healthy image and a pathology

mask to a fake diseased one, and then reconstructs the input healthy image and pathology

mask. The training of Cycle H-P requires an additional discriminator to encourage realistic

synthesis of pathological images, and requires careful selection of pathology masks that are

suitable to guide the pseudo diseased image generation and fit the real healthy images. We

perform the experiments in paired setting on ISLES FLAIR images.

The results are shown in Table 4.4. We observe that our method with Cycle H-H outperforms

variants without it and with Cycle H-P. This highlights the importance and effectiveness of

the simple, yet effective, design of Cycle H-H in preserving subject identity and improved

healthiness of pseudo healthy images.

4.5.5.4 Effectiveness of Wasserstein loss

In this work, to train the discriminators, we replaced the LS-GAN loss [110] that was used

in [225], with the Wasserstein loss with gradient penalty [112], which we found to further

stabilise training and improve the generated image quality. To illustrate the latter, in Table 4.4

we also show results from models trained in the paired setting on ISLES FLAIR images

when using the LS-GAN loss. We observe that Wasserstein loss improves quantitatively the

synthetic images in terms of identity and healthiness.
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Figure 4.9: Pseudo disease synthesis. Top row shows healthy images, middle row shows

random pathology masks, and bottom row presents the synthetic ‘pathological’ image by the

Reconstructor. We can see that Reconstructor can generate realistic ’pathological’ images

based on input images and masks.

4.5.5.5 Pseudo disease synthesis

If our method works well, the Reconstructor should be able to synthesise a ‘pathological’

image given a healthy one and a suitable pathology mask. Here we used randomly sampled

but suitable masks and healthy images to generate a pathological image, with a trained Re-

constructor on the ISLES FLAIR dataset. We show some example images of this pseudo

disease synthesis, as shown in Figure 4.9. We can observe that although our model has never

been trained to perform this pseudo disease synthesis, the Reconstructor can synthesise a

‘pathological’ image when given a healthy image and a suitable pathology mask.

4.6 Summary

This chapter proposed a method that aims to synthesise pseudo healthy images using an ad-

versarial design that disentangles pathology. Our method is composed of a Generator that

creates pseudo healthy images and a Segmentor that predicts a pathology map. These key

components are trained aided by the Reconstructor, which reconstructs the input pathological
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image conditioned on the map and the pseudo healthy image. Our method can be trained

using supervised and adversarial loses taking advantage of unpaired data. We propose nu-

merical evaluation metrics to explicitly measure the quality of the synthesised images. We

demonstrate on ISLES, BraTS and Cam-CAN datasets that our method outperforms base-

lines both qualitatively, quantitatively, and subjectively with a human study. In this chapter,

we measure the reliability of generated images with quantitative metrics and human evalua-

tion. However, we admit that the golden standard of measuring the reliability should be its

utility in practical applications, which is seen as a future work. We do not explicitly con-

sider the variability of the generated images as we assume that the ‘healthy’ version of a

pathological image should be unique. However, as a future direction, we could compare the

variability of all pathological images and their pseudo healthy counterfactuals. We expect

that there would a reduction of variability in the pseudo healthy images, due to the removal

of pathology. From a conditioning perspective, the proposed approach of this chapter treated

‘diseased’ or ‘healthy’ as discrete factors and generated images based on these discrete fac-

tors. However, in some cases we might need to generate images conditioned on continuous

factors, e.g. age, which is a more difficult task. In Chapter 5, we will present a new approach

for brain ageing synthesis.
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Chapter 5
Brain Ageing Synthesis1

5.1 Introduction

In this chapter, we focus on a complex image synthesis task, i.e. synthesising the visual

predictions of brain images with age as a factor. Similar to Chapter 4, we adopt adversarial

training to generate ‘older’ images given baseline observations. Since longitudinal brain data

is limited, we use cross-sectional data to train the model. The proposed model is able to

predict subject-specific future images conditioned on age and health state.

The ability to predict the future state of an individual can be of great benefit for longitu-

dinal studies [198]. However, such learned phenomenological predictive models need to

capture anatomical and physiological changes due to ageing and separate the factors that in-

fluence future state. Recently, deep generative models have been used to simulate and predict

future degeneration of a human brain using existing scans [191, 188, 189]. However, cur-

rent methods require considerable amount of longitudinal data to sufficiently approximate an

auto-regressive model. Here, we propose a new conditional adversarial training procedure

that does not require longitudinal data to train. Our approach (shown in Fig. 5.1) synthesises

images of aged brains for a desired age and health state.

Brain ageing, accompanied by a series of functional and physiological changes, has been

intensively investigated [230, 231]. However, the underlying mechanism has not been com-

1This chapter is based on the following publications:

• Tian Xia, Agisilaos Chartsias, and Sotirios A. Tsaftaris, for the Alzheimer’s Disease Neuroimaging
Initiative. “Consistent Brain Ageing Synthesis”. In: Shen D. et al. (eds) Medical Image Computing
and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer
Science, vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9-82.

• Tian Xia, Agisilaos Chartsias, Chengjia Wang, Sotirios A. Tsaftaris. “Learning to synthesise the
ageing brain without longitudinal data”, Medical Image Analysis, Volume 73, 2021, 102169, ISSN
1361-8415.
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Figure 5.1: A schematic of proposed method and example results for an image. Left: The

input is a brain image xi, and the network synthesises an aged brain image x̂o from xi, condi-

tioned on the target health state vector ho and target age difference ad = ao−ai between input

ai and target ao ages, respectively. Right: For an image xi of a 26 year old subject, bottom

row shows outputs x̂o given different target age. The top row shows the corresponding image

differences |x̂o − xi| to highlight progressive changes.

pletely revealed [39, 232]. Prior studies have shown that a brain’s chronic changes are related

to different factors, e.g. the biological age [47], degenerative diseases such as Alzheimer’s

Disease (AD) [233], binge drinking [234], and even education [235]. Accurate simulation

of this process has great value for both neuroscience research and clinical applications to

identify age-related pathologies [232, 47].

One particular challenge is inter-subject variation: every individual has a unique ageing tra-

jectory. Previous approaches built a spatio-temporal atlas to predict average brain images

at different ages [178, 177]. However, individuals with different health status follow dif-

ferent ageing trajectories. An atlas may not preserve subject-specific characteristics; thus,

may preclude accurate modelling of individual trajectories and further investigation on the

effect of different factors, e.g. age, gender, education, etc [192]. Recent studies proposed

subject-specific ageing progression with neural networks [191, 188], although they require

longitudinal data to train. Ideally, the longitudinal data should cover a long time span with

frequent sampling to ensure stable training. However, such data are difficult and expensive to

acquire, particularly for longer time spans. Even in ADNI [5], one of the most well-known

large-scale datasets, longitudinal images are acquired at few time points and cover only a few

years. Longitudinal data of sufficient time span remain an open challenge.

In this chapter, we build the foundations of a model that can be trained without longitudinal

data. A simplified schematic of our model is shown in Fig. 5.1 along with example results.
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Given a brain image, our model produces a brain of the same subject at target age. The input

image is first encoded into a latent space, which is modulated by two vectors representing tar-

get age difference and health state (AD status in this chapter), respectively. The conditioned

latent space is finally decoded to an output image, i.e. the synthetically aged image.

Under the hood, what trains the generator, is a deep adversarial method that learns the joint

distribution of brain appearance, age and health state. The quality of the output is encouraged

by a discriminator that judges whether an output image is representative of the distribution

of brain images of the desired age and health state. A typical problem in synthesis which is

exacerbated with cross-sectional data [198] is loss of subject identity2, i.e. the synthesis of

an output that may not correspond to the input subject’s identity. We propose, and motivate,

two loss functions towards retaining subject identity by regularising the amount of change

introduced by ageing. In addition, we motivate the design of our conditioning mechanisms

and show that ordinal binary encoding for both discrete and continuous variables improves

performance significantly.

We consider several metrics and evaluation approaches to verify the quality and biological

plausibility of our results. We quantitatively evaluate our simulation results using longitudi-

nal data from the ADNI dataset [5] with classical metrics that estimate image fidelity. Since

the longitudinal data only cover a limited time span, it is difficult to evaluate the quality of

synthesized aged images across decades. For brain ageing synthesis, a good synthetic brain

image should be accurate in terms of age, i.e. be close to the target age that we want it to be,

and also preserve subject identity, i.e. should be from the same subject as the input. Thus,

we pre-train a deep network to estimate the apparent age from output images. The estimated

ages are used as a proxy metric for age accuracy. We also show qualitative results, in-

cluding ageing simulation on different health states and long-term ageing synthesis. Both

2A classical computer vision example is generating a human face resembling another individual instead of
the input subject. Even with faces, humans find it difficult to assess identity loss. It remains hard to define
detailed structural changes during ageing, e.g. balding, nose shape change, eye colour change. There are some
common patterns that we can expect, such as wrinkles and gray/white hair, but it is difficult to define other more
detailed changes. Therefore, even in face ageing, ‘subject identity’ is defined as young and old images should
be from the same person. In brain synthesis, it is even more difficult to define ‘subject identity’, as human eyes
are less able to visually ascertain brain image identity particularly as modulated by age and pathology. In this
chapter, we followed a similar analogue of ‘identity’: a “synthetic image should be from the same subject as the
input image”.
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quantitative and qualitative results show that our method outperforms benchmarks with more

accurate simulations that capture the characteristics specific to each individual on different

health states. Furthermore, we train our model on Cam-CAN and evaluate it on ADNI to

demonstrate the generalisation ability to unseen data. In addition, to demonstrate the real-

ism of synthetic results, we perform volume synthesis and evaluate deformation. We also

estimate gray matter atrophy in middle temporal gyrus and find that our model, even with-

out longitudinal data, has learned that ageing and disease leads to atrophy. Ablation studies

investigate the effect of loss components and different ways of embedding clinical variables

into the networks.

Our contributions are summarised as follows:

• Our main contribution is a deep learning model that learns to simulate the brain ageing

process, and perform subject-specific brain ageing synthesis, trained on cross-sectional

data overcoming the need for longitudinal data.

• For our model to be able to change output based on desired input (age and health state),

we use an (ordinal) embedding mechanism that guides the network to learn the joint

distribution of brain images, age and health state.

• Since we do not use longitudinal data that can constrain the learning process, we design

losses that aim to preserve subject identity, while encouraging quality output.

• We provide an experimental framework to verify the quality and biological validity of

the synthetic outputs.

While our first contribution is the most important one, it is the combination of our proposed

losses and embedding mechanisms that lead to the method’s robustness, as extensive exper-

iments and ablation studies on two publicly available datasets, namely Cam-CAN [2] and

ADNI [5] show.

The manuscript proceeds as follows: Section 5.2 reviews related work on brain ageing sim-

ulation and prediction. Section 5.3 details the proposed method. Section 5.4 describes the

experimental setup and training details. Section 5.5 presents results and discussion. Finally,

Section 5.6 offers summary.
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5.2 Related Work

Here we first summarise related works for brain ageing simulation, i.e. simulating the ageing

process from data. Please refer to Section 3.3.2 for a more detailed review. For completeness,

we also briefly discuss brain age prediction, i.e. estimating age from an image.

5.2.1 Brain ageing simulation

Given variables such as age, one can synthesise the corresponding brain image to enable

visual observation of brain changes. For instance, patch-based dictionary learning [173],

kernel regression [177, 198, 179], linear mixed-effect modelling [180, 181] and non-rigid

registration [182, 183, 184, 185] have been used to build spatio-temporal atlases of brains at

different ages. However, by relying on population averages as atlases, subject-specific ageing

trajectories are harder to capture.

Deep generative methods have also been used for this task. While [188, 189] and [187] used

formulations of Generative Adversarial Networks (GAN) [107] to simulate brain changes,

others [191] used a conditional adversarial autoencoder as the generative model, following a

recent face ageing approach [193]. Irrespective of the model, these methods need longitudinal

data, which limits their applicability. To allow training with cross-sectional data, GAN-based

or VAE-based models have been used in [194, 195, 196, 197]. However, they either mod-

elled the brain ageing a linear process [194], or resulted in blurry results without quantitative

evaluation [195, 196, 197].

In summary, most previous methods either built average atlases [173, 177, 198, 179], or

required longitudinal data [188, 189, 191, 187] to simulate brain ageing. Other methods

either did not consider subject identity [194, 195], or did not evaluate in detail morphological

changes [196, 197]. To address these shortcomings, we propose a conditional adversarial

training procedure that learns to simulate the brain ageing process by being specific to the

input subject, and by learning from cross-sectional data i.e. without requiring longitudinal

observations.
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5.2.2 Brain age prediction

These methods predict age from brain images learning a relationship between image and age;

thus, for completeness we briefly mention two key directions. For example, [236] predicted

age with hand-crafted features and kernel regression whereas [237] used Gaussian Processes.

Naturally performance relies on the effectiveness of the hand-crafted features.

Recently, deep learning models have been used to estimate the brain age from imaging data.

For example, [238] used a VGG-based model [239] to predict age and detect degenerative

diseases, while [240] proposed to discover genetic associations with the brain degeneration

using a ResNet-based network [13]. Similarly, [241] used a CNN-based model to predict age.

[242] used the age predicted by a deep network to detect traumatic brain injury. While most

previous works achieved mean absolute error (MAE) of 4-5 years, [241] achieved state-of-

the-art performance with MAE of 2.14 years. However, these methods did not consider the

morphological changes of brain, which is potentially more informative [243].

5.3 Proposed approach

5.3.1 Problem statement, notation and overview

In the rest of the chapter, we use bold notations for vectors/images, and italics notations for

scalars. For instance, a represents an age while a is a vector that represents age a. We denote

a brain image as xs (and Xs their distribution such that xs ∼ Xs), where s are the subject’s

clinical variables including the corresponding age a and health state (AD status) h. Given a

brain image xi of age ai and health state hi, we want to synthesise a brain image x̂o of target

age ao and health state ho. Critically, the synthetic brain image x̂o should retain the subject

identity, i.e. belong to the same subject as the input xi, throughout the ageing process. The

contributions of our approach, shown in Fig. 5.2, are the design of the conditioning mecha-

nism; our model architecture that uses a Generator to synthesise images, and a Discriminator

to help learn the joint distribution of clinical variables and brain appearance; and the losses

we use to guide the training process. We detail all these below.
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Figure 5.2: An overview of the proposed method (training). xi is the input image; ho is

the target health state; ad is the difference between the starting age ai and target age ao:

ad = ao − ai; x̂o is the output (aged) image (supposedly belong to the same subject as xi) of

the target age ao and health state ho. The Generator takes as input xi, ho and ad, and outputs

x̂o; the Discriminator takes as input a brain image and ho and ao, and outputs a discrimination

score.
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Figure 5.3: Ordinal encoding of age and health state. Left shows how we represent age ad

using a binary vector with first ad elements as 1 and the rest as 0; Right is the encoding of

health state, where we use a 2 × 1 vector to represent three categories of AD status: control

normal (CN), mildly cognitive impaired (MCI), and Alzheimer’s Disease (AD).

5.3.2 Conditioning on age and health state

As most previous works, we simulate the ageing brain with age as a factor. However, brain

ageing is not only affected by age, but also by other clinical factors such as neurodegenerative

disease. Here, we also involve the health state, i.e. AD status, as another factor to better

simulate the ageing process. 3

3Additional fine-grained information on AD effects on different, local, brain regions could be provided if
clinical scores are used instead. As our work is the first to attempt to learn without longitudinal data, for
simplicity we focused on variables capturing global effects. In the summary section, we note the addition of
fine-grained information as an avenue for future improvement.
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We use ordinal binary vectors, instead of one-hot vectors as in [193], to encode both age and

health state, which are embedded in the bottleneck layer of the Generator and Discriminator

(detailed in Section 5.3.4). We assume a maximal age of 100 years and use a 100× 1 vector

to encode age a. Similarly, we use a 2× 1 vector to encode health state. A simple illustration

of this encoding is shown in Fig. 5.3. An ablation study presented in Section 5.5.4 illustrates

the benefits of ordinal v.s. one-hot encoding.

5.3.3 Preliminary method: brain ageing only conditioned on age

Here we first introduce our preliminary method [15], where we only condition brain ageing

synthesis on age without considering health state.

Model: The preliminary model consists of a Generator and a Discriminator, shown in

Fig. 5.4. These are detailed below. Note images xi, x̂o and yo represent the input, the aged

output and a real older brain image from another subject, respectively.

Generator: ‘G’ takes as input a 2D brain image xo and an ordinal age vector representing

the age difference between ao and ai:ad = ao − ai, and outputs a 2D older image x̂o . We

condition on ad such that when input and output ages are equal (ad = 0) the network is drawn

to recreate its input. This works in synergy with our identity-preserving loss described below.

The Generator consists of three subnetworks: ‘Encoder’ EG , ‘Transmuter ’TG4 , and ‘De-

coder’ DG. EG extracts latent features Fe1 from input xti: Fe1 = EG(xi). TG outputs a

feature map Fe2 = TG(Fe1, vd) by first transforming Fe1 to a bottleneck vector v1, and by

concatenating ce1 with ad. To keep networks parameters low we empirically set the size of v1

to 130. Afterwards, to preserve information of xi, and achieve accurate synthetic results, we

introduce a skip connection between Fe1 and Fe2: Fe3 = cat(Fe1, Fe2), where cat(·) concate-

nates the elements of the given tensors along the channel dimension. Finally, the Decoder

DG synthesises the aged output x̂t from Fe3. x̂o should manifest the characteristics of brains

at age to whilst preserving the identity of input xi, i.e. x̂o should be the brain image of the

same subject as xi at age to.

4We change the name of this subnetwork to ‘Transmuter’ to avoid confusion between it and the popular
model Transformer used in NLP.

99



Brain Ageing Synthesis

xñI Ek

Encoder

Dk

DecoderTk

Fùw

concat

concat

Fùz

Generator	G

Transmuter

F:z FùÅ

0
⋮
0
1
⋮
1
1

aú

aú
Young	Brain	Image

Target	Age	Vector

cù

13×10×(32 + 256)

130×1

100×1

13×10×256

!)ña

yña

Judge

Transmuter
Tô

Fake	Brain	Image

Real	Brain	Image

aR

Or
Eô Jô

Encoder

Discriminator	D
concat

13×10×256 13×10×(32 + 256)

8<=>

100×1

130×1

aR

aú = aü − ai

concat

Difference	Age	Vector

Fúz FúÅ Fúz

cú

Fúw

Figure 5.4: Preliminary method. xi is the input image of age ai; x̂o is the output (aged)

image (supposedly of the same subject as xi) at the age ao; ao is the target age vector and ad

is the difference age vector corresponding to ad = ao − ai. The Generator takes as input xi

and ad, and outputs x̂o; the Discriminator takes as input an image and a target age vector, and

outputs a Wasserstein score.

Discriminator: D contains an Encoder ED and a Transmuter TD to condition on target age

and a Judge JD to output a discriminator score. Note here we condition on ao, instead of ad,

to learn the joint distribution of brain appearance and age, such that it can discriminate real

vs. synthetic images of correct age.

To summarise, the forward pass for the Generator is x̂t = G(xi, ad), and for the Discrimina-

tor is wfake = D(x̂o, ao) and wreal = D(yo, ao).

Losses: The overall training loss is defined as:

L = max
G

min
D
LGAN + min

G
λIDLID,

where LGAN is the GAN loss, and LID is an age-modulated identity-preserving loss and

λID = 100 the weight of LID. LGAN pushes the solution towards realistic images of correct

age, whereas LID pushes towards subject-specific synthesis.

LGAN is a Wasserstein loss with gradient penalty for stable training [112]:

LGAN = Eyo∼Xo,x̂o∼X̂o
[D(yo, ao −D(x̂o, ao) + λGP (‖∇z̃D(z̃)‖2 − 1)2],

where z̃ is the average sample defined as z̃ = εx̂o + (1 − ε)yo, ε ∼ U [0, 1]. First two terms
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measure the Wasserstein distance between real and fake samples; last term is the gradient

penalty. As in [112] we set λGP = 10.

Although the preliminary method achieve realistic brain synthesis according to given ages,

it does not consider other factors that can affect brain ageing progression. Therefore, in

Section 5.3.4, we extend it by involving AD state as another factor as our proposed method

for this chapter. The preliminary method is compared to the proposed method as a benchmark

method in Section 5.5. We denote this preliminary method as ours-previous.

5.3.4 Proposed model

The preliminary method introduced in Section 5.3.3 only considers age, but other factors such

as health status also affect the appearance of brains. Here we extend the preliminary method

by involving AD state as another factor.

The proposed method consists of a Generator and a Discriminator. The Generator synthe-

sises aged brain images corresponding to a target age and a health state. The Discriminator

has a dual role: firstly, it discriminates between ground-truth and synthetic brain images; sec-

ondly, it ensures that the synthetic brain images correspond to the target clinical variables.

The Generator is adversarially trained to generate realistic brain images of the correct target

age. The detailed network architectures are shown in Fig. 5.5.

5.3.4.1 Generator

Here, the Generator is similar to that of the preliminary method in Section 5.3.3. The differ-

ence lies in the latent space, where in addition to age vector ad, we also involve the health

vector ho as another conditioning factor. Details are described below.

The Generator G takes as input a 2D brain image xi, and ordinal binary vectors for target

health state ho and age difference ad. Here, we condition on the age difference between input

age ai and target age ao: ad = ao−ai, such that when input and output ages are equal ad = 0,

the network is encouraged to recreate the input. The output of G is a 2D brain image x̂o
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Figure 5.5: Detailed architectures of Generator and Discriminator. The Generator contains

three parts: an Encoder to extract latent features; a Transmuter to involve target age and

health state; and a Decoder to generate aged images. Similarly, we use the same conditioning

mechanism for the Discriminator to inject the information of age and health state, and a long

skip connection to better preserve features of input image.

corresponding to the target age and health state.5

G has three components: the Encoder EG, the Transmuter TG and the Decoder DG. EG first

extracts latent features from the input image xi; TG involves the target age and health state

into the network. Finally, DG generates the aged brain image from the bottleneck features.

To embed age and health state into our model, we first concatenate the latent vector v1,

obtained by EG, with the health state vector ho. The concatenated vector is then processed by

a dense layer to output latent vector v2, which is then concatenated with the difference age

vector ad. Finally, the resulting vector is used to generate the output image.6 We adopt long-

skip connections [14] between layers of EG and DG to preserve details of the input image

5Note that the target health state can be different from the corresponding input state. This encourages
learning a joint distribution between brain images and clinical variables.

6We tested the ordering of ho and ad, and it did not affect the results. We also tried to concatenate ho, ad
and v1 together into one vector, and use the resulting vector to generate the output. However, we found that the
model tended to ignore the information of ho. This might be caused by the dimensional imbalance between ho

(2× 1) and ad (100× 1).
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and improve the sharpness of the output images. Overall, the Generator’s forward pass is:

x̂o = G(xi, ad,ho).

5.3.4.2 Discriminator

Similar to the Generator, the Discriminator D contains three subnetworks: the Encoder ED

that extracts latent features, the Transmuter TD that involves the conditional variables, and

the Judge JD that outputs a discrimination score. For the discriminator to learn the joint

distribution of brain image, age, and health state, we embed the age and health vectors into

the discriminator with a similar mechanism as that of the Generator.

Note that D is conditioned on the target age ao instead of age difference ad, to learn the

joint distribution of brain appearance and age, such that it can discriminate between real

and synthetic images of correct age. The forward pass for the Discriminator is wfake =

D(x̂o, ao,ho) and wreal = D(yo, ao,ho).

5.3.5 Losses

We train with a multi-component loss function containing adversarial, identity-preservation

and self-reconstruction losses. We detail these below.

5.3.5.1 Adversarial loss

We adopt the Wasserstein loss with gradient penalty [112] to predict a realistic aged brain

image x̂o and force x̂o to correspond to the target age ao and health state ho:

LGAN = Eyo∼Xo,x̂o∼X̂o
[D(yo, ao,ho)

D(x̂o, ao,ho) + λGP (‖∇z̄D(z̃, ao,ho)‖2 − 1)2],
(5.1)

where x̂o is the output image: x̂o = G(xi, ad,ho) (and ad = ao − ai); yo is a ground truth

image from another subject of target age ao and health state ho; and z̃ is the average sample

defined by z̃ = εx̂o + (1 − ε)yo, ε ∼ U [0, 1]. The first two terms measure the Wasserstein

103



Brain Ageing Synthesis

distance between ground-truth and synthetic samples; the last term is the gradient penalty

involved to stabilise training. As in [112] and [12] we set λGP = 10.

5.3.5.2 Identity-preservation loss

While LGAN encourages the network to synthesise realistic brain images, these images may

lose subject identity. For example, it is easy for the network to learn a mapping to an image

that corresponds to the target age and health state, but belongs to a different subject. An

illustration is presented in Fig. 5.6, where ageing trajectories of two subjects are shown. The

task is to predict the brain image of subject 1 at age a2 starting at age a1, by learning a

mapping from point A to point B. But there are no ground-truth data to ensure that we stay on

the trajectory of subject 1. Instead, the training data contain brain images of age a2 belonging

to subject 2 (and other subjects). Using only LGAN , the Generator may learn a mapping from

A to C to fool the Discriminator, which will lose the identity of subject 1. To alleviate this and

encourage the network to learn mappings along the trajectory (i.e. from A to B), we adopt:

LID = Exi∼Xi,x̂o∼Xo ‖xi − x̂o‖1 · e
− |ao−ai|
|amax−amin| , (5.2)

where xi is the input image of age ai and x̂o is the output image of age ao (ao > ai). The term

e
− |ao−ai|
|amax−amin| encourages ‖xi− x̂o‖1 to positively correlate with the difference |ao− ai|. The

health state is not involved in LID as we do not aim to precisely model the ageing trajectory.

fz fÅ

A C

B

Ag
ei
ng

pr
oc
es
s

Age

Figure 5.6: Illustration of ageing trajectories for two subjects. For a subject of age a1 (A),

the network can learn a mapping from A to C, which could still fool the Discriminator, but

loses the identity of Subject 1 (orange line).
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Instead, LID is used to encourage identity preservation by penalising major changes between

images close in age, and to stabilise training. A more accurate ageing prediction, which

is also correlated with health state, is achieved by the adversarial loss. An ablation study

illustrating the critical role of LID is included in Section 5.5.4.

5.3.5.3 Self-reconstruction loss

We use a self-reconstruction loss,

Lrec = Exi∼Xi,x̂o∼Xi
‖xi − x̂o‖1, (5.3)

to explicitly encourage that the output x̂o is a faithful reconstruction of the input xi for the

same age and health state. Although Lrec is similar to LID, their roles are different: LID helps

to preserve subject identity when generating aged images, while Lrec encourages smooth

progression via self-reconstruction. An ablation study on Lrec in Section 5.5.4 shows the

importance of stronger regularisation.

5.4 Experimental setup

Datasets: For the experiments of this chapter, we use Cam-CAN and ADNI datasets, which

are introduced in Section 2.5. Here we briefly introduce the modalities and numbers of vol-

umes used for training and evaluation.

Cambridge Centre for Ageing and Neuroscience (Cam-CAN) [2] is a cross-sectional dataset

containing normal subjects aged 18 to 88. We split subjects into different age groups spanning

5 years. We randomly selected 38 volumes from each age group and used 30 for training and

8 for testing. To prevent data imbalance, we discarded subjects under 25 or over 85 years

old, because there are underrepresented data. We use Cam-CAN to demonstrate consistent

brain age synthesis across the whole lifespan. Alzheimer’s Disease Neuroimaging Initiative

(ADNI) [5] is a longitudinal dataset. We use ADNI to demonstrate brain image synthesis

conditioned on different health states. Since ADNI has longitudinal data, we used these data
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to quantitatively evaluate the quality of synthetically aged images. We chose 786 subjects as

training (279 CN, 260 MCI, 247 AD), and 136 subjects as testing data (49 CN, 46 MCI, 41

AD). The age difference between baseline and followup images in the testing set is 2.93±1.35

years.

Pre-processing: All volumetric data are skull-stripped using DeepBrain7, and linearly regis-

tered to MNI 152 space using FSL-FLIRT [94]. We normalise brain volumes by clipping the

intensities to [0, V99.5], where V99.5 is the 99.5% largest intensity value within each volume,

and then rescale the resulting intensities to the range [−1,+1]. Such intensity pre-processing

also helps alleviate potential intensity harmonisation issues between datasets in a manner that

creates no leakage (see footnote on section 5.2.3 why this is important). We select the middle

60 axial slices from each volume, and crop each slice to the size of [208, 160]. Note the train-

ing and testing are performed on these selected 2D slices, instead of all available 2D slices,

unless specified. During training, we only use cross-sectional data, i.e. one subject only has

one volume of a certain age. During testing, we use the longitudinal ADNI data covering

more than 2 years, and discard data where images are severely misaligned due to registration

errors.

Benchmarks: We compare with the following benchmarks8:

Conditional GAN: We use a conditional image-to-image translation approach [122] and train

different Conditional GANs for transforming young images to different older age groups.

Therefore, a single model of ours is compared with age-group specific Conditional GANs.

CycleGAN: We use CycleGAN [130], with two translation paths: from ‘young’ to ’old’ to

‘young’, and from ‘old’ to ‘young’ to ‘old’. Similarly to Conditional GAN, we train several

CycleGANs for different target age groups.

CAAE: We compare with [193], a recent paper for face ageing synthesis. We use the official

implementation9, modified to fit our input image shape. This method used a Conditional

7https://github.com/iitzco/deepbrain
8We also used the official implementation of [195]; however, our experiments confirmed the poor image

quality reported by the author.
9https://zzutk.github.io/Face-ageing-CAAE/
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Adversarial Autoencoder (CAAE) to perform face ageing synthesis by concatenating a one-

hot age vector with the bottleneck vector. They divided age into discrete age groups.

Ours-previous: We also compare with our preliminary method [15], described in Section 5.3.3.

Implementation details: The optimization function is:

L = min
G

max
D
λ1LGAN + λ2LID + λ3Lrec, (5.4)

where λ1 = 1, λ2 = 100 and λ3 = 10 are hyper-parameters used to balance each loss. The λ

parameters are chosen experimentally. We chose λ2 as 100 following [12] and [15], and λ3

as a smaller value to put emphasis on synthesis rather than self-reconstruction.

To train our model, we divide subjects into a young group and an old group, and randomly

draw an image xi the young group and an image yo from the old group to synthesise the aged

image x̂o (of xi) with target age ao and health state ho (of those corresponding to yo). Here x̂o

is the synthetically aged version of xi, and the target age ao and health state ho are the same

as those of the selected old sample yo. Afterwards, yo and x̂o are fed into the discriminator

as real and fake samples, respectively. Note that for all samples ao > ai, and ho could be

different than hi. Since Alzheimer’s Disease is an irreversible neurodegenerative disease, we

select samples where the input health status is not worse than the output health status. We

train all methods for 600 epochs. We update the generator and discriminator iteratively [111,

107]. Since the discriminator of a Wasserstein GAN needs to be close to optimal during

training, we update the discriminator for 5 iterations per generator update. Initially, for the

first 20 epochs, we update the discriminator for 50 iterations per generator update. We use

Keras [223] and train with Adam [224] with a learning rate of 0.0001 and decay of 0.0001.

Code is available at https://github.com/xiat0616/BrainAgeing.

Evaluation metrics: To evaluate the quality of synthetically aged images, we use the longi-

tudinal data from ADNI dataset. We select follow-up studies covering >2 years to allow ob-

servable neurodegenerative changes to happen. We used standard definitions of mean squared

error (MSE), peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of window

length of 11 [206] to evaluate the closeness of the predicted images to the ground-truth.
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Predicted age difference (PAD) as a metric: Longitudinal data in ADNI only cover a short

time span, i.e. the age difference between baseline and followup images is only several years.

To assess output even when we do not have corresponding follow-up ground truth, we use

a proxy metric of apparent age to evaluate image output. To develop our proxy metric, we

first train a learning based age predictor to assess apparent brain age. We pre-train a VGG-

like [239] network to predict age from brain images, then use this age predictor, fpred, to

estimate the apparent age of output images. To train this age predictor fpred we combine

Cam-CAN and healthy (CN) ADNI training data to ensure good age coverage. On a held out

testing set it achieves a MAE of 5.1 ± 3.1 years. When the held out dataset is restricted to

ADNI healthy subjects alone, MAE is 3.9± 2.8 years.

We use the difference between the predicted and desired target age to assess how close the

generated images are to the (desired) target age. Formally, our proxy metric predicted age

difference (PAD) is:

PAD = Ex̂o∼Xo |fpred(x̂o)− ao|, (5.5)

where fpred is the trained age predictor, x̂o is the synthetically aged image, and ao is the

target age. Here we choose to measure the mean absolute error as we want to avoid the neu-

tralization of positive and negative errors. By adopting PAD, we have a quantitative metric to

measure the quality of synthetic results in terms of age accuracy. Observe that PAD does not

compare baseline and follow-up scans. Given that the age predictor is only trained on healthy

data it will estimate age on how normal brains will look like. Thus, it should capture when

brain ageing acceleration occurs in AD, as others have demonstrated before us [232]. This

will increase PAD error when we synthesise with AD or MCI target health state, but given

that we use PAD to compare between different methods this error should affect all methods.

With advances in brain ageing estimation [241] the fidelity of PAD will also increase. Here

since we use PAD to compare across methods even a biased estimator is still a useful method

of comparison.

Statistics: All results are obtained on testing sets, and we show average and standard devi-

ation (std, as subscript on all tables), estimated by sample mean and variance on the testing
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SSIM PSNR MSE PAD CN MCI AD

Naı̈ve baseline 0.710.09 22.13.3 0.0970.013 7.23.9 6.33.8 6.83.9 8.74.0

Cond. GAN 0.390.08 14.23.5 0.2020.012 9.54.7 8.74.8 9.14.7 10.94.7

CycleGAN 0.460.07 16.33.3 0.1930.008 9.75.1 8.94.9 9.45.2 11.05.2

CAAE 0.640.07 20.32.9 0.1140.011 5.44.5 4.44.3 5.14.4 6.94.7

Ours-previous 0.730.06 23.32.2 0.0810.009 5.03.7 4.03.5 4.63.6 6.64.0

Ours 0.79∗0.06 26.1∗2.6 0.042∗0.006 4.2∗3.9 3.1∗3.6 3.9∗3.8 5.9∗4.2

Table 5.1: Quantitative evaluation on ADNI dataset (testing set) for several metrics. Columns

2-4 present the results of SSIM, PSNR, MSE, respectively. Columns 5-8 present the overall

PAD and the PAD for CN, MCI, and AD data, respectively. We report average and std (as

subscript) with BOLD, * indicating best performance and statistical significance, respectively

(see Section 5.4).

set. We use bold font to denote the best performing method (for each metric) and an asterisk

(*) to denote statistical significance. We use a paired t-test (at 5% level assessed via permuta-

tions) to test the null hypothesis that there is no difference between our methods and the best

performing benchmark.

5.5 Results and discussion

We start by showing quantitative and qualitative results on ADNI with detailed evaluation

demonstrating quality of the generated images. We then train our model on Cam-CAN to

show long-term brain ageing synthesis. We conclude with ablation studies to illustrate the

effect of design choices.

5.5.1 Brain ageing synthesis on different health states (ADNI)

In this section, we train and evaluate our model on ADNI dataset, which contains CN, MCI

and AD subjects. Our model is trained only on cross-sectional data. The results and discus-

sions are detailed below.
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5.5.1.1 Quantitative results

The quantitative results are shown in Table 5.1, employing the metrics defined in Section 5.4.

For ADNI we also obtained a non-learned naı̈ve baseline that simply calculates performance

comparing ground-truth baseline and follow-up images. The naı̈ve baseline result is obtained

by subtracting from the followup the baseline (input) image. We involve this non-learned

baseline as a lower bound to check if the proposed algorithm synthesises images that are

closer to the follow-up than the baseline images or not. As reported in Section 4, the aver-

age age prediction error (MAE) of the age predictor on the ADNI testing data is 3.9 years.

Estimating PAD separately for CN, MCI and AD testing subjects (see Table 5.1) shows that

the best PAD results are obtained on healthy (CN) data. This is expected as the age predic-

tor used to estimate PAD it is trained on healthy data only. However, this bias affects all

methods, and thus still allows comparisons between them. Indeed, we can observe that our

method achieves the best results in all metrics, with second best being the previous (more sim-

ple incarnation) [15] of the proposed model. Embedding health state improves performance,

because it permits the method to learn an ageing function specific for each state as opposed

to the one learned by the method in [15]. The other benchmarks achieve a lower performance

compared to the baseline. The next best results are achieved by CAAE [193], where age is

divided into 10 age groups and represented by a one-hot vector. To generate the aged images

at the target age (the age of the follow-up studies), we use the age group to which the target

age belongs, i.e. if the target age is 76, then we choose the age group of age 75-78. We see

the benefits of encoding age into ordinal vectors, where the difference between two vectors

positively correlates with the difference between two ages in a finely-grained fashion. Cy-

cleGAN and Conditional GAN achieve the poorest results unsurprisingly, since conditioning

here happens explicitly by training separate models according to different age groups.

5.5.1.2 Qualitative results

Visual examples on two images from ADNI, are shown in Fig. 5.7. For both examples, our

method generates most accurate predictions, followed by our previous method [15], offering

visual evidence to the observations above. The third best results are achieved by CAAE,

where we can see more errors between prediction x̂o and ground-truth xo. CycleGAN and
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Figure 5.7: Example results of subjects with ground-truth follow-up studies. We predict

output x̂o from input xi using benchmarks and our method. We also show errors between the

outputs and the ground-truths as |x̂o−xo|. We can observe that our method achieves the most

accurate results outperforming our previous method [15] and benchmarks. As a comparison,

we also visualized the difference between inputs and ground-truth outputs as |xo − xi|. For

more details see text.

Conditional GAN produced the poorest output images, with observable structural differences

from ground-truth, indicating loss of subject identity. We can also observe that the brain

ventricle is enlarged in our results and the difference between xi and xo is reduced, which is

consistent with known knowledge that ventricle increases during ageing.

Furthermore, we show visual results of the same subject at different target health states ho,

in Fig. 5.8. We observe that for all ho, the brain changes gradually as age (ao) increases.

However, the ageing rate varies based on health state (ho). Specifically, when ho is CN,

ageing is slower than that of MCI and AD, as one would expect; when ho is AD, ageing

changes accelerate. We also report the estimated ages of these synthetic images as predicted

by fpred. While these results show one instance, we synthesised aged images of different

health status from 49 ADNI test set CN subjects, with target ages 10 years older than the

original age. We then used fpred to estimate the age of these synthetic images. We find

that on average, synthetic AD images are 4.9 ± 2.3 years older than the target age, whereas

synthetic MCI and CN images are 1.8 ± 2.0 and 1.5 ± 2.1 years older than the target age,

111



Brain Ageing Synthesis

68																		69 70																			71																		72																	73																		74																		75																	76				 77																	

ℎR:J«G

68.2

!#: 67

ℎR: «»

ℎR: ®/

fR:

|!)R − !#|

|!)R − !#|

|!)R − !#|

!)R

!)R

!)R

69.5 70.1 70.8 70.868.4																		69.8																				70.5																	71.4																			72.3																			73.4								 74.3																		75.2																		76.0																			76.9																																																	

68.6																		70.2																				70.7																	71.5																			72.6																			73.8								 74.6																		75.6																		76.5																			77.4																																																	

69.7																		70.7																				71.5																	72.7																			74.1																			75.4								 76.5																		77.8																		79.3																			80.4																																																	

 "L:( !# = 67.7

Figure 5.8: Brain ageing progression for a healthy (CN) subject xi (at age 67) from ADNI

dataset. We synthesise the aged images x̂o at different target ages ao on different health states

ho: CN, MCI and AD, respectively. We also visualise the difference between xi and x̂o,

|x̂o − xi|, and show the predicted (apparent) ages of x̂o as obtained by our pre-trained age

predictor (white text overlaid on each difference image). For more details see text.

respectively. These observations are consistent with prior findings that AD accelerates brain

ageing [5]. We also observe that the gray/white matter contrast decreases as age increases,

which is consistent with existing findings [244, 245].

5.5.2 Does our model capture realistic morphological changes of ageing

and disease?

Here we want to assess whether our model captures known ageing-related brain degenera-

tion. It is known that brain ageing is related to gray matter reduction in middle temporal

gyrus (MTG) [246, 57]. We wanted to assess whether synthetic volumes could act as drop-in

replacements of ground-truth follow-up in assessing MTG gray matter volume change. We

focus here on the MTG as this is well covered by the range of slices we use to train our

112



Brain Ageing Synthesis

!#: 75 !)R: 77!R: 77
(a)	Sagittal	view

!#: 75 !)R: 77!R: 77
(b)	Coronal	view

Figure 5.9: Example results of a synthetic 3D volume x̂o in sagittal view (top) and coronal

view (bottom) from ADNI dataset. Here we construct the 3D volume by stacking the 2D

synthetic axial slices of our model. From left to right are slices from a baseline volume xi,

the corresponding follow-up volume xo, and the stacked synthetic volume x̂o.

synthesis method. Before we proceed we first illustrate that we can synthesise 3D volumes

slice-by-slice, and then show that our model can capture realistic morphological changes.

5.5.2.1 Volume synthesis by stacking 2D slices

We show that, even with our 2D model, we can still produce 3D volumes that show consis-

tency. We applied our model on 2D axial slices and obtained a 3D volume by stacking the

synthetic slices. An example result of a stacked synthetic 3D volume in sagittal and coronal

views is shown in Figure 5.9. Compared to the respective ground-truth from the same subject,

we observe that both sagittal and coronal views of the synthetic volume look realistic and are

close to the follow-up images. Note here that our model is trained only on 2D axial slices, for

which we chose middle 60 slices from each volume. Our model uses a residual connection

and thus makes minimal changes to the regions affected by age instead of synthesising the

whole brain image. This helps preserve details and continuity across slices. These results

illustrate that we can produce 3D volumes that maintain consistency in different views.
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°0)a→0I°0a→0I |°0a→0I − °0)a→0I|

Figure 5.10: An example of Jacobian determinant maps for a subject. From left to right are

the Jacobian determinant maps Jxo→xi
, Jx̂o→xi

, and the error map between them: |Jxo→xi
−

Jx̂o→xi
|.

5.5.2.2 Do we capture morphological changes?

We use an `1 loss to restrict (in pixel space) the amount of change between input and output

images. This is computationally efficient, but to show that it also restricts deformations, we

measure the deformation between input (baseline) and synthetic or ground-truth follow-up

images in ADNI. We obtain for each subject the baseline image xi, the follow-up image xo

and the synthetic image x̂o, respectively. We first rigidly register xo to xi using Advanced

Normalization Tools (ANTs) [247] rigid transformation. Then we non-rigidly register xo to

xi and obtain the Jacobian determinant map Jxo→xi
that describes the transformation from xo

to xi, using ANTs ”SyN” transformation [247]. Similarly, we obtain Jx̂o→xi
that describes

the non-linear transformation from x̂o to xi. Fig. 5.10 shows an example of the Jacobian

maps for one subject.

From Fig. 5.10, we observe that Jx̂o→xi
is close to Jxo→xi

. To quantify their difference, we

calculate the mean relative error between the Jacobian determinant maps, defined as:

E = Exi∼Xi,xo∼Xo,x̂o∼X̂o

‖Jxo→xi
− Jx̂o→xi

‖1

‖Jxo→xi
‖1

, (5.6)

where ‖.‖1 is 1-norm of matrices. We find the mean relative error to be 3.49% on the testing

set of 136 images. Similarly, we perform the same evaluations for the results of Conditional

GAN, CycleGAN, CAAE and our previous method, and find the mean relative errors to
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be 9.87%, 8.76%, 5.91% and 4.43%, respectively. Both qualitative and quantitative results

suggest that synthetically aged images capture realistic morphological changes of the brain

ageing process.

5.5.2.3 Measuring middle temporal gyrus (MTG) gray matter atrophy.

We further evaluate the quality of the synthetic results by assessing if they can act as a drop-in

replacement to real data in a simple study of brain atrophy. We performed ageing synthesis

with our model on 136 ADNI testing subjects, such that for each subject we have: a baseline

image xi; a real follow-up image xo; and a synthetic image x̂o of the same target age and

health state as of xo. We then assembled volumes by stacking 2D images. Then we affinely

registered both xo and x̂o and the Human-Brainnetome based on Connectivity Profiles (HCP)

atlas [248] to xi. After that, we obtained the MTG segmentation of xi, xo and x̂o by means

of label propagation from HCP using the deformation fields. Then we obtained the gray

matter segmentation of xi using FSL-FAST [249]. The gray matter segmentation of xo and

x̂o was subsequently obtained by non-linearly registering xo and x̂o to xi and propagating

anatomical labels using ANTs [247]. These steps yield the MTG gray matter volume of xi,

xo and x̂o, termed as Vbase, Vfol, and Vsyn, respectively. Then, we calculate the relative

change between Vbase and Vfol as RCreal =
Vfol−Vbase

Vbase
, and the relative change for synthetic

data as RCsyn = Vsyn−Vbase

Vbase
. We repeat this for several subjects in three patient type groups,

i.e. CN (49), MCI (46) and AD (41).

We expect, following [246] and [57], to see a statistical relationship between patient type and

RCreal when assessed with a one-way analysis of variance (ANOVA). If a similar relationship

is shown also with synthetic data RCsyn, it will demonstrate that for this statistical test, our

synthetic data can act as a drop-in replacement to real data, and as such have high quality and

fidelity.

The results are summarised in Table 5.2, where we report also the F-statistic of the omnibus

one-way ANOVA test. We observe that MTG gray matter volume reduces in both real and

synthetic volumes. This indicates that our synthetic results achieve good quality and similar

statistical conclusions can be drawn using real or synthetic data in this simple atrophy study.
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Relative change F-statistic

real (RCreal) −0.071±0.0096 4.008∗

synthetic (RCsyn) −0.083±0.0099 4.539∗

Table 5.2: Analysis of MTG gray matter relative change between baseline and follow-up real

or synthetic. Mean and std are reported as well as the corresponding F-statistic of a one-way

ANOVA test (between relative change and patient type), with asterisk indicating significance

(p < 0.05).

5.5.3 Long term brain ageing synthesis

In this section, we want to see how our model performs in long term brain ageing synthesis.

As ADNI dataset only covers old subjects, we use Cam-CAN dataset which contains subjects

of all ages. We train our model with Cam-CAN dataset where no longitudinal data are avail-

able, but evaluate it on the longitudinal part of ADNI to assess the generalisation performance

of our model when trained on one dataset and tested on another.

5.5.3.1 Qualitative results

In Fig. 5.11, we demonstrate the simulated brain ageing process throughout the whole lifes-

pan, where the input images are two young subjects from Cam-CAN. We observe that the

output gradually changes as ao increases, with ventricular enlargement and brain tissue re-

duction. This pattern is consistent with previous studies [250, 251], showing that our method

learns to synthesise the ageing brain throughout the lifespan even trained on cross-sectional

data.10 Fig. 5.11 offers only a qualitative visualization to show the potential of life-time sim-

ulation. We cannot quantitatively evaluate the quality of these synthetic images due to the

lack of longitudinal data in Cam-CAN. However, both the previous section on ADNI where

we train and test on ADNI, and the next section, where we use longitudinal ADNI as testing

set we but train on Cam-CAN data, offer considerable quantitative experiments.

10We observe checkerboard artefacts near the ventricles after target age 67. Such artefacts are a known
problem in computer vision and mostly likely due to the use of deconvolutional layers in the decoder [252].
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Figure 5.11: Long-term brain ageing synthesis on Cam-CAN dataset. We synthesise the

aged images x̂o at different target ages ao and show the difference between input images xi

and x̂o, |x̂o−xi|, and show the predicted (apparent) ages of x̂o as obtained by our pre-trained

age predictor (white text overlaid on each difference image). Note here xi: N means an input

image at age N. For more details see text.

5.5.3.2 Quantitative results (generalisation performance on ADNI)

To evaluate how accurate our longitudinal estimation is, even when training with cross sec-

tional data from another dataset, we train a model on Cam-CAN and evaluate it on ADNI.

We use the longitudinal portion of ADNI data, and specifically only the CN cohort, to demon-

strate generalisation performance.11 Given an image of ADNI we use our Cam-CAN trained

model to predict an output at the same age as the real follow up image. We compare our pre-

diction with the ground truth follow up image (in the ADNI dataset). The results are shown

in Table 5.3. We observe that though our model is trained and evaluated on different datasets,

it still achieves comparable results with those of Table 5.1 and outperforms benchmarks.

11We purposely do not use any intensity harmonisation that uses both datasets, e.g. histogram matching.
Such methods will leak information from ADNI to Cam-CAN. Any leakage would skew (to our favour) the
generalisation ability which we want to avoid. Thus, our experiments also indirectly evaluate how design
choices (e.g. using a residual connection in the generator) help with differences in intensities between datasets.
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SSIM PSNR MSE PAD

Cond. GAN 0.38±0.12 13.9±4.2 0.221±0.021 11.3±5.6

CycleGAN 0.42±0.09 14.4±3.8 0.212±0.016 10.2±5.5

CAAE 0.59±0.10 19.3±3.9 0.121±0.012 5.9±4.7

Ours-previous 0.68±0.08 22.7±2.8 0.095±0.014 5.3±3.8

Ours 0.74∗±0.08 24.2∗±2.7 0.043∗±0.009 5.0±3.6

Table 5.3: Quantitative evaluation of methods trained on Cam-CAN and evaluated on ADNI.

SSIM PSNR MSE

LGAN 0.55±0.14 18.4±3.7 0.132±0.013

LGAN + Lrec 0.62±0.12 19.6±3.2 0.089±0.014

LGAN + LID 0.74±0.07 24.3±2.5 0.074±0.010

LGAN + LID + Lrec 0.79∗±0.08 26.1∗±2.6 0.042∗±0.006

Table 5.4: Ablations on using different combinations of cost functions.

5.5.4 Ablation studies

We ablate loss components, explore different conditioning mechanisms, and explore latent

space dimensions.

5.5.4.1 Effect of loss components

We demonstrate the effect of LID and Lrec by assessing the model performance when each

component is removed. In Table 5.4 we show quantitative results on ADNI dataset. In

Fig. 5.12 we illustrate qualitative results on Cam-CAN dataset to visualise the effect. We can

observe that the best results are achieved when all loss components are used. Specifically,

without LID, the synthetic images lost subject identity severely throughout the whole pro-

gression, i.e. the output image appears to come from a different subject; without Lrec, output

images suffer from sudden changes at the beginning of progression, even when ao = ai. Both

quantitative and qualitative results show that the design of LID and Lrec improves preserva-

tion of subject identity and enables more accurate brain ageing simulation.
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Figure 5.12: Ablation studies for loss components. Left: ablation study of LID. Top row

shows that without LID, the network can lose the subject identity. Bottom row shows that

the use of LID can enforce the preservation of subject identity, such that the changes as ages

are smooth and consistent. Right: ablation study on Lrec. When Lrec is not used (top two

rows), there are sudden changes at the beginning of ageing progression simulation (even at

the original age), which hinders the preservation of subject identity. In contrast, when Lrec

is used (bottom two rows), the ageing progression is smoother, which demonstrates better

identity preservation. Note here xi: N means an input image at age N.

5.5.4.2 Effect of different embedding mechanisms

We investigate the effect of different embedding mechanisms. Our embedding mechanism is

described in Section 5.3. We considered to encode age as a normalized continuous value (be-

tween 0 and 1) or using a one-hot vector, which was then concatenated with the latent vector

at the bottleneck. The qualitative results are shown in Fig. 5.13. We can see that when age is

represented as a normalized continuous value, this is ignored by the network, thus generating

similar images regardless of changes in target age ao. When we use one-hot vectors to encode

age, the network still generates realistic images, but the ageing progression is not consistent,

i.e. synthetic brains appear to have ventricle enlarging or shrinking in random fashion across

age. In contrast, with ordinal encoding, the model simulates the ageing process consistently.

This observation is confirmed by the estimated ages of the output images by fpred.

We also compare with an embedding strategy where we concatenate ho, ad and the bottleneck

latent vector v1 together, and the concatenated vector is processed by the Decoder to generate
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Figure 5.13: Example results for continuous, one-hot and ordinal encoding on the Cam-

CAN dataset for an image (xi) of a 28 year old subject. We synthesise aged images x̂o at

different target ages ao. We also show the difference between xi and x̂o, |x̂o− xi|, and report

estimated age (white text overlaid at the bottom of each difference image). The proposed

ordinal encoding shows consistent and progressive changes.

the output image. We refer to this embedding strategy as concatall . Results on ADNI are

shown in Table 5.5. We found with concatall , the network tends to ignore the health state

vector ho and only use ad. This can be caused by the dimensional imbalance between ho

(2 × 1) and ad (100 × 1). When one-hot encoding is used, performance deteriorates even

more.

SSIM PSNR MSE PAD

One-hot 0.54±0.14 17.3±3.8 0.177±0.014 9.7±4.9

concatall 0.74±0.09 23.9±2.9 0.065±0.011 5.2±3.9

Ours 0.79∗±0.08 26.1∗±2.6 0.042∗±0.006 5.0±3.6

Table 5.5: Quantitative results of different embedding mechanisms.
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SSIM PSNR MSE PAD

65× 1 0.73±0.09 23.6±3.1 0.065±0.012 5.6±4.1

260× 1 0.76±0.10 24.9±2.9 0.055±0.012 5.3±3.8

130× 1 (ours) 0.79∗±0.08 26.1∗±2.6 0.042∗±0.006 5.0±3.6

Table 5.6: Quantitative results of different choices of the v2 dimension.

5.5.4.3 Effect of latent space dimension

We explored whether latent dimension affects performance. We altered the length of the latent

vector (v2) from 130× 1 to twice smaller/larger and compared the corresponding models on

ADNI. Our findings are shown in Table 5.6. We find that our choice (130 × 1) achieved the

best results. It appears that too small is not enough to represent image information well, and

too large can cause dimension imbalance.

5.5.4.4 Comparison with longitudinal model

To compare our method with models that use longitudinal data , we create a new benchmark

where we train a fully supervised generator using only longitudinal ADNI data. The results

are shown in Table 5.7. We see that our method has slightly better performance than the

longitudinal model. This is because the proposed model is trained on 786 subjects (cross-

sectional data), while the longitudinal model is trained on a longitudinal cohort of ADNI of

98 subjects. This illustrates the benefit of using cross-sectional data. Note that our SSIM

results are similar to those presented in [191].

SSIM PSNR MSE

Longitudinal 0.72±0.09 24.2±3.0 0.076±0.013

Ours 0.79±0.08 26.1±2.6 0.042±0.006

Table 5.7: Quantitative results of a longitudinal benchmark and our method.
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5.5.4.5 Data augmentation for AD classification

We explore whether we can use our model to generate synthetic data used to augment training

sets for training an Alzheimer’s disease classifier. We select 200 ADNI subjects as training

data (100 AD, 100 CN), 40 subjects as validation data (20 AD, 20 CN), and 80 (40 AD, 40

CN) subjects as testing data. For each subject, there are 60 2D slices. Next, we train classifiers

of the same VGG architecture to classify AD and CN subjects varying the composition of the

training data combining real and synthetic data obtained by our generator. We always evaluate

the classifiers on the same testing set. The synthetic data are generated from the training set

using our proposed method by randomly selecting target ages larger than the original ages. As

shown in Table 5.8, we first train classifiers only on real data varying the size of the training

data (1st and 2nd rows). Then we compose mixed sets of the same size of 200 subjects

varying the ratio of real vs. synthetic data (3rd and 4th rows), e.g. 10%+90% means this set

is composed of 10% real data and 90% synthetic data. Note here the 90% synthetic data are

not generated from the whole training set, but from the 10% real data.

We can observe that when training on 10% of real training data, the accuracy reduces by

almost 40% compared to when using the full training data. However, the performances im-

prove when synthetic data are involved. The results demonstrate that our method can be used

as data augmentation to improve AD classification especially when the training data are not

sufficient.

Real data 10% 30% 50% 70% 100%

Accuracy (%) 51.3 55.7 64.6 74.0

89.5Real data + synthetic data 10%+90% 30%+70% 50%+50% 70%+30%

Accuracy (%) 58.7 64.0 72.6 81.7

Table 5.8: Quantitative results of VGG-based AD/CN classifiers trained on different datasets.

The first two rows show results when trained on varying size of real training data, e.g. 10%

means this model is trained on 10% of the real training data; the last two rows show results

when trained on mixed datasets with different ratios of real and synthetic data, e.g. 10%+90%

means this model is trained on 10% real training data and 90% synthetic data.
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Furthermore, we perform another experiment to demonstrate our model’s potential to improve

the classification accuracy for specific age groups and thus target augmentation to treat data

imbalance. We evaluate the classification model trained with 100% real data on test set

subjects of age 65 to 70 years old. We find an accuracy of 67.2%, which is much lower than

the overall accuracy (89.5%, Table 5.8). This may be likely due to training data imbalance:

we have only 5 training subjects with age between 65 and 70 yrs. To alleviate this data

imbalance, we use our model to generate 25 synthetic subjects with target ages between 65

and 70 yrs from younger subjects in the training set. Then we train a new AD classifier on

100% real data and the 25 synthetic subjects, and evaluate its performance on the same testing

and age group. Accuracy now increases to 80.1% a substantial change from 67.2%.

5.6 Summary

We present a method that learns to simulate subject-specific aged images without longitudinal

data. It relies on a Generator to generate the images and a Discriminator that captures the joint

distribution of brain images and clinical variables, i.e. age and health state (AD status). We

propose an embedding mechanism to encode the information of age and health state into our

network, and age-modulated and self-reconstruction losses to preserve subject identity. We

present qualitative results showing that our method is able to generate consistent and realistic

images conditioned on the target age and health state. We evaluate with longitudinal data

from ADNI for image quality and age accuracy. We demonstrate on ADNI and Cam-CAN

datasets that our model outperforms benchmarks both qualitatively and quantitatively and, via

a series of ablations, illustrate the importance of each design decision. The reliability of the

generated images is measured with quantitative metrics, including a drop-in replacement to

real data in a simple study of brain atrophy. However, the golden standard of reliability should

be the utility in practical clinical applications. We use deterministic models to simulate brain

ageing trajectory for one subject given certain conditional factors. However, in future work,

we could consider using probabilistic models that can predict different ageing trajectories

with probability. This will increase the variability of the generated images. In the next

Chapter, a simple procedure will be proposed to utilise the generative models for downstream

tasks.
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Chapter 6
Utilising Pre-trained Generative Models

for Downstream Tasks

6.1 Introduction

In previous chapters, we focused on developing deep generative models that can synthesise

realistic medical images, conditioned on the existence of pathology or age. In this chapter,

we focus on another direction, i.e. how to utilise generative models for downstream tasks.

Specifically, we choose the classification of Alzheimer’s Disease as the downstream task

and the brain ageing generative model (proposed in Chapter 5) as the generative model. We

propose a procedure to utilise the generative model to improve AD classification performance

via adversarial training between a conditional factor (i.e. target age) and the AD classifier.

Deep learning heavily relies on the large size and quality of training data. In some cases where

only limited training data are available, deep neural networks tend to memorise the data and

cannot generalise well to unseen data [253, 254]. This is known as over-fitting [253]. One of

the most popular approaches to overcome over-fitting is data augmentation [255].

Conventional data augmentation approaches mainly apply random image transformations,

such as cropping, horizontal mirroring, rotation, and intensity transformations. However, one

problem with these conventional data augmentations is that augmentation that works well for

one dataset may not transfer well to another [256]. Furthermore, as mentioned in [257] tradi-

tional data augmentation methods may introduce distribution shift, i.e. the joint distribution

of inputs and outputs changes, and consequently hurt the performance on unaugmented data

during inference.

Some recent works aimed to solve this problem by learning parameters for data augmentation

that can better improve the downstream task performances [258, 259, 256, 260, 261, 262].

However, these approaches are still based on traditional image transformations, e.g. cropping,
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rotation and deformation, but do not consider semantic transformation [263]. For instance,

say we have an image of a person who wears glasses, and the task is to predict his/her gender,

instead of performing rotations or mirroring, we augment this data by making an image of the

same person who does not wear glasses. This way of data augmentation could be considered

as complementary to traditional techniques.

To achieve the augmentation mentioned above, one way to augment the training data is to

train a deep generative model and use the synthetic output of the generative model as aug-

mentations [264, 265, 266, 267, 265, 268]. However, these approaches focus more on the

training stage of generative models and randomly generate samples for data augmentation,

but did not consider how to utilise these models. Some recent works [269, 270] proposed to

first parse parts of human body [269] or face [270] resulting in a part pool, and then create

hard samples by pasting patches from the part pool to images in an adversarial way. How-

ever, parsing and composing parts of body or organs is hard for medical data and can affect

key clinical information specific to each subject.

Furthermore, a recent work [258] proposed implicit semantic data augmentation (ISDA) to

augment the data in the latent space. This method has been extended to alleviate long-tailed

distribution by adopting meta learning [271, 272]. However, ISDA first estimated the co-

variance matrix of features for each class, and sampled directions from normal distributions

with these covariance matrices. Then they translated along these directions to augment data.

However, they focused on natural image datasets where images of different classes (e.g. car,

dog, cloud, etc.) are easily distinguishable, and thus the class-matrix covariance matrices are

easy to estimate. For the task of AD diagnosis, the brain images are very similar to each

other, with only subtle differences. It could be hard to estimate the class-wise covariance

matrices. More importantly, there is no loss or metrics to guarantee that the found directions

are meaningful for the brain.

Here we propose a simple procedure to utilise a pre-trained generative model to improve the

performance of a downstream classifier. The proposed procedure formulates an adversarial

game between the conditional input of the generator and the classifier. The key idea is to

find which conditional factor can result in the hard counterfactuals (synthetic output of the

generator) for the classifier, which can be viewed as finding the ‘weakness’ of the classifier.
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Then we force the classifier to overcome its ‘weakness’ by training it on these hard synthetic

samples.

In this chapter, we choose the classification of Alzheimer’s Disease as the downstream task

and utilise a pre-trained brain ageing synthesis model to improve the AD classifier. We con-

duct a series of experiments to show the effectiveness of our method. We first show that the

proposed approach can improve the test accuracy and Area Under the ROC Curve (AUC) of

a pre-trained AD classifier (Section 6.5.1). Then we consider the usage of generative models

in a continual learning context and show the proposed method can alleviate catastrophic for-

getting (Section 6.5.2). Furthermore, we show the proposed approach can be used to alleviate

spurious correlations (Section 6.5.3). Finally, we provide an ablation study to explain why

the adversarial game is between the target age a and the classifier C, instead of C and the

generator G (Section 6.5.4).

Our main contributions are as follows:

• We propose a simple procedure to utilise a pre-trained brain ageing generation model

for a downstream AD classifier, with an adversarial game between the target age and

the classifier.

• We consider the scenario of using generative models in a continual learning context

and show that our approach can help alleviate catastrophic forgetting.

• We conduct a simple experiment to show that the proposed approach has the potential

to alleviate spurious correlations.

• We provide an ablation study to explain the choice of not updating the generator in the

adversarial game.

The chapter proceeds as follows: Section 6.2 reviews related work on data augmentation.

Section 6.3 details the proposed procedure. Section 6.4 describes the experimental setups.

Section 6.5 presents results and discussion. Finally, Section 6.6 concludes the chapter with

limitations and future directions.
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6.2 Related works

Data augmentation is an important technique that aims to increase the number of available

training data for deep learning models [255]. Earlier research on data augmentation focused

on alleviating over-fitting [101]. However, apart from over-fitting, deep learning models

could suffer from other data issues. For example, domain shift happens when training data

are drawn from a probability distribution that is different from that of practical data, which

will hinder the practical use of deep models [273]. Furthermore, data imbalance can result in

long-tailed distribution, i.e. several majority classes contain most of the samples while other

minority classes only contain a few samples. Moreover, spurious correlations occur when the

two factors appear to be correlated, but in fact, they are not, which is another consequence of

data imbalance [274]. To solve these issues, more advanced data augmentation approaches

are required.

Conventional Data Augmentation: Conventional techniques to augment data include ro-

tation, scaling, intensity manipulations, etc. These methods are simple and often effective.

For instance, Shina et al. [275] proposed Negative Data Augmentation (NDA) which inten-

tionally destroyed the global spatial coherence of images. The resulting images were used as

negative data to improve the performance of GANs by training to avoid the negative distribu-

tion. However, this approach is targeted to improve GAN training, but may not be suitable for

other tasks. For ImageNet [21], the augmentation approach proposed in [101] still remains

the standard. One problem with these conventional data augmentations is that augmentations

that work well for one dataset may not transfer well to another [256]. Furthermore, as pointed

by [257], traditional data augmentation methods may hurt the performance on unaugmented

data during inference.

Reinforcement Learning (RL) based Data Augmentation: RL has been used to find the

optimal policies to perform data augmentation. AutoAugment is proposed in [256] to learn

the optimal policies to augment data. These policies contain the choice of the image opera-

tions, e.g. translation, rotation or shearing, and the probabilities and magnitudes with which

the functions are applied. Adversarial AutoAugment [276] extended [256] by changing the

reward game to an adversary, i.e. finding policies that increase the target network loss. Sim-
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ilarly, a recent work [277] proposed to select and compose pre-specified base data transfor-

mations (such as rotations, shears, central swirls for images) into a more sophisticated “tool

chain” for data augmentation. Different from the methods focused on finding parameters

for image transformation, [278] used RL to select data from synthetic data pool to improve

downstream tasks. Nevertheless, a common problem for these approaches is instability and

difficulty of the training of RL [279], which limits their utility.

Adversarial Data Augmentation with Conventional Techniques: These approaches focus

on finding augmentation parameters that can better improve the downstream tasks in an adver-

sarial way. For instance, in [261] the authors augmented data using virtual adversarial training

(VAT) [280] which adds addictive adversarial noise, while [259] performed adversarial train-

ing with a chain of image manipulations, e.g. scaling, rotation, translation, etc. Similarly,

a recent work[260] learned to augment data by training three generators, each controls one

image operation: affine translation, deformation and additive noise masks. Furthermore, a

GAN-based data augmentation method was proposed in [281] to improve cardiac image seg-

mentation, where a deformation field generator and an intensity field generator were trained

with adversarial loss and supervised loss to modify data and labels. However, these methods

are still based on traditional image transformations, e.g. rotation and affine translation, and

cannot augment the semantic information. For instance, consider the task of AD diagnosis

(classification), rotation, scaling and cropping do not change the AD diagnosis and age of

brains while deformation will affect the clinical information of brains.

Data Augmentation using Generative Models: A more direct way to augment data seman-

tically is to use generative models. For example, PGGAN was used in [268] to generate

pairs of images and segmentations that were used for data augmentation. However, there was

no loss to enforce that the synthetic image and segmentations are paired. Data Augmentation

Generative Adversarial Network (DAGAN) was proposed in [266], with an encoder to extract

features from images and a decoder to produce synthetic data taking these features plus ran-

dom noise as input. This method required pairs of images for augmentation, which limits its

utility. Balancing GAN (BAGAN) was proposed in [267] to alleviate the difficulty of training

GANs with an imbalanced dataset by learning useful features from majority classes and using

these features to generate minority classes. Similarly, in [265] a GAN-based approach was
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proposed to restore balance in an imbalanced dataset by incorporating the majority distribu-

tion structure in the generation of new minority samples. Furthermore, a recent work [264]

proposed a class-conditional GAN that improved classification accuracy in low data regimes.

However, these approaches focused on how to train a generator but did not consider how to

utilise this generator. By contrast, our approach can guide the generator to produce synthetic

data that is useful for improving downstream tasks via an adversarial training scheme.

Data Augmentation via counterfactuals: Pearl’s ladder of causation defines three levels

of causal hierarchy [282]. Specifically, the first level of the causation is association that

deals with questions of the type “What are the data that I observe?”, the second level is

Intervention that concerns questions such as “What will happen if I do A? ”, and the third

level is counterfactual that aims to answer “What would have happened if I had done A

instead of B?” [282, 196]. Following this definition, the proposed models in Chapter 4 and 5

are, in nature, counterfactual generators, as we try to answer questions such as “What would a

brain look like if it had not got a tumour? ”and “What would the brain of a subject look like if

he or she were at the age X? ”As such, here we review related works that use counterfactuals

for data augmentation.

Some recent work [283, 284] focused on non-image data where each data point is composed

of several feature values, e.g. breed, age and milk-yield of a cow, and generated counter-

factuals by simply transferring some feature values from one data sample to another. While

these methods achieved good performance, they could not be applied to image data as chang-

ing features of images is a more challenging task. To generate counterfactuals for images,

a recent work [285] localised the foreground and background of an image and then infilled

the foreground or background with artefacts or a GAN. Similarly, Sauer et al. [286] pro-

duced counterfactuals by changing the texture of foreground and background of an image

with GANs. However, these approaches may not be suitable for medical images where the

background is less various than natural images, e.g. the background of a typical T1 MRI brain

image is black. Moreover, Goel et al. [287] used CycleGANs to transform between different

subgroups within a class to alleviate data imbalance and spurious correlation, but they needed

to train a CycleGAN for each pair of subgroups, which could be expensive. Furthermore,

StylEx [288] tried to explain the decision of a classifier by generating counterfactuals. This
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method focused on generating counterfactuals that can explain the classifier, while we fo-

cused on improving a classifier by finding hard counterfactuals. Other works [289, 290, 291]

followed the same scheme: randomly generating counterfactuals by deep generative models

and then improving downstream tasks on these counterfactuals, but did not consider which

counterfactuals to generate. By contrast, we propose an adversarial training framework to

find hard counterfactuals that are more helpful for training.

6.3 Methodology

6.3.1 Problem overview

We denote an image as x ∼ X, and a conditional generative model G that takes an image x

and a conditional attribute vector a and generates a counterfactual x̂ that corresponds to a:

x̂ = G(x, a). For each x, there exists a label y ∼ Y . We define a downstream classifier C

that takes x as input and predicts the label ŷ: ŷ = C(x). Note here the label y does not need

to equal to the conditional factor a. For instance, if x is a face image of a person, then v could

be his/her age, and y could be his/her gender.

Suppose we have a pre-trained generative model G and a pre-trained classifier C. One ques-

tion is whether we can use the counterfactuals generated by G to improve the performance of

C and how to utilise them. Our solution is to find the counterfactuals that are the most helpful

to improve C. Inspired by the mini-max mechanism in GANs [107] and adversarial learn-

ing [292, 280], we formulate an adversarial game between the conditional attributes a and the

model C. That is, try to find the conditional attributes that result in hard counterfactuals for

C, and improve C on these hard samples. This strategy can viewed as finding the ‘weakness’

of the model C and purposely forcing C to overcome its ‘weakness’.

In this chapter, x is a brain image, y is the AD diagnosis of x , and a represents the target age

on which the generator G was conditioned.1 We use the proposed brain ageing generation

1The model G can generate synthetically aged brain images conditioned on age a and health state. Since
this chapter does not change the health state (AD state) for the synthetic images, we simplify the definition by
only listing age a as the conditional factor.
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model proposed in Chapter 5 as G, and a VGG-based [293] AD classification model as C.

6.3.2 Fourier encoding for conditional factors

The brain ageing model proposed in Chapter 5 used ordinal encoding to encode the condi-

tional age and health state vectors (see Section 5.3.2). However, in this chapter, as we need

to back-propagate gradients to update the input conditional vectors, ordinal encoding could

cause issues, because the encoded vectors are, in nature, discrete and need to maintain a

certain shape (with 0 elements always on top of 1).

To enable gradient backpropagation to update the conditional vectors, here we use Fourier

encoding [294, 295, 296] to encode the conditional attributes, i.e. age and heath state (di-

agnosis of AD). The key idea of Fourier encoding is to map low-dimensional vectors to a

higher dimensional domain using a set of sinusoids. For instance, if we have a d-dimensional

vector which is normalised into [0, 1), v ∈ [0, 1)d, then the encoded vector can be represented

as [295]:

γ(v) = [p1 cos(2πbT
1 v), p1 sin(2πbT

1 v), ..., pm cos(2πbT
mv), pm sin(2πbT

mv)], (6.1)

where bj can be viewed as the Fourier basis frequencies, and p2
j the Fourier series coefficients.

In this chapter, the vector v represents the target age a and the health status (AD diagnosis),

and d = 2. In practice, we set p2
j = 1 for j = 1, ...,m, and bj are independently and randomly

sampled from a Gaussian distribution, bj ∼ N (µscale ∗I, 0), where µscale is a hyperparameter

and set to 10 in this chapter. We set m = 100 and the resulting γ(v) is 200d.

Fourier encoding has been experimentally shown to effectively represent a low-dimensional

signal in a way that neural networks can capture [295, 296]. In our experiment, we also found

that after using Fourier encoding, the brain ageing network achieved similar results qualita-

tively and quantitatively as the original model in Chapter 5. Table 6.1 presents the quantitative

results of brain models using ordinal encoding and Fourier encoding. The quantitative evalu-
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ation is performed in the same way as in Section 5.5.1 and Table 5.1. From Table 6.1 we can

observe that Fourier encoding achieves very similar quantitative results as ordinal encoding,

demonstrating its effectiveness to encode age and health status.

The use of Fourier encoding offers two advantages. First, in Chapter 5, we had to encode

age and health state into two vectors and had to use two MLPs to embed the encoded vectors

into the model. This may not be a big issue when the number of factors is small. However,

if we want to extend the generative model to be conditioned on tens or hundreds of factors,

the memory and computation costs will increase significantly. With Fourier encoding, we

can encode all possible factors into a single vector, which offers more flexibility to scale

the model to multiple conditional factors. Second, Fourier encoding allows us to compute

the gradients with respect to the input vector v or certain elements of v, since the encoding

process is differentiable. As such, we replace the ordinal encoding with Fourier encoding

in this chapter for all experiments. The generative model G takes v as input: x̂ = G(x,v),

where v represents target age and health state. However, as we only change the target age a

in this chapter, we write the generative process as x̂ = G(x, a) for simplicity.

6.3.3 Adversarial classification training with a pre-trained generator

Suppose we have a conditional generative model G and a classification model C. The aim

is to make the best of G to improve the performance of C. To achieve this, we propose a

procedure consisting of three steps. First, we pre-train the generative model G and the classi-

fication model C, respectively. Then we select a portion of training images for counterfactual

synthesis. At last, we update the weights of C using the counterfactuals generated by G via

an adversarial game. A schematic of the adversarial classification training is presented in

Encoding SSIM PSNR MSE PAD

Ord. Enc. 0.790.06 26.12.6 0.0420.006 4.23.9

Four. Enc. 0.790.08 25.92.7 0.0430.009 4.13.7

Table 6.1: Quantitative results of brain ageing model using ordinal encoding and Fourier

encoding. For detail of the evaluation metrics please refer to text and Section 5.4.
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Figure 6.1: A schematic of the adversarial classification training. We have a pre-trained gen-

erator G that takes a brain image x and a target age a as input, and outputs a synthetically

aged image x̂ that corresponds to the target age a. We also have a classifier C that aims to

predict the Alzheimer’s Disease (AD) label for a given brain image. To utilise the generator

G to improve the classifier C, we propose an adversarial training strategy that involves two

steps: (a) the update step for the target age a, where we update a in the direction of max-

imising the classification loss. (Equation 6.5); (b) the update step for the classifier C, where

we update C to minimise the classification error (Equation 6.7). Note here the weights of the

generator are frozen, and we only update a and C alternatively.

Figure 6.1. Algorithm 1 summarises the steps of the method. Below we describe each step in

detail.

Pre-training: We first pre-train the classification model C on the training dataset Dtrain :

{Xtrain,Ytrain}. Specifically, the generative model is trained using the same losses as in

Chapter 5, except we use Fourier encoding to encode age and health state (diagnosis of AD).

As a result, we obtain a pre-trained generative model G that can generate counterfactuals

conditioned on given target ages a: x̂ = G(x, a).

The classification model C is a deep neural network trained to predict the AD diagnosis from
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brain images, optimised by minimising:

Lpre−train = Ex∼Xtrain,y∼Ytrain Ls(C(x), y), (6.2)

where Ls(.) is a supervised loss (cross-entropy loss in this chapter), x is a brain image, and y

is its ground-truth AD label. In practice, we may have access to existing pre-trained models,

and the pre-training step could be skipped.

Hard Sample Selection: Recent works [297, 298] suggest that training data samples have

different influence on training a supervised model, i.e. some training data are harder for the

task and could be more effective to train the model than others. In [297], the authors propose

to up-sample, i.e. duplicate, the hard samples as a way to improve the model performance.

In this chapter, we also assume that some data samples (and their counterfactuals) are more

effective to improve the classier C, and we use a strategy similar to [297] to select these hard

samples. Specifically, we record the classification errors of all training samples for the pre-

trained C at the end of training and then select N = 100 samples that have the highest errors.

The selected hard samples are denoted as Dhard : {Xhard, Yhard}.

Adversarial training: Previous works [268, 266, 299, 300, 301, 302] use generative models

to randomly generate a number of synthetic data and then use these data to improve the

downstream models. However, just as different training samples have different effects on

training [297, 298], among all possible synthetic data, some could be more useful or effective

to improve the downstream models than others. Similar to [297], we make an assumption that

if a synthetic data sample is hard for the supervised model, then it tends to be more effective

for training. We propose an adversarial game to find the hard synthetic data to improve C. A

schematic of the adversarial training is presented in Figure 6.1.

Specifically, let us first define the classification loss for synthetic data as:

LC = Ex∼Xhard,y∼Yhard
Ls(C(x̂, y)), (6.3)

where x̂ is a generated data sample that is conditioned on the target age a: x̂ = G(x, a), and

y is the ground-truth AD label for x. Here we make an assumption that changing the target
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age does not change the AD status, thus x and x̂ have the same AD label.

Since the encoding of age a is differentiable (see Section 6.3.2), we can obtain the gradients

of LC with respect to a as: ∇aLC = ∇a[Ls(C(G(x, a)), y)], and update a in the direction of

maximising LC by:

ã = a+ γa∇aLC , (6.4)

where γa is the step size (learning rate) for updating a, tuned to be 0.01 in this chapter.

Formally, the optimization function of a can be written as:

L1 = max
a

Ex∼Xhard,y∼Yhard
Ls(C(x̂), y), (6.5)

Then we could obtain a set of synthetic data using the updated ã, denoted asDsyn : {Xsyn, Ysyn}.

The classifier C could be updated by minimising:

min
C

Ex∼Xsyn,y∼Ysyn Ls(C(x), y) = Ex∼Xhard,y∼Yhard
Ls(C(G(x, ã)), y), (6.6)

where G(x, ã) are the counterfactuals conditioned on the updated ã. However, in practice we

found that updating C only on the synthetic data could cause catastrophic forgetting [303],

i.e. the classifier forgets what it learnt from the original training dataset (see Section 6.5.2 for

more details). To prevent catastrophic forgetting, we adopt the same strategy as [297]: we

update C on a combined dataset consisting of original training dataset and synthetic dataset:

{Xcombined, Ycombined} = {Xtrain ∪Xsyn, Ytrain ∪ Ysyn} . Therefore, in practice, we update C

by:

L2 = min
C

Ex∼Xcombined,y∼Ycombined
Ls(C(x), y). (6.7)

The adversarial game is formulated by alternatively updating a and classifier C via Equa-

tion 6.5 and 6.7, respectively. In practice, to prevent a from going to unrealistic ages, we clip

it to be in [60, 90] after every update.

Updating a vs. updating G: Note here the adversarial game is formulated between a and

C, instead of G and C. One may wonder why not training G against C, i.e. updating G such
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that it can produce hard counterfactuals to improve C. This may look like a good idea at

first glance. However, by training G against C, we are allowing G to change its latent space

without constraints to maintain image quality. In Section 6.5.4, we provide an ablation study

that shows training G against C could result in unrealistic synthetic output, which can, in

turn, hurt the performance of C.

6.4 Experimental setup

Data: For the experiments of this chapter, we use the Alzheimer’s Disease Neuroimaging

Initiative ADNI dataset, which is introduced in Section 2.5. We select 380 AD and 380 CN

T1 volumes for our experiments, with 260 AD and 260 CN volumes as training data, 40 AD

and 40 CN volumes as validation data, and 80 AD and 80 CN volumes as testing data. These

volumes are from subjects between 60 and 90 yrs old.

Pre-processing: All volumetric data are skull-stripped using DeepBrain2, and linearly regis-

2https://github.com/iitzco/deepbrain

Algorithm 1 Adversarial classification learning with a pre-trained generative model.
Input: Training set Dtrain; hyperparameter k, N; a pre-trained generator model G; the

classifier model C.

Pre-training:

1. Train the classifier C on Dtrain for 100 epochs. (Equation 6.2)

Hard Sample Selection:

2. Select N samples from Dtrain that result in highest classification errors for C,

denoted as Dhard.

Adversarial training:

3. Randomly initialise target ages a, and obtain initial synthetic data.

4. Update a in the direction to maximise classification error (Equation 6.5).

5. Obtain synthetic images with Dhard and the updated a, denoted as Dsyn.

6. Update C to minimise the classification error on Dtrain ∪Dsyn (Equation 6.7).

7. Repeat 4,5,6 for k iterations.
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tered to MNI 152 space using FSL-FLIRT [94]. We normalise brain volumes by clipping the

intensities to [0, V99.5], where V99.5 is the 99.5% largest intensity value within each volume,

and then rescale the resulting intensities to the range [−1,+1]. We select the middle 60 axial

slices from each volume and crop each slice to the size of [208, 160]. This results in 31200

training images, 4800 validation images and 9600 testing images.

Comparison methods: We compare with the following baselines:

• Naı̈ve: We directly use the pre-trained classifier C for comparison.

• Random Selection + Random Synthesis (RSRS): We randomly select N samples from

the training dataDtrain, and then use the generatorG to randomly generateNsynthesis =

5 synthetic samples per sample, denoted as Dsyn. Then we train the classifier on the

combined dataset Dtrain ∪Dsyn for k = 5 steps.

• Hard Selection + Random Synthesis (HSRS): We select N hard samples from Dtrain

based on their classification errors of C, and then use the generator G to randomly

generate Nsynthesis = 5 synthetic samples per hard sample, denoted as Dsyn. Then we

train the classifier on the combined dataset Dtrain ∪Dsyn for k = 5 steps.

• Random Selection + Adversarial Training (RSAT): We randomly select N samples

from Dtrain, and then use the adversarial training strategy to update the classifier C.

The difference between RSAT and our approach is that we select hard samples for

generating counterfactuals, while RSAT uses random samples.

• Just Train Twice (JTT): We also compare with a recent work [297]. The idea of JTT

is to record samples that are misclassified by the pre-trained classifier, obtaining an

error set. Then they construct an upsampled dataset Dup that contain examples in the

error set λup times and all other examples once. Finally, they train the classifier on the

upsampled dataset Dup. In this chapter, we set λup = 2 as we found large λup results in

bad performance. We also found the original learning rate (0.01) used for the second

training stage results in a very bad performance and set it to be 0.00001.

Implementation details: The generator is trained the same way as in Chapter 5 (Sec-

tion 5.4), except we replace ordinal encoding with Fourier encoding. We pre-train the classi-
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fier for 100 epochs. The experiments are performed using Keras [223] and Tensorflow [304]3.

We train pre-trained classifiers C with Adam [224] with a learning rate of 0.00001 and decay

of 0.0001. During adversarial learning, the step size of a is tuned to be 0.01, and the learning

rate for C is 0.00001.

6.5 Results and Discussion

We start by presenting test accuracies of our approach and baselines, including the accura-

cies for different age-diagnosis test groups, demonstrating that our approach can improve the

performance of the classifier C (Section 6.5.1). We then discuss our approach in a continual

learning context and perform experiments to show that our approach can help alleviate catas-

trophic forgetting (Section 6.5.2). After that, we create a dataset with spurious correlations

between age and AD state and show that our method might be able to break the spurious

correlations (Section 6.5.3). Finally, we conclude with an ablation study where we train G

against C (Section 6.5.4).

6.5.1 Main experiment

Here we first compare our procedure with baselines using the test accuracies of the classifiers.

Note the weights of the pre-trained classifier C, and the pre-trained G generator are the same

for all methods. The number of samples used to generate counterfactuals is set to N = 100

for our procedure and baselines RSRS and HSRS. For baselines RSRS and HSRS, we generate

Nsynthesis = 5 counterfactuals per sample. For a hard sample xi ∈ Xhard, we randomly

sample ai ∼ U(āi, amax) as its initial target age, where ā and amax are the ground-truth

age of xi and the maximal age for all samples, respectively. The adversarial training of our

approach and RSAT is repeated for k = 5 epochs. Thus, for baselines RSRS, HSRS, RSAT

and our approach, the number of synthetically augmented samples is 500. For JTT, there are

2184 samples misclassified by C. Table 6.2 presents the test accuracies of models trained with

3However, we do recommend using Pytorch [305] as it allows easier implementation to compute gradients
w.r.t input.
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Acc % CN AD All

Age group 60-70yrs 70-80yrs 80-90yrs 60-70yrs 70-80yrs 80-90yrs overall

Test group size 1540 1600 1660 1720 1540 1540 9600

Naı̈ve 85.2 91.5 70.7 92.5 94.2 97.1 88.4

RSRS 86.0 90.4 73.8 87.3 95.1 90.0 87.0

HSRS 85.6 91.1 80.4 89.8 93.8 96.9 89.5

RSAT 86.1 93.1 81.5 91.8 96.0 95.7 90.6

JTT 83.9 94.2 80.1 92.8 90.8 93.7 89.2

Proposed 86.4 93.7 83.4 91.5 96.5 95.7 91.1

Table 6.2: Average test accuracies of models trained via our procedure and baselines. We

first present the average test accuracies for different age groups with AD (column 2-4) or CN

(column 5-7) and then present the average test accuracies for the whole testing set (column

8). For each method, the worst-group performance is shown in italic. For each age group,

i.e. each column, the best performance is shown in bold. We also report the number of testing

images for each age group.

our procedure and baseline. Specifically, we present the test accuracies for different test age

groups with different AD diagnoses.

From Table 6.2 we can observe that our proposed procedure achieves the best overall test

accuracy, followed by baseline RSAT. This demonstrates the advantage of adversarial training

between the conditional factor (target age) a and the classifier. On top of that, it shows

that selecting hard examples for creating augmented synthetic results helps, which is also

demonstrated by the improvement of performance of HSRS over Naı̈ve. We also observe

that JTT [297] improves the classifier performance over Naı̈ve, showing the benefit of up-

sampling hard samples. In contrast, baseline RSRS achieves the lowest overall test accuracy,

even lower than that of Naı̈ve. This shows that randomly synthesising counterfactuals from

randomly selected samples could result in synthetic images that are harmful to the classifier.

Furthermore, we observe that for all methods, the worst-group performances are achieved on

the 80-90 CN group. A potential reason could be: as age increases, the brains shrink, and it is

harder to tell if the ageing pattern is due to AD or caused by normal ageing. Nevertheless, we
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AUC 60-70yrs 70-80yrs 80-90yrs Overall

Naı̈ve 0.954 0.968 0.903 0.931

RSRS 0.932 0.977 0.904 0.928

HSRS 0.958 0.975 0.921 0.954

RSAT 0.955 0.981 0.912 0.957

JTT 0.957 0.978 0.914 0.952

Proposed 0.961 0.988 0.917 0.960

Table 6.3: The test Area Under the ROC Curve (AUC) [16] values for all methods. We first

present the AUC for different age groups (column 2-4), and then present the AUC for all

testing data (column 5). For each group, the best results are shown in bold.

observe that for this worst group, our proposed method still achieves the best performance,

followed by RSAT . This shows that adversarial training can be helpful to improve the per-

formance of the classifier, especially for hard groups. The next best results are achieved by

HSRS and JTT, which shows that finding hard samples and up-sampling or augmenting them

was helpful to improve the worst-group performance. We also observe the improvement of

worst-group performance for RSRS over Naı̈ve, but the improvement is small compared to

other baselines.

We also measure the Area Under Curve (AUC) values for all methods, as presented in Ta-

ble 6.3. We can observe that our approach achieve the highest overall AUC results.

In summary, the quantitative results show that it is helpful to find and utilise hard counterfac-

tuals for improving the classifier.

6.5.2 Adversarial classification training in a continual learning context

6.5.2.1 Connection to continual learning

Most previous works [268, 266, 299, 300, 301, 302] that used pre-trained deep generative

models for augmentation focused on generating a large number of synthetic samples, and

then merged the synthetic data with the original dataset and trained the downstream task
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model (e.g. a classifier) on this augmented dataset. However, this requires training the task

model from scratch, which could be inconvenient. For instance, if we suddenly decide to

generate some new synthetic data for augmentation, we would have to retrain the task model

from scratch. Furthermore, if the size of the original dataset is large, then the number of

synthetic samples can be huge, which would make the training process extremely expensive

and time-consuming. Thus, in practice, we need to consider cases where we aim to improve a

pre-trained classifier with synthetic data but without retraining the whole model from scratch.

We design the proposed procedure in such a way that allows us to use the pre-trained G to

improve C flexibly.

In Section 6.5.1, after we obtain the synthetic set Dsyn, we choose to update the classifier

C on the augmented dataset Dsyn ∪ Dtrain, instead of Dsyn (stage 7 in Algorithm 1). This

is because re-training the classifier only on the Dsyn would result in catastrophic forget-

ting [303], i.e. a phenomenon where deep neural networks tends to forget what it has learnt

from previous data when being trained on new data samples. To alleviate catastrophic forget-

ting, efforts have been devoted to developing approaches to allow artificial neural networks

to learn in a sequential manner [306, 307]. These approaches are known as continual learn-

ing [306, 308, 309], lifelong learning [310, 311], sequential learning [312, 313], or incre-

mental learning [314, 315]. Despite different names and focuses, the main purpose of these

approaches is to overcome catastrophic forgetting and to learn in a sequential manner.

If we consider the generated data as new samples, then the update of the pre-trained classifier

C can be viewed as a continual learning problem, i.e. how to learn new knowledge from the

synthetic set Dsyn without forgetting old knowledge that is learnt from the original training

dataDtrain. To alleviate catastrophic forgetting, we re-train the classifier on both the synthetic

datasetDsyn and the original training datasetDtrain. This strategy is known as memory replay

in continual learning [316, 317] and was also used in other augmentation works [297]. The

key idea is to store previous data in a memory buffer and replay the saved data to the model

when training on new data. However, it could be expensive to store and revisit all the training

data, especially when the data size is large [317]. In the next section, we perform experiments

where we only provide a portion (M%) of training data to the classifier when re-training

with synthetic data (to simulate the memory buffer). We want to see whether catastrophic
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Algorithm 2 Adversarial classification learning with Dstore.
Input: Training dataset Dtrain; hyperparameter M , N , k; a pre-trained generator G; a

pre-trained classifier model C.

Construct Dstore:

1. Randomly select M% data from Dtrain, denoted as Dstore.

Hard sample selection

2. Select N samples from Dstore that result in highest classification errors for C,

denoted as Dhard.

Adversarial training:

3. Randomly initialise target ages a, and obtain initial synthetic data.

4. Update a in the direction to maximise classification error (Equation 6.5).

5. Obtain synthetic images with Dhard and the updated a, denoted as Dsyn.

6. Update C to minimise the classification error on Dstore ∪Dsyn (Equation 6.7).

7. Repeat 4,5,6 for k iterations.

forgetting would happen or not when only a portion (M%) of training data is provided, and

if so, how much it affects the test accuracies.

6.5.2.2 Results when re-training with a portion (M%) of training data

Suppose we have a pre-trained classifier C and a pre-trained generator G, and we want to

improve C by usingG for data augmentation. However, after pre-training, we only storeM%

(M ∈ (0, 100]) of the training dataset, denoted as Dstore. During the adversarial training, we

synthesise N samples using the generator G, denoted as Dsyn. Then we update the classifier

C on Dstore∪Dsyn, using Equation 6.7 where Dcombined = Dstore∪Dsyn. The target ages are

initialised and updated the same way as in Section 6.5.1. Algorithm 2 illustrates the procedure

in this section.

Table 6.4 presents the test accuracies of our approach and baselines when M changes. For

Naı̈ve-100, the results are then same as in Table 6.2. For JTT, the original paper [297] re-

trained the classifier using the whole training set. Here we first randomly select M% training

samples asDstore and find misclassified dataDmis withinDstore to up-sample, then we retrain
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the classifier on the augmented set. We can observe that when M decreases, catastrophic for-

getting happens for all approaches. However, our method suffers the least from catastrophic

forgetting, especially when M is small. With M = 20% of training data for retraining, our

approach achieves better results than Naı̈ve. This might be because the adversarial training

between a and C tries to detect what is missing in Dstore and tries to recover the missing

data by updating a towards those directions. We observe that RSAT achieves the second

best results, only slightly worse than the proposed approach. Moreover, HSRS and JTT are

more affected by catastrophic forgetting and achieve worse results. This might be because

the importance of selecting hard samples declines as M decreases, since the Dstore becomes

smaller.

These results demonstrate that our approach could alleviate catastrophic forgetting. This

could be helpful in cases where we want to utilise generative models to improve pre-trained

classifiers (or other task models) without revisiting all the training data (a continual learning

context).

6.5.2.3 Results when number of samples used for synthesis (N ) changes

We also performed experiments where we changed N , i.e. the number of samples used for

generating counterfactuals. Specifically, we set M = 1, i.e. only 1% of original training data

Acc % M%

Methods 1 10 20 50 100

Naı̈ve N/A N/A N/A N/A 88.4

HSRS 75.6 81.4 84.5 87.4 89.5

RSAT 84.2 85.8 87.2 88.6 90.6

JTT 77.3 82.3 85.1 88.1 89.2

Proposed 84.8 86.8 88.5 89.4 91.1

Table 6.4: Test accuracies of our approach and baselines when the ratio of the size Dstore

vs. the size of Dtrain changes. We can observe the decreases of test accuracies when M

decreases, which was due to the effect of catastrophic forgetting.

143



Utilising Pre-trained Generative Models for Downstream Tasks

are used for re-training C, to see how many synthetic samples are needed to maintain good

accuracy, especially when there are only a few training data stored in Dstore. This is to see

how efficient the synthetic samples are in terms of training C and alleviating catastrophic

forgetting. The results are presented in Table 6.5.

From Table 6.5, we can observe that the best results are achieved by our method, followed by

RSAT. Even with only one sample for synthesis, our method could still achieve a test accuracy

of 80%. This is probably because the adversarial training of a vs. C guidesG to generate hard

counterfactuals, which are efficient to train the classifier. The results demonstrate that our

approach could help alleviate catastrophic forgetting even with a small number of synthetic

samples used for augmentation. This experiment could also be viewed as a measurement of

the sample efficiency, i.e. how efficient a synthetic sample is in terms of re-training a classifier.

6.5.3 Can the proposed procedure alleviate spurious correlations?

Spurious correlation occurs when two factors appear to be correlated to each other but in fact

they are not [274]. Spurious correlation could affect the performance of deep neural networks

and has been actively studied in computer vision field [318, 297, 318, 319, 320, 287] and in

medical imaging analysis field [321, 322]. For instance, suppose we have an dataset of bird

and bat photos. For bird photos, most backgrounds are sky. For bat photos, most backgrounds

are cave. If a classifier learns this spurious correlation, e.g. it classifies a photo as bird as long

as the background is sky, then it will perform poorly on images where bats are flying in the

sky. In this section, we investigate if our approach could correct such spurious correlations

by changing a to generate hard counterfactuals.

acc % N

Methods 1 10 50 100

HSRS 65.4 71.0 73.4 75.6

RSAT 81.3 82.1 83.2 84.2

Proposed 82.1 82.9 84.1 84.6

Table 6.5: Test accuracies when N changes (M = 1) of our approach and baselines.
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Figure 6.2: Example results of brain rejuvenation for an image (x) of a 85 year old CN

subject. We synthesise rejuvenated images x̂ at different target ages a. We also show the

differences between x̂ and x, x̂− x. For more details see text.

Specifically, we create a dataset where 7860 images between 60 and 75 yrs old are AD, and

7680 images between 75 and 90 yrs old are healthy, denoted as Dspurious. This is to construct

spurious correlations: young → AD and old → CN (in reality older people have higher

chances of getting AD). Then we pre-train C on Dspurious, and select 50 AD and 50 CN

subjects for generating synthetic data. Since the brain ageing model proposed in Chapter 5

only considered simulating ageing process, but did not consider rejuvenation where brains are

transformed from old to young. To be able to use old CN data, we pre-train another generator

model in the opposite direction, i.e. generating younger brain images from old ones. As

a result, we obtain two pre-trained generators, denoted as Gageing and Grejuvenation, where

Gageing is the generator used in previous sections and Grejuvenation is trained to simulate the

rejuvenation process. Figure 6.2 illustrates example visual results of Grejuvenation, where we

synthesise the rejuvenated images x̂ for a 85-year-old CN subject x at different target ages a.

From Figure 6.2 we observe that although the brain ageing model in Chapter 5 was designed

for brain ageing, it can be used to simulate brain rejuvenation with high-quality results.

After we obtain Gageing and Grejuvenation, we select 50 CN and 50 AD images from Dspurious

that result in highest training errors, denoted as Dhard. Note the selected CN images are

between 75 and 90 yrs old, and the AD images are between 60 and 75 yrs old. Then we

generate synthetic images from Dhard using Grejuvenation for old CN samples and Gageing for
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Acc % CN AD

Methods 60-75yrs 75-90yrs 60-75yrs 75-90yrs Overall

Naı̈ve 40.9 81.6 95.1 45.7 67.0

HSRS 60.7 85.3 81.1 67.2 75.0

JTT 50.5 88.4 85.5 40.7 67.9

proposed 73.1 83.4 81.5 75.8 79.0

Table 6.6: Test accuracies for our procedure and baselines when C pre-trained on Dspurious.

We first present the average test accuracies for different age groups with CN diagnosis (col-

umn 2-3) or AD (column 4-5), and then present the average test accuracies for the whole

testing set (column 6). For each method, the worst-group performance is shown in italic. For

each age group, i.e. each column, the best performance was shown in bold. For more details

see text.

young AD samples. The target ages a are initialized as their ground-truth ages. Finally, we

perform the adversarial training between a and the classifier C. Here we want to see if the

adversarial training can detect the spurious correlations purposely created by us, and more

importantly, we want to see if the adversarial training between a andC can break the spurious

correlations.

Table 6.6 presents the test accuracies of our approach and baselines. For Naı̈ve, we directly

use the classifier C pre-trained on Dspurious. For HSRS, we randomly generate synthetic

samples from Dhard for augmentation. For JTT, we simply select mis-classified samples

from Dspurious and up-sample these samples.

We can observe from Table 6.6 that the pre-trained C on Dspurious (Naı̈ve) achieves much

worse performance (67% accuracy) compared to that of Table 6.2 (88.4% accuracy). Specif-

ically, it tends to misclassify young CN images as AD and misclassify old AD images as

CN. This is likely due to the spurious correlations that we purposely create in Dspurious:

young → AD and old → CN . We notice that for Naı̈ve, the test accuracies of AD groups

are higher than that of CN groups. This is likely due to the fact we have more AD training

data, and the classifier is biased to classify a subject to AD. This can be viewed as another

spurious correlation. Overall, we observe that our method achieves the best results, followed
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Figure 6.3: Histograms of target ages a before and after adversarial training: (a) the his-

togram of a for the 50 AD subjects in Dhard; (b) the histogram of a for the 50 CN subjects

in Dhard. Here we show histograms of a before (in orange) and after (in blue) the adversarial

training.

by HSRS. This shows that the synthetic results generated by the generators are helpful to alle-

viate the effect of spurious correlations and improve downstream tasks. The improvement of

our approach over HSRS is due to the adversarial training between a and C, which guides the

generator to produce hard counterfactuals. We observe JTT does not improve the test accu-

racies significantly. A potential reason is that JTT tries to find ‘hard’ samples in the training

dataset. However, in this experiment, the ‘hard’ samples should be young CN and old AD

samples which do not exist in the training dataset Dspurious. By contrast, our procedure could

guide G to generate these samples, and HSRS could create these samples by random chance.

Figure 6.3 plots the histograms of the target ages a before and after the adversarial training.

From Figure 6.3 we can observe that the adversarial training pushes a towards the hard di-

rection, which could alleviate the spurious correlations. For instance, in Dspurious and Dhard

the AD subjects are all in the young group, i.e. 60-75 yrs old, and the classifier learns the

spurious correlation: young → AD, but in Figure 6.3 (a) we can observe that the adversarial

training learns to generate AD synthetic images in the range of 75-90 yrs old. These old AD

synthetic images can help alleviate the spurious correlation and improve the performance of

C. Similarly, we can observe a are pushed towards young for CN subjects in Figure 6.3 (b).
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Figure 6.4: The synthetic results for a healthy (CN) subject x at age 70: (a) the results of the

pre-trained G, i.e. before we train G against C; (b) the results of G after we train G against

C. We synthesise aged images x̂ at different target ages a. We also visualise the difference

between x and x̂, |x̂− x|. For more details see text.

6.5.4 Ablation study: train G against C

We choose to formulate an adversarial game between the conditional generative factor a (the

target age) and the classifier C, instead of between the generator G and the classifier C.

This is because we are concerned that an adversarial game between G and C could result in

unrealistic outputs of G. In this section, we perform an experiment to investigate this.

Specifically, we define an optimization function:

LG = max
G

Ex∼Xtrain,y∼Ytrain
Ls(C(G(x, a)), y), (6.8)

where we aim to train G in the direction of maximising the loss of the classifier C on the

synthetic data G(x, a).

After every update ofG, we construct a synthetic setDsyn by generating 100 synthetic images

from Dtrain, and update C on Dtrain ∪Dsyn via Equation 6.7. The adversarial game G vs. C

is formulated by alternatively optimising Equation 6.8 and 6.7 for 10 epochs.
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In Figure 6.4, we present the synthetic brain ageing progression of a CN subject before and

after the adversarial training ofG vs. C. We can observe that after the adversarial training, the

generator G produces unrealistic results. This could be because there is no loss or constraint

to prevent the generator G from producing low-quality results. The adversarial game only

requires the generator G to produce images that are hard for the classifier C, and naturally,

images of low quality would be hard for C. A potential solution could be to involve a GAN

loss with a discriminator to improve the output quality, but this would make the training

much more complex and require more memory and computations. We also measure the test

accuracy of the classifier C after training G against C to be 81.6%, which is much lower than

the Naı̈ve method (88.4%) and our approach (91.1%) in Table 6.2. The potential reason is

that C is misled by the unrealistic samples generated by G.

6.6 Summary

In this chapter, we presented a simple procedure to utilise conditional generative models

for downstream tasks. The proposed procedure requires a pre-trained conditional generative

model and builds an adversarial game between the downstream task model and the generative

conditional factor. To demonstrate this strategy, we choose the brain ageing synthesis model

in Chapter 5 as the generative model and focus on the problem of classifying Alzheimer’s

Disease. We presented quantitative results showing that our procedure can improve the per-

formance of the AD classifier. We also discussed the proposed procedure from a continual

learning perspective and presented results showing that our procedure could help alleviate

catastrophic forgetting when re-training a model with synthetic data. Besides, we constructed

a dataset where we purposely created spurious correlations and showed that our method could

alleviate the effect of spurious correlations.
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Chapter 7
Conclusion and Future Directions

The final chapter concludes this thesis by summarising thesis contributions and discussing

limitations and future directions.

7.1 Summary

This thesis focuses on deep learning methods for medical image synthesis. We propose new

approaches for pseudo healthy synthesis and brain ageing synthesis. We also define quantita-

tive metrics to measure the quality of synthetic images when there are no ground-truth images

available. Finally, we propose an adversarial training strategy to utilise pre-trained generative

models for downstream tasks, which has the potential to be applied to existing pre-trained

generative models.

Chapter 4 focuses on pseudo healthy synthesis, i.e. the creation of subject-specific ‘healthy’

images from pathological ones. We propose a model that can generate realistic ‘healthy’

images with maintaining subject identity. The proposed method can be trained in paired and

unpaired setting. To measure the quality of the synthetic images, we propose several metrics

focusing on healthiness, identity preservation and deformation correction. We also include

a human study to evaluate the results. Both qualitative and quantitative results show that

the proposed method can produce realistic ‘healthy’ counterfactuals while preserving subject

identity.

Chapter 5 focuses on brain ageing synthesis where the goal is to simulate how a brain would

look like when age increases. We propose a deep learning model that can learn the brain

ageing progression without longitudinal data. We conduct a series of experiments to evaluate

the quality of synthetically aged images, including longitudinal evaluation and age accuracy

measurement by a pre-trained age predictor. The qualitative and quantitative results show
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that our approach can generate realistic aged brain images that preserve subject identity and

are conditioned on given target age and health status.

Chapter 6 aims to find ways to utilise a pre-trained generative model for improvements on

downstream tasks. Specifically, we focus on the classification of Alzheimer’s Disease and

utilise the brain ageing model in Chapter 5 to improve the classification performance. We

also consider the use of generative models in a continual learning context and show that

the proposed procedure could alleviate catastrophic forgetting. Furthermore, we demonstrate

that the proposed approach could be used to correct spurious correlations. The results show

that the proposed strategy can improve the classification performance and has the potential to

be applied to other generative models for different tasks.

7.2 Limitations and Future Directions

This thesis has some limitations that can inspire future directions. Due to the GPU memory

limit, our models remain 2D. A general future direction could be to extend these models for

3D medical images as 3D medical images contain more information. Moreover, our models

focus on single modality medical data, while in practice, different modalities contain infor-

mation that is complementary to each other. Thus, it is beneficial to build multi-input multi-

output models that can work on multi-modality data, but this will further increase parameter

space. Furthermore, the proposed generative models only consider one specific pathology. It

could be beneficial to develop models that take multiple pathology and clinical factors into

account. Ablation studies of the effect of loss weights could be provided. Although in this

thesis we focus on brain MRI images, the proposed methods can be applied to other organs.

Below we discuss limitations and future directions specific for each chapter.

Chapter 4: We see several avenues for future works. Metrics that enforce or even mea-

sure identity is a topic of considerable interest in computer vision [200]. One of our pro-

posed metrics aimed to assess whether the subject identity has been preserved in synthetic

‘healthy’ images, while another metrics assessed if deformation caused by disease was re-

covered. Analysis combining these two metrics could assess the preservation of identity even

when deformation was corrected, which is suited for cases where disease globally affects an
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image. Further lines of improvement involve better methods to measure the null hypothesis

(e.g. perhaps by artificially creating images from the healthy class that seem to be distorted).

In addition, we do see that human evaluation is useful, although challenging as it requires

expertise. Moreover, most clinical neurologists do not evaluate medical images in isolation

but rather consider them in combination with other medical information in order to make

a diagnostic decision. Nevertheless, we have performed a human experiment involving a

neurologist, which best adhered to a blinded workflow. However, better evaluation schemes

could be proposed, which is seen as a future direction. We also see a future opportunity in

creating a large benchmark study that amasses expert evaluations, which are used to learn

combinations of several quantitative, yet easy to obtain, numerical metrics that can act as

surrogates to human evaluations.

Chapter 5: The proposed method has several potential applications. For example, a com-

mon problem in longitudinal studies is missing data due to patient dropout or poor-quality

scans. The proposed method offers an opportunity to impute missing data at any time point.

Furthermore, when there is insufficient longitudinal training data, the proposed method can be

used to include cross-sectional data within a study. The simple experiment in Section 5.5.2.3

shows a glimpse of this potential. This, in turn, will make a further clinical analysis of ageing

patterns, e.g. to evaluate the incidence of white matter hyperintensities [323], and large stud-

ies into neurodegenerative diseases, possible. Finally, from an AI perspective, we advocated

earlier in this chapter about the importance of capturing and understanding the current state

from a machine learning perspective. In fact, recently, this has been cast in causal inference

and counterfactual setting [196]. While our work did not explicitly use a causal inference

framework, our generated outputs can be seen as counterfactuals. This is evidenced by the

experiments we performed in Chapter 6.

The notion of subject identity is context-specific, and we do note that others in the literature

also follow the same simple assumptions we make. We do agree, though, that identity should

be defined as what remains invariant under ageing and neurodegenerative disease. Although

we used several losses to help preserve the subject identity of synthetic aged images, there

is no guarantee that a subject’s identity will be preserved, and new losses or mechanisms

that could further improve identity preservation will be of high value. Unfortunately, without
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access to large data where we exhaustively explore all possible combinations of variables

that we want to be equivalent (to identity) or invariant (to age, pathology), preservation of

identity can only be proxied. Although the proposed model only considers predicting older

brain images from young ones, we show in Chapter 6 that it is possible to perform brain

rejuvenation. The proposed method allows for a change of health status between input and

output images. However, it does not model change of health state in between input and output.

This is a common limitation of current works in this area [191, 196, 188]. A potential solution

is recursive image synthesis: generating a suitable intermediate image before generating the

desired target output of older age and state. Advances in architectures that improve image

quality will enable such recursive image generation in the future. Conditioning mechanisms

that reliably embed prior information into neural networks enabling finer control over the

outputs of models, are of considerable interest in deep learning. In this chapter we design

a simple yet effective way to encode both age (continuous) and AD status (ordinal) factors

into the image generation network. However, as classification of MCI is challenging, the use

of further (fine-grained) clinical information (e.g. clinical score) to reflect health status can

be of benefit. Incorporating additional clinical variables, e.g. gender, genotypes, etc., can

become inefficient with our current approach as it may involve more dense layers. While new

techniques are available [324, 325, 326, 327] and some prior examples on few conditioning

variables [328] or disentanglement [216] are promising, their utility in integrating clinical

variables and replacing the need for ordinal pre-encoding of continuous or ordinal variables

with imaging data is under investigation. In Chapter 6, we attempt Fourier encoding which

can encode this information in a flexible way. Furthermore, here we focus on the use of

cross-sectional data to train a model to predict aged brain images. If longitudinal data are

also available, e.g. within a large study aggregating several data sources, model performance

could be further improved by introducing supervised losses; however, adding more losses

requires that they are well balanced –a known problem in semi-supervised learning [329].

Chapter 6: The proposed procedure has the potential to be applied to other pre-trained con-

ditional generators on other datasets, e.g. face ageing synthesis [330, 201], face attributes

editing [331]. It would be helpful to show results with more methods and more datasets. We

must admit that the comparison in Section 6.5.3 is not strictly ‘fair’. The generators Gageing

andGrejuvenation are pre-trained onDtrain where the spurious correlations did not exist. How-
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ever, the purpose is to show that a well-trained generative model can be used to alleviate

spurious correlations. In practice, we could just use some existing public pre-trained gener-

ators for downstream tasks, e.g. StyleGAN[332, 333]1. There were some recent works that

tried to develop generative models that were less affected by spurious correlations [286, 334].

Thus even training on the same spurious correlated datasets, generative models might still be

able to improve downstream tasks by alleviating the effect of spurious correlations. Never-

theless, we leave this as an avenue for future improvements by the community and us. The

way we updated the conditional factor (target age) with gradients was preliminary and could

be improved. Instead of directly adding gradients to a (Equation 6.5), we could use some

optimization algorithms, e.g. Adam [224], to update the target age a. Instead of classifying

between AD and CN subjects, we can try a more complex task, i.e. classifying AD, MCI and

CN subjects, or classifying between stable MCI (sMCI) and progressive MCI (pMCI) sub-

jects. Furthermore, instead of a VGG-based classifier, we can try to use some state-of-the-art

AD classification models [335]. In this chapter, we consider a continuous scalar as the con-

ditional factor, but we can also try to use adversarial training when the conditional factor is a

discrete value or an image. Moreover, we can try to combine conventional data augmentation

techniques with our approach.

Outlook: There are several general future directions in medical image analysis worth inves-

tigating. First, the utility of synthetic images should be taken into account. Currently, most

medical synthetic works use the generated medical images as data augmentations to train

downstream tasks. However, this may not fully exploit the value of these generated images.

In some cases, these generated images are, in nature, counterfactuals. These counterfactuals

can be helpful for causal inference. Second, the reliability and explainability of the synthesis

models (and other task models) need to be explored. To make clinicians trust AI, AI systems’

diagnosis results must be explainable. Otherwise, it is hard to convince clinicians and per-

haps patients to trust the results coming from a black box, especially when the result relates

to people’s health or even life. Finally, an AI system that can diagnose various diseases is al-

ways valuable. At this moment, researchers in this field only focus on one specific disease in

one project due to resource and time limits. However, in practice, clinicians need to consider

1Unfortunately, our GPU memory does not support the use of pre-trained StyleGANs available at https:
//github.com/NVlabs/stylegan.
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the possibility of various diseases when diagnosing. With the increase in computation power

and more availability of medical data, a general system that can provide more utility should

be considered.

7.3 Epilogue

This thesis proposed two conditional generative models that are conditioned on discrete and

continuous factors, respectively. Besides, a strategy to utilise these generative models for

downstream tasks is proposed. We believe the generative models and the way to utilise them

can be useful for amany research fields where data are insufficient. Also, although we did not

explicitly focus on causal counterfactuals, our generative models are, in nature, counterfactual

models. Thus, these models could be useful for studies in causality and counterfactual. We

believe the work in this thesis can prove helpful for further research in the field of medical

image analysis.
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