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Abstract
This thesis tackles the veracity and variety challenges of big data, especially focusing

on graphs and relational data. We start with proposing a class of graph association

rules (GARs) to specify regularities between entities in graphs, which capture both

missing links and inconsistencies. A GAR is a combination of a graph pattern and a

dependency; it may take as predicates machine learning classifiers for link prediction.

We formalize association deduction with GARs in terms of the chase, and prove its

Church-Rosser property. We show that the satisfiability, implication and association

deduction problems for GARs are coNP-complete, NP-complete and NP-complete, re-

spectively. The incremental deduction problem is DP-complete for GARs. In addition,

we provide parallel algorithms for association deduction and incremental deduction.

We next develop a parallel algorithm to discover GARs, which applies an application-

driven strategy to cut back rules and data that are irrelevant to users’ interest, by train-

ing a machine learning model to identify data pertaining to a given application. More-

over, we introduce a sampling method to reduce a big graph G to a set H of small

sample graphs. Given expected support and recall bounds, this method is able to de-

duce samples in H and mine rules from H to satisfy the bounds in the entire G.

Then we propose a class of temporal association rules (TACOs) for event prediction

in temporal graphs. TACOs are defined on temporal graphs in terms of change patterns

and (temporal) conditions, and may carry machine learning predicates for temporal

event prediction. We settle the complexity of reasoning about TACOs, including their

satisfiability, implication and prediction problems. We develop a system that discovers

TACOs by iteratively training a rule creator based on generative models in a creator-

critic framework, and predicts events by applying the discovered TACOs in parallel.

Finally, we propose an approach to querying relations D and graphs G taken to-

gether in SQL. The key idea is that if a tuple t in D and a vertex v in G are determined

to refer to the same real-world entity, then we join t and v, correlate their information

and complement tuple t with additional attributes of v from graphs. We show how to

do this in SQL extended with only syntactic sugar, for both static joins when t is a tuple

in D and dynamic joins when t comes from intermediate results of sub-queries on D .

To support the semantic joins, we propose an attribute extraction scheme based on K-

means clustering, to identify and fetch graph properties that are linked to v via paths.

Moreover, we develop a scheme to extract a relation schema for entities in graphs, and

a heuristic join method based on the schema to strike a balance between the complexity

and accuracy of dynamic joins.
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Lay summary
The emergence and rapid growth of big graphs have brought new challenges of both

“veracity” and “variety” in this big data era. Different from relational database, data

quality (veracity) management in graphs, such as recovering missing friendships in so-

cial networks and identifying malicious webpages, is much more difficult due to their

flexible topological structures, which calls for novel graph-oriented data quality man-

aging algorithms. As for the challenge of “variety”, the lack of schema dramatically

hinders joint query across relational database and graphs, which further prohibits ex-

ploitation of data stored in different formats. Thus, in order to tackle these challenges,

methods must be developed to address the following.

(1) How to effectively and efficiently capture associations (links) in graphs? Social

networks and knowledge graphs usually have millions of vertices connected by edges

with various labels. Without a predefined schema, these arbitrary edges construct flexi-

ble topologies in graphs that can never be harnessed by rules and constraints developed

for relational data. In view of these, what rules should we use to catch associations in

graphs? How can we efficiently discover and then apply these rules in big graphs?

(2) How to capture evolvement in temporal graphs? Each edge in a temporal graph

carries a timestamp that records its time window, e.g., the timestamp of a transaction

between a customer and a product denotes the time of this purchase. These rich tem-

poral conditions present extra challenges to graph analysis. Thus, rules that specify

changes to graphs are desired for data quality management in temporal graphs.

(3) How to query relations and graphs taken together to make use of information

from both? Unlike relational data, since there is no schema for graphs, it is nontrivial to

write one query that accesses data in a relational database and a semistructured graph,

and correlates their information. Moreover, the lack of linkages between these two

sources makes it hard to decide which part of the data can be jointly queried.

Towards these questions, we develop a series of effective solutions, with both prac-

tical applications and theoretical analysis. More specifically, we propose a class of

graph association rules to specify regularities between entities in graphs, which cap-

ture both missing links and inconsistencies. Moreover, we develop a parallel algorithm

to discover these rules, where an application-driven strategy is applied to cut back rules

and data that are irrelevant to users’ interest. In addition, we propose a class of tem-

poral association rules for event prediction in temporal graphs. We finally develop an

approach to querying relations and graphs taken together in SQL, correlating informa-

tion of the same real-world entity from different data sources.
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Chapter 1

Introduction

It has been acknowledged and is predicted to continue that the quest for managing big

graphs explodes exponentially [Bus20]. However, schemaless graphs make “veracity”

and “variety” challenges of big data more staggering. Without a fixed schema, it is

non-trivial to maintain data quality (veracity) in graphs, e.g., recovering missing links

and capturing entity associations. Meanwhile, flexible topological structures radically

differentiate graphs from relational data, which hinders joint query across relations and

graphs, introducing the “variety” challenge of big data.

We exemplify these challenges when managing real-life graph data as follows. We

start with an example to show the challenge of “veracity” in graphs.

Example 1.1: As shown in G1 of Figure 1.1, there exist data inconsistency in the pop-

ulation of France according to the English language Chapter and the French language

Chapter of DBPedia knowledge graph [LIJ+15]. This data inconsistency is quite com-

mon due to asynchronous data updates. Worse still, since graphs have no schema,

existing data quality constraints developed for relational data can hardly be adapted

to managing data quality in graphs. One may apply graph functional dependencies

(GFDs) [FWX16b, FL19] to capture the population inconsistency in G1. However,

GFDs stop short of catching missing links (G2 in Figure 1.1), which have an existential

nation
France

equivalent

nation
France

G1

“English Chapter”
population:

nation
France

nation
France

66,736,000

“French Chapter”
population:
66,317,994

“English

population:
66,736,000

population:
66,317,994

G2

Chapter”
“French
Chapter”

Figure 1.1: Data inconsistency and missing links in DBPedia knowledge graph [LIJ+15]
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(a) Customer database D

(b) Transaction knowledge graph G

qty:80

Figure 1.2: Relational database D and graph G in a banking system

semantics. That is, if the link between the two vertices in G1 is missing (see G2), GFDs

will fail to catch the inconsistency in population. Such problem of missing links is very

common as well. This is because graphs are usually saved as edge files where each line

records an edge of the graph. During data transmission, especially when transmitting

large graphs, it is easy to lose lines (edges). This example shows that in order to ef-

fectively maintain good data quality (veracity) in graphs, rules that can jointly capture

semantic inconsistencies and missing associations are desired. 2

Another example is taken from a banking system, where information spreads across

relations and graphs, demonstrating the challenge of “variety” introduced by graphs.

Example 1.2: Data is usually generated from various sources and is saved in radically

different formats, e.g., relations and graphs, which hinders users from fully exploring

and leveraging the data value. This is the challenge of “variety” brought by the per-

vasively use of graphs. Consider a relational database D of customer accounts and

a graph G of transactions in a banking system (Fig. 1.2). To decide whether to rec-

ommend a new financial product fd0 to Bob (cid02 in D), the bank needs to check

the credit of Bob (in D) and customers’ investment history in the bank (in G). To

check these, however, the bank has to synthesize relational data from D and transac-

tions from graph G. Synthesizing or jointly querying graphs and relations is non-trivial

since graphs do not have schema that may bridge these two data formats. 2



1.1. Background and State of the Art 3

In view of these challenges, this thesis studies various issues in graph analysis,

and proposes practical techniques to tackle veracity and variety of big data in this era

of emerging big graphs. Specifically, we propose a class of graph association rules

(GARs) to specify regularities between entities in graphs, which capture both missing

links and inconsistencies. This tackles the challenge of “veracity” introduced by big

graph data as illustrated in Example 1.1. Then we develop a parallel algorithm to dis-

cover GARs efficiently, which applies an application-driven strategy to cut back rules

and data that are irrelevant to users’ interest. Furthermore, we propose a class of tem-

poral association rules (TACOs) for event prediction, which extends association rules

to temporal graphs. As for the challenge of “variety” brought by data spread across

relations and graphs, we propose an approach to querying relations D and graphs G

taken together in SQL. The key idea is that if a tuple t in D and a vertex v in G are

determined to refer to the same real-world entity, then we join t and v, correlate their

information and complement tuple t with additional attributes of v from graphs.

In this chapter, we firstly present research backgrounds and the review of related

work. Then we outline the thesis with summary of our main contributions.

1.1 Background and State of the Art

Association in Graphs. Originating from capturing relationships of items in transac-

tions, association rules prove to be effective on relational data [AIS93, ZZ02]. Similar

rules have been applied on graphs [GTHS13] to analyze social networks, by extract-

ing relations [EBBJ16, CF13]. Furthermore, association rules, e.g.,GPARs, have also

been directly defined on graphs for graph data analysis and graph search [FWWX15,

FWX16a, SWL+18, NWS+17]. These association rules in graphs are defined as

changes of graph patterns, and apply graph pattern matching to capture relationships

between vertices. Despite of wide application of association rules in graphs, there

have been no formulation of association deduction and fundamental results for reason-

ing about association rules in graphs. Graph functional dependencies have recently

been proposed for RDF [ACP10, HGPW16, FFTD15] and property graphs [FWX16b,

FL19, FLLT20]. Expressed as universal logic sentences, these dependencies have been

used to catch semantic inconsistencies in graphs. There has also been work on tuple-

generating dependencies (TGDs [AHV95]) on graphs [FLTZ19, CP12], which are de-
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fined with both universal and existential logic quantifiers.

Different from this rule-based approach, the machine learning (ML) community

proposes to statistically learn representations for graphs and performs graph associ-

ation analysis by link prediction models. Based on statistical learning, link predic-

tion models learn vector embedding of each entity and relation [KP18]. They pre-

dict links over the embedding via additive functions [BUGD+13], product-based func-

tions [TWR+16, ZTYL19], or deep neural networks [SRB+17]. Based on representa-

tion learning, state-of-the-art link prediction models have made significant progress in

accuracy due to recent success of deep learning. However, predictions made by these

models are unexplainable.

For practical use of graph rules, several parallel algorithms have been developed

for graph pattern matching (e.g., [FYX+18, AFU13, BLH19, RWHY19, SCC+14,

RvRH+14, HAR11, SWW+12, QYC+14, RWHY19]) and GFD checking [FWX16b,

FLTZ19, FLLT20], based on the following: (1) work unit distribution [FWX16b,

FLTZ19, SCC+14]; (2) data replication [FLLT20, FYX+18, BLH19, RvRH+14]; (3)

pattern decomposition and multiway join [AFU13, HAR11, SWW+12, QYC+14];

and (4) pattern match expansion by fetching data and verifying edges [RWHY19,

WGH+19].

Rule Discovery in Graphs. Extensive efforts have been made on mining relational

rules [HKPT99, CIP13, WGR01, SPK+19, SME+17, SPKN20], while there have

also been several discovery methods for graph rules [FHLL20, FWWX15, NWS+17,

KLL+19]. Rules on graphs are more complicated than relational rules. Thus, discov-

ery of graph rules requires to mine both graph patterns and dependencies, and is more

challenging than discovery of relational data quality rules. Applying classical level-

wise search that is widely used in data mining, existing discovery methods enumerate

and verify candidate rules in an exponentially large search space, with optimizations

of pruning strategies. Specifically, GFDs [FHLL20], GPARs [FWWX15], graph tem-

poral association rules [NWS+17] and graph differential dependencies [KLL+19] can

be mined from graphs with different pruning strategies. GERM [BBBG09a] and LFR-

Miner [LLLW10] revise pattern mining method gSpan [YH02] to mine graph evolution

rules and link formation rules, respectively.

Similarly, some rule learners are in place to discover Horn rules of restricted forms

from knowledge graphs modeled in RDF [MMM+04]. These rule learners typically

enumerate paths as candidate rules and learn a weight for each candidate to quantify its



1.1. Background and State of the Art 5

quality [MCRS19, GTHS13, OMP18]. The weight learning methods include Markov

logic networks [KNKS11, RD06], path ranking [LMC11], relational dependency net-

works [NKK+10, NJ07], rule mining algorithms [MCRS19, GTHS13, GGM20, OMP18,

CWG16], neural logic programming [YS20, YYC17, SADW19, RR17], neural theo-

rem provers [RR17, MRS+20] and reinforcement learning [MCFS20, QCX+21, XHW17,

DDZ+18, LSX18, SCH+18]. Specifically, AnyBURL [MCRS19] learns rules from

paths of various lengths in a bottom-up manner. GPFL [GTHS13] is a probabilistic

rule learner that optimizes AnyBURL by generalizing paths into templates, to reduce

search space. Based on inductive logic programming, top-down rule learners have also

been developed, such as AMIE [GTHS13] and ScaLeKB [CWG16], which repeatedly

produce new rules at each level by specializing the ones derived in the upper level.

RuDik [OMP18] discovers acyclic Horn rules by generating the universe of all possi-

ble rules, from which it selects rules according to a minimum weighted set cover of the

given examples. RNNLogic [QCX+21] develops an EM-based method to train a rule

generator, and Yang et al. [YYC17] have proposed a framework to learn rules through

the differentiable model of Tensorlog [Coh16].

Existing levelwise discovery method presents two major challenges to tackle. First,

rule discovery algorithms can hardly scale with large graphs due to exhaustive search.

This prevents existing methods from discovering rules with large graph patterns. Sec-

ond, a large number of rules typically hold on a given graph. It is hard for users to

inspect the excessive number of discovered rules and identify useful ones to them.

Sampling has also long been studied to facilitate the discovery of association rules

and frequent itemsets from relational data. For example, inspired by the VC-dimension

theory [VC15] and Rademacher average [BBL05], bounds on the required sample size

for finding approximate frequent itemsets have been established [RU14, RU15]. They

ensure that for each itemset mined from the sample, the difference between its fre-

quency in the entire dataset and the expected frequency threshold is within a user spec-

ified bound. Similarly, Chakaravarthy et al. have given a theoretical framework to

analyse the impact of sample size on the quality of association rules mined from the

samples [CPS09], i.e., their support and confidence in the original relations. Sampling

has also been adopted in the discovery of data cleaning rules from relational tables

such as FDs [PN16] and (approximate) denial constraints (DCs) [BKN17, LHIK20].

In particular, Livshits et al. have shown how to estimate the number of violations of

approximate DCs in sample data that is uniformly drawn from relations, by which it

decides the right approximation threshold to use when discovering approximate DCs
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from the sample data [LHIK20]. Their work guarantees that these rules also hold in the

entire dataset with a high probability. When it comes to graphs, the majority of knowl-

edge graph rule learners perform sampling to randomly extract paths from RDF and

use the paths to generate restricted forms of Horn clauses, e.g., [LMC15, MCRS19,

GGM20, LMC11, MFW+18], with variants of random walks.

In order to accelerate discovery, parallel algorithms have been developed to mine

rules from both relations, e.g., [RK18, SGI19], and graphs, e.g., [WdKdB+20, FHLL20,

FWWX15, CGWJ16, CWG16]. However, none of these guarantees the parallel scala-

bility except [FWWX15, FHLL20]. The parallelly scalable algorithms in [FWWX15,

FHLL20] perform levelwise search on entire graphs. We extend the discovery algo-

rithm of [FHLL20] in Chapter 3 to cope with sample graphs and ML predicates in

mining GARs, without hampering its parallel scalability.

Event Prediction. Event prediction is to predict a real-world occurrence that relates

to a particular topic and will take place at a specific time [Zha21]. Events range from

large scale (e.g., disease outbreaks and finance crisis), to medium-scale (e.g., crime

incidents and system failures), to small-scale (e.g., authentication and fraud detection).

Predicting events is important in a variety of domains such as disease control, trans-

portation management, cybersecurity and business intelligence.

Most state-of-the-art event prediction methods work on temporal graphs (graphs

with timestamps), since temporal graphs have been widely used to record facts and

interactions between entities with temporal information. Temporal association rules

have been studied for event prediction on temporal graphs [NWS+17, BBBG09a]. For

example, GTARs (Graph Temporal Association Rules) [NWS+17] specify connections

between events by means of two event patterns that share a common focus node and a

single constant time interval. Similarly, GERs (Graph Evolution Rules) [BBBG09a] are

defined with two connected (sub)-patterns that are decomposed from a singe pattern,

to represent local changes such as edge insertions and deletions, and node and edge

relabeling [SMD+16]. However, these rules have specific constraints for graph patterns

and each rule can only express a constant interval between the occurrences of a pair of

events, which are unsuitable for practical use.

A variety of ML models have also been explored for temporal event prediction, in-

cluding (1) regression [MC17, NZV19, FJZL19, LDB18]; (2) point processes [QZX+18,

WP13]; (3) survival analysis [DMS+17, VZT+19]; and (4) embedding via, e.g., ten-

sor decomposition [DKA11, YCA+17], recurrent neural network (RNN) [SDVB18,
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TFBZ19, MGR+20, TDWS17, JQJR20], graph neural network (GNN) [LJL+21b,

MRM20, CXWZ18, PDC+20, RCF+20], autoencoder [GKHL18, GCC20, RAH16]

and diachronic encoder [GKBP20, XNA+19, DRT18, GDN18]. In particular, as a spe-

cial type of event prediction, (temporal) recommendation has attracted a great deal of

interest. For example, several dynamic recommender systems (DRS) have been devel-

oped to improve the recommendation quality. They can incorporate temporal factors

of user preferences [RSDO20] using time-dependent neighborhood models [SD17,

FL17, ML13], matrix factorization [Kor09, LLCL18, MVS+15, RN16] and tensor

models [VJ12, WJW+18, HMB12]. Although they have demonstrated competitive

accuracy, their predictions given by black-box models are all unexplainable.

Moreover, related to learning event prediction rules, mining temporal patterns and

rules for Complex Event Processing (CEP) has also be extensively studied. CEP

aims at processing large flows of events with timestamps to discover situations of

interest, where patterns and rules are introduced to generalize experiences in histo-

rial sequential data and to predict the occurrence of future events [MCT14, EE11].

Specifically, a precise definition for the problem of automated CEP rules genera-

tion and a general approach for automatic CEP rule discovery have been proposed

in [MCT14]. Representative CEP rule mining methods depend on Hidden Markov

models [MP12, ZGPBM05], iterative learning with human experts [TGW09, SSS10],

Markov logic networks [KD10], and temporal constraint networks [ÁFCO10].

Heterogeneous Data Management. Analysing heterogeneous data of different for-

mats, e.g., relations and graphs, from various sources has been a long-standing chal-

lenge, and multi-model systems have been proposed to address this issue, which sup-

port analyses on datasets in multiple data models. These multi-model systems can be

categorized in the following three types: polyglot systems [DJL+16, JMCH15, Des18],

multistores systems [KAB+12] and polystores systems [DES+15, KBV+16]. (1) To

query graphs and relations, polyglot systems are either relation-based or graph-based.

Relation-based ones shred graphs into edge relations/views and port graph computa-

tions to SQL-like systems (e.g., GraphFrame [DJL+16], NScale [QD16]) or RDBMS

(e.g., Vertica [JMCH15], Vertexica [JRW+14], Cytosm [SAL+17], Grail [FRP15], and

[ZY17]). Instead, graph-based ones (e.g., GraphGen [Des18]) publish relations to

graphs and use full-fledged graph engines. Polyglot systems aim to optimize queries

on a homogeneous dataset (either graphs or relations), i.e., each supports queries that

involve only one type of the data. (2) Multistores are built on top of multiple data stores
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such as RDBMS, Hadoop file system, cloud storage and NoSQL. They provide a single

interface to query datasets in multiple native data stores [ABA+09, ZR11, KAB+12].

Query answering is based on a “mediate” data model such as relations [ABA+09,

KAB+12] or an associative-array [ZR11]. (3) Polystores also interconnect storage

engines of different data models; in addition, they employ native query languages of

those models [DES+15, HdAC+14, KBV+16] instead of building a “mediator” as a

multistore does. Inter-model queries are supported by composing native subqueries

via, e.g., function calls [KBV+16] or scope operations [DES+15].

However, these systems treat data of different formats as independent stores, and

ignore the potential semantic connections between entities in the heterogeneous data.

Without considering such semantic relatedness, systems such as multistores and poly-

stores could only “syntactically” connect multiple datasets by cross-product. More-

over, this loss of semantic linkage may incur heavy cost when jointly querying relations

and graphs. For example, relation-based polyglot systems require to traverse paths via

costly SQL joins for attribute extraction.

Another filed of work related to this topic is Schema/data extraction (a.k.a. schema

discovery and schema inference). These methods summarize semistructured data in

terms of tree patterns and graph patterns with descriptions [CPF15, KMK15]. In ad-

dition, relational schemas have been extracted for navigating extracted data [CSE07],

querying nested key-value data [DA16], developing schema [SAC+17] and integrating

XML data with relations [JD14]. Related is also the work on attribute selection (a.k.a.

feature selection in ML terms; see [HH03, SSGC17, CS14] for surveys). The idea is to

filter out attributes from datasets that are irrelevant to the tasks over the data, mostly by

ranking attributes using hand-crafted criteria [HH03, GFHK09] or by computing the

closeness to a manually labeled training set [SSGC17, CS14]. The ML models target

images, texts and tableaux data.

1.2 Contributions and Outline of Thesis

We summarize the contributions made in this thesis as follows:

◦ Chapter 2 proposes a class of graph association rules (GARs) that combine rules and

machine learning models to capture missing links and inconsistencies in graphs.

− We propose a class of graph association rules (GARs). GARs extend graph

pattern association rules (GPARs) [FWWX15] with preconditions, and GFDs

[FWX16b, FL19] with limited existential semantics. Moreover, GARs may
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take embedding-based machine learning (ML) classifiers for link prediction

as predicates, and thus provide a uniform framework to catch missing links

and semantic errors in graphs, by unifying rule-based and ML-based methods.

− We study deducing associations from real-life graphs. We formalize the prob-

lem by extending the chase [SU80] with GARs, to uniformly apply rules and

embedding-based ML classifiers. We show that the deduction has the Church-

Rosser property, i.e., the chase converges at the same answer no matter in

which order the GARs are applied, even though the graphs may mutate.

− We study fundamental problems for graph associations, including (a) satisfi-

ability to decide whether a set of GARs has no conflicts with each other; (b)

implication to decide whether a GAR is entailed by a given set of GARs, to

reduce redundant GARs; (c) association deduction to infer missing links and

missing attributes in a real-life graph; and (d) incremental deduction to de-

duce changes to the associations in response to updates to graphs. We show

that while GARs increase the expressive power of GFDs, the satisfiability, im-

plication and association deduction problems retain the same complexity as

their counterparts for GFDs. The incremental deduction problem for GARs is

slightly harder than for GFDs, DP-complete vs. coNP-complete, unless P =

NP. Thus, GARs strike a balance between the complexity and expressivity.

− For practical use of the association analysis, we parallelize the association de-

duction process by the fixpoint computation model of GRAPE [FYX+18]. We

show that the parallelization guarantees to converge at the same set of asso-

ciations deduced. Moreover, we provide a parallel incremental algorithm in

response to updates, since it is costly to re-deduce associations starting from

scratch when graphs change. We incrementally compute changes to associa-

tions, minimizing unnecessary recomputation.

◦ A parallelly scalable algorithm to discover GARs is developed in Chapter 3, apply-

ing an application-driven strategy to cut back rules and data that are irrelevant to

users’ interest, and a sampling method to reduce a big graph G for faster discovery.

− We formulate the discovery problem for GARs driven by applications and

based on sampling, and present our three-step discovery scheme to discover

useful rules from a big graph G for a given application A : (a) reducing G to

A-relevant GA that is related to an application of user’s interest, (b) sampling

a set H of graphs H(A ,ρ%) from GA , such that their sizes are at most ρ% of

GA , (c) parallelizing discovery with the parallel scalability. We reduce irrele-
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vant rules by proposing ML-based graph reduction (step (a)), and improve the

scalability by combining steps (a), (b) and (c). Steps (a) and (b) reduce the

problem of rule discovery from large G to much smaller H(A ,ρ%). We show

that the scheme guarantees accuracy bounds. Indeed, all A-relevant GARs that

hold on G can be mined from GA when the language model MA accurately la-

bels the data. As opposed to prior methods [MCRS19, GGM20, CWG16] that

only sample paths, step (b) samples general subgraphs by selecting represen-

tative data. These ensure accuracy bounds on the rules mined from H(A ,ρ%).

− A graph reduction method is developed to deduce A-relevant graph GA from

graph G for a given application A . It trains an ML model MA (long short-term

memory (LSTM) networks [HS97]) to identify nodes, edges and properties in

G that pertain to A . We reduce G to a smaller graph GA with only the data

pertaining to A , and discover A-relevant rules from GA instead of entire G.

− To reduce discovery cost, we propose a sampling method GSRD for reducing

GA to a set H of sample graphs H(A ,ρ%), such that their sizes are at most

ρ% of GA . The samples consist of representative data cells in GA along with

their surrounding subgraphs. Denote by ΣG and ΣH the set of A-relevant rules

discovered from G and H, respectively. We show that given bounds σ and γ%,

we can deduce H such that (a) at least γ% of rules in ΣG are covered by ΣH ,

and (b) each of these rules can be applied at least σ times on the entire G, i.e.,

the rules in ΣG can be mined from H above recall γ% and support σ.

− We develop a parallel algorithm to discover GARs from the set H of samples

H(A ,ρ%). We show that the algorithm guarantees the parallel scalability, i.e.,

it guarantees to reduce runtime when more machines are used. In principle, it

can scale with large graphs G by using more machines when needed.

◦ Chapter 4 introduces a class of temporal association rules, referred to as TACOs

(TemporAl event prediCtiOn rules), that enrich event prediction ML models with

temporal conditions and change patterns, establishes the complexity of reasoning

about TACOs, and develops a system TASTE to discover TACOs and predict events

in temporal graphs by employing TACOs.

− TACOs are defined on temporal graphs in terms of change patterns, temporal

conditions and ML models (as predicates) for event prediction. In contrast

to previous graph rules, TACOs are applied to updates to temporal graphs,

which are typically much smaller than the entire graphs, to monitor changes

and predict events.
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− We study the classical problems for TACOs, including (a) satisfiability to

check whether a set of TACOs has no conflicts, (b) implication to decide

whether a set of TACOs entails another TACO, and (c) prediction to forecast

whether an event will occur at a particular time. We show that these prob-

lems are Σ
p
2-complete, Π

p
2-complete and NP-complete, respectively. That is,

despite the increased expressivity, TACOs do not make our lives much harder

when applying and reasoning about TACOs compared with previous graph

rules [FL19, FJL+20].

− To make practical use of TACOs, we develop a system, referred to as TASTE

(TemporAl SysTEm). TASTE (a) discovers high-quality TACOs with gener-

ative ML models, and (b) applies the discovered TACOs for temporal event

prediction in parallel. We formalize the discovery problem for TACOs, in

terms of support and confidence defined w.r.t. temporal pattern matching.

− We develop a creator-critic framework to discover TACOs in TASTE. The

rule creator adopts GAN and LSTM language models to generate TACOs

with candidate patterns and temporal conditions, while the critic evaluates

such TACO rules on temporal graphs, collects high-quality rules, and provides

feedback to the creator for improving the quality in the next round. Different

from the traditional discriminator in GAN, the “critic” is a predefined scoring

algorithm that requires no training. Thus, our “creator” is easier to train with

weak supervision [Zho18] from the critic, while the dynamic training of GAN

may converge to a poor generator or discriminator. This method avoids the

exhaustive levelwise search in an exponentially large space [FHLL20], and is

able to find TACOs with large patterns. We show that the method guarantees

to find all TACOs after certain rounds with a probabilistic bound.

− We develop a parallel algorithm for temporal event prediction with TACOs.

The algorithm is also used to support the critic module of rule discovery. In

contrast to existing graph partitioning methods such as edge-cut or vertex-cut

[RPGH14, AR06], we propose to partition a temporal graph based on temporal

locality such that temporal pattern matching can be conducted locally at each

fragment, and event prediction can be made communication-free. We show

that the parallel event prediction algorithm guarantees to run faster when given

more processors.

◦ Finally, based on entity matching across relations D and graphs G, Chapter 5 pro-

poses an approach to querying D and G taken together in SQL, tackling the variety
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challenge of big data.

− We propose a framework, referred to as RGAP (Relation GrAPh), to support

SQL across a relational database D and a semistructured graph G. Assume an

“oracle”, referred to as HER for Heterogeneous Entity Resolution. Given a tu-

ple t in D and a vertex v in G, HER checks whether t and v make a match, i.e.,

they refer to the same real-world entity, despite their radically different topo-

logical structures. Then we can naturally “join” the same entities encoded by

tuples in relations and by vertices in graphs, collect relevant attributes pertain-

ing to the entities, and correlate their information. This is a simple semantic

extension to the join operator in SQL.

− We extend relational algebra (RA) with syntactic sugar to support semantic

joins across D and G, referred to as GRA (Graph Relational Algebra). Given

a set S of tuples of a relation schema R, we deduce the following:

• f (S,G), the set of pairs (t,v) such that tuple t ∈ S and v is vertex in G that

matches tuple t, by invoking HER;

• a relation schema RG to augment R with additional attributes from G, i.e.,

properties of the matching vertices in f (S,G); and

• an instance h(S,G) of schema RG, by value extraction from G.

We join entities t and v as long as they make a match in f (S,G), and com-

plement tuples t with additional attributes of h(S,G). More specifically, we

support two different forms of join:

• static join: when S is a set of input tuples in D; and

• dynamic join: when S is the intermediate result of a sub-query.

We show how to efficiently implement the two forms of joins. While we

can cache f (S,G) and h(S,G) in advance for static joins, for dynamic joins,

naive implementation would require to compute S, f (S,G) and h(S,G) at run

time on the fly, with a heavy cost. We show how to reduce dynamic joins

to static joins for a large class of practical queries, making them accessible

within RDBMS.

− To support semantic joins, one has to compute the match relation f (S,G) and

extract relations h(S,G) for the matches from G. While f (S,G) can be iden-

tified by HER [PMG+20, MLR+18, IJB10, FZMK20, FGJ+22], no method is

available to deduce schema RG and relation h(S,G). This is nontrivial since

we have to identify important properties by traversing paths from the match-
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ing vertices in f (S,G). We propose a clustering-based method to deduce RG

and h(S,G). Taking a set Ω of keywords from users as input, we rank and pick

attributes that cover most vertex-path pairs in G, meet users’ query interests

(represented by Ω), and diverse from existing attributes of R.

− For those queries in which dynamic joins cannot be reduced to static joins, we

propose a heuristic join method to reduce the cost. To do this, for selected

types τ of entities in G, we adjust the clustering method to deduce

• a schema Rτ with attributes that cover important properties of τ-entities in

G and match users’ interests; and

• an instance gτ(G) of schema Rt extracted from G.

With the extracted relations gτ(G), given a dynamic join between interme-

diate query results S and graph G, we reduce it to relational ER between S

and gτ(G), which can be realized in RDBMS with a simple UDF. By caching

gτ(G) in advance, this strikes a balance between the efficiency and accuracy

of dynamic joins, without calling external HER and extraction functions at run

time. We also develop incremental algorithms to extract h(S,G) and gτ(G) in

response to updates to relations D and graphs G.

Remark. It is worth mentioning that results in Chapter 2 have been published in

[FJL+20], the results in Chapters 3 and 4 have been accepted in VLDB 2022, and

the results in Chapter 5 are taken from a submitted paper under review. My major

contributions to each paper covered in this thesis are listed as follows. In Chapter 2,

I was in charge of designing ML predicates for GARs, performing case studies and

experimental evaluation. In Chapter 3, I developed the application-driven graph reduc-

tion and sampling strategy to discover rules that meet users’ interests, and conducted

the corresponding experiments. In Chapter 4, I proposed the critic-creator framework,

which to the best of our knowledge is the first to introduce generative ML models and

weak supervision into graph rule discovery. I also participated in the development of

TACOs, implementation of the TASTE system, and experimental studies. In Chapter

5, inspired by clustering techniques, I developed the attribute and schema extraction

methods to support RGAP, and carried out the experiments.





Chapter 2

Capturing Associations in Graphs

This Chapter proposes a class of graph association rules, denoted by GARs, to specify

regularities between entities in graphs, which catch incomplete information in schema-

less graphs, predict links in social graphs, identify potential customers in digital mar-

keting, and extend graph functional dependencies (GFDs) to capture both missing links

and inconsistencies. We start with examples to motivate the introduction of GARs.

Example 2.1: Consider the following real-life examples.

(1) Marketing. Unlike traditional marketing strategies such as TV advertising, e-com-

merce marketing promotes products by association analysis of purchases and user be-

haviors, which are often represented as graphs. It has proven important: “the visits

where the shopper clicked a recommendation comprise just 7% of visits, but drive an

astounding 24% of orders and 26% of revenue” [You17]. Moreover, associations play

a vital role in recommendation systems [AT05, DLL+10, LAR02].

For instance, graph G1 of Fig. 2.1 depicts an e-commerce recommendation net-

work [ZZY+19]. A rule for marketing is as follows: if (a) a shopper Ada follows a

store Uniqlo and clicks product Long-Sleeve Hoodie W sold by it, (b) Uniqlo also sells

Denim Mini Skirt, which is combined with Long-Sleeve Hoodie W in some package

deals, and (c) if the classes of the two products, Hoodie W and Mini Skirt, are corre-

lated in women’s shopping activities, then Ada may also be interested in Denim Mini

Skirt. The link showing Ada’s interest in Denim Mini Skirt is not in G1.

(2) Link prediction. Association rules help us predict links in social networks. People

visiting the same place, having common friends and similar interests tend to develop

friendship [SNLM11, YLS+11]. For example, graph G2 in Fig. 2.1 is taken from so-

cial network Gowalla [LWSM14]. It suggests the following: if (a) two people Bob and

15
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Figure 2.1: Example associations in real-life graphs

Joe have a common friend Sue, (b) all of them like to visit cafe Beans, and (c) if Bob

and Joe share the same interest as Sue, then Bob and Joe are likely to become friends.

The link between Bob and Joe is absent in G2.

(3) Incomplete information. Unlike relational tables, real-life graphs typically do not

come with a schema. As a result, it is more common to find information missing from

graphs. As indicated by G3 of Fig. 2.1, in the knowledge graph adopted by e-commerce

platforms [LLB+20], there exist clothing items (e.g., Winter Dress) without brand or

material. To make them complete items, the missing data need to be added.

(4) Catching both absent links and semantic errors. Graph functional dependencies

(GFDs) have been studied [FWX16b, FL19]. Like relational functional dependencies

(FDs), GFDs are universal logic sentences to catch semantic inconsistencies. However,

GFDs stop short of catching missing links, which have an existential semantics.

On the one hand, GFDs may fail to catch semantic errors when links are missing.

Consider graph G4 taken from DBPedia [LIJ+15], in which the English and French

Chapters return different populations for France. One can use a GFD to catch the
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inconsistency: if two records x and x′ refer to the same nation, then they must have

the same population. However, if the equivalent link between x and x′ is missing,

then this GFD cannot catch the error. On the other hand, with such inconsistencies,

conventional logical rules fail to connect the nation records in G5 of Fig. 2.1. The

scale of the problem is far more staggering in schemaless graphs.

(5) Incorporating machine learning (ML). Association deduction requires both logic-

based and ML-based methods. On the one hand, we can use ML classifiers to predict

links above between x and x′. On the other hand, we can use logic to interpret ML

predictions and help improve its accuracy. For instance, if an ML classifier “predicts”

that movie Taxi receives Golden Bear and Golden Lion awards (see G6 of Fig. 2.1),

then we can conclude that the predication is wrong since the two film festivals require

their participants to be “initial release” and no movie receives both awards. 2

These examples give rise to several questions. What rules should we use to catch

associations? Can we catch missing links and semantic inconsistencies at the same

time? Is it possible to extend existing graph dependencies (e.g., GFDs) to meet the

requirements while striking a balance between the expressive power and complexity?

Better yet, can we incorporate ML classifiers into the rules such that we can uniformly

apply rule-based and ML-based methods? Putting these together, above all, can we

make practical use of the rules to deduce associations in large-scale graphs?

We make an effort to answer these questions, from foundation to practice. We

propose a class of graph association rules in Section 2.1, denoted by GARs, extending

graph pattern association rules (GPARs) [FWWX15] with preconditions, and GFDs

[FWX16b, FL19] with limited existential semantics. Then we study deducing asso-

ciations from real-life graphs in Section 2.2, formalize the problem by extending the

chase [SU80] with GARs, to uniformly apply rules and embedding-based ML classi-

fiers. Fundamental problems for graph associations are studied in Section 2.3, and

parallel association deduction process is given in Section 2.4 for practical use. We

experimentally verify our methods in Section 2.5, and conclude our novelty and con-

tributions compared with previous work in Section 2.6.

2.1 Graph Association Rules

We firstly review basic notations before introducing GARs. We assume three countably

infinite sets of symbols, denoted by Γ, ϒ and U , for labels, attributes and constants,
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respectively.

Graphs. We consider directed labeled graphs, specified as G = (V,E,L,FA), where (a)

V is a finite set of nodes; (b) E ⊆ V ×Γ×V is the set of edges, where e = (v, ι,v′)

denotes an edge from node v to v′ that is labeled with ι ∈ Γ; (c) each node v ∈ V has

label L(v) from Γ; and (d) each node v ∈V carries a tuple FA(v) = (A1 = a1, . . . ,An =

an) of attributes of a finite arity, where Ai ∈ ϒ and ai ∈U , written as v.Ai = ai, and

Ai 6= A j if i 6= j, representing properties.

Patterns. A graph pattern is Q[x̄] = (VQ, EQ, LQ, µ), where (1) VQ (resp. EQ) is a set

of pattern nodes (resp. edges); (2) LQ assigns a label LQ(u) ∈ Γ (resp. LQ(e) ∈ Γ) to

each node u ∈ VQ (resp. edge e ∈ EQ, i.e., e = (u,LQ(e),u′)); (3) x̄ is a list of distinct

variables; and (4) µ is a bijective mapping from x̄ to VQ, i.e., it assigns a distinct variable

to each node v in VQ. We allow wildcard ‘ ’ as a special label in Q[x̄]. For x ∈ x̄, we

use µ(x) and x interchangeably.

Example 2.2: Six patterns are given in Fig. 2.1. For example, pattern Q1 shows that

shop w sells products y1 and y2 of classes z1 and z2, respectively, y1 and y2 are linked

in a special offer, z1 and z2 are related in order activities, and customer x follows shop

w and clicks product z1. Patterns Q2-Q6 in Fig. 2.1 can be interpreted similarly. 2

Pattern matching. We adopt the homomorphism semantics following [FL19, ACP10,

CP12]. A match of pattern Q[x̄] in graph G is a mapping h from Q to G such that

(a) for each node u ∈ VQ, LQ(u) = L(h(u)); and (b) for each e = (u, ι,u′) in Q, e′ =

(h(u), ι,h(u′)) is an edge in G. Here LQ(u) = L(h(u)) if LQ(u) is ‘ ’, i.e., wildcard

matches an arbitrary label. We denote the match as a vector h(x̄), consisting of h(x)

for all x ∈ x̄ in the same order as x̄. Intuitively, x̄ is a list of entities to be identified, and

h(x̄) is an instantiation for it.

We now define graph association rules (GARs).

Literals. A literal of pattern Q[x̄] is one of the following: for variables x,y ∈ x̄ and

attributes A,B ∈ ϒ,

◦ attribute literal x.A;

◦ edge literal ι(x,y), where ι is a label in Γ;

◦ ML literal M (x,y, ι), an ML classifier that returns true if and only if it predicts the

existence of edge (x, ι,y);

◦ variable literal x.A = y.B; and

◦ constant literal x.A = c, where c ∈U is a constant.
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GARs. A graph association rule (GAR) ϕ is defined as

Q[x̄](X → Y ),

where Q[x̄] is a graph pattern, and X and Y are (possibly empty) conjunctions of literals

of Q[x̄]. We refer to Q[x̄] and X → Y as the pattern and dependency of ϕ, respectively.

Intuitively, the pattern Q in a GAR identifies entities in a graph, and the dependency

X → Y is applied to the entities. Constant and variable literals x.A = c and x.A = y.B

specify value associations to attributes, and attribute and edge literals x.A and ι(x,y)

enforce the existence of attributes and edges, i.e., attribute and edge associations, re-

spectively. Moreover, one can “plug in” an existing well-trained ML classifier M for

link prediction, and treat it as a Boolean predicate, i.e., M (x,y, ι) is true if M pre-

dicts the existence of a link labeled ι from x to y, and false otherwise. As will be

seen shortly, it allows us to employ embedding-based ML classifiers in logic rules, and

interpret such classifiers in logic.

Example 2.3: One can use the GARs below to deduce associations described in Ex-

ample 2.1, using patterns Q1-Q6 of Fig. 2.1.

(1) ϕ1 =Q1[x,y1,y2,w,z1,z2]( /0→Y1), where Y1 consists of an edge literal like(x,y2). It

says that if products y1 and y2 are sold by the same shop w and are connected in a pack-

age deal, their corresponding classes are related in buying activities, and if customer

x clicks y1 and follows shop w (specified in Q1), then x is also a potential customer of

product y2.

(2) ϕ2 = Q2[x,x′,x′′,y](X2→ Y2), where X2 is x.interest = x′.interest ∧ x′′.interest =

x′.interest, interest is an attribute of person entity, and Y2 is friend(x,x′′). It states that

if x′ is a friend of both x and x′′, all of x,x′ and x′′ visit the same cafe y (specified in

Q2), and if the three share common interest (specified in X2), then x and x′′ are likely

to become friends.

(3) ϕ3 = Q3[x̄](y2.name=“Clothing”→ Y3), where Y3 is defined with attribute liter-

als x.brand ∧ x.material. It enforces each clothing entity to carry brand and material

attributes.

(4) ϕ4 = Q4[x,x′]( /0→Y4), where Y4 is x.population = x′.population, and population is

an attribute of a nation entity. It says that records about the same nation should have

the same population. It is a GFD [FWX16b] to catch inconsistencies.
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(5) ϕ5 = Q5[x,x′](X5→Y5), where X5 is x.name = x′.name∧M (x,x′,equivalent), and

Y5 is equivalent(x,x′). It states that if two nations x and x′ have the same name and

they are predicted to be equivalent by an ML classifier (link predictor) M , then the

link (x,equivalent,x′) should be added. It makes use of existing ML classifiers to catch

associations.

(6) ϕ6 = Q6[x̄](X6→ false), where X6 is M (z,y′, receive) ∧ y.name=“Golden Bear” ∧
y′.name= “Golden Lion”. Here false is a Boolean constant expressed as y.name=c and

y.name=d for distinct constants c and d. Intuitively, it says that a movie cannot receive

both Golden Bear and Golden Lion awards. This suggests that if M (z,y′, receive)

returns true, then the classifier M should be further trained. 2

Semantics. To interpret GAR ϕ = Q[x̄](X → Y ), we use the following notations. De-

note by h(x̄) a match of Q in a graph G, and l a literal of Q[x̄]. We write h(µ(x)) as

h(x), where µ is the mapping in Q from x̄ to nodes in Q.

We say that h(x̄) satisfies a literal l, denoted by h(x̄) |= l, if the following condition

is satisfied: (a) when l is x.A, attribute A exists at h(x); (b) when l is ι(x,y), there is

an edge with label ι from h(x) to h(y); (c) when l is M (x,y, ι), the ML classifier M
predicts an edge (h(x), ι,h(y)); (d) when l is x.A = y.B, attributes A and B exist at h(x)

and h(y), respectively, and h(x).A = h(y).B; and (e) when l is x.A = c, attribute A exists

at h(x), and h(x).A = c.

For a set X of literals, we write h(x̄) |= X if match h(x̄) satisfies all the literals in X .

If X (resp. Y ) is /0 (i.e., true), then h(x̄) |= X (resp. h(x̄) |= Y ) for any match h(x̄) of Q

in G. We write h(x̄)|=X→Y if h(x̄)|=X implies h(x̄)|=Y . A graph G satisfies GAR ϕ,

denoted by G |= ϕ, if for all matches h(x̄) of Q in G, h(x̄) |= X → Y . Graph G satisfies

a set Σ of GARs, denoted by G |= Σ, if G |= ϕ for all ϕ ∈ Σ.

Example 2.4: Consider G2 in Fig. 2.1 and GAR ϕ2 in Example 2.3. Then G2 6|= ϕ2,

since there exists a match h1: x 7→“Bob”, x′ 7→“Sue”, x′′ 7→ “Joe”, y 7→“Beans”, such

that h1(x̄) |= X2, but there exists no edge (“Bob”, friend, “Joe”) in G2. Hence h1(x̄) 6|=
X2→ Y2, i.e., h1(x̄) witnesses G2 6|= ϕ2. Similarly, Gi 6|= ϕi for other i ∈ [1,6]. 2

Special cases. We single out three special cases of GARs.

(1) GFDs and graph entity dependencies (GEDs) [FWX16b, FL19] are GARs defined

with constant and variable literals only, assuming that node id is a special attribute.

That is, GARs extend GFDs and GEDs with the existential semantics for attributes and
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edges, and by allowing ML classifiers as predicates. For instance, ϕ4 of Example 2.3

is a GFD but all the other GARs there cannot be expressed as GFDs or GEDs. GARs

can catch both missing links and semantic errors, as opposed to GFDs and GEDs that

detect inconsistencies only.

(2) GPARs [FWWX15] are GARs Q[x̄]( /0→ ι(x,y)), in which X → Y specifies no pre-

condition X and Y is a single edge literal ι(x,y). In contrast to GARs, GPARs do not

allow ML classifiers. No GAR in Example 2.3 is expressible as GPARs.

(3) GARs unify logic and ML methods. On the one hand, Q[x̄](M (x,y, ι)→ ι(x,y))

plugs in an ML link predictor M (x,y, ι), e.g., GAR ϕ5 of Example 2.3. On the other

hand, GARs Q[x̄](ψ→M (x,y, ι)) help us interpret why M (x,y, ι) predicts true with

condition ψ. For instance, the ML classifier M in ϕ6 may be interpreted as a rule like

Q6[x̄](z.name = y′.movie name∧ z.director = y′.movie director → M (z,y′, receive)),

by extracting the attributes from the textual description of movies and awards.

ML classifiers in GARs. GARs support embedding-based ML classifiers for link pre-

diction. Having sets of entities and relations denoted by E and R , respectively, these

ML classifiers view each link in a graph as a triple (h,r, t), where h ∈ E is the head,

r ∈ R is the relation and t ∈ E refers to the tail of the triple. Given positive/negative

triples as training data, the classifiers apply tensor factorization to learn vector rep-

resentations of entities and relations. During the learning process, with a predefined

similarity function, the positive triples guide the classifier to embed their vectors simi-

lar while the negative triples force theirs to become dissimilar. Here all types of entities

and relevant information (all relevant attributes and edges) are considered.

Once the training completes, such an ML classifier M behaves just like a Boolean

function. Given two entities h′, t ′ and a relation r′, M (h′,r′, t ′) returns a Boolean value.

That is, M maps h′, t ′ and r′ to precomputed vectors vh′ , vt ′ and vr′ as their embeddings.

Then it feeds these vectors to the similarity function, and returns true (resp. false) if the

score is above (resp. below) the threshold. The hypothesis of such ML link predictor

is that all entities and relations have been covered by the training data and learned by

M [BUGD+13]; thus M can find embeddings of h′, t ′ and r′, and predict whether h′

is linked to t ′ with an r′-edge. That is how the state-of-the-art embedding-based link

prediction models SimpIE [KP18] and CompIEx [TWR+16] work.



22 Chapter 2. Capturing Associations in Graphs

2.2 Deducing Associations

One of the central issues of the study is to deduce associations. There are two types

of associations: (a) associations between entities (edge literals) and associations of at-

tributes to entities (attribute literals); and (b) associations of values to attributes (vari-

able and constant literals). We model association deduction by chasing graphs with

GARs. Below we first extend the chase [SU80] from relations to graphs (Section 2.2.1)

and then prove its Church-Rosser property (Section 2.2.2). Based on these, we will

formulate the association deduction problem in Section 2.3.

2.2.1 Chasing with GARs

Consider a graph G = (V,E,L,FA) and a set Σ of GARs.

Chase graphs. A chase graph Gc is (V,Ec,L,FAc), where V and L are from G, Ec =

E∪∆Ec, and FAc = FA∪∆FAc . Here ∆Ec includes edges added by ML literals and edge

literals during the chase, and ∆FAc includes attributes added by attribute, constant and

variable literals.

Chasing. We define a chase step of G by Σ at Gc as

Gc⇒(ϕ,h) G′c,

where ϕ = Q[x̄](X → Y ) is a GAR in Σ and h(x̄) is a match of Q in Gc such that (a)

h(x̄) |= X , and (b) G′c extends Gc by enforcing one literal l ∈Y if h(x̄) |= l does not yet

hold. More specifically, based on l, G′c is defined as follows.

◦ If l is x.A, then G′c extends Gc by adding attribute A to ∆FAc(h(x)) with a spe-

cial value “#” if A 6∈ FA(h(x)). Here, “#” acts as a placeholder for the value of

A, since the rule only enforce the existence of an attribute A without its specific

value. This placeholder guarantees the data consistency as each attribute must have

a “value”. “#” can be implemented as “null” value in practice. If attribute A = # is

later assinged a constant a by a GAR, then A = a, which incurs no conflicts. If A is

already in FA(h(x)), its value remains unchanged.

◦ If l is ι(x,y), then G′c extends Gc with edge (h(x), ι,h(y)).

◦ If l is M (x,y, ι), then G′c extends Gc by adding edge (h(x), ι,h(y)). As a byproduct,

it suggests to set M (x,y, ι) true, i.e., it provides feedback to ML predictor M .

◦ If l is x.A = y.B, then G′c extends Gc by (a) adding attributes A to ∆FAc(h(x)) and B

to ∆FAc(h(y)) if the attributes are not there, and (b) letting h(x).A = h(y).B.
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◦ If l is x.A = c, then G′c extends Gc by adding attribute A to ∆FAc(h(x)) if A 6∈
FA(h(x)), and letting h(x).A = c.

Consistency. Conflicts may emerge in a chase step. We say that chase step Gc⇒(ϕ,h)

G′c is invalid if when it enforces literal l, either (a) l is x.A = y.B, but h(x).A = c and

h(y).B = d are in Gc for distinct c and d, or (b) l is x.A = c, h(x).A = d is in Gc and

c 6= d. Otherwise the step is valid. We say that G′c is inconsistent if either (a) or (b)

happens. Note that edge and ML literals do not incur inconsistencies as multiple edges

can co-exist between a pair of nodes.

Chasing sequences. We start with Gc0 = G in which ∆FAc and ∆Ec are both /0. A

chasing sequence ρ of G by Σ is

Gc0, . . . , Gck ,

where for all i ∈ [0,k−1], there exist a GAR ϕ = Q[x̄](X → Y ) in Σ and a match h of

graph pattern Q in Gci such that Gci ⇒(ϕ,h) Gci+1 is a valid chase step.

The sequence is terminal if there exist no GAR ϕ ∈ Σ and match h of pattern Q

of ϕ in Gck such that chase step Gck ⇒(ϕ,h) Gck+1 is valid and can extend Gck . More

specifically, the chase terminates in one of the following two cases:

(a) Gck cannot be expanded and Gci is consistent (i∈[0,k]); if so, the chasing sequence

is valid and its result is Gck ; or

(b) at some step i, Gci is inconsistent; if so, the chasing sequence is invalid, and the

result is undefined ⊥.

Prior work on chasing graphs [FL19, FLTZ19] mainly changes attribute values. In

contrast, the topological structure of Gc may be changed by new edges and attributes

added when chasing GARs. Hence when Gc is extended to G′c, we have to check new

possible matches of graph patterns in GARs.

Example 2.5: Consider the graph G2 shown in Fig. 2.1. Assume that Σ consists of

only one GAR ϕ2 in Example 2.3. From Gc0 = G2, we have the following chase steps:

(1) Gc0⇒(ϕ2,h1)Gc1 , where match h1 is given in Example 2.4; and Gc1 extends Gc0 with

edge (“Bob”, friend, “Joe”);

(2) Gc1⇒(ϕ2,h2)Gc2 , where h2 is defined as follows: x 7→ “Bob”, x′ 7→ “Joe”, x′′ 7→
“Eva”, y 7→ “Beans”, and Gc2 extends Gc1 with edge (“Bob”, friend, “Eva”) using
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ϕ2. Note that match h2 exists in the mutated chase graph Gc1 only after the edge

(“Bob”,friend,“Joe”) is added in step (1). 2

2.2.2 The Church Rosser Property

A major concern is whether the chase always terminates with the same result. Follow-

ing [AHV95], we say that chasing with GARs is Church-Rosser if for all graphs G and

all sets Σ of GARs, all chasing sequences of G by Σ are terminal and converge at the

same result, regardless of what GARs in Σ are used and in what order they are applied.

Theorem 2.1: Chasing with GARs is Church-Rosser. 2

Proof: We show the following: (1) any chasing sequence is finite and consists of at

most 4|G|2|Σ| steps, and (2) all chasing sequences terminate at the same result. A

similar proof was given in [FL19] for GEDs, an extension of GFDs with vertex id

equality.

(1) Any chasing sequence is finite. Given any terminal chasing sequence ρ = (Gc0, . . . ,

Gck) of graph G by a set Σ of GARs, we can verify that k≤ 4|G|2|Σ| as follows. Observe

that a chase step does one of the following: (a) at most one attribute x.A or one edge

(x, ι,y) is added to G; (b) one attribute is assigned a constant; or (c) two attributes are

set equal. Note that although there may exist multiple edges between any pair of nodes,

the labels of new edges are constrained by the GARs in Σ, and hence at most |Σ| edges

can be added to G, i.e., Gc0 . Then, we have that k ≤ 4|G|2|Σ| and hence ρ is finite.

(2) All chasing sequences terminate at the same result. We show this by contradiction.

Assume that there exist two terminal chasing sequences ρ1 = (Gc0 ,Gc1, . . . ,Gck) and

ρ2 = (G′c0
,G′c1

, . . . ,G′cl
) of G by Σ with different results, where Gc0 = G′c0

. Because

ρ1 and ρ2 have different results, we know that Gc0 is consistent and at least one of ρ1

and ρ2 is valid. Assume w.l.o.g. that ρ1 is valid and the chase graph Gck is consistent.

By analyzing the difference between ρ1 and ρ2, we show that ρ1 is not terminal, a

contradiction.

More specifically, since ρ1 and ρ2 have different results, there exist a literal l′ of

GAR ϕ j and a chase step G′c j
⇒(ϕ j,h) G′c j+1

in ρ2 such that G′c j+1
extends G′c j

w.r.t. the

instantiation h(l′); and h(l′) does not hold in Gck of ρ1. Here the instantiation h(l′)

replaces each variable x in l′ by h(x). However, one can verify that Gck ⇒(ϕ j,h) Gck+1

is a valid chase step expanding Gck w.r.t. h(l′), which contradicts the assumption that
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sequence ρ1 is terminal. Note that Gck+1 is the chase graph obtained from Gck and

h(l′).

To show that Gck⇒(ϕ j,h)Gck+1 is a chase step, we prove the following properties by

induction on the length of ρ2: (a) all attributes and edges in G′ci
(i ∈ [0, l]) are also in

Gck ; (b) if the prediction of the ML model M in G′ci
is true, then the prediction of M

is also true in Gck . If these hold, as h(l′) does not hold in Gck , and h is a match of the

pattern of ϕ j in Gck , we know that Gck⇒(ϕ j,h)Gck+1 is a chase step. Note that as op-

posed to the chase with GEDs [FL19], here we have to show that the prediction of ML

classifier remains stable during the chase; to this end, we need to exploit the property

of ML classifiers given in Section 2.1 (i.e., all entities and relations in the graph are

covered by the training data, and the embedding vectors of entities and relations will

not change after the graph is extended), which justifies our choice of ML classifiers.

Basic case. At first, we consider the case when i= 0. Since ρ2 starts with G′c0
=Gc0 , and

the prediction of M remains unchanged after training, properties (a) and (b) follow.

Inductive step. Assume that the properties hold for G′ci
(i≤ j). We next show that the

properties also hold for G′c j+1
. Suppose that the ( j+1)-th step of ρ2 is G′c j

⇒(ϕ,h) G′c j+1
,

where ϕ = Q[x̄](X → Y ) is a GAR in Σ, h is a match of Q in G′c j
such that h(x̄)|=X , l

is a literal in Y , and h(l) does not hold in G′c j
. By the inductive hypothesis, we know

that h is also a match of Q in Gck such that h(x̄) |= X . Then (a) the attributes and

edges in G′c j+1
must also be in Gck , since otherwise from the fact that h(x̄) |= X in

Gck we can apply ϕ to further extend Gck , which contradicts the assumption that ρ1 is

terminal. Moreover, (b) the values returned by the ML model M in Gck are the same

as those obtained in G′c j+1
, since M behaves like a Boolean function after training and

all embedding vectors are stable. 2

By Theorem 2.1, we define the result of chasing G by Σ as the result of any ter-

minal chasing sequence of G by Σ, denoted by Chase(G,Σ). If the sequence is valid,

Chase(G,Σ) has the form of Gc. We refer to edges and attributes that are in Gc but

not in G as deduced associations of G by Σ. Intuitively, they are missing links and

attributes. We denote by deduced(G,Σ) the set of all such deduced associations.

As shown in Section 2.1, we can use deduced associations to retrain M , improve

its accuracy and explain its prediction.
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2.3 Fundamental Problems

We next settle the satisfiability, implication, association deduction and incremental

deduction problems. Our main conclusion is that for GARs, these problems either

retain the same complexity as for GFDs, or are slightly harder than that for GFDs,

despite the increased expressivity of GARs. However, the proofs are rather different,

to cope with, e.g., unexpected conflicts introduced by ML classifiers.

Satisfiability. The satisfiability problem is as follows.

◦ Input: A set Σ of GARs.

◦ Question: Does there exist a graph G such that G |= Σ and for each GAR Q[x̄](X →
Y ) ∈ Σ, Q has a match in G?

Intuitively, this is to ensure that Σ is sensible and all GARs can be simultaneously ap-

plied without conflicts. For GFDs, the satisfiability problem is coNP-complete [FL19].

We next show that this problem is no harder for GARs.

Theorem 2.2: The satisfiability problem is coNP-complete. 2

Proof: We only need to show that the satisfiability problem is in coNP, since GFDs

are a special case of GARs, and the satisfiability problem for GFDs is already coNP-

hard [FL19]. To this end, we first establish a characterization for the satisfiability

problem. We then develop an NP algorithm to check whether a set Σ of GARs is not

satisfiable.

Characterization. Based on the chase, we establish the following characterization for

the satisfiability problem.

Lemma 2.1: A set Σ of GARs is satisfiable if and only if Chase(GΣ,Σ) is consistent,

where GΣ is defined as the disjoint union of patterns in Σ without any attributes, re-

ferred to as the canonical graph of Σ. 2

We verify Lemma 2.1 as follows.

(⇐) Assume that Gck = Chase(GΣ,Σ) and the chase graph Gck is consistent. In the

following, we construct a graph G satisfying Σ from Gck . Note that Gck may not be

a well-defined graph yet, since its nodes and edges may carry wildcards as labels. To

construct graph G, we need to instantiate such wildcards with some labels in Γ.

However, we cannot simply replace wildcards by distinct labels that do not appear

in Gck as in [FL19], since it may trigger more chase steps, and lead to conflict. As
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a simple example, consider Σ = {ϕ1,ϕ2}, where ϕ1 = Q[x,y]( /0→ x.A = 1), ϕ2 =

Q[x,y](M (x,y, ι)→ x.A = 2), and Q[x,y] is a pattern with two isolated nodes x and y

labeled wildcards. The proof of [FL19] transforms GΣ to a graph by instantiating the

labels of x and y with, say, a and b, respectively. However, the chances are that after

training, M (v,v′, ι) = true for any two nodes labeled a and b, respectively. Then we

end up with a graph G 6|= Σ. That is, the proof of [FL19] fails to build a small model

of Σ due to the presence of ML model M . Hence for GARs we have to take special

care to avoid conflicts introduced by the prediction of M . Moreover, the additions of

new edges introduced during the chase also complicates the consistency analysis of

Chase(GΣ,Σ). Note that none of these problems was encountered when dealing with

GEDs [FL19].

To resolve possible conflicts introduced by ML prediction, we can construct G from

Gck by replacing wildcards with distinct new labels that are outside the training set and

thus are not seen by M during training. As the embedding-based ML model M is

fixed after training and only labels in the training set can be embedded as vectors, M
actually cannot give predictions when facing those new labels outside the training set.

Hence, we enforce M to predict false when it takes unseen labels as inputs. Given this,

it is easy to verify that every pattern in Σ has a match in G by the definition of GΣ. It

remains to show that G |= Σ. To this end, we show that if G 6|= Σ, then Gck 6|= Σ, which

contradicts Theorem 2.1 and the semantics of GARs. It suffices to show the followings:

(†) for any GAR ϕ = Q[x̄](X → Y ) in Σ, any literal l in X or Y , and any match h of

Q in G, we have that (1) h is also a match of Q in Gck , (2) if h |= l in G, then h |= l

also holds in Gck and (3) if h 6|= l in G, then h 6|= l in Gck . If these hold, when G 6|= Σ

we can find a GAR ϕ = Q[x̄](X → Y ) and a match h of Q in Gck such that Gck 6|= Σ, a

contradiction.

We next show the properties above. For (1), since only wildcards in Q can match

wildcards in Gck and distinct new labels in G, it is easy to verify that h is a match of Q

in Gck . For (2) and (3), if l is x.A, ι(x,y), x.A = c, x.A = y.B, or ML literal M (x,y, ι)

when neither x nor y is labeled with wildcard, then the statement holds since G and

Gck only differ in those nodes or edges that are labeled with wildcard. When l is an

ML literal M (x,y, ι) and one of x and y is labeled wildcard, then M (x,y, ι) = false in

Gck since M is not trained with nodes labeled wildcards; meanwhile since we replace

wildcards with distinct new labels that are not used in the training of M , we also have

that M (x,y, ι) = false in G. Hence properties (2) and (3) follow.
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(⇒) Conversely, assume that Σ is satisfiable. We next show that for any terminal

chasing sequence ρ = (Gc0, . . . ,Gck) of GΣ by Σ, the result Gck is consistent.

(1) To prove this, we first identify a property of ρ. When Σ is satisfiable, there exists

a graph G = (V,E,L,FA) as shown in the proof above such that each pattern Q of

GAR ϕ in Σ has a match hϕ in G. Then we define a mapping h from graph GΣ to G

by combining all such hϕ. We can show that for each chase step Gci ⇒(ϕi,hi) Gci+1

(i ∈ [0,k−1]) in ρ that extends Gci w.r.t. the instantiation of a literal l, h(x̄) |= l holds

in G. This can be proved by induction on chase steps. Since G |= Σ, we can inductively

include all instantiations in Gck using h [FL19].

(2) Using the property above, we can show that Gck is consistent. Assume by contra-

diction that Gck is not consistent. Then there exist a GAR ϕ = Q[x̄](X → Y ) in Σ and

a match h′ of Q in GΣ such that Gck−1 ⇒(ϕ,h′) Gck and Gck is inconsistent. However,

based on the property proven in (1), one can verify that all attribute values of Gck are

also in G. Then G is also inconsistent, a contradiction.

Upper bound. We now develop an NP algorithm to decide, given a set Σ of GARs,

whether Σ is not satisfiable, as follows.

(1) Construct the canonical graph GΣ, and guess a sequence of steps Gc0 ⇒(ϕ1,h1)

Gc1 ⇒ ··· ⇒ Gck−1 ⇒(ϕk,hk) Gck of GΣ = Gc0 by Σ such that k ≤ 4|G|2|Σ|.
(2) For each i∈[1,k], check whether Gci−1 ⇒(ϕi,hi) Gci is a chase step; if not, reject

the guess; otherwise, continue.

(3) For each i ∈ [1,k], check whether Gci−1 ⇒(ϕi,hi) Gci is invalid; if any of these is

invalid, return true.

The correctness of the algorithm follows from Lemma 2.1. For the complexity, step

(1) is in PTIME by the definition of canonical graphs; steps (2) and (3) are in PTIME

by the fact that |Gci−1|≤5|G|2|Σ| and |Gci|≤5|G|2|Σ|. Thus the algorithm is in NP, and

the satisfiability problem is in coNP. 2

Implication. A set Σ of GARs implies a GAR ϕ, denoted by Σ |= ϕ, if for all graphs G,

if G |= Σ then G |= ϕ. That is, ϕ is a logical consequence of Σ and hence, is redundant.

The implication problem is stated as follows.

◦ Input: A set Σ of GARs and a GAR ϕ.

◦ Question: Σ |= ϕ?

The need for studying this problem is evident, to remove redundant rules and hence

speed up deduction process.
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The good news is that the implication analysis of GARs has the same complexity

as its counterpart for GFDs [FL19], as opposed to TGDs [AHV95]. This is because (1)

chasing with GARs does not generate new nodes; (2) while GARs enforce the existence

of edges and attributes, the new additions are confined to those specified in GARs only.

Taken together, these ensure that chasing with GARs will end up with a finite graph. In

contrast, chasing with TGDs [AHV95, FLTZ19, CP12] may lead to infinite graphs and

hence may not terminate.

Theorem 2.3: The implication problem is NP-complete. 2

Proof: Similar to the proof of the satisfiability problem, we only need to show that

the implication problem for GARs is in NP, since the implication problem for GFDs is

NP-hard [FL19]. To this end, we first establish a characterization for the implication

problem for GARs, and then provide an NP algorithm for it.

Lemma 2.2: For a set Σ of GARs and a GAR ϕ=Q[x̄](X→Y ), Σ|=ϕ if and only if

either X is inconsistent, or all literals in Y can be inferred from Chase(GQ,Σ), i.e., all

instantiations of literals from Y w.r.t. the one-to-one mapping between Q and GQ hold

in Chase(GQ,Σ). Here GQ denotes the canonical graph of the GAR ϕ extended with

literals in X. 2

Proof of Lemma 2.2. We show the correctness of Lemma 2.2.

(⇐) Assume that X is inconsistent or all literals in Y can be inferred from the result

Chase(GQ,Σ). Consider the following two cases: (a) Chase(GQ,Σ) is inconsistent; and

(b) Chase(GQ,Σ) is consistent.

Case (a). We have that X is not consistent, or for any graph G such that Q has a match

h in G satisfying h(x̄) |= X , G 6|= Σ holds. This can be verified along the same lines as

the proof of Lemma 2.1 given above. Then Σ |= ϕ follows.

Case (b). Let Gck = Chase(GQ,Σ). Then we know that for any graph G such that

G |= Σ and for any match h of Q in G with h(x̄) |= X , h(x̄) |=Y , i.e., the attribute values

in h(x̄) satisfy all literals in Y ; this is because all literals of Y can be inferred from Gck .

Thus Σ |= ϕ.

(⇒) Suppose that Σ |= ϕ. Let Gck = Chase(GQ,Σ). Consider the two cases above. (a)

When Chase(GQ,Σ) is inconsistent, we can show that X is inconsistent or all literals

in Y can be inferred from Gck since Gck is inconsistent. (b) When Chase(GQ,Σ) is
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consistent, assume by contradiction that there exists a literal l in Y such that l cannot

be inferred from Gck . Using l and Gck we can construct a graph G such that G |= Σ

but G 6|= ϕ. That is, Σ 6|= ϕ, a contradiction. The construction of G is similar to the

one given in the proof of Theorem 2.2, i.e., the wildcards are replaced by distinct new

labels that are outside the training set of M .

Algorithm. Based on Lemma 2.2, we give an NP algorithm for the implication prob-

lem. Given a set Σ of GARs and GAR ϕ, it checks whether Σ |= ϕ as follows.

(1) Construct the canonical graph GQ and guess a sequence of steps GQ=Gc0⇒(ϕ1,h1)

Gc1 ⇒ ···Gck−1 ⇒(ϕk,hk) Gck of GQ by Σ such that k ≤ 4|Σ||ϕ|2.

(2) For each i∈[1,k], check whether Gci−1 ⇒(ϕi,hi) Gci is a chase step; if not, reject

the guess; otherwise, continue.

(3) For each i ∈ [1,k], check whether Gci−1 ⇒(ϕi,hi) Gci is invalid; if any of these

chase steps is invalid, return true; otherwise, continue.

(4) Check whether all literals of Y can be inferred from Gck ; if so, return true; oth-

erwise, reject the guess.

The correctness of the algorithm follows from Lemma 2.2. For its complexity, step

(1) is in PTIME by the definition of GQ; steps (2)-(4) are all in PTIME by the fact

that |Gci−1| ≤ 5|ϕ|2|Σ| and |Gci| ≤ 5|ϕ|2|Σ|. Thus, the algorithm is in NP, and so is the

implication problem for GARs. 2

Deduction. To simplify the discussion, we focus on deducing missing attributes and

missing links, although the techniques developed in this paper can be readily used to

deduce all associations, including values associated to attributes. That is, GARs can

deduce missing links/attributes and correct inconsistencies in the same framework.

Consider a graph G = (V,E,L,FA). For a node v ∈V and an attribute A ∈ ϒ, if v.A

does not exist in G, we refer to v.A as a candidate attribute of v in G. Similarly, for

nodes v1,v2 ∈ V and label ι ∈ Γ, if (v1, ι,v2) is not in G, we refer to it as a candidate

edge of G. We refer to such v.A and (v1, ι,v2) as candidate associations of G, denoted

by α.

The association deduction problem is stated as follows.

◦ Input: Graph G, GARs Σ, and a candidate association α.

◦ Question: Is α a deduced association of G by Σ, i.e., whether α ∈ deduced(G,Σ)

(see Theorem 2.1 for the definition of deduced(G,Σ))?

This problem is to settle the complexity of computing deduced(G,Σ), the set of all

links and attributes that are missing from graph G and are deduced by the set Σ of
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Figure 2.2: Graphs and patterns in Theorem 2.4

GARs.

A similar problem is studied in [FLTZ19], to deduce value associations v.A = c or

v.A= v′.B using GFDs [FL19]. That problem is known NP-complete [FLTZ19]. Below

we show that deducing associations with GARs is no harder.

Theorem 2.4: The association deduction problem for GARs is NP-complete. 2

Proof: We show that the association deduction problem is NP-complete.

Upper bound. Given a graph G, a set Σ of GARs, and a candidate association α of G,

we design the following NP algorithm to verify whether α ∈ deduced(G,Σ).

(1) Guess a chasing sequence Gc0, . . . , Gck such that Gc0 = G and k ≤ 4|G|2|Σ|.
(2) Check whether α exists in Gck ; if so, return true.

The correctness of the algorithm follows from Theorem 2.1. For the complexity,

step (2) is in PTIME, since |Gck | ≤ 4|G|2|Σ| (see the proof of Theorem 2.1). There-

fore, the algorithm is in NP, and so is the association deduction problem. Although

the chase is Church-Rosser, we cannot just compute one chase branch for the proof.

This is because each chase step is in NP since each step requires graph homomorphism

to apply a GAR. Thus, obtaining a sequence of chase steps with limited length is in

PNP, and we cannot use this one chase branch to show that the association deduction

problem is in NP.

Lower bound. We show that the association deduction problem is NP-hard by reduc-

tion from the 3-coloring problem, which is known to be NP-complete [GJ79]. The

3-coloring problem is to decide, given an undirected graph G1 = (V1,E1), whether

there exists a proper 3-coloring µ of nodes in V1 such that for each edge (v1,v2) ∈ E1,

µ(v1) 6= µ(v2).

Given undirected G1, we construct a graph G, a set Σ of GARs, and a candidate

association α such that α ∈ deduced(G,Σ) if and only if G1 has a property 3-coloring.

Intuitively, we will use G to encode proper 3-coloring, Σ to encode G1, and α to check
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whether G1 has a proper 3-coloring.

(1) Graph G=(V,E,L,FA) is shown in Fig. 2.2, in which

(a) V = {v0,v1,v2,v3}, where v1, v2 and v3 represent three different colors, and v0 is

a specific node to represent the candidate association, which will be clear soon;

(b) E = {(vi,0,v j),(v j,0,vi) | i, j ∈ [1,3]∧ i 6= j}∪{(vi,0,v0) | i ∈ [1,3]}, i.e., v1,v2

and v3 form a clique, each node has an edge leading to v0 except itself, and all

edges are labeled the unique ‘0’;

(c) the labeling function is defined as L(v0)= o, L(v1)= r, L(v2)= g, and L(v3)= b;

and

(d) FA is empty, i.e., G does not have any attribute.

(2) The set Σ consists of only one GAR ϕ = Q[x̄](X →Y ), which is defined as follows.

(a) Pattern Q[x̄]=(VQ,EQ,LQ,µ) is shown in Fig. 2.2, where

• VQ =V1∪{v0}, i.e., Q consists of all nodes in G1 and an extra node v0;

• EQ = {(u,0,v),(v,0,u) | (u,v) ∈ E1} ∪ {(v,v0) | v ∈ V1}, i.e., each undi-

rected edge (u,v) in G1 is represented by two directed edges labeled 0, and

each node in G1 has an edge directing to v0;

• all pattern nodes are labeled wildcard, i.e., LQ(v) =‘ ’ for all v ∈VQ; and

• for each pattern node vi ∈VQ, µ(xi) = vi.

(b) The literals in X and Y are such defined that X is empty-set, and Y = (x0.A), i.e.,

the GAR ϕ deduces the existence of an attribute x0.A.

(3) The candidate association α is defined as the A-attribute of node v0 in G, i.e., α is

v0.A.

It is easy to verify that α∈ deduced(G,Σ) if and only if G1 has a proper 3-coloring,

by checking the existence of the matches of pattern Q in graph G. 2

Incremental deduction. We consider batch updates ∆G to graph G, which are se-

quences of unit updates:

◦ edge insertion (insert e), possibly with new nodes, and

◦ edge deletion (delete e), along with endpoints of degree 0.

These can simulate modifications of e.g., edge labels.

We use G⊕∆G to denote the graph G updated by ∆G.

We use deduced∆(G,∆G,Σ) to denote the set of changes to the set deduced(G,Σ) of

associations in response to updates ∆G, i.e., associations that are either in deduced(G,Σ)
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but not in deduced(G⊕∆G,Σ), or vice versa.

The incremental deduction problem is stated as follows.

◦ Input: A graph G, a set Σ of GARs, batch updates ∆G to G, and a candidate associ-

ation α of G or G⊕∆G.

◦ Question: Is α ∈ deduced∆(G,∆G,Σ)?

The need for studying this problem is evident. It is costly to compute deduced(G⊕
∆G,Σ) starting from scratch, by Theorem 2.4. Hence we want to incrementally com-

pute the changes to deduced(G,Σ) such that deduced(G⊕∆G,Σ) = deduced(G,Σ)⊕
deduced∆(G,∆G,Σ) by making maximum reuse of deduced(G,Σ). When ∆G is small,

often so is deduced∆(G,∆G,Σ), which is less costly to compute.

A related problem was studied for GFDs, to decide whether a match h(x̄) is a vi-

olation of GFDs in G⊕∆G but not in G, or vice versa [FLLT20]. It is shown coNP-

complete. But the incremental deduction for GARs is slightly harder.

Theorem 2.5: The incremental deduction problem is DP-complete for GARs, and

remains DP-hard when either graph G or updates ∆G to G has a constant size. 2

The increased complexity arises from the following. Given a match h(x̄) in graph G

(resp. G⊕∆G), we can check if h(x̄) is an old (resp. new) violation of GFDs in PTIME

by directly inspecting h(x̄) in G⊕∆G (resp. G). In contrast, for an association α in

deduced(G,Σ) (resp. deduced(G⊕∆G,Σ)) with GARs, we need to inspect the entire

chasing sequence to verify that α is not in deduced(G⊕∆G,Σ) (resp. deduced(G,Σ)),

which requires an NP step and a coNP step.

Proof: We first provide a DP algorithm for the incremental deduction problem, and

then show that the problem is DP-hard.

Upper bound. Given a graph G, a set Σ of GARs, a batch update ∆G, and a candidate

association α of G or G⊕∆G, we check whether α ∈ deduced∆(G,∆G,Σ) as follows.

(1) Check whether α ∈ deduced(G,Σ) or α ∈ deduced(G⊕∆G,Σ); if not, return false;

otherwise, continue.

(2) Check whether α 6∈ deduced(G,Σ) or α 6∈ deduced(G⊕∆G,Σ); if not, return false;

otherwise, return true.
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The correctness is guaranteed by the following.

α ∈ deduced∆(G,∆G,Σ)

⇔α ∈
(
deduced(G,Σ)\deduced(G⊕∆G,Σ)

)
∨α ∈

(
deduced(G⊕∆G,Σ)\deduced(G,Σ)

)
(2.1)

⇔α ∈
(
deduced(G,Σ)∪deduced(G⊕∆G,Σ)

)
\(

deduced(G,Σ)∩deduced(G⊕∆G,Σ)
)

(2.2)

Equation (2.1) is from the definition of deduced∆(G,∆G,Σ), and Equation (2.2) follows

from a basic property of set theory, i.e., (A \B)∪ (B \A) = (A∪B) \ (A∩B) = (A∪
B)∩ (A∪B), where A and B are two sets.

For the complexity, we can verify that step (1) is in NP and step (2) is in coNP by

Theorem 2.4, and the fact that NP is closed under union and intersection. Therefore,

the algorithm is in DP; so is the incremental deduction problem.

Lower bound. We show that the problem is DP-hard by reduction from the critical

3-colorability problem, which is DP-complete [Pap03]. The critical 3-colorability

problem is to decide, given an undirected graph G1 = (V1,E1), whether G1 is not 3-

colorable, but deleting any vertex makes G1 3-colorable (see proof of Theorem 2.4 for

3-colorability).

Given undirected G1, we construct a (directed) graph G, a set Σ of GARs, a batch

update ∆G, and a candidate association α such that α∈deduced∆(G,∆G,Σ) if and only

if G1 is not 3-colorable, but deleting any vertex makes G1 3-colorable. Intuitively, we

will use G to encode all proper 3-coloring as in the proof of Theorem 2.4, GARs in

Σ to encode G1 and its node deletions, ∆G to trigger the verification of 3-coloring,

and α∈deduced∆(G,∆G,Σ) to encode the fact that G1 changes from non-3-colorable

to 3-colorable.

(1) The graph G is identical to its counterpart graph that is constructed in the lower

bound proof of Theorem 2.4, which represents the proper 3-coloring.

(2) The set Σ consists of two groups of GARs. The first group is to encode the topolog-

ical structure of G1 and subgraphs of G1 after node deletions, while the second group

is to ensure that deleting any vertex makes G1 become 3-colorable.

(a) The first group consists of |V1|+1 GARs, each of which is in the form of ϕi=Qi[x̄]

( /0→ x0.Ai) (i∈[0, |V1|]). Here Q0[x̄] is built from G1 along the same lines as in

the lower bound proof of Theorem 2.4 (assuming V1 = {v1, . . . ,v|V1|}), which
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represents the structure of G1. Each other pattern Qi[x̄] (i ∈ [1, |V1|]) is derived

from Q0 by (i) removing one pattern node vi from Q0, and (ii) adding a new

edge (v0,τ,v′0), where v0 is the extra pattern node as shown in Fig. 2.2 and v′0 is

another newly added node carrying label ‘τ’. Observe that there exists no node

labeled ‘τ’ in G. Therefore, only ϕ0 may be applied on G, while none of the pat-

terns in GARs ϕi with i ∈ [1, |V1|] has a match in G. This can be used to deduce

the candidate association.

(b) The second group consists of only one GAR ϕ|V1|+1 = Q′[x](x.A1∧ . . .∧x.A|V1|→
x.A0), where Q′ includes a single pattern node x labeled ‘o’. Intuitively, it states

that if attributes A1, . . . ,A|V1| exist at node x, then x also has attribute A0. Observe

that G does not contain any attribute, and thus ϕ|V1|+1 cannot be applied on G.

(3) The update ∆G only has an insertion of edge (v0,τ,v2), where v2 is a new node

labeled ‘τ’. Note that after this update, all GARs in Σ may be applied on G⊕∆G.

(4) The candidate association α is defined as an attribute literal v0.A, where v0 is the

only node without outgoing edges in G. Observe the following with regard to α.

(a) Since ϕ0 does not have edges labeled τ, either it can be applied on both G and

updated G⊕∆G, or ϕ0 cannot be applied on any of the two graphs. In addi-

tion, if G1 is 3-colorable, then attribute v0.A exists in both deduced(G,Σ) and

deduced(G⊕∆G,Σ) by ϕ0, and hence α 6∈ deduced∆(G,∆G,Σ). On the contrary,

G1 is not 3-colorable if α ∈ deduced∆(G,∆G,Σ).

(b) When G1 is not 3-colorable, the only way to ensure that α∈ deduced∆(G,∆G,Σ)

is to enforce ϕ|V1|+1. However, all attributes x0.A1, . . . ,x0.A|V1| must exist in

deduced(G⊕∆G,Σ) to make ϕ|V1|+1 applicable. It means that all GARs ϕi with

i∈ [1, |V1|] must be applied on G⊕∆G, i.e., each corresponding to that undirected

graph of Qi (i ∈ [1, |V1|]) is 3-colorable. That is, deleting one node makes G1

become 3-colorable.

Based on the construction and observation above, we can verify that α ∈ deduced∆

(G,∆G,Σ) if and only if G is not 3-colorable, but deleting any vertex makes G 3-

colorable. 2
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2.4 Parallel Deduction Algorithm

In this section we show how to deduce associations with GARs in parallel by using

the computation model of GRAPE [FYX+18]. We first review the GRAPE model

(Section 2.4.1), and then provide algorithms for parallel association deduction (Sec-

tion 2.4.2) and incremental deduction (Section 2.4.3).

2.4.1 Graph Centric Parallelization

Employing a master P0 and a set of n workers (processors) P1, . . . ,Pn, GRAPE operates

on a graph G that is fragmented into (F1, . . . ,Fn) by a partitioner picked by users. For

i ∈ [1,n], each worker Pi maintains a fragment Fi in G.

PIE program. To answer a class Q of queries on graphs, GRAPE takes a PIE program

(PEval, IncEval, Assemble) that consists of three (existing) sequential algorithms as

follows.

◦ PEval is a sequential algorithm for Q that given query Q ∈ Q and graph G, com-

putes answers Q(G) to Q in G.

◦ IncEval is a sequential incremental algorithm for Q that given Q, G, Q(G) and

updates M to G, computes changes ∆O to Q(G) such that Q(G⊕M) = Q(G)⊕∆O.

◦ Assemble collects partial answers computed locally at each worker by PEval and

IncEval, and combines them into a complete answer; it is typically simple.

The only additions to existing sequential algorithms are the following. (1) PEval

declares a set x̄i of update parameters for each fragment Fi, which are status vari-

ables of “border nodes” of Fi, e.g., nodes having edges from or to another fragment Fj

(assuming edge-cut partition). (2) PEval also defines an aggregate function faggr to re-

solve conflicts, when the status variable of a node is given multiple values by different

workers. These parameters are shared with IncEval.

Parallel computation. Given a query Q∈Q , GRAPE posts the same Q to all workers.

Then a PIE program is executed in supersteps under the BSP model [Val90], as follows.

(1) Partial evaluation (PEval). In the first superstep, PEval computes Q(Fi) at each

worker Pi on Fi locally, in parallel for all i ∈ [1,n]. Then, each worker generates a

message consisting of update parameters x̄i and sends it to master P0.

(2) Incremental computation (IncEval). In the following supersteps, the partial answers

Q(Fi)’s are iteratively updated by IncEval. More specifically, (a) master P0 applies faggr
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to messages from the last superstep, which resolves conflicts. Then these aggregated

values are routed to relevant workers. (b) Upon receiving the message Mi (contents in

Mi depend on the graph computation algorithm [FYX+18]), worker Pi incrementally

computes Q(Fi⊕Mi) with IncEval in parallel for i ∈ [1,n], by treating Mi as updates.

At the end of each superstep, worker Pi sends a message to P0 that consists of changes

to the update parameters x̄i of Fi just like in PEval.

(3) Termination. The process proceeds until it reaches a fixpoint, i.e., no more changes

to update parameters. Assemble is then invoked to combine all partial answers into

Q(G).

PIE programs guarantee to converge at correct answers under a monotone condition

as long as the sequential PEval, IncEval and Assemble are correct [FYX+18].

2.4.2 Parallel Association Deduction

We next provide a PIE program, denoted by PDeduce. Given a fragmented graph G and

a set Σ of GARs, it computes deduced(G,Σ). We give its PEval, IncEval and Assemble,

which are parallelized as described in Section 2.4.1.

Algorithm 2.1: PEval for program PDeduce

Input: Fragment Fi = (Vi,Ei,Li,FAi) and a set Σ of GARs.

Output: Set Q(Fi) of missing links and attributes of Fi by Σ

Declaration: for each node v ∈Vi, two variables v.link and v.attr;

and an additional variable Fi.H;

1 Ψ← Σ; CV ←Vi; Fi.H← /0;

2 repeat

3 ∆Fc← /0;

foreach GAR ϕ = Q[x̄](X → Y ) ∈Ψ do

4 extract a set T of partial matches h(x̄p) for Q

s.t. X (resp. Y ) can be (resp. cannot be) satisfied;

5 (Ac,Hp)← ExpandAssoc(ϕ,T ,CV ,Fi);

6 ∆Fc← ∆Fc∪Ac; Fi.H← Fi.H ∪Hp;

7 update Fi with ∆Fc;

8 adjust CV using nodes of ∆Fc; Ψ← SuccGAR(Σ,∆Fc);

until ∆Fc = /0;

9 Q(Fi) stores the deduced associations;

Challenges. As indicated in Section 2.2, a major task for deducing associations is
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to compute homomorphic mappings. Most subgraph matching methods preprocess

graphs to build static indices, and enumerate matches by accessing candidates in the

indices. However, these do not work in our setting for the following reasons. (1)

During the chase, graphs are mutated and new matches are introduced at runtime,

as opposed to static graphs and indices. (2) Prior methods often take a single graph

pattern as input and find its matches. In contrast, the chase handles a set of GARs, and

PDeduce has to decide which GARs to use and in what order the GARs are applied. (3)

Even for a single pattern in a GAR, PDeduce needs to identify only a subset of matches

that make missing associations, not all the matches.

In light of these, we propose to (1) compute matches only for patterns from active

GARs, in an incremental manner; (2) use a dynamic matching order and simple indices

that are dynamically maintained; and (3) employ an association-guided strategy to

prune matches. These help us avoid checking useless matches that do not contribute to

deduced(G,Σ).

To simplify the discussion, we assume that graphs are partitioned via edge-cut and

all the patterns are connected.

PEval. PEval of PDeduce is given in Algorithm 2.1. It takes a set Σ of GARs and a

fragment Fi of graph G as input, and deduces a set Q(Fi) of associations pertaining to Fi

with Σ. It employs two status variables v.link and v.attr for each node v in Fi, recording

v’s adjacent edges and attribute values, respectively. It also uses a “global” status

variable Fi.H to store partial matches of the patterns in Σ that involve nodes residing at

other workers, where a partial match maps only a subset of pattern nodes. The update

parameters of Fi include (a) Fi.H to pass partial matches to other workers, and (b) v.link

and v.attr of border nodes v to reconcile values, where border nodes are those that are

within maxQ∈Σ|Q| hops of the nodes on edges crossing different fragments.

Algorithm PEval iteratively applies active GARs in Σ, guided by active nodes in

fragment Fi (lines 2-8). Here a GAR (resp. node) is active if it can be enforced (resp.

involves in the mapping) in a chase step for deducing new associations in the current

iteration. The active GARs and nodes are collected in sets Ψ and CV , initially Σ and Vi,

respectively (line 1). For each active GAR, it first extracts a set T of partial matches

under certain conditions (line 4), and then completes them and deduces associations Ac

via procedure ExpandAssoc (line 5). At the end of each iteration, it updates Fi with the

new associations ∆FC that are accumulated during this iteration (line 7), and adjusts Ψ

and CV for the next iteration (line 8). The iterations proceed until no new associations
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Figure 2.3: Example graph and pattern

can be deduced. The associations deduced in the process are stored in Q(Fi).

PEval employs the following new techniques.

Indices. We maintain (a) an index on each pattern node label ι (except wildcard) that

occurs in Σ to fetch nodes labeled with ι in Fi; (b) an index on triples 〈v, ι,η〉 to fetch

edges incident to node v that are labeled ι and link to nodes labeled η. The index on

triples is dynamically updated when newly deduced edges are added to fragment Fi.

Match extraction. For an active GAR Q[x̄](X→Y ), PEval maps pattern nodes x̄p (x̄p ⊆
x̄) in literals X and Y to nodes in Fi, to extract partial matches h(x̄p) (line 4), so that

h(x̄p) can (resp. cannot) satisfy X (resp. Y ). This is conducted by using the index on

pattern node labels and choosing nodes within |Q| hops of the active nodes CV , by the

locality of pattern matching. One can verify that only partial matches of this form can

contribute to new associations.

Match completion. Procedure ExpandAssoc completes partial match h(x̄p) by itera-

tively mapping the remaining x̄\ x̄p to nodes in Fi, following a dynamic candidate-size

order [HKG+19] (line 5). That is, each time it maps a pattern node u that is connected

to one of the matched pattern nodes, and currently has the minimum number of can-

didates. The candidates are inspected using the index on relevant triples, and each

extended partial match should not satisfy X → Y .

Once the partial h(x̄p) is extended to a complete match h(x̄) and h(x̄) includes active

nodes of CV , it deduces relevant associations directly and prunes all subsequent exten-

sions of h(x̄p) when pattern nodes in Y are already mapped in h(x̄p) (i.e.,association-

guided pruning). ExpandAssoc also returns a set Hp of partial matches that involve

border nodes and hence need to be expanded at other workers. The status variable

Fi.H is extended with partial matches Hp (line 6).

Active GARs and nodes. After each iteration, we revise CV with those nodes involved

in the newly deduced associations ∆Fc and derive active GARs by procedure SuccGAR
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for the next iteration (line 8). Extending templates that generalize nodes to their la-

bels [FLTZ19], SuccGAR picks such active GARs that have the same templates in their

preconditions (or pattern edges) as that of the associations in ∆Fc. For instance, a GAR

becomes active if it has a literal x.A= y.B in its X and there is a new association v.A= 1

with L(v) = LQ(x).

Example 2.6: A fragmented graph G is shown in Fig. 2.3(a) (excluding dotted edge),

where v1 to v8 denote persons, u1 to u2 are classes, u3 to u5 are products, w1 denotes

a shop and w2 to w3 are styles; labels b1 to b10 are related to, type, deal, sell, friend,

follow, click, accept, fashion and like, respectively.

Consider a set Σ of GARs including ϕ1 of Example 2.3 and ϕ7=Q7[x̄]( /0→like(x,y)),

where Q7 is depicted in Fig. 2.3(b).

Given G and Σ, a partial match h′1 of Q1 from ϕ1 is extracted by PEval at worker P1

in the first iteration, where x 7→v1, w7→w1, y1 7→u4, y2 7→u3, z1 7→u2 and z2 7→u1. Since h′1
is already a complete match and h′1 6|=Y1, it adds association (v1, like,u3) at P1. The other

partial matches with x 7→v1 and y2 7→u3 are dropped by association-guided pruning.

Then ϕ7 is treated as an active GAR for the second iteration since Q7 has a pattern

edge (x′, like,y) sharing the same template with the newly deduced association. PEval

next extracts a partial match h′2 for Q7 that maps x′ (resp. y) to active node v1 (resp. u3).

When completing h′2 by procedure ExpandAssoc, z of Q7 is mapped ahead of x since

z has only one candidate w2 whereas x has four (v2, v3, v5, and v7). In fact, only a

singe complete match of Q7 is finally expanded from h′2 and it yields a new association

(v5, like,u3).

PEval also finds a partial match h′3 of Q7 in the first iteration at worker P1. It maps

x to v8, x′ to v4 and y to u5. Since h′3 involves v8 and u5 that reside at worker P2

(crossing-edges are maintained by both workers), the partial match h′3 will be sent to

P2 for further completion. 2

At the end of PEval, master P0 collects the status variables of border nodes v from

all fragments. It applies aggregate function faggr to reconcile v.link and v.attr, and

routes the aggregation and partial matches to relevant workers as messages. The ag-

gregate function faggr completes two tasks after receiving the messages. First, faggr
merges repetitive predicates so that only one of the repetitive predicates is enforced.

This saves computation cost by skipping redundant operations. Second, faggr parses

the partial matches encoded in the messages and sends the match information to PEval.

Then PEval can complete the match in the next round. If conflicts emerge in attributes
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v.attr of any node, P0 terminates the process immediately with ⊥.

Algorithm 2.2: IncEval for program PDeduce

Input: Fragment Fi=(Vi,Ei,Li,FAi), GARs Σ, message Mi.

Output: Missing associations Q(Fi⊕Mi) deduced.

Declaration: Message Mi = {v.A,(v, ι,v′) | v,v′ ∈Vi, v.A and

(v, ι,v′) changed}∪{h(x̄p) | h(x̄p) is a partial match

involving nodes in Vi}
1 collect nodes (resp. changes) of Mi into CV (resp. ∆Fc);

2 Ψ← SuccGAR(Σ,∆Fc)∪{ϕ | ∃h(x̄p) ∈Mi,h(x̄p) is

a partial match of the pattern of ϕ}; Fi.H← /0;

3 update Fi with ∆Fc;

4 apply active Ψ on Fi iteratively to deduce new associations;

5 Q(Fi⊕Mi) stores the deduced associations that are

accumulated over supersteps;

IncEval. As shown in Algorithm 2.2, IncEval of PDeduce also deduces new associa-

tions incrementally. At worker Pi, it is triggered by message Mi that includes all the

changes to the status variables of the border nodes in fragment Fi, and a set of partial

matches to be further expanded at Fi.

Unlike PEval that initially makes the set Σ of GARs and the set Vi of nodes in Fi

active, IncEval determines initial active nodes and GARs according to the changes and

partial matches passed over in message Mi (lines 1-2). It treats the received changes

directly as ∆Fc and updates fragment Fi with ∆Fc (line 3). After that, IncEval applies

active GARs iteratively to deduce new associations pertaining to Fi (line 4), along the

same lines as that in PEval, i.e., lines 2-8 of Algorithm 2.1. The difference is that it

also considers the partial matches in Mi, which are expanded just like extracted partial

matches. IncEval stores the deduced associations that are accumulated over iterations

as partial result Q(Fi⊕Mi).

At the end of IncEval, changes to the status variables of border nodes in Fi are sent

to P0. Master P0 then aggregates the changes and sends messages just like in PEval.

Example 2.7: Continuing with Example 2.6, upon receiving partial match h′3 at

worker P2, IncEval completes it by mapping the only remaining pattern node z of Q7

to w3. It then yields a missing link (v8, like,u5) deduced as a new association. This is

a local edge for worker P2 and it will be used to update both the fragments and indices

at P2. 2
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Assemble. When no more associations can be deduced, Assemble takes the union

of partial results Q(Fi⊕Mi) from all workers Pi, i.e., associations deduced from all

fragments.

Correctness. Although PEval and IncEval compute associations simultaneously on

multiple workers, the correctness of this parallel association deduction method is war-

ranted.

Proposition 6: PIE program PDeduce correctly computes the result deduced(G,Σ) of

chasing G by Σ in parallel.

2

Proof: The result returned by PDeduce is in deduced(G,Σ). This follows from the

definition of the chase, since no associations are deduced by PDeduce until partial

matches become complete and X → Y is not satisfied (lines 4-5 in PEval and line 4

in IncEval). Conversely, by induction on the chase steps, it can be verified that all

associations in deduced(G,Σ) are computed by PDeduce as PEval and IncEval inspect

all candidate (partial) matches that can contribute to deduction of new associations

(lines 5 and 4, respectively). 2

2.4.3 Incremental Deduction of Associations

As remarked in Section 2.3, real-life graphs frequently change and association deduc-

tion is costly over large-scale graphs. These highlight the need for incremental associ-

ation deduction, e.g., in updating the the recommendation of products in e-commerce.

We next develop a parallel algorithm for incremental deduction, denoted by IncDeduce.

Challenges. Essential to incremental deduction is analyzing different impacts of the

inserted and deleted edges on deduced(G,Σ). Inserted edges could trigger the genera-

tion of new associations, while deleted ones make some old associations invalid, which

hence have to be removed.

We say that a deduced association α′ is affected by an edge e in graph G (resp. an-

other deduced association α) if e (resp. α) is involved in the homomorphic mapping

or precondition checking of a chase step in the chasing sequence that leads to the de-

duction of α′. Then an invalid association must be affected by some deleted edges e.

However, the opposite does not always hold. That is, there exist deduced associations

that are affected by edges e in ∆G but remain valid after updating graphs, since the

associations can be deduced by other chasing sequences without the need of e.
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Instead of first removing all the associations affected by deleted edges and then

recovering those valid ones, algorithm IncDeduce reduces redundant computation by

checking each affected association as soon as it is encountered and stopping further

propagation from the valid ones to others.

Auxiliary structures. In addition to the indices of PDeduce, for each edge e (resp. de-

duced association α), IncDeduce maintains a set d(e) (resp. d(α)) to store associations

α′ if the last chase steps for deducing α′ include e (resp. α) in their mappings or precon-

dition checking. Here e (resp. α) is also in d(e) (resp. d(α)). Note that these structures

can be readily obtained when running PDeduce; their sizes are polynomial in |G| and

|Σ| (the proof of Theorem 2.1).

Algorithm 2.3: Algorithm IncDeduce
Input: Fragmented chase graph Gc with auxiliary information,

a set Σ of GARs and batch update ∆G = (∆G+,∆G−).

Output: The changes deduced∆(G,∆G,Σ).

1 update Gc with ∆G; deduced+
∆

:= /0;

2 deduced−
∆
← DisAssoc−(Gc,Σ,∆G−);

3 update Gc with deduced−
∆

;

4 Ac← RefineAssoc(Gc,Σ,∆G);

5 refine deduced+
∆

and deduced−
∆

by Ac;

6 update Gc;

7 return deduced∆(G,∆G,Σ) = (deduced+
∆
,deduced−

∆
);

Algorithm. As shown in Algorithm. 2.3, IncDeduce takes as input Σ, ∆G and more-

over, the chase graph Gc and the corresponding auxiliary structures that are cached

after the batch execution of PDeduce and are distributed across workers. Denote by

∆G+ and ∆G− the inserted and deleted edges in ∆G, respectively. IncDeduce computes

the changes deduced∆(G,∆G,Σ) to the old associations deduced.

After adjusting Gc with update ∆G (line 1), IncDeduce computes the changes in two

steps. (1) It first invokes procedure DisAssoc− to find a set deduced−
∆

of associations

that newly become invalid in response to deletions ∆G− (line 2). (2) It then refines

deduced+
∆

, i.e., newly introduced associations due to insertions, and deduced−
∆

by using

the associations Ac derived via procedure RefineAssoc; it updates the corresponding

parts in Gc (lines 4-6). The pair (deduced+
∆
,deduced−

∆
) is returned as the output (line

7).

We next show that each of the two steps can be implemented as a PIE program by

revising PDeduce.
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(1) Catching invalid associations. DisAssoc− identifies invalid associations in response

to deletions ∆G−, by extending PDeduce. In contrast to deducing new associations,

here we need to find affected associations that may become invalid, and check whether

they can be deduced by other chasing sequences as soon as possible in PEval and

IncEval.

More specifically, PEval selects nodes in affected associations as initial active

nodes, which are fetched from d(e) for each deleted edge e. It initializes active GARs

with those having the same templates in their consequences Y as those of affected as-

sociations d(e). PEval iteratively inspects affected associations and enforces active

GARs to check their validity. In addition, when examining affected associations, ex-

tracted partial matches must involve nodes of affected ones, such that they satisfy Y

of active GARs. Moreover, only original parts of the graph and those associations that

have been confirmed valid are accessed to construct matches.

If an affected association α can still be deduced, PEval marks α valid and removes

it from the set of affected associations, i.e., further checking of d(α) is avoided. Oth-

erwise α is marked invalid and associations in d(α) except α are taken as affected

associations for further inspection.

Algorithm IncEval is extended analogously. Note that the master worker monitors

and coordinates the progress of the checking of the same affected association α at

different workers, via message passing. It notifies the designated worker that maintains

association α if all deduction attempts fail. After all the affected associations have been

validated, the other deduced ones are also marked valid by IncEval.

(2) Refinement. Procedure RefineAssoc deduces new associations in response to in-

serted edges. It revises PDeduce as follows: (a) active nodes in PEval are initialized

with vertices in ∆G+ and those in the invalid associations, from which initial active

GARs are derived; and (b) the associations in deduced−
∆

are filtered out when extract-

ing and completing partial matches, unless they have been deduced in RefineAssoc.

Intuitively, modification (a) limits “the scope” of active nodes and GARs by treating

inserted edges as new associations. Modification (b) is to reduce false positives, as

those old associations may become invalid due to edge deletions. RefineAssoc returns

both newly introduced and valid affected ones, which are used to adjust the output of

prior steps. RefineAssoc ensures that each deleted (resp. inserted) edge e is added to

deduced+
∆

(resp. deduced−
∆

) if e is marked as valid (resp. is deduced as an old associa-

tion).



2.5. Experimental Study 45

Example 2.8: Recall graph G and GARs Σ from Example 2.6. Consider ∆G that

inserts (v5, friend,v6) and deletes (v1, friend,v5). IncDeduce first checks association af-

fected by the deletion, which is (v5, like,u3). Since this link can be deduced with the

insertion in a way similar to Example 2.6, it remains valid and IncDeduce stops further

checking of associations depending on it. Besides, no new association is deduced dur-

ing the refinement phase in this case. Hence the result of batch PDeduce (Example 2.6)

remains stable. 2

We have the following about algorithm IncDeduce.

Proposition 7: The associations in deduced(G⊕∆G,Σ) \ deduced(G,Σ) are com-

puted without any unnecessary invalid attempts in algorithm IncDeduce. 2

Proof: Since each association in deduced(G⊕∆G,Σ)\deduced(G,Σ) must involve in-

serted edges or is a recovery of one deleted edge, it is computed by IncDeduce in step

(2), using updated graph and valid associations. Moreover, once an association is con-

firmed valid, it cannot become invalid any more, since the validations are conducted

iteratively by capturing all prior impacts of edge deletions in step (1). Thus no invalid

new association is derived in IncDeduce. 2

2.5 Experimental Study

Using real-life and synthetic graphs, we evaluated the accuracy, efficiency and scala-

bility of our (incremental) association deduction algorithms. We also conducted a case

study to demonstrate the effectiveness of GARs with real-life data.

Experimental setting. We used six real-life graphs as summarized in Table 2.1. In

particular, Orkut is a large social network without informative attributes that can be

used by GARs. We evaluated the efficiency of enforcing various GARs on it, and ran-

domly included 20 attributes in Orkut.

We also generated synthetic graphs with size up to 300 million vertices and a billion

edges, to test scalability.

Updates. We generated random updates ∆G for real-life and synthetic graphs, con-

trolled by the size |∆G| and the ratio τ of edge deletions to insertions. We set τ to 1 by

default, i.e., the sizes of graphs remain stable after the updates.

ML classifiers. We adopted SimplE [KP18] and ComplEx [TWR+16] to implement the
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Table 2.1: Real-life graphs

Dataset Type Vertices Edges

DBpedia [dbp21a] knowledge base 6.2M 33.4M

YAGO [SKW07] knowledge base 2M 5.7M

Pokec [Pok] social network 1.6M 30.6M

Patent [LKF05] citation network 3.7M 16.5M

IMDB [IMD21] knowledge graph on movies 16.7M 43.2M

Orkut [YL15] social network 3M 117M

ML classifier M for link prediction. We followed the protocol of [TWR+16, KP18]

to prepare training data; we obtained positive triples from original graphs and nega-

tive ones by combining entities and relations randomly. We created on average two

negative samples per positive one for training, using 55% edges of each graph. We

adopted the PyTorch framework, the hyper-parameter search strategy and training set-

tings of [TWR+16, KP18] to train classifier M .

GAR generator. For each graph, we generated GARs using the training data in three

steps. (1) We first added all missing links predicted by the ML classifier between the

nodes covered by training data. (2) We next applied an extension of the discovery algo-

rithm for GFDs [FHLL20] on the subgraph pertaining to updated training data to derive

GARs. Starting from frequent single-node patterns, the algorithm in [FHLL20] inter-

leaves vertical spawning to extend the patterns and horizontal spawning to find attribute

dependencies. Apart from constant and variable literals considered in [FHLL20], we

removed some edges from the discovered patterns and included them as edge liter-

als in GARs. Attribute literals were added with attributes that appear in the matches.

(3) After these, we replaced certain edge literals ι(x,y) with ML literals M (x,y, ι) in

the GARs mined, such that M predicts the existence of missing edges (v, ι,v′) in the

training data.

We discovered 200 (resp. 150, 100, 200, 200, 200 and 100) GARs from DBpedia

(resp. YAGO, Pokec, Patent, IMDB, Orkut and synthetic graph). These GARs are

satisfied by the subgraphs pertaining to training data; they have at most 7 pattern nodes

and 4.6 literals on average.

Evaluation. The accuracy is evaluated over the test set of each real-life graph, i.e.,

the graph excluding the training data. It is to evaluate the quality of associations

deduced. Following [FLTZ19, FWX16b], we treated the original graphs as “cor-

rect” and introduced noises by randomly removing 3% edges and 3% attributes of
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each test set, since the quality of real-life graphs is unknown [ZKS+13]. We mea-

sured the accuracy by precision, recall and F-measure, which are defined as (1) the

ratio of removed associations deduced to all associations deduced by the methods, (2)

the ratio of associations correctly deduced to all the associations removed, and (3)

2 · (precision · recall)/(precision+ recall), respectively. As remarked earlier, we used

Orkut only to test efficiency.

Baselines. Apart from implementing PDeduce (Section 2.4.2) and IncDeduce (Sec-

tion 2.4.3) in C++, we also compared with the following baselines. (1) A variant

PDeduceN of PDeduce, without enforcing association-guided pruning; and a variant

IncDeduceN of IncDeduce without early checking of affected associations. (2) The se-

quential repairing method of [FLTZ19], which deduces missing links and attributes,

denoted as GRb. (3) ML link predictors SimplE [KP18] and ComplEx [TWR+16];

they are trained and tested with same data as above. (4) The link deduction algorithm

in [FWWX15] with GPARs, denoted as mGPAR; and GMend of [FLTZ19] with an

extension of GFDs, which deduces certain fixes to graphs, on deduction of missing at-

tributes. (5) A sequential algorithm LinkH that finds missing links with the Horn rules

discovered by AMIE [GTHS13].

Among these, GRb, mGPAR, GMend and LinkH are also rule-based methods. To

get a fair comparison, besides the subclasses of GARs they support, we mined addi-

tional rules using their corresponding discovery methods to make all rule-based ones

employ the same amount of rules.

The experiments were conducted on GRAPE [FYX+18], deployed on an HPC clus-

ter of up to 10 machines connected by 10-Gbps links. From each machine we used 2

processors powered by Intel Xeon 2.2GHz and 64G memory. Each experiment was

run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Accuracy. We first tested the accuracy of PDeduce with all GARs mined.

Figures 2.4(a) to 2.4(c) report the F-measure for deducing both missing links and at-

tributes, missing links only and missing attributes only, respectively, over five real-life

graphs on average. As shown there, PDeduce consistently outperforms other methods.

(1) It beats rule-based methods GRb, mGPAR, GMend and LinkH by 29.6%, 40.4%,

17.2% and 36.4% on average, respectively. It does better than mGPAR since it uses

(a) GARs instead of GPARs, and (b) the chase as opposed to a single “chase step”. It
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Figure 2.4: Effectiveness

outperforms GRb and GMend by supporting ML literals. It beats LinkH for all reasons

above.

(2) On average PDeduce is 20.8% and 22.1% more accurate than SimplE and ComplEx

in deducing missing links, respectively. Since there is little gap between the accuracy

of SimplE and that of ComplEx, and they both are embedding-based ML models, the

impact of plugging which of the two ML classifiers into PDeduce is not substantial.

(3) We also conducted experiments to evaluate the accuracy of detecting semantic in-

consistencies by using the same amount of GARs and GFDs. The result tells us that

GARs outperforms GFDs by 42% in recall (not shown).

These verify that rules and ML methods put together work much better than each

of them taken separately.

Exp-2: Efficiency. We next evaluated the efficiency of PDeduce and IncDeduce versus

the variants and GRb. The number ||Σ|| of GARs, the average size |ΣQ| of the patterns in

Σ, the size |∆G| of updates for incremental deduction, and the number n of processors,

i.e., workers for parallel algorithms were fixed as 120 for DBpedia (90 for YAGO, 60

for Pokec, 120 for Patent, 120 for IMDB and 120 for Orkut), 4.8, 10%|G| and 12,

respectively, unless otherwise stated.
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Varying ||Σ||. Varying ||Σ|| from 40 to 200 and 30 to 150, Figures 2.5(a)-2.5(b) report

the results on DBpedia and YAGO, respectively. We can see that (1) the more rules

are used, the longer all methods take, as expected. (2) PDeduce is on average 2.2

(resp. 14.3) times faster than PDeduceN (resp. GRb), validating the effectiveness of

association-guided pruning.

Varying |ΣQ|. We varied |ΣQ| from 3 to 7 over DBpedia and YAGO. As shown in

Figures 2.5(c)-2.5(d), (a) all algorithms take longer on larger |ΣQ|. (b) PDeduce and

IncDeduce are feasible with real-life GARs, e.g., they take 17.7s and 4.2s over DBpedia

when |ΣQ| = 5, as opposed to 304.5s by GRb and 33.9s by PDeduceN. (c) PDeduce

outperforms other batch algorithms, consistent with Figures 2.5(a) and 2.5(b).

Incremental deduction. Varying |∆G| from 5% up to 35% of |G|, Figures 2.5(e)-2.5(i)

report the following over DBpedia, YAGO, Pokec, Patent and Orkut, respectively. (1)

IncDeduce is 6.3 to 1.6 (resp. 5.1 to 1.4, 4.8 to 1.3, 4.7 to 1.6 and 9.5 to 1.7) times

faster than PDeduce over the five real-life graphs, respectively, when |∆G| varies from

5% to 20%. (2) IncDeduce beats PDeduce even when |∆G| is up to 25% of |G|. This

justifies the need for incremental deduction. (3) All incremental methods take longer

for larger |∆G|, while the batch ones are indifferent to |∆G|.

The results on other graphs are similar (not shown).

Exp-3: Scalability. In the same default setting as Exp-2, we next evaluated the scala-

bility of deduction approaches.

Varying n. We varied the number n of processors from 4 to 20. As shown in Fig-

ures 2.5(j) to 2.5(o), (a) PDeduce scales well: the improvement is 3.1 (resp. 3.6, 3.9,

3.7, 3.6, 3.8) times over DBpedia (resp. YAGO, Pokec, IMDB, Patent, Orkut) when n

varies from 4 to 20. (b) IncDeduce works well on real-life graphs: it takes only 3.1s

to process 10% updates on YAGO using 20 processors; the results on other graphs are

consistent. (c) On average, PDeduce beats PDeduceN by 2.7 times, up to 4.1 times.

(d) Early checking of affected associations is effective for incremental association de-

duction: IncDeduce beats IncDeduceN by 1.5 times on average.

Synthetic graphs. Varying the scale factor from 0.2 to 1.0, we tested (incremental)

association deduction on synthetic graphs. As shown in Fig. 2.5(p), (a) all the batch

and incremental algorithms take longer over larger G, as expected. (b) PDeduce is

feasible on large graphs, taking 1756.5s using 100 GARs on graphs with 300 million

nodes and a billion edges; in contrast, GRb ran out-of-memory.
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Exp-4: Case study. Figure 2.4(d) shows the patterns of two GARs discovered in the

real-life datasets we used.

(1) In Pokec, GAR ϕ8 = Q8[x̄](M (x,x′, friend)∧ x.hobbies = x′.hobbies∧ x′.hobbies =

x′′.hobbies→ friend(x,x′′)) suggests that if three people have the same profession, re-

gion and hobbies, and two of them are predicted as friends by ML classifier, then

another friend relationship should also be established. It identifies a link between two

people (IDs: 361348, 361341) because of another one (ID: 361273), where all three

like football and live in Kolarovo.

(2) In DBpedia, GAR ϕ9 = Q9[x̄](M (x,y,association)→ tenant(z,x)) predicts associ-

ations between stadiums and sport teams. If a team uses a stadium as its ground at the

same location, and the stadium is owned by an organization that is predicted to be the

association of the team by ML classifier, then ϕ9 deduces that the team is a tenant of

the stadium. It deduces edge (Chichibunomiya Rugby Stadium, tenant, Sunwolves) in

DBpedia, although the link between the owner Japan Sport Council and Sunwolves is

missing.

Summary. We find the following. (1) GARs are effective in association deduction. On

average our algorithms outperform existing methods for link prediction and deducing

missing attributes by 29.1% and 19.4% in accuracy, respectively, and are 21.3% and

28.2% better than ML-based and rule-based methods alone. (2) GARs capture 42%

more semantic errors than GFDs in real-life graphs. (3) PDeduce scales well with large

graphs; it beats existing deduction methods by 18.1 times on graphs with 1.3 billion

nodes and edges. (4) It scales well with the number of processors. (5) Incremental

IncDeduce beats batch PDeduce by 4.3 times when |∆G| is 10%|G| and works better

even when |∆G| is up to 25%|G|. (6) Our optimization strategies improve batch and

incremental deduction by 2.7 and 1.5 times, respectively.

2.6 Novelty and Contributions

Different from previous graph rules, the novelty of GARs proposed in this Chapter

consists of the following. (1) We make a first effort to incorporate ML classifiers

into logic rules for association deduction. On the one hand, such rules plug in exist-

ing ML classifiers and improve the accuracy of association deduction. On the other

hand, they can interpret links predicted by ML classifiers in logic. Moreover, in or-
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der to support the GARs deduction with chase, we carefully select embedding-based

ML models to guarantee the Church-Rosser property. (2) We propose a first frame-

work to catch semantic inconsistencies and missing associations in the same process.

Indeed, inconsistencies can also be modeled as erroneous associations (Section 2.2),

and should be treated in a uniform framework for associations. That is why we opt

to extend GFDs [FWX16b, FL19] to catch missing links and attributes, rather than to

define a class of new rules starting from scratch. (3) GARs strike a balance between

the expressivity and complexity, with necessary yet minimum extensions to GPARs

and GFDs. It is well known that when universal logic rules and existential rules are put

together, their static analyses are often undecidable, e.g., the implication problem for

TGDs (cf. [AHV95]), and for functional dependencies and inclusion dependencies put

together [CV85]. GARs enrich GFDs (of universal semantics) with limited existential

semantics, while their satisfiability and implication problems are decidable in coNP

and NP, respectively, the same as for GFDs. While the complexity bounds for GARs

are similar to GFD counterparts, the proofs are quite different (see Section 2.3). (4)

GARs extend GPARs [FWWX15] with preconditions. This work provides the first for-

mulation of association deduction with chase, and the first fundamental results for rea-

soning about graph association rules, which were not studied in [FWWX15, FWX16a].

Hence, the development of GARs is not easy adaptations of what was done for GFDs

and GPARs.

We also adopt a different approach to optimize deduction in this Chapter. (1) We

first develop two sequential algorithms for deduction and incremental deduction of as-

sociations. We then parallelize the algorithms following the fixpoint model of GRAPE,

with convergence guarantees [FYX+18]. These depart from the prior algorithms on

GFDs [FWX16b, FLTZ19, FLLT20]. (2) We process a set of GARs at the same time,

not a single pattern. Moreover, enforcing GARs may mutate the topological structure

of graphs. In contrast, prior algorithms assume static graphs; they do not work for

association deduction. (3) We propose a strategy to reduce redundant mutual effects

between different types of updates in incremental deduction. (4) To the best of our

knowledge, the incremental deduction algorithm also yields the first incremental graph

repairing algorithm.



Chapter 3

Discovering Association Rules from

Big Graphs

This Chapter tackles two challenges to discovery of graph rules. Existing discovery

methods often (a) return an excessive number of rules, and (b) do not scale with large

graphs given the intractability of the discovery problem. We propose an application-

driven strategy to cut back rules and data that are irrelevant to users’ interest, by train-

ing a machine learning (ML) model to identify data pertaining to a given application.

Moreover, we introduce a sampling method to reduce a big graph G to a set H of small

sample graphs. Given expected support and recall bounds, the method is able to deduce

samples in H and mine rules from H to satisfy the bounds in the entire G. As proof of

concept, we develop an algorithm to discover Graph Association Rules (GARs).

We firstly introduce the long-standing challenges to discovery of graph rules (Sec-

tion 3.1), followed by a review of GARs (Section 3.2). Then we present the discovery

problem statement in Section 3.3, and a 3-step discovery scheme including application-

driven reduction (Section 3.4), graph sampling (Section 3.5), and parallel rule mining

(Section 3.6). We experimentally verify this 3-step discovery scheme in Section 3.7,

and conclude our novelty and contributions compared with previous work in Section

3.8.

3.1 Challenges to Discovery of Graph Rules

A variety of rules have been studied for graphs, to detect inconsistencies [FWX16b,

FLLT20], resolve entities [FFTD15, FL19], reason about knowledge graphs [GTHS13,

MCRS19], catch network evolution [BBBG09a, LLLW10], and recommend items to

53
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users [FWWX15]. There have also been recent graph rules that embed machine learn-

ing (ML) classifiers as predicates [FJL+20], to deduce associations by unifying rule-

based and ML-based methods.

To make practical use of the rules, effective methods have to be in place to discover

useful rules from real-life data. Rules on graphs are more complicated than relational

rules. For instance, graph functional dependencies (GFDs) [FWX16b] are defined as

Q(X → Y ), with a graph pattern Q to identify entities and an attribute dependency

X → Y to apply to those entities. Given a graph G, rule discovery is to find a set

ΣG of non-redundant rules that can be frequently applied to G (measured by support).

Discovery of such rules requires to mine both graph patterns and dependencies, and is

more challenging than discovery of relational data quality rules.

Challenges. There are two major challenges to graph rule discovery. (1) Scalability.

Rule discovery algorithms can hardly scale with large graphs. As shown in [FHLL20],

for instance, the discovery problem for GFDs subsumes subgraph isomorphism, which

is intractable (cf. [GJ79]). As a consequence, it is prohibitively costly to discover

GFDs with graph patterns of 7 edges or more, which cannot finish in 1.66 hours on

graphs with 32 million nodes and edges, even when using 8 machines [FHLL20]. It is

also reported in [FHLL20] that mining GFDs with patterns of at most 5 edges in the

same setting already takes 76 minutes. (2) Excessive rules. A large number of rules

typically hold on a given graph. It is hard for users to inspect the excessive number of

discovered rules and identify useful ones to them.

In fact, most existing discovery algorithms for graph rules follow the levelwise

search paradigm, e.g., [FHLL20, FWWX15, NWS+17, BBBG09a, KLL+19]. These

methods enumerate candidate rules in an exponential search space, and evaluate each

candidate by subgraph matching to check whether it meets the discovery requirement,

e.g., support threshold. The latter also incurs exponential cost as mentioned above.

Therefore, such methods suffer from poor scalability in mining graph rules with large

patterns, and often output excessive rules created from the large search space, while

users’ interests are not considered in pruning useless candidates. The challenges are

already present when discovering relational functional dependencies (FDs) [PEM+15],

but the problems become more staggering for graph rules.

Is it possible to develop an effective method that is able to discover only rules

relevant to users’ interests and scale with large graphs, without degradation in the

quality of the discovered rules?
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Strategies. We explore new approaches to tackling the challenges.

(1) Application-driven rule discovery. Users are often interested only in rules that help

their applications. For instance, when a company is promoting sale of an album, it

wants rules to identify music fans, and could not care less about rules for suggesting

buyers of pickup trucks. In light of this, we propose an application-driven strategy.

Given an application A and a graph G, we train an ML model MA to identify nodes,

edges and properties in G that pertain to A . We reduce G to a smaller graph GA with

only the data pertaining to A , and discover A-relevant rules from GA instead of from

the entire G.

(2) Sampling big graphs. To further reduce discovery cost, we sample a set H of graphs

H(A ,ρ%) from GA , such that their sizes are at most ρ% of GA . The samples consist

of representative data cells in GA along with their surrounding subgraphs. Denote by

ΣG and ΣH the set of A-relevant rules discovered from G and H, respectively. We show

that given bounds σ and γ%, we can deduce H such that (a) at least γ% of rules in ΣG

are covered by ΣH , and (b) each of these rules can be applied at least σ times on the

entire G, i.e., the rules in ΣG can be mined from H above recall γ% and support σ.

(3) Parallel scalability. We parallelize the discovery process. We show that the algo-

rithm is parallelly scalable, i.e., it guarantees to reduce runtime when more machines

are used. In principle, it can scale with large graphs G by using more machines when

needed.

(4) Proof of concept with GARs. As a proof of concept, we test the strategies with dis-

covering Graph Association Rules (GARs) [FJL+20]. GARs subsume GFDs [FWX16b],

graph entity rules (GEDs) [FL19] and graph pattern association rules (GPARs) [FWWX15]

as special cases, and hence are able to identify entities, catch conflicts, detect missing

links and deduce associations. Moreover, GARs may plug in existing ML classifiers

as predicates, to leverage well-trained ML models for entity resolution, link prediction

and similarity checking, among other things.

Putting these together, we propose a 3-step scheme to discover useful rules from

a big graph G for a given application A : (a) reducing G to A-relevant GA , (b) sam-

pling a set H of H(A ,ρ%) from GA , and (c) parallelizing discovery with the par-

allel scalability. We reduce irrelevant rules by proposing ML-based graph reduction

(step (a)), and improve the scalability by combining steps (a), (b) and (c). Steps (a)

and (b) reduce the problem of rule discovery from large G to much smaller H(A ,ρ%).

We show that the scheme guarantees accuracy bounds. As opposed to prior meth-
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ods [MCRS19, GGM20, CWG16] that only sample paths, step (b) samples general

subgraphs by selecting representative data. These ensure accuracy bounds on the rules

mined from H(A ,ρ%).

3.2 Graph Association Rules

In this section we briefly review GARs (graph association rules) of [FJL+20].

Preliminaries. We assume three countably infinite alphabets Γ, ϒ and U of symbols,

for labels, attributes and constants, respectively.

Graphs. We consider directed labeled graphs G = (V,E,L,F), where (a) V is a finite

set of nodes; (b) E ⊆ V ×Γ×V is the set of edges, and e = (v, l,v′) denotes an edge

from node v to v′ that is labeled with l ∈ Γ; (c) each node v ∈ V has label L(v) from

Γ; and (d) each node v ∈V carries a tuple F(v) = (A1 = a1, . . . ,An = an) of attributes

of a finite arity with Ai ∈ ϒ and ai ∈U , written as v.Ai = ai, and Ai 6= A j if i 6= j for

distinct properties. Note that even nodes of the same “type” may have different sets of

attributes in a schemaless graph.

Patterns. A graph pattern is Q[x̄] = (VQ, EQ, LQ, µ), where (1) VQ (resp. EQ) is a set of

pattern nodes (resp. pattern edges); (2) LQ assigns a label LQ(u) ∈ Γ (resp. LQ(e) ∈ Γ)

to node u ∈VQ (resp. e ∈ EQ, i.e., e = (u,LQ(e),u′)); (3) x̄ is a list of distinct variables;

and (4) µ is a bijective mapping from x̄ to VQ, i.e., it assigns a distinct variable to each

node v in VQ. We allow wildcard ‘ ’ as a special label in Q[x̄]. For each variable x ∈ x̄,

we use µ(x) and x interchangeably.

Pattern matching. A match of pattern Q[x̄] in a graph G is a homomorphic mapping

h from Q to G such that (a) for each node u∈VQ, LQ(u)=L(h(u)); and (b) for each

pattern edge e=(u,LQ(e),u′) ∈ EQ, e′=(h(u),L(e′),h(u′)) is in G and LQ(e)=L(e′).

Here LQ(u)=L(h(u)) if LQ(u) is ‘ ’, i.e., wildcard can match an arbitrary label. We

denote the match as a vector h(x̄), consisting of h(µ(x)) for all x ∈ x̄ in the same order

as x̄. Intuitively, x̄ is a list of entities to be identified, and h(x̄) is an instantiation for it.

Predicates. A predicate p of Q[x̄] has one of the following forms:

p ::= x.A | l(x,y) | x.A = y.B | x.A = c |M (x,y, l),

where x,y are variables in x̄; x.A denotes an attribute A of pattern node x (for A ∈ ϒ);

l(x,y) is an edge from x to y labeled with l ∈ Γ; c is a constant in U ; and M (x,y, l) is

an ML classifier (see below).
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We refer to x.A, l(x,y), x.A= y.B, x.A= c and M (x,y, l) as attribute, edge, variable,

constant and ML predicate, respectively.

Graph association rules (GARs). A GAR ϕ is defined as

Q[x̄](X → p0),

where Q[x̄] is a graph pattern, X is a conjunction of predicates of Q[x̄], and p0 is a

single predicate of Q[x̄]. We refer to Q[x̄] and X → p0 as the pattern and dependency

of ϕ, and to X and p0 as the precondition and consequence of ϕ, respectively.

Intuitively, a GAR is a combination of topological constraint Q and logical con-

straint X→ p0. The pattern Q identifies entities in a graph, and the dependency X→ p0

is applied to the entities. Constant and variable predicates x.A= c and x.A= y.B specify

value associations to attributes, which can catch inconsistencies and moreover, iden-

tify entities (with x.id = y.id when A and B are node ids). Attribute and edge predicates

x.A and l(x,y) enforce the existence of attributes and edges, i.e., attribute and edge

associations, respectively, which can deduce associations and missing links.

ML predicates. One can “plug in” an existing well-trained ML classifier M for link

prediction, entity matching, or node similarity checking, and treat it as a Boolean pred-

icate. That is, M (x,y, l) is true if M predicts the existence of a link labeled l from x to

y, and false otherwise, by uniformly expressing entity matching and similarity check-

ing as link prediction. Here the label l can indicate (1) a predicted link, (2) the match

of x and y as the same entity, linked by a dummy edge with ‘=’ as label l, or (3) seman-

tic similarity between nodes x and y linked by an edge with ‘≈’ as l, indicating that

x and y are “semantically” close, e.g., “monitor” and “LCD screen”, and “Michael”

and “Mike”. Thus ML predicates can also be regarded as edge predicates. An ML

classifier becomes “well-trained” once its training process converges, e.g., the loss of

a neural network is stable after epochs.

As shown in [FJL+20], GFDs [FWX16b], GEDs [FL19], and GPARs [FWWX15]

are special cases of GARs without ML, edge and attribute predicates.

Example 3.1: Embedding ML predicates, GARs are able to predict relationships in

professional networks, e.g., colleagues in DingTalk [Din21], and fraudulent behaviors

in e-commerce platforms, as follows.

(a) To establish domestic “colleague” connections, we use a GAR ϕa = Qa[x̄a](Xa→
colleague(x0,x′0)), where (i) the pattern Qa is depicted in Fig. 3.1; and (ii) Xa is

∧
i∈[1,k0]

(x0.city = xi.city∧ x′0.city = xi.city)∧∧
i, j∈[1,k0]Ma(xi,x j,similar profile). It indicates
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Figure 3.1: Patterns and graphs

that users x0 and x′0 are likely to be colleagues when they follow the same organization

y0 and have k0 common friends (i.e., x1 to xk0) with the same city attribute, and each

pair of common friends have similar profiles, determined by the ML classifier Ma.

(b) Consider GAR ϕb = Qb[x̄b](
∧

i, j∈[1,m]Mb(xi,x j,one group)→ click(x1,zk0)), where

pattern Qb is also shown in Fig. 3.1. It says that if a set of m users x1, . . . , xm are

identified to be within the same community by ML classifier Mb, and if all users in

this community except x1 conduct fake clicks on a set of k0 items in the e-commerce

platform, then x1 might also perform fake click on item zk0 .

As k0 and m can vary, these GARs may have large patterns. 2

Semantics. To interpret GAR ϕ = Q[x̄](X → p0), denote by h(x̄) a match of Q in

a graph G, and by p a predicate of Q[x̄]. We write h(µ(x)) as h(x), where µ is the

mapping in Q from x̄ to nodes in G.

We say that h(x̄) satisfies a predicate p, denoted by h(x̄) |= p, if the following

condition is satisfied: (a) when p is x.A, node h(x) carries attribute A; (b) when p is

l(x,y), there exists an edge with label l from h(x) to h(y); (c) when p is x.A = y.B,

attributes A and B exist at h(x) and h(y), respectively, and h(x).A = h(y).B; (d) when

p is x.A = c, attribute A exists at h(x), and h(x).A = c; and (e) when p is M (x,y, l), the

ML classifier M predicts an edge (h(x), l,h(y)).

For a conjunction X of predicates, we write h(x̄) |= X if match h(x̄) satisfies all the

predicates in X . Note that if X is /0 (i.e., true), then h(x̄) |= X for any match h(x̄) of Q

in G. We write h(x̄) |= X → p0 if h(x̄) |= X implies h(x̄) |= p0. We say that a graph G

satisfies GAR ϕ, denoted by G |= ϕ, if for all matches h(x̄) of Q in G, h(x̄) |= X → p0.

Graph G satisfies a set Σ of GARs, denoted by G |= Σ, if G |= ϕ for all ϕ ∈ Σ.

Example 3.2: Consider the graph G0 depicted in Fig. 3.1, in which the users u0 to

uk0+1 form a clique with all edges labeled friend, and all the users have the same city

attribute value and similar profiles (not shown). Then G0 6|=ϕa for GAR ϕa of Exam-
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Notations Descriptions

G, Q[x̄],ϕ graph, graph pattern, and GAR ϕ=Q[x̄](X → p0), resp.

A an application that consists of a set of predicates

GA an A-graph of G

MA an ML model for deducing GA from graph G

GM graph G expanded with edges predicted by ML model M
H(A ,ρ%) a sample graph

ΣG, ΣH GARs mined from G and a set H of sample graphs, resp.

supp(ϕ,G) the support of GAR ϕ in graph G

Table 3.1: Notations

ple 3.1. This is due to the match h of Qa in G0: x0 7→u0,x′0 7→u1,xi 7→ui+1(i∈[1,k0]),y0 7→v,

which satisfies precondition Xa, but h 6|=colleague(x0,x′0) because of the nonexistence

of a colleague edge from u0 to u1 in G0. 2

Notations of this Chapter are summarized in Table 3.1.

3.3 A Discovery Scheme

In this section, we formulate the notions associated with the GAR discovery problem,

and propose a new discovery scheme.

GARs to discover. In practice, we want a minimum set of GARs that are non-

redundant and nontrivial. Thus we consider only GARs Q[x̄](X → p0) in which p0

does not appear in X , since otherwise the GAR is trivial and not useful. Moreover, we

want GARs that are helpful for the downstream applications A , specified as follows.

A-relevant GARs. We model an application A as a set of predicates, also denoted by

A . We say that a GAR ϕ = Q[x̄](X → p0) is A-relevant if the consequence p0 is in A .

As an example, p0 can be an edge predicate buy(x,y), where x denotes a person and y

denotes an item; here p0 suggests person x is a potential buyer of item y.

In order to find out suitable predicates that model the application A to the user’s

interest, the rule discovery algorithm presents the user with diversified edges consisting

of various labels in G and asks the user to select edges that are closely related to

their desired application. Then the algorithm extracts predicates from each of these

selected edges by replacing the vertices with variables while preserving edge labels.

Finally, the most frequent predicates are added to the set A to represent the user’s target

application.
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Example 3.3: Suppose a user is interested in athlete-related rules on the DBpedia

[dbp21a] knowledge graph G. The algorithm presents diversified edges consisting of

various labels in G, e.g., (Usain Bolt,occupation,sprinter), (Lionel Messi,club,

Barcelona), (Hillary Clinton,party,Democratic Party), (Big Ben, locate in,London) to

the user, and requires the user to annotate “interesting” ones. The user marks (Usain

Bolt,wins,Beijing Olympic) and (Lionel Messi,club,Barcelona) as interesting since

they are closely related to athletes. Then, replacing these vertices/edges with their la-

bels, the algorithm adds wins(x,y) and club(x,y) to set A to represent the user’s target

application. 2

This simple model originated from the observation that an application benefits from

a specific class of association rules, whose consequences include entities of some par-

ticular “types”, i.e., the labels in p0. For instance, when using association rules in

marketing [WZYY05] (resp. intrusion detection [TT06], disease diagnosis [NITC13]),

the consequences only need to indicate that a customer buy a product (resp. a signature

is generated by an attack attempt, a person is healthy or sick). A similar model has been

adopted and shown effective in similarity search in heterogeneous network [SHY+11].

It abstracts nodes and edges to labels to define similarity measure.

Support. The support of a GAR ϕ = Q[x̄](X → p0) in a graph G indicates how often

ϕ can be applied to G. As shown in [FHLL20], the conventional notion of support

for relational rules is not anti-monotonic for rules such as GFDs on graphs. Below

we further revise the notion of support of GFDs [FHLL20] for A-relevant GARs. We

consider connected pattern Q as commonly found in graph rules.

We quantify support of an A-relevant GAR in terms of the number of distinct

matches of Q in G that satisfy both the precondition X and consequence p0, when “pro-

jected” at the nodes pertaining to p0. Such distinct matches serve as the “evidence”

of ϕ for application A . More specifically, we assume w.l.o.g. that the consequence p0

involves two variables xp0 and x′p0
; the case of one variable is defined similarly. Let

Q(G,Z, p0) = {〈h(xp0),h(x
′
p0
)〉 | h ∈ Q(G),h |= Z} be a set of node pairs, where Z is

a conjunction of predicates. Then its cardinality ||Q(G,Z, p0)|| counts the number of

matches satisfying Z at the designated variables in the consequence p0.

We define the support of GAR ϕ = Q[x̄](X → p0) in graph G as:

supp(ϕ,G) = ||Q(G,X ∧ p0, p0)||.
Extending the support of [FHLL20, FWWX15] that counts the number of matches

at a single designated variable from Q[x̄], we treat both xp0 and x′p0
in p0 as “pivots”



3.3. A Discovery Scheme 61

to better estimate the effectiveness of A-relevant ϕ, e.g., whether application A ben-

efits more from those ϕ having larger support. Here pivots refer to designated focus

nodes representing users’ interest. Below we show that this measure has the anti-

monotonicity under a well-defined ordering of GARs.

Anti-monotonicity. We say that pattern Q[x̄] = (VQ,EQ,LQ,µ) subsumes pattern Q′[x̄′] =

(V ′Q,E
′
Q,L

′
Q,µ
′), denoted as Q′[x̄′] v Q[x̄], if V ′Q ⊆ VQ, E ′Q ⊆ EQ, and for each node

u ∈ V ′Q (resp. edge e∈E ′Q), either LQ(u)=L′Q(u) or L′Q(u)= (resp. LQ(e)=L′Q(e) or

L′Q(e)= ) and u is paired with the same variable by µ and µ′, i.e., x̄′ ⊆ x̄.

We define a partial order � on GARs. Consider two GARs ϕ1 = Q1[x̄1](X1→ p0)

and ϕ2 =Q2[x̄2](X2→ p0) with the same p0. Then ϕ1� ϕ2, referred to as ϕ2 subsumes

ϕ1, if Q1[x̄1]v Q2[x̄2] and for each predicate p in X1, p also appears in X2.

We can see that when GAR ϕ2 subsumes another GAR ϕ1, both its pattern and

precondition subsume their counterparts in ϕ1. This results in the following anti-

monotonicity property.

Lemma 3.1: Given two GARs ϕ1 and ϕ2, if ϕ1�ϕ2, then for any graph G, supp(ϕ1,G)≥
supp(ϕ2,G). 2

Proof: Let ϕ1 = Q1[x̄1](X1→ p0) and ϕ2 = Q2[x̄2](X2→ p0). Since ϕ1 � ϕ2, we have

that Q1 v Q2. Therefore, for every graph G, each match of Q2 in G at consequence

p0 is also a match of Q1 in G at p0. Then Q2(G,X2∧ p0, p0) ⊆ Q1(G,X1∧ p0, p0), as

precondition X2 covers all predicates in X1. Hence supp(ϕ1,G)≥ supp(ϕ2,G). 2

With the order �, a GAR ϕ is called minimum in graph G if G |= ϕ and there is no

other GARs ϕ′ such that ϕ′ � ϕ and G |= ϕ′. That is, each minimum GAR warrants the

minimality of its graph pattern and precondition w.r.t. the consequence predicate p0.

Example 3.4: Recall GAR ϕa from Example 3.1. Consider GAR ϕ′a revised from ϕa

by removing pattern edge (x0, friend,xk0) from Qa and predicate Ma(x1,x2,similar profile)

from Xa. ϕ′a � ϕa and ϕ′a induces more matches projected at the consequence. 2

Cover. To further reduce redundant GARs, we use another notion. A set Σ of GARs en-

tails a GAR ϕ, denoted by Σ |= ϕ, if for all graphs G, G |= Σ implies G |= ϕ. As a

special case, {ϕ1} |= ϕ2 if ϕ1 � ϕ2, since ϕ1 is less restrictive. A set Σ of GARs is

equivalent to another set Σ′, denoted as Σ≡ Σ′, if Σ′ |= ϕ for any ϕ ∈ Σ, and vice versa.

A cover of a set Σ of GARs for graph G is a subset Σc of Σ such that (1) Σc ≡ Σ, (2)

each GAR in Σc is minimum in G, and (3) Σc 6≡ Σc \{ϕ} for any GAR ϕ in Σc, i.e., the
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subset Σc is minimal without any redundant GARs.

Discovery problem. It is intractable to find a cover of A-relevant GARs from a

graph [FHLL20], since the problem is already intractable for GFDs and GFDs are a

special case of GARs. To speed up this process, we discover GARs from a set H of

sample graphs H(A ,ρ%) extracted from G such that (a) the size |H(A ,ρ%)| accounts

for ρ% of |GA | and (b) H(A ,ρ%) has representative data pertaining to A .

Recall. Observe that H may not cover all the information of G, and hence GARs

discovered from H may not include all those GARs that are mined from the entire G.

To assess the quality of samples H(A ,ρ%) for GAR discovery, we adapt the notion of

recall w.r.t. support bounds σ. Denote by ΣH (resp. ΣG) the set of A-relevant GARs

discovered from H (resp. G). We use recall w.r.t. σ, denoted as recall(ΣH ,ΣG,σ), to

refer to the percentage of the GARs ϕ in ΣG that are also in ΣH with supp(ϕ,G) ≥ σ,

i.e., ϕ has support at least σ when applied to G. This recall indicates to what extent the

required frequent GARs can be mined from the small samples H(A ,ρ%).

Problem statement. We are now ready to state the discovery problem of GARs w.r.t. a

given application A and graph sampling.

◦ Input: A graph G, an application A , a positive integer k, support threshold σ > 0,

and a positive percentage γ% for recall.

◦ Output: A cover Σc
H of ΣH mined from H such that recall(ΣH ,ΣG,σ)≥ γ% and each

ϕ in ΣH has at most k pattern nodes.

Here H is the set of sample graphs, and ΣG (resp. ΣH) is the set of A-relevant GARs

mined from G (resp. H), as described above.

Intuitively, the set ΣH is accurate, since at least γ% of the A-relevant GARs with

support no smaller than σ in the entire graph G are covered by ΣH . Following [FHLL20],

we adopt parameter k to balance the complexity of discovery and the interpretability

of GARs. It is an input parameter decided by user’s demand in practice.

Remark. (1) As a hard constraint, a GAR Q[x̄](X → p0) is satisfied by a graph G only

if all matches of Q in G satisfy the dependency X → p0 (see Section 3.2). However,

when we discover GARs from a possibly dirty graph G, we cannot expect that the

GARs mined are satisfied by all matches. Hence we only discover frequent GARs with

support above a given threshold, regardless of whether G satisfies them, following the

common practice of data mining. Domain experts will then examine the discovered

GARs before the rules can be applied to association deduction. (2) Discovering GARs
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Figure 3.2: Workflow of GAR discovery

involves mining of both their patterns and dependencies. The former is similar to fre-

quent subgraph mining [ABH14], which defines support by counting distinct matches

of certain “pivots”, conducts subgraph enumeration during the discovery, and may ter-

minate early based on the anti-monotonicity of support. Besides, data dependencies

X → p0 are discovered on entities identified by the matches of Q, by incorporating

predicates such as value bindings and ML classifiers.

Discovery scheme. We propose a 3-step scheme to discover GARs, whose workflow

is depicted in Figure 3.2.

Application-driven reduction (Section 3.4). The first step of the scheme deduces a

graph GA from G, referred to as the A-graph of G, by retaining only the data pertaining

to the given application A .

Graph sampling (Section 3.5). Since GA may still be large, the scheme deduces sam-

ples H(A ,ρ%) from GA to further reduce the cost. We propose a sampling method to

ensure support and recall bounds.

Mining (Section 3.6). The final step is to discover A-relevant GARs ΣH from small

samples by using a parallelly scalable algorithm, where ΣH is the union of the GARs

mined from sample graphs H(A ,ρ%). It computes and returns a cover Σc
H of ΣH .

3.4 Application Driven Discovery

In this section, we show how to reduce graphs G to smaller A-graphs GA for a given

application A , via an ML-based method.

We start with some notations, and then present the method.

Label triplets. A label triplet is defined as 〈lv, le, l′v〉, where lv and l′v are two node

labels and le is an edge label in between. We say that an edge e = (v, l,v′) in graph

G conforms to a label triplet t = 〈lv, le, l′v〉 if L(v) = lv, l = le and L(v′) = l′v. Here the

special wildcard ‘ ’ also “equals” any arbitrary label. We refer to 〈L(v), l,L(v′)〉 as the
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label triplet T (e) of edge e. For a set T of label triplets, an edge e conforms to T if

there exists a triplet t ∈ T such that e conforms to it. A graph G conforms to the set T

of label triplets if each edge e in G conforms to T .

We also define label triplets for predicates, by abstracting labels from patterns.

The label triplets of a predicate p of pattern Q[x̄], denoted as T (p), is (a) {〈LQ(µ(x)), l,

LQ(µ(y))〉}when p is edge predicate l(x,y) or ML predicate M (x,y, l); (b) {〈LQ(µ(x)),

, 〉,〈 , ,LQ(µ(x))〉} when p is x.A or x.A = c; and (c) {〈LQ(µ(x)), ,LQ(µ(y))〉,〈LQ

(µ(y)), ,LQ(µ(x))〉} when p is x.A = y.B.

Intuitively, for an application A modeled as a set of predicates (Section 3.3), the

label triplets of predicates form a simple abstraction of the application A . We opt to

use language (ML) models to learn and analyse the distribution of label triplets created

from application A , which indicates the characteristics of the data pertaining to A . We

introduce label triplets to bridge the language models, applications and graphs. As

will be seen shortly, it also strikes a balance between the efficiency and effectiveness

in selecting data relevant to A .

Example 3.5: Continuing with Example 3.1, the label triplets of predicates x0.city =

xi.city and Ma(xi,x j,similar profile) in ϕa are {〈user, ,user〉} and {〈user,similar profile,

user〉}, respectively. 2

ML models and graph reduction. Given an application A , i.e., a set of predicates,

a well-trained ML classifier M (x,y, l) for e.g., link prediction, and a graph G, we

employ a language model MA , implemented as long short-term memory (LSTM) net-

works [HS97], to deduce the A-graph GA in the following four stages.

(1) Firstly, we expand graph G to GM = (V,EM ,L,F) by adding edges predicted by

M (x,y, l). This allows us to incorporate ML predicates when discovering GARs in the

A-graph GA deduced from G. In fact, due to the use of label triplets, two isolated nodes

cannot be classified as the data pertaining to A and retained in GA . However, they may

contribute to the support of an A-relevant GAR when it has ML predicate M (x,y, l) and

M predicts the existence of an edge between the two nodes. In light of this, expanding

G with predicted links is necessary for mining GARs with ML predicates.

(2) Taking triplets T (p) of each predicate p in A as seed input and treating each triplet

as a word, we enforce the trained language model MA (see below for the training

of MA ) to generate a number of sequences of label triplets, denoted as ΘA . Since

the LSTM-based MA models the probability of sentence generation, the generated se-
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quences are semantically related to T (p).

(3) We select the top-m frequent triplets from ΘA to construct a set TA of label triplets,

referred to as A-triplets. Here m is a predefined positive integer (see Section 3.7 for

the impact of m on application-driven discovery). That is, we focus on triplets that are

most closely related to application A . Such A-triplets and the triplets of the predicates

in A co-occur with high probability. Thus it is very likely that the A-relevant GARs

include predicates related to these label triplets, and the (pattern) edges in such GARs

also conform to them.

(4) We finally deduce A-graph GA from graph GM by preserving only those edges that

conform to TA . In particular, all the attributes of a node v are kept if one of v’s adjacent

edges in GM conforms to TA . Filtered by label triplets in TA , graph GA conforms to TA

and contains only vertices, edges and attributes pertaining to the application A . Thus

it suffices to discover A-relevant GARs from GA .

The reduction takes a time linear to the number of generated triplets to run LSTM

model and O(|EM |) time to filter out irrelevant edges. Here we choose LSTM net-

work since it can effectively model the semantics of labels on paths in knowledge

graphs [LZL+20, LSX18, LLL+15]. That is, given an edge label l, LSTM generates a

path following l with reasonable semantic meaning [MDB17]. Note that MA can also

be implemented by other language models for sequence modeling [OMK20].

Example 3.6: Using label triplet {〈user,colleague,user〉} of the consequence pred-

icate colleague(x0,x′0) in ϕa of Example 3.1 as seed input, MA outputs sequences

ΘA of label triplets, in which the top-4 frequent triplets are {〈user, ,user〉}, {〈user,

similar profile,user〉}, {〈user, friend,user〉} and {〈user, follow,organization〉}. These

make the set TA . Hence we only preserve edges in GM that conform to TA for the A-

graph GA , where data irrelevant to A , e.g., commute methods and dietary preferences

in GM , is dropped. 2

Model training. To train the language model MA , i.e., LSTM, we prepare a training

corpus DT , which consists of sequences of label triplets that are collected by ran-

dom walks in graph GM . More specifically, for each path (e1,e2, . . . ,en) generated

by a random walk in GM , we derive the label triplet of each edge and add sequence

(T (e1),T (e2), . . . ,T (en)) to training corpus DT (here a path is a list of consecutive

edges ei = (vi, li,vi+1) for i ∈ [1,n]). The label triplets in each such sequence are

semantically related, whose distribution can be learned by model MA . Here we ap-
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ply non-backtracking random walks (NBTRW) [LXE12] to sample the paths since

NBTRW restrains the bias towards visiting high-degree nodes and closely knit com-

munities around the seed nodes. This property helps us capture more representative

localized structures in graph GM .

Once DT collects adequate sequences, the model MA views each label triplet as

a word and each sequence of triplets as a sentence. It learns the likelihood of the

occurrence of a triplet based on the previous sequences of triplets in DT . Thus, given

label triplets T (p) as seed input, a well-trained MA is able to generate sequences of

triplets that are related to T (p) as mentioned above.

Remark. For each graph GM , this unsupervised model training needs to be performed

only once such that the trained model MA can be applicable to different applications.

The training of model MA benefits from the usage of label triplets. Without them,

MA has to inspect the triplets of attribute values, i.e., FA(v), which are more diversified

compared to labels L(v). For example, different player nodes may have various names

but the same label “Player”. This larger vocabulary in the training corpus results in

harder and slower training of MA . In fact, abstracting edges and predicates as label

triplets suffices to characterize the objective of various applications. For instance, a

recommendation application would only concern about recommending “Sports Shoes”

to “Players” without considering their specific names.

After this graph reduction, the reliability of the discovered GARs w.r.t. application

A is relative to the accuracy of model MA . That is, the more correct A-triplets are

returned by MA , the more A-relevant GARs can be discovered from GA . Here an A-

triplet is said to be correct if there exists an A-relevant GAR in G having a pattern edge

or predicate that conforms to it.

3.5 Sampling Big Graphs

In this section, we develop a sampling method to deduce a set H of sample graphs

H(A ,ρ%) from A-graph GA , such that the GARs mined from H satisfy the expected

bounds on support and recall in graph G. We start with an overview of the sampling

framework (Section 3.5.1) and introduce underlying techniques (Section 3.5.2). We

then show the accuracy guarantees offered by it (Section 3.5.3).
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3.5.1 Overview

For an application A , an A-relevant GAR ϕ = Q[x̄](X → p0) aims to “promote” the

action specified by its consequence p0. Thus when sampling big graphs G, we take

distinct matches of variables of p0 in G as the “pivots”. This is justified by the support

of ϕ, which is measured by the number of the pivots (see Section 3.3). Intuitively,

sampling the pivots helps us discover GARs with a high support.

Pivot sets. Consider a predicate p of pattern Q[x̄]. The pattern Qp[x̄p] induced by p is

the subgraph of Q[x̄] that only contains the corresponding pattern nodes of variables in

p without any edge. The pivot set of p in graph G, denoted as PS(p,G), is the set of

matches of Qp in G. Therefore, each pivot is either a single node or a node pair taken

from G that matches the labels in Qp.

A sampling framework. Based on pivot sets, we propose a Graph Sampling frame-

work for Rule Discovery of GARs, denoted as GSRD. Algorithm 3.1 shows the main

steps of GSRD. The input of GSRD includes an A-graph GA deduced for application A
(Section 3.4), the number N of sample graphs, two strategies Mv and Ms for sampling

pivots and their surrounding subgraphs, respectively, as well as two sample ratios ρv%

and ρ% for limiting the number of nodes and the sizes of sample graphs, respectively.

It computes a set H of N sample graphs H(A ,ρ%) such that |H(A ,ρ%)| ≤ ρ%×|GA |,
in N rounds.

Each round of GSRD deduces a sample graph H(A ,ρ%) and adds it to H (lines 3-

9). It first finds the pivot set of each consequence predicate p0 of application A in

A-graph GA , and collects all pivots in a set C (lines 3-5). It then deduces H(A ,ρ%) in

two phases (lines 6-7).

(1) The first phase targets the pivot sets. More specifically, GSRD calls procedure

PSample to sample pivots from C , stored in a set SA (line 6). PSample applies an input

sampling strategy Mv (to be given in Section 3.5.2) to compute SA , and ensures that at

most ρv% of the nodes from set C appear in the sampled pivots.

(2) In the second phase, GSRD samples substructures of selected pivots from GA . It

picks nodes and edges within k hops from the nodes in SA to build sample graph

H(A ,ρ%), via procedure LSample (line 7). Such sampled data cells constitute the

“substructures” surrounding the pivots; and H(A ,ρ%) includes all pivots and their

substructures. Procedure LSample adopts another input strategy Ms to extract sub-

structures (see Section 3.5.2), which is a linear time operation in the worst case. In
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Algorithm 3.1: GSRD
Input: An A-graph GA , a positive integer N, two sampling strategies

Mv and Ms, and sample ratios ρv% and ρ%.

Output: A set H of N sample graphs H(A ,ρ%).

1 i← 0; H← nil;

2 repeat

3 C ← nil;

4 foreach predicate p0 involved in A do

5 C ← C ∪PS(p0,GA); /* computing pivot sets */

6 SA ← PSample(C ,Mv,GA ,ρv%);

7 H(A ,ρ%)← LSample(SA ,Ms,GA ,ρ%);

8 H← H ∪{H(A ,ρ%)};
9 i← i+1;

until i = N;

10 return H;

addition, LSample guarantees that the size of H(A ,ρ%) is at most ρ%×|GA |.
Both Mv and Ms can be randomized strategies; hence the samples H(A ,ρ%) cre-

ated in multiple rounds are different. More GARs can be mined from such samples as

they cover more pivots.

Cost analysis. The cost for computing pivot sets is bounded by O(|GA |) because

it only needs label checking at constant times. Observe that extracting substructures

is confined within the small localized areas around the pivots only in GSRD; thus

the two phases for sampling pivots and substructures take at most O(|H(A ,ρ%)|2

log(|H(A ,ρ%)|)) time, including the sorting cost for applying locality-aware sampling

(Section 3.5.2).

3.5.2 Representative Strategies

We next present sampling methods Mv and Ms adopted by GSRD for selecting pivots

and extracting substructures, respectively.

Sampling pivots. We propose a clustering-based strategy as Mv.

Clustering-assisted sampling. We propose to first cluster all pivots in the set C into

multiple groups, such that each group consists of semantically similar pivots. We then

construct a set of representative pivots by picking elements from every group guided
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by the ratio ρv%, by employing one of two sampling strategies. Below we first show

how to cluster pivots and then present the sampling strategies.

Since a pivot can also be a node pair, we cannot apply node clustering directly

to A-graph GA . In light of this, we convert GA to an undirected G′A such that each

node pair of a pivot in GA is contracted into a single node in G′A . In graph G′A , each

contracted node has links to (a) the two nodes in the node pair and (b) other contracted

nodes if the corresponding pairs have nodes in common.

Example 3.7: Figure 3.3(a) depicts a graph conversion process, in which the three

directed edges are encoded as nodes r0, r1 and r2 in the undirected graph. Here r2 is

connected to both r0 and r1 because of the nodes u0 and p1 that are shared by multiple

edges. 2

Intuitively, clustering allows us to pick pivots with diversified semantics from dif-

ferent groups, and discover useful GARs from samples of bounded size. In other words,

it prevents us from discovering semantically homogeneous GARs only.

For efficient clustering, we adopt Lloyd’s k-means algorithm [Llo82] with

k-means++ seeding [AV06]. We also use two approaches to extracting node features

for clustering. One takes mean word embeddings [PSM14] of the node attributes as the

feature, since an application usually involves nodes with similar semantic meanings.

The other learns node features with Deep Graph Informax (DGI) [VFH+19], where

topological structure and node attributes are considered.

Uniform sampling. We may select pivots from each group in a uniform manner, by

randomly selecting each pivot independent of the others. Note that when sampling the

pivots of edge predicates, it only considers those node pairs that are connected by edges

in the A-graph GA . By the semantics of GARs, only such pivots help us discover GARs

that have edge predicates as the consequences. After uniform sampling, it is assured

that the selected pivots cover all the semantics pertaining to the given application A
and more pivots are picked out from larger groups.

Locality-aware sampling. Alternatively, we may greedily choose pivots such that their

substructures maximally overlap. More specifically, for each pivot, we estimate the

“scope” of its substructure in GA using a fixed substructure extraction scheme (see

below). Then each time we pick a pivot such that the inclusion of its substructure

leads to minimum size increase of the sample graph. Compared to uniform sampling,

this strategy creates more compact sample graphs when combined with substructure
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Figure 3.3: Demonstration of different strategies in GSRD
extraction. As another consequence, more pivots can be included in sample graphs of

a fixed size, from which we can mine more GARs.

Example 3.8: The locality-aware sampling prefers the pivot s0 to s1 shown in Fig.

3.3(b). This is because the changes ∆s0 induced by s0 to the sample graph is smaller

than that induced by s1, i.e., ∆s1. 2

Substructure extraction. We can use breadth-first search (BFS) as strategy Ms for

extracting substructures of the pivots selected by Mv above. Starting from a sampled

pivot v, the BFS proceeds up to the fixed depth k, and fetches the entire k-hop neighbor-

hood of v as its substructure. We also remark that there exist other optimized extraction

strategies for Ms (see details in Section 3.7).

3.5.3 Accuracy Guarantee

We now study the quality of the set H of graphs H(A ,ρ%) that are sampled by frame-

work GSRD for GAR discovery. Given desired bounds on recall and support of the

discovered GARs in the entire graph G, we show how to decide the number N of sam-

ple graphs and their sample ratios ρ% for running GSRD accordingly, and deduce the

support threshold for mining GARs from H.

Characterization. We start with an observation. As observed in [New05], real-life

graphs often have a power-law degree distribution, i.e., a small number of nodes have

much higher degree than the others. The application of GARs is analogous, i.e., a small

number of nodes are involved in the matches of patterns in most GARs. In practice,

nodes with larger degrees are more likely to be matched by the patterns of GARs. Thus

to have a high recall when mining GARs from sample graphs, we need to sample such

critical nodes as many as possible under a bound on the total number of sampled nodes.

We next formalize this observation to estimate the recall.
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Formalization. Given a GAR ϕ = Q[x̄](X → p0) and a node v in graph G, we say that

v is a pivot of ϕ and contributes to the support of ϕ in G if v appears in the pivot set

PS(ϕ,G). Here the pivot set PS(ϕ,G) of ϕ in GA is defined as Q(G,X ∧ p0, p0) (see

Section 3.3), such that the support of ϕ in G equals the cardinality ||PS(ϕ,G)||. It helps

analyse the accuracy bound below and is different from the previous notion of pivot

set defined w.r.t. a single predicate p.

Let ΣGA be the set of A-relevant GARs with support at least σ in the A-graph GA ,

and γ% be an expected recall value, i.e., we want to mine γ%×||ΣGA ||many A-relevant

GARs in ΣGA from the sample graphs. We use two variables ρmax% and ρmin% to model

the power-law distribution w.r.t. nodes and GARs. Here ρmax% (resp. ρmin%) denotes

the maximum (resp. minimum) percentage of the nodes in GA that can contribute to the

support of γ%×||ΣGA || many A-relevant GARs from ΣGA . Then the recall γ% satisfies

the following:

γ% =

(
ρmax%
ρmin%

)−∆

.

Here ∆ can be estimated by using parameter estimation methods for power-law distri-

bution, e.g., [CSN09]. Intuitively, the larger ∆ is, the fewer critical nodes can contribute

to the support of most GARs.

Moreover, for each node v sampled by GSRD in the first phase and any A-relevant

GAR ϕ with supp(ϕ,GA) ≥ σ, v ∈ PS(ϕ,GA) if and only if v ∈ PS(ϕ,Hv). Here Hv

denotes the substructure of v extracted via BFS, i.e., the entire k-hop neighborhood of v.

When the ML model MA used for deducing GA is accurate, the A-graph GA in the

analyses below can be replaced by graph G.

Accuracy bound. Denote by VA the node set of the A-graph GA , and by VH the set

of nodes sampled by GSRD as pivots in each sample H(A ,ρ%), respectively. We have

the following.

Theorem 3.1: For an A-graph GA , an expected recall value γ%, support threshold

σ for required A-relevant GARs ΣGA in GA , and a constant ε ∈ (0,1), if the support

threshold for A-relevant GARs is σ′ =
⌈ ||VH ||
||VA ||σ(γ%)1/∆ +1

⌉
in sample graphs, then af-

ter creating a set H of N=
⌈

lnε /

(
1− exp(− (γ%)1− 1

∆

(
||VH ||σ(γ%)

1
∆−||VA ||σ′

)2

3||VH ||||VA ||σ )

)⌉
sample

graphs by GSRD with BFS as substructure extraction strategy, recall(ΣH ,ΣGA ,σ)≥ γ%

with probability 1− ε. 2

Proof: We prove this theorem in two steps: (1) when discovering GARs with the com-
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puted support threshold σ′ in a sample graph deduced via GSRD, recall(ΣH ,ΣGA ,σ) is

no smaller than γ% with probability px; and (2) after mining GARs from N =
⌈ ln(1−ε)

ln(1−px)

⌉
sample graphs deduced via GSRD in the same setting, the probability reaches 1− ε.

(1) We first verify probability px. Let Xi be the number of A-relevant GARs ϕ in ΣGA

such that (a) ϕ can be found from the sample graph, and (b) the i-th node vi sampled

from GA is in PS(ϕ,GA). As the substructure Hvi extracted by GSRD via BFS includes

all the information for GAR discovery, the support of ϕ in the sample graph could in-

crease when vi is sampled from GA . Then after randomly sampling ||VH || nodes from

GA in the first phase of GSRD, the percentage of required GARs in ΣGA that can be

discovered from the sample graph is X = X1/||ΣGA ||+ · · ·+X||VH ||/||ΣGA ||. Here we

normalize the number Xi of discovered GARs in the range 0 to 1, since we will bound

the probability px using the Chernoff bound [MU05], which can only be applied to

variables distributed in [0,1] (see below). In addition, we can verify that the expected

value E(X) of X is bounded by ||VH ||
||ΣGA ||

× (γ%)||ΣGA ||σ
(ρmax%)||VA ||×ρmin%= ||VH ||

||VA ||σ(γ%)1+1/∆, where

(a) the second term is the average number of GARs to which a sampled node v con-

tributes; note that (γ%)||ΣGA || is the minimum number of GARs needed to ensure that

recall(ΣH ,ΣGA ,σ) is at least γ%, (γ%)||ΣGA ||σ is the minimum number of nodes needed

to ensure that (γ%)||ΣGA || many GARs can be discovered from the sampled graph, and

(ρmax%)||VA || is the maximum number of nodes that contribute to the support of an A-

relevant GARs; (b) the third term ρmin% approximates the probability that a sampled

node is in PS(ϕ′,GA) for some GAR ϕ′ in ΣGA ; and (c) the numerator of the first term

is the number of sampled nodes which derives the average number of required GARs

that can be discovered from the sampled data after multiplying with the following two

terms; the denominator of the first term makes the entire expression as the percentage

of required GARs in ΣGA that can be discovered from the sample graph. The expec-

tation of X is no less than the above expression, since the numerator of the second

term is picked as its minimum possible value, the denominator of the second term is

its maximum possible value, and the third term approximates its minimum probability

value. That is, the lower bound of the expectation of variable X is ||VH ||
||VA ||σ(γ%)1+1/∆.

Then using the Chernoff bound [MU05], we have the following:

Pr[X≥(1+ εx)E(X)]≤exp
(
− ε2

xE(X)

3

)
≤exp

(
− ε2

x ||VH ||σ(γ%)1+1/∆

3||VA ||

)
.

When X < (1+ εx)E(X) with probability 1− px, we have that

px = exp
(
− ε2

x ||VH ||σ(γ%)1+1/∆

3||VA ||

)
; then εx =

√
− 3||VA || ln px
||VH ||σ(γ%)1+1/∆

. On the other hand, X
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should be greater than γ%×σ′ (i.e., the minimum total support of discovered GARs)

with high probability; since we have previously obtained the lower bound of X as
||VH ||
||VA ||σ(γ%)1+1/∆, thus we set γ%×σ′ = (1+εx)

||VH ||
||VA ||σ(γ%)1+1/∆ and let the support

threshold σ′ =
⌈ ||VH ||
||VA ||σ(γ%)1/∆ + 1

⌉
. Putting these together, we conclude that px =

exp
(
− (γ%)1− 1

∆

(
||VH ||σ(γ%)

1
∆−||VA ||σ′

)2

3||VH ||||VA ||σ

)
.

(2) After discovering from a single sample graph in H, the recall reaches γ% with prob-

ability px. Then if we discover from N sample graphs, the corresponding probability

becomes 1− (1− px)
N = 1−ε. Thus N = dlog1−px

εe=
⌈ lnε

ln1−px

⌉
, and N is an integer.

2

Remark. (1) Note that the percentage of ||VH || in ||VA || provides a guideline to determine

the sample ratio ρv%, guided by Theorem 3.1. (2) One can verify that for each GAR ϕ

in ΣH that has support σ′ in sample graph H(A ,ρ%) of H, ϕ has support of at least σ′

in the entire graph G, since each H(A ,ρ%) is essentially a subgraph of G.

Example 3.9: Consider an A-graph GA deduced from the citation network DBLP

[Sch], which includes ||VA ||= 16M nodes. Suppose that the expected support threshold

σ is 50 on GA , we need a recall of 90% w.r.t. support 50, and ρmin%
ρmax% = 0.09. By

Theorem 3.1, we can see that to achieve this expected recall value, it suffices to create

N = 9 sample graphs by GSRD such that ||VH || = 4.8M, and set the support threshold

σ′ = 3 for sample graphs. 2

3.6 Parallel Discovery

In this section, we develop a parallel algorithm for discovering GARs from the sample

graphs in H, with the parallel scalability.

Sequential mining. To see the challenges inherent to GAR discovery, we start with a

sequential algorithm for mining GARs, denoted as GARMine, by extending the GFD

discovery algorithm of [FHLL20]. GARMine processes the N sample graphs in H one

by one to mine GARs and returns their union. On each sample graph, it interleaves

levelwise pattern expansion and dependency expansion to generate patterns Q and de-

pendencies X→ p0 for candidate GARs, respectively, following [FHLL20]. Apart from

the constant and variable predicates of GFDs, here dependency expansion also includes

new ML, attribute and edge predicates in GARs (see details shortly). GARMine returns
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those candidate GARs having support above the threshold σ′, which is determined by

Theorem 3.1.

GARMine takes exponential time in the worst case due to graph homomorphism

needed in GAR validation (cf. [GJ79]). To speed it up, we parallelize the discovery

process. To measure the effectiveness of the parallelization, we review the notion of

parallel scalability.

Parallel scalability. We adapt the parallel scalability of [KRS90] to characterize the

effectiveness of parallel algorithms for GAR discovery. Denote by Tseq(|H|,k,σ′) the

worst-case cost of a sequential GAR discovery algorithm A. Given a set H of sample

graphs, support threshold σ′ and integer k, A mines minimum GARs from H such that

each GAR has at most k pattern nodes and a support at least σ′ in the samples. We say

that a parallel algorithm Ap for GAR discovery is parallelly scalable relative to A if

with n processors,

Tpar(|H|,k,σ′,n) = O
(Tseq(|H|,k,σ′)

n

)
,

where Tpar(|H|,k,σ′,n) denotes the worst-case parallel runtime of Ap. Intuitively, par-

allel scalability measures the speedup over a yardstick sequential algorithm A by par-

allelization. A parallelly scalable Ap “linearly” reduces the runtime of A when n in-

creases.

The main result of this section is the following.

Theorem 3.2: There exists an algorithm ParGARMine for GAR discovery that is

parallelly scalable relative to GARMine. 2

Proof: Observe that due to the pattern matching for validating candidate GARs, se-

quential GARMine takes O(NF̀ q|H(A ,ρ%)|`q) time to discover GARs having patterns

with `q nodes from samples. Here F̀ q denotes the number of candidates GARs with `q

pattern nodes. Hence it suffices to prove that the parallel cost incurred by ParGARMine

is in O(NF̀ q|H(A ,ρ%)|`q/n).

By adopting the workload balancing strategy of [FHLL20], parallel matching of

candidate patterns with `q nodes in ParGARMine takes O(F̀ q |H(A ,ρ%)|`q/(n/N)) =

O(NF̀ q |H(A ,ρ%)|`q/n) time. Since the resulting matches are also evenly distributed

across processors, transmitting edges for validating edge and ML predicates can be

done in O(NF̀ q|H(A ,ρ%)|`q/n) time. From these the parallel scalability of ParGARMine

relative to GARMine follows.
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Although ParGARMine inspects N sample graphs H(A ,ρ%), it is still faster than

parallel GAR discovery on the entire A-graph GA , especially when mining GARs with

large patterns. Indeed, when N ≤ ( |GA |
|H(A ,ρ%)|)

`q , the parallel cost for validating a can-

didate GAR with `q pattern nodes is O(N|H(A ,ρ%)|`q/n) , which is smaller than

O(|GA |`q/n), the cost in processing the entire GA . 2

Algorithm 3.2: ParGARMine

Input: A set H of N sample graphs H(A ,ρ%), processors P1, . . . ,Pn, positive integer k

and support threshold σ′.

Output: A set ΣH of all minimum GARs in H such that each has at most k pattern nodes

and a support at least σ′ in H.

1 distribute the sample graphs to n processors;

2 ΣH ← nil; `q← 1; Q 0← nil;

3 while `q ≤ k2 do

4 Q `q ← QExpand(`q,Q `q−1);

5 parallel matching of patterns in Q `q ; adjust Q `q w.r.t. σ′;

6 compute the maximum size `m
p for preconditions w.r.t. Q `q ;

7 `p← 0; Σ−1← nil;

8 while `p ≤ `m
p do

9 Σ`p ← PExpand(`p,Σ
`p−1,Q `q);

10 parallel validation of the GARs in Σ`p ;

11 extend ΣH with the verified GARs w.r.t. σ′ ;

12 `p← `p +1;

13 `q← `q +1;

14 return ΣH ;

Parallel mining. Algorithm ParGARMine conducts levelwise expansion of patterns

and dependencies simultaneously at a designated coordinator. It validates candidate

patterns and GARs in parallel with n workers, since the expensive subgraph matching

in validation dominates the cost of the discovery process. It extends parallel GFD dis-

covery [FHLL20] by (a) partitioning multiple sample graphs, (b) supporting attribute,

edge and ML predicates, and (c) applying new pruning strategies during the expan-

sions.

The details of ParGARMine are shown in Algorithm 3.2. In contrast to discover-

ing rules from a single graph, it employs n workers to mine a set ΣH of GARs from

the set H of N sample graphs, such that each GAR in ΣH has support at least σ′ and

at most k pattern nodes. It starts by distributing the N sample graphs to n workers
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(line 1). It evenly allocates computing resources to sample graphs, such that each sam-

ple is assigned a distinct set of b n
N c processors except one that takes all the rest. We

fragment and distribute each sample graph across b n
N cworkers via vertex-cut partition-

ing [ZWL+17].

Following the BSP model [Val90], ParGARMine next works in k2 rounds to gener-

ate and validate GARs (lines 3-13). As k pattern nodes result in at most k2 edges, each

one of the k2 rounds intends to find GARs with a specific number of pattern edges in

[1,k2].

Pattern expansion. In each round `q, ParGARMine expands patterns at level `q by

creating a set Q `q of patterns with `q edges via procedure QExpand at coordinator

Pc (line 4). QExpand generates Q `q by expanding each pattern in Q `q−1 with a sin-

gle new edge; initially the edges in Q 1 should conform to the triplets of predicates

in application A if they are available (Section 3.4). ParGARMine then computes the

matches of such patterns in sample graphs using the parallel pattern matching strategy

of [FHLL20]; it prunes from Q `q all patterns that have less than σ′ matches in each

sample, since they cannot appear in GARs that have support at least σ′ (line 5).

Dependency expansion. Given patterns Q `q , ParGARMine expands dependencies X→
p0 at level `p; it combines them with Q `q to produce candidate GARs, in `m

p iterations

(lines 8-12). Here `m
p denotes the maximum number of predicates in X , estimated by

combinations of possible predicates w.r.t. the pattern nodes in Q `q (line 5). In each

iteration `p, ParGARMine calls procedure PExpand at the coordinator to compute a set

Σ`p of GARs, such that each GAR in Σ`p has a pattern from Q `q and `p predicates in its

precondition X (X = /0 when `p = 0) (line 9), where X is expanded from a counterpart

in GARs Σ`p−1 with one new predicate. To speed up the process, PExpand associates

each pair of nodes with a set of predicates that they satisfy, similar to the evidence sets

for discovering DCs [LHIK20].

ParGARMine validates GARs in Σ`p by extending the parallel method of [FHLL20].

It adds to the set ΣH those GARs that meet support bound σ′ (lines 10-11).

Handling edge and ML predicates. In dependency expansion, procedure PExpand also

generates possible attribute, edge and ML predicates that are unique to GARs. More

specifically, for each candidate pattern Q and attribute dependency X → p0, PExpand

expands X with x.A, l(x,y) or M (x,y, l) for all x and y in Q, l in the label set Γ, A in the

attribute set ϒ, and ML classifiers M if applicable. Recall that A-graph GA already

incorporates edges predicted by ML model (Section 3.4); hence when discovering A-
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relevant GARs, we can treat ML predicates and edge predicates in the samples of the

A-graph. All such expanded dependencies will be validated.

For GFDs, the parallel validation is only conducted on matches computed for pat-

terns Q `q [FHLL20]. In contrast, due to the edge and ML predicates introduced by

GARs, we have to inspect the existence of additional edges, which may reside at dif-

ferent workers. Thus, if a match h at processor Pi involves two nodes v and v′ and if

we need to check the existence of an edge e from v to v′ together with h, ParGARMine

transmits e to Pi from other workers if it exists before the local checking, using an

additional superstep of BSP.

Cover. We revise the parallel implication checking algorithm for GFDs [FHLL20] to

compute the cover Σc
H of GARs ΣH returned by ParGARMine, based on a characteriza-

tion of GAR implication [FJL+20].

Example 3.10: Consider GAR ϕa of Example 3.1 and suppose that its consequence

predicate is covered by application A . By the number of pattern edges, ParGARMine

can find ϕa in round 2k0 +2. More specifically, after generating the pattern Qa in this

round, it validates combinations of the predicates of Qa to mine dependencies, includ-

ing the one of ϕa that consists of 2k0 variable predicates, k2
0 ML predicates and an edge

predicate colleague(x0,x′0). Note that the ML predicates predict similar profile links,

which have been added to the A-graph in graph reduction. ParGARMine performs

similarly in checking the ML and edge predicates of ϕa, i.e., inspecting similar profile

and colleague links, with necessary communication when the links and matches of Qa

are not at the same worker. 2

Pruning strategies. To reduce unnecessary expansion of patterns and dependencies

that cannot yield minimum GARs w.r.t. support threshold σ′, procedures QExpand and

PExpand employ new pruning strategies in addition to those adopted in GFD discov-

ery [FHLL20].

(a) Incremental dependency expansion. Given a pattern Q′ expanded from patterns Q,

PExpand only generates those dependencies X ′ → p′0 such that there exists X → p0

at a prior level whose predicates are covered by X ′ and p′0, and the support of Q[x̄](X

→ p0) exceeds the bound σ′. That is, ParGARMine maintains the valid dependencies

in the prior levels to prevent from producing dependencies starting from scratch at the

current level.
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(b) Interleaved pruning. If the support of GAR Q[x̄](X → p0) is less than σ′ for all

X → p0, then PExpand only expands Q with edges having new nodes when Q is a

path. This pattern pruning makes use of the information obtained during dependency

expansion.

Both strategies leverage the anti-monotonicity of the support of GARs (Lemma 3.1).

Without it, the algorithm easily expands a GAR ϕ′ from ϕ such that ϕ� ϕ′ but the sup-

port of ϕ cannot reach σ′, which has already been verified in prior levels, i.e., ϕ′ is

useless.

Analyses. To see that ParGARMine is correct, observe the following. (a) The parallel

matching method of [FHLL20] ensures that the matches of candidate patterns com-

puted at n processors are the same as that deduced sequentially. (b) All the data related

to validating edge and ML predicates in a GAR is sent to the same processor in advance.

3.7 Experimental Study

Using real-life and synthetic graphs, we experimentally evaluated (1) the effectiveness

of application-driven graph reduction, (2) the quality of sample graphs produced by

GSRD, (3) the speedup of GAR discovery with sample graphs, (4) the (parallel) scala-

bility of algorithm ParGARMine, (5) the quality of the discovered GARs, and conducted

(6) an ablation study for discovery.

Experimental setting. We start with the experimental setting.

Datasets. We used four real-life graphs: (1) DBLP [dbl21a], a real-life citation net-

work with 0.2M nodes and 0.3M edges, where the attributes constitute bibliographic

records of research papers in computer science; (2) YAGO [SKW07], a knowledge

graph with 3.5M nodes and 7.4M edges; (3) DBpedia [dbp21a], a larger knowledge

graph with 5.2M nodes and 17.5M edges; its attribute values indicate various types

of facts related to the entities (nodes); and (4) IMDB [IMD21], a graph database that

includes attributes for the information of movies, directors and actors, having 5.1M

nodes and 5.2M edges.

We also designed a graph generator to evaluate the scalability of the methods. The

synthetic graphs have up to 7M nodes and 21M edges, with labels, attributes and values

drawn from 70 symbols.

Algorithms. We implemented the following, all in C++. (1) The graph reduction
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method (Section 3.4). (2) Various graph sampling approaches GSRDy+z in frame-

work GSRD (Section 3.5), where y denotes the strategy of GSRD for sampling pivots,

including CA (cluster-assisted, where pre-trained Glove word embeddings [PSM14]

or DGI representations [VFH+19] are used as node features) and LC (locality-aware);

and z denotes the strategy for extracting substructures, including OB (BFS), WB (BFS

with bounded width) and RW (random walk). For example, GSRDCA+RW samples

pivots via clustering with word embeddings (by default) and extracts substructures via

random walk. Here WB is a variant of OB, which takes an additional bound on the

number of neighbors that each BFS step explores. It strikes a balance between the

size and diameter of the substructure S, i.e., the longest shortest distance between any

two nodes in S, and helps us mine GARs with patterns of a large diameter. RW also

takes two parameters: the depth k of random walk, and the size of substructure. It

performs random walk from a sampled pivot with at most k steps, to find substructure

subject to the specified size bound. RW is able to extract irregular substructures for

pivots. (3) The parallel GAR discovery algorithm ParGARMine (Section 3.6). (4) A

variant ParGARMinew of ParGARMine that discovers GARs from the entire graphs in

parallel. (5) The parallel GFD discovery algorithm DisGFD [FHLL20], for efficiency

comparison.

We also implemented three other baseline graph sampling strategies, also in C++.

(6) UniNode uniformly samples nodes, controlled by a given sample ratio of the nodes.

It returns the subgraph induced by all the selected nodes as a sample graph. (7)

UniEdge, which extracts edges from graphs in a uniform manner to build samples,

guided by a sample ratio. (8) PRA, which samples paths with a linear path ranking

model to select nodes that are mostly related to the query nodes [LMC11]; we picked

the query nodes by uniform node sampling, preserving all edges connected to the sam-

pled nodes. In addition, we compared with (9) AnyBURL [MCRS19] for efficiency in

mining Horn rules.

ML models. We used the SimplE link prediction model [KP18] as the ML classifier in

GARs due to its high accuracy and efficiency. To train SimplE, we adopted the default

configurations in [KP18], and took 85% and 15% of each graph as the training set and

validation set, respectively. The trained model is used to recover missing links.

The LSTM model used for graph reduction was implemented as [MKS18] with its

default training configuration and two 650 wide layers. We targeted the discovery of

A-relevant GARs for a specific application A . By default we considered 7 predicates

in a single application A .
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Graphs
top-3 top-7 top-10

Reduc. Recall Reduc. Recall Reduc. Recall

DBLP 57% 58% 53% 67% 50% 100%

IMDB 71% 71% 67% 100% 63% 100%

YAGO 98% 73% 96% 83% 86% 91%

DBpedia 94% 78% 92% 100% 90% 100%

Table 3.2: Effectiveness of ML-based graph reduction

The algorithms were deployed on a cluster of up to 16 machines connected by

10Gbps links. Each machine has 2 processors powered by Intel Xeon 2.2 GHz and 64

GB memory. All the experiments were repeated 5 times and the average is reported

here.

Experimental results. We next report our findings.

Exp-1: Effectiveness of application-driven reduction. We first evaluated the per-

formance of our graph reduction strategy. The ML-based method selects the top-m

frequent label triplets from a candidate set generated by MA , which are most closely

relevant to the application A (Section 3.4). We studied the impact of m on the effec-

tiveness of graph reduction by varying m from 3 to 10. We fixed the upper bound k = 6

for pattern nodes, and set the same support threshold as 1000 when mining GARs from

both the graphs G and A-graphs GA deduced by the reduction. The results on the four

real-life graphs are reported in Table 3.2. We find the following.

(1) The graph reduction ratio (reduc.), measured as the ratio of removed data to the en-

tire graph, i.e., |G|−|GA |
|G| , becomes smaller when m increases, as expected since all data

conforming to the m triplets is preserved in A-graph GA . In particular, the reduction is

very effective for YAGO and DBpedia, with an average ratio of 94% when m = 7. This

is because that most data in these comprehensive knowledge graphs is irrelevant to a

given specific application.

(2) Over the four real-life graphs, the recall of GARs discovered from GA is on average

87% (resp. 98%) when m is 7 (resp. 10).

(3) Compared to mining GAR from entire graphs G, on average the discovery of GARs

from GA achieves a speedup of 7.6 times when m = 7, using the parallel algorithm

ParGARMinew (not shown). In addition, such GA can be constructed in 320 seconds

on average.

These verify the effectiveness of the ML-based graph reduction. For all the other
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Figure 3.4: Performance evaluation
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experiments, m was set to be 7 by default.

Exp-2: Effectiveness of graph sampling. We next evaluated the quality of sample

graphs H(A ,ρ%) deduced by GSRD. Varying the sample ratio ρ%, we assessed the

impact of different (a) pivot sampling policies, (b) substructure extraction methods,

and (c) the number N of sample graphs on the recall of GARs discovered. The support

thresholds σ on A-graphs GA were set as 1000 in these experiments. In addition, when

enforcing BFS with bounded width (resp. random walk) for substructure extraction,

the bound on width (resp. size of substructure) was set as 3 (resp. 30) by default.

(1) Impact of pivot sampling. Fixing k = 8 and N = 1, we varied ρ% from 1% to 10%

on DBLP and IMDB. Here the support thresholds σ′ for discovery in sample graphs

were determined by following the formula in Theorem 3.1, which is unaffected by the

specific substructure extraction strategy and hence is applicable to both WB and RW

as well. As shown in Figures 3.4(a) and 3.4(b), (a) GSRDCA+RW consistently performs

the best among all the methods. (b) It outperforms GSRDLC+RW (resp. GSRDLC+OB)

by 24% (resp. 35%) on average in the recall of the discovered GARs, validating the

need of node clustering in sampling pivots. We also find that clustering-assisted sam-

pling exhibits little difference with different types of node features. It means that word

embeddings, i.e., node attributes, suffice to distinguish application-related pivots.

(2) Impact of substructure extraction. In the same setting, Figures 3.4(c) and 3.4(d)

report the recall of GARs mined from the samples deduced by different strategies from

DBLP and IMDB, respectively. We can see that (a) when combing clustering with var-

ious approaches for substructure extraction, GSRDCA+RW still offers the highest recall

and GSRDCA+WB performs better than GSRDCA+OB. (b) On DBLP, GSRDCA+RW is

at least 8 (resp. 6 and 2.9) times more accurate than UniNode (resp. UniEdge and

PRA), when ρ% = 5%. We examine the substructures extracted by RW and find that

the semantics related to them, e.g., node labels, is more diversified than those ex-

tracted by OB and WB, making it possible to find more GARs. That is, while the

theoretical bounds (Theorem 3.1) are proved for GSRDCA+OB, GSRDCA+RW achieves

better bounds in practice since OB and WB introduce a bias towards high-degree

nodes [KMT11].

The results on YAGO and DBpedia are consistent (not shown).

(3) Impact of N. Using the same k, σ and range of ρ% as in Exp-2(1), Figures 3.4(e)

to 3.4(h) report the results with different number N of samples deduced from the

real-life graphs. Here we only tested GSRDCA+RW for framework GSRD, which has
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been verified to be the best combination in Exps (2)(a) and (2)(b) and this also holds

when N>1. We find that (a) all sampling methods perform better with more sample

graphs, as expected. (b) GSRDCA+RW on average beats UniNode (resp. UniEdge and

PRA) by 8.0 (resp. 5.3 and 4.3) times when ρ% varies from 7% to 10% and using 2

samples, which is consistent with Figures 3.4(a) to 3.4(d). (c) The recall offered by

GSRDCA+RW “converges” fast as N increases. For instance, on DBpedia, the recall

already reaches 92% when N=2 and ρ%=10%. These validate the effectiveness of

GSRD for GAR discovery.

We also find that if GSRDCA+RW is applied on original graphs with k = 6, N = 2

and ρ% = 10%, then an average recall of 72% is achieved (not shown). Compared

with Exp-1, this suggests graph reduction contributes more to a better accuracy of

GAR discovery.

Exp-3: Efficiency. Using n = 8 machines, we tested the efficiency of ParGARMine in

finding GARs from sample graphs, and compared it with ParGARMinew and DisGFD

that operate on the entire graphs. We took the sample graphs deduced by GSRDCA+RW

from IMDB, YAGO and DBpedia with sample ratio 10% and N = 2; the support thresh-

olds were decided along the same lines as that in Exp-2(1). Figures 3.4(i) to 3.4(k)

report the runtime for mining GARs with different upper bounds k for patterns. The

corresponding time for building samples is on average 198 seconds. We find the fol-

lowing.

(1) ParGARMine constantly outperforms both ParGARMinew and DisGFD, although

GARs include edge, attribute and ML predicates beyond GFDs. ParGARMine is on

average 60.6 (resp. 10.5) times faster than ParGARMinew (resp. DisGFD). DisGFD is

faster than ParGARMinew since mining edge and ML predicates of GARs has to check

additional edges beyond the matches of patterns.

(2) It is feasible for ParGARMine to discover GARs with large patterns. From N = 2

sample graphs of YAGO (resp. IMDB), it takes ParGARMine 285 (resp. 492) seconds

to find GARs with k = 10, while ParGARMinew cannot terminate in 7 (resp. 16) hours.

Note that the deduced A-graph of IMDB is large.

(3) When ParGARMine is used to discover GFDs only, it outperforms DisGFD by 52.7

times when using N = 2 sample graphs.

The results on DBLP are consistent and hence not shown.
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(4) With 8 machines, we also compared the runtime of ParGARMine with AnyBURL

in mining 100 Horn rules from DBLP and DBpedia. Here we target finding 100 rules

with support above 1000 and path length of at most 3, since AnyBURL cannot return

the complete set of rules. We find that ParGARMine is 3.0 (resp. 12.3) times faster

than AnyBURL in Horn rule discovery on DBLP (resp. DBpedia).

Exp-4: Scalability. We tested the scalability of GAR discovery.

(1) Parallel scalability. Fixing k = 6 and employing the same ρ%, σ and N as in Exp-

3, we varied the number n of machines used from 4 to 16. As reported in Figures 3.4(l)

to 3.4(o) on the four real-life graphs, respectively, (a) ParGARMine and ParGARMinew

are on overage 3.2 and 3 times faster, respectively, i.e., they scale well with n. (b)

ParGARMine outperforms ParGARMinew by 58.3 times on average. These empiri-

cally verify Theorem 3.2 and further show the effectiveness of sampling-based GAR

discovery.

(2) Larger graphs. Fixing k = 6, n = 8, σ = 1000, ρ% = 10% and N = 2, we varied

the size |G| = |V |+ |E| of synthetic graphs G from 1.6M to 28M. The results in

Fig. 3.4(p) show that sampling-based GAR discovery can scale with large graphs, e.g.,

when |G|= 28M, it takes 735 seconds to mine GARs from two sample graphs.

Exp-5: Effectiveness of GARs. We manually checked the GARs discovered from

real-life graphs. Below are some example GARs with support above 1000. Their graph

patterns are shown in Fig. 3.5.

(1) In the samples of DBLP, we find a GAR ϕc = Qc[x̄c](M (x8,x9,similar topic)→
cite(x1,x8)). The GAR states that if all of the papers x2, . . ., x7 cite both x8 and x9,

x1 cites x9 (pattern Qc), and if x8 and x9 are about similar topics (determined by ML

predicate M (x8,x9,similar topic)), then x1 also cites x8.

(2) In IMDB, a GAR ϕd is Qd[x̄d](y1.language= y2.language∧y1.language= y3.language

∧M (y1,y2,same series)∧M (y2,y3,same series)→ M (x2,y3,create)). It says that
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the ML classifier M should predict that person x2 is the creator of movie y3 if person

x1 (resp. x2) is the actor (resp. creator) of both movies y1 and y2, x1 acts in y3, and if

all movies have the same language and are from the same series (determined by ML

classifier). The GAR indicates that it is possible to interpret ML models “recursively”

with both logic conditions and those ML models that we know how to interpret.

(3) In the knowledge graph DBpedia, a simple discovered GAR is ϕe = Qe[x̄e]( /0→
belong to(x1,y1)). It indicates the traditional biological classification. That is, if a

directed chain is formed from x1 to y1 through class y2 and family y3 in the taxonomic

hierarchy, then organism x1 must belong to the kingdom y1.

(1) Knowledge graph completion. We first applied GARs to restore missing informa-

tion, including edges and attributes, in knowledge graphs YAGO and DBpedia. We

picked edge and attribute predicates for application A , e.g., member of(x,y), birthPlace

(x,y), award(x,y), citizenship(x,y), x.education, x.club and x.party. To evaluate the

performance, for each graph, we constructed a test set by randomly selecting 10K

application-related edges and attributes that conform to the predicates of A in the orig-

inal graph as positive samples, and picking 10K nonexistent links and attributes as

negative ones. Then we applied the GARs discovered with GSRDCA+RW and N = 2,

ρ% = 10%, σ = 1000, k = 8 and m = 7, referred to as the default setting, to clas-

sify the information in test set, i.e., whether they should be restored. F-measure

was employed as the accuracy metric, and link prediction models SimplE [KP18] and

ComplEx [TWR+16] were treated as baselines. We find that enforcing the A-relevant

GARs consistently achieves high accuracy above 0.87, and on average it beats SimplE

and ComplEx by 9.2% and 11.5%, respectively.

(2) Inconsistency detection. We also studied error detection. This experiment was con-

ducted over DBpedia, with an application A consisting of predicate same kingdom(x,y).

That is, the “kingdom” of two species should be the same under certain conditions, e.g.,

two species are in the same “class”. We randomly drew 7% of species entities from

DBpedia and changed their kingdom values, to form the test set. The A-relevant GARs

discovered with default setting were used to detect the erroneous kingdom values. We

find that such GARs perform comparably to the entire set of GFDs mined from the

same graph [FHLL20], with F-measure above 0.96.

Exp-6: Ablation study. Observe that Exp-1 and Exp-2 already show graph reduction

is more important for achieving high recall in GAR discovery. We next preformed
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Graphs No graph reduction No sampling Full method

DBpedia 31.3s 1663.0s 8.0s

YAGO 117.6s 541.6s 18.6s

Table 3.3: Ablation study on the efficiency of GAR discovery

an ablation study using DBpedia and YAGO to investigate how each stage influences

the efficiency. Fixing k = 3, n = 8, σ = 1000, ρ% = 10% and N = 1, we omitted

one of graph reduction and sampling stages. As shown in Table 3.3, the discovery

time significantly increases when sampling is left out, indicating that sampling is more

critical for improving efficiency.

Summary. We find the following. (1) The application-driven graph reduction method

is effective. It reduces the graphs by 76% on average, while achieving recall of 85% for

discovered A-relevant GARs. (2) The sample graphs deduced by framework GSRD are

of high quality. On 4 such samples with sample ratio 10%, more than 94% of the GARs

in the A-graphs GA can be mined, with support at least 1000 in GA . (3) The sampling-

based discovery scheme is efficient. It speeds up mining from the entire graphs by

60.6 times on 2 sample graphs with sample ratio 10%, while retaining recall above

91%. It speeds up algorithm DisGFD of [FHLL20] by 52.7 times for GFD discovery.

(4) Algorithm ParGARMine is parallelly scalable: on average it is 3.2 times faster when

n varies from 4 to 16.

3.8 Novelty and Contributions

The rule discovery methods proposed in this Chapter differ from the prior work on

graph rule discovery as follows. (1) We propose application-driven reduction and

graph sampling strategies with accuracy guarantee to reduce excessive rules and im-

prove efficiency, as opposed to mining rules from the entire graphs. In light of these,

the problem and even the notion of support are different. (2) We study the discovery of

GARs from general property graphs, without requiring to encode graph data in RDF as

knowledge graph rule learners [MCRS19, GTHS13, CWG16, OMP18, Coh16]. These

rule learners may exhibit poor scalability on RDFs that are transformed from property

graphs, since their node attributes often yield a large number of RDF triples. (3) We

discover GARs with ML predicates and graph patterns of generic subgraphs. In con-

trast, no prior methods consider ML predicates, and most of them study path patterns

only.
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To the best of our knowledge, in this Chapter, we provide the first accuracy guaran-

tee on recall and support for sampling-based discovery of graph rules, i.e., the percent-

age of useful and frequent rules w.r.t. some support threshold that can be mined from

samples of bounded sizes. Different from mining relational rules, GAR discovery has

to inspect not only dependencies on attributes, but also graph patterns. Thus, neither

the relational sampling techniques nor their quality analyses can be applied to GARs

mining.





Chapter 4

Towards Event Prediction in Temporal

Graphs

This Chapter proposes a class of temporal association rules, denoted by TACOs, for

event prediction. Event prediction is to predict a real-world occurrence that relates to a

particular topic and will take place at a specific time [Zha21]. Events range from large

scale (e.g., disease outbreaks and finance crisis), to medium-scale (e.g., crime incidents

and system failures), to small-scale (e.g., authentication and fraud detection). Event

prediction is important in a variety of domains such as disease control, transportation

management, cybersecurity and business intelligence.

To illustrate, consider our familiar online recommendation, a special case of event

prediction (“sale events”), to recommend items to users. Conventional recommenda-

tion models are mainly categorized into collaborative filtering (CF) by learning from

user-item interaction history, content-based (CB) by assessing the similarity of content

features of users and items, and hybrid by integrating the two [ZYST19]. In the real

world, however, e-commerce companies often monitor changes to transaction graphs,

and employ rules to catch users’ temporal interests and detect fraudulent behaviors.

Example 4.1: Below are real-life example rules taken from daily practice of an e-

commerce platform that serves billions of people.

(1) If a movie is nominated for a film award and if a user watches the movie within

two weeks after its nomination, then recommend the movie to the friends of the user

between the nomination date and the date of the award ceremony. Here the nomination

indicates a “change” that triggers the recommendation in a time interval. Such cases

are beyond conventional CF and CB models.

89



90 Chapter 4. Towards Event Prediction in Temporal Graphs

(2) If a user searched “barbecue” at least m times in June, then recommend meat to the

user in July and August.

Apart from sales promotion and item recommendation, changes to temporal graphs

are also important for predicting general events.

(3) If at least m cases of an infectious disease z are reported in an area within the past

2 weeks, then offer vaccines for z to the people there.

(4) If device M is used to access k accounts only once within a short period of one hour,

and if each of these accounts has been regularly accessed by other devices at least m

times in the past month, then M is likely committing account-takeover attacks. 2

Challenges. No matter how important, event prediction is challenging. While rules

have been studied for graphs, e.g., graph functional dependencies (GFDs) [CP12],

graph association rules (GARs) [FJL+20] and Horn rules [GTHS13], they are defined

on static graphs and cannot express temporal changes. There are several open ques-

tions. How can we specify patterns of changes to graphs and temporal interests of users

in logic rules? Can we improve the accuracy of event-prediction ML models with tem-

poral conditions, and interpret their predictions? How expensive is it to reason about

rules with temporal conditions and embedded ML models? How can we efficiently dis-

cover such rules from real-life graphs? Is it possible to scale with large graphs when

we apply the rules to predict events? Take rule discovery from these challenges as an

example. Graph rules are often defined with a graph pattern [FJL+20, CP12]. We find

that conventional levelwise algorithms take days to mine temporal rules with patterns

of more than 5 nodes. Even for simpler GFDs with patterns of 6 edges, it takes 1.5

hours on graphs with 32M nodes and edges when using 8 machines [FHLL20].

In order to tackle these issues, we propose a class of logic rules, referred to as

TACOs (TemporAl event prediCtiOn rules), that enrich event prediction ML models

with temporal conditions and change patterns (Section 4.1), establish the complexity

of reasoning about TACOs (Section 4.2), and develop a system TASTE (Section 4.3)

to (1) discover TACOs with large patterns by generative machine models in a creator-

critic framework (Section 4.4) and (2) predict events in parallel by employing the rules

(Section 4.5). Experiments on real-life and synthetic temporal graphs verify the effi-

ciency, effectiveness and scalability of our system (Section 4.6). We finally conclude

our novelty and contributions compared with previous work in Section 4.7.
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4.1 Temporal Event Prediction Rules

We firstly introduce TACOs in this section. We start with basic notations (Sec-

tion 4.1.1) and then define temporal prediction rules (Section 4.1.2).

4.1.1 Preliminaries

Assume three countably infinite sets of symbols, denoted by Γ, ϒ and Ω, for labels,

constants and timestamps, respectively. We denote a time window by τ, which is [t1, t2]

for timestamps t1 and t2 (t1 ≤ t2).

Temporal graphs. A temporal graph is specified as G=(V,E,L,T,FA), where (a) V is a

finite set of nodes; (b) E⊆V×Γ×Ω×V is the set of edges, where e=(v, l, t,v′) denotes

an edge from v to v′ that is labeled with l∈Γ and carries timestamp t=T (e)∈Ω; (c)

each node v ∈ V has label L(v) from Γ; and (d) node v carries a tuple FA(v)=(A1 =

a1, . . . ,An = an) of attributes of a finite arity, where Ai denotes a property and ai is a

constant, written as v.Ai=ai, and Ai 6=A j if i6= j.

We refer to G as a graph when it is clear from the context.

Intuitively, G is a directed labeled graph in which each edge has a timestamp

recording when it is added to G or when it is last updated, as commonly found in

transaction graphs of e-commerce companies. Note that from a node v1 to v2, there

may exist multiple edges, possibly with the same label but different timestamps. To

simplify the presentation, we specify node timestamps by attaching timestamped self-

loop edges to nodes to mark the times of node updates.

∆-patterns. A ∆-pattern is ∆Q[x̄] = (VQ, EQ, LQ, TQ, µ), where (1) VQ (resp. EQ) is a set

of pattern nodes (resp. edges); (2) LQ assigns a label in Γ to each pattern node u ∈VQ

(resp. edge e ∈ EQ); (3) TQ assigns a time window τ to each pattern edge; in particular,

one designated edge ex is given τ = [0,0] that fixes the current time; each pattern edge

carries time window [−∞,+∞] by default, unless a limited time window is assigned

by TQ; (4) x̄ is a list of distinct variables; and (5) µ is a bijective mapping from x̄ to

VQ, i.e., it assigns a distinct variable to each node in VQ. For x ∈ x̄, we use µ(x) and x

interchangeably when it is clear from the context.

Example 4.2: Figure 4.1 depicts ∆-patterns ∆Q1–∆Q4 for the cases of Example 4.1:

(1) ∆Q1 specifies the change that a movie is nominated for an award, together with

potential users, in which the designated edge ex is labeled nomination; (2) ∆Q2 depicts

that a user poses m queries about barbecue in June, where edge ex indicates the last
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query; (3) ∆Q3 shows the change of m cases of disease z found in an area w, along

with a vaccine y for z; here ex indicates the first case reported; and (4) ∆Q4 is an

abnormal pattern of account accesses, where ex is the first access edge from device x

to account y1. 2

Temporal pattern matching. A match of ∆-pattern ∆Q[x̄] in graph G is a homomor-

phism h from ∆Q[x̄] to G such that (a) for each pattern node u ∈VQ, LQ(u) = L(h(u));

and (b) for each pattern edge e=(u, l,τ,u′) in ∆Q[x̄], e′=(h(u), l, t,h(u′)) is an edge in

G and t− t∗ ∈ τ. Here t∗ denotes the current time, i.e., the timestamp of the edge in G

to which the designated edge of ∆Q[x̄] is mapped via h.

We denote by ∆Q(G) the set of all matches of ∆Q[x̄] in graph G.

Intuitively, ∆Q[x̄] is a change pattern. It monitors updates to temporal graph G. The

matches of ∆Q[x̄] in G can be computed in ∆GQ, which consists of nodes and edges

with timestamps in the range [tmin, tmax] relative to the current time t∗, and is referred to

as updates to G relative to ∆Q. Here tmin and tmax denote the earliest and latest times-

tamps specified in ∆Q[x̄], respectively. That is, ∆GQ is composed of updates (nodes

and edges added to G) in time window [t∗+ tmin, t∗+ tmax]. The updates are typically

much smaller than G. As a consequence, it is often more efficient to compute matches

of a ∆-pattern than matches of a conventional graph pattern.

4.1.2 Definition and Semantics of Rules

TACOs are defined in terms of ∆-patterns and predicates.

Predicates. Predicates p of a ∆-pattern ∆Q[x̄] have the form:

x.A | l(x,y) |M (x,y, l, t) | x.A⊕ y.B | x.A⊕ c | e1.t⊕ e2.t | e.t⊕ c,

where x,y ∈ x̄, e1, e2 and e are pattern edges of ∆Q[x̄], x.A denotes an attribute A

of pattern node x, c is a constant, l(x,y) is an edge from x to y labeled l, e.t is the

timestamp of edge e, and ⊕ is one of =, 6=,<,≤,>,≥. We write e.t ∈ [t1, t2] if e.t ≥ t1
and e.t ≤ t2. We refer to e1.t⊕ e2.t and e.t⊕ c as temporal predicates.
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In particular, M is an ML classifier for event prediction on temporal graphs; it

returns true if it predicts that the event indicated by edge l(x,y) will take place at time

t∗+ t. It can be a dynamic recommendation model e.g., SASRec [KM18], and returns

true with l = recommend to recommend item x to user y at time t∗+ t. It may be

a temporal graph completion model, e.g., RE-GCN [LJL+21b], to predict a link of

l(x,y) at time t∗+ t. We refer to M as an ML predicate.

ML models. We require the model M to work in a “transductive setting” [CAEHP+20],

in which all node and edge labels are observed in both model training and TACO dis-

covery (see Section 4.3). In this setting, M infers information between nodes with

observed labels, e.g., suggesting new links between users and items. Once the train-

ing of M and TACO discovery complete, the embeddings of the observed node and

edge labels are fixed and no new embeddings that may violate the discovered TACOs

will be introduced. Hence it is efficient to apply M for checking. This also enables

interpretation of M via the logic predicates in the discovered TACOs (see below).

Rules. A temporal event prediction rule (TACO) ϕ is defined as

∆Q[x̄](X → (p0,τ)),

where ∆Q[x̄] is a ∆-pattern, X is a conjunction of predicates of ∆Q[x̄], p0 is a predicate

of ∆Q[x̄], and τ is a time window. When p0 = l(x,y), the edge represented by p0

is predicted and is not necessarily already in ∆Q[x̄]. We refer to ∆Q[x̄], X , p0 and

X → (p0,τ) as the pattern, precondition, event and dependency of ϕ, respectively.

Intuitively, the pattern ∆Q[x̄] of ϕ monitors changes to graph G. The TACO says

that if the precondition X holds on the entities matched by ∆Q[x̄], then the event speci-

fied by p0 will take place within the time window τ. Here p0 may indicate the purchase

of an item y by a user x or outbreak of disease x in area y, etc.

Example 4.3: The rules of Example 4.1 can be expressed as TACOs.

(1) ϕ1 = ∆Q1[x̄](X1→ (recommend(y,x), [0, t1])), where X1 = /0 and t1 is a timestamp

in weeks. The TACO says that if user x1 watches movie y in 2 weeks after the nom-

ination of y for award z and if x is a friend of x1, then recommend y to x by the date

t∗+ t1 of the award ceremony. Note that the condition that user x1 watches the movie

in 2 weeks is specified by function TQ in ∆Q1 (see Fig. 4.1).

(2) ϕ2 =∆Q2[x̄](X2→ (recommend(y,x), [0,60])), where X2 is (
∧

i∈[1,m−1] ei.t < ei+1.t)∧
(
∧

i∈[1,m] ei.t ∈ [tjune, t ′june]). Here ei.t < ei+1.t ensures that searches ei and ei+1 are dis-
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tinct and tjune (resp. t ′june) indicates the date of June 1 (resp. June 30). It says that if x

searches barbecue at least m times in June (specified in X2), then recommend meat to

x in the next two months (60 days).

(3) ϕ3 = ∆Q3[x̄](X3 → (offer(y,x), [2,6])). Precondition X3 is
∧

i, j∈[1,m],i 6= j(xi.id 6=
x j.id), to enforce that the cases xi and x j are distinct. Observe that in the ∆-pattern

∆Q3, the time window [0,2] indicates that person xi contracts disease z in 2 weeks after

the current time t∗, i.e., the earliest case confimed. It says that if at least m cases of

disease z are confirmed in area w within 2 weeks and if person x lives in w, then offer

vaccine y for disease z to x in a month.

(4) ϕ4 = ∆Q4[x̄](X4→ (x.status = fraud, [0,0])), where X4 is
∧

i∈[1,k](M (x,yi,attack,

ei.t)∧ (
∧

j,l∈[1,m], j 6=l z j
i .id 6=zl

i.id)). Here M is an ML model, which suspects that x

attacked account yi at time ei.t and ei is the edge from device x to yi. The time window

[0,1] in ∆Q4 is in hours; hence [−31∗24,0] is bounded by 31 days (i.e., 31∗24 hours).

The TACO says that if device x accesses y1, . . . ,yk within one hour, ML model M
suspects them as attack behaviours, and if each yi (i∈[1,k]) has been accessed by other

m devices z1
i , . . ., zm

i in the past month, then x is likely a fraud. 2

Remark. (1) GARs [FJL+20], GTARs [NWS+17] and GERs [BBBG09a] are special

cases of TACOs. (a) GARs are TACOs when all time windows are [−∞,∞] and pre-

conditions X carry no temporal predicates; similarly for graph entity dependencies

(GEDs) [FL19] and graph pattern association rules (GPARs) [FWWX15]. We adopt a

single predicate p0 for the event in each TACO to simplify the discussion; this does

not lose expressive power compared to GARs and GEDs; this can be verified along the

same lines as [FHLL20]. (b) A GTAR can be expressed as TACOs, where each TACO

(i) has a pattern that extends the antecedent pattern P1 of the GTAR with the nodes in

its consequent pattern P2, and (ii) encodes a single edge from P2 as the event p0 with

τ = [tα, tα], where tα is the constant time interval specified in the TACO. (c) Similarly,

a GER can be encoded as a set of TACOs, one for each update indicated by its patterns

with the maximum timestamp [BBBG09a].

(2) As demonstrated by ϕ4 of Example 4.3, one can plug a well-trained ML model

M for temporal event prediction in precondition X , and enrich M with additional

temporal and logic conditions.

(3) A TACO of the form ∆Q[x̄](X → (M (x,y, l, t),τ)) interprets ML predictions with
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logic predicates (see Section 4.6 for an example).

(4) One can associate TACOs with a probability for the predicted events. However, this

would incur higher complexity (#P-hard) as indicated by probabilistic logic program-

ming [KDR+11].

Semantics. Denote by h(x̄) a match of ∆Q[x̄] in a graph G, and p a predicate of ∆Q[x̄].

We write h(µ(x)) as h(x) for pattern node x ∈ x̄, where µ is the mapping in ∆Q from x̄

to nodes in VQ.

We say that match h(x̄) satisfies a predicate p, denoted by h(x̄) |= p, if the following

condition is satisfied: (a) if p is x.A, then node h(x) carries attribute A; (b) if p is l(x,y),

then there is an edge from h(x) to h(y) labeled l; (c) if p is M (x,y, l, t), then the ML

classifier M predicts an association between h(x) and h(y) with label l at time t∗+ t;

(d) if p is x.A⊕ y.B, then attributes A and B exist at h(x) and h(y), respectively, and

h(x).A⊕h(y).B; similarly for x.A⊕c; and (e) if p is e1.t⊕e2.t, then the timestamps of

edges matching e1 and e2 have the ⊕ relationship; similarly for e.t⊕ c.

For a conjunction X of predicates, we write h(x̄) |= X if h(x̄) |= p for all p in X .

We write h(x̄) |= ϕ for TACO ϕ = ∆Q[x̄](X → (p0,τ)) if h(x̄)|=X implies h(x̄) |= p0

and p0 occurs within time window τ.

We say that graph G satisfies TACO ϕ = ∆Q[x̄](X→ (p0,τ)), denoted by G |= ϕ, if

for all matches h(x̄) of ∆Q[x̄] in G, h(x̄) |= ϕ. We say that G satisfies a set Σ of TACOs,

denoted by G |= Σ, if for all TACOs ϕ ∈ Σ, G |= ϕ, i.e., G satisfies every TACO in Σ.

Example 4.4: Consider the temporal graph G illustrated in Fig. 4.1, where each edge

is annotated a timestamp. Then G satisfies the TACO ϕ1 of Example 4.3. Observe that

there only exists a singe match h(x̄) of ∆Q1 in G: x 7→u2, x1 7→u1, x2 7→a and y7→m1.

As u2 is linked from m1 via a recommend edge with timestamp t1 in G, we know that

h(x̄) |= (recommend(y,x), [0, t1]), and G |= ϕ1 follows. 2

The notations of this chapter are summarized in Table 4.1.

4.2 Reasoning about Temporal Rules

In this section we study fundamental problems for TACOs, including the satisfiability,

implication and prediction problems. We show that although TACOs are more expres-

sive than GARs [FJL+20], these problems for TACOs are not much harder than for

GARs.
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Notations Definitions

G, ∆Q[x̄] graph and ∆-pattern, respectively

∆GQ updates to G relative to pattern ∆Q

ϕ TACO ∆Q[x̄](X → (p0,τ))

M (x,y, l, t) an ML predicate

h(x̄) a match of pattern ∆Q[x̄]

supp(ϕ,G) the support of TACO ϕ in graph G

conf(ϕ,G) the confidence of TACO ϕ in graph G

α,β,γ,δ thresholds (node, support, confidence, time window)

Table 4.1: Notations

Satisfiability. The satisfiability problem is as follows.

◦ Input: A set Σ of TACOs.

◦ Question: Does there exist a graph G such that G |=Σ and for each TACO ∆Q[x̄](X→
(p0,τ)) ∈ Σ, ∆Q has a match in G?

Intuitively, this is to make sure that the discovered TACOs have no conflicts and can

be applied to a graph at the same time.

The problem is coNP-complete for GARs [FJL+20] and Σ
p
2-complete for graph

denial constraints (GDCs) [FL19]. We show the following.

Theorem 4.1: The satisfiability problem is Σ
p
2-complete for TACOs. 2

Here Σ
p
2 denotes the class of decision problems that can be checked in NP using an

NP oracle, i.e., Σ
p
2 = NPNP. Similarly, the class Π

p
2 = coNPNP is defined (see [Pap03]

for more details). Both Σ
p
2 and Π

p
2 are in the polynomial hierarchy of complexity

theory [Pap03]. We assume w.l.o.g. that ML prediction (i.e., testing with pre-trained

M ) takes polynomial time (PTIME), as commonly found in practice.

Proof: We first show a small model property for the satisfiability problem of TACOs,

based on which we design an Σ
p
2 algorithm for the problem. After that we show that

the satisfiability problem is Σ
p
2-hard.

Small model property. We start with the following small model property: if a set Σ of

TACOs is satisfiable, then there exists a temporal graph GΣ such that its size |GΣ| ≤
4|Σ|3 and GΣ |= Σ.

Given a set Σ of TACOs, if Σ is satisfiable, then by the definition of satisfiability,

we know that there exists a temporal graph G=(V,E,L,T,FA) such that G |= Σ and for

each TACO ϕ=∆Q[x̄](X→(p0,τ))∈Σ, ∆Q has a match hϕ in G. From these we can



4.2. Reasoning about Temporal Rules 97

deduce a small graph GΣ satisfying Σ as follows: (1) we first deduce a subgraph Gs

of G by combining the match hϕ of each ∆Q from Σ; and then (2) we construct GΣ by

revising the attributes in Gs.

(1) We first build graph Gs by combining the matches hϕ. More specifically, the graph

Gs=(Vs,Es,Ls,Ts,Fs
A) is defined as follows.

(a) Vs=
⋃

ϕ∈Σ{hϕ(x)|x∈Vϕ}, where Vϕ is the set of nodes in the ∆-pattern ∆Q of TACO

ϕ, and hϕ is the match of ∆Q in G.

(b) Es=
⋃

ϕ∈Σ{(hϕ(u), l, t,hϕ(v)) | (u, l,τ,v) ∈ Eϕ, t − t∗ ∈ τ}, where Eϕ is the set of

edges in the ∆-pattern ∆Q of TACO ϕ. Note that the timestamps of these matched

edges (i.e., the values t) are also copied from G.

(c) Ls copies the labels of the nodes from G, i.e., Ls(v) = L(v).

(d) For the node attributes, we only copy the ones appearing in Σ. That is, for each

TACO ϕ=∆Q[x̄](X→ (p,τ)), match h of ∆Q in Gs, and predicate x.A, x.A⊕c or x.A=

y.B in ϕ, we define Fs
A(v1).A=FA(v1).A and Fs

A(v2).B=FA(v2).B, where v1 = h(x) and

v2 = h(y). Different from GDCs in [FL19], TACOs also contain ML predicates. Thus

we also include the attribute values that are inspected by the ML models for each node

in Gs.

We can verify that Gs |= Σ since Gs is a subgraph of G and G |= Σ.

(2) We next normalize the attributes in Gs to obtain the small model GΣ following the

techniques in [FL19]. Note that although Gs only has |Σ| many nodes at most, the

size of Gs cannot be bounded since the attributes in G may carry unboundedly large

attribute values and they are directly copied to Gs.

To obtain a small model GΣ, we normalize Gs as follows. (a) We first separate the

attribute values in Gs into numeric values (i.e., the values on which we can define the

built-in predicates =, 6=,<,≤,>,≥) and non-numeric values (i.e., the values on which

we can only enforce predicates = and 6=). (b) Then we replace numeric attribute values

in Gs with numbers chosen from the range [Nmin−|Σ|,Nmax+ |Σ|] and preserve the rela-

tive order of attribute values as in the original Gs. Here Nmin and Nmax are the minimum

and maximum numeric values appearing in Σ. (c) For those non-numeric values that

appear in Gs but not in Σ, we replace them with distinct new small values and preserve

the relationships between attribute values w.r.t. = and 6=. (d) Observe that TACOs may
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contain ML predicates M (x,y, l, t) and the attribute values they check may be changed

after the normalization above. However, we can assume w.l.o.g. that the ML model

M can return infinitely many true and false results for different nodes pairs x and y

when their attributes are taken from any dense domain, i.e., infinite output assump-

tion [FLT20]. In addition, M usually inspects a constant number of attributes only,

e.g., selecting a small number of relevant attributes before training the models [CS14].

These are guaranteed by most high dimensional ML models [Agg14]. Then it follows

that the original predictions made by model M remain intact after the attribute values

are replaced with the small ones that are carefully selected.

Denote by GΣ the graph obtained from Gs after the attribute normalization. We can

verify that there is no attribute value in GΣ with size larger than 2|Σ| and hence |GΣ| ≤
4|Σ|3. Moreover, we can show that GΣ |= Σ along the same lines as that in [FL19].

Then the small model property is proved.

Upper bound. Given a set Σ of TACOs, we develop the following Σ
p
2 algorithm to

check whether Σ is satisfiable. (1) Guess a temporal graph G such that |G| ≤ 4|Σ|3. (2)

Check whether G |= Σ; if so, return true; otherwise, reject the current guess.

The correctness follows from the small model property above. To see the com-

plexity, since checking whether G |= Σ is in NP (see Theorem 4.2), we know that the

algorithm is in NPNP = Σ
p
2 .

Lower bound. The lower bound follows from the Σ
p
2-completeness of the satisfiability

problem for GDCs [FL19]. A GDC is defined as Q[x̄](X→p), where Q[x̄] is a conven-

tional graph pattern (i.e., a ∆-pattern without time window on edges), X (resp. p) is a

conjunction of predicates (resp. a predicate) of Q[x̄] in the form of x.A⊕c or x.A⊕y.B.

One can easily verify that GDCs are a special case of TACOs, where all the pattern

edges in TACOs are assigned the time window [−∞,+∞]. Since the satisfiability prob-

lem for GDCs is Σ
p
2-complete, the satisfiability problem for TACOs is Σ

p
2-hard. 2

Implication. A set Σ of TACOs implies a TACO ϕ, denoted by Σ |= ϕ, if for all graphs

G, if G |= Σ then G |= ϕ.

The implication problem is stated as follows.

◦ Input: A set Σ of TACOs and a TACO ϕ.

◦ Question: Does Σ |= ϕ?

The implication analysis helps us remove redundant rules.

The implication problem is NP-complete for GARs [FJL+20] and Π
p
2-complete for
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GDCs [FL19]. For TACOs it is no harder than for GDCs.

Proof: Similar to the proof of Theorem 4.1, we show a small model property for the

implication problem of TACOs to prove its upper bound.

Small model property. We prove the following small model property: if for a set Σ of

TACOs, Σ 6|= ϕ, then there exists a temporal graph Gϕ such that |Gϕ| ≤ 8|ϕ|(|ϕ|+|Σ|)2

and Gϕ|=Σ but Gϕ 6|=ϕ.

Given a set Σ of TACOs and a TACO ϕ=∆Q[x̄](X → (p0,τ)), if Σ 6|= ϕ, then by the

definition of implication, we know that there exists a temporal graph G=(V,E,L,T,FA)

such that G |= Σ but G 6|= ϕ. Since G 6|= ϕ, there exists a match h of ∆Q in G such that

h |= X but h 6|= (p0,τ). Based on this, we can deduce a graph Gϕ witnessing Σ 6|= ϕ

as follows: (1) we first deduce a subgraph Gs of G from the match h; and then (2) we

construct the small model Gϕ witnessing Σ 6|= ϕ by normalizing the attributes in Gs.

(1) We first build graph Gs by using the match h. More specifically, Gs is defined as

(Vs,Es,Ls,Ts,Fs
A) with the following.

(a) Vs = {hϕ(x) | x ∈Vϕ}, where Vϕ is the node set of the ∆-pattern ∆Q of TACO ϕ.

(b) Es={(h(u), l, t,h(v)) | (u, l,τ,v) ∈ Eϕ, t− t∗ ∈ τ}, where Eϕ is the set of edges in

the ∆-pattern ∆Q of TACO ϕ. Again the timestamps of edges are copied from G.

(c) L copies the node labels from G, i.e., Ls(v) = L(v).

(d) For the attributes of the nodes, we only copy the ones appearing in Σ and ϕ. That

is, for each TACO ϕ′ = ∆Q′[x̄′](X ′→ (p′,τ′)) in Σ∪{ϕ}, match h′ of ∆Q′ in Gs, and

predicate x.A, x.A⊕c or x.A⊕y.B in ϕ′, we define Fs
A(v1).A=FA(v1).A and Fs

A(v2).B=

FA(v2).B, where v1 = h′(x) and v2 = h′(y). For each node in Gs, we also include the

attribute values that are inspected by the ML models.

We next normalize the attribute values of Gs in the same way as in the the proof of

Theorem 4.1. Denote by Gϕ the graph obtained from Gs after such normalization. One

can verify that the size of each attribute value in Gϕ is bounded by 2(|Σ|+ |ϕ|), and

moreover, |Gϕ| ≤ 8|ϕ|(|ϕ|+|Σ|)2. One can also show that Gϕ |= Σ but Gϕ 6|= ϕ along

the same lines as the argument for the implication problem of GEDs [FL19]. These

complete the proof of the small model property.

Upper bound. Based on the small model property, we develop the following Σ
p
2 al-

gorithm to check whether TACOs Σ 6|= ϕ: (1) guess a temporal graph G such that
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|G| ≤ 8|ϕ|(|ϕ|+|Σ|)2; and then (2) check whether G |= Σ but G 6|= ϕ; if so, return false;

otherwise, reject the current guess.

It is easy to check the correctness of the algorithm using the small model property.

The algorithm is in coNPNP = Π
p
2 , since G |= Σ can be verified in NP (see Theo-

rem 4.2).

Lower bound. The lower bound directly follows from the Π
p
2-complete implication

problem for GDCs [FL19]. As mentioned in the proof of Theorem 4.1, GDCs are

a special case of TACOs. Since the implication problem for GDCs [FL19] is Π
p
2-

complete, we know that the implication problem for TACOs is also Π
p
2-hard. 2

Prediction. We also study the prediction problem.

◦ Input: A temporal graph G, a set Σ of TACOs, a time window τ, a label l, and two

nodes u and v in G.

◦ Question: Does there exist edge labeled l from u to v in τ by Σ?

This is to study the complexity of temporal prediction with TACOs.

A similar problem (deduction problem) was shown NP-complete for GARs [FJL+20].

It is no harder to predict events with TACOs.

Theorem 4.2: The prediction problem is NP-complete for TACOs. 2

Proof: We start with a small model property for the prediction problem of TACOs,

from which we can provide an NP algorithm for the problem. Then we prove that the

prediction problem is NP-hard.

Small model property. We show that if an edge e labeled l from u to v is predicted

in time window τ when applying a set Σ of TACOs on a temporal graph G, then we

can construct a proof tree T with |T | ≤ |Σ|2|G|4(|G|+ |Σ|)3 witnessing the prediction.

Here (1) the root of T is (p,τ), where p is the predicate l(u,v) representing the edge e

labeled l from u to v; and (2) nodes in T are in the form of (pi,τi), indicating that (i)

the predicate pi is predicted in the time window τi by Σ, or (ii) pi always holds in G

with ti = [−∞,∞].

The proof tree T is constructed from the root (p,τ) in a top-down manner: for a

node (pt ,τt) in T , we define its children based on how (pt ,τt) is predicted in G by Σ.

More specifically, assume that (pt ,τt) is predicted using the TACO ϕ = ∆Q[x̄](X →
(p0,τ0)) from Σ and a match h of ∆Q in G; let p1, . . . , pn be all predicates in the

precondition X , and τ1, . . . ,τn be the time windows in which the instantiated predi-
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cates h(p1), . . . ,h(pn) are predicted, where h(p j) is obtained from p j by replacing the

variables x in ∆Q with the nodes h(x) in G. Then we add (p1,τ1), . . . ,(pn,τn) as the

children of (pt ,τt) to T , and label the edges with 〈ϕ,h〉. The construction stops when

each path of T reaches a node whose corresponding predicate always holds in G, i.e.,

node (p j,τ j) with τ j = [−∞,∞].

It is easy to verify that (1) when (p,τ) is predicted, we can construct a proof tree

T witnessing the prediction; and (2) the size of T is bounded by |Σ|2|G|4(|G|+ |Σ|)3,

since there exist at most |Σ|2|G|4(|G|+ |Σ|)2 predicates and the number of all possible

time windows is bounded by (|G|+ |Σ|).

Upper bound. Using this small model property, we design an NP algorithm for the

prediction problem of TACOs: guess a tree T with |T | ≤ |Σ|2|G|4(|G|+ |Σ|)3 and

check whether it is a proof tree of prediction (p0,τ). If so, return true; otherwise,

reject the guess.

The correctness follows from the small model property, and the complexity follows

from the following two facts: (1) the proof tree encodes all matches that are needed for

the prediction; and (2) one can verify whether T is a valid proof tree in PTIME.

Lower bound. We show the lower bound by reduction from the graph homomorphism

problem, which is NP-complete (cf. [GJ79]). The graph homomorphism problem is to

decide, given two undirected graphs G1 and G2, whether there exists a homomorphism

h from G1 to G2. Given G1 = (V,E1) and G2 = (V2,E2), we use a set Σ consisting

of only one TACO ϕ1 to encode G1, a temporal graph G to encode G2, and (p0,τ)

to represent the existence of the homomorphism h. More specifically, we define the

following.

(1) The TACO ϕ1 is ∆Q1[x̄]( /0→ (τ(u1
p,u

2
p), [0,0])). Here the ∆-pattern ∆Q1 is defined

as (V p
1 ,E

p
1 ,L

1
Q,T

1
Q,µ1), where (a) V p

1 =V1∪{u1
p,u

2
p}, V1 is the set of nodes in G1, and

u1
p and u2

p are two distinct new nodes that are not in V1; (b) E p
1 encodes each undirected

edge in E1 using two directed edges (i.e., E p
1={(u,τ,0,v),(v,τ,0,u) | (u,v)∈ E1}; here

the edges in E p
1 carry a specific label τ and time window [0,0]); (c) L1

Q assigns label τ

to each node in V1 and two distinct labels β1 and β2 to nodes u1
p and u2

p, respectively;

(d) T 1
Q assigns the time window [0,0] to each edge in E p

1 ; and (e) µ1 assigns a distinct

variable for each node in V p
1 .

(2) The temporal graph G is defined as (V g
2 ,E

g
2 ,L,T,FA), where (a) V g

2 =V2∪{u1
g,u

2
g},

V2 is the node set of graph G2, and u1
g and u2

g are two distinct new nodes that do not
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appear in V2; (b) Eg
2 encodes each undirected edge in E2 by using two directed edges

(i.e., Eg
2 = {(u,τ,0,v),(v,τ,0,u) | (u,v) ∈ E2}); (c) L assigns the label τ to each node

in V2 and two distinct labels β1 and β2 to nodes u1
g and u2

g, respectively; (d) T assigns

the timestamp 0 to each edge in Eg
2 ; and (e) each node v in G carries a tuple FA(v)= /0,

i.e., the node does not contain any attribute.

We show that there exists a homomorphism from G1 to G2 if and only if ϕ1 predicts

that there is an edge e labeled τ from u1
g to u2

g in temporal graph G during time window

[0,0]. Note that u1
g and u2

g in G carry labels different from the ones in V1; hence nodes

from V1 can only be mapped to those copied from V2 in G.

(⇒) Assume that an edge e labeled τ from u1
g to u2

g in G during time window [0,0] is

predicted by ϕ1. By the construction we know that no such edge exists in the original

G. Thus the TACO ϕ1 can be applied on G to predict the edge e, and there must exist

a match of ∆Q1 in G, from which we can easily deduce a homomorphism from G1 to

G2 by following the construction above.

(⇐) Let h be a homomorphism from G1 to G2. Then we can construct a match h1 of

∆Q1 in G. From h1, we enforce the existence of an edge e labeled τ from u1
g to u2

g in

time window [0,0] using ϕ. 2

4.3 Temporal System

In this section we introduce TASTE (TemporAl SysTEm), a system for discovering

TACOs and predicting events with TACOs. We first state the corresponding discovery

and prediction problems (Section 4.3.1). We then present the architecture of TASTE

(Section 4.3.2).

4.3.1 TACO Discovery and Event Prediction

We first define quality measures for TACOs.

Quality metrics. We use support and confidence to quantify the quality of TACOs, for

frequency and reliability, respectively.

Support. We define supp(∆Q,X ,G) as the support of ∆-pattern ∆Q in a graph G w.r.t. a

conjunction X of predicates, to measure how often ∆Q can find matches in G satisfying

X . More specifically,
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supp(∆Q,X ,G) = |∆Q(ex,X ,G)|,
where ∆Q(ex,X ,G) refers to the set of edges h(ex) in all matches h of ∆Q in G that

satisfy X . Hence it counts the number of distinct “satisfiable” matches in regards to the

designated edge ex.

Similarly, the support for a TACO ϕ = ∆Q[x̄](X → (p0,τ)) is

supp(ϕ,G) = |∆Q(ex,ϕ,G)|,

where ∆Q(ex,ϕ,G) is the set of edges h(ex) in those matches h(x̄) ∈ ∆Q(G) such that

h(x̄) |= X , h(x̄) |= p0, and p0 occurs in τ.

Intuitively, the higher support of a TACO ϕ is, the more “frequent” that ϕ finds

positive evidence. Moreover, one can verify that this measure is anti-monotonic w.r.t.

a partial order � over the domain of TACOs. That is, for two TACOs ϕ = ∆Q[x̄](X →
(p0,τ)) and ϕ′ = ∆Q′[x̄′](X ′→ (p′0,τ

′)), ϕ � ϕ′ if (a) all nodes and edges in ∆Q also

appear in ∆Q′ with the same labels, and the two ∆-patterns share the same designated

edge ex; (b) the time window of each edge in ∆Q covers that in ∆Q′; and (c) p0 = p′0
and τ′ is a subinterval of τ. Then supp(ϕ,G)≥ supp(ϕ′,G) for any G if ϕ� ϕ′.

Confidence. We define the confidence of a TACO ϕ = ∆Q[x̄](X → (p0,τ)) in graph G,

denoted by conf(ϕ,G), as follows:

conf(ϕ,G) =
supp(ϕ,G)

supp(∆Q,X ,G)
.

It uses the ratio to quantify the likelihood that event p0 happens in τ with satisfiable

matches of ∆-pattern ∆Q and precondition X . A TACO with high confidence tends to

offer reliable event predictions.

In supp(ϕ,G) and conf(ϕ,G), one can replace G with smaller ∆GQ. That is, support

and confidence can be equivalently computed in updates ∆GQ to G relative to ∆Q

instead of in the entire G.

TACO discovery. The discovery problem for TACOs is as follows.

◦ Input: A temporal graph G, a positive integer α, a support threshold β > 0, a confi-

dence threshold γ ∈ [0,1], and a bound δ > 0 on the lengths of time windows.

◦ Output: A set Σ of TACOs such that for each ϕ∈ Σ, supp(ϕ,G)≥ β, conf(ϕ,G)≥ γ,

t2− t1 ≤ δ for each time window [t1, t2] in ϕ, and there are at most α nodes in the

pattern of ϕ.

We call the tuple (α,β,γ,δ) a discovery requirement d. The problem aims to dis-

cover the set of all TACOs that conform to d, and have the expected number of pattern

nodes bounded by α.
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Figure 4.2: Architecture, inputs and outputs of TASTE

Temporal event prediction. The problem is stated as follows.

◦ Input: A graph G, a set Σ of TACOs and a time window τ0.

◦ Output: A set R of edges for G predicted by Σ such that the occurrence of the event

encoded by each edge in R is within τ0.

To simplify the discussion, we consider events p0 represented by edges l(x,y), as com-

monly found in practice. We deduce the time windows of such edges in R from the

time windows and designated edges specified in the TACOs of Σ (see Section 4.5 for

more).

We can use each TACO’s confidence as the probability of the predicted event. But

the prediction problem would become harder, i.e., #P-complete, as indicated by prob-

abilistic logic programming [KDR+11]. We defer a full treatment of such extension to

future work.

4.3.2 Overview of TASTE

The architecture of TASTE is depicted in Fig. 4.2. TASTE supports two modules for

TACO discovery and event prediction, as follows.

(1) Rule discovery. Taking a temporal graph G, pre-trained ML models M , and the

discovery requirement d that is specified by parameters α, β, γ and δ as input, the rule

discovery module outputs a set Σd of TACOs such that every TACO ϕ in Σd satisfies

the requirement d as in the problem statement for TACO discovery. Here M can be

any pre-trained ML model for temporal event prediction in the transductive setting

(Section 4.1), and is embedded as ML predicates when mining TACOs. We refer to the

TACOs that conform to the input discovery requirement d as high-quality rules.

(2) Event prediction. After a set Σd of high-quality TACOs is discovered, the event pre-

diction module employs the TACOs to predict events by running a parallel algorithm. It

may take a particular event p0 from users and predict whether p0 will happen and when
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it will happen. It may also predict all possible events by applying Σd to temporal graph

G. It should be mentioned that TASTE also accepts rules developed by domain experts,

converts those rules to TACOs, and applies these rules and the discovered ones together.

We will present algorithms underlying the discovery and prediction modules in

Sections 4.4 and 4.5, respectively.

4.4 Generation-based TACO discovery

In this section we propose a Creator-Critic Discovery approach, denoted by CCD, to

discovering high-quality TACOs Σd . We develop such an algorithm for the rule dis-

covery module of TASTE.

Below we first present the generation-based approach and justify the method from

the perspective of probability distribution learning. We then present CCD and its func-

tions and models. Finally we formally prove the performance guarantees of CCD.

Generation-based discovery. One might be tempted to extend the existing levelwise

search-based methods, e.g., [BBBG09a, FHLL20], to enumerate candidate TACOs and

identify the required ones. However, these approaches need to search in a lattice

and take exponential time, despite pruning strategies to reduce the cost [BBBG09a,

FHLL20, NWS+17]. As will be seen in Section 4.6, it takes days for levelwise search

to discover TACOs with patterns of 7 edges. Hence existing algorithms for discovering,

e.g., GFDs [FHLL20], are unable to find practical TACOs.

In view of this, we propose CCD for TACOs. CCD discovers high-quality TACOs

by employing generative adversarial networks (GAN), and using interactive learning

with weak supervision between a rule creator and a rule critic. This GAN-based

framework is inspired by the latest progress in drug discovery and compound de-

sign [BX21, SCPR21], where a GAN is trained to generate promising candidates with-

out enumerating all possible combinations in the large search space. Such genera-

tive approach significantly accelerates the drug discovery process and produces more

promising compounds.

As shown in Fig. 4.3, in each iteration, the creator of CCD first employs ML models

to generate a set Σ of candidate TACOs. Then the critic selects high-quality rules from

Σ and adds them to Σd . Taking rules in Σd as feedback from the critic, the creator

trains itself again to improve the probability of generating high-quality TACOs in the

next iteration. CCD returns Σd when the number of iterations reaches a user-specified
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Figure 4.3: Dataflow of the iterative TACO discovery.

bound I.

The method is capable of discovering high-quality TACOs. From the perspective of

probability theory, each TACO ϕ can be viewed as an event and the union of all TACOs

constitutes a discrete countably infinite sample space A . Given parameter d, the dis-

covery process aims to find a probability distribution P described by a probability mass

function P : A → R (real numbers), whereP(ϕ)> 0, if ϕ is a high-quality TACO w.r.t. d,

P(ϕ) = 0, if ϕ is not a high-quality TACO w.r.t. d.
(4.1)

When such a distribution P is found, all desired rules can be obtained by sampling from

P. In order to find the distribution, conventional levelwise methods build a searching

lattice to enumerate each rule ϕ in A and check whether it meets the requirement

d. In contrast, CCD interactively trains deep generative models [ZZHH20a, MKS18]

in the creator to approximate the target distribution P, avoiding costly search in the

exponentially large sample space.

This approach is feasible since deep generative models, e.g., GAN, are able to ap-

proximate various distributions [CWD+18], such as images [JLO21], texts [dRP21]

and even chemical compounds [SCPR21]. Moreover, empirical research verifies that

it is practical to train such models to approximate a target distribution P within a lim-

ited number of iterations [GSW+20], where the training loss of the model converges.

CCD also optimizes rule discovery in a data-driven manner, since generative models in

the rule creator are able to generate rules that are topologically and semantically sim-

ilar to rules from the training data (Σd in Fig. 4.3) [ZZHH20a, LZL+20, GSW+20].

Meanwhile, an increasing number of high-quality rules will be selected by the critic

and added to Σd in each iteration. Thus, the creator can retrain its generative mod-

els using Σd as feedback to improve the quality of approximation. We will provide a

probabilistic bound later in this section.

Algorithm. Implementing the creator-critic method, CCD discovers high-quality TACOs

in three phases, as shown in Algorithm 4.1.
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(1) It first calls function MLExp to prepare graph data GM from G, for facilitating the

discovery of TACOs with ML predicates M .

(2) Then the rule creator is pretrained using TrainCreator with the localized graph

Gs
M sampled by LocalizedSample (lines 2-3), such that it starts to generate rules that

are likely to reach the thresholds of support and confidence in the input requirement

d. The creator generates a set Σ of candidate TACOs by GenerateRule; the critic next

evaluates Σ on temporal graph G and saves high-quality TACOs in a set Σd via function

SelectRule (lines 4-5).

(3) In the third phase, algorithm CCD iteratively discovers high-quality TACOs and

adds more such rules to Σd via an interactive training process of I iterations (lines 6-

11). Each iteration is similar to the second phase, except that both Gs
M and Σd are used

to train and improve the creator (line 8). Here the TACOs in Σd are feedback from the

critic. Finally Σd is returned (line 12).

Parameters. In addition to the discovery requirement d of four thresholds and ML

models M , CCD takes another two input parameters: sample size N and iteration

number I. Here N strikes a balance between the probability of generating high-quality

rules and the workload of each iteration; and I determines the size of Σd and the cost

of model training, where larger I usually helps generate more high-quality TACOs and

train the model better.

We next present the functions and models adopted in CCD.

Assistance functions. We start with two functions MLExp and LocalizedSample,

which are invoked by CCD to prepare graph data for model training. Initially, MLExp

expands graph G to GM by faithfully adding edges predicted by the input ML models

M . This allows the creator to incorporate M as ML predicates and accelerates TACO

discovery since there is no need to repeatedly apply M during the discovery process.

Function MLExp simply applies pre-trained ML models and is efficient.

Besides, LocalizedSample collects a set Gs
M of N ∆-patterns by sampling localized

graph structures from GM , as training data for the creator in each iteration (lines 2

and 7). When deducing a pattern ∆Qi, LocalizedSample applies temporal random

walk [NLR+18] with a randomly selected source node v to sample temporal paths,

where the timestamps of all edges on a temporal path fall into a given time window.

It finds top α−1 frequently sampled nodes around v; recall that α is the threshold on

pattern node numbers. Then ∆Qi is formed by these nodes and the edges connecting
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Algorithm 4.1: Creator-Critic Discovery (CCD)
Input: A temporal graph G, discovery requirement d=(α,β,γ,δ), ML models M ,

sample size N, and iteration number I.

Output: A set Σd of TACOs mined from G such that every rule in Σd conforms to the

requirement d.

1 ε← 0; Σd ← /0; GM ←MLExp(G,M );

2 Gs
M ← LocalizedSample(GM ,α,N);

3 TrainCreator(Gs
M ,α,δ); /* Pretrain the rule creator */

4 Σ← GenerateRule(α,δ,Σd);

5 Σd ← SelectRule(Σ,β,γ,G);

/* Generate TACOs via interactive training */

6 while ε < I do

7 Gs
M ← LocalizedSample(GM ,α,N);

8 TrainCreator(Gs
M ∪Σd ,α,δ);

9 Σ← GenerateRule(α,δ,Σd);

10 Σ′← SelectRule(Σ,β,γ,G);

11 Σd ← Σd ∪Σ′; ε← ε+1;

12 return Σd ;

them. Guided by the ∆-patterns in Gs
M during pretraining (line 3), the rule creator can

learn to generate patterns that are more likely to find matches in the graph. This is

because each ∆Qi must have matches as it is obtained by random walk in GM , and

the generative models learn to generate “new” patterns that are semantically and struc-

turally similar to ∆Qi. Without pretraining, randomly initialized generative models in

the creator may create meaningless TACOs.

The sample size N strikes a balance between the probability of generating “good”

patterns that have plentiful matches and the cost in each iteration. A larger N allows

more sampling trails with higher probability of generating good patterns and more ef-

ficient ML training with batch optimizations [ZZHH20a, MKS18]. If N is small, CCD

needs to run more iterations to find adequate number of TACOs (see below).

Rule creator. When generating a TACO ϕ, the creator first generates its ∆-pattern, and

then the dependency (lines 4 and 9).

∆-pattern generation. The creator generates patterns in two steps: structure genera-

tion and semantic label generation, by employing temporal graph GAN and LSTM

networks, respectively.
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(1) In the first step, the creator takes each ∆-pattern ∆Qi from Gs
M and Σd as input;

it adopts TagGen [ZZHH20a], an end-to-end deep generative framework for temporal

graphs, to deduce candidate ∆-patterns ∆Qg
i . Due to the GAN module in TagGen

[ZZHH20a], each generated ∆Qg
i and the input ∆Qi have the same number of nodes

(at most α), and bear similar topology and time constraints. No labels were generated

in this step as TagGen does not support labels. Hence we need the next step to attach

labels to the patterns.

(2) In the second step, the creator employs an LSTM language model ML to generate

labels for each candidate ∆-pattern ∆Qg
i . We adopt LSTM networks since it can model

the rich semantics of labels on paths in knowledge graphs [LLL+15, LZL+20, LSX18].

More specifically, it first trains ML on a corpus C driven by the perplexity [MKS18],

where each word is a pair 〈L(e),L(v)〉 of edge label and node label, named “label

pair”, and v is the destination node of e. The corpus C is composed of label pair se-

quences of temporal paths, which are derived by applying temporal random walk for

each ∆Qi. Here the label pair sequence of a temporal path (v0,e1,v1,e2, . . . ,es,vs) is

(〈∅,L(v0)〉,〈L(e1),L(v1)〉, . . . ,〈L(es),L(vs)〉). After the training, for every two nodes

u and v in ∆Qg
i with the shortest temporal path ρ from u to v, ML generates a label pair

sequence with a random seed, and attaches this sequence of labels to ρ. Only shortest

paths are considered since they hold stronger associations [AHAS03, KLAF17] com-

pared with other longer paths. Finally the creator builds a ∆-pattern ∆Q′i from ∆Qg
i by

keeping the most frequent label attached to each node and edge.

Note that the creator retrains itself using the latest Σd to increase the probability

of generating high-quality ∆-patterns (line 8). The rationale behind this is that (1) in

training data, the ∆-pattern ∆Qi of a high-quality TACO in Σd has multiple matches;

and (2) the GAN and LSTM networks enable the creator to generate new ∆-pattern

∆Q′i that are similar to ∆Qi in terms of topological structure, temporal constraints and

label semantics [ZZHH20a, LZL+20, LSX18]. Therefore, the generated ∆Q′i is also

likely to find sufficient matches in the graph and should be kept to build other candidate

TACOs. The samples Gs
M returned by LocalizedSample are also used in retraining, to

introduce disturbance to the creator, which prevents the ML generative models from

converging at a local minimum where cliche patterns are repeatedly generated. This

advocates the creator to generate “novel” patterns rather than reiterating existing ones.

Dependency generation. Given a generated ∆-pattern ∆Q, the creator adapts the lev-
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Figure 4.4: TACO generation process.

elwise expansion process of [FHLL20] to construct a set of valid dependencies X →
(p0,τ) and form candidate TACOs for Σ. More specifically, for each possible event

(p0,τ), it starts with X = /0 and iteratively extends the precondition X for ∆Q. The

creator also verifies whether the candidate TACO ϕ = ∆Q[x̄](X → (p0,τ)) is valid in

G, i.e., whether G |= ϕ. But unlike the algorithm in [FHLL20] that directly verifies

the validity of ϕ after its generation, the creator first checks whether ϕ is redundant,

i.e., whether ϕ is implied by the set Σd of TACOs discovered in the previous iterations

(Σd |= ϕ). If ϕ is not redundant, i.e., Σd 6|= ϕ, it proceeds with the validation of ϕ

by the critic. We find that checking implication in advance helps reduce the discovery

cost, since implication is conducted on the discovered TACOs, which are much smaller

than the temporal graph. In addition, we perform satisfiability checking of the TACOs

in Σ and newly discovered candidate rules at this stage, to avoid further validation of

inconsistent candidate TACOs in the large G. This process terminates when no more

predicates can be added. The termination is guaranteed since predicates in X are de-

fined on (a) nodes in ∆Q and (b) attributes and values (including timestamps) in ∆GQ;

hence the number of all possible predicates is bounded by the sizes of ∆Q and ∆GQ.

Rule critic. For each generated candidate TACO ϕ in Σ that passes the implication

and satisfiability checking, the rule critic computes supp(ϕ,G) and conf(ϕ,G), and

selects high-quality TACOs whose support and confidence are above the thresholds

(SelectRule in lines 5 and 10). These rules are added to Σd and are provided to the rule

creator for improving generative models in the next iteration. Computing supp(ϕ,G)

and conf(ϕ,G) is efficient since the procedures can be parallelized with optimizations

that are unique to temporal pattern matching (see Section 4.5) and we use existing effi-

cient subgraph matching method, i.e., DAF [HKG+19] and its proposed CS structures

to reduce redundant computation.

Example 4.5: Continuing with Example 4.4, Figure 4.4 shows the generation of

TACO ϕ1 from temporal graph G. First, the creator calls TagGen to create a can-
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didate ∆-pattern (Fig. 4.4(a)) with time constraints. Then, as shown in Fig. 4.4(b),

the LSTM model ML is employed to add labels to nodes and edges with semantic

meanings. The creator completes the generation by constructing dependencies with

variables (Fig. 4.4(c)). Validated by the rule critic in G, this generated candidate rule

is preserved in Σd , since its support and confidence are both 1. Note that if the edge

labeled with nomination is dropped from ϕ1, the confidence would reduce to 0.5. 2

Performance guarantees. We next show that when the input iteration number I is

sufficiently large, CCD can return all TACOs that satisfy the discovery requirement d

with a high probability. Recall that when accumulating the training data in each round

for the generative model, CCD conducts temporal random walk to randomly sample

subgraphs from the entire graph, by function LocalizedSample. Based on this, we have

the following.

Theorem 4.3: Given graph G, requirement d and constant ε∈ (0,1), after |G|
α

Nβ

(
1− ln βε

|G|α

+
√

ln βε

|G|α (ln
βε

|G|α−2)
)

iterations, CCD can discover all TACOs satisfying d with

probability at least 1−ε. 2

Proof: Consider the discovery of a TACO ∆Q[x̄](X → (p0,τ)) that satisfies the input

requirement d. We assume that once a ∆-pattern ∆Q[x̄] is sampled from G and used

to train the generative models, that pattern ∆Q[x̄] will be regenerated by the GAN

and LSTM model in CCD. This assumption is reasonable as it is common to observe

training samples in the outputs of deep generative models, e.g., text generation models

[dRP21, CWD+18]. Since we adapt the levelwise expansion process of [FHLL20]

in CCD to construct dependencies X → (p0,τ), we can discover this TACO if the ∆-

pattern ∆Q[x̄] is sampled from G by CCD. Then it suffices to show that CCD can

sample such ∆-pattern ∆Q[x̄] with a high probability.

We prove this in the following four steps. (1) At first, we show that (a) the num-

ber of all possible ∆-patterns is bounded by |G|α, since these patterns are subgraphs

of G (i.e., supp(∆Q, /0,G) ≥ 1), and (b) the total number of ∆-patterns that have sup-

port larger than β (i.e., supp(∆Q, /0,G) ≥ β) is bounded by |G|
α

β
. (2) We next bound

the expected number of the appearances of ∆Q[x̄] during the discovery in CCD. To

this end, we define a random variable YM (resp. Xi) to denote the number of appear-

ances of ∆Q[x̄] that are generated after sampling M patterns in CCD (resp. when sam-

pling the i-th pattern), i.e., YM=X1+X2+ · · ·+XM. Then we can show that the expected
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number of the appearances of ∆Q[x̄] after sampling M patterns in G is larger than

M β

|G|α , i.e., E(YM) ≥ M β

|G|α . This is because that CCD samples patterns by tempo-

ral random walk. (3) Using the Chernoff–Hoeffding bound [DP09], we have that af-

ter sampling M= |G|
α

β

(
1− ln βε

|G|α +
√

ln βε

|G|α (ln
βε

|G|α −2)
)

patterns, CCD can generate

the ∆-pattern ∆Q[x̄] with probability at least 1− βε

|G|α . (4) Finally using the general-

ized bonferroni inequality [CB01], one can verify that for all ∆-patterns ∆Q[x̄] with

supp(∆Q, /0,G)≥ β to be sampled after generating M patterns by CCD, the probability

is at least |G|
α

β
(1− βε

|G|α )− ( |G|
α

β
−1) = 1− ε. 2

Cost analysis. To see the cost of CCD, observe the following. Function LocalizedSample

takes O(|G|) time for applying temporal random walk [NLR+18]. The cost for model

training in TrainCreator is linear to the number of training samples, i.e., O(N + |Σd|).
GenerateRule (creator) takes time polynomial in the size |G| to generate ∆-patterns

and dependencies. However, SelectRule (i.e., critic) takes O(|G|α) time to compute the

support and confidence of each candidate TACO because of the graph homomorphism

in temporal matching; nonetheless, we make use of parallelism (see Section 4.5) and

the auxiliary structure in [HKG+19] to speed up the computation. As will be seen

shortly, the parallelized process guarantees to reduce runtime when more processors

are used, and is able to scale with large graphs.

Remark. (1) While the theoretical iteration number I may be large, in practice, when

sample size N is set 250 by default, the generative models converge within 25 itera-

tions (i.e., I=25), where extra iterations add few novel TACOs to Σd (see Section 4.6).

Therefore, we set I using a practical small value. This helps us reduce the overall cost

and justifies the usage of deep generative models.

(2) The users may opt to inspect the generated TACOs in each round, select rules of

their interest, and add to Σd . This incorporates user interests into discovery. They may

also terminate the iterative process manually when they are satisfied with the TACOs

in Σd so far.

4.5 Parallel Event Prediction

In this section we develop a parallel algorithm to support the event prediction module

of TASTE. The algorithm is also used to compute support and confidence for the rule

critic of algorithm CCD (Section 4.4). We propose a partitioning strategy for temporal
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graphs, and show that the algorithm guarantees the parallel scalability.

We start with a sequential prediction approach with TACOs.

Sequential algorithm. Given a temporal graph G, a set Σ of TACOs and a time win-

dow τ0, a sequential prediction algorithm, denoted as SeqEP, finds all edges (events) R

predicted by Σ in G as follows. For each TACO ϕ = ∆Q[x̄](X → (p0,τ)) in Σ with

τ = [t1, t2], SeqEP (1) finds all matches of ∆Q in ∆GQ via graph homomorphism;

and (2) for each such match h(x̄), it checks whether h(x̄) |= X and the time window

[t∗+t1, t∗+t2] deduced is a subinterval of τ0; here t∗ is the current time (Section 4.1.1);

if so, SeqEP adds to R the edge that links the nodes matching the variables in p0.

Note that SeqEP is applied to subgraphs ∆GQ of G for ∆Q in Σ, which is typically

much smaller than the entire graph G. In the sequel we refer to the union of such

∆GQ’s simply as G. Even so, the exponential cost of graph homomorphism [GJ79] in

temporal pattern matching (step (1)) motivates us to parallelize SeqEP.

Parallel scalability. To measure the effectiveness of parallelization, we adapt the

criterion introduced by [KRS90] to graph computation. Consider a problem P posed

on a graph G. We denote by Ts(|IP |, |G|) the worst-case complexity of a sequential

algorithm F for handling an instance IP of problem P over G. For a parallel algorithm

Fp, we denote by Tp(|IP |, |G|,k) the time taken by it for processing problem instance

IP on G using k processors. We say that algorithm Fp is parallelly scalable relative to

F if
Tp(|IP |, |G|,k) = O

(Ts(|IP |, |G|)
k

)
for any instance IP . That is, the parallel algorithm Fp achieves a “linear” reduction

in sequential running time of a yardstick algorithm F , allowing us to process large

graphs by adding resources.

Parallelizing event prediction. A typical strategy for parallelizing sequential graph

computation is to first partition a graph into k small fragments, and then conduct the

computation over fragments at k processors in parallel with necessary message pass-

ing, e.g., the deduction algorithm with GARs [FJL+20]. Following this paradigm, we

could partition a temporal graph via an existing graph partitioning method, e.g., edge-

cut or vertex-cut [RPGH14, AR06]. However, this easily incurs a large amount of

communication in the subsequent parallel prediction. This is because most of the pre-

vious partitioning methods aim to minimize the number of cut edges or vertices but

overlook the timestamps, which are crucial to temporal pattern matching; the edges

in a match of a ∆-pattern are often partitioned into different fragments and demand
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communication.

To rectify this problem, we partition a temporal graph G based on temporal locality,

a unique property of temporal pattern matching with TACOs. That is, the timestamps

of edges in each match h(x̄) of ∆-pattern ∆Q are within the range of localized times-

pan [t∗+ tmin, t∗+ tmax], where tmin (resp. tmax) is the minimum (resp. maximum)

timestamp in ∆Q as stated in Section 4.1.1.

Temporal partitioning. We propose a temporal partitioning strategy with which par-

allel event prediction can be made communication-free. Intuitively, it divides a time

interval into k subintervals and guarantees that every specific range of timestamps for

finding match h(x̄) is entirely covered by one subinterval. Guided by the resulting

subintervals, the temporal graph G is partitioned into k fragments F1, . . . , Fk, such that

each Fi consists of the edges whose timestamps are within one subinterval. By the tem-

poral locality, temporal pattern matching and hence event prediction can be conducted

in parallel over such Fi’s with no communication.

The cost of parallel event prediction is determined by the maximum size maxi∈[1,k] |Fi|
of fragments. Thus we want to find a good division of the time interval to minimize

maxi∈[1,k] |Fi|. To do this, we develop function BTPart, shown as part of Algorithm 4.2.

It takes as input a candidate time interval [t0, tk) that is deduced from the TACOs Σ and

time window τ0 for matching designated edges in event prediction (see below), a set

{|Gt | | t ∈ [t0, tk)} of sizes of t-graphs, the number k of fragments (processors), and

the maximum (resp. minimum) timestamp tmax (resp. tmin) in Σ. Here Gt refers to a

t-graph that is composed of all edges in G bearing timestamp t. BTPart computes a

set {t1, . . . , tk−1} of k− 1 partition points for the interval [t0, tk) such that fragment Fi

becomes G[ti−1+tmin,ti+tmax) for i∈ [1,k], which includes the edges of G with timestamps

in the range [ti−1 + tmin, ti + tmax). Here tmin and tmax are to ensure the entire coverage

as mentioned above.

Procedure BTPart adopts dynamic programming. It maintains a 2D array S, where

S[t][i] records the minimum size of the largest fragments that are obtained by partition-

ing G[t0+tmin,t+tmax) into i subintervals. Hence S[tk][k] is our objective value. BTPart

first handles the base case i=1 (lines 1-2), where S[t][1]=|G[t0+tmin,t+tmax)| since there

is only one fragment w.r.t. the single subinterval. Here the size is derived from that of

the input t-graphs. For cases where i>1, S[t ′][i] is determined by checking the values

regarding all possible ranges [t0, t) for t<t ′ and their i−1 subintervals (lines 3-5). Af-

ter S[tk][k] is computed, the corresponding k−1 partition points can be identified and
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are returned as the result (lines 6-8).

By induction on the iterations, one can verify that the returned partition points yield

minimum maxi∈[1,k] |Fi| (i.e., S[tk][k]).

Algorithm 4.2: Parallel Event Prediction (ParEP)
Input: The number k of processors, a k-way randomly partitioned temporal

graph G, a set Σ of TACOs, a time window τ0.

Output: A set R of edges predicted by Σ with events occur within τ0.

1 [t0, tk)← RefTime(Σ,τ0); (tmin, tmax)← ExtractTS(Σ);

2 collect the size |Gt | of t-graph Gt for t ∈ [t0, tk);

3 {t1, . . ., tk−1}←BTPart([t0, tk),{|Gt | | t∈[t0, tk)},k, tmin, tmax);

4 Fi← G[ti−1+tmin,ti+tmax) for each i ∈ [1,k];

5 RBalance({Fi | i ∈ [1,k]});
6 run SeqEP(Fi,Σ,τ0) at each fragment Fi to get Ri for i ∈ [1,k];

7 return
⋃

i∈[1,k] Ri;

Function BTPart([t0, tk),{|Gt | | t ∈ [t0, tk)},k, tmin, tmax):

1 foreach t ∈ [t0, tk) do

2 S[t][1]← |G[t0+tmin,t+tmax)|;

3 foreach i ∈ [2,k] do

4 foreach t ′ ∈ [t0, tk) do

5 S[t ′][i]←mint∈[t0,t ′) max(S[t][i−1], |G[t+tmin,t ′+tmax)|);

6 foreach i ∈ [2,k] in descending order do

7 ti−1←argmint∈[t0,ti) max(S[t][i−1], |G[t+tmin,ti+tmax)|);

8 return {t1, . . . , tk−1};

Parallel algorithm. Capitalizing on the temporal partitioning, we develop a parallel

event prediction algorithm, denoted by ParEP. As shown in Algorithm 4.2, initially

ParEP uses function RefTime to deduce a candidate time interval [t0, tk) for those edges

in G that can potentially match designated edges in TACOs Σ (line 1). Since we only

predict edges in time window τ0, a timestamp t is in [t0, tk) if and only if the gap be-

tween t and τ0 is smaller than that between t and τ for some (p0,τ) in Σ. It also extracts

maximum and minimum timestamps from Σ via ExtractTS (line 1). Then ParEP per-

forms temporal partitioning to get k fragments F1 to Fk and each Fi is assigned to a

distinct processor (lines 2-4). ParEP designates one processor as the coordinator to

collect the sizes of t-graphs from all processors and apply function BTPart.

To further balance the workload of parallel prediction, ParEP next redistributes the
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(c) A rebalanced partition
Figure 4.5: Temporal partitioning and rebalancing

data in large fragments Fi having |Fi| > |G|/k by function RBalance (line 5). More

specifically, for each large Fi, it evenly partitions those edges of Fi that can match the

designated edges in Σ; while the set of candidate matches in Fi for other pattern edges

in Σ are replicated at all processors. Here candidate matches are identified via label

comparison. Then SeqEP is invoked at all processors in parallel with no communica-

tion to get the predicted edges, and their union is finally returned (lines 6-7).

Example 4.6: Consider partitioning the temporal graph G shown in Fig. 4.5(a) into 2

fragments, where only the timestamp of each edge is marked while labels are omitted

to simplify the discussion. Suppose that (tmin, tmax) = (0,1) for a given set Σ of TACOs

and the candidate time interval [t0, tk) deduced from Σ and the input time window τ0 is

[1,4). We can see the following.

(1) The temporal partition generated by BTPart is shown in Fig. 4.5(b). Here the

candidate interval is divided into [1,2) and [2,4); thus fragments F1 and F2 have edges

whose timestamps are within [1,2+1) and [2,4+1), respectively. Note that the edge

(d, f ) with timestamp 2 is replicated at both fragments. This ensures that all patterns

in Σ can be matched on F1 or F2 locally without communication.

(2) While Fig. 4.5(b) is an optimal temporal partition, it is skewed, i.e., the edges

with timestamp 1 in F1 make a large part of G. By moving edges (e, f ),(e,g) and

( f ,g) with timestamp 1 to fragment F2 via function ReBalance, the partition becomes

balanced (Fig. 4.5(c)). 2

The parallel scalability of ParEP is assured as follows, where the sequential SeqEP

takes O(|Σ||G||Σ|) time in the worst case and the cost of ParEP is bounded by O(|Σ| |G||Σ|k ).

Theorem 4.4: ParEP is parallelly scalable relative to SeqEP. 2

Proof: Sequential algorithm SeqEP takes O(|Σ||G||Σ|) time in the worst case due to
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Dataset |V | |E| Relation type Timestamp interval

ICEWS18 23K 469K 256 1 day

GDELT 8K 2.2M 240 15 minutes

YAGO 11K 201K 10 1 year

WIKI 13K 670K 24 1 year

MovieLens 80K 10M 10 1 day

Amazon 12.2M 30.3M 5 1 day

Table 4.2: Datasets

graph homomorphism. For the complexity of ParEP, observe that (a) temporal par-

titioning needs O(k|G|2) time and (b) the cost of redistributing large fragments is

bounded by O(k|G|). (c) The computation workload of event prediction at each pro-

cessor includes (1) handling the fragment that is not large, which takes O(|Σ|( |G|k )|Σ|)

time; and (2) the workload that is assigned via rebalancing, which is bounded by

O(k|Σ|× |G|k |G||Σ|−2) = O(|Σ||G||Σ|−1). Note that since the candidate matches of des-

ignated edges in large fragments are evenly partitioned, we only check the matches of

the other |Σ|− 2 pattern nodes in the entire candidate set, with a cost of O(|G||Σ|−2).

Putting these together, the complexity of ParEP is O(|Σ|( |G|k )|Σ|+ k|G|2 + |Σ||G||Σ|−1)

≤O(|Σ| |G||Σ|k ) when k�|G|. Then from these the parallel scalability of ParEP follows.2

Remark. (1) ParEP can be readily adapted to predict whether a particular event p0 will

happen and when it will take place, by allowing users to set the range τ0 and applying

relevant TACOs in Σ. (2) We use ParEP to compute the support and confidence of

TACOs in Σ, and support the functionality of the rule critic in algorithm CCD. To do

these, the input time window τ0 is defined as the smallest range that covers all the

timestamps in G.

4.6 Experimental Study

Using real-life and synthetic graphs, we experimentally evaluated (1) the efficiency and

(2) the quality of the creator-critic rule discovery method, (3) the accuracy of TASTE

for event prediction and dynamic recommendation, and (4) the (parallel) scalability of

ParEP.

Experimental setting. We start with the experimental setting.

Datasets. We used six real-life temporal graph benchmark datasets, shown in Table 4.2

and classified into three different classes: (1) event-based temporal knowledge graphs:
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ICEWS18 [JQJR20] from the Integrated Crisis Early Warning System [BLO+15], and

GDELT [JQJR20] from the Global Database of Events, Language, and Tone [LS13];

(2) knowledge graphs with temporally associated facts: YAGO [MBS15] and WIKI

[LC18], e.g., YAGO records the time when a football player plays for a club; and (3)

dynamic recommendation datasets: MovieLens [HK16] of movie ratings and Amazon

[MTSvdH15] of product ratings, where original timestamps were reorganized such that

the time granularity between two adjacent timestamps is one day.

As designed in [JQJR20, LJL+21b], each dataset has been divided into training,

validation and test sets, with proportion of 80%, 10% and 10%, respectively, by times-

tamps. The training and validation sets were used for model training and rule dis-

covery, while the test set was for accuracy test. Each dataset includes ground truth

of event (temporal edge) prediction results [JQJR20, LJL+21b], and the testing set

actually poses the set of “queries” w.r.t. predicting temporal events.

We also designed a graph generator to create larger synthetic datasets, for evalu-

ating the scalability. The synthetic graphs had up to 10M nodes and 1B edges in the

range of 10000 timestamps, with labels, attributes and values drawn from 200 symbols.

Algorithms. The creator and critic in the rule discovery module were implemented in

Pytorch and C++, respectively, while the temporal event prediction module was im-

plemented in C++. We compared TASTE with five baseline methods for event predic-

tion: (1) AGER, which apply GERs [BBBG09b] that capture local changes in temporal

graphs for event prediction; (2) SACN [STH+19b], a convolution-based embedding ap-

proach for knowledge graph completion; (3) REGCN [LJL+21b], a knowledge graph

reasoning method based on Graph Convolution Network; (4) Caser [TW18b], a se-

quential recommendation algorithm based on convolutional neural networks; and (5)

SASRec [KM18], a transformer-based sequential recommender system. We adopted

open-source codes of SACN [STH+19a], REGCN [LJL+21a], Caser [TW18a] and

SASRec [KM19] with default configurations, and implemented AGER in C++. We

have also implemented two levelwise search-based rule mining methods to discover

GERs and TACOs in C++, denoted as GERMine and TACOMine, as discovery base-

lines.

The baselines SACN, REGCN, Caser and SASRec were parallelized with multi-

threads by PyTorch. For AGER, GERMine and TACOMine, we applied the same paral-

lelization method of ParEP (Section 4.5) to compute the corresponding matches, which

dominate their costs. The thread number in parallelization is equal to the number k of
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@
@
@
@

I

N
50 100 150 200 250 300

15 20.00% 23.81% 28.57% 39.05% 48.57% 65.71%

20 23.81% 25.71% 40.95% 55.24% 66.67% 73.33%

25 30.47% 41.90% 44.76% 71.43% 84.76% 96.19%

30 39.05% 44.28% 48.94% 76.15% 87.23% 97.14%

Table 4.3: Quality of the creator-critic discovery on ICEWS18

cores used by TASTE, for a fair comparison.

ML models. REGCN and SASRec were adopted as the ML predicates in TACOs for

temporal graph completion and dynamic recommendation, respectively. For models in

the creator of CCD, we used the code of TagGen provided by the authors with default

configurations [ZZHH20b], and implemented the LSTM model as [MKS18] with its

default training configuration and two 650-wide layers.

We conducted experiments on a cluster of up to 72 Intel Xeon 3.1 GHz processing

cores on two machines connected by 10Gbps links, with 256GB memory. By default

we set α=5, β=100, γ=0.8 and δ=20 for discovery requirement; the number of iter-

ations I=25 and sample size N=250 for discovery module CCD; and the number of

cores k = 32 for prediction method ParEP, unless stated otherwise. All the experiments

were repeated 5 times. The average is reported here.

Experimental results. We next report our findings. In every experiment, the results on

at least one graph from each of the three classes are shown. We defer the observations

on other graphs to the Appendix A.

Exp-1: Efficiency. We first compared the efficiency of CCD, GERMine and

TACOMine for rule discovery. Since it is very costly for levelwise methods to discover

rules with large patterns, in order to compare efficiency within bearable running time,

we set a target of discovering 100 high-quality rules as benchmark. That is, each

discovery process terminated when 100 rules had been discovered.

(1) Varying α. We varied α from 3 to 11 to study the impact of pattern node num-

ber on discovery methods using ICEWS18, WIKI and MovieLens. As shown in Fig-

ures 4.6(a) to 4.6(c), CCD is on average 9.1 and 14.3 times faster than GERMine and

TACOMine when α≤ 5, respectively. The computation time of levelwise search-based

methods grows exponentially as α gets larger, and both GERMine and TACOMine can-

not terminate in 1.2 days when α > 5, while the cost increase of CCD is mild. This
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is because larger number of pattern nodes incurs exponentially larger search space for

levelwise mining, but little extra cost for ML generative models. In particular, CCD

finds TACOs with patterns of more than 20 edges in 1639s.

(2) Varying β. We varied β from 50 to 150, to study the impact of support threshold

over ICEWS18, YAGO and Amazon. As reported in Figures 4.6(d) to 4.6(f), the runtime

of CCD does not change much, as it always takes multiple iterations for the creator to

generate high-quality rules regardless of the value of β. In contrast, GERMine and

TACOMine take less time with larger β in most cases, since higher bound on support

prunes more candidates and reduces search space.

(3) Varying γ. Varying confidence γ from 0.7 to 0.9, we report the results on GDELT,

WIKI and Amazon in Figures 4.6(g) to 4.6(i), respectively. It is shown that the all

discovery algorithms take longer time with the increase of γ. However, the generation-

based CCD is less sensitive to γ. This is because the levelwise methods have to expand

their search space at an exponential scale to get the requested number of high-quality

rules with higher confidence.

(4) Varying δ. We varied δ from 10 to 30. Here δ counts the number of discrete times-

tamps in the required time window. As shown in Figures 4.6(j) to 4.6(l) on ICEWS18,

YAGO and MovieLens, respectively, the runtime for all three increases as δ grows,

since a longer time window bound gives more generation workload for TagGen in the

creator and expands the search space for GERMine and TACOMine.

(5) Impact of N and I. We also tested the impact of the sample size N and iteration

number I on the efficiency of CCD. It exhibits a moderately runtime increase with the

increase of N or I (not shown). This is as expected, since a larger N (resp. I) causes

more work for the generator (resp. more rounds of the entire computation).

Exp-2: Quality of discovery. Recall that TACOs obtained by the generation-based

CCD are a subset of those returned by levelwise search algorithms. Thus we checked

how many rules in the complete set found by levelwise method TACOMine can be dis-

covered by CCD in all the datasets, i.e., the coverage of complete TACOs. As reported

in Table 4.3, the coverage becomes higher with larger size N of samples or more train-

ing iterations I. This is because enlarging either N or I could increase the possibility of

approximating the target distribution and hence generating high-quality rules, as dis-

cussed in Section 4.4. We can also see that small N and I suffice to get a large portion

of high-quality TACOs, e.g., the coverage reaches 84.76% when N = 250 and I = 25,
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while the time of TACOMine is reduced by 18.5 times simultaneously (see Exp-1).

In addition to the adopted GAN model, we tested the performance of using classic

graph generation models, i.e., Erdös-Rényi (ER) [PA59] and Barabási-Albert (BA)

[AB02] models, in CCD. We find that when N = 300 and I = 30, the coverage vlaues of

the TACOs found with ER and BA are merely 33.07% and 50.89%, respectively, much

lower than that by GAN (see detailed results in the Appendix A). This is because these

classical models cannot iteratively learn from the graph data and generate high-quality

patterns in an adaptive manner.

We also manually checked the discovered TACOs. Besides the typical ones that in-

clude logic and temporal predicates only, some TACOs can also help enrich or interpret

ML predictions (see the Appendix A).

Exp-3: Accuracy. As shown in Table 4.4, we evaluated the accuracy of TASTE with

the TACOs and baselines on two tasks: temporal event prediction and dynamic recom-

mendation [LJL+21b, KM18]. Note that there was no result for SACN and REGCN

(resp. Caser and SASRec) on dynamic recommendation (resp. temporal event predic-

tion) datasets since they are not designed for the task. TASTE (ParEP) applied the

discovered TACOs with confidence above 0.9, in which graph patterns have at most 9

nodes. We find that very few TACOs with more than 9 pattern nodes have high confi-

dence and support, similar to the findings of frequent pattern mining [EASK14]. We

adopted Hit Rate@10, the fraction of times that the ground-truth item is among the top

10 items [KM18, LJL+21b], to evaluate the accuracy.

For event prediction on ICEWS18, GDELT, YAGO and WIKI, TASTE on average

outperforms AGER, SACN and REGCN by 34.9%, 24.5% and 12.2%, respectively.

As for the dynamic recommendation on MovieLens and Amazon, TASTE is 35.8%,

22.5% and 10.6% more accurate than AGER, Caser and SASRec, respectively. These

show that by combining rules and ML models, TASTE beats the state-of-the-art deep-

learning-based REGCN and SASRec in accuracy on both tasks, while none of REGCN

and SASRec works on both.

Exp-4: Scalability. We finally evaluated (1) the parallel scalability of the prediction

module ParEP in TASTE system by varying the number k of processors, (2) the impact

of pattern size on its efficiency, and (3) the scalability of ParEP over larger synthetic

graphs. Since GERs are a special case of TACOs, ParEP is also applicable to GERs and

the runtime of AGER is not shown.

(1) Parallel scalability. Varying k from 4 to 64, Figures 4.6(m)-4.6(o) report the re-
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Dataset AGER SACN REGCN Caser SASRec TASTE

ICEWS18 59.32% 63.28% 68.58% - - 75.24%

GDELT 54.60% 62.32% 66.31% - - 73.41%

YAGO 61.32% 64.03% 74.73% - - 84.14%

WIKI 58.56% 63.58% 71.32% - - 82.53%

MovieLens 65.80% - - 75.83% 80.45% 87.30%

Amazon 59.30% - - 63.50% 73.10% 73.10%

Table 4.4: Event prediction/recommendation accuracy

sults on GDELT and WIKI for event prediction, and on MovieLens for recommendation

in the same setting as Exp-3, respectively. As shown there, (a) ParEP is parallelly

scalable. When k increases from 4 to 32, it is on average 3.2 times faster on the three

graphs. This verifies the effectiveness of ParEP under data-partitioned parallelism.

(b) In addition to its higher accuracy, ParEP performs better in efficiency than SACN

and REGCN (resp. Caser and SASRec), e.g., when k = 64, it is on average 24.2, 45.4,

6.2 and 5.7 times faster than SACN, REGCN, Caser and SASRec, respectively.

(2) Impact of pattern size. Varying the size |∆Q| of ∆-patterns in TACOs, which is

measured as the sum of the pattern node and edge numbers in each ∆Q, we report

the performance of different methods in Figures 4.6(p) to 4.6(r). The results show

that ParEP becomes slower with the increase of |∆Q|, as expected. Nonetheless, it

is still efficient when handling relatively large ∆-patterns. For instance, it needs 1645

seconds on GDELT when |∆Q|= 15, which is better than 16380 seconds by SACN (see

Figure 4.6(m)).

(3) Scalability. Fixing k = 32, we varied the size |G|=|V |+|E| of synthetic graphs G

using a scale factor from 0.2 to 1.0, and evaluated all approaches, where ParEP applied

100 TACOs. As shown in Figures 4.6(s) and 4.6(t) for prediction and recommendation,

respectively, ParEP outperforms the baselines in all cases. On average it takes 1403s

when |G|=810M, while the others cannot finish in 1 day.

Summary. We find the following. (1) On average the generative ML method of CCD

outperforms the levelwise algorithms in efficiency by more than 31 times. It is able

to discover TACOs with patterns of 20 edges in 1639s from temporal graphs, while

the levelwise methods could not finish in 1.2 days. (2) CCD is able to find as high as

84.76% of the complete rules derived by levelwise method, using 250 samples and 25

training attempts. (3) By combining rules and ML models, on average the discovered

TACOs improve the existing approaches by 23.8% and 23.0% in accuracy, for event
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prediction and dynamic recommendation, respectively. (4) Our algorithm ParEP is

parallelly scalable and scales well with the datasets, it takes less than 1403s on graphs

with 810M nodes and edges using 32 processors.

4.7 Novelty and Contributions

Our TACOs-based approach to event prediction proposed in this Chapter differs from

the prior work in the following. (1) As an effort to unify rule-based and ML-based

methods for event prediction, we propose TACOs by embedding event-prediction ML

models as predicates. This allows us to not only leverage existing ML models, but

also refine the ML models with logic conditions. (2) Unlike existing ML-based pre-

diction strategies (e.g., DRS) that adopt unexplainable blackbox models, our method

with TACOs offers a logic interpretation of the ML predictions for temporal events.

(3) TACOs are more expressive than GARs, GTARs and GERs. As will be seen in Sec-

tion 4.1, these rules can all be expressed as TACOs. TACOs may embed prediction ML

methods beyond GTARs and GERs, and support various temporal conditions on differ-

ent events, while GTARs and GERs can only express constant time intervals. (4) We

establish the complexity of classical problems for temporal graph rules. While these

problems were studied for GARs on static graphs, no prior work has considered these

for GTARs or GERs. (5) We propose a new approach to learning graph rules, which

departs from prior mining methods for GARs, GTARs and GERs.

The proposed creator-critic rule learning framework is also different from existing

rule learners as follows: (1) we study rule discovery in temporal graphs, while the

prior learners focus on static graphs. (2) We propose to discover TACOs with general

topological structures, beyond merely paths. (3) We discover TACOs that may carry

ML predicates. (4) We propose a deep-generative-model-based approach to learning

graph rules with large graph patterns. In contrast, conventional mining methods for

graph rules [FWWX15, FHLL20] can hardly find rules with patterns of 7 edges or

more.
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Figure 4.6: Performance evaluation



Chapter 5

Joins across Relations and Graphs

This Chapter proposes an approach to querying relations D and graphs G taken to-

gether in SQL. The need for querying relations and graphs taken together has been

increasingly evident. While most business data resides in relational database manage-

ment systems (RDBMSs), graphs have found prevalent use in practice, e.g., transaction

graphs, knowledge bases, social networks and road networks. Gartner predicts that the

practice of graph analytics will double annually [Bus20]. With this comes the need for

writing queries across relations and graphs, to synthesize relevant information pertain-

ing to the same real-life entities.

Example 5.1: Consider a relational database D of customer accounts and a graph G

of transactions at a bank as shown in Fig. 5.1. To decide whether to recommend a new

financial product fd0 to Bob (cid02 in D), the bank checks (a) whether Bob has good

credit (in D), and (b) whether there exists a customer who has invested in fd0 (in G),

has account balance close to Bob’s (in D), and has co-invested the same amount as

Bob in a financial product at the same price as fd0 (in G). For instance, Ada (cid04 in

D and id001 in G) from NYC is such a customer. To check these, however, the bank

has to synthesize relational data from D and transactions from graph G. 2

No matter how desirable, it is nontrivial to write a query that accesses data in a

relational database D and a graph G, aligns entities across D and G, and correlates

their information, in particular when D and G are independent data sources as often

found in practice. While relations in D have a regular structure, graph G is often

schemaless. Entities in G are typically encoded as vertices v, as opposed to tuples t

in D . As a consequence, the same entity often has radically different “topological”

structures in relations and graphs. Worse still, a property of entity v in graph G is
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R

cust.:Ada cust.:Bob

fd0 fd1 fdm

price:$1k

stock price:$1k …

qty:20 qty:10

Bloomberg L.P.
?

price:$2k

Manha>an cust.:Ada

BBC LondonNew York id001

id002

Google LLC

Menlo Park 

Californiaid003

cid name credit bal city
cid01 Ada fair $500k LDN
cid02 Bob good $110k SF
cid03 Guy good $50k NYC
cid04 Ada fair $100k NYC

Invest:$1m

qty:10

Invest:$5m

stock

Invest:$5m

qty:80

fund

(a) Customer database D

(b) Transaction knowledge graph G

qty:80

Figure 5.1: Relational database D and graph G in Example 5.1

often linked via a path from v, in contrast to “local” attributes of a relational tuple. For

instance, the price of Ada(id001)’s transaction for fd1 is linked to Ada via a path (Invest,

qty, fd1, price) in Fig. 5.1. Moreover, such paths may have varying lengths, e.g., New

York is connected to Ada id001 via a path of 3 edges while London is connected to

Ada id002 via a path of 2 edges. Here the location vertices are needed to decide which

Ada in G (id001 or id002) matches Ada cid01 in D .

Add to the complication that practitioners often want to write queries against D
and G in SQL. Indeed, our FinTech collaborators are used to SQL and want to hold on

to the query planers and optimizers of RDBMSs. One might want to first shred a graph

into relations and then write SQL queries. However, it would require costly joins for

traversing paths to link entities and find attributes [FGJ+22].

In light of these, we are aware of no systems that support SQL queries across rela-

tions and graphs, neither RDBMSs and graph (database) systems [neo, AG08, DJL+16,

GXD+14, FYX+18], nor modern federated systems [QD16, JRW+14, SAL+17, FRP15,

ZY17, Des18, ABA+09, ZR11, KAB+12, DES+15, HdAC+14, KBV+16]. To answer

the question of Example 5.1, our FinTech colleagues have to write multiple queries on

D and G separately, and go between RDBMS and graph systems back and forth. This

often incurs a heavy cost.

A new approach. We propose a framework, referred to as RGAP (Relation GrAPh),



127

to support SQL across a relational database D and a semistructured graph G. RGAP

advocates the following strategies.

(1) Semantic join. Assume an “oracle”, referred to as HER for Heterogeneous Entity

Resolution. Given a tuple t in D and a vertex v in G, HER checks whether t and v make

a match, i.e., they refer to the same real-world entity, despite their radically different

topological structures. Then we can naturally “join” the same entities encoded by

tuples in relations and by vertices in graphs, collect relevant attributes pertaining to the

entities, and correlate their information. This is a simple semantic extension to the join

operator in SQL.

Several accurate methods are in place for HER, either machine learning (ML) clas-

sifiers such as DeepMatcher [MLR+18], JedAI [PMG+20], MAGNN [FZMK20], or

parametric simulation that embeds ML models in topological matching and inductively

inspects “deep” features [FGJ+22].

(2) Static and dynamic joins. We extend relational algebra (RA) with syntactic sugar to

support semantic joins across D and G, referred to as GRA (Graph Relational Algebra).

Given a set S of tuples of a relation schema R, we deduce the following:

◦ f (S,G), the set of pairs (t,v) such that t ∈ S and v is vertex in G that matches t, by

invoking HER;

◦ a relation schema RG to augment R with additional attributes from G, i.e., properties

of the matching vertices in f (S,G); and

◦ an instance h(S,G) of schema RG, by value extraction from G.

We join entities t and v as long as they make a match in f (S,G), and complement tuples

t with additional attributes of h(S,G). More specifically, we support two different

forms of join:

◦ static join: when S is a set of input tuples in D; and

◦ dynamic join: when S is the intermediate result of a sub-query.

We show how to efficiently implement the two forms of joins. While we can cache

f (S,G) and h(S,G) in advance for static joins, for dynamic joins, naive implementation

would require to compute S, f (S,G) and h(S,G) at run time on the fly, with a heavy

cost. We show how to reduce dynamic joins to static joins for a large class of practical

queries, making them accessible within RDBMS.

(3) Attribute extraction. To support semantic joins, one has to compute the match re-

lation f (S,G) and extract relations h(S,G) for the matches from G. While f (S,G) can
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be identified by HER [PMG+20, MLR+18, IJB10, FZMK20, FGJ+22], no method is

available to deduce schema RG and relation h(S,G). This is nontrivial since we have to

identify important properties by traversing paths from the matching vertices in f (S,G).

We propose a clustering-based method to deduce RG and h(S,G). Taking a set Ω of

keywords from users as input, we rank and pick attributes that cover most vertex-path

pairs in G, meet users’ query interests (represented by Ω), and diverse from existing

attributes of R.

(4) Heuristic dynamic joins. For those queries in which dynamic joins cannot be re-

duced to static joins, we propose a heuristic join method to reduce the cost. To do this,

for selected types τ of entities in G, we adjust the clustering method for (3) to deduce

◦ a schema Rτ with attributes that cover important properties of τ-entities in G and

match users’ interests; and

◦ an instance gτ(G) of schema Rt extracted from G.

With the extracted relations gτ(G), given a dynamic join between intermediate query

results S and graph G, we reduce it to relational ER between S and gτ(G), which can

be realized in RDBMS with a simple UDF. By caching gτ(G) in advance, this strikes a

balance between the efficiency and accuracy of dynamic joins, without calling external

HER and extraction functions at run time. We also develop incremental algorithms to

extract h(S,G) and gτ(G) in response to updates to database D and graphs G.

This Chapter aims to enrich RDBMSs with a capacity of semantically querying

relations D and graphs G in SQL. Its novelty consists of the following: (1) a notion

of semantic joins; (2) methods for implementing static joins and dynamic joins within

and atop existing RDBMS; (3) clustering-based methods to extract (a) attributes from

graphs to complement relations, and (b) a schema for entities of a specific type in a

graph; and (4) a method for incrementally maintaining extracted relations in response

to updates.

The need for synthesizing data in D and G also arises from data lakes [NZM+19].

Given a query Q on D , open challenges in data lakes include: (a) query-driven data

discovery to find relevant graphs with vertices matching tuples in Q(D); (b) on-demand

data integration to augment tuples in Q(D) with relevant properties of matching ver-

tices; and (c) data extraction to abstract a schema and relations from raw data in graphs.

This work sheds lights on these aspects.

The rest of this Chapter is organized as follows. We propose semantic joins in

Section 5.1, develop our attribute extraction scheme in Section 5.2, and present the



5.1. Semantic Join 129

schema extraction method, heuristic joins and incremental algorithm in Section 5.3.

The experimental study is reported in Section 5.4. We finally conclude our novelty and

contributions compared with previous work in Section 5.5.

5.1 Semantic Join

In this section, we introduce RGAP, an approach to querying relations and graphs

in SQL. We first extend relational algebra and SQL with semantic joins (static and

dynamic, Section 5.1.1). We then show how to implement semantic joins in existing

RDBMSs (Section 5.1.2).

We consider relational databases and graphs, reviewed as follows.

Relations. A database schema is R = (R1, . . . ,Rn), in which each Ri is a relation

schema of the form Ri(A1, . . . ,Aki), and Ai is an attribute. A database D of R is

(D1, . . . ,Dn), where Di is a relation of Ri (i ∈ [1,n]). We assume w.l.o.g. that each

tuple t carries a tuple id.

Graphs. We consider directed labeled graphs G = (V,E,L), where (a) V is a finite

set of vertices, (b) E ⊆ V ×V is a set of edges, and (c) L is a function such that for

each vertex v ∈ V (resp. edge e ∈ E), L(v) (resp. L(e)) is a vertex (resp. edge) label.

While edge labels typify predicates, vertex labels may carry values. Graph G may be

a transaction graph, a social network, a knowledge base, etc.

A path ρ from a vertex v0 in graph G is a list ρ = (v0,v1, . . . ,vl) such that (vi−1,vi)

is an edge in E for i ∈ [1, l]. The length of ρ, denoted by len(ρ), is l, i.e., the number

of edges on path ρ. A path is simple if vi 6= v j for i 6= j, i.e., a vertex appears on ρ at

most once. We consider simple paths in the sequel, simply referred to as paths.

5.1.1 Extending Relational Algebra

We start with parameter functions taken by RGAP.

Parameters. RGAP assumes the availability of the following.

Heterogeneous Entity Resolution (HER). HER provides a function f that given a graph

G and a set S of tuples, computes a set f (S,G):

f (S,G) = {(t,v) | t ∈ S,v ∈V in G, t⇒ v}.

Here t⇒ v denotes that tuple t and vertex v make a match, i.e., t and v refer to the same
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real-world entity. We refer to f as the HER function and f (S,G) as the match relation

of S and G.

We denote by Rm(tid,vid) the schema of the match relation, such that a tuple

(t.id,v.id) of schema Rm denotes that (t,v) is a match in f (S,G) for tuple t with t.id

and vertex v with v.id.

We support rule-based JedAI [PMG+20], parametric simulation [FGJ+22], and

ML models DeepMatcher [MLR+18], Silk [IJB10], MAGNN [FZMK20] as HER.

Attribute Extraction. Given a graph G, a relation schema R, and a set Ω of keywords

that indicates users’ interest, an attribute extraction scheme deduces a schema RG and

a population function h:

◦ RG = (vid,B1, . . . ,Bm), where vid denotes a vertex v that matches tuples of R by

HER, and Bi’s are features of v; and

◦ h is a function that given a set S of tuples of R, returns an instance h(S,G) of

schema RG by extracting corresponding properties of the vertices in f (S,G) that

match tuples in S.

As will be seen in Section 5.2, RG is composed of attributes B1, . . . ,Bm that (a) meet

users’ interests indicated in Ω, and (b) are absent from schema R, as additional and

alternative attributes to complement R. Function h populates h(S,G) by traversing

paths in G from matching vertices in f (S,G). We refer to RG as the extracted schema

for R from G, and to h(S,G) as the extracted relation for S from G.

We refer to the extraction method as AExt (attribute extraction).

Algebra. Consider a graph G and a database D = (D1, . . . ,Dn) of schema R =

(R1, . . . ,Rn). We extend relational algebra (RA) to Graph Relational Algebra (GRA)

across D and G, as follows:

Q ::= R | πX Q | σCQ | Q1×Q2 | Q1∪Q2 | Q1 \Q2

| R ./ f G[~B] | Q1 ./ f G[~B/Ω].

Here R ∈ R is a relation atom, and operators π,σ,×,∪ and \ are projection, selec-

tion, Cartesian product, set union and set minus as in RA, respectively. Just like their

counterparts in RA, they operate on relation(s) and return a relation as their result.

In addition, the predicates of σC and πX may be defined over attributes not only in

schemas of R but also in the extracted schemas RG (see below).

GRA extends RA with new operations R ./ f G and Q1 ./ f G.
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(1) Static joins. We refer to R ./ f G[~B] as a static join, which operates on (D,G),

where D is an input relation of schema R ∈ R . It returns a relation of the schema of

R 1 Rm 1 RG[~B], where Rm is the match relation, and RG is the extracted schema of R,

such that

R ./ f G[~B] = {(t, t ′[~B]) | (t,v) ∈ f (D,G),(v.id, t ′) ∈ h(D,G)}.
Here f is the match function that returns matches (t,v), and h(D,G) is the relation

extracted from G. Moreover, ~B ⊆ (B1, . . . ,Bm) in schema RG = (vid,B1, . . . ,Bm). As

will be seen in Section 5.1.2, RG is extracted offline in advance and ~B is known to the

users.

Intuitively, for each match (t,v) in f (D,G), we extract attributes pivoted at vertex

v and append them to t. Since t and v denote the same entity e, the extracted attributes

complement the information of e encoded by t. In contrast to conventional joins in RA,

R ./ f G[~B] connects tuples t and vertices v if they semantically refer to the same entity,

and expand t with correlated attributes from graph G.

(2) Dynamic joins. We refer to Q1 ./ f G[~B/Ω] as a dynamic join, where Q1 is a sub-

query that returns a set S of tuples of a relation schema RQ1 . Here RQ1 is deduced from

Q1 and R , and is not necessarily an input schema in R . Similarly, S is dynamically

computed and is not included in D . The dynamic join also returns a relation of the

schema of RQ1 1 Rm 1 RG[~B], where Rm is the schema of the match relation, RG is the

extracted schema from G for RQ1 , and

Q1 ./ f G[~B/Ω] = {(t, t ′[~B]) | S = Q1(D),(t,v) ∈ f (S,G), (v.id, t ′) ∈ h(S,G)}.

As opposed to static join, the match relation f (S,G) and extracted relation h(S,G) can

only be computed online after S is available, which cannot be determined statically and

materialized in advance. Users may specify a set ~B of desired attributes from graph G;

alternatively, they may provide a set Ω of keywords to hint at attributes and values they

would like to have from G via examples (see below).

Intuitively, dynamic join computes match relation f (S,G) by invoking HER and

extracts relation h(S,G) by calling AExt after sub-query Q1 returns relation S. It also

deduces schema RQ1 of S and schema RG. After f (S,G) and h(S,G) are in place,

Q1 ./ f G is computed via two conventional joins just like static join above.

In contrast to relational joins, semantic joins create new attributes extracted from

graphs that are not in the input schema R .

About ~B and Ω. RGAP works with semantic joins as follows. Consider a relational

database D of schema R and a graph G.
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(1) As offline initialization, RGAP computes the following: (a) for each schema R

of R and the instance D of D , matches f (D,G), extracted schema RG and relation

h(D,G) (see Section 5.2); and (b) for each type τ of entities, a relation schema Rτ

(Section 5.3.1). Users may provide keywords of their interests to guide the extraction.

(2) When users write queries with static joins, it suffices to reference the extracted

schema RG, which is pre-computed. For dynamic joins, users may specify attributes ~B

by referencing Rτ, or provide keywords Ω to exemplify attributes and values expected

from G. In the latter case, RGAP either uses Ω to guide attribute extraction for dynamic

evaluation (Section 5.1.2), or matches the keywords to those attributes extracted in

advance for heuristic joins (Section 5.3).

Example 5.2: Continuing Example 5.1, the recommendation can be formulated as a

query q using either static or dynamic join.

(1) Static join. A GRA with static join for q consists of T s and qs:

T s = R ./ f G[qty,prod,price]

qs = σC1T s
1 1C2 T s

2 1C3 T s
3 , where

◦C1 : T s
1 .cid = cid02∧T s

1 .credit = good

◦C2 :T s
1 .bal≈ T s

2 .bal∧T s
1 .prod = T s

2 .prod∧T s
1 .qty = T s

2 .qty∧T s
2 .price = p0

◦C3 : T s
2 .cid = T s

3 .cid∧T s
3 .prod = fd0

Here (a) R is the input customer relation (see Fig. 5.1), and attributes qty, prod, price

are from the extracted schema RG of R; (b) x ≈ y checks whether x is close to y, e.g.,

whether |x− y| ≤ c for some pre-defined constant c; (c) p0 is the price of the new

product fd0; (d) HER function f links D and G in relation Rm(cid,vid), where cid01

matches id002, cid02 matches id003, and cid04 matches id001; and (e) T s
1 , T s

2 and T s
3

rename intermediate relation T s.

(2) Dynamic join. One can also write q by using dynamic join:

E = πR′.cid(σR.cid=cid02∧R.credit=goodR 1R.bal≈R′.bal R′)

T d = E 1 f G[qty,prod,price]

qd = T d
1 1C4 T d

2 1C5 T d
3 , where

◦C4 : T d
1 .cid = cid02∧T d

1 .qty = T d
2 .qty∧T d

2 .price = p0

◦C5 : T d
2 .cid = T d

3 .cid∧T d
3 .prod = fd0
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Here R′ renames R; and T d
1 , T d

2 and T d
3 rename T d . Compared to T s, T d is smaller by

filtering out users whose account balance is not large enough. Here E is known only at

the query execution time, in contrast to R in the static join that is known in advance. 2

Extending SQL. We also propose gSQL (graph SQL), SQL with syntactic sugar, to

express GRA queries. A gSQL query over database schema R = (R1, . . . ,Rn) and

graph G is of the form:

select A1, . . . , Ah

from R1, . . . , Rn, S1 join G1[~B1/Ω1], . . . , Sm join Gm[~Bm/Ωm]

where CONDITION-1 {and —or } . . . {and —or } CONDITION-P

Here G1, . . . , Gm are renamings of the graph G and S1, . . . , Sm are either relations in R
or gSQL sub-queries over R and G. Users may specify expected attributes ~Bi or pro-

vide keywords Ωi for graph Gi just as in GRA described above. Each CONDITION in

the where clause is an SQL condition over relations R1, . . . , Rn, and the result relations

of semantic joins in the from clause. As indicated above, gSQL extends SQL just with

syntactic sugar.

Note that gSQL can readily incorporate other SQL keywords, e.g., (inner/outer)

joins, not in and views, to express all GRA queries.

Example 5.3: One can write in gSQL the queries qs and qd of Example 5.2 almost

identically to the standard SQL syntax. For instance, one can write qd of Example 5.2

in gSQL as follows:

with q1 as (

select R2.cid from R as R1, R as R2

where R1.cid = cid02 and R1.credit = good and R1.bal≈ R2.bal )

select T d
2 .user

from q1 join G[qty,prod,price] as T d
1 , q1 join G[qty,prod,price] as T d

2 ,

q1 join G[qty,prod,price] as T d
3

where C

Here q1 implements RA expression E of qd in Example 5.2, and C in the where clause

is the same as the join conditions in qd . Note that writing gSQL queries is almost the

same as writing SQL except that we can freely use semantic joins just like natural joins

in SQL, which extract attributes from G that are new to the relational database. 2

The notations of this chapter are summarized in Table 5.1.
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symbols notations

D , G relational database, semistructured graph

R ./ f G, Q1 ./ f G static join, dynamic join

f (S,G) HER match relation of schema Rm(tid,vid)

h(S,G) relation extracted from G, with schema RG(vid,B1, . . . ,Bm)

Rτ schema extracted for τ entities in G

gτ(G) instance of schema Rτ for properties of τ entities in G

GRA, gSQL Graph Relational Algebra, graph SQL (SQL with syntactic sugar)

RGAP, HER, AExt (Relation GrAPh), Heterogeneous Entity Resolution, Attribute Extraction

Table 5.1: Notations

5.1.2 Implementation

Below we show how existing RDBMSs can be used to implement semantic joins. We

first show that static joins can be implemented without any change to RDBMS, by

offloading HER and attribute extraction to an offline pre-processing. We then show

that a large class of practical queries with dynamic joins can be similarly supported by

RBDMS, by reducing to static joins; in Section 5.3 we will show how to process the

rest of the queries with dynamic joins.

Note that static joins R ./ f G are a special case of dynamic joins Q1 ./ f G when Q1

is a relation atom R in the input schema R . However, the implementations of the two

are quite different. Static joins can be rewritten to equivalent SQL queries. In contrast,

dynamic joins need to compute matches f (S,G) and extract attributes h(S,G) online,

and are thus more expensive than static joins.

Static joins. For a GRA query Q with static joins posed on database D and graph G, Q

can be rewritten into an equivalent conventional SQL query Q′ over schemas R , Rm and

RG. The deduced SQL query Q′ is then executed by the RDBMS underlying RGAP.

More specifically, it converts each static join R ./ f G[~B] into a join R 1tid πtid,~BRG,

where RG is the extracted relation from G for R. As remarked earlier, ~B comes from

RG; matches f (D,G), schema RG and h(D,G) are independent of the query Q and are

computed offline in advance, where D is the instance of R in database D .

Example 5.4: Continuing with Example 5.2, assume that HER function f links R and

G in match relation Rm(cid,vid), and the extracted relation is RG(vid,qty,prod,price).

Then one can implement the static join R ./ f G simply as relational joins R1cid Rm 1vid

RG. 2
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Dynamic joins. Dynamic joins cannot materialize matches f (S,G) and extracted re-

lation h(S,G) beforehand. A naive implementation would require to access foreign

data (i.e., G) and external functions (i.e., f and h) during the join execution time. In

principle, this can be realized by either (a) encapsulating functions HER f and relation

extraction h as UDFs within RDBMS, or (b) implementing the logic of dynamic joins

outside RDBMS after S is computed in RDBMS. However, in either way it would incur

a heavy cost across D and G.

To reduce the cost, we propose an efficient implementation of dynamic joins for

a large class of queries, referred to as entitic queries. Intuitively, a query Q is an en-

titic query if each tuple of its answers can be attributed to one or more entities (i.e.,

tuples) in the database D . For such queries, we can avoid computing HER matches

and extracted relations at execution time, by converting dynamic joins between S and

G to static joins between DQ and G, where DQ consists of tuples in D that encode ex-

actly those entities to which answers to Q refer. As will be shown in Section 5.4, this

approach is an order of magnitude faster than the two naive implementation methods,

respectively, for dynamic joins of entitic queries.

More specifically, there are three cases where a query Q is identified as an entitic

query: (a) Q refers to only one relation in D and the output schema RQ of Q contains

its primary key; (b) Q refers to multiple relations in D of which the primary keys are

in RQ; or (c) there exists an entitic query Q′ such that Q = πRQ(Q
′), where πRQ(Q

′)

projects the results to Q′ on the attributes of RQ.

We start with type (a) queries Q; we compute Q ./ G as follows:

(1) Like offline pre-processing in static joins, we find HER matches f (D,G) = Dm and

extract relation h(D,G) = DG in advance.

(2) Given Q, we first compute its answers S in D .

(3) We then compute Q ./ G via S 1 Dm 1 DG, just like how we compute static join

D ./ G via D 1 Dm 1 DG above.

Here we assume that the HER match relation Dm has a schema (tid, vid), where tid

values are the primary key values in all relations of D . Note that only steps (2) and (3)

are carried out at run time after the intermediate results S to Q become available.

Intuitively, f (S,G) ⊆ f (D,G) if query answers in S refer to entities in D . With

pre-computed Dm (i.e., f (D,G)), this converts the computation of f (S,G) into a join

of S with Dm, yielding the match relation between entities in S and G. This can be

further joined with pre-computed DG (i.e., h(D,G)). There is no need for invoking
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HER and AExt during run time on the fly.

Example 5.5: Recall query qd in Example 5.2. Observe that sub-query E in the dy-

namic join E ./ G of qd is an entitic query of type (a) since it contains exactly one

primary key of R, i.e., cid. Hence, E ./ G can be rewritten into a static join with pre-

computed relations Rm and RG in Example 5.4, via E 1 Rm 1 RG, avoiding the need to

compute HER f (S,G) and extract relation h(S,G) for E online. 2

For entitic queries Q of type (b), i.e., when each answer tuple t of Q refers to

multiple entities in D via primary keys, one can still reduce a dynamic join Q ./ G to a

static join with pre-computed Dm and DG. The idea is to take into account all entities

for the answer S to Q in D in step (3) above. Assume that S has two primary key

attributes, say pk1 and pk2. Then we compute f (S,G) via Dm 1pk1 S 1pk2 Dm. That is,

for each answer tuple t in S, we find matches from G to both entities t[pk1] and t[pk2]

in D , extract tuples for them accordingly by further joining DG, and compose them

together by joining t over pk1 and pk2.

Example 5.6: Continuing Example 5.1, suppose we want to find and compare invest-

ments on product fd0 from customers with the same account balance. This is formu-

lated as a GRA query q2 as follows:

E = πρ:R1.cid→cid1,ρ:R2.cid→cid2R1 1bal R2;

q2 = E ./ f G[qty,prod,price].

Note that E ./ f G is an entitic query of type (b) since E contains two keys cid1 and

cid2. With pre-computed match relation Dm(cid,vid) = f (R,G) and extracted relation

DG(vid,qty,prod,price), q2 is evaluated as follows (denote Dm 1vid DG by TG):

T 1
G 1cid1=T 1

G .cid
E 1cid2=T 2

G .cid
T 2

G ,

where T 1
G and T 2

G rename TG. That is, with pre-computed relations f (D,G) and h(D,G),

we can express a dynamic join E ./ f G as two conventional joins on cid1 and cid2 of

E, respectively. 2

Along the same lines, one can turn dynamic joins for queries Q of type (c) into

static joins by computing the answers to type (a) or (b) queries Q′ first and projecting

on RQ (recall that Q = πRQ(Q
′)).

Most of typical set-valued queries are entitic queries, e.g., all non-aggregate TPC-H

benchmark queries. Hence we can answer such queries within RDBMS by reducing

dynamic joins to static joins.
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Figure 5.2: Clustering-based attribute extraction

Remark. When the graph G is extracted as relation DG, existing query processing al-

gorithms based on worst-case optimal (wco) join [TGR20, Ngo18, NRRL19, KEK16]

can be directly applied to improve the performance. Slightly different from previ-

ous wco join algorithms, e.g., [Vel12], when constructing the trie index structure for

S 1Dm 1DG, the algorithm should start from checking keys tid and vid, which reduces

the time and space costs of constructing index structures.

5.2 Attribute Extraction

A key step in semantic joins is to extract relations from G. In this section we present

AExt of RGAP, a method to deduce extracted schema RG for a relation schema R from

graph G, and populate extracted relation h(S,G) with attributes pivoted at vertices in

G, based on matches of HER and query interests (keywords) provided by the user.

Overview. For a relation schema R(A1, . . . ,AkR), let S be a set of tuples of R (input tu-

ples for static join or query results for dynamic join), and f (S,G) = {(ti,vi) | i∈ [1,N]}
be the set of matches identified by HER, where ti is a tuple in S, and vi is a vertex in

G. The users also provide a set Ω = {w1,w2, . . . ,wp} of keywords, where each wρ

exemplifies part of query results to the user’s interests.

Given these, we deduce extracted schema RG = (id : vid, B1 : τ1, . . . ,Bm : τm) for R

and build an extracted relation h(S,G) of RG, where for j ∈ [1,m], B j is an attribute in

ϒ and τ j is its type. The attributes of RG are determined by users’ interests Ω.

Intuitively, from the set of vertices that match tuples in S, we extract tuples of

schema RG, where attributes B1, . . . ,Bm record values reached via paths from vi for

(ti,vi) ∈ f (S,G). Since ti and vi denote the same real-life entity ei, we can find addi-

tional information of ei from G to complement h(S,G). Such information is typically

encoded as properties of vi by vertices close to vi in G.

AExt has two phases. (1) Extract schema RG to reflect users’ interests. (2) Populate

relation h(S,G) with values in graph G. Below we present the two phases. Since we

(1) employ sentence embedding and sequence embedding to represent vertex labels

and edge labels in a path as vectors, respectively, and (2) apply K-means clustering
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Figure 5.3: Part of clustering result of vertex-path pairs in G.
(KMC) to select attributes, we start with a review of these methods.

Sentence and Sequence Embedding. Sentence embedding aims at learning semanti-

cally meaningful vector representations of sentences, such that the semantic distance

between sentences can be quantified by similarity metrics [LFS+17]. With the re-

cent success of attention-based models [VSP+17], one can choose from pre-trained

models [RG19] to obtain high-quality sentence embeddings without training a model

starting from scratch. Sequence embedding deals with the problem of representing

token sequences as vectors, such that the learned representations capture the sequen-

tial information of tokens in the sequence. Since long short-term memory (LSTM)

networks have shown promising results in sequence modeling [GBC16, CGCB14],

people commonly adopt the vector output of the LSTM network in the last time step

as the embedding to represent the sequence [ETJ+18].

K-means Clustering. We adopt KMC for attribute extraction since it can be efficiently

parallelized [LF89]. Popular for cluster analysis in data mining, KMC [M+67] aims

to partition data points into clusters that minimize squared Euclidean distances within

each cluster, so that data points in the same cluster are much closer than those in dif-

ferent ones. This problem is NP-hard [MNV09]. Nonetheless, heuristic algorithms

have been developed, which converge quickly at a local optimum; the algorithms par-

tition data points by iteratively assigning each to its closest cluster, where the center of

each cluster is updated when new data points are added. We should remark that other

clustering methods can also be used by AExt, not limited to KMC.

(1) Schema construction. For a given relation schema R, we build its extracted schema

RG from graph G in two steps:

(a) extract a set Γ of attributes based on matches f (S,G); and

(b) design a ranking function that picks the best m attributes from Γ for schema RG,

based on users’ interests Ω.

Step (a) Attribute extraction. As shown in Fig 5.2, we identify candidate attributes via

KMC on the vector representations of both vertex labels and edge labels on the paths.
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We assume three parameters: a bound k on linking path lengths, the number H of

clusters, and the number m of attributes for RG, which we will elaborate shortly.

More specifically, given a match (ti,vi) ∈ f (S,G), for each vertex vi j to which vi is

linked via the shortest path ρi j (len(ρi j)≤ k), we take (vi j,ρi j) as a vertex-path pair of

vi and include all such pairs in a set Ψ. Only the shortest paths are considered since a

shorter path tends to represent stronger relatedness in semantic graphs [KLAF17]. We

employ a Bert embedding model [RG19] to extract a vector representation xvi j of vertex

label for each vi j. Since most vertex labels are “sentences” in natural languages, we

can utilize a pre-trained Bert model instead of training a new one starting from scratch.

We then build a vector representation xρi j for each path ρi j via a sequence embed-

ding model, e.g., LSTM networks, where ρi j is viewed as a sequence of edge labels.

More specifically, we feed edge labels on path ρi j in sequence to the well-trained

LSTM network as inputs and, similarly to [ETJ+18], and take the network output in

the last time step as xρi j . Due to the sequence modeling capacity of LSTM, the em-

bedding xρi j can discern different orders of edge labels. For example, the path from

Ada to New York in Fig 5.1 has edge label sequence: (Co., in, LOC), while that from

Bob to California has the sequence: (Co., LOC, in). Both paths have same edge labels

but in different orders, which are embedded as two different vectors. This will benefit

the downstream clustering task by discriminating different orders of edge labels. To

train such LSTM networks, we perform random walk in G, collect edge labels on walk

paths as training corpus where each label is viewed as a word, and train the LSTM

network on this corpus driven by perplexity [SSN12]. Concatenating xvi j and xρi j as

xi j, we represent each vertex-path pair (vi j,ρi j) by one feature vector. We include all

xi j’s in a set X .

We perform KMC on the set X with limited iterations to assign each vertex-path

pair into one of H clusters. Each cluster Cε represents a candidate attribute Bε whose

type τε is the type of the majority vertex label in Cε. Denote by Γ = {B1, . . . ,BH}
the set of all such candidate attributes. Note that the training and clustering are both

unsupervised, saving the costly manual annotations.

Step (b) Attribute ranking. We rank attributes Bε in Γ by

rA(Bε) =
|Cε|
|Ψ| − max

ϕ∈[1,kR]

∑vi j∈C′ε cos(xvi j ,xti.Bϕ
)

|C′ε|
+ max

ρ∈[1,p]

∑vi j∈C′ε cos(xvi j ,xwρ
)

|C′ε|
.

Here Cε is the cluster that represents Bε, Ψ is the set of all vertex-path pairs, C′ε is a

randomly selected subset of Cε as vertex-path pair representatives for ranking, cos(·, ·)
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vid qty price

id001 20 $1k

id001 80 $1k

id002 10 $1k

id003 80 $1k

id003 10 $2k

Table 5.2: Extracted relation RG
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Figure 5.4: Directed out tree

returns the cosine similarity of two vectors, ϕ iterates over attributes of tuple ti, and

xti.Bϕ
(resp. xwρ

) is the sentence embedding of attribute ti.Bϕ (resp. string wρ ∈ Ω) in

the same way as xvi j , kR is the arity of relation S, p is the number of query-interest

keywords. We pick m attributes with the highest scores from Γ to build the extracted

schema RG of R.

Intuitively, this function gives higher scores to candidate attributes that (1) match

more vertex-path pairs in G (the first term), (2) are not semantically similar to existing

attributes in R (the second term), and (3) are semantically related to one of users query

interests in Ω (the third term). Thus, the extracted schema RG is to reduce the number

of null values, provide versatile information that is complementary to tuples of schema

R, and meet the user’s interests.

Example 5.7: Given matches {(cid01,Ada id002),(cid02,Bob id003),(cid04,Ada

id001)} in Example 5.2, using well-trained LSTM networks [SSN12] and word em-

bedding models [RG19], we embed vertex-path pairs as vectors and cluster them as

shown in Fig. 5.3, where cluster Cε corresponds to candidate attribute Bε. For an inter-

est set Ω = {quantity number 80, price $2k} given by the user, we rank the candidates

in decreasing order of the scores returned by rA: B3, B4, B5, B1, B2. Here B3 and B4

have the highest scores because they are complementary to the customer database D
and are closely related to query interests. We rank rA(B3) higher than rA(B4) because

B3 has more matches in G. Note that cluster C6 is not involved in this ranking since

it consists of vertex-path pairs that belong to companies and there is no vertex-tuple

matches in f (S,G) provided for company entities. We keep B3 and B4 in the extracted

schema since they retrieve the missing information of qty and price in D . 2

Parameters H,m,k. The default H and m (m ≤ H) are set by the users, or H can take

the number of “types” in Ψ as their value; paths with the same edge label sequence

are considered as the same type. We set k as 3 in default since most information of an

entity is within 3-hops [LLL+15] and longer paths hold weaker associations [AHAS03,
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KLAF17].

(2) Value extraction. After schema RG is extracted, we populate its instance h(S,G)

as follows. Consider a match (ti,vi) ∈ f (S,G). For vertex-path pair (vi j,ρi j) that is

assigned to a cluster Cε, which corresponds to attribute Bε in RG, normally we assign

the label L(vi j) to tvi.Bε. However, conflicts occur when multiple vertex-path pairs

of one entity are mapped to the same attribute Bε. We refer to vertex-path pairs as

conflicting pairs if they contain conflicting paths, attributes to which conflicting pairs

are mapped as conflicting attributes, and other attributes in RG without such conflicts

as non-conflicting attributes. For instance, for the entity Bob id003 in Fig. 5.1, the

vertex-path pair from Bob id003 to price:$1k and that from Bob id003 to price:$2k are

both assigned to cluster C4 in Fig. 5.3, which maps price:$1k and price:$2k to attribute

B4 (price). The two vertex-path pairs are conflicting pairs containing two conflicting

paths, and attribute B4 (price) is the conflicting attribute.

We resolve this by extracting conflicting values of one entity to multiple tuples as

follows. For all conflicting pairs (vi j,ρi j) ( j ∈ [1,N]) of the entity vi, we first extract

vertices and edges on paths ρi j ( j ∈ [1,N]) from G and obtain a DAG (directed acyclic

graph) Gvi = (Vvi,Evi) with vi as root. Since each path ρi j is the shortest path from vi

to vi j, the DAG Gvi is actually a directed out tree, where vi is the root and for any other

vertex u in Gvi , there exists exactly one (shortest) path from the root vi to u [SP75].

Then for each leaf vl in Gvi with a path ρl from root vi to vl , we create a tuple tvil

in which the values of conflicting attributes are extracted from vertex labels on ρl

according to the attributes in RG, while the values of non-conflicting attributes in tvil

are populated normally. Each tuple tvil shares the same id : vid since they belong to the

same entity vi. This conflict resolution takes O(Vvi) time as the algorithm just needs to

check each vertex label in Gvi following the directed paths from the root to each leaf.

Example 5.8: Continuing with Example 5.7, Table 5.2 shows the relation h(D,G) ex-

tracted from G. The tuple of Ada id002 is populated without conflicts, while conflicts

occur for Ada id001 and Bob id003 as different vertex-path pairs of quantity and price

are assigned to the same cluster (attribute). In order to resolve these conflicts, taking

Bob id003 as example, we construct a directed out tree (Fig. 5.4) by extracting vertices

and edges on conflicting paths from G. Then for each leaf in Fig. 5.4, we create a tuple

to collect values for attributes in RG. For instance, along the path from Bob to $1k in

Fig. 5.4, we create a tuple that collects qty as 80 and price as $1k (line 4 in Table 5.2).

Similarly, for path from Bob to $2k, we create another tuple (line 5 in Table 5.2) to
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Figure 5.5: Clustering result (vertex-path pairs) for customers

vid name loc invest prod qty price

id001 Ada New York $1m fd0 20 $1k

id001 Ada New York $1m fd1 80 $1k

id002 Ada London $5m fd1 10 $1k

id003 Bob California $5m fd1 80 $1k

id003 Bob California $5m fdm 10 $2k

Table 5.3: Relation gcust(G) extracted from G

hold these values, which resolves the conflicts. 2

Cost of AExt. Provided with the schema R of S and the HER match relation f (S,G),

AExt efficiently extracts attributes. First, model training can be performed offline.

Second, the attribute extraction takes polynomial time for ML embedding extraction,

O(V + E logV ) for shortest path finding, and O(|X |H) for KMC with fixed vector

length and iterations. The attribute ranking takes O(|C′ε|) time, where the size of C′ε is

small and can be adjusted by the user. In addition, resolving conflicts for each entity

during value extraction takes O(|Vvi|) time, and Gvi is usually a small localized tree.

5.3 Heuristic Dynamic Join

In this section, we propose another approach to implementing dynamic joins for generic

gSQL queries that are not entitic (recall Section 5.1.2). We first develop a method to

extract relations from a graph for entities of certain types (Section 5.3.1). We then

show how to support dynamic joins by using the extracted relations without executing

external HER and AExt functions at run time (Section 5.3.2). Moreover, we show how

to incrementally maintain the extracted relations in response to updates to D and G

(Section 5.3.3).
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5.3.1 Schema Extraction

Given a graph G, a type τ of entities of users’ choice in G, and a set Ω of keywords

of users’ interest, we deduce a relation schema Rτ and an instance gτ(G) of Rτ from G

such that Rτ includes attributes that represent important properties of τ-entities in G and

match users’ interests. The extraction of Rτ and gτ(G) basically follows the workflow

of deducing RG and h(S,G) in Section 5.2 with the following two differences. First,

instead of clustering all vertex-path pairs in G, the KMC is applied to those that belong

to entities of type τ. This filters out properties that are irrelevant to τ-entities. Second,

since no matches f (S,G) and schema R are available, the attribute ranking function for

selecting attributes in Rτ becomes

r′A(Bε) =
|Cε|
|Ψ| + max

ρ∈[1,p]

∑vi j∈C′ε cos(xvi j ,xwρ
)

|C′ε|
.

This favors attributes that represent more vertex-path pairs in G and are more seman-

tically related to users’ interests. Extracting relation gτ(G) of Rτ from G is efficient

since (1) only vertices of entity type τ are considered, which reduces the inputs for

KMC, and (2) the attribute ranking function becomes lighter with less terms.

Example 5.9: Continuing with Example 5.1, consider type customer of entities in

the graph of Fig. 5.1. To extract a relation for customer, we first embed the vertex-

path pairs of all customers as vectors and cluster them as shown in Fig. 5.5. Different

from Fig. 5.3, no vertex-path pairs of companies are included. For an interest set

Ω = {name Bob, place Los Angeles, invest $5m, product fdm, quantity number 80,

price $2k} provided by the user, we rank the candidates in decreasing order of the

scores returned by r′A: B3(qty), B4(price), B1(prod), B5(invest), B6(name), B2(loc); we

preserve these six attributes in the extracted schema Rcust. Then for each customer,

we follow the clustering result to populate the corresponding tuples, and obtain the

relation gcust(G) (shown in Table 5.3) of Rτ, where value conflicts are also resolved by

populating multiple tuples as in Section 5.2. 2

Schema Rτ’s are extracted offline when graph G is available. As remarked in Sec-

tion 5.1.1, users can reference the extracted schema to pick attributes ~B when writing

dynamic join queries, since one often knows what types of entities they want to query.

Below we use the extracted gτ(G) to implement heuristic (dynamic) joins. Note

that the schema extraction method can also be used in data extraction from graphs for,

e.g., data lakes [NZM+19].
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5.3.2 From Dynamic Joins to Heuristic Joins

Using the relations gτ(G) extracted from G, we develop heuristic joins to implement

dynamic joins Q1 ./ f G for generic queries Q1, especially those that cannot be con-

verted to static joins (Section 5.1.2).

Heuristic join computes Q1 ./ f G by means of only traditional ER on intermediate

results Q1(D) and the pre-extracted relations gτ(G) during the query execution time;

it does not need to execute external HER and AExt functions at run time. More specif-

ically, to compute a dynamic join Q1 ./ f G, it first computes S = Q1(D) via RDBMS.

It then decides which types of entities are queried by Q1, i.e., which types τ of entities

that tuples in S refer to; it “joins” S with relations gτ(G) that are extracted for enti-

ties queried by Q1 via traditional ER, and composes matching tuples as the results of

Q1 ./ f G.

In this way, we can implement heuristic joins within RDBMS via stored proce-

dures and UDF that (a) select extracted relations gτ(G) that are relevant to Q, (b) link

tuples from S of Q and the selected relations gτ(G), and (c) join the linked tuples and

compose the result.

More specifically, for step (a), we first compute matches between attributes of

RQ1 for Q1 and those of the extracted schemas via schema-level schema matching

(cf. [BBC+00, RB01]). We mark a relation gτ(G) as relevant to Q1 if (1) there exists

a primary key in RQ1 that matches attributes of gτ(G), or (2) the number of attributes

of RQ1 (resp. gτ(G)) that match attributes of gτ(G) (resp. RQ1) is above a pre-defined

threshold η (resp. η′). We approximate Q1 ./ f G by joining Q with only those gτ(G)

that are marked relevant to Q1.

For step (b), one can use either (i) pairwise tuple comparison based ER method

or (ii) end-to-end ER that takes entire S and gτ(G) as input and computes the match

relation all at once. Here (i) can be implemented as a simple UDF as the join con-

dition between S and gτ(G) to check whether t ∈ S and t ′ ∈ gτ(G) make a match via

the pairwise matching operation in almost all ER methods (cf. [PSTP20]). The imple-

mentation of (ii) requires to take S and gτ(G) as input and encapsulates a complete ER

solution, e.g., JedAI [PTT+18], in the UDF.

Example 5.10: Recall the dynamic join E ./ f G given in Example 5.2. Using heuristic

join, it is answered as follows.

(1) As an offline process, we extract relations from G, for types of entities of users’

interests from G. Denote by gcust(G) the relation extracted for customers in G. By
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the method of Section 5.3.1, gcust(G) is a relation with schema (vid,name, loc, invest,

prod,qty,price).

(2) During query execution, E ./ f G is converted into an ER-based join via stored

procedure and UDF. The stored procedure consists of three steps: (a) selecting gcust(G)

for E by matching the output schema of E and gcust(G); (b) invoking ER to link E and

gcust(G) via UDF; and (c) composing and returning the joined result.

In particular, when using a pairwise ER matching operation as the UDF, steps (b)

and (c) can be written as a single SQL query, where E ./ f G is approximated by a

join between E and gcust(G) in which the join condition checks whether the cid of E

matches customers extracted in gcust(G) via a pairwise ER operation. 2

Observe the following. (1) Compared to the brute-force implementation of dy-

namic joins, heuristic joins do not compute HER matches or extract relations at run

time. The only overhead added to query execution is the UDF-based join to implement

relational ER. (2) Different from the entitic-query approach (Section 5.1.2), heuris-

tic joins do not assume the availability of HER matches. (3) Heuristic joins work for

generic queries for which it is hard to map S of S ./ f G to entities in D and hence

cannot be reduced to static joins. (4) Query execution is entirely done within RDBMS.

This allows us to freely use semantic joins as sub-queries in nested SQL queries.

5.3.3 Incremental Maintenance

We next study incremental maintenance of semantic joins in response to updates ∆G

to graph G and ∆D to database D .

Maintaining the results for semantic joins involves three parts: (a) updating HER

match relations, (b) updating the extracted relations from G, and (c) updating join re-

sults. For (a), if the HER function f does not have built-in support of incremental

HER, we compute the changes to the match relation by taking the union of f (∆D,G)

and f (D,∆G) as a fallback. For (c), after the match relation and extracted relations

are updated, the semantic join results can be incrementally updated via incremental

relational join processing, which has been well studied in the context of incremen-

tal view maintenance [SBCL00, KAK+14], and is supported by major systems, e.g.,

PostgreSQL [inc].

Below we focus on (b), i.e., the incremental maintenance of relation extraction from

G. The techniques work on both relation f (S,G) computed by AExt (Section 5.2) for
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static and dynamic joins, and relation gτ(G) extracted in Section 5.3.1 for heuristic

joins.

Incremental relation extraction. In practice, graph updates ∆G are often much

smaller than G. Given ∆G, we show how to incrementally compute h(S,G); simi-

larly for gτ(G). For removed vertices or changed vertex labels in ∆G, AExt just needs

to delete or change their corresponding values in h(S,G), following the existing one-

to-one mapping between vertex-path pairs in G and values in the extracted relation.

For newly added entities and vertices in ∆G, the incremental computation is conducted

in the following three steps.

(1) AExt applies incremental KMC [CN11] to efficiently extract their values. More

specifically, it first employs pre-trained models to extract the embeddings of the newly

added vertex-path pairs. These models require no extra training since the additions are

either (a) vertex labels that can be embedded by the Bert embedding model pre-trained

on natural languages, or (b) sequences of existing edge labels that can be modeled

by the well-trained LSTM networks, which have been previously trained in attribute

extraction.

(2) Taking these newly extracted embedding vectors and the clustering result in the

previous relation extraction as inputs, AExt applies incremental KMC to classify each

vector to the closest existing cluster, and update the cluster center [CN11]. That is, for

each newly added vector, incremental KMC computes the distance between this vector

and all existing cluster centers (the center of a cluster is the average of all vectors in

that cluster), adds the vector to the cluster with the shortest distance, and updates the

center of that cluster. Since each cluster represents an attribute and each embedding

vector represents a vertex-path pair, the incremental KMC assigns the vertex-path pairs

to existing attributes of RG.

(3) Finally, conflicting vertex-path pairs are assigned to multiple tuples by constructing

a directed out tree as in Section 5.2.

The process is efficient since (1) no model requires extra training; (2) the incre-

mental KMC [CN11] only computes the distance between existing clustering centers

and the newly added embeddings, which avoids clustering all data from scratch; and

(3) the cost of attribute ranking functions is omitted as the top attributes in RG (resp.

Rτ) have already been selected before the incremental maintenance.
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Figure 5.6: Incremental changes ∆G to graph G in Example 5.1
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Figure 5.7: Incremental KMC result with new customer Sam

Example 5.11: Continuing with Example 5.1, Figure 5.6 shows updates ∆G to the

graph G of Example 5.1, in which Ada id001 increases the quantity of product fd0

from 20 to 60, customer Ada id002 is removed while a new customer Sam id004 is

added, and the price of the product fd1 rises from $1k to $3k.

For removed vertices or changed labels in ∆G, AExt can directly delete or change

corresponding values in Table 5.3, by the one-to-one mapping between vertex-path

pairs and attributes of each tuple. Thus, AExt deletes the tuple of Ada id002, changes

the quantity of fd0 to 60, and raises the price of fd1 to $3k. For the newly added

customer Sam, AExt extracts vector embeddings of each vertex-path pair pertaining

to Sam, applies incremental KMC, and assigns each vector to one of the previously

obtained clusters as shown in Fig. 5.7. The incremental KMC is efficient as it only

compares the distance between each new vector and the existing six cluster centers in

Fig. 5.5, and assigns the vector to the nearest one. After this step, AExt populates the

new tuples of Sam following the vertex-path pair mapping in Fig. 5.7, and gets the new

vid name loc invest prod qty price

id001 Ada New York $1m fd0 60 $1k

id001 Ada New York $1m fd1 80 $3k

id003 Bob California $5m fd1 80 $3k

id003 Bob California $5m fdm 10 $2k

id004 Sam Almhult $3m fd1 30 $3k

Table 5.4: Incremental relation extraction result for gcust(G)
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relation shown in Table 5.4. 2

5.4 Experimental Study

Using real-life and synthetic data, we conducted four sets of experiments to evaluate

(1) the need for semantic joins when querying relations and graphs taken together, (2)

the accuracy of semantic join results, (3) the efficiency and scalability of RGAP, and

(4) the effectiveness of incremental maintenance of semantic joins.

Experimental setting. We start with the experimental settings.

Datasets. We used 6 datasets that are grouped into 3 collections as shown in Ta-

ble 5.7, each is a pair of a graph and a relational dataset obtained from independent

data sources. (1) Paper collection records publications and authors, taken from rela-

tions in DBLP [DBL21c] and graph of RKBExplorer [DBL21b, GMJ08]. (2) Movie

collects movies, directors and actors, etc., in relations from IMDB [IMD21] and graph

from LinkedMDB [HC09]. (3) Celebrity contains information about athletes and politi-

cians in relations from DBpedia [dbp, dbp21b, dbp21c] and graph from YAGO3 [yag].

We linked entities across graphs of RKBExplorer, LinkedMDB and YAGO3 and rela-

tions of DBLP, IMDB and DBpedia, respectively, to evaluate the quality of semantic

joins.

Queries. We designed 20 queries across relations and graphs, as close to the queries

of our FinTech collaborator as possible using public data. Table 5.5 and Table 5.6 list

all 20 queries used in the experimental study, including the dataset collections against

which they query, the description of the queries in plain text, and the gSQL expressions

of the queries. All queries require data in both relations and graphs.

RGAP. We have developed a prototype of RGAP. It is intentionally implemented as

a lightweight solution to support semantic joins between relations and graphs. For the

experiments, we used PostgreSQL as the underlying RDBMS, but we remark that the

design of RGAP is database agnostic. RGAP has four components: (a) HER [PMG+20,

FGJ+22] for heterogeneous entity resolution across relations and graphs, (b) AExt for

extracting relations from graphs based on the method in Section 5.2 and its variant in

Section 5.3.1, (c) SJ for extending RDBMS with static join, dynamic join and heuristic

join, and (d) INC for incrementally maintaining matches and extracted relations with

HER and AExt (and semantic join results when specified) in response to updates to



5.4. Experimental Study 149

Dataset query description gSQL

Celebrity q1: find US republican

and democratic politicians

who were born in the same

city

create view politician aug as select name, party, birthPlace

from politician join GYAGO3[party,birthPlace]

where party = ‘republican’ or ‘democratic’

select T1.name, T2.name from politician aug as T1, politician aug as T2

whereT1.birthPlace = T2.birthPlace and T1.party <> T2.party

Celebrity q2: find male goalkeepers

who are shorter than 1.8m

and were born after 1970

select name, from athletes join GYAGO3[birthDate]

where athletes.height <= 1.8 and birthDate >= 1970

Paper q3: find papers of the same

volume in journal “En-

tropy” published in 2012

create view entropy12 as
select DBLP.id, vol from DBLP join GRKBExplorer[vol]

where DBLP.year = 2012 and DBLP.journal = ‘Entropy’

select T1.id, T2.id from entropy12 as T1, entropy12 as T2 where T1.vol = T2.vol

Paper q4: find thesis with the

same affiliation from 2005

to 2010

create view aDBLP as
select DBLP.id, affiliation from DBLP join GRKBExplorer[affiliation]

whereDBLP.year >= 2005 and DBLP.year <= 2010

select T1.id, T2.id from aDBLP as T1, aDBLP as T2

whereT1.affiliation = T2.affiliation

Movie q5: find IMDB works with

at least 50 writers and 50

directors that have at least

one director also serving

as writer

select IMDBmovie.id from IMDBmovie join GLinkedMDB[writers]

where size of(IMDBmovie.directors) >= 50 and size of(writers >= 50

and size of(intsec(IMDBmovie.directors, writers) >0

/* size of, intsec are UDF functions*/

Movie q6: find actors who were

born after 1980 and are

also directors

select IMDBperson.name from IMDBperson join GLinkedMDB[primaryProfession]

where ‘actor’ in primaryprofession and ‘director’ in primaryprofession

and IMDBperson.birthYear >= 1980

Movie q7: find IMDB works

that have at least 50 writ-

ers and 50 directors, and

moreover, no director also

serves as a writer.

select IMDBmovie.id from IMDBmovie join GLinkedMDB[writers]

where size of(IMDBmovie.directors) >= 50 and size of(writers >= 50

and size of(intsec(IMDBmovie.directors, writers) =0

Movie q8: find IMDB works have

no more than 5 writers and

no fewer than 50 directors,

and moreover, all writers

also serve as directors

select IMDBmovie.id from IMDBmovie join GLinkedMDB[writers]

where size of(IMDBmovie.directors) >= 50 and size of(writers <= 5

and contained in(writers, IMDBmovie.directors) =true

Movie q9: find writers who were

born before 1950 and are

also producers

select IMDBperson.name from IMDBperson join GLinkedMDB[primaryProfession]

where ‘writer” in primaryprofession and ‘producer’ in primaryprofession

and IMDBperson.birthYear <= 1950

Movie q10: find writers who are

also directors and died be-

fore 30

select IMDBperson.name from IMDBperson join GLinkedMDB[primaryProfession]

where ‘writer” in primaryprofession and ‘director’ in primaryprofession

and IMDBperson.deathYear− IMDBperson.birthYear <= 30

Table 5.5: Full list of queries and their gSQL expressions
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Dataset query description gSQL

Paper q11: find papers from the

same volume in journal

“Pattern Recognition Let-

ters” published in 2004

create view PRL04 as select DBLP.id, vol from DBLP join GRKBExplorer[vol]

where DBLP.year = 2004 and DBLP.journal = ‘Pattern Recognition Letters’

select T1.id, T2.id from PRL04 as T1, PRL04 as T2 where T1.vol = T2.vol

Paper q12: find papers from the

same volume published in

2004 of length no more

than 3 pages

create view DBLPaug as select DBLP.id, DBLP.pages, vol

from DBLP join GRKBExplorer[vol] where DBLP.year = 2004 and DBLP.pages >= 3

select T1.id, T2.id from DBLPaug as T1, DBLPaug as T2 where T1.vol = T2.vol

Paper q13: find pairs of PhD the-

ses from the same univer-

sity that were published

between year 2000-2004

and year 2005-2009, re-

spectively

create view DBLPphd as select DBLP.id, DBLP.mdate, affiliation

from DBLP join GRKBExplorer[affiliation] where DBLP.type = ‘PhD thesis’

select T1.id, T2.id from DBLPphd as T1, DBLPphd as T2

whereT1.affiliation = T2.affiliation and T1.mdate >= 2000 and T1.mdate <= 2004

and T2.mdate >= 2005 and T2.mdate <= 2009

Paper q14: find PhD theses from

the same university that

were published no earlier

than 1995 and have note

type of both dnb and urn

create view DBLPphd as select DBLP.id, affiliation

from DBLP join GRKBExplorer[affiliation]

where DBLP.type = ‘PhD thesis’ and DBLP.mdate >= 1995

and DBLP.note− type <> dnb and DBLP.note− type <> urn

select T1.id, T2.id from DBLPphd as T1, DBLPphd as T2

where T1.affiliation = T2.affiliation

Celebrity q15: find pairs of UK

politicians born in the

same place but from differ-

ent political parties

create view politician aug as select name, party, birthPlace

from politician join GYAGO3[party,birthPlace] where country = ‘UK’

select T1.name, T2.name from politician aug as T1, politician aug as T2

whereT1.birthPlace = T2.birthPlace and T1.party <> T2.party

Celebrity q16: find pairs of French

politicians from the same

party but with different

birthplaces

create view politician aug as select name, party, birthPlace

from politician join GYAGO3[party,birthPlace] where country = ‘France’

select T1.name, T2.name from politician aug as T1, politician aug as T2

whereT1.birthPlace <> T2.birthPlace and T1.party = T2.party

Celebrity q17: find US politicians

who died at ages no

smaller than 50

select name from politician join GYAGO3[die date]

where country = ‘US’ and die date−birthDate >= 50

Celebrity q18: find UK politicians

who died in London select name from politician join GYAGO3[die in]

where country = ‘UK’ and die in = ‘London’

Celebrity q19: find National Hockey

League athletes who died

before 2000

select name from athletes join GYAGO3[die date]

where athletes.league = ‘National Hockey League’ and die date < 2000

Celebrity q20: find England Athletes

who died in England select name from athletes join GYAGO3[die in]

where athletes.country label = ‘England’ and die in = ‘England’

Table 5.6: Full list of queries and their gSQL expressions (cont.)
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Dataset coll. Relations Graphs

Paper DBLP: 4.4M tuples RKBExplorer: 15.9M vertices, 31.1M edges

Movie IMDB: 39.2M tuples LinkedMDB: 2.3M vertices, 5.4M edges

Celebrity DBpedia: 372K tuples YAGO3: 3.4M vertices, 10.2M edges

Table 5.7: Dataset collections

both relations and graphs based on Section 5.3.3.

In particular, (1) for heuristic joins, we employed JedAI [PMG+20] for end-to-end

entity resolution (Section 5.3.2). (2) For the AExt module of RGAP, we parallelized

KMC [par] and attribute ranking. We employed pre-trained BERT embedding model

of [RG19] and the LSTM networks [MKS18] for vectorizing vertex and path labels,

respectively. The LSTM model is trained with default configurations in [MKS18]

on the graph G of each dataset. We also performed L2 normalization before vector

concatenation; each vertex-path pair was represented by a 1000-dimension vector. We

randomly selected 1000 vertex-path pairs from each Cε to build C′ε (see Section 5.2

for Cε and C′ε), and included four keywords in query interest set Ω. (3) In addition to

static join and heuristic join, the SJ module supports three implementations of dynamic

joins: (i) Naive-I that encapsulates HER and AExt as UDFs within PostgreSQL; (ii)

Naive-II that implements dynamic join outside PostgreSQL, by invoking HER and AExt

externally; and (iii) entitic join that rewrites dynamic joins into static ones if possible

(Section 5.1.2). Here HER is implemented by JedAI [PMG+20]. By default, SJ uses

entitic dynamic joins if possible, and fallbacks to heuristic joins otherwise; Naive-I and

Naive-II are only used for performance comparison.

Baselines. We compared RGAP with three baselines.

(1) BigDAWG [DES+15] is a polystore middleware for querying heterogeneous data

sources that are organized in islands, where each island is essentially a full-fledged

database engine itself. We tested the latest BigDAWG v0.1 [big], where an island can

be PostgreSQL (relation), SciDB (array), or Accumulo (key-value) database engine.

Since BigDAWG V0.1 does not support native graph engines, we represented graphs

as vertex and edge relations Rv(vid, label) and Re(vid1, label,vid2), and stored them in

a PostgreSQL island.

(2) Myria [WBB+17] is a federated system service that can be deployed on cloud

services like Amazon EC2. It is compatible with multiple relational backend database

engines with a unified datalog-flavor language interface called MyriaL. It does not

support native graph storage. Thus we also stored graphs as vertex and edge relations.
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Figure 5.8: Case study (Exp-1): gSQL returns correct answers while all approximations

return incorrect answers and miss correct ones. (a) Query q1
1 get many false positives. (b) None

of the two shown answers to q2
1 is correct: it cannot extract ‘NYC’ for Sy Schulman (hence

misses the gSQL answer); it also mistakenly matches t3 to v4. (c) Query q3
1 correctly identifies

that t3 does not match v4; however, similar to q2
1 it cannot extract ‘NYC’ as the birthPlace of t1.

(3) RGAP− is a lite version of RGAP that keeps the underlying PostgreSQL and the

HER module. To favor its expressiveness, we retained HER by pre-computing the HER

match relation in the database so that it was equipped with HER in the same way as

RGAP. RGAP− differs from RGAP only in that it does not have the AExt module, i.e.,

attributes are extracted from graphs by users. AExt is a unique feature of RGAP; we

find no other systems that support a similar functionality.

Remark. RGAP− is essentially the RDBMS approach advocated by [ZY17], enhanced

with HER (we did not use [ZY17] as a baseline since it has no implementation avail-

able). We did not test GraphFrames [DJL+16] either as it does not support declarative

queries. Moreover, it is no better than BigDAWG and Myria in terms of expressiveness.

The experiments were run on a cluster of 10 linux machines, each with 2 Intel

Xeon 2.2 GHz processors and 64 GB memory. We used all 10 machines for HER

and AExt modules of RGAP, and used a server with PostgreSQL 9.6 as the central

portal for executing queries (GRA2RA). While one can use a parallel SQL system

(e.g., Greenplum or SparkSQL) to process queries with multiple machines, we chose

PostgreSQL as a “lowest common denominator”. Each experiment was run 5 times.

The average is reported here.

Experimental results. We next report our findings.

Exp-1: Case study. Using q1 of Table 5.5, we validated the need for semantic joins,

versus the closest queries supported by BigDAWG and Myria.

More specifically, q1 is to find “US republican and democratic politicians that have

the same birthplace (city)”. It is based on Celebrity dataset collection, i.e., DBpedia
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relations politician(name,state) (simplified) and YAGO3 graph G that includes infor-

mation such as party and birthplace that is not available in politician. It can be written

as a gSQL query over Celebrity as follows:

createview politician aug as /*create a virtual view via static join*/

select name, party, birthPlace, from politician join GYAGO3[party,birthPlace]

where party = ‘republican’ or ‘democratic’

select T1.name, T2.name /*SQL with the semantic join result*/

from politician aug as T1, politician aug as T2

where T1.birthPlace = T2.birthPlace and T1.party <> T2.party

On top of RGAP, query q1 uses a static join to find birthplace and party of the

politicians. In contrast, q1 cannot be expressed in BigDAWG and Myria since rela-

tion politician contains no birthplace and party data; moreover, BigDAWG and Myria

do not support entity matching across relations and graphs, and cannot extract the in-

formation from graph G. As a consequence, they could only settle with approximate

queries as follows.

(1) One approximation of q1, denoted by q1
1, is to connect politician and graph G by

computing their Cartesian-product, with a cast-like operator for cross-island queries in

BigDAWG [DES+15]. This query overlooks the semantic connection between the two

data sources, and produces excessive false positive results, as depicted in Fig. 5.8.

(2) A better approximation, denoted by q2
1, is to use the name attribute to match

politician tuples to vertices of G, and search birthplace and party information from

neighbors of the matched vertices, assuming that the labels of their neighbor vertices

have such information. This is written in (simplified) SQL for BigDAWG (or the equiv-

alent MyriaL/datalog form in Myria) as follows:

(q2
1) createview match as /*compute matches by joining with name */

select politician.name , RV.vid from politician, RV

where politician.name = RV.label

createview politician aug1 as /*extract birthPlace from match neighbors*/

select match.name as name, RV.label as birthPlace

from match, RV, RE

where match.vid = RE.vid1 and RE.vid2 = RV.vid and RE.label =

‘birthPlace’
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createview politician aug2 as /*extract party from match neighbors*/

select name, birthPlace, RV.label as party

from politician aug1, RV, RE

where politician aug1.vid = RE.vid1 and RE.vid2 = RV.vid and

RE.label = ‘party’ and RV.label = ‘republican’ or ‘democratic’

select T1.name, T2.name /*compute query answers*/

from politician aug2 as T1, politician aug2 as T2

where T1.birthPlace = T2.birthPlace and T1.party <> T2.party

Obviously, (a) it is quite difficult and tedious for the users to write q2
1 since they

have to know the topology of G in order to extract birthPlace and party via SQL joins.

(b) The result of q2
1, although better than q1

1, still contains many false positives as

shown in Fig. 5.8, since names cannot uniquely determine matches in G. (c) It may

even miss correct answers to q1 since the birthplace and party information may pertain

to the neighbors of the matches via paths.

(3) Better than q2
1 is to approximate q1 with RGAP− by means of the match relation

Rm(tid,vid) from HER (denoted by q3
1). As also shown in Fig. 5.8, q3

1 is more accurate

than q2
1 for matching politician tuples to G. However, it still suffers from the same

usability and accuracy problems that q2
1 encounters, due to the restriction of extracting

attributes from RV and RE with SQL joins.

Observations. As shown above, BigDAWG and Myria handle graphs essentially in the

same way as a conventional RDBMS does, although they are polystores. They work no

better than an RDBMS when it comes to real-world queries across graphs and relations.

None of the queries in Table 5.5 and 5.6 can be precisely answered by BigDAWG,

Myria or RGAP−, while all of them can be easily written in gSQL. Worse yet, even

if we pre-computed and materialized the entity match relation Rm, we could still miss

attributes being queried if they are not already in the RDBMS (e.g., RGAP− with q3
1).

This justifies the need for heterogeneous entity linking and attribute extraction sup-

ported by RGAP, which are beyond the capacity of existing systems, either polystores

or SQL-based [ZY17].

Exp-2: Quality of semantic joins. We next evaluated semantic joins. For each re-

lation R, we first picked and dropped m (recall m of AExt, Section 5.2) attributes

(columns) from R, yielding R′. We then represented the factorized form [OS16] of

R in a graph GR: we encoded each attribute value c of R as a value vertex vc and each
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Figure 5.9: Performance of RGAP

tuple t as a tuple vertex vt ; there was an edge (c, t) in GR if c is a value of t.

Accuracy. We tested the ability to recover the dropped attributes in R by semantic joins

R′ ./ GR. We measured the F-measure of the extracted attributes by treating the origi-

nal relation of R as the golden standard. More specifically, we first dropped attributes

volume and affiliation from Paper relations, writers and primaryProfession from Movie

relations, birthPlace and birthDate from Celebrity relations. We then joined the re-

maining of Paper, Movie, Celebrity relations with graphs RKBExplorer, LinkedMDB,

YAGO3, respectively, and tested the accuracy of the join results by treating their orig-

inal relations as the ground truth. For each dataset, the query interest Ω consisted of

values randomly picked from the dropped columns. The initial KMC centers were

vertex-path pairs with different labels, to reduce value conflicts (see Example 5.8).

Varying parameters H, m and k of module AExt (Section 5.2), we tested the ac-

curacy with all three datasets. The default H, m and k are 8, 3 and 3, respectively,

unless stated otherwise. The results are reported in Figures 5.9(a), 5.9(b) and 5.9(c),

respectively.
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q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

F-measure 0.98 0.82 0.96 1.00 1.00 0.98 0.88 1.00 1.00 0.77

q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

F-measure 1.00 0.88 1.00 0.94 1.00 1.00 0.89 1.00 0.89 1.00

Table 5.8: F-measure of heuristic joins for entitic queries

(1) When varying H from 5 to 11, the F-measure of AExt on all three datasets first

increases, reaches the highest value when H approximates the number of “types” in

Ψ (see Section 5.2), and drops as H keeps growing, e.g., it peaks at 0.9 when H = 8

over Paper. This shows that H has big impact on the quality, and the default H value

introduced in Section 5.2 demonstrates the best performance.

(2) Varying the number m of attributes to extract from 1 to 4, the F-measure of AExt de-

creases, e.g., from 0.99 to 0.81, 0.97 to 0.82 and 0.99 to 0.86 over Celebrity, Paper and

Movie, respectively. This is because with larger m, AExt has to extract more attributes,

and with this comes larger uncertainty, i.e., lower F-measure.

(3) Varying k from 1 to 4, the F-measure of AExt increases from 0.82 to 0.89, 0.77 to

0.9 and 0.78 to 0.88 over Celebrity, Paper and Movie, respectively, since longer paths

can capture more candidate attributes. However, the quality plateaus when k keeps

growing, e.g., k from 3 to 4 in Fig. 5.9(c). This is because attributes extracted from

longer paths have weaker associations and are less useful.

Heuristic join. We also evaluated the accuracy and efficiency of the heuristic-join im-

plementation of dynamic joins. We tested all the 20 queries and compared the accuracy

(F-measure) of their heuristic join results w.r.t. the entitic-based join answers (one can

verify that all the 20 queries are entitic). We found that heuristic joins achieves F-

measure 0.94 on average (see Table 5.8). As for the efficiency, the mean running time

for heuristic joins to complete all queries is 25.6s. Compared with Naive-I and Naive-II,

heuristic join is on average 5.85 and 5.76 times faster, respectively. These demonstrate

that heuristic joins strike a balance between accuracy and efficiency.

This verifies that heuristic join is an accurate approximation of dynamic joins.

Given that it assumes no restriction on the queries, we can safely use it as a fallback in

RDBMS to support dynamic joins.
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Exp-3: Efficiency and scalability. We next evaluated (a) the performance of module

AExt for extracting attributes, and (b) the performance of evaluating gSQL queries by

module SJ, with each of the dynamic join implementation methods.

Efficiency. Varying H, k and m in the same way as in Exp-2, we report the results in

Figures 5.9(d), 5.9(e) and 5.9(f). As expected, AExt takes longer to extract attributes

with larger k, e.g., it takes from 75.8s to 149.7s, 208.5s to 417.2s, and 28.0s to 72.4s

when k is increased from 1 to 4 over Celebrity, Paper and Movie, respectively. This

is because with larger k, AExt has to examine more paths when extracting values.

Similarly, KMC and attribute ranking take longer with larger H; it takes from 94.3s to

204.8s when H grows from 5 to 11 on Celebrity. In contrast, the runtime of AExt is

insensitive to m since it only affects the final selection of the attributes and values, and

incurs a much smaller cost compared to the time for path exploration, clustering and

attribute ranking.

Scalability. We then tested the scalability of AExt by varying the sizes of the relations

and graphs of all datasets.

(1) Varying the scale of relations. Varying the size of D using a scale factor from 0.2

to 1.0, we tested the runtime of module AExt. As shown in Fig. 5.9(g), AExt scales

well with large relations, e.g., it takes only 3.8 times longer on Celebrity when it grows

by 5 times.

(2) Varying the scale of graph. Using full relations, we varied the size of graphs with

a scale factor from 0.2 to 1.0. From Fig. 5.9(h) we can see that AExt works well with

large graphs, e.g., it takes 149.7s over Celebrity graph with 3.4M vertices and 10.2M

edges.

Semantic join. We evaluated the query execution time of RGAP for all the gSQL

queries. We remark that the execution time also depends on the RDBMS employed

by RGAP (single-thread PostgreSQL for the tests); one can use faster RDBMS or par-

allelization to further reduce the querying time. To compare different implementation

methods, we treated all semantic joins in the queries as dynamic joins by pushing se-

lections down through semantic joins.

We found the following. (1) RGAP scales well for querying big relations and

graphs: with entitic join it returns query answers within 0.77s across relations of up to

4.4 million tuples and graphs with 31.1 million edges. (2) Both Naive-I and Naive-II are

significantly slower than entitic join and heuristic join due to the need for running HER
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q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Entitic join 0.25s 0.22s 0.77s 0.12s 13.4s 6.19s 13.6s 17.0s 4.2s 4.0s

Heuristic join 2.8s 1.8s 1.2s 0.5s 6.8s 22.6s 21.0s 96.0s 79.5s 45.6s

Naive-I 412.3s 116.2s 8.7s 1.3s 28.2s 228.0s 21.2s 129.9s 94.2s 62.6s

Naive-II 376.4s 116.7s 9.6s 1.3s 36.3s 212.4s 21.6s 185.1s 104.9s 60.7s

q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

Entitic join 0.24s 0.27s 0.064s 0.75s 0.10s 0.069s 0.095s 0.055s 0.070s 0.015s

Heuristic join 59.6s 66.4s 0.57s 4.1s 44.4s 7.8s 2.7s 11.9s 32.7s 4.3s

Naive-I 257.2s 241.7s 3.6s 85.7s 376.4s 47.5s 579.1s 174.7s 89.9s 35.9s

Naive-II 234.5s 232.8s 2.5s 66.3s 412.0s 39.4s 572.5s 149.9s 83.0s 34.6s

Table 5.9: Query execution time

and AExt during query execution. On average, entitic join is 48.7 and 48.0 times faster

than Naive-I and Naive-II, respectively; it is 5.85 and 5.76 times faster by heuristic join.

Exp-4: Incremental maintenance. We next evaluated the performance of RGAP for

handling updates to databases and graphs.

Updating extracted relations. We first report the efficiency of incremental relation ex-

traction described in Section 5.3.3. We computed the changes to the HER matches

first, and tested the time needed for updating extracted relations by AExt. We gener-

ated random updates ∆G consisting of the same number of insertions and deletions, so

that the size of the updated dataset remains unchanged. We compared the runtime of

incremental AExt (denoted by IncEXT, Section 5.3.3) against AExt that re-computes

the value extraction with updated G and the HER matches f (D,G).

Varying ∆G. We varied |∆G| from 1% to 50% of |G| for comparison. When |∆G| =

1%|G|, IncEXT beats AExt by 198, 120 and 117 times over Celebrity, Paper and Movie,

respectively. It is still faster than AExt even when |∆G| is up to 40%, 45% and 45% of

|G|, respectively.

Updating join results. Using the same setting as above, we compared the time for

updating semantic join results with incremental method in Section 5.3.3 against re-

evaluating queries. We only calculated the time for evaluating queries and excluded

the time for updating HER matches and extracted relations via AExt. We found that

on average INC of RGAP updates semantic join results faster than re-evaluation with

updates ∆D and ∆G of size both up to 10% of |D| and |G|. These verify that INC is

able to handle updates online.

Accuracy of IncEXT. Increasing |∆G| from 1% to 20% of |G|, we find that the accuracy

(F-measure) of IncEXT on each dataset slightly decreases: from 0.89 to 0.86, 0.9 to

0.88 and 0.88 to 0.82 over Celebrity, Paper and Movie, respectively. These verify that
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IncEXT has little influence on the accuracy of attribute extraction.

Summary. We find the following. (1) With gSQL, RGAP is able to express real-

life queries across relations and graphs, while existing federated systems and SQL-

based methods cannot accurately answer such queries. (2) Via semantic joins, RGAP

extracts high-quality matches from graphs with average F-measure above 0.89. (3)

RGAP scales well with large relations and graphs, e.g., it extracts attributes in 417s on

relations with 4.4M tuples and graphs with 47M vertices and edges. (4) RGAP answers

online gSQL queries efficiently, taking at most 17s when queries can be reduced to

static joins (i.e., entitic). It is 48.4 times faster than the baselines. (5) Heuristic joins

speed up dynamic joins by 5.8 times on average, and retain accuracy above 0.94. (6)

RGAP handles updates efficiently. IncEXT updates the extracted relations 145 times

faster than AExt when |∆G|= 1%|G|, and is still faster when |∆G| is up to 40%.

5.5 Novelty and Contributions

RGAP proposed in this Chapter differs from previous multi-model systems in the fol-

lowing. (1) RGAP supports SQL queries across graphs and relations based on semantic

joins and attribute (schema) extraction. In contrast, polyglot systems are homoge-

neous, and support neither linking entities with heterogeneous structures nor corre-

lating attributes of relations and graphs, no matter whether they are relation-based or

graph-based. For relation-based systems in particular, attribute extraction requires to

traverse paths via costly SQL joins. Multistores and polystores do not yet support

graphs (storage and queries) due to radically different structures of graphs from other

data models. Hence, our approach can be adapted to the federated systems by taking

HER as an oracle and supporting attribute extraction. (2) Multistores and polystores

treat different stores as independent datasets, and “syntactically” connect such datasets

by cross-product. In contrast, RGAP promotes semantic joins of relations and graphs

by correlating tuples and vertices that refer to the same entity. (3) RGAP equip RDBMS

with a convenient capacity of correlating and querying entities in relations and graphs.

We aim to strike a balance between the expressivity and complexity, without paying

the costs of full-fledged graph computations, query decomposition and result compo-

sition. Moreover, RGAP retains the ease and composability of SQL as requested by

FinTech practitioners.

RGAP also differs from prior schema/data extraction methods in the following. (1)
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It extracts either additional and alternative attributes pivoted at entities that seman-

tically match entities in relations, to enrich an existing relation schema, or a relation

schema for entities of a specific type with their key features, not to abstract the topolog-

ical structure of the entire graph. (2) We extract attributes based on users’ interest for

queries, while no prior methods are query-driven. (3) As opposed to attribute selection

techniques [HH03, SSGC17] that focus on relations, text or images with uniform rep-

resentations, we tackle graphs that model data in topological structures. Moreover, dif-

ferent from feature selection methods based on supervised training [SSGC17, CS14],

we extract attributes from graphs by sequence embedding and clustering, which are

unsupervised and data-driven, reducing manual labeling cost.



Chapter 6

Conclusion and Future Work

This Chapter summarizes the results of this thesis and proposes future work.

6.1 Summary

Towards graphs and relational data, this thesis proposes various techniques to tackle the

veracity and variety challenges of big data, which aims to improve graph data quality

and support queries across relations and graphs. Specifically, we conclude the main

results as follows.

◦ We have proposed GARs to catch missing links/attributes and semantic inconsisten-

cies in a uniform framework, by unifying rule-based and ML-based methods. We

have formalized association deduction with GARs in terms of the chase, and proved

its Church-Rosser property. We have shown that the satisfiability, implication and

association deduction problems for GARs are coNP-complete, NP-complete and

NP-complete, respectively, retaining the same complexity bounds as their GFD

counterparts, despite the increased expressive power of GARs. The incremental

deduction problem is DP-complete for GARs versus coNP-complete for GFDs. In

addition, we have provided parallel algorithms for association deduction and in-

cremental deduction. Using real-life and synthetic graphs, we have experimentally

verified the effectiveness, scalability and efficiency of the parallel algorithms.

◦ We have explored a new approach to discovering rules from big graphs G, consist-

ing of (1) a graph reduction scheme to deduce a smaller graph GA of data pertaining

to a given application A , (2) a method to sample a set H of small graphs from GA ,

such that the rules mined from H satisfy given support and recall bounds in G, and

(3) an algorithm with the parallel scalability to mine rules from small H instead of

161
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from the entire G, for GARs that may embed ML predicates and subsume GPARs

and GEDs as special cases. We have experimentally verified that the approach is

promising in reducing excessive number of rules and scaling with large graphs.

◦ We have proposed TACOs, a class of rules for predicting temporal events, defined in

terms of change patterns, temporal conditions and ML prediction models, and stud-

ied the complexity bounds of the satisfiability, implication and prediction problems

for TACOs. We have established a creator-critic rule discovery framework based

on generative ML models, that is able to discover TACOs with large patterns which

cannot be mined by traditional levelwise search methods. For practical use, we

have provided a strategy for partitioning temporal graphs based on temporal local-

ity, and an algorithm for temporal event prediction with TACOs that guarantees the

parallel scalability. Putting all these together, we have developed TASTE, a system

for discovering TACOs and predicting events with TACOs. We have experimentally

verified that TASTE is promising in event prediction.

◦ We have proposed a notion of semantic joins, RGAP, to support SQL across relations

and graphs, and methods for implementing static joins and dynamic joins within

and atop existing RDBMS. KMC-based methods have been explored to extract (a)

attributes from graphs and complement relations, and (b) a schema for entities of

a specific type in a graph, based on users’ interests. We have provided a method

for incrementally maintaining extracted relations in response to updates. We have

experimentally verified that our method is promising for providing RDBMS with a

capacity to correlate and synthesize data from relations and graphs.

6.2 Future Work

Related to this thesis, we propose some topics for future that deserve full treatment.

Graph Association Rules. One topic for future work is to explore applications of

GARs by treating GARs as “soft” rules, since GARs defined in Chapter 2 are hard logic

rules that may fail to model uncertainties in real life. An intuitive idea, for instance, is

to learn and attach a probability value to each GAR, such that the deduction result holds

under a certain probability and the user can evaluate this result based on that proba-

bility. Thus, how to decide the probability value for each GAR, and how to efficiently

calculate the probability for the deduction result are worthy of being explored. Another

topic is to keep up with the progress in machine learning and find non-embedding-
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based ML classifiers for GARs, which extend the application scenarios of GARs.

Graph Rule Discovery. Although the discovery scheme for graph rules in Chapter 3

accelerates the discovery process by cutting back data that is irrelevant to users’ ap-

plication interests, incorrect or meaningless rules can still be discovered due to noises

in the sampled real-life data. Thus, one topic for future work is exploring strategies to

reduce the impact of noises in real-life graphs on rule discovery. One possible solution

is data pre-processing by anomaly/outlier detection techniques before conducting rule

discovery. Another topic is to improve the user interface of the system, making it easier

for users to express their ideas about “applications” of graph rules, such that the discov-

ered rules better meet their application demands and users do not have to learn about

details of graph rules, e.g., “patterns” or “predicates”. An practical approach is incor-

porating natural language processing (NLP) techniques into the discovery scheme, so

that users just need to write natural language to express interests in target applications

and NLP models will extract the rule discovery demands behind the texts.

Temporal Event Prediction. In addition to temporal knowledge graph completion and

dynamic recommendation in Chapter 4, one topic for future work is to evaluate TASTE

for predicting events of other types, e.g., finance crisis and natural disasters. Another

topic is to make TASTE “real-time” by incrementally discovering rules and predicting

events in response to updates to temporal graphs. Moreover, a mixed rule discovery

method that combines the creator-critic framework (Chapter 4) and levelwise mining

is worth considering. Leveraging the advantage of each approach, this mixture may

improve the quality and efficiency of rule discovery at the same time.

Semantic Join. One topic for future work is to enrich (knowledge) graphs with re-

lational data by means of semantic join, an approach different from RDB to RDF

translation [MMZ14]. Another topic is to apply semantic join to query-driven data

discovery, on-demand data integration and data extraction in data lakes. In addition,

entities across relations and graphs, foreign keys in relations, and edges in graphs can

be jointly considered for more effective data query. How to uniformly model and better

elaborate these semantic links in these two data formats is worthy of investigation.
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Appendix

A.1 Case Study of the Discovered TACOs

Below we present some representative TACOs mined from different datasets; their ∆-

patterns are depicted in Figure A.1.

(1) In Amazon, ϕa = ∆Qa[x̄](Xa → (recommend(y2,x1), [0,1])), where the edges in

∆Qa denote good user ratings for items. Precondition Xa is
∧

i∈[1,4]((ei.t ≤ 1− i∧ei.t ≥
−i)∧ (e′i.t ≤ 1− i∧e′i.t ≥−i))∧y1.type = y2.type∧M (y2,x1 recommend,0); and M
is the SASRec recommendation model. It says that if users x1 and x2 rated items y1 and

y2 of the same type high regularly every week in the past month, respectively, x1 gave

another good rating for y2, and if the model M suggests to recommend y2 to x1, then

one should also recommend y2 to x1 in the next week.

The TACO strengthens ML predictions (recommend(y2,x1)) with the logic condi-

tions and temporal predicates in X1. It reduces false positives of SASRec with addi-

tional conditions.

(2) Another TACO rule discovered from the knowledge graph YAGO is ϕb = ∆Qb

(Xb→(M (x,z2,win,20), [20,20])). Here the precondition Xb is (y.name=United States)

user user

item

person

award award

countryborn in

win  [-4,0] support

team

player

club
counry

play for
win  

team champion

[0,2] 

item

in in
...

[-10,0] 

[-60,0] rate [-4,0] rate rate 

Figure A.1: Discovered TACOs
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∧(z1.name=Nobel Prize in Chemistry)∧(z2.name=Vannevar Bush Award), and M
is the REGCN model for graph completion.

This TACO interprets the ML prediction of M ; that is, person x will receive the

Vannevar Bush Award in 20 years if (a) x is an American, and (b) he has won the

Nobel Prize in Chemistry before 60 years old (specified by time window in ∆Qb).

(3) In WIKI, ϕc=∆Qc(Xc→(join(x,c)), [3,5])). Here the precondition Xc is (y.name=

Spain)∧(z1.name=national under-16 team)∧(z2.name = national under-18 team))

∧ (∧i, j∈[1,5],i 6= j ei.t 6= e j.t). This TACO indicates that if a Spanish football player x has

been selected to both the under-16 and under-18 youth national football teams, then he

will join one of the most successful football clubs c of the country that has won at least

half of the champions in the past 10 years (edges e1 to e5 of ∆Qc), in 3 to 5 years.

This is a typical TACO rule that makes predictions based on logic conditions and

temporal predicates only.

A.2 More Experimental Results on Discovery

In Figure A.2, we report the the efficiency of the discovery method CCD on the rest

of real-life graphs from each class, which are not shown in Section 4.6. We find the

following from these results.

(1) The performance gap between CCD and levelwise search-based methods, i.e., GERMine

and TACOMine, becomes substantially larger with the increase of α, as shown in Fig-

ures A.2(a) to A.2(c). This validates the use of ML generative models, which are far

less sensitive to the pattern size than the levelwise search strategies that require ex-

ponentially large search space. This explains why CCD is able to discover rules with

large graph patterns.

(2) The support bound β has little impact on the runtime of CCD (Figures A.2(d)

to A.2(f)), while a larger bound on support helps reduce the cost of GERMine and

TACOMine due to their pruning methods.

(3) Figures A.2(g) to A.2(i) show that CCD and levelwise algorithms become slower

when given a larger bound γ on confidence. However, CCD is still much more efficient

than the baselines, e.g., it takes 2247 seconds on ICEWS18 when γ = 0.8, while the

levelwise method TACOMine cannot finish in 7.4 hours.
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Figure A.2: Performance of discovery

(4) All the discovery approaches need more time to find TACOs with larger time win-

dows, as reported in Figures A.2(j) to A.2(l). This said, CCD outperforms the baselines

for all cases of time windows. For instance, CCD takes 2828 seconds on WIKI when

the time window bound δ = 15, as opposed to more than 2.2 hours by TACOMine.

These are consistent with the findings in Exp-1 of Section 4.6.
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Figure A.3: Performance of prediction

@
@
@
@

I

N
50 100 150 200 250 300

15 6.15% 7.74% 15.91% 18.82% 25.75% 27.16%

20 6.51% 13.80% 18.62% 26.48% 26.44% 28.56%

25 6.67% 15.32% 24.95% 27.48% 28.76% 32.94%

30 7.84% 18.60% 28.39% 29.65% 32.55% 33.07%

Table A.1: Coverage on ICEWS18 using Erdös-Rényi (ER)

@
@
@
@

I

N
50 100 150 200 250 300

15 9.08% 19.15% 38.58% 45.38% 46.95% 48.83%

20 13.14% 29.01% 45.66% 46.45% 47.62% 48.38%

25 16.78% 39.64% 46.35% 47.08% 48.69% 49.61%

30 19.72% 48.61% 47.87% 48.69% 49.91% 50.89%

Table A.2: Coverage on ICEWS18 using Barabási-Albert (BA)

A.3 More Experimental Results on Quality of Discovery

As shown in Tables A.1 and A.2, we replaced the GAN model in our framework with
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classic graph generation models, i.e., Erdös-Rényi (ER) and Barabási-Albert (BA)

models, and tested their coverage values. We can see that when parameters N and

I increase, the coverage of ER and BA models converge to a low value within limited

number of iterations. This is because these classical models cannot iteratively learn

from the graph data and adaptively generate high-quality patterns. In addition, when

N = 300 and I = 30, the coverage of BA is higher than that of ER, since the BA model

follows power-law distribution that may better suit ICEWS18 dataset, while the ER

model generates edges with a uniform probability.

A.4 More Experimental Results on Prediction

Figure A.3 shows the results of different parallel prediction algorithms on some real-

life datasets taken from each of the three classes, which are a complement to those

reported in Section 4.6.

From the results we can see the following. (1) ParEP becomes faster (resp. slower)

with the increase of the number k of processors (resp. the pattern size |∆Q|), which is

consistent with the results presented in Exp-4 of Section 4.6. (2) In addition, ParEP

constantly outperforms the other baselines, e.g., it is on average 7.5 times faster than

REGCN over ICEWS18 when k = 32 and |∆Q|= 18.
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[MDB17] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of

the art of evaluation in neural language models. arXiv preprint

arXiv:1707.05589, 2017.

[MFW+18] Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli,

Rainer Gemulla, and Heiner Stuckenschmidt. Fine-grained evaluation

of rule- and embedding-based systems for knowledge graph comple-

tion. In ISWC, 2018.

[MGR+20] Yao Ma, Ziyi Guo, Zhaochun Ren, Jiliang Tang, and Dawei Yin.

Streaming graph neural networks. In SIGIR, 2020.

[MKS18] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regulariz-

ing and optimizing lstm language models. In International Conference

on Learning Representations, 2018.

[ML13] Julian J. McAuley and Jure Leskovec. From amateurs to connoisseurs:

modeling the evolution of user expertise through online reviews. In

WWW, 2013.

[MLR+18] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Young-

choon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay

Raghavendra. Deep learning for entity matching: A design space ex-

ploration. In SIGMOD, pages 19–34, 2018.

[MMM+04] Frank Manola, Eric Miller, Brian McBride, et al. Rdf primer. W3C

recommendation, 10(6):1–107, 2004.

[MMZ14] Franck Michel, Johan Montagnat, and Catherine Faron Zucker. A sur-

vey of RDB to RDF translation approaches and tools.

https://hal.archives-ouvertes.fr/hal-00903568v2, 2014.

[MNV09] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The

planar k-means problem is NP-hard. In International Workshop on Al-

gorithms and Computation, pages 274–285. Springer, 2009.

[MP12] Christopher Mutschler and Michael Philippsen. Learning event de-

tection rules with noise hidden markov models. In 2012 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), pages 159–166.

IEEE, 2012.



Bibliography 187

[MRM20] Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph

convolutional networks. Pattern Recognit., 97, 2020.

[MRS+20] Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward
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