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Abstract

The construction of a large-scale fault-tolerant quantum computer is an
outstanding scientific and technological goal. It holds the promise to allow
us to solve a variety of complex problems such as factoring large numbers,
quick database search, and the quantum simulation of many-body quantum
systems in fields as diverse as condensed matter, quantum chemistry, and
even high-energy physics. Sophisticated theoretical protocols for reliable
quantum information processing under imperfect conditions have been de-
veloped, when errors affect and corrupt the fragile quantum states during
storage and computations. Arguably, the most realistic and promising ap-
proach towards practical fault-tolerant quantum computation are topologi-
cal quantum error-correcting codes, where quantum information is stored in
interacting, topologically ordered 2D or 3D many-body quantum systems.
This approach offers the highest known error thresholds, which are already
today within reach of the experimental accuracy in state-of-the-art setups.
A combination of theoretical and experimental research is needed to store,
protect and process fragile quantum information in logical qubits effectively
so that they can outperform their constituting physical qubits. Whereas
small-scale quantum error correction codes have been implemented, one of
the main theoretical challenges remains to develop new and improve existing
efficient strategies (so-called decoders) to derive (near-)optimal error cor-
rection operations in the presence of experimentally accessible measurement
information and realistic noise sources. One main focus of this project is the
development and numerical implementation of scalable, efficient decoders to
operate topological color codes. Additionally, we study the feasibility of im-
plementing quantum error-correcting codes fault-tolerantly in near-term ion
traps. To this end, we use realistic modeling of the different noise sources,
computer simulations, and most modern quantum information approaches
to quantum circuitry and noise suppression techniques.
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1. INTRODUCTION

The use of tools for computation has been present in humankind since early history.

Ancient cultures such as Greeks, Babylonians, Mayans or Aztecs used parallel lines on

a table and placed pebbles or kernels of grain for counting and small operations. Our

modern words calculate and calculus come from the word calculii, the name that an-

cient Romans had for the pebbles used on their counting boards. With the development

of mathematics and science, new tools were required for increasingly complex calcula-

tions, and inventions like Napier’s bones, Pascal’s calculator or the slide rule became

enormously successful [3].

The increasing necessity of computational tools leads to computers’ development,

in a revolution that we are still living today. From the early ideas of Charles Babbage

on his first mechanical computer and the notion of the universal machine by Alan

Turing, to Von Neumann’s model of computing architecture [4–6], modern computers

have evolved through the development of electronics, transistors, integrated circuits,

and all the underlying physics and engineering knowledge.

The development of modern computers and information science has had a mas-

sive impact on society. Today, desktop computers and smartphones are a part of our

everyday life, used for all sorts of tasks, from communication and entertainment to

accounting or office work. In science, the access to the computational power offered

by computers has made possible the development of new methods to study nature.

Simulations and numerical analysis are now a fundamental aspect of science and engi-

neering that allows people to solve increasingly complex problems [7]. Most universities

and research centers have access to supercomputing centers, with clusters of specialized

computing nodes available as a computational hammer to crack problems that would

be unthinkable a few decades ago.

However, some challenges are still beyond the possibilities of current computational

devices. Feynman already foresaw this problem in the early 80´s, when he pointed

out that simulating quantum systems with classical computers is not efficient, as the

number of computational resources needed to simulate a quantum system does not scale

well with the size of the system we want to simulate [8]. As illustrated by his famous

quote:

Nature isn’t classical, dammit, and if you want to make a simulation of Nature,

you’d better make it quantum mechanical, and by golly it’s a wonderful problem because

it doesn’t look so easy.
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Feynman planted the seed of an idea leading to a fundamentally new type of com-

puting machine. A quantum computing device would exploit the complexity of the

wavefunction of a many-particle quantum system to solve computational problems.

One fundamental problem that has been used as an example of the computational

power derived from quantum computation is the factorization of large numbers [9, 10].

The complexity of solving this task with a classical computer is the stone over which

data encryption is built [11], as it could take on the order of several years even for a

cluster of supercomputers to find these prime factors, ensuring the safety of the encryp-

tion. However, a quantum computer using Shor’s factorization algorithm [12, 13] could

find the solution in a much shorter time, which would have significant implications for

the future of classical encryption. This promise has served as a great motivation for

developing quantum technologies.

The power to efficiently factorize numbers is only one example of the potential ca-

pabilities of a quantum device. Harnessing the interactions of many-particle entangled

states can open the door to the efficient simulation of quantum systems [8, 14–33],

which was the task that originally inspired the development of quantum computation.

Over the last years, the first proposals of quantum simulation have been demonstrated

experimentally in several physical platforms, like ion traps, ultracold atoms, or super-

conducting qubits [28, 34–39]. These new powerful methods could play a key role in

applications like computational quantum chemistry [18, 19], which can lead to the de-

velopment of multiple fields like nanotechnology, pharmaceutics, agriculture (nitrogen

fixation process), and sustainability (carbon sequestration, energy storage and produc-

tion). The power of quantum simulations would also greatly improve our understanding

of the behavior of biological molecules, opening a new branch of nano-engineering tech-

nologies.

Nevertheless, the potential applications of quantum technologies reach far beyond

the simulation of physical systems. Quantum communication and cryptography, which

could enable secure exchange of information beyond the limits of classical communi-

cation channels [40–44]. Quantum metrology, that allows measurements with a preci-

sion capable of detecting even gravitational waves [45–52]. Quantum machine learning

techniques could offer a speedup over classical neural networks [53–58], or work in

combination with them (or other classical algorithms) as a quantum processing unit

[59–64]. Recently, applications of quantum computers to solve optimization problems

3



1. INTRODUCTION

have become increasingly popular in the literature e.g. [18, 19, 54, 64–78]. Using prin-

ciples from adiabatic quantum computation, the solution for the optimization problem

can be encoded in the ground state of a multi-qubit state [79]. Algorithms like Quan-

tum Approximate Optimization Algorithm (QAOA) or the recent Filtering Variational

Quantum Eigensolver [80, 80–85] allow even near term noisy devices to find approxi-

mations to this ground state, many times using a hybrid quantum-classical approach.

These algorithms could find an application in the near future, which has led to multiple

companies, startups and universities investing time and resources in the topic [71, 86].

With so many promising applications, the motivations to develop a quantum com-

puting device are clear. Thus, the next question is: how can we build such a device?

For a quantum computer, we typically want a quantum system in which we can de-

fine qubits, control their state, generate entanglement between different qubits, and

measure the state [87]. Over the last decades, multiple platforms have been proposed

and studied [88–94], many of which have demonstrated very promising capabilities.

Prominent examples are the recent demonstrations of quantum advantage realized in

superconducting [95] and photonic quantum devices [96, 97]. Ion traps, superconduct-

ing circuits, nitrogen-vacancy centers, quantum dots, Rydberg atoms and photonic

devices are some of the leading platforms of qubit-based quantum computation [88].

The main challenge in the development of quantum computing platforms lies in

the fragile nature of quantum states. Imperfections on the gates, fluctuations in the

magnetic fields, or even spontaneous decay are just examples of different processes

that can affect the information stored on a quantum device and corrupt the results

of a computation. To achieve a quantum computing device capable of large scale

computations with high fidelity is a challenge that not only requires the refinement of

experimental techniques and quantum control, but also the development of quantum

error correction (QEC) protocols that can detect and correct the detrimental effects

of the different noise sources affecting a device [98–100]. Therefore, the use of QEC is

a fundamental field in the development of large-scale devices capable of accessing the

most powerful capabilities of quantum computation.

Quantum error-correcting protocols can be applied at different levels of computa-

tion. At a lower level, different techniques can be applied to maximize the fidelity of

the operations [101–108] using particular properties of the noise to cancel its effects.
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For instance, the correction of some coherent sources of noise can be done by apply-

ing a sequence of pulses that cancel the unwanted evolution [101–106]. While these

techniques can greatly reduce the impact of different sources of noise, the power of

QEC becomes a fundamental part of the development of quantum computing with the

introduction of quantum error correcting codes (QECC’s) [100, 109–114]. Similar to

classical error-correcting codes, QECC’s can encode the information of logical qubits

into a multi-qubit entangled state. This encoding can, in turn, allow the detection of

errors occurring on the physical qubits, making possible the application of a recovery

operation that will restore the logical information encoded on the system. From this

general idea, the development of QECC’s started with small codes (e.g. repetition code,

5-qubit code, concatenated codes or the Bacon-Shor codes) capable of detecting and

correcting errors through the measure of some parity checks in different Pauli basis, a

concept described as stabilizer codes [100, 109, 115]. From there, numerous QECC’s

have been designed, often with a particular type of quantum noise as the target of the

code. For instance, we can find codes specialized in qubit loss [116–118], continuous

errors [119–121], amplitude damping [122] or quantum communication [43, 123]. For a

practical application of QEC, the next milestone for QEC is the development of Fault

Tolerant (FT) quantum error correction protocols, capable of preventing the unwanted

propagation of errors through the circuit elements [124–128]. Fault Tolerant protocols

underlie the construction of one of the most prominent results of QEC: the threshold

theorem [127, 129, 130]. Provided that the physical error rate is lower than a critical

value, the logical error rate on the encoded qubits can be arbitrarily reduced by scal-

ing the size of the code. These ideas form the paradigm of Fault Tolerant Quantum

Computation (FTQC), which aims to achieve a large-scale quantum computing device

capable of realizing long computations with qubits that are encoded and error-corrected

through the whole process [127]. Currently, topological codes are being studied as one

of the main options for the future of FTQEC. These codes encode the logical qubits on

the topological degrees of freedom of a scalable lattice [109–114, 131], and present high

error thresholds [109, 131]. Furthermore, their implementation relies on purely local

operations, which allows the embedding of the codes in 2D and 3D lattices. Surface

codes [110, 111] and color codes [113, 132] are the most prominent topological codes in

the literature, with the latter being one of the main focal points of this thesis.

5



1. INTRODUCTION

The realization of fully fledged FTQC is still out of reach of the current experimental

devices. The state of quantum technologies is now popularly referred to as the NISQ

era, which stands for Noisy Intermediate Scale Quantum technology [65]. State-of-

the-art devices have on the order of tens of qubits and noisy gates, and have yet

to overcome the daunting challenge of scaling from tens of qubits to the millions of

physical qubits1 that we expect to need for the most interesting applications [13].

Experimental devices are, nevertheless, progressing at a good pace [133], with high

gate fidelities (e.g. superconducting circuits [134–136], silicon qubits [137, 138], ion

traps [90–92, 139–145] or penning traps [146]) and demonstrations of QEC protocols

already shown, e.g. using trapped ions [147–156], nuclear magnetic resonance [157, 158],

superconducting circuits [93, 159–163], or nitrogen-vacancy centres [164, 165]. NISQ

devices are already available (e.g. IBM quantum cloud computer [166]), and applications

in the industry are already being found for these state-of-the-art technologies [68–78].

Over the next few decades, we could experience a new revolution in computing similar

to the one originated by the discovery of transistors and the development of classical

computation. During the writing of this thesis, some prominent landmarks have been

achieved, like code state preparations of large surface codes [167], logical operations on

encoded qubits [168, 169] fault tolerant stabilizer measurement [170], repeated QEC

cycles [171–174] as well as fault tolerant magic state preparation and injection [169].

Beyond improvements in the experimental capabilities, the long-term implementa-

tion of FTQC requires solutions for additional theoretical challenges [175]. In order to

find an optimal encoding strategy, we need realistic modeling of the existing hardware

and a complete understanding of the error sources that affect the device. QEC proto-

cols can then be adapted to more effectively target the noise and mitigate the damaging

effects of errors in the computation. In this line, multiple works have been published

studying different noise modelings for existing quantum devices, e.g. [149, 176–179].

However, testing and evaluating these new strategies can also be problematic due

to the exponential scaling of the Hilbert space of quantum systems with the number

of qubits. The use of efficient algorithms to simulate noisy quantum circuits is thus

1To factorize a number of N bits, we need around 2N logical qubits. For instance, for a number
of N = 2000 bits (600 digits) we would need around 2N = 4000 logical qubits. Now, the number
of physical qubits needed depends strongly on the physical error rate, as well as the circuit depth.
Assuming an error rate of one tenth of the threshold rate, this leads to 14500 physical qubits required
to encode each logical qubit. Thus, under this assumptions we need on the order of 4000·14500 = 58·106

physical qubits for the factorization of a 600 digit number [13].
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an excellent tool for the development and understanding of QEC protocols on different

platforms [180–182].

At this point, if we can scale the number of qubits while keeping under control the

error rate of the gates, it is possible to reduce the logical error rate on our encoded

qubits arbitrarily. Topological QEC codes provide a system capable of encoding log-

ical qubits in a large lattice of physical qubits [109–114, 131]. With this encoding, it

is possible to measure a set of stabilizers operators, which give valuable information

about the position of errors that can be used to apply a recovery operation. However,

the interpretation of the information from the measurement of the stabilizers, typically

called the syndrome, is not straightforward. The problem of finding a recovery opera-

tion for an error case given the information from the syndrome is called the decoding

problem, and finding an optimal decoding strategy (which always finds the recovery

operation with the maximum success rate) is believed to be an NP-hard problem in

general [183, 184]. For any practical application of topological QEC, a powerful classi-

cal computer would be needed to decode the information of the syndrome and apply a

recovery operation. If the decoding algorithm is not fast enough, this process will slow

down the quantum computation, leading to additional errors from decoherence and

other processes1. Thus, finding efficient and scalable decoding algorithms is a problem

of great importance for the future of QEC.

Furthermore, the success rate of the decoder is one limiting factor for the error

rate threshold of the QEC protocol, which has important implications for the required

error rate of the experimental device. Pushing the error rate below the threshold

increases considerably the error suppression capabilities with the scaling of the lattice

[127, 129, 130]. For a given error rate, achieving a higher threshold with an improved

decoder can drop the logical error rate by even orders of magnitude as we scale the

code. Multiple decoding algorithms have been proposed and studied for surface codes

[185–188] and color codes [189–196]. Moreover, machine learning techniques have also

been successfully applied to the decoding problem [197–204].

The contributions of this thesis are aimed at two fronts. First, we focus on near-term

devices, studying the feasibility of small-scale QEC protocols applied to ion traps. We

1As discussed in [109], if the rate at which the syndrome information is generated is faster than the
rate at which it is processed, this increasing backlog of syndrome data can lead to an exponential slow
down during the computation
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1. INTRODUCTION

use noise models based on a microscopic description of the different physical phenomena

that can generate noise. Using numerical simulations, we study the performance of

a seven qubit QEC code, the smallest fully-functioning color code, currently at the

center of recent QEC efforts (e.g. [169, 171]). We simulate the circuits involved in

the protocol, finding target experimental values to achieve a regime of beneficial error

correction, in which the error correction capabilities of the protocol compensate the

possible errors introduced by the gates of the circuit. Furthermore, we study the use of

a refocusing pulse sequence to suppress crosstalk, a particularly damaging error source

originated from undesired interactions between the target qubits of a quantum gate

and the neighboring qubits in the ion chain.

The second front of the thesis is focused on the long-term development of QEC. We

study the use of two decoding algorithms for color codes, a particular class of topolog-

ical QECC’s for which decoding has proven a particularly challenging task. The first

decoder that we study is based on the ideas presented in [193] for an efficient decoder

for surface codes with a computational complexity that scales almost linearly with the

number of qubits. Using these ideas, we develop a decoding algorithm for color codes,

and study its performance with numerical simulations. The second decoder that we

study is built over the algorithm presented in [189] for a decoder based on the rescaling

of the color code lattice. Initially presented for the hexagonal color code lattice, we

extend the algorithm to the square-octagon (4.8.8) color code lattice. This lattice is

particularly relevant, as it is the only 2D color code lattice that allows the transversal

implementation of the entire Clifford group [113], which simplifies its FT implemen-

tation. Additionally, the 4.8.8 color code lattice requires the minimal number of data

qubits n for a code of distance d. Using numerical simulations, we analyze the execution

of the different steps of the decoding algorithm and study its performance. With these

two projects, we aim to develop efficient decoding techniques, which can potentially be

extended to more complex error models, including qubit losses and correlated noise.

This thesis is organized as follows. First, chapter 2 introduces the main basic

concepts of quantum computation used through the entire work, including the notation

for states and quantum operations, as well as the basics of noise modeling. In chapter

3, the main concepts of QEC are introduced, including stabilizer codes, fault tolerance,

topological codes, and decoders. These concepts are the building blocks for the research

work. In chapter 4, we introduce some of the main algorithms for simulating quantum

8



circuits. Chapter 5 serves as an introduction to ion trap quantum computing and

is the last background chapter. The research part begins with chapter 6, where we

describe the work done on the feasibility study of QEC with near term ion trap systems,

published in [1], in which we analyze the effects of crosstalk noise on the performance of

a QEC protocol, realized on a near term ion trap device with realistic error modeling.

Chapter 7 describes the work realized in the development and analysis of an efficient

decoding algorithm for color codes based on the pre-existing union-find decoder [193].

In chapter 8 we describe the work published in [2], where we present a decoder for the

square-octagon color code lattice based on the rescaling-based approach presented in

previous works [187–189]. The thesis ends in chapter 9 with the final conclusion.
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2. QUANTUM COMPUTING

This chapter introduces the basic concepts of quantum information and quantum

computation that are used in the thesis. These concepts are a fundamental part of the

background and form the basis over which the rest of the thesis is built. We begin

by introducing qubits, the most basic unit of quantum information. Then, in Sec. 2.2

we introduce fundamental operations used to control states in quantum computation:

gates and measurements. We then examine the concepts of a universal gate set and

the restricted set of operations that can be simulated efficiently in a classical computer.

Finally, in Sec. 2.3 we study how to model the effects of noise on qubit states, as well

as some of the main error models used through the thesis.

We used [100] as the primary source material during the writing of this chapter.

2.1 Qubit systems

Qubits comprise the elementary unit of quantum information and are the quantum

counterpart of classical bits. In essence, qubits are two-level quantum systems. As

such, the state of a qubit belongs to a two-dimensional Hilbert space. Using the Dirac

notation, the two basis states of a qubit are typically represented as |0〉 and |1〉, by

analogy to the two states of a bit: 0 and 1. This orthonormal basis is typically referred

to as the computational basis. However, the state of a qubit can be an arbitrary

superposition |ψ〉 of both states, which in general can be represented as

|ψ〉 = eiα(cos(θ/2) |0〉+ sin(θ/2)eiφ |1〉), (2.1)

with θ ∈ [0, π] and φ ∈ [0, 2π]. The global phase eiα is usually neglected, as it is

undetectable. Using these two parameters as angles, we can represent states as points

on the surface of a unit sphere. This representation, called the Bloch sphere, is a useful

and intuitive system to visually represent the state of a qubit and understand the effects

of different operations. The two states of the computational basis, |0〉 and |1〉, lie at

the two ends of the z axis and correspond to the two eigenstates of the Pauli Z matrix.

An alternative formulation to represent the state of a quantum system is possible

using the density matrix. This notation allows the description of a quantum system

whose state is not completely known, but we know that it can be in a number of states

|ψi〉 with respective probabilities pi. For such a system, the density matrix is defined

14



2.1 Qubit systems

Figure 2.1: Bloch sphere representation. Pure states of a qubit are represented as
points on the surface of a unit sphere, parametrized by the angles θ and φ. The states of the
computational basis, |0〉 and |1〉, lie at the two ends of the z axis, and are the eigenstates of
the Pauli Z operator. Similarly, the eigenstates of the other Pauli matrices lie at the ends
of their respective axes. Mixed states, on the other hand, are located inside the sphere,
with the fully mixed state located at the origin.

by

ρ =
∑
i

pi |ψi〉 〈ψi| . (2.2)

The notation in terms of the density matrix is useful for QEC, as it allows the descrip-

tion of a system where an error might have happened. When a state in the density

matrix formalism can be described by a single |ψ0〉 with probability p0 = 1, it is said

to be in a pure state, otherwise, it is called a mixed state. In the Bloch sphere (see

Fig. 2.1), pure states of a qubit lie on the surface of the sphere, while mixed states are

located inside the sphere. In particular, any single-qubit mixed state ρ can be written

as

ρ =
1

2
(1 + ~r · ~σ) =

1

2
(1 + xX + yY + zZ), (2.3)

where ~r = (x, y, z) is the Bloch vector, a real vector such that |~r| ≤ 1 that represents the

state ρ in the Bloch sphere. States with |~r| = 1 correspond to pure states. The vector

~σ = (X,Y, Z) represents the three Pauli matrices. In general, the purity of a normalized

state can be defined by the scalar tr
(
ρ2
)
, which lies in the interval 1

d ≤ tr
(
ρ2
)
≤ 1,

where d is the dimension of the Hilbert space, and takes the value 1 for pure states.

One example of a mixed state is the so-called maximally mixed state ρm = 1
21, which

lies at the center of the Bloch sphere.
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2. QUANTUM COMPUTING

Pauli matrices σi are a primary tool when working with qubits. They are Hermitian

operators, and they form an orthogonal basis for the vector space of 2x2 Hermitian

matrices when combined with the identity matrix. On the computational basis, the

Pauli matrices can be written as:

σ1 = X =

(
0 1
1 0

)
, σ2 = Y =

(
0 −i
i 0

)
, σ3 = Z =

(
1 0
0 −1

)
. (2.4)

Throughout this thesis, we use the notation σi and X, Y , Z indistinctly to refer

to the Pauli operators. The operator σ0 corresponds to the identity operator 1. The

eigenstates of the Pauli X, Y and Z matrices lie at the ends of the x, y and z axis in

the Bloch sphere, respectively (see Fig. 2.1), and they have eigenvalues ±1. We use the

following notation:

X |+〉 = |+〉 , X |−〉 = − |−〉 ,

Y |i〉 = |i〉 , Y |−i〉 = − |−i〉 ,

Z |0〉 = |0〉 , Z |1〉 = − |1〉 .

The Hilbert space of an n-qubit pure state can be obtained by the tensor product

of the n single qubit Hilbert spaces resulting in a Hilbert space of 2n dimensions. The

basis of this Hilbert space can be defined with a combination of tensor products of the

basis of each individual qubit. Typically, we write each of the elements in a single ket:

|x1〉 ⊗ |x2〉 ⊗ ...⊗ |xn〉 = |x1, x2, ..., xn〉 . (2.5)

For instance, the state of a two-qubit system can be written as:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 . (2.6)

One notable property of multi-qubit systems is the possibility to present quantum

entanglement, which plays a fundamental role in some of the most interesting applica-

tions of quantum computation, like quantum teleportation, quantum error correction,

quantum cryptography or fast quantum algorithms [100]. A quantum state is said to

be entangled if it cannot be written as the product of the states of its constituents,

i.e. if it is not a separable (or product) state. To be more precise, a state ρABC... of
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2.2 Gates

many elements A, B, C, ... is said to be separable if it can be written in the form

ρABC... =
∑
i

piρ
(i)
A ⊗ ρ

(i)
B ⊗ ρ

(i)
C ⊗ ... (2.7)

where pi is a probability distribution, and each ρ
(i)
S represents the state of element S

[205]. The different aspects of entanglement are still an active field of research, including

its characterization, manipulation, measurement and applications [100, 205–207]

2.2 Gates

Quantum gates and measurements are fundamental elements of quantum computation,

as they allow us to realize operations and read the information stored in the qubits.

In this section, we study the main gates used for quantum computation in this thesis

and some important concepts, like the universal gate set, the Clifford group, or the

Gottesman-Knill theorem.

Pauli matrices play a crucial role in understanding single-qubit gates. The operators

obtained by the exponentiation of the Pauli matrices ei
θ
2σi represent rotations around

the different axes in the Bloch sphere. Any arbitrary single-qubit operation can be

obtained by combining these rotations. Furthermore, it is possible to apply a single

qubit rotation of arbitrary angle θ and rotation axis ~n as:

R~n(θ) = e−i
θ
2~n·~σ = 1 cos

(
θ
2

)
− i sin

(
θ
2

)
~n · ~σ. (2.8)

Note that the Pauli operators represent π rotations around their corresponding axis

in the Bloch sphere (Fig. 2.1). Another interesting property of the Pauli operators is

that the set of all Pauli operators and the identity, together with prefactors ±1 and ±i,
form the Pauli group [100]:

P = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (2.9)

The general Pauli group on n qubits Pn is defined to consist of all n-fold tensor

products of Pauli matrices, including the multiplicative factors ±1, ±i. However, using

Pauli matrices alone would only allow us to reproduce unitaries applied to each of the

individual qubits separately. Ideally, we want a quantum computer to be able to apply
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2. QUANTUM COMPUTING

any arbitrary multi-qubit unitary, including operations that generate entanglement

between the qubits (like the CNOT gate, which will be introduced below and which

can generate entanglement between two qubits). One of the challenges of universal

quantum computation is to find a reduced set of gates that allow a quantum computer

to closely approximate any quantum operation using a finite sequence of gates from

the set. Such a set is called a universal quantum gate set. The Solovay-Kitaev theorem

[100, 208, 209] implies that an arbitrary single qubit gate may be approximated to an

accuracy ε using O(logc(1/ε)) gates from this universal gate set, where c is a constant

approximately equal to 2. Thus, to approximate a circuit containing m two qubit

CNOT and single qubit unitaries to an accuracy ε requires O(m logc(m/ε) gates from

the discrete set, a polylogarithmic scaling that can be acceptable for most applications.

A common universal gate set is composed of the single-qubit Hadamard (H) and T

gate, and the two-qubit CNOT gate. In matrix form, these gates have the following

expression:

H =
1√
2

(
1 1
1 −1

)
, T =

(
1 0

0 eiπ/4

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.10)

Note that only one entangling gate is needed to obtain a universal gate set, in this

case the CNOT gate, and it involves only two qubits. A universal gate set can also be

obtained by exchanging the CNOT gate with the Mølmer–Sørensen gate [210]:

XXij(θ) = exp

(
−iθ

2
XiXj

)
= cos(θ/2)1− i sin(θ/2)XiXj , (2.11)

where XiXj is a tensor product of Pauli X-type operators on qubits i and j, and θ is

the MS gate angle, which is typically set as π/2 to define the fully entangling MS gate

XXij(π/2).

There is one more set of gates of particular relevance for this thesis: the Clifford

group. The Clifford group is the group of unitary operators that map Pauli operators

into Pauli operators (for any Clifford unitary UC , the product UCσiU
†
C ∈ P). The Clif-

ford group can be generated by three gates: Hadamard, CNOT and S gates. Although

it is not enough to realize a universal gate set (this requires one gate outside of the

Clifford group, e.g. the T gate), it is relevant for the study of quantum computation and
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quantum information because of the Gottesman-Knill theorem [211, 212]. The main

result from this theorem states that quantum circuits consisting only of Clifford gates

and measurements in the computational basis can be perfectly simulated in polynomial

time on a classical computer. This dramatically impacts the efficiency of quantum

circuit simulations, particularly for quantum error correction circuits, as most of them

utilize Clifford gates only. In chapter 4, we take a further look at this topic and study

some algorithms that allow this efficient simulation of Clifford circuits.

2.3 Noise modelling

Harnessing the effects of noise on quantum computers is the main challenge along the

path towards the implementation of quantum information processing devices. Imper-

fection on the implementation of the gates, fluctuations of electromagnetic fields, or

coupling with the environment can corrupt the information stored in the qubits and

reduce the fidelity of the gates applied. Thus, finding ways to control the effects of

noise becomes a necessity for the development of quantum computation. The first step

in this battle against noise is to understand our contender. In this section, we study

some of the main noise models and the basic theory to analyze the effects of noise on

quantum information.

To describe the dynamics of noise, we utilize the mathematical formalism of quan-

tum operations, which is useful to describe both closed systems and systems coupled

to their environment, thus providing a powerful tool that addresses a wide range of

physical scenarios. This formalism describes the evolution of a system in state ρ to the

final state ρ′ as

ρ′ = ε(ρ), (2.12)

where both the initial and final states are described by density matrices, and the map

ε is a quantum operation. This formalism can take into account the effects from both

unitary transformations (i.e. εU (ρ) = UρU †), measurements and stochastic processes

[100]. An advantage of this formalism is that it allows a discrete-time analysis that

does not require a complete understanding of the continuous-time description of the

noise (described by master equations, Langevin equations, or stochastic differential

equations), but rather the overall final effect on the state.
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2. QUANTUM COMPUTING

Quantum operations can take into account the interactions of the system with

an environment, which can be described by a unitary evolution USE (not necessarily

known). This environment can be assumed to start in a pure state |e0〉 with no initial

correlations between system and environment. By tracing over the environment, we

can obtain a description of the evolution of the state that only concerns the effects on

our system:

ε(ρ) =
∑
i

〈ei|USE(ρ⊗ |e0〉 〈e0|)U †SE |ei〉 (2.13)

=
∑
i

EiρE
†
i . (2.14)

This description of the quantum operation is called a Kraus map, and the operators

Ei = 〈ei|USE |e0〉 are called the Kraus operators. These operators satisfy an important

constraint that ensures that the normalization of the density matrix is preserved after

the evolution, the completeness relation:

1 = Tr(ε(ρ)) = Tr

(∑
i

EiρE
†
i

)
. (2.15)

Since this relationship is true for all ρ, it follows:

∑
i

E†iEi = 1, (2.16)

an equation satisfied by quantum operations that are trace-preserving.

Throughout this thesis, we use the Kraus map formalism to describe the effects of

different error channels. Additionally, we consider error channels that are completely

uncorrelated both in time and space, which allows us to simplify the description of the

different noise models.

We can illustrate this formalism with some of the simplest noise models considered

in QEC. The first error model is a direct analogy from classical information: bit-flip

noise. This error channel simulates the possibility of a qubit to suffer a transformation

|0〉 ⇐⇒ |1〉 with probability p. This transformation corresponds to the PauliX operator

and is typically referred to as an X error. The quantum channel for bit-flip noise can
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2.3 Noise modelling

be written in terms of Kraus operators as:

E0 =
√

1− p1 (2.17)

E1 =
√
pX, (2.18)

which leads to the following evolution:

ε(ρ) = (1− p)ρ+ pXρX. (2.19)

The following error model considers the possibility of a change in the phase, e.g.

|+〉 ⇐⇒ |−〉. This error channel is called the dephasing channel, or the phase-flip

channel, and can be written as

ε(ρ) = (1− p)ρ+ pZρZ. (2.20)

These two channels are commonly studied in QEC, and are particularly useful for

the study of some QEC codes that correct X and Z errors separately. The direct

generalization of the Pauli channels is the depolarizing error channel, which simulates

how a qubit can suffer one of the three Pauli errors σ ∈ {X,Y, Z} with probability p:

ε(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ). (2.21)

This decomposition is not unique. The depolarizing channel is often written as a system

having a probability p′ of being replaced by a completely mixed state 1/2. In this case,

the channel is written as:

ε(ρ) = (1− p′)ρ+ p′
1

2
1, (2.22)

with p′ = 4
3p. The depolarizing channel is a simple model that can reproduce the loss

of the information in both the phase and the populations of the |0〉 and |1〉 states,

effectively converting a qubit into a completely mixed state 1/2. This property of the

depolarizing channel makes it a common choice to describe error sources in the study

of QEC protocols, where it is also often referred to as symmetric depolarizing channel.

It only consists of Clifford operations, making it convenient to implement efficient,

classical computer simulations.
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2. QUANTUM COMPUTING

Another interesting noise channel is amplitude damping, which reproduces the spon-

taneous decay of a two-level system from the excited state to the ground state. If we

take the state |1〉 as the excited state, the amplitude damping channel can be described

by the following Kraus operators:

E0 = |0〉 〈0|+
√

1− p |1〉 〈1| (2.23)

E1 =
√
p |0〉 〈1| . (2.24)

Amplitude damping is an example of a non-Clifford error channel, which makes its

implementation in classical simulations more challenging.

The noise models studied in this chapter present a simple yet widely used framework

to study the influence of noise on quantum computation. When studying particular

implementations of quantum computation, the noise models can be adapted to repro-

duce the particular characteristics of a physical device. A better understanding of the

noise processes can allow the use of different-error correcting techniques addressed to

the noise sources that affect the device. Additionally, we can obtain more precise pre-

dictions of the performance of different protocols by using more accurate error models

tailored to reproduce the behavior of the experiment. We study this type of problem

in chapter 6, where we study a microscopically derived error model for ion traps and

the feasibility of near term QEC implementations.

22



Chapter 3

Quantum error correction
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3. QUANTUM ERROR CORRECTION

Preserving entanglement and quantum information from noise is one of the main

challenges in the development of quantum computers. The main building block of

QEC are QEC codes, which encode the information of a logical qubit in a set of physical

qubits, so that errors on individual elements of the code can be corrected, preserving the

encoded information. While similar codes have been developed for classical computers

(e.g. repetition and parity-check codes), the nature of quantum mechanics presents

some limitations that need to be overcome. The destructive nature of measurements,

the continuous nature of errors, and the impossibility of copying states due to the no-

cloning theorem are some of the key obstacles for QEC. Therefore, classical strategies

for error correction, like the redundant storing of multiple copies of the information,

are not directly applicable to the quantum problem.

The main idea behind QEC codes is to encode quantum information in a multi-

qubit entangled state, effectively spreading the information over the different qubits

in the code. Errors can be detected by realizing parity checks on multiple subsets of

qubits. The information from these measurements, usually called the syndrome, can

be used to find a correction for the errors in the code. The crucial property of these

codes is that the syndrome does not give any information about the actual information

encoded, but only about the location of the errors.

Following these basic principles, multiple QEC codes have been designed, with the

corresponding quantum circuits to encode the information and the syndrome mea-

surement [109–111, 113, 115, 208, 213, 214]. The information from the parity checks is

transferred to additional ancilla qubits using entangling gates, where it can be measured

without destroying the information stored in the data qubits (e.g. [215]). However, a

naive implementation of these protocols can be problematic, as individual errors can

propagate through the elements of the circuits and corrupt the information of multiple

data qubits, ultimately leading to an uncorrectable error. For this reason, the design of

fault tolerant protocols preventing uncontrolled propagation of errors through a circuit

has become an essential requirement for near term implementations of QEC [128].

Small QEC codes can reduce the effective probability of an error corrupting the log-

ical information encoded. However, to access the most powerful capabilities of quantum

computation, this error probability needs to be diminished to negligible levels, so that

increasingly long computations can be reliably executed. Scalable QEC codes are thus

the next step on the road of QEC. Thanks to the threshold theorem, the probability of
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an uncorrectable error can be reduced to arbitrarily low levels by increasing the size of

a code, provided that the physical error rate (i.e. the rate at which errors occur on the

physical qubits) on each qubit falls below a critical threshold and provided that fault-

tolerant quantum circuit constructions are employed [100, 127–130, 216]. Topological

QEC codes stand as the leading candidates for the scalability of QEC codes, with

high error thresholds and the possibility of applying some logical gates in a transversal

way. Additionally, the syndrome measurement requires only local operations between

neighboring qubits, which simplifies the experimental implementation of these codes.

Surface codes and color codes are currently the most prominent topological QEC codes,

and some of their building blocks have already been implemented in state-of-the-art

quantum devices with promising results (e.g. [89, 93, 147–157, 159–162, 164, 165]), with

prominent results like fault tolerant state preparation and stabilizer readout [147, 170],

repeated fault tolerant QEC cycles [171] or fault tolerant magic state preparation and

injection [169].

There is, however, one more challenge in the scaling of QEC codes. The thresh-

old of each code depends on our capability of correcting the errors appearing in the

code. The theoretical optimal threshold can be studied using models from statistical

mechanics, e.g. [217–220]. This threshold corresponds to the error rate at which it

is no longer possible to distinguish if an error is equivalent to a logical operator or a

trivial operation, in the thermodynamic limit. Finding the error class of a given error

configuration, however, is an NP-hard problem [183, 184]. Therefore, we would need

access to an arbitrarily extensive computational power. For any practical implementa-

tion of QEC, we need an efficient algorithm, able to interpret the syndrome and find a

correction in polynomial time. These algorithms are called decoders, as they translate

the information from the syndrome into the correction that needs to be applied. The

challenge of finding computationally efficient decoders with high thresholds is one of

the main problems addressed in this thesis, as we study two different decoders for color

codes in the chapters 7 and 8.

The main result of the scaling of QEC codes is that the logical error rate can be

reduced exponentially by increasing the size of the lattice. The condition to achieve

this beneficial regime is that the physical error rate needs to fall under the threshold
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of the code1. As discussed, by finding better decoders we can potentially increase the

practical threshold, getting closer to the limit defined by the optimal threshold. Thus,

if the physical error rate of a quantum device is higher than the threshold, we need

to find some alternative methods to reduce the effective error rate. The most obvious

approach is to improve the experimental device, by using better components, controlling

the sources of noise and improving the fidelity of the gates. However, by studying in

detail the sources of noise, it is possible to develop error suppression techniques that

take advantage of the particular properties of the errors to reduce further its effects on

out encoded quantum state. Decoherence Free Subspaces (DFS), spin-echo pulses or

refocusing techniques are some examples of these error suppression techniques. More

information about the topic can be found in [101–106]. In chapter 6, we show that the

use of error suppression techniques (refocusing in particular) is crucial to achieving the

beneficial regime for QEC in near term ion trap devices, as it can reduce by several

orders of magnitude the effects of some hazardous sources of noise.

In this chapter, we explain the main ideas, concepts and techniques of Quantum

Error Correction (QEC) used and required for the research chapters. First, we introduce

stabilizer codes, quantum circuits for stabilizer measurement and the basics of FT.

Then, in Sec. 3.2 we discuss topological codes, with particular focus on color codes, the

central family of QECC’s used throughout the thesis. In Sec. 3.3, we study the problem

of decoding and explore some of the leading decoding algorithms. Finally, we discuss

a FT implementation of the minimal instance of a color code, the 7-qubit Steane code.

We used [100, 109, 115] as the primary source material during the writing of this

chapter.

3.1 Stabilizer codes

Stabilizer codes are a family of QEC codes that can encode one or more qubits into

an entangled state of multiple physical qubits. By measuring certain operators, the

stabilizers, it is possible to detect, identify and correct errors [211]. Stabilizer codes

form a big family of codes that contains the most commonly used QEC codes.

1For this, one first needs to prove the existence of a threshold. Note that there are some useful
codes, such as Bacon-Shor codes, which do not have a threshold [221].
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The central idea of stabilizer codes is the use of the stabilizer operators to divide the

Hilbert space of the system into orthogonal subspaces. Then, the system is prepared

into one of these subspaces, called the code space, in which the logical information can

be encoded. Typically, the code space is defined as the space for which all stabilizers

have a +1 eigenvalue, for which we also need all stabilizers to commute between each

other. Errors happening in the code can bring the state of the system outside of this

code space. By measuring the stabilizer operators, we can obtain information about

these errors, without obtaining any information about the encoded logical information.

Furthermore, we protect the information from continuous errors, as the measurement

of the stabilizers can collapse the state either back to the code space, or to a detectable

error outside of the code space.

3.1.1 Basic concepts

Let us begin by defining stabilizer operators. An operator S is said to stabilize state

|ψ〉 if it satisfies the identity S |ψ〉 = |ψ〉, i.e. |ψ〉 is a +1 eigenstate of S. An interesting

property of stabilizer operators (stabilizers for short) is the fact that we can define

subspaces of states stabilized by a stabilizer within a given Hilbert space. For instance,

if we require a 2-qubit system to be stabilized by the Z1Z2 operator (i.e. the Pauli Z

operator applied to the qubits 1 and 2), this leaves only two orthogonal basis states,

effectively reducing the dimension of the Hilbert space by half:

|0L〉 = |00〉 , |1L〉 = |11〉 .

Thus, we can use stabilizers to reduce the size of the Hilbert space for a multi-qubit

system down to a single effective (or logical) qubit. We call this simultaneous +1

eigenspace of all stabilizers the computational subspace or code space. A stabilizer code

is defined by the computational subspace of a set of stabilizer operators in a multi-qubit

system. As we will see in the following examples, stabilizer codes can detect errors by

measuring the stabilizer operators, which will change their measured value if an error

brings the state outside of the computational subspace [100, 115]. Finally, to define the

logical operators that operate the qubits within the code space, the logical operators

need to commute with all the stabilizers in the code.
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We define a parity check as the measurement of a stabilizer operator, since the

stabilizers used in QEC can take two values: +1 (even) or −1 (odd). The measured

value of a stabilizer is often referred to as its parity, and a −1 result in this measurement

is typically called an excitation.

The simplest example of stabilizer codes is the bit-flip repetition code, a 3-qubit

code that allows the correction of a single bit-flip error. The stabilizers for the bit-

flip repetition code are S1 = Z1Z2 and S2 = Z2Z3. In the computational basis, the

code space is then defined by the orthogonal basis {|000〉 , |111〉}. These two states

can encode a single logical qubit, with the logical zero as |0〉L = |000〉 and the logical

one as |1〉L = |111〉. Any superposition of these states is a valid logical state, as

it remains within the code space, and measuring the stabilizers would not give us

any information about the superposition. This property is crucial, as it allows us to

obtain information about the errors without obtaining any information about the logical

state of the encoded qubit. Logical Pauli XL, YL and ZL can be applied by applying

single-qubit Pauli operations on each of the individual qubits, e.g. XL = X1X2X3.

Note that these logical operators commute with all stabilizers, and follow the expected

commutation relation for the Pauli operators on a single qubit, i.e. [Xl, YL] = 2iZL.

A single bit-flip error Xi on any of the three qubits would take the state out of the

code space. For example, a bit-flip on the first qubit could take an encoded state to the

subspace for which S1 = −1 and S2 = +1, with the new basis of the subspace being

{|100〉 , |011〉}. By measuring the stabilizers, we are able to detect this fault and correct

the error. In the context of QEC, the result of measuring the stabilizers is called the

syndrome. Since each possible single-qubit bit-flip error generates a different syndrome,

we can make a table with all the possible outcomes of the stabilizer measurements (see

Table 3.1). This table allows us to find the most probable error for the measured

syndrome, assuming uncorrelated bit-flips happen with a small error rate p, and is

called a lookup table (LUT). LUT’s are the first example of a decoding algorithm,

i.e. a method to obtain a recovery operation using the information from the syndrome.

This table will identify the most probable correction for each syndrome. However,

any bit-flip error of weight 2 (affecting two different qubits) would lead to an incorrect

interpretation of the syndrome, and the combination of the error and the correction

would lead to the application of a logical XL error, corrupting the encoded information.
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Error S1 S2

− +1 +1
X1 −1 +1
X2 −1 −1
X3 +1 −1

Table 3.1: Lookup table for the 3-qubit repetition code. This table relates the
information from the syndrome (produced by measuring the stabilizers S1 = Z1Z2 and
S2 = Z2Z3) to the most probable bit-flip error.

Another key limitation of the bit-flip repetition code is that it leaves the code

unprotected from dephasing errors (Pauli Z), since any single-qubit phase-flip error Zi

commutes with the stabilizers, hence being undetectable by the stabilizer measurement.

Crucially, any Zi error is equivalent to a logical ZL error up to a combination of

stabilizers, e.g. Z1, since we can always write a state |ψ〉 in the code space preceded

by a product of stabilizers:

Z1 |ψ〉 = Z1S2 |ψ〉 = Z1Z2Z3 |ψ〉 = ZL |ψ〉 . (3.1)

This exemplifies an interesting property of logical operators: we can rewrite them by

multiplying them with any product of stabilizer operators. We can define the phase-flip

repetition code by changing the stabilizers to S1 = X1X2 and S2 = X2X3, which allows

the code to correct one phase-flip (Z error) but leaves the code vulnerable to bit-flip

errors. Despite its limitations, there is an intense research on the implementation of

repetition codes, e.g. [150, 159, 174].

In order to protect a logical qubit from any Pauli error, the minimum code required

is the 5-qubit code, defined by the following set of stabilizers:

S1 = XZZXI

S2 = IXZZX

S3 = XIXZZ

S4 = ZXIXZ

A lookup table (similar to Table 3.1) can be defined for the 5 qubit code, containing

the correction to be applied for each of the 24 possible syndromes. Each of the 15
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non-trivial syndromes in the 5-qubit code corresponds to a single-qubit Pauli operation

applied to one of the qubits in the code. Lookup tables are also the simplest type

of decoders: algorithms that interpret the information from the syndrome to find the

most probable correction that should be applied.

The repetition code and the 5 qubit code are two simple examples of stabilizer codes

that illustrate some of the main features of this class of QEC codes. Typically, there

are three variables of interest that can be used to indicate some of the characteristics of

different QEC codes: the number of physical qubits n, the number of encoded logical

qubits k, and the code distance d of the code.

To define the code distance d we first need to define the weight of an operator. The

weight of a Pauli operator P = P1P2...Pn ∈ Pn is the number of qubits on which it acts

non-trivially, i.e. the number of terms in the tensor product which are not equal to the

identity (e.g. the operator 11X2Y3Z4 has weight 3). The distance d of a code is defined

as the minimum weight of any logical operator (there are several logical operators, i.e.

XL, ZL etc. ), or, in other words the smallest support size of the logical operators in

the code.

A code of distance d ensures that all errors of weight bd−1
2 c or smaller are cor-

rectable1. The value of these variables for a given code is typically written as [[n, k, d]].

For the 5-qubit code, we have [[5, 1, 3]].

An important subclass of stabilizer codes we want to mention are CSS codes, named

after the authors Robert Calderbank, Peter Shor and Andrew Steane, whose stabilizer

generators consist of the tensor products of either X or Z operators [100, 213, 214].

In an over-simplified description, to construct a CSS code we begin with two classical

parity check codes C1 and C2. Then, we replace the parity checks in C1 with X-type

stabilizers, and for C2 with Z-type stabilizers. From those stabilizers, a subset is chosen

to generate a code, ensuring that all stabilizers commute with each other. A formal

description of CSS codes can be found in [100]. CSS codes are a relevant class of codes

for this thesis, as the codes we study (color codes) belong to this family. They have

some interesting properties, e.g. bit and phase flip errors can be corrected separately.

With this introduction, we have seen the basic concepts of the theory of stabilizer

codes. A more in-depth study of the properties of different QEC codes can be found

1The symbols b·c represent the floor function.
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in [100]. The next step in our introduction to stabilizer codes is the implementation of

the stabilizer measurements as quantum circuits.

3.1.2 Circuits for stabilizer measurement

As we have seen in the previous section, stabilizer codes rely on measuring the stabi-

lizer operators Si. The result of these measurements, the syndrome, provides enough

information to correct the errors in the code (assuming the total weight of the errors

is smaller than the amount tolerated by the code). In general, we can measure any

arbitrary operator U (assuming it is unitary, hermitian, and has eigenvalues ±1) with

the help of an additional qubit, called ancilla qubit, with the following quantum circuit

[100]:

|0〉ancilla H • H

|ψ〉data /N U

where the measurement is, unless stated otherwise, in the computational basis (or

Z basis); and the ancilla is always prepared in the |0〉 state. For the QEC codes used in

this thesis, the stabilizer measurements that we will require consist of products of either

Pauli Z operators or Pauli X operators. The circuits for these stabilizer measurements

can be compiled using only Hadamard and CNOT gates [100]. This can be more easily

understood if we write the unitary of the CNOT gate as

CNOT = |0〉1 〈0|1 12 + |1〉1 〈1|1X2, (3.2)

where qubit 1 is the control qubit, and qubit 2 is the target qubit. In this description,

it is easy to see that we can measure a stabilizer SX = X1X2X3X4 using an ancilla

qubit a and the circuit

|0〉ancilla H • • • • H

1
2
3
4

as the product of CNOT gates leads to the control-SX corresponding to the stabilizer:
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CaSX = |0〉a 〈0|a 11121314 + |1〉a 〈1|aX1X2X3X4. (3.3)

Similarly, the stabilizer SZ = Z1Z2Z3Z4 can be measured with the help of an ancilla

qubit. The circuit corresponding to this measurement can be simplified to:

|0〉ancilla
1 •
2 •
3 •
4 •

In both circuits, the result of the ancilla measurement corresponds to the outcome

of the measure of the stabilizers. These circuits present a simple way of implement-

ing stabilizer readout protocols. Nevertheless, they are susceptible to dangerous error

propagation events, as we will see in the next section.

3.1.3 Fault tolerance

Fault tolerance (FT) is a design methodology that allows QEC to remain effective in the

presence of faults. The concept was first developed in classical computing [222], and its

basic principle is to avoid errors cascading through the circuits used for gate operations

and QEC. In a FT circuit element, a single error can cause at most one error in the

output for each logical qubit block [115, 128]. With protocols able to correct several

errors, this definition can be relaxed, so that a distance d code correcting t = b(d−1)/2c
errors requires that ≤ t errors during an operation do not result in > t errors in the

output to be considered FT [115].

In our description of stabilizer codes so far, we have implicitly assumed that errors

happened before the stabilizer readout. However, in realistic implementations of QEC

protocols, errors can occur at any moment during the realization of a circuit. Two-

qubit entangling gates (like the CNOT gate) can propagate errors through the circuit

(see Fig. 3.1). Potentially, this error propagation can turn a lower weight correctable

error into a higher weight uncorrectable error, ultimately leading to a failure of the QEC

protocol and the corruption of the encoded information. Uncontrolled error propagation

through the circuits has a particularly damaging effect on small codes, since the low

distance of the code means that a single fault propagating through a circuit can easily

lead to a weight-two error, which could be uncorrectable for distance d = 3 codes.
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In Fig. 3.1 we show an example of how a single error occurring on the ancilla qubit

can propagate to the data qubits leading to a weight-2 error. This vulnerability to error

propagation events can have a very damaging effect on the performance of QEC codes.

Figure 3.1: Error propagation through the syndrome measurement circuit. a)
bit-flip error propagation through a CNOT gate: an X error in the control qubit propagates
to the target qubit, but it does not propagate from the target qubit to the control qubit.
b) Standard stabilizer measurement of a stabilizer S = X1X2X3X4, where a single ancilla
is used to measure the stabilizer. A single fault on the ancilla can propagate through the
CNOTs, resulting in two X faults on the data qubits. This type of propagation is usually
called a hook error.

To prevent the damaging effects of error propagation, there is a need to find fault

tolerant procedures to operate on logical states. Stabilizer measurements and any kind

of operation on the logical information should be realized fault tolerantly. The most

straightforward way to apply operations fault-tolerantly to encoded qubits is the use of

transversal operations. A logical gate is said to be transversal if it can be implemented

as the parallel application of gates on a subset of qubits in a block of a quantum error-

correcting code. Qubits from one block can only interact with corresponding qubits

from another block or with an ancilla. Any transversal operation is automatically fault-

tolerant. An example of transversal gates is the XL (and ZL) operator in color codes

and surface codes, which can be implemented by the parallel application of single qubit

Pauli X (Z) gates on the qubits belonging to the support of the logical operator (see

Figs. 3.4, 3.7).

However, the possibility of implementing logical gates transversally on encoded

qubits is limited on the upper end by the no-go theorem by Eastin and Knill [223],

which states that if a quantum code is non-trivial (i.e. it can detect at least any error

on a single qubit), then it does not have a transversally-realizable universal set of gates.
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One common method to implement fault-tolerantly the logical gates that cannot be

implemented transversally is the use of magic states [224–227].

Magic states are special states that can be used as a resource for the implementation

of logical gates fault-tolerantly. Magic states are defined as the pure states that can be

obtained by applying any one-qubit Clifford operation to the states |M〉 and |H〉:

|M〉 〈M | = 1

2

[
1 +

1√
3

(σx + σy + σz)

]
, (3.4)

|H〉 〈H| = 1

2

[
1 +

1√
2

(σx + σz)

]
. (3.5)

These states are particularly useful for the application of non-Clifford gates, like the

T gate, through gate teleportation [224]. The circuit in Fig. 3.2 shows an example of

gate teleportation using an ancilla qubit prepared in the magic state |π/4〉:

|π/4〉L =
1√
2

(|0〉L + e+iπ/4 |1〉L). (3.6)

Figure 3.2: Gate teleportation: circuit for the gate teleportation of a T gate to a
target qubit in an unknown state |ψ〉 using an ancilla in the magic state |π/4〉.

|ψ〉L |π/4〉a = (α |0〉L + β |1〉L)⊗ 1√
2

(|0〉a + e+iπ/4 |1〉a). (3.7)

By applying a CNOT gate, we create the following entangled state between the

target qubit, previously in an unknown state |ψ〉L = α |0〉L + eiπ/4β |1〉L, and the

ancilla qubit:

CNOT |ψ〉L |π/4〉a =
1√
2

[
(α |0〉L + eiπ/4β |1〉L)⊗ |0〉a + (eiπ/4α |0〉L + β |1〉L)⊗ |1〉a

]
=

1√
2

(α |0〉L + eiπ/4β |1〉L)⊗ |0〉a + eiπ/4
1√
2

(α |0〉L + e−iπ/4β |1〉L)⊗ |1〉a

=TL |ψ〉L ⊗ 0a + eiπ/4S†LTL |ψ〉L ⊗ |1〉a . (3.8)
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Then, by measuring the ancilla qubit in the Pauli Z basis, we collapse the state on

the target qubit to either TL |ψ〉L in the case of a +1 result, or to the state S†LTL |ψ〉L, in

which case we can apply an S gate to obtain the desired state T |ψ〉. This scheme can be

applied fault tolerantly to a target encoded qubit if the QEC code allows the transversal

application of the CNOT and S gates, provided that we have an encoded qubit in the

magic state |π/4〉L available. Using this method, we would need a source of magic states

available to perform T gates fault tolerantly through a long quantum computation.

Preparing encoded magic states with high fidelity is, however, a complicated task, as

they cannot be prepared fault-tolerantly. To improve the fidelity of the produced magic

states, we can use a protocol called magic state distillation[224], which takes many noisy

magic states and distills a smaller set of less noisy magic states (see Fig. 3.3). To achieve

the desired fidelity for a given quantum computation, we may require many rounds of

distillation [13]. This increase in the qubit overhead is estimated to be one of the main

bottlenecks for fault-tolerant implementations, which has made the study of magic state

distillation protocols an active field of research [224–228].

Figure 3.3: Magic state distillation. Using non fault tolerant circuits Ufaulty, we
prepare multiple noisy copies ρ of the desired magic state |M〉. Then, a distillation circuit
that uses only Clifford gates and Pauli measurements is used to obtain a magic state of a
higher fidelity ρ′. This process of distillation can be repeated over many rounds to improve
the fidelity of the output magic state.

The culmination of FT strategies is the idea of fault tolerant quantum computation,

in which all operations are computed directly on encoded quantum states, without ever

requiring the decoding of the state. Each qubit in the original quantum circuit would

be replaced by an encoded block of qubits using QEC codes and FT circuit imple-

mentations. Operations between qubits would be realized via fault tolerant protocols,
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preventing error propagation between the encoded qubits involved in the operation.

QEC would be realized periodically, to prevent the accumulation of errors [13, 109].

The idea of fault tolerant quantum computation underlies the entire construction of

one critical result of QEC:the threshold theorem [100, 127, 129, 130]:

Threshold theorem for quantum computation: A quantum circuit containing

p(n) gates may be simulated with probability of error at most ε using

O(poly(log p(n)/ε)p(n)) gates on hardware whose components fail with probability at

most p, provided p is below some constant threshold, p < pth, and given reasonable

assumptions about the noise in the underlying hardware.

This result holds for a very general noise model, which includes, besides probabilistic

errors, also decoherence, amplitude and phase damping, depolarization, and systematic

inaccuracies in the gates. The main assumption on the noise model is locality (i.e. the

noise process in different gates and qubits is independent), although the theorem can

also be proven in the presence of exponentially decaying correlations both in time and

space [129]. The key insight on this scaling is that the error rate can be suppressed

exponentially with the size of the code. Therefore, provided the noise in individual gates

is below a certain constant threshold and obeys physically reasonable assumptions, it is

possible to reliably perform an arbitrarily long quantum computation, with only a small

overhead in the size of the circuit necessary to ensure reliability [100, 127, 129, 130].

The development and implementation of all the protocols required for fault tolerant

quantum computation is a formidable challenge that requires careful planification and

examination of every step of the computation (see e.g. [155, 169, 225, 229]). Neverthe-

less, it stands as the central paradigm for realizing long quantum computations with

high fidelity, using noisy quantum components. The work presented in this thesis aims

to contribute to this ambitious project, moving one step forward towards fault tolerant

quantum computation.

3.2 Topological codes

Topological QEC codes arrange qubits in lattices with different topologies, and encode

the logical information in non-trivial cycles of the topology of the lattice [100, 109].

The logical operators are, thus, highly non-local, which makes them robust against

local noise in the physical setup. Furthermore, syndrome extraction requires only local
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operations between neighboring qubits, which simplifies the experimental implementa-

tion. The threshold theorem also applies to topological codes: the logical error rate can

be suppressed exponentially with the code size, as long as the physical error rate is be-

low a certain error threshold. Topological codes stand out as the QEC codes with some

of the highest known thresholds [109, 131], which makes them attractive candidates for

experimental realizations [147, 167–169, 171, 173, 230, 231].

The error threshold of a QEC code is defined as the error rate below which the logical

error rate can be suppressed arbitrarily if the QEC protocol is scaled appropriately. The

particular threshold on a QEC code depends on several factors. Firstly, it depends on

the noise model, as the protocol has a different tolerance depending on the type of noise

considered. Typically, the thresholds for topological codes are classified according to

the following categories:

1. Code capacity: the measurement of the stabilizers is consider ideal and error-free,

and the errors happen only before the measurement.

2. Phenomenological noise: we consider that the measurement of the stabilizers

has a certain error probability, in addition to the errors before the QEC round.

Typically, several rounds of stabilizer measurements are considered, since a single

round of measurements cannot be trusted.

3. circuit-level noise: all elements of the circuits for the stabilizer measurement are

considered faulty. The details on the error model and the protocol depend on the

particular study, although depolarizing-type noise is typically considered.

Secondly, the threshold of a QEC code depends on our capacity to obtain a successful

recovery operation from the information given by the syndrome measurement. Finding

algorithms with a high success rate and which are efficient in terms of classical computa-

tional cost is the problem of decoding, which is discussed further in Sec. 3.3. The upper

bound for the decoding problem corresponds to the optimal threshold, i.e. the threshold

obtained if the decoding algorithm, given the information from the syndrome, applies

the correction with the maximum probability of recovery. The optimal threshold can be

computed for some models by mapping the problem to a classical statistical-mechanical

model e.g. [217–220].
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The error threshold of a QEC code defines the error correction capabilities in the

infinite-size limit. For finite-size lattices, however, it is often useful to define a different

number: the pseudo-threshold. In this work, we define the pseudo-threshold of a code

of distance d (or a QEC protocol) under a given noise to be the error rate pc below

which the logical error rate pL is smaller than the physical error rate p. As opposed to

the threshold, the pseudo-threshold of a QEC code depends on the size of the lattice,

and defines the region of beneficial QEC, where the use of that QEC protocol provides

an advantage (pL < p) over a non-encoded physical qubit.

Surface codes and color codes are the two leading approaches to topological QEC

[109–113, 131, 132]. They share the main advantages of topological QEC, with similar

error thresholds and local stabilizer measurements. In this thesis, we focus on the study

of color codes, from the performance of the smallest instance of a color code (also called

Steane code [113, 214]) in chapter 6, to the decoders needed for the effective scaling

of the lattice in chapters 7 and 8. However, being the main alternative to color codes,

it is important to understand the basic concepts of surface codes, and the advantages

and disadvantages of each approach to topological QEC.

This section introduces the basic concepts of both surface codes and color codes. We

explore the main characteristics that differentiate each other and the main challenges of

decoding the syndrome in each code. In addition, we discuss some of the requirements

to perform fault tolerant quantum computation with these codes.

3.2.1 Surface code

Surface codes [110–112] are the “textbook example” of topological codes. They can

be generated by arranging a square lattice, in which the qubits lie at the edges. The

stabilizers of the surface code are different for the Z and X parity checks. Each X

stabilizer is measured over the 4 qubit-edges touching a vertex, and each Z stabilizer is

measured over the qubit-edges that form a square or plaquette. The number of logical

operators depends on the topology of the lattice, and corresponds to non-trivial loops

over the lattice [110, 232]. For instance, a sphere does not encode any logical qubit

(as every loop can be reduced to a point), and a torus encodes two logical qubits. The

support of the logical operators lies on non-trivial loops of the topology.

Since the physical implementation of lattices with periodic boundary conditions

can be challenging in some platforms, it is interesting to study planar surface codes.
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On lattices with open boundaries, we can distinguish two types of borders: rough and

smooth. Logical X operators are generated by chains of X operations on qubits forming

a chain from one smooth boundary to a different one, while logical Z operators link

rough boundaries with Z operations. A more clear distinction between the types of

borders can be seen in Fig. 3.4.

Figure 3.4: Surface code lattice. In surface codes, qubits lie at the edges of a square
lattice. The Z stabilizers are measured over the plaquettes of the lattice, while the X
stabilizers measure the qubits touching a vertex. The logical operators are constrained by
the edges of the lattice. Logical Z operators connect rough edges, and logical X operators
connect smooth edges.

One key question on the application of surface codes for fault tolerant quantum

computation is the realization of logical gates on the encoded qubits in a fault tolerant

manner. In the ideal scenario, we would like to apply the logical gates transversally,

i.e. by applying single-qubit gates to a subset of the qubits in the lattice. This possibility

is restricted by the properties of the code. On surface codes, both logical X and logical

Z can be applied transversally (by using the operators shown on Fig. 3.4), as well

as the logical CNOT gate between two encoded qubits. However, neither the logical

Hadamard, the logical phase-gate, or the T-gate can be applied transversally on surface

codes. Fault tolerant implementations of those gates require more complex techniques,

like lattice surgery, magic-state injection and magic-state distillation [224–226, 233], or

the recent approach based on twist teleportation [234].
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3.2.2 Color codes

Color codes are defined on two-dimensional lattices, where each qubit is connected to

three stabilizers and three other qubits [113, 132]. On the lattice, qubits are represented

by vertices, while the stabilizers are represented by three-coloured faces. The three

colors are not a degree of freedom, but a property that emerges from the geometry of

the codes that is called color for visualization purposes, and also gives name to this

family of codes. There are three regular lattices that define color codes: the 6.6.6 lattice

(hexagonal), the 4.8.8 lattice (squares and octagons) and the 4.6.12 lattice (see Fig. 3.5).

Each face on the lattice represents both an X and a Z stabilizer. As a topological code,

the number of logical operators depends on the topology of the lattice, and the logical

operators form non-trivial loops. For closed lattices, the number of logical qubits as

a function of the genus of the lattice is k = 4g [113, 235], which means that a toric

color code lattice encodes 4 logical qubits (see Fig. 3.7). As with surface codes, it is

possible to find planar lattices without periodic boundary conditions, with triangular

color codes being a prominent example, encoding one logical qubit [113].

Figure 3.5: Color code lattices. Color codes can be arranged in three regular lattices.
Qubits lie in the vertices, and the faces represent the stabilizer measurements for both X
parity checks and Z parity checks. The logical operators depend on the particular topology
of the lattice, e.g. toric code.

Color codes present several advantages over surface codes. Color codes present a

better relationship between the distance of the code and the number of qubits needed.

In particular, for triangular color codes of distance d (see Fig. 3.6), the number of

data qubits required scales as n = 1
2d

2 + d− 1
2 for the 4.8.8 lattice, which presents the

highest asymptotic ratio of d2 to n, while the 6.6.6 lattice requires n = 3
4d

2 + 1
4 and the
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4.6.12 requires n = 3
2d

2 − 3d+ 5
2 [183]. Planar, square surface code lattices require on

the order of n = d2 qubits, and the recently proposed triangular surface codes require

n = 3
4d

2 + 1
4 [236]. This can lead to a more efficient use of the resources for QEC,

which can already be seen at small distances: at distance d = 5, color codes can be

defined with only n = 17 data qubits, while color codes require n = 25 using the square

lattice, and n = 19 using the recently proposed triangular surface code. Nevertheless,

the main advantage over surface codes is the possibility of the transversal application

of the entire Clifford group when using the 4.8.8 color code lattice [113](see Fig. 3.7).

Figure 3.6: Distance d = 7 triangular color code lattices. Triangular color code
lattices encode a single logical qubit. The support of the logical XL, ZL operators is located
on the qubits along one of the edges of the triangle.

Thus, the 4.8.8 color code lattice is optimal in the sense that the addition of one

transversal non-Clifford gate (e.g. the T gate) would achieve a universal gate set, which

would violate the Eastin and Knill no-go theorem [223]. This last gate is typically

implemented by other means, like magic state distillation and injection [224–227], code

switching [237], gauge fixing [238], code doubling or stacked codes [239, 240]. Since

magic state distillation and magic state injection are generally the most expensive

operations in fault tolerant QC, the possibility of applying more gates in a transversal

way can present a significant advantage over surface codes [237].

On the other hand, the stabilizer operators required for color codes have a higher

weight than the weight-4 stabilizers required for surface codes. This presents an addi-

tional challenge for a fault tolerant implementation, as higher weight stabilizers can lead

to dangerous error propagation events through the lattice and require a more careful ex-

amination. As for the circuit-noise thresholds, currently the highest values reported lie

between 0.07%-0.80%, depending on the particular model used [183, 237, 241]. In com-

parison, circuit-noise thresholds for surface codes have been reported between 0.14%-1%
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Figure 3.7: Representation of the color code 4.8.8 lattice. Qubits are represented
by black vertices, and the stabilizers SZ and SX are represented by the colored plaquettes,
which apply a parity check over the qubits on the vertices. The logical operators are strings
of Pauli operators that extend over the torus in a non-trivial way. On the color code lattice
on a torus, we have two independent logical operators for each non-trivial loop, i.e. four
logical qubits. The support of the logical operators X̂i and Ẑi is represented by the blue
and green lines, which represent the four non-trivial loops on the toric color code lattice.
To illustrate the effect of errors in the lattice, we display an example of four physical bit-flip
errors (qubits are marked with red diamonds), and the corresponding stabilizer excitations
(stabilizers are marked with red circles).

under similar restrictions [131, 183, 241, 242]1. Although color codes can also be defined

in 3D [238], in this work we focus our discussion on 2D color code lattices.

3.2.2.1 Steane code and flag-based readout techniques

The smallest implementation of the color code is the 7-qubit color code (Steane code)

[113, 214]. This code allows the encoding of a single logical qubit in seven physical

qubits, and has a logical distance d = 3, which allows the detection and correction of

at least
⌊
d−1

2

⌋
= 1 arbitrary phase or bit-flip fault on any of the physical qubits. The

set of stabilizers and the logical operators are shown in Fig. 3.8. In addition, the code

permits the transversal application of the entire Clifford group [113], which facilitates a

1Although a threshold of 1% was reported in [242], a follow-up work attempting to reproduce this
value [241] failed to reproduce this result and reported 0.7%.
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fault tolerant application of gates at the logical level. The small size of the code makes

it an interesting milestone for near-term quantum devices.

Figure 3.8: The distance d = 3, 7 qubit color-code (Steane code), encoding one
logical qubit in n = 7 physical qubits. The qubits are represented by the dots in the
vertices, the logical operators LX and LZ act on the edge of the triangle, and the stabilizer
checks S(i) correspond to the plaquettes. The code can correct up to t = 1 arbitrary fault
on any of the seven physical data qubits.

As outlined in Sec. 3.1.3, a naive implementation of stabilizer measurements can

allow a fault in the ancilla qubit to propagate to the data qubits, potentially com-

promising the encoded logical information. This type of error events where a single

fault in an ancilla can propagate to several data qubits is called a hook error (see

Fig. 3.9). To prevent this cascade effect during the stabilizer measurement, several

FT schemes have been proposed [126, 215]. Due to present experimental capabilities,

there has been intense recent activity developing resource-efficient FT schemes, such

as FT readout techniques that exploit a single ancilla for certain types of microscopic

noise [228, 241, 243, 244]. A notable example is the use of the so-called flag-based read-

out [114, 229, 245, 246], which substantially reduces the number of required ancillary

qubits with respect to the initial FT schemes.

The flag-based readout scheme is a technique to detect and correct hook errors (see

Fig. 3.9) by the use of an additional ancilla that will act as a flag to detect the hook

errors. If an error is detected, a second measurement of the stabilizers will provide

enough information to correct the faults and protect the logical information [245].

We can use the example in Fig. 3.9 to understand the intuition behind this scheme.

During the measurement of the X stabilizer, a Pauli X error in the ancilla is not

detected when measuring the ancilla in the X basis, but it can propagate through the

CNOT’s to the data qubits, leading to a potential weight-2 error that can be detected,

but would be confused with a weight-1 error. This event breaks fault tolerance, as a
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3. QUANTUM ERROR CORRECTION

Figure 3.9: Error propagation through the syndrome measurement circuit. a)
bit-flip error propagation through a CNOT gate: an X error in the control qubit propagates
to the target qubit, but it does not propagate from the target qubit to the control qubit. b)

Standard stabilizer measurement of S
(3)
x (green), where a single ancilla is used to measure

the stabilizer. A single fault on the ancilla can propagate through the CNOTs and result in
two X faults on the data qubits (6 and 7). This is called a hook error. c) Syndrome readout:
(left) after measuring all 6 stabilizers, only the blue stabilizer (marked with a star) will be
excited by the two faults. (right) The correction corresponding to that syndrome would
be to apply an X operation to qubit 5, which would complete the logical XL = X5X6X7

operator and lead to a logical X error. d) Stabilizer readout with a flag qubit: hook errors
can be detected by using an additional ancilla (flag qubit) in the stabilizer readout. If a
flag qubit signals a fault, another round of syndrome readout is run, and the information
obtained by the flag and the syndrome can be used to identify and correct the error [243].

single fault in the protocol can lead to a weight-two fault in the output, which, for a

distance d = 3 code like the Steane code, can lead to a logical error. The solution to

this problem is the use of an additional flag ancilla. This additional qubit is coupled

to the ancilla at critical points in the circuit, so that the potential hook error X in
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the ancilla is also propagated to the flag qubit, which is measured in the Z basis. In

this case, the event will be detected by the flag. However, this detection by itself does

not give enough information to infer the exact fault that occurred. Thus, we realize

a second stabilizer measurement that, together with the information of the flag, will

provide enough information to correct the faults and restore the logical state.

The flagged measurement of the stabilizers allows a FT implementation of the

Steane code with only 7 + 2 qubits, using two ancilla qubits to measure the stabi-

lizers sequentially. However, a recent work [229] presented an alternative scheme that

allows parallel flagged measurement of stabilizers. Using this scheme, it is possible to

measure up to three different stabilizers simultaneously, utilizing the ancilla for each

stabilizer measurement as a flag for the rest of the measurements. This scheme follows

the same intuition as the single-flag scheme, where an error in one ancilla can prop-

agate to another ancilla measuring the qubit in an orthogonal base, so that potential

hook errors are detected and can be corrected using information from an additional

syndrome readout.

In the ion-trap platform that we consider in chapter 6, qubit measurement is the

slowest operation as the qubits need to be re-cooled after each measurement operation.

Since measurement operations can be done in parallel, this alternative scheme with a

simultaneous measurement of 3 stabilizers can significantly reduce the duration of the

QEC cycle. The circuits of the scheme can be seen in Fig. 3.10.

The QEC cycle for the Steane code with simultaneous readout of 3 stabilizers in

parallel requires a total of 7 + 3 qubits. The 6 stabilizers are measured in two steps,

measuring the stabilizers S
(1)
X , S

(2)
Z and S

(3)
Z in parallel during the first step, and the

stabilizers S
(1)
Z , S

(2)
X and S

(3)
X in the second step. Both of these parallel measurements

implement the flag scheme, where each ancilla is coupled to the others and acts as a

flag for possible hook errors happening on the other ancillae. The details on this QEC

protocol can be found in [229], and are explained further in the research chapter 6.

3.3 Decoders

The problem of decoding refers to the interpretation of the measured syndrome to

obtain a recovery operation or correction. For small codes, like the Steane code, it is

possible to compute the most probable error for each possible syndrome (assuming a
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Figure 3.10: Parallel syndrome extraction, as proposed by [229]. One can simul-
taneously measure 3 stabilizer checks in parallel in a fault tolerant way. a) Circuit for

the simultaneous measurement of the stabilizers S
(1)
x , S

(2)
z and S

(3)
z via ancillae a1, a2 and

a3, respectively. The gates used in the measurement of each stabilizer are highlighted in
the color of the stabilizer they implement, and the two black CNOT gates between the
ancilla qubits represent the crucial elements of this scheme, as they allow the dangerous
hook errors to propagate to other ancillas, capable of detecting these events. b) Stabilizers
measured with the circuits in a).

given error model), and find the best recovery operation for each case. This information

can be used to write a lookup table (see e.g. 3.1), which can be consulted in O(1)

complexity to obtain an optimal correction (according to our error model). However,

finding the lookup table is a complicated problem for larger codes, as the number of

possible syndromes scales exponentially with the number of stabilizers. Finding scalable

and efficient decoders for topological QEC codes is one fundamental problem for the

scalability of QEC protocols.

This section discusses some of the most prominent decoding algorithms in the liter-

ature, both for surface codes and color codes. The two main magnitudes that charac-

terize different decoding algorithms are the efficiency of the decoder (the scaling of the

computational complexity) and the threshold of the decoder. The figure of merit to

evaluate the thresholds is the optimal decoder, that finds the recovery operation with

the maximum success probability for each syndrome. An important aspect to take

into account when evaluating decoders is the error model for which they are designed,

i.e. code capacity, phenomenological noise, or circuit-level noise (see Sec. 3.2).

The most relevant decoding algorithm for surface codes is the minimum weight

perfect matching (MWPM) [111, 185, 186, 247], which stems from one key property of
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excitations in the surface code. Let us assume a toric lattice with periodic boundary

conditions, and focus only on bit-flip errors, as the argument would be analogous for

phase-flip errors. Each qubit is connected to only two Z stabilizers and only two X

stabilizers. Therefore, an bit-flip error on a qubit will create two excitations of the

nearby Z stabilizers. If there is a second error next to it, the stabilizer shared by both

errors will now have even parity, and only two excitations will remain. For longer error

chains, this rule remains valid, and there will be only two excitations on the ends of

the chain. Since excitations of stabilizers are created in pairs connected by chains of

errors, we can find a correction by finding a pairing of the excitations measured in

the syndrome. Furthermore, if we assume that the probability of an error is small, we

can find the most probable error by finding a pairing for which the total length of the

chains is minimized. Fortunately, there is an efficient classical algorithm that solves

this problem in polynomial time, and gives the name to the decoder: Minimum Weight

Perfect Matching (MWPM). For lattices with open boundaries, the algorithm can be

applied by including the possibility of chains with an ending on the boundary. The

runtime complexity of MWPM as a function of the number of qubits N is O(N4) for a

straightforward implementation of the original Blossom algorithm [185, 247], which can

be optimized to O(N2.5) using recent advancements [248, 249]. One important detail

to note is that, although MWPM can find the most probable error chain, this solution

is different from the optimal decoder, which would find the correction with the highest

probability of recovery. For this, the optimal decoder needs to consider the degeneracies

in the solution that stem from the application of stabilizers, since operations that differ

in the application of a product of stabilizers are equivalent in stabilizer codes (also

referred to as equivalent up to stabilizers). In general, this is computationally expensive

and requires a prohibitive amount of computational resources.

MWPM is the most widely used decoder for the surface code, and it is of particular

relevance for this thesis, since it is the reference to which other decoders can be com-

pared, as it combines a high threshold with polynomial efficiency. Furthermore, the

MWPM is used as a subroutine by some color code decoders [196, 241] that first map

the color code into two surface codes [192], and then applies MWPM on each surface

code before proceeding further with the algorithm. If we include errors in the measure-

ments, the decoder can be adapted by adding a third dimension for the measurement
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round. Thus, it can be applied successfully for code capacity, phenomenological noise,

and circuit-level noise [183, 186].

Decoding color codes presents a more challenging problem. While in the surface

code excitations appear always in pairs at the end of chains of errors, the dynamics

of excitations in the color code are more complicated (see Fig. 3.7). A single-qubit

error creates three excitations on the neighboring stabilizers. Chains of excitations

can generate pairs of excitations of the same color. However, the chains of excitations

can also branch into networks of errors, generating more complex excitations patterns

that can become harder to decode. As a result, the decoder algorithms become more

complex than for surface codes. A variety of color code decoders have been proposed

over the last years, like ideas relating a mapping of the color code to surface codes

[191–194, 196], renormalization group decoders [189], neural networks [197, 201, 204],

and many others, e.g. [190, 193, 195, 196, 250, 251]. Currently, the best threshold

for code capacity noise has been achieved using the restriction decoder [196], which

achieves a 10.2% threshold by mapping color codes to two different copies of surface

codes. This threshold is to be compared with the optimal value for the code capacity

of 10.9%, that can be obtained by mapping color codes to a 2D random-bond Ising

model with three-body interactions [218–220]. In chapter 7 we study some adaptations

of the so-called Union Find decoder [193], while in chapter 8 we study a modification

to a decoder based on the rescaling of the lattice [189]. The topic of decoders for color

codes will be explored more in-depth during those chapters.
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Simulation of quantum circuits
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In previous chapters (2 and 3) we have seen how the effect of different error channels

can be modeled using Kraus maps and open quantum system dynamics; and how we

can use QECCs to detect and correct errors in a quantum code. However, to evaluate

the performance of a quantum protocol under the influence of noise, the capability of

simulating quantum systems becomes a fundamental tool. By using simulations, we

can predict the performance of QECCs, study the failure scenarios and evaluate the

usefulness of different protocols (e.g. [169, 171, 197, 252–254]).

Accurate and fast algorithms for the simulation of quantum systems are thus an

indispensable resource in the study of QEC. One of the main challenges of simulating

quantum systems lies in the scaling of the Hilbert space in which states are represented.

Since our goal in this thesis is to study the performance of QEC protocols, we restrict

ourselves to systems of qubits. If we want to represent an arbitrary wavefunction of a

system of n qubits, this can mean storing a vector with O(2n) complex numbers. An

arbitrary unitary matrix applied to this system would also scale exponentially in size

with O(22n) entries. Simulations that compute trajectories (i.e. evolution of a single

pure state) for arbitrary wavefunctions in this fashion are commonly called state-vector

simulations. Furthermore, to fully represent the dynamics of a QEC protocol, we might

be interested in finding the resulting density matrix of the system after applying a given

error channel. Again, the size of an arbitrary density matrix for such a system would

scale with O(22n). Due to this exponential scaling, the computational cost of working

with such matrices can become prohibitive for even small systems with less than a few

tens of qubits.

However, some studies point out that it is not necessary to keep track of the entire

density matrix of a system in order to reproduce the dynamics of a realistic system

[255, 256]. This opens the possibility for classical algorithms to be developed and used

for simulating quantum systems. Among these algorithms, we find simulations using

matrix-product-states (MPS) [256, 257], quantum Monte Carlo (QMC) [258–262], path-

integral Monte Carlo (PIMC) [263, 264], simulated quantum annealing (SQA) [265,

266], stabilizer simulation [211, 252, 267–269], density matrix renormalization group

(DMRG) [270–276], Pauli propagation [181, 277], as well as optimized implementations

to reproduce wavefunctions and density matrices e.g. [253, 278]. The development

of classical algorithms to reproduce quantum systems is an active field of research,

with multiple platforms and packages that implement different algorithms [279–282]
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covering a broad range of fields, e.g. quantum computation, QEC, quantum annealing,

condensed matter or quantum chemistry. Each algorithm offers some advantages and

disadvantages over the rest, with trade-offs in e.g. efficiency, fidelity or universality. For

the remainder of the thesis, we focus on applications in quantum computation and the

simulation of quantum circuits for QEC.

Regarding the simulation of quantum circuits, there are some subsets of quan-

tum processes that can be efficiently simulated with classical computers. From the

Gottesman-Knill theorem [100, 212], we know that quantum circuits can be simulated

efficiently if they consist only of Clifford gates and state preparation and measurement

in the computational basis. Although this set of operations does not allow for any

arbitrary operation, the gates required for most QEC protocols are contained within

this set. This means that it is possible to simulate efficiently any ideal QEC protocol

that fulfills this condition. The main restriction of this theorem will affect, then, the

error channels, that will require a Clifford approximation in order to simulate them

efficiently (e.g. [182, 252, 268, 269]). Depending on the particular error model, this

restriction can have a significant impact on the precision of the simulations, as we will

see in chapter 6 with the study of crosstalk errors, a particular type of error channel

that applies coherent entangling rotations to pairs of qubits.

The next obvious question concerns the algorithm capable of the efficient simulation

of Clifford circuits. Stabilizer simulation stands as a well-known algorithm that repre-

sents states by using a representation based on the stabilizer formalism [100, 211, 267].

Together with some properties of the Pauli group of operators, this compact representa-

tion of the states allows the implementation of a quantum simulation with polynomial

scaling. Nevertheless, this efficiency can only be achieved when restricting the set of op-

erations to Clifford operations and measurements in the Pauli basis1. Therefore, when

comparing stabilizer simulations with state-vector simulations (that reproduce the en-

tire wavefunction of the system), there is a trade-off between computational complexity

and accuracy of the simulations, since non-Clifford operations will be approximated.

In this chapter, we describe the two main simulation algorithms that we use through-

out the thesis: state-vector simulation and stabilizer simulation. We discuss the working

principle, and the advantages and disadvantages of each method. This chapter aims

1Recent works are studying how circuits with a limited number of non-Clifford operations can be
simulated within the stabilizer formalism [182].
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4. SIMULATION OF QUANTUM CIRCUITS

to introduce the reader to the basic concepts needed to understand the algorithms and

their limitations. Finally, we describe some of the alternative techniques available for

the simulation of quantum systems.

4.1 State-vector simulation

State-vector simulations reproduce the evolution of pure state trajectories |ψ(t)〉 by

storing all the amplitudes cn of the state in a given basis in a vector, e.g.

|ψ〉 =

N∑
n

cn |n〉 =


c1

c2
...
cN

 . (4.1)

Unitary evolution can be computed directly by realizing the product of the unitary

matrix and the vector of the state

(U |ψ〉)i =
∑
k

Ui,kck. (4.2)

Measurement of an operator M can be simulated by computing first the probability

of each outcome, and then using a random number to simulate the random outcome m

of the measurement. If we have the projectors Mm for each of the outcomes, we can

compute the probability of each outcome from the state in the standard way:

p(m) = 〈ψ|M †mMm |ψ〉 . (4.3)

As we have seen, state-vector simulations are, at its core, a direct numerical imple-

mentation of the simulation of wavefunctions. If we work with stochastic noise described

by a Kraus map, they allow the simulation of individual evolutions, from which we can

obtain the statistics by repeating multiple iterations using standard Monte Carlo tech-

niques [262]. Thus, state-vector simulations provide a complete tool to study quantum

circuits and obtain precise estimates for any arbitrary evolution. This includes not only

Clifford operations, but also any arbitrary operation applied on any number of qubits.

On the other hand, there is a price for the power of state-vector simulations to

simulate any arbitrary quantum evolution, which is the high computational cost. As
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discussed in the introduction, the size of the vector representing an arbitrary n qubit

state scales exponentially as O(2n), and the worst-case scenario for a unitary matrix

affecting these states scales with O(22n). Although the implementation of the algorithm

can be optimized using e.g. sparse matrices to represent the states [281], the computa-

tional cost is the main limiting factor of this algorithm. Simulation of long circuits or

large number of qubits can become a very costly computational task.

Therefore, motivated by the need for fast algorithms to evaluate noisy quantum

circuits, we want to study the use of alternative simulation methods capable of efficiently

simulating quantum circuits. This search leads us to stabilizer simulation, an algorithm

that operates in polynomial time at the cost of restricting the available operations.

4.2 Stabilizer simulation

While the state-vector simulations described in the previous section provide a reliable

method to simulate any arbitrary quantum system, we have seen that the algorithm

becomes very inefficient with the scaling of the quantum system. The computational

cost of the algorithm increases exponentially, making computations increasingly slow

as we try to simulate more qubits. This result is expected, as an arbitrary quantum

evolution cannot be efficiently simulated with a classical computer.

In this section, we explore how the stabilizer formalism leads to an efficient way of

representing and evolving quantum states, as long as all the operations applied in the

circuit are constrained to Clifford gates, measurements in the computational basis, and

state preparation in the same basis. We explain how we represent a quantum state, and

how each operation can be applied in stabilizer simulations. The goal of this section

is to introduce the reader to the basic concepts behind stabilizer simulation, since this

algorithm is used for the simulations in 6. A more detailed explanation can be found

in [100].

The working principle behind stabilizer simulation lies in the stabilizer formalism.

The core idea is that we can represent a state |ψ〉 by the set of stabilizer operators Si

(see Sec. 3.1.1) that stabilize that state. This, by itself, does not necessarily give us any

computational advantage. The key idea that leads to the efficiency of this algorithm is

the use of group theory, in particular, with the use of the Pauli group Pn for n qubits

(see Eq. 2.9). By including the factors ±1 and ±i to the set of Pauli matrices, we
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ensure that the group is closed under multiplication. We can then generate the general

Pauli group by the n-fold tensor product of Pauli matrices on the different qubits and

the multiplicative factors ±1 and ±i. By restricting our set of operations to Clifford

gates and measurements in the computational basis, the stabilizers that describe the

states in our simulations will remain in this Pauli group. This allows a very compact

representation of the stabilizers, that can be operated with a low computational cost.

In order to simulate the evolution of a given state, we need to compute how the

different stabilizer operators are transformed. Using the properties of stabilizers and

unitary operators, we can easily identify the transformation of the stabilizer operators

after a unitary evolution U :

U |ψ〉 = US |ψ〉 = USU †U |ψ〉 = S′
∣∣ψ′〉 . (4.4)

Thus, we can compute the evolution of a state by updating the stabilizers following the

rule S′ = USU †. For instance, we can prepare the state |01〉 by its stabilizers S1 = Z1

and S2 = −Z2. Then, we can apply a Hadamard gate H1 on the first qubit by changing

the stabilizers as S′1 = H1Z1H
†
1 = X1 and S2 = −H1Z2H

†
1 = −Z2. To illustrate the

algorithm, let us use an example with a two-qubit state. We can describe the state

|00〉 with the stabilizers S1 = Z1 and S2 = Z2. In the following table, we show how

the state evolves under some common Clifford gates both in the bra-ket representation

and the stabilizer representation:

Operation: - H1 C1NOT2 X1

State: |00〉 |00〉+|10〉√
2

|00〉+|11〉√
2

|10〉+|01〉√
2

S1 Z1 X1 X1X2 X1X2

S2 Z2 Z1 Z1Z2 −Z1Z2

The last tool needed in stabilizer simulation is the measurement in the computa-

tional basis. In order to measure an operator M , we need to consider the following two

cases:

1. M commutes with all the stabilizers Si. In this case, the measurement result is

deterministic, since either M or −M is a stabilizer for the state. The result of

the measurement will be +1 or −1, respectively. The state will not change, and

the stabilizers will remain invariant after the measurement.
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2. M anti-commutes with one or more of the stabilizers Si. In this case, the mea-

surement result is assigned at random, and both outcomes m = ±1 occur with

probability 1
2 . The stabilizer that anti-commuted with M is then replaced by

mM , where m is the measurement outcome. If more than one of the stabilizers

anti-commuted with M , we can reduce it to the case in which only one stabilizer

(say, S1) anti-commutes with M by replacing the anti-commuting stabilizers Si

with the stabilizer S1Si, which now commutes with M .

We can illustrate this process using the same two-qubit state |00〉 as example, with

stabilizers S1 = Z1 and S2 = Z2. If we want to measure any of the qubits in the

computational basis, the corresponding measurement operator is Mi, which commutes

with both stabilizers and yields +1, as expected. A more interesting example is the

measurement of a Bell state, like |00〉+|11〉√
2

with stabilizers S1 = X1X2 and S2 = Z1Z2. If

we measure the first qubit in the computational basis, the measurement operator M =

Z1 anti-commutes with the stabilizer S1 and commutes with stabilizer S2. Following the

rule, the result m = ±1 of the measurement will be assigned at random, and stabilizer

S1 will be replaced by the measurement operator. Thus, the set of stabilizers will now

be S1 = mZ1, S2 = Z1Z2. We can also write the second stabilizer as the product of

both of them, leaving the set as S1 = mZ1, S2 = mZ2. This coincides with the result

in bra-ket notation, which would be |00〉 for the +1 measurement, and |11〉 for the −1

measurement.

The main limitation of stabilizer simulation is the restriction of the allowed opera-

tions to the Clifford group and the measurements in the computational basis. Standard

noise models, like the depolarizing or the dephasing channels, can be simulated exactly.

Stabilizer simulations become a fantastic tool in that case, thanks to their low compu-

tational cost. However, error models including more complex operations, like coherent

rotations or amplitude damping, need to be approximated. Consequently, the choice

between stabilizer simulations and state-vector simulations has to be done by taking

into account not only the computational complexity of the task, but also the particu-

lar nature of the model being simulated. This question is explored in more depth in

chapter 6, where we analyze the differences between coherent and incoherent modeling

of errors for a particularly challenging error channel.
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4.3 Other simulation techniques

We have seen two alternative methods to simulate quantum circuits. With the stabilizer

simulation, we can get quick estimates from a simulation, while with the state-vector

simulations we can achieve a higher level of precision, at the cost of computational time.

We use both of these methods in the simulations in chapter 6. There are, however, other

algorithms that allow either a higher precision, or a faster performance in the simulation

of quantum systems. By studying these methods we can better understand the problem

of simulating a quantum circuit. In this section, we will briefly discuss two of these

alternative algorithms focusing on the simulation of noisy quantum circuits: density

matrix simulation and Pauli propagation.

A density matrix describes the statistics of the final state after a noisy quantum

circuit. Thus, the most straightforward and intuitive method to obtain accurate results

on the performance of a quantum circuit is to simulate the evolution of the entire density

matrix directly. Since all the statistics of the different stochastic processes happening

on the noise are included in this density matrix, a single run of this algorithm on a

noisy quantum circuit is enough to obtain complete information on the final state after

a quantum circuit. Using this method, we avoid the need for a Monte Carlo simulation,

where we need to simulate multiple runs of the circuit to obtain precise statistics on

the results, usually requiring even millions of runs for a single point. Recent works,

e.g. [197, 253], have used this method to obtain estimates of the performance of different

QEC protocols.

The cost of density matrix simulations, however, is often higher than the potential

benefit of requiring only a single run to obtain all the results, due to the double ex-

ponential scaling of the density matrix with the number of qubits O(22n). This means

that, despite being a desirable algorithm for systems with a small number of qubits, the

computational cost of a density matrix simulation becomes prohibitive as we increase

the number of qubits. This problem is aggravated by the nature of the QEC circuits

that we study in this thesis, since they require the measurement and reset of ancilla

qubits. A density matrix simulation of these circuits would require an additional qubit

in the register every time an ancilla qubit is measured and reset, effectively increasing

the scaling of the density matrix even further with the length of the circuit. Therefore,
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density matrix simulations were discarded as an option to evaluate the circuits studied

in this thesis.

The second algorithm that we discuss in this section is Pauli propagation [181, 277].

The goal of this algorithm is not to simulate the evolution of a given state after a

quantum circuit. Instead, the focus is on simulating the effective noise operator that

would be applied on a state in addition to the ideal circuit. We can compute this

effective operator by propagating the noise operator through the unitaries of the circuit.

This process can be easily understood with an example. Imagine a circuit composed

of a series of 2 ideal unitaries UC = U2U1. If we assume that a noise operator UN

is applied between U1 and U2, the total unitary of the noisy circuit can be hard to

analyze. However, we can apply the following transformation:

U2UNU1 = (U2UNU
†
2)U2U1 = U ′NUC , (4.5)

which would leave the total evolution as the ideal circuit unitary UC , followed by the

effective noise channel U ′N = U2UNU
†
2 . In this form, it is easier to analyze the effect of

the noise on the final state, as the action of the ideal circuit UC on a given state (usually

the most computationally expensive operation) would only need to be computed once,

and we can apply the effective noise directly to the ideal final state and check if the

noise channel corresponds to a logical error or a correctable error.

If we restrict the error channel to operations within the Clifford group, we can

use the techniques from stabilizer simulations to propagate the effective noise unitary

through the circuit using the simple rules of Clifford operations. In addition, the noise

channel obtained after each simulation is independent of the initial state, as no state

is assumed during this operation. The main highlight of this algorithm lies on its high

performance, as it allows for even faster simulations, since we only need to keep track

of one operator on each simulation (in stabilizer simulations, we need to track the

evolution one stabilizer operator for each qubit in the register). On the other hand, the

disadvantage of this algorithm lies on the restrictions on the noise channels that can be

simulated. Since the algorithm is independent of the initial state, simulating accurately

error channels that depend on the state of the qubits (e.g. amplitude damping) becomes

a more challenging task.
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In this chapter we have seen some of the main algorithms commonly used to simulate

noisy quantum circuits and study their performance. Depending on the complexity of

the noise model, the desired accuracy, and the computational power available, there is

a trade-off between the different methods. This challenge is explored more deeply in

chapter 6, where we use and compare state-vector and stabilizer simulations to estimate

the performance of a QEC protocol on a realistic ion trap device. In the next chapter,

we study these ion trap devices and how they can be applied for quantum computation.
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This chapter, introduces the main concepts required to understand how ion traps

can be used for quantum computation, and we review some of the recent advances in

ion trap technology. The chapter aims to give the reader an overview of the state of

the art of ion trap systems, and how they stand as potential platforms for a viable

implementation of quantum computers. We introduce the leading approaches to ion

traps and the operations included in the ion trap toolkit. These concepts will be relevant

for chapter 6, where we realize a feasibility study of QEC on near-term ion traps.

For more in detail reviews on the topic, an interested reader can find several review

papers [283–290] summarizing both the state of the art of current experiments and

explaining the physics of ion trap systems. We used those review papers as the main

source material for the writing of this chapter. In this work, we focus on qubit-oriented

implementations, although other approaches have also been explored, like the use of

ion traps to realize quantum annealers [291–293].

5.1 Ion traps for quantum computation

Ion traps, as a physical system for the realization of quantum computation, encode

quantum information in the electronic states of ions in e.g. Paul traps or Penning

traps. It is possible to interact, manipulate and measure these states using electro-

magnetic fields. This approach to quantum computation was first proposed by Cirac

and Zoller [294], and since then many groups all over the world are showing successful

experiments in the field. Trapped-ion experiments have already shown high fidelity

single-qubit gates, two-qubit gates and measurements, as well as long coherence times

[90–92, 139–145, 295]. Thus, ion traps stand as one of the most promising platforms for

the implementation of large scale quantum computation, with multiple experiments and

proofs of principle already published, e.g. [27, 34, 147–156, 169, 171, 296]. As of today,

ion traps are one of the platforms that fulfill the five criteria established by DiVincenzo

[87] to assess the viability of a physical implementation of a quantum computer:

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a simple, well defined and

determined state.

3. Long relevant decoherence times, much longer than the gate operation time.
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4. A “universal” set of quantum gates.

5. A qubit-specific measurement capability.

Over the following sections, we will see how each of these points is addressed in

ion traps and the main approaches for the implementation and scalability of ion trap

devices.

5.2 Scalability approaches

The scalability of the platform is one of the critical features required for the imple-

mentation of a large-scale quantum computer. To be precise, a quantum computer

is considered scalable if the number of basic computational elements can be increased

on-demand without suffering a loss in performance and with a reasonable increase in

cost, energy usage, or footprint. In this respect, classical computers have achieved

scalability, which can be seen in how the empirical Moore’s law was followed and the

number of transistors on a single chip has doubled every 18 months.

Currently, there are three leading approaches for the scalability of ion traps: static

string ion traps, shuttling and Penning traps (Fig. 5.1) [88, 149, 288, 297–299]. Here

we summarize the main aspects of each approach:

Figure 5.1: Artistic representation of the different scalability approaches. a)
Static string ion trap: ions are trapped in a single linear string of ions that can be operated
using addressed laser beams. Entangling operations between pairs of ions are available via
coupling with the center of mass (COM) modes. b) Shuttling: an array of traps can be
used to trap multiple ions that can be moved between the different traps. Ions in the same
trap form a Coulomb crystal in which entangling operations can be realized. c) Penning
trap: ions can be trapped in a 2D array, allowing a larger amount of ions to be trapped in
the same trap.
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1. Static string ion trap. In this approach, ions are trapped in a single, linear

Paul trap, using an oscillating electric field to confine the ions in a cylindrical

pseudopotential. An additional static field traps the ions in the axial dimension.

Gates can be applied using addressed laser beams that can be focused on individ-

ual ions. In this trap, ions are arranged in a single long line, and the electronic

levels can be coupled to the levels of oscillation of the center of mass (COM). This

allows the direct implementation of entangling gates between any two ions in the

trap [149, 285, 300–302]. This approach can be scaled by connecting several traps

using e.g. optical coupling [303, 304].

2. Shuttling-based. In this approach, ions are trapped in an array of Paul traps.

Entangling operations can be realized between ions localized in the same in-

teraction zone in the trap. After applying the desired sequence of operations,

these ions can be split and moved between the different sections of the trap via

shuttling, so that entangling operations between different subsets of ions can be

realized [149, 151, 171, 299, 305–310]. To scale the system, there are several ideas,

e.g. having a long linear array with several interaction zones, or connecting mul-

tiple traps in an array [311]. However, entangling operations between qubits in

traps localized at large distances can become increasingly costly, as the ions would

need to be shuttled to the same trap in order to apply an entangling operation.

3. Penning traps. In this approach, ions are trapped by static electric and mag-

netic fields in a small volume of space. Typically, this volume is constrained to

a planar surface, allowing 2D arrays of ions arranged in the same trap, which

presents a big advantage for scaling the system. Gates and measurements can be

realized using laser beams addressing single sites or multiple ions [146, 312–316].

Multiple Penning traps can also be used, shuttling ions between the different

traps [297, 317, 318]. These traps have also been studied for the use of trapped

electrons instead of ions, potentially offering faster operations [319–322]. Penning

traps have been used very successfully for quantum simulation of, e.g. 2D spin

models and quantum annealing [316, 323, 324].

The scalability of ion-trap devices is an active field of research, and multiple other

approaches are being studied [298]. Among the various lines of research, we find:
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• The possibility of trapping ions in a planar arrangement [325].

• The use of electrons for trapped-ion quantum computing [326].

• The use of photons to entangle qubits in distant traps [303, 304, 327–332].

• The use of shuttling or quantum teleportation between different traps [311, 318,

333].

• The use of Rydberg ions [334, 335].

For the rest of the thesis, we focus on the static string ion trap, as this is the

approach for which we focus our feasibility study in Chapter 6, where we describe the

work done for the publication [1].

5.3 Qubits in the ion trap

The qubits of the ion trap are encoded in the electronic states of the ions in the

trap, with two energy levels representing the states |0〉 and |1〉. This pair of states

can come from any two long-lived or meta-stable levels. Depending on the energy

difference between these two states, there are four different types of qubits, each with

its advantages and drawbacks [283]:

1. Zeeman qubits, where the pair of states lie in the same electronic orbital and hy-

perfine level, and are split by an external magnetic field, with transition frequency

on the order of megahertz. Although qubit lifetimes are extremely long, Zeeman

qubits have a high sensitivity to fluctuations in the magnetic fields. Single and

two-qubit gates are typically performed using two-photon stimulated Raman tran-

sitions, as operations using direct RF drive is difficult to spatially focus, leading

to potential crosstalk between neighboring qubits.

2. Hyperfine qubits, with an energy difference on the order of gigahertz. The ground-

state hyperfine levels are generated by the interaction of a non-zero nuclear spin

with the valence electron. These states are some of the most long-lived states

available, with spontaneous emission-limited lifetimes close to the age of the uni-

verse.
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3. Fine structure qubits, which use a pair of states in the D manifold D3/2 and

D5/2. The transition frequency for these qubits is on the order of terahertz, and

the lifetimes are on the order of seconds, mostly due to leakage rather than a

decay to the other qubit state.

4. Optical qubits, with the use of a state in the ground-state manifold and a state in

a metastable D level. As the name suggests, these qubits have optical transitions

on the order of hundreds of terahertz, typically in the visible to near-IR region

of the spectrum. These qubits require a high level of control over the lasers used

in the gates, and can achieve lifetimes on the order of seconds. However, the

transition frequency is an advantage for the scalability of near term experiments

due to the high development of components and integrated technology made for

the red and IR range.

Apart from the electronic levels, the ions in the ion trap also have an energy level

associated with the ion chain’s different modes of motion. These energy levels can be

used to cool the ion chain by using the sideband frequencies.

In this work, we focus on optical qubits, although most of the techniques and results

also apply to the other types of qubit levels.

5.4 Qubit control

A fundamental part of quantum computing is the capability to control the state of

a qubit. This includes the possibility of preparing the qubits in the desired state,

realizing single-qubit operations, entangling operations between multiple qubits, and

measuring qubits on a well-defined basis. As seen in the previous chapters, for universal

quantum computation we need access to a two-qubit entangling gate and the capability

of arbitrary single-qubit rotations, which can be approximated with the use of the

Hadamard gate and the T gate.

This section gives an overview of the ion trap toolkit, including state preparation

and measurement, and the implementation of single and two-qubit gates. For this, we

first need a basic understanding of the energy landscape. The state of an ion in the ion

trap can be described as the tensor product of the electronic state, in which we encode
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Figure 5.2: Energy levels of the ion trap. The state of an ion in the ion trap can
be written as a tensor product of a) the electronic levels, which typically encode the qubit
information, and b) the energy levels of the harmonic oscillator, corresponding to the
oscillation of the ion chain within the ion trap. c) The energy level scheme of a single
trapped ion.

the qubits (|0〉 and |1〉), and the vibrational state of the COM axial mode, which can

be described with a harmonic oscillator [286, 336, 337] (see Fig. 5.2).

Addressed laser beams are used to interact with the ions in the trap. To illustrate

the interaction of the state with the laser, we can use the Hamiltonian of a two-level

system interacting with a quantized harmonic oscillator through laser light. For a single

trapped ion interacting with near-resonant laser light, and after applying the rotating

wave approximation assuming that the laser detuning and Rabi frequency are much

smaller than optical frequencies, as well as the Lamb-Dicke approximation for cold

tightly bound ion strings, we obtain [286, 336]:

H =~Ω{σ+e
−i(∆t−φ) + σ−e

i(∆t−φ)

+ iη(σ+e
−i(∆t−φ) − σ−ei(∆t−φ))(a e−iωtt + a†eiωtt)}. (5.1)

In this equation, a† and a are the creation and destruction operators for the vibra-

tional modes, σ± are the electronic raising and lowering operators. Ω characterizes the

strength of the laser field in terms of the Rabi frequency and ωt is the trap frequency.

φ is the phase of the field with respect to the atomic polarization, ∆ is the laser-atom

detuning, and η is the Lamb-Dicke parameter.
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There are three cases of particular interest with respect to the values of the laser de-

tuning ∆: ∆ = 0 and ∆ = ±ωt. After applying a second rotating wave approximation,

assuming that only one transition is relevant at a time, and discarding time-dependent

terms, we arrive at the following regimes:

1. ∆ = 0 carrier transition, in which the qubit states are changed:

Hcarrier = ~Ω(σ+e
iφ + σ−e

−iφ). (5.2)

2. ∆ = ωt blue sideband transition, in which we simultaneously excite the qubit

state and create a phonon:

H+ = i~Ωη(σ+a
†eiφ − σ−ae−iφ). (5.3)

3. ∆ = −ωt red sideband transition, in which we simultaneously excite the qubit

state and destroy a phonon:

H− = i~Ωη(σ−a
†e−iφ + σ+ae

iφ). (5.4)

With this brief insight about the interactions between laser and ions, we can proceed

to an overview of the main operations in the ion trap (Fig. 5.3).

First, we can prepare states in |0〉 with the help of a metastable excited state |eSP 〉.
By driving the transition between the |1〉 state and the metastable |eSP 〉 state, we can

prepare the state in |0〉, as the population in |eSP 〉 quickly decays to the desired state.

Similarly, we can drive a transition between the |0〉 state and a metastable state

|eM 〉 to measure the state of the qubit. As the decay from |eM 〉 to the |0〉 state emits

photons, driving the transition will allow us to detect these photons, determining the

result of the measurement. In contrast, the driving would not affect the state of an ion

in |1〉, leaving the ion in a so-called dark state.

Single-qubit rotations can be implemented as well through addressed laser beams.

Any linear combination of Pauli X and Y rotations can be achieved by driving Rabi

oscillations between the two-qubit levels with the right phase. Pauli Z rotations can

be achieved in several ways. A straightforward method to effectively implement a Z

rotation of angle φ is to shift all following rotations on that qubit by an angle −φ.
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Figure 5.3: Operations in the ion trap. a) State preparation can be achieved by
driving the transition between the |1〉 state and a metastable state |eSP 〉, which quickly
decays to the |0〉 state. b) Single-qubit operations can be implemented using addressed
laser beams, that can drive Rabi oscillations between |0〉 and |1〉. c) A qubit can be
measured by driving the transition from the |0〉 to a metastable state |eM 〉. The fast decay
of |eM 〉 scatters photons that can be captured with a detector. d) The entangling two-qubit
Mølmer–Sørensen (MS) gate can be implemented using bichromatic laser beams slightly
detuned from the blue and red sidebands [210, 338, 339]. The MS gate can also realize
multi-qubit entangling operations between subsets of ions in the same ion chain.

Figure 5.4: Universal Gate set for the static ion-string approach: By using ad-
dressed laser beams, it is possible to apply arbitrary single-qubit rotations, and entangling
two-qubit Mølmer–Sørensen (MS) gates [210, 338, 339] between any pair of ions.

Alternatively, Z rotations can be decomposed into X and Y rotations. Additionally, a

far detuned laser beam can shift the energy difference between the two states |0〉 and

|1〉 by ∆E = Ω2/∆ through an AC-Stark shift effect.

Finally, two-qubit entangling operations can be achieved by driving the two target

ions with bichromatic laser light slightly detuned from the blue and red sidebands (see

Fig. 5.3). In this way, it is possible to apply entangling operations between any pair of
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ions located on the same ion string [210, 338, 339], which equips the static string ion

trap with complete qubit connectivity by exploiting the common vibrational mode as a

quantum data bus. Although it is possible to realize multi-qubit entangling operations

involving any subset of ions in the trap, this operation is potentially problematic in the

context of FT QEC, as a single fault in one of the ions could propagate to the rest of

the ions involved in the gate. Thus, for the rest of this thesis, we focus only on the

two-qubit MS gate.

This set of gates allow the implementation of the universal set of unitary operations

{H,T,CNOT} [340] by using combinations of single-qubit rotations and the two-qubit

entangling MS gate (Fig. 5.4). Furthermore, for the static-string approach with single-

ion laser addressing, the system has full two-qubit connectivity with this gate set. This

allows for a better connected system of qubits, which benefits the performance, reducing

the number of gates required to reproduce a general circuit [302].
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Chapter 6

Feasibility study of QEC with
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In this chapter, we describe our work on the numerical analysis on the performance

of near-term ion traps for QEC, published in [1]. We realize a feasibility study of the

implementation of recent flag-based protocols for QEC in a linear ion trap, with a

particular focus on the effects and measures against crosstalk errors.

The focus of this work is centered around the simulation of realistic error models,

derived from microscopic models and first principles. We put special attention to the

study of crosstalk errors, an error source that affects neighboring ions during the appli-

cation of quantum gates. We study the impact of this error source, and the efficacy of

suppression techniques based on refocusing pulse sequences. This study aims to find the

regime for which the application of QEC is beneficial for the preservation of the logical

information of a qubit, establishing target values for experimental implementations and

identifying the most relevant problems that should be addressed.

We begin in Sec. 6.1 with an overview of the current context, including previous

works and more recent developments in the field. We also specify the particular details

of the FT protocol used in our simulations and the software platform used to perform

them. Then, Sec. 6.2 describes the different error models that we use to describe the

physical phenomena that affect the qubits on ion trap devices. This section includes

our different models for crosstalk and our modeling for the imperfections on leakage

repumping sequences (a method to bring back to the code space qubits that have leaked

to states outside of the computational space). The damaging effects of crosstalk are

analyzed in Sec. 6.3, where we also study the difference between the coherent and in-

coherent descriptions of crosstalk noise using numerical simulations. In Sec. 6.4, we

describe the refocusing pulse schemes used to suppress crosstalk, and study analyti-

cally the potential reduction of noise that can be achieved. In Sec. 6.5, we show our

numerical results of the feasibility study of FTQEC with ion traps, where we use ex-

tensive numerical simulations to reproduce the effect of our realistic error models and

the capabilities of the FTQEC protocol to recover the initial quantum information.

Finally, the chapter concludes with a summary of our work and an outlook for future

extensions and applications of the work.

On the material presented in this section, I built on error models presented in

previous works [149, 177, 178], contributing to refining the models and realizing the

analysis of the effects of imperfections on the leakage repumping pulse sequence. For

the numerical simulations, I built the code for the simulations using a starting baseline
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written by Ciarán Ryan-Anderson, from which I revised and tested the implementation

of the quantum circuits for the FTQEC protocols. I modified the code that simulates

the error models adding new code for the simulation of the different models of crosstalk,

leakage and leakage repumping. Using that code, I ran the different simulations and

subsequent numerical analysis from which we obtained the results shown in this thesis

and published in [1]. Additionally, I realized the analytical study of the crosstalk

suppression using the refocusing pulse sequence.

6.1 Background

The work presented in this chapter builds on previous works in the field [149, 176–178],

and is oriented towards the existing challenges of near-term quantum devices and the

development and implementation of small scale QEC protocols, addressing different

fronts. Overall, this feasibility study contributes to the development of the field by

presenting a thorough analysis of flag-based color-code QEC performance in ion traps

using the static single-string approach (see chapter 5.2). We use detailed and realistic

error models that take into account various physical noise sources, which we believe

is crucial to provide a realistic estimate of the expected performance of near-term

trapped-ion experiments.

On one side, we study the error-correcting capabilities of a recently proposed QEC

protocol [229], in which the 7-qubit color code [113], also known as the Steane code

[214], is used in combination with a flag-based readout technique to implement the

stabilizer measurement circuits fault tolerantly while minimizing the use of resources.

The details of this protocol were described in the earlier section 3.2.2.1. Flag-based

readout techniques [114, 229, 245, 246] are part of an intense recent activity aiming

for the development of resource-efficient FT schemes and exploit present experimental

capabilities [126, 215, 225, 241, 243, 244]. The implementation of the Steane code, the

smallest instance of color codes, with the capability of a transversal implementation of

the entire group of Clifford gates [113]. This code has proven to be a big focal point of

recent research activity, as shown by recent breakthrough experiments in the realization

of FTQEC [169, 171].

Secondly, we study the protocol from the point of view of ion traps, using realistic

error models and a gate set corresponding to the single-string linear trap approach.
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This choice is motivated by recently demonstrated experimental capabilities [300, 301],

which include the possibility to perform high-fidelity entangling gates addressed on

specific subsets of ions. This leads to effective all-to-all connectivity for two-qubit

entangling gates, as mentioned in chapter 5. Focusing on this platform, we use a

realistic description of the noise based on a microscopic model of the different physical

processes present in ion trap experiments, that builds on previous works [149, 176–178].

In this study, we place a particular focus on the effects of crosstalk, a noise source with

damaging effects reported and studied by recent research [101, 107, 139, 179, 306, 341–

344]. In ion traps, crosstalk noise occurs during the application of quantum gates, and

stems from unwanted interactions between the target ions and the neighboring ions.

In the context of FTQC, crosstalk noise can potentially break the FT character of FT

circuit constructions, as they lead to undesired dynamics that violate either (or both)

of two principles: spatial locality (i.e. gates should only affect the target qubits) and

independence of local operations (i.e. the effect of a gate should be independent of other

gates being applied to the system) [101, 107, 139, 341–343, 345]. This feasibility study,

thus, provides a valuable contribution to the progress of QEC, assessing the viability

of a particular FTQEC protocol on near-term ion trap devices. We use exhaustive

modeling of the different error sources, which we believe is critical to provide realistic

estimations of the expected performance.

Additionally, we study the use of refocusing pulse sequences to suppress the damag-

ing effects of crosstalk gates on two-qubit entangling gates. In recent work, an alterna-

tive technique to minimize the effects of crosstalk has been proposed, based on a smart

rearrangement of the qubits in the QEC circuit in order to minimize the most danger-

ous crosstalk interactions in the implementation of QECCs in the compass-code family

of codes [344]. In general, multiple techniques have been proposed in the literature

to mitigate errors at different levels, like the optimization of the gate implementation

[101–106, 346, 347], the modification of the QEC circuit and codes [114, 229, 245, 246]

and other advanced protocols [107, 108].

In our numerical simulations, we use the open-source software PECOS [181, 280],

developed by Ciarán Ryan-Anderson. We implement incoherent simulations using the

stabilizer simulator included in PECOS, and coherent simulations using the state-vector

simulator from ProjectQ [281, 348] as a backend to PECOS. A more detailed description

of the differences between both simulation procedures can be found in chapter 4. We
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simulate the FTQEC protocol for parallel, flagged stabilizer readout presented by [229]

and described in the background chapter 3.2.2.1.

6.2 Error model

In this section, we explain the complete error model used in our study. We assume a

single ion species, trapped in a linear Paul trap, and operated by addressed laser beams.

In particular, we focus on the 40Ca+ ion as an optical qubit, building on previous models

[178]. The |0〉 state is represented by the ground state
∣∣S1/2,mj = −1/2

〉
and the |1〉

state, by the state
∣∣D5/2,mj = −1/2

〉
.

We consider the universal gate set described in chapter 5.4, and shown in figure

5.4. The set of operations allowed by the static-string ion trap device include single

and two-qubit gates, as well as state preparation and measurements.

Understanding the set of operations used in the quantum circuit is crucial for de-

veloping the realistic error model used in the simulations. There are several noise

sources that can affect the information stored in the qubits in the ion trap. We make

a systematic analysis by subdividing these sources into 3 categories:

1. Idle errors: this category collects the different processes that affect the qubits

over time when no gates are being applied. In particular, this includes dephasing,

amplitude damping and leakage.

2. Gate errors: these errors originate from imperfections in the gates applied to

the qubits. In this category, we include the following sources: single-qubit gates,

two-qubit entangling gates, state preparation, and measurements.

3. Crosstalk: when applying the gates, a fraction of the laser light from the gate

can affect neighboring ions, originating undesired noise on the qubits. This can

happen in every gate, but the effects have a higher impact in the application of

the MS gate, as we discuss in Sec. 6.2.3.

In the following sections, we describe briefly, for each error source, the physical

background, and the model that we use in the simulations. Table 6.1 shows a summary

of the anticipated values for the duration and fidelity of the gates and operations on

trapped ions at the time of the publication of our work [1].
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Operation Anticipated Anticipated
duration Infidelity

Two-qubit MS gate 15µs 2 · 10−4

One-qubit gate 1µs 1 · 10−5

Measurement 30µs 1 · 10−4

Qubit reset 10µs 1 · 10−4

Re-cooling 100µs n̄ < 0.1

Leakage repumping 20µs 2 · 10−4

Table 6.1: Extended trapped-ion QEC toolbox. Description of expected near-term
experimental trapped-ion capabilities for a QCCD approach to FT QEC (Values taken
from Ref. [178]). These values correspond to a particular ion trap setup. Currently, better
values for particular gates have already been achieved in dedicated experiments. For a more
detailed review of the current best fidelities and gate durations, the reader can consult Table
1 in [283].

6.2.1 Idle errors

In this category, we group the three main processes that lead to noise on the idle ions

in the ion trap: dephasing, amplitude damping and leakage. This type of noise affects

the state of the qubits during the time in which no gate is being applied to them.

We consider trapped-ion qubits encoded in an optical qubit transition (e.g. 40Ca+, see

chapter 5.4). To simulate them, we take into account the duration of the gates, shown

in Table 6.1.

Dephasing and amplitude damping are two standard error channels described in

the literature (see chapter 2.3). Dephasing is a process that causes decoherence due to,

e.g. ambient fluctuating magnetic fields or laser frequency drifts, and in this work we

model it as temporally and spatially uncorrelated. Amplitude damping is caused by

the spontaneous decay from the metastable state |1〉 to the ground state |0〉.

The process of leakage is similar to amplitude damping, and occurs when the state

|1〉 decays to the Zeeman sublevel |L〉 =
∣∣S1/2,mj = +1/2

〉
, which lies outside of the

qubit subspace, as opposed to the ground state |0〉 =
∣∣S1/2,mj = −1/2

〉
(see Fig. 6.1).

For the experimental system we study, the decay time T1 = 1/Γ is around 1.1 seconds,

and the fraction of leakage with respect to amplitude damping is Γl = 4
9Γd [178], with

Γ = Γd + Γl. To include leakage and amplitude-damping in the simulations, it is pos-

sible to fully simulate the process using Kraus operators (see chapter 2.3) and using

an auxiliary classical bit to represent if a qubit lies on the computational subspace or

in the leaked state |L〉. This approach has been described in previous works [178],
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where the authors also described an implementation in terms of circuits identities to

simulate the process. This modeling, however, requires the use of coherent simula-

tions (i.e. state-vector simulations, see chapter 4)). To simulate leakage and amplitude

damping efficiently in stabilizer simulations, we need to find a way to approximate

the channel using only Clifford operations. In our simulations, we approximate both

channels using a Clifford approximation that I derived, coded and tested, building on

previous models based on the approach presented in Ref. [268]. To understand it, let

us first describe the exact dynamics of the noise.

Figure 6.1: Spontaneous decay in leakage and amplitude damping. The pro-
cesses of leakage and amplitude damping represent the dynamics of the spontaneous decay
from the state |1〉 to the states |0〉 and |L〉. This evolution can be described with the
Lindblad jump operators Ld and Ll (see Eq. 6.1). The rates of decay for the experimental
system we study follow a ratio of Γl/Γd = 4

9 [178].

Leakage and amplitude damping can be described with a Lindblad master equation

with jump operators Ld = |0〉 〈1| and Ll = |L〉 〈1| and decay rates Γd and Γl (where the

subindex d refers to the amplitude damping decay and the subindex l to the leakage

decay):

ρ̇ =
∑
i

γi(LiρL
†
i −

1
2{L

†
iLi, ρ}) (6.1)

= + Γd
(
|0〉 〈1| ρ |1〉 〈0| − 1

2 {|1〉 〈1| , ρ}
)

(6.2)

+ Γl
(
|L〉 〈1| ρ |1〉 〈L| − 1

2 {|1〉 〈1| , ρ}
)
.

When integrated over a given time t, the dynamics of this process can be described

exactly with a quantum channel with the following Kraus operators:

εd,l(ρ) =


K0 = |0〉 〈0|+ |L〉 〈L|+

√
1− pl − pd |1〉 〈1|

K1 =
√
pd |0〉 〈1|

K2 =
√
pl |L〉 〈1|

, (6.3)
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where pl = Γl
Γ (1 − e−Γt), pd = Γd

Γ (1 − e−Γt). We can see how this channel would

be problematic in stabilizer simulations, as the operator K0 cannot be applied using

Clifford operations. Thus, we need to find an approximation that only requires the

use of unitary gates within the Clifford group and measurement-induced translations

[268]. For this, we split the operator K0 into three operators K ′0, K ′1 and K ′2, leading to

the following Kraus map for the approximated leakage and amplitude damping channel

ε′d,l:

ε′d,l(ρ) =


K ′0 =

√
1− pl − pd 1

K ′1 =
√
pl + pd |0〉 〈0|

K ′2 =
√
pl + pd |L〉 〈L|

K ′3 =
√
pd |0〉 〈1|

K ′4 =
√
pl |L〉 〈1| .

. (6.4)

This approximation can be efficiently implemented in stabilizer simulations, and

works in the following steps. First, we check that the state is not in |0〉 or |L〉 already1.

We found this check to be particularly relevant, as a qubit in the simulation could

otherwise undergo a non-physical transition from |0〉 to |L〉. This problem does not

appear when considering amplitude damping only. Then, we use a random number to

sample the probability distribution of a decay event with p = 1 − exp(−Γ∆t), where

∆t denotes the duration of the time step. If a decay event is observed, then a second

random number determines if the qubit decays to the leaked state |L〉 or to the ground

state |0〉 2.

To evaluate the validity of the approximation, we employ the Hilbert distance,

defined for two states ρA and ρB as

DH(ρA, ρB) = Tr((ρA − ρB)†(ρA − ρB)). (6.5)

With this measure, we checked that for any initial state ρ0 = |ψ〉 〈ψ|, with |ψ〉 being a

state in the computational basis, the following condition was fulfilled:

DH(ρ0, εd,l(ρ0)) ≤ DH(ρ0, ε
′
d,l(ρ0)). (6.6)

1That is, considering the probability of the qubit being in one of those states, a test that we can
only do without collapsing the wavefunction in a simulation.

2According to the electronic branching ratio Γl = 4
9
Γd, that determines the proportion of leakage

and amplitude damping [178].
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This ensures that our model represents an upper bound to the error induced to the

system, and thus remains conservative. A more detailed analysis for the amplitude

damping channel without leakage was presented in [268].

The simulation of leaked qubits involves an additional aspect with respect to other

noise sources: we need to define how a qubit in the leaked state evolves when quantum

gates are applied, and how this affects the rest of the qubits involved in the gates. In

our simulations, we follow a similar procedure as in Ref. [349]. If a qubit falls into

the leaked state, it is projected to the |0〉 state, and a classical variable is used to

record that the qubit has leaked. If leaked qubits are exposed to laser fields that aim

at realizing single-qubit unitaries, they do not apply any evolution to the state, as the

laser fields are off-resonant and do not bring the state back to the computational qubit

subspace. If a leaked qubit would take part in an MS gate, then the lasers are still near-

resonant with the sidebands of the unleaked qubit. However, the unleaked qubit will

evolve in a closed trajectory in phase space equivalent, to leading order, to the identity

operator. Furthermore, when a non-leaked qubit takes part in an MS entangling gate

with a leaked qubit, no additional noise is applied to the non-leaked qubit, as discussed

in [178]. Measurement and state preparation operations reset leaked qubits to the |0〉
state since both operations are followed or realized by optical pumping into |0〉. Thus,

during measurement and state preparation, the value of the classical variable used to

track leaked qubits is modified to indicate that qubits undergoing these operations are

no longer leaked.

However, it might be desirable to bring leaked qubits back to the computational

subspace without having to measure them. Although it is possible to detect the presence

of leakage using quantum non-demolition measurements1 [350, 351], it is desirable to use

a correction protocol that will bring a leaked qubit back to the computational subspace,

but that would leave the state of the qubit unaffected otherwise. The repumping

sequence described in [178] (see Fig. 6.2) fulfills this purpose, and it can reset a leaked

state reset to |0〉 while leaving computational states largely unaffected. This is achieved

by first spectroscopically decoupling (hiding) the population in the excited state by

1We can use an ancilla qubit to detect leakage in a qubit, as the MS gate acts as identity when one
of the qubits is leaked. Thus, we can design a protocol to use this property to detect leakage without
disturbing the state of the qubit [350, 351].
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Figure 6.2: Leakage repumping sequence: a) initial state, where the initial popula-
tions are represented by the coloured circles. b) We apply a π pulse between the states
|1〉 and |L〉, swapping the populations. c) We apply a pulse between the |1〉 state and a
metastable state, that will rapidly decay to either |L〉 or |0〉, with ratios that we assume to
be equal for this simplified model. d) A final π pulse swaps the population in |L〉 to |1〉.

swapping it to the leaked state. Then, we apply a pulse that would bring any population

initially in the leaked state (now occupying the excited state) to a metastable state that

will rapidly decay to either the leaked state or the ground state. Finally, the last pulse

will bring the population in the leaked state, where the initial population in |1〉 was

hidden, back to the excited state. A schematic representation of the process can be

seen in Fig. 6.2.

However, the leakage repumping protocol requires the use of a pulse sequence that

can be faulty and lead to additional errors. In our work [1], we develop a single model

that simulates as a single noise channel the different errors that can occur during the

leakage repumping sequence. In the ideal scenario, the total effect of this pulse sequence

is equivalent to an identity operator if the qubit was not leaked, and both the population

and coherences remain protected. If the qubit had leaked, it would be reinitialized to

either the ground or the excited state. In that case, the next round of QEC is expected

to correct that error. Let us follow the evolution of the initial populations ρ1, ρ0 and

ρL through the ideal pulse sequence in Fig. 6.2:

ρ
(a)
11 = ρ1 → ρ

(b)
11 = ρL → ρ

(c)
11 = 0→ ρ

(d)
11 = ρ1 + ρL/2 (6.7)

ρ
(a)
LL = ρL → ρ

(b)
LL = ρ1 → ρ

(c)
LL = ρ1 + ρL/2→ ρ

(d)
LL = 0 (6.8)

ρ
(a)
00 = ρ0 → ρ

(b)
00 = ρ0 → ρ

(c)
00 = ρ0 + ρL/2→ ρ

(d)
11 = ρ0 + ρL/2 (6.9)
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In practice, the leakage repumping sequence relies on single-qubit pulses that are

susceptible to errors. We can estimate the errors that can happen during the process

and the final result on the qubit by checking the effects of single errors in the pulses.

For this simple model, we consider that each of the single-qubit gates involved in the

sequence can fail with probability p, effectively leaving the populations unchanged.

Assuming p � 1, 1 − p ' 1 and considering only terms up to O(p), the populations

after each pulse are:

ρ
(b)
11 = ρL + pρ1 → ρ

(c)
11 = pρL → ρ

(d)
11 = (1 + p

2)ρ1 + (p+ 1
2)ρL (6.10)

ρ
(b)
LL = ρ1 + pρL → ρ

(c)
LL = 2+p

2 ρ1 + 1+2p
2 ρL → ρ

(d)
LL = p(ρ1 + 3

2ρL) (6.11)

ρ
(b)
00 = ρ0 → ρ

(c)
00 = ρ0 + ρL

2 + p
2ρ1 → ρ

(d)
11 = ρ0 + ρL

2 + p
2ρ1 (6.12)

From these populations, the final ρ
(d)
LL corresponds to leakage errors. In ρ

(d)
11 , the

term in p
2ρ1 corresponds to dephasing, as that population is the result of the incoherent

decay after pulse c. Finally, the term p
2ρ1 in ρ

(d)
00 has the same effect as an amplitude

damping decay. We can summarize the possible outcomes in a single error channel for

the entire sequence that can be easily implemented in the numerical simulations:

1. If the qubit was leaked: we have a probability of twice the single gate error

probability 3p/2 to bring the qubit back to the leaked state.

2. If the qubit was not leaked: then, with probability p it can end in the leaked state,

with p/2 it can suffer amplitude damping and with p/2 it can suffer dephasing.

6.2.2 Operational noise

Under this category, we study the effects of imperfections in the operations applied to

the ions. Most error models on this topic have been widely studied in the literature

and are well known by the scientific community, and have been described in chapter 2.

In addition to the noise channels described in this section, we consider crosstalk noise

in all operations, but these effects are studied in the following section.

1. Single-qubit operations. Single-qubit gates are implemented by addressed

laser beams. The main noise sources are the fluctuations in the laser beam inten-

sity and phase. The fluctuations in the laser beam intensity result in an over or
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6. FEASIBILITY STUDY OF QEC WITH TRAPPED IONS

under rotation in the axis of rotation of the gate (X, Y , Z). The fluctuations on

the phase of the gate affect the X and Y gates, as it changes the axis of rotation

to a combination of both.

In our simulations, we model the errors in all single-qubit gates as a symmetric

depolarizing channel, which is the most widely used model for this type of gates

(see chapter 2.3):

ρ = (1− p)ρ+ p
1

3
(XρX + ZρZ + Y ρY ). (6.13)

2. Two-qubit gates. The entangling, two-qubit MS gate is implemented by ad-

dressed laser beams on the two qubits involved. The MS scheme creates a state-

dependent force by exploiting the laser-ion interaction in the regime of resolved

phonon sidebands. During this process, the qubit-phonon dynamics can affect

the result of the gate [347]. Therefore, the motional state of the ion string is

an additional source of error. This can lead to motional errors, like a resid-

ual phonon-spin entanglement and fluctuations of the Rabi frequencies due to

Debye-Waller (thermal) effects. Other sources of error can affect the qubits, like

dephasing and fluctuations of the laser intensity and phase.

The model used in our simulations is represented by the map DMS(ρ), which

was obtained using a structured microscopic error channel that differs from the

standard depolarizing noise. This model incorporates the effects from different

physical sources and imperfections in the gate, including off-resonant carriers,

intensity and phase fluctuations in the lasers, or Debye-Waller factors and residual

qubit-phonon entanglement for the additional vibrational modes [1, 178]. The

model, developed in [178], was then tailored with parameters matching the ion-

trap experiment and used to obtain the error model for the noisy MS gate. The

map DMS(ρ) admits a Kraus decomposition (see chapter 2.3) after retaining

only the most-likely operators that stem from the process-tomography numerical

reconstruction of the microscopic quantum channel.

ρ→ D(ρ) =
∑
n

KnρK
†
n. (6.14)
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To simulate the noisy MS gate, we apply the ideal unitary, followed by the error

channel described by the Kraus operators Ki obtained from the model:

DMS(ρ) =



K0 =
√

(1− p) 14

K1 =
√
p · 0.80 X1X2

K2 =
√
p · 0.05 Y1

K3 =
√
p · 0.05 Y2

K4 =
√
p · 0.05 X1Z2

K5 =
√
p · 0.05 Z1X2

. (6.15)

3. State preparation and measurement errors. Within the ion-trap toolbox,

the state of a qubit can be prepared or reset to the |0〉 state at any point during

the computation, and can be measured in the computational basis (see chapter 5).

We model the noise channel of these operations by incoherently applying a Pauli

X error after state preparation and before the measurement gates. We refine the

model by including imperfections in the state preparation process that can lead

to a leakage error.

6.2.3 Crosstalk

Crosstalk errors correspond to noise processes caused by a gate that affects qubit that

were not intentionally involved in the gate operation. In ion traps, where gates are ap-

plied by addressed optics and laser beams, crosstalk originates from laser light oriented

to the target qubit affecting its neighbors in the trap. This happens due to the finite

size of the laser spot and the close position of the ions in the trap, and affects both

single and two-qubit gates.

In single-qubit gates, this noise can be significantly suppressed by techniques such

as composite sequences [352] or dynamical decoupling [102], and is thus neglected in

our numerical simulations [1].

During the qubit measurement, crosstalk can also occur due to the scattering of

photons from the measured ions, which can interact with the rest of the spectator

ions in the trap. This unwanted process can be prevented by applying spectroscopic

decoupling pulses to nearby spectator ions [1, 147], such that the scattered photons

become off-resonant (see Fig. 6.3).
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Figure 6.3: Qubit measurement and spectroscopic decoupling. a) During the
measurement, a laser drives a transition from the |0〉 state to a metastable state with a
fast decay. If the |0〉 state is measured, the ion scatters photons in all directions, potentially
affecting the neighboring ions. b) To avoid this crosstalk noise, spectroscopic decoupling
pulses can shift the population in the |0〉 state to a different energy level without a resonant
transition at the frequency of the scattered photons. The original state can be recovered
with another pulse sequence, preserving the original superposition. c) Sketch of the ion
string.

Since the effects of crosstalk on the single-qubit gates and measurement operations

are well under control in the experimental devices and can be effectively neglected, in

this work we focus on the effects of crosstalk that stem from the two-qubit entangling

MS gate, and from here onwards we consider crosstalk exclusively on two-qubit gates.

On two-qubit gates crosstalk plays a much more critical role, as it involves a multi-

qubit operation that can generate entanglement between unwanted pairs of qubits. This

type of noise can be very harmful to the performance of the ion trap, and potentially

break fault tolerance [101, 107, 139, 342, 343, 345]. In our work, we present two different

models for crosstalk errors: the entangling model and the Stark-shift model.

In the entangling crosstalk model, we assume that the leading order effect of

crosstalk is a partial application of the MS gate rotation on every pair of gate and

neighbor ions, which stems from the fact that the neighboring ions would receive a

fraction of the laser amplitude, thus reducing the frequency of the rotation applied by

the gate. This imperfect focusing of the laser beams affects the neighboring ions due to

two main sources. First, the beams will couple to the spectator ions with a residual rel-

ative Rabi frequency. Second, this imperfect gate introduces a collective spin operator

that involves both the target and the neighboring ions with residual light coupling. The

resulting effect is the introduction of a spin-spin interaction involving the neighboring
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ions. For an MS gate rotation of an angle θ (e.g. θ = π/2 for a fully-entangling MS

gate), the leading order effect can be modelled as an XgXn rotation of angle θc between

all pairs of target qubits g and neighbor qubits n. The rotation angle will be a fraction

εCT of the original MS gate rotation θ, and depends on the residual intensity of light In

on the spectator ions, which will be a fraction of the intensity of the gate in the target

ions Ig:

θc = εCT θ ' θ ·

√
In
〈Ig〉

. (6.16)

The details of the microscopic derivation of this model can be found in [1]. The

resulting noise model for an MS gate of angle θ is a unitary evolution that can be

written as:

E(θ)crosstalk =
∏
g∈G,

N∈neig(G)

exp

(
−i εCT

θ

2
XgXN

)
. (6.17)

where G = {i, j} is the set of gate qubits the ideal MS gate acts on, neig(G) is

the set of qubits that are neighbors to i and/or j but do not include i or j, and

εCT = Ωn/Ω depends on the fraction of the light intensity illuminating the spectator

qubits with respect to the intensity addressed to the active qubits. In particular, Ω is

the Rabi frequency for the two-ion MS gate and Ωn is the relative Rabi frequency of

the residual light on the neighboring ions. We neglect any effects of crosstalk beyond

nearest neighbors, as we assume a sufficiently narrow Gaussian profile of the laser light,

with an exponentially suppressed electric field away from the ions.

For a single pair of a gate qubit g and a neighboring qubit n, the crosstalk error

channel is ρ→ Dct
2q(ρ), where Dct

2q(ρ) is a coherent evolution that can be written as

Dct
2q(ρ) = cos2

(
θεCT

2

)
ρ+ sin2

(
θεCT

2

)
XgXn ρ XgXn + i

1

2
sin (θεCT ) [ρ, XgXn].

(6.18)

In order to implement the crosstalk error channel in stabilizer simulations, we need

to find an approximation using only Clifford operations. To this end, we use the Pauli

Twirling Approximation (PTA) method, a simple yet effective technique to obtain an

approximation that can be efficiently simulated within stabilizer simulations [353, 354].

To obtain the PTA of a given process Λ(ρ), we need to apply a twirling transformation.
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The twirling of a process over a set of operators A = {Ak}Kk=1 is defined by the following

operation

Λ̃(ρ) =
1

K

∑
A∈A

A†Λ(AρA†)A, (6.19)

with Λ̃(ρ) being called the twirled process. When twirling over the n-qubit Pauli basis

An = {1, X, Y, Z}⊗n, the twirled process Λ̃(ρ) is diagonal in the Pauli basis,

Λ̃(ρ) =
∑
A∈An

pAAρA
†, (6.20)

where the pA are probabilities that can be directly measured experimentally without

complete process tomography, which makes it practical for efficient model construction

[353, 355]. PTA has proven to be a reliable method to simulate error channels in

noisy, low-distance QEC circuits [354, 356], which we further test in Sec. 6.3 through

numerical simulations.

When applying the twirling transformation of Eq. 6.19 to the coherent crosstalk

model in Eq. 6.18 over the n-qubit Pauli basis An = {1, X, Y, Z}⊗n, the coherent

term gets cancelled, and we obtain the PTA of the crosstalk channel:

D̃ct
2q(ρ) =

{
Kc,0 =

√
1− pc 1,

Kc,1 =
√
pc XgXn.

(6.21)

From this equation, we can define the probability of a single crosstalk event as

pc = sin2(εCT θ/2), an event that leads to a correlated 2-qubit bit-flip error on a pair

of active-neighbor qubits. The approximated channel described by Eq. 6.21 defines a

stochastic version of the crosstalk channel that we can use in stabilizer simulations.

For an ion located in between two gate ions, there will be twice the amount of

residual light on it. This increases the probability of crosstalk effectively by a factor of

4, as it doubles the angle of the rotation [1].

Crosstalk errors of this type are an inherently coherent source of noise, as it applies

an entangling rotation to every pair g-n. Therefore, we model it as a coherent rotation

in the state-vector simulations that simulate the complete wavefunction of the system

using Eq. 6.18. This operation, however, is not allowed in stabilizer simulations, which

requires us to use the alternative description shown in Eq. 6.21. This has some im-

portant implications for the performance of QEC, as coherent crosstalk can interfere
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coherently and build up, leading to an increased effective error rate. The study of the

difference between the coherent and incoherent descriptions is one of the focal points

of this work, and is explored in the subsequent sections of this thesis.

In addition to the entangling crosstalk model, we consider an alternative implemen-

tation of the addressed entangling MS gate motivated by the work from experimental

groups [357]. The main idea is to apply a power imbalance between the intensities of the

bichromatic light fields that couple the red and blue phonon sidebands (see Fig. 5.3).

The difference in intensities leads to an ac-Stark shift that differs for active and specta-

tor ions. With adequate tuning, the gate qubits will experience a two-photon resonance

and evolve following the ideal MS gate dynamics, while the spectator ions will be ef-

fectively exposed to a weak and far off-resonant light. This setting, thus, avoids the

unwanted entangling interactions between spectator and active ions observed in our

first crosstalk model.

In this Stark-shift crosstalk model, the leading-order effect of the residual crosstalk

is an ac-Stark shift on the spectator ions, resulting in small unwanted but systematic

Z-rotations, which can be described as

E
(2)
crosstalk =

∏
n∈neig(G)

exp
(
−i µn

π

4
Zn

)
, (6.22)

where we use the same notations as in Eq. (6.17) and introduce µn as the residual

ac-Stark shift from the off-resonant sidebands that act on the spectator ions due to

crosstalk. The microscopic derivation of this model can be found in [1].

For the stabilizer simulations, we apply the PTA on Eq. 6.22, which leads to a single-

qubit incoherent dephasing channel. The effects on each of the neighboring spectator

qubits using this approximation is described by the Kraus operators

K0 =
√

1− pc1n, K1 =
√
pcZn, (6.23)

with pc = sin2(µnπ/4).

The effects of this crosstalk are less harmful to the computation, as they do not

create entanglement between unintended pairs of qubits. In addition, knowledge about

the exact intensity of this noise channel can allow for a direct compensation using single-

qubit gates. In Sec. 6.5, we study the effects of uncompensated Stark-shift crosstalk on
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the performance of QEC using numerical simulations.

6.3 Adversity of crosstalk on QEC

6.3.1 Coherent vs. incoherent crosstalk

In this section, we study the impact of the entangling crosstalk noise on the performance

of the Steane code, using the FT parallel flagged readout scheme [229] described in

3.2.2.1. For these simulations, we for the moment neglect all other noise sources and

focus on the effects of crosstalk, which avoids unnecessary complications for the study

of the difference between the coherent and incoherent descriptions of crosstalk.

We consider a QEC protocol consisting of individual rounds of state preparation,

stabilizer readout, recovery operation, and final state measurement. A round begins

with a FT state preparation using a single ancilla [178], followed by a round of FT

stabilizer measurement using the previously described flag scheme (see Fig. 6.4). At

this moment, if an error is detected, we realize a second round of stabilizer measurement

without flags. After the stabilizer measurements, we apply a recovery operation based

on the information obtained from the stabilizer measurements, using a lookup table1.

Finally, we measure all the qubits to check if a logical error has happened, applying a

classical round of error correction if needed. A sketch of this protocol can be seen in

Fig. 6.5, which shows the circuits with CNOTs for a more intuitive representation. In

our simulations, we compile the circuits into MS gates, as shown in Fig. 6.4. Notably,

this protocol has been implemented in recent trapped ion experiments [171], which

highlights the relevance of this study.

We simulate multiple iterations of this experiment to estimate the logical error rate

of the circuit for each set of error parameters. To estimate the error rates corresponding

to coherent crosstalk errors, we perform state-vector simulations of the QEC protocol,

using the crosstalk descriptions given in Eq. (6.17). Then, to compare with the inco-

herent version of crosstalk, we run simulations using the same protocol and parameters

with stabilizer simulations, using the incoherent crosstalk model described in Eq. (6.21).

Each run of the QEC protocol results in either a success or failure event. The estimate

for the logical error rate is obtained as the average over many Monte Carlo samples. To

1A precomputed table where we find the best operation according to the syndrome and our knowl-
edge on the noise model, see e.g. Fig. 3.1, Ch. 3.3.
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Figure 6.4: Circuits for parallel syndrome extraction: a) Circuit for the parallel

and FT measurement of the stabilizers S
(1)
x , S

(2)
z and S

(3)
z via ancillae a1, a2 and a3,

respectively, as shown in b). The circuit, presented in [229] with CNOTs, has been compiled
into MS gates with the addition of single-qubit gates, shown in c). A similar circuit can

be used to measure fault tolerantly the stabilizers S
(1)
z , S

(2)
x and S

(3)
x . Using those two

circuits, it is possible to measure all 6 stabilizers with three ancillae in only two sets of
operations. d) Sketch of the order of the qubits in the ion string.

obtain the error bar of each estimate, we use the error from the binomial distribution

err =
√
plog(1− plog)/n. The dependence of the error on the logical error rate plog

implies that a larger number of samples is required for the low plog regime. Therefore,

we use a different number of samples for each point in the figures shown in this chapter,

ranging from 105 to 107 samples per point, until the error bars are smaller than the

markers used in the plots.

The error model from the simulations of Fig. 6.6 contains only crosstalk events. For

the coherent simulations, this implies the application of additional coherent rotations

after every MS gate. Since these events are systematic errors, the only stochastic

process in this simulation is the measuring process, where the wave function is partially

collapsed. The total number of measurement events for the worst case scenario is

only 12 (measuring the 6 stabilisers twice), so it is possible to simulate individually

each measurement outcome path and compute analytically from the wave function the

resulting logical error probability. To compute the total logical error probability, we

can sum the result of each path, weighted by the probability of that measurement
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Figure 6.5: QEC protocol: the QEC round used to estimate the logical error proba-
bility works as follows: first, we initialize the state using a FT protocol (1) using a single
ancilla as a flag [178]. If the flag is raised, the state is discarded, and we restart the pro-
tocol. Then, we begin the syndrome extraction protocol: (2) parallel flagged syndrome

extraction of the stabilizers S
(1)
x , S

(2)
z and S

(3)
z (circuit redrawn from Ref. [229]). If no flag

is raised, we proceed to (3) and measure the stabilizers S
(1)
z , S

(2)
x and S

(3)
x using parallel

flagged readout. If any flag was raised during (2) or (3), we realize a second full round
of stabilizer readout without flags. Using three ancillae, we can measure simultaneously
groups of three stabilizers. Finally, (5) the state is measured. We can apply the recovery
operation corresponding to the syndrome and check if the protocol succeeded or failed. In
the figure, the circuits are shown using CNOT gates. For the simulations, we compiled the
circuits into MS gates to adapt them for the trapped-ion universal gate set. An example
is shown in Fig. 6.4 for the circuit in (2).

combination:

plog =

212∑
j

∏
i

m
(j)
i pL({mi})j) (6.24)

Here, mi is the outcome of a measurement in the ith measurement, {mi}j is a combi-

nation of measurement outcomes (or measurement path) and pL({mi})j) is the logical

error probability for the resulting state after path j. Following this alternative, ex-

haustive sampling of all measurement outcomes, we can accurately estimate the logical

error probability for a given crosstalk value using only 212 simulations, independently

of the crosstalk error amplitude.

The simulations show that the logical error rates for coherent crosstalk have the
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same order of magnitude but are larger than the logical error rates obtained from

incoherent simulations (see Fig. 6.6). To obtain an estimation of the different scaling in

the low crosstalk regime (in particular, for pc < 10−4), we use a linear fit, which shows

a linear scaling of the logical error rate with the crosstalk error rate. Interestingly,

we find that the logical error rate for the coherent version of crosstalk is a factor

of 3.0 ± 0.3 larger than its incoherent counterpart. This analysis indicates that the

incoherent approximation underestimates the expected logical error rates, which leads

to an overestimation of the QEC capabilities.

Figure 6.6: Logical error rates for coherent and incoherent crosstalk errors.
Here, we estimate the logical error rate using a limited error model that includes crosstalk
errors only and set all other error sources to zero. We measure the logical-X (logical-Z)
error rate by simulating a QEC round on the state |+〉L (|0〉L) (colours blue and red in the
figure, respectively). We compare the results of simulating the crosstalk errors coherently
(using state vector simulations and the crosstalk model on Eq. 6.17, solid lines) or inco-
herently (using Pauli propagation simulations and the crosstalk error model on Eq. 6.21,
dashed lines). The results show that the logical error rates for coherent simulations are
worse than the incoherent version by a factor of about 3, but this difference remains ap-
proximately constant as crosstalk increases. The error bars for the points are smaller than
the size of the marker.

6.3.2 Impact of entangling crosstalk noise on QEC performance

Once we have studied the isolated effects of crosstalk and compared its coherent and

incoherent approximations, we can analyze the impact of crosstalk on the performance

of QEC when combined with the rest of the noise sources described in the previous

section. We analyze the performance of the QEC protocol under the full error model
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for different levels of crosstalk, using as control parameter the physical error rate on the

entangling MS gate, which is the leading error rate in experimental implementations.

The logical error rate is estimated by preparing the logical |+〉L = (|0〉L + |1〉L)/
√

2

state, as the performance of the QEC cycle in the absence of crosstalk is worse for the

|+〉L state than for the |0〉L state. Although crosstalk errors in particular have a higher

impact on the |0〉L state, environmental noise has a higher impact on the logical |+〉L,

as this state is more susceptible to dephasing. Therefore, by measuring this state our

simulations remain conservative in this respect when considering the goal of sustaining

long-lived logical qubits.

In Figure 6.7 we show our results for the performance of QEC under our compre-

hensive noise model for near-term, static-string ion trap devices (see section 6.2), using

both coherent and incoherent noise models. Although the main control parameters

are the crosstalk and MS gate error rates, the simulation includes other sources of er-

rors with the following rates: single-qubit errors (ps = 10−5), state preparation and

measurement errors (psp = pm = 10−4), uncorrelated dephasing with coherence time

T2 = 2.2s, amplitude damping and leakage, with a lifetime T1 = 1.1s of the metastable

qubit state |1〉 (see Sec. 6.2.1). The floor levels observed on the logical error rate for low

values of the MS gate error rate are determined by the fixed values of these additional

error sources. These values of the parameters are used in the remaining simulations in

this chapter.

The MS gate error rate pMS is used as the main control parameter because the

MS gate fidelity is currently the bottleneck in experimental realizations. We consider

the QEC protocol to be beneficial if the logical error rate pL < pMS . Thus, we define

the pseudo-threshold as the highest value of pMS for which we find a beneficial QEC

regime.

From the results in Fig. 6.7, we find that a pseudo-threshold can be obtained for an

MS gate error rate below pMS . 2 ·10−3, as long as the crosstalk error rate is controlled

below pc ' 10−6. This MS gate error rate is in reach for current technologies, as

recent works have shown with demonstrations of FT applications of the Steane code

[169, 171] in the following year after the publication of this work. A key observation

in our results is the fact that a pseudo-threshold for beneficial QEC can no longer be

found for crosstalk values above pc ' 10−5, which can be challenging using current
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Figure 6.7: Pseudo-threshold as a function of the entangling-gate error rate
for specific crosstalk errors: We show the results, on a log-log scale, for preparing
and sustaining logical |+〉L state. Note that for low MS gate errors, the curves flatten.
This is because, for each line, only the MS gate errors vary and other error rates such
as crosstalk, idle, single-qubit gate, initialization, and measurement errors are held fixed.
From the results of this plot, we see that if the crosstalk error rate is at 10−6 or better, then
a pseudo-threshold exists. Furthermore, a pseudo-threshold of approximately 2.7 × 10−3

can be obtained. In addition to the MS gate errors, the simulation includes other sources
of errors with the following rates: single-qubit errors (ps = 10−5), state preparation and
measurement errors (psp = pm = 10−4), uncorrelated dephasing with coherence time T2 =
2.2s, amplitude damping and leakage, with a lifetime T1 = 1.1s of the metastable qubit
state |1〉. These parameters are used in the remaining simulations in the paper. The details
on these error models are described in Section 6.2. The floor levels of the logical error rate
observed for low MS gate error rates stem from the damaging effects of these additional
error sources. The error bars for the points are smaller than the size of the marker.

optical addressing techniques. The shuttling-based approach (see chapter 5.2) avoids

this problem by placing the target ions in separated ion-crystals, where entangling

operations can be applied without affecting neighboring ions. In turn, this approach

is more limited by idle errors, as the ions spend more idle time in between operations,

since they need to be moved around to be operated. Recent work [171] implemented the

QEC protocol discussed in this chapter successfully using the shuttling-based approach.

This difficulty motivates the use of error suppression techniques to reduce the levels

of crosstalk. In Sec. 6.3.3, we study the use of the alternative implementation of the

MS gate (using power imbalance to change the nature of crosstalk, as described in

Eq. (6.22) and [1]), and the impact of the different resulting Stark-shift crosstalk on

the performance of QEC. In Sec. 6.4, we study the use of refocusing pulse sequences to

93



6. FEASIBILITY STUDY OF QEC WITH TRAPPED IONS

suppress the levels of crosstalk by several orders of magnitude and allow the scheme to

achieve a beneficial QEC regime.

Another interesting remark is the fact that the regime of beneficial QEC vanishes

when the MS gate error rate is reduced further (e.g. below 10−4). In that limit, the

other noise sources that are kept constant in this single-parameter model would be

the dominant factors preventing the demonstration of quantum logic advantage, which

leads to the plateau-like levelling of the logical error rate. Similar behavior has been

observed in previous works, e.g. [344]. The choice of the metric to evaluate the benefits

of QEC is an open question that makes it difficult to define a single threshold value

for multi-parameter noise models, and different metrics to quantify the performance of

QEC have also been studied in the literature [149, 178]. Some examples of different

metrics are the use of the memory time as control variable (which serves to study how

the fidelity can be preserved over time, taking into account the duration of the gates

and some waiting time) or the use of a noise parameter λ that adjusts the rates of the

different noise sources proportionally (e.g. the single-qubit gate error rate as ps = λ/10,

and the two-qubit gate error rate as pMS = λ).

6.3.3 Impact of Stark-shift crosstalk noise on QEC performance

In this section, we study the effects of crosstalk using the Stark-shift crosstalk model

explained in Sec. 6.2, corresponding to the application of a power imbalance between

the intensities of the red and blue sideband transitions to suppress the entangling

interactions of crosstalk.

As in the previous case, we simulate the performance of the same QEC protocol

with crosstalk errors, both as coherent Z rotations or as incoherent phase errors on

neighboring ions. Fig. 6.8 shows the results of our simulations, where we see that a

pseudo-threshold for beneficial QEC can be found for crosstalk values on the order of

10−5 for coherent crosstalk, and on the order of 10−6 for incoherent crosstalk.

Although we do not study the compensation of these new crosstalk rotations in this

work, it could be possible to compensate it directly using single-qubit gates, which can

be performed with high fidelity [358]. The reason is that the systematic Z rotations

originated from this crosstalk model do not create any entanglement. The crucial

question for this approach lies in the balance between the fidelity of the single-qubit

gates and the magnitude of the crosstalk errors, since a direct compensation of crosstalk
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Figure 6.8: Pseudo-threshold for power-imbalanced suppression of crosstalk: A
log-log graph comparison of the logical error rates for different values of crosstalk, using the
alternative crosstalk model with ac-Stark shifts on the neighboring ions. Here we determine
the pseudo-threshold for the Steane code using parallel measurements of stabilizers as we
vary MS gate and crosstalk error rates. We show the results for preparing a logical |+〉
state. The additional noise sources modeled in the simulation using the same parameters
as described in Fig. 6.7. The error bars for the points are smaller than the size of the
marker.

in this way might have a more damaging effect than crosstalk itself, depending on the

relative magnitude of both error sources.

A more relevant approach to compensate this type of crosstalk requires the precise

measurement of its magnitude. Once it has been evaluated, it is possible to compensate

for these rotations by adjusting the phases (rotation and entangling axes) of subsequent

gate operations.

6.4 Active suppression of crosstalk with refocusing pulse

sequences

As shown in the previous section, the impact of crosstalk on the performance of the

QEC can be, by itself, sufficient to negate the benefits of the use of the QEC code.

Crosstalk values achievable by realistic experimental conditions lie outside of the regime

where a pseudo-threshold exists, and thus outside of the beneficial QEC region.

However, it is also possible to lower the effective value of the crosstalk rate by

applying techniques at different levels of computation (e.g. by optimizing the ordering
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of the ions in the trap to minimize the most dangerous crosstalk interactions [344]). In

particular, we focus on a gate-level technique to suppress crosstalk: refocusing pulse

sequences [20, 108, 359]. This technique will allow the control of crosstalk down to the

levels of fidelity of the well-controlled single-qubit gates.

6.4.1 Analytical suppression of residual noise after refocusing

This section begins with an analytical study of the refocusing scheme and its ideal

behavior. After that, we analyze how the presence of errors in the gates used in the

refocusing pulse sequence affect the protocol’s crosstalk suppression capabilities. Fi-

nally, we support these results with numerical simulations, showing the performance

of the flag-based QEC protocol including crosstalk errors and the use of the refocus-

ing scheme. With this numerical analysis, we aim to provide valuable insight into the

expected performance of future experiments on the path towards the realization of a

functional logical qubit with beneficial QEC.

The idea behind the refocusing pulse sequence technique is to take advantage of the

coherent nature of crosstalk to cancel the unwanted rotation, in an approach similar to

the pulse sequences used in [20, 359] to remove unwanted couplings. When we apply

a MS gate of angle φ on the qubits, there will be an XGXN rotation of a fraction of

that angle εCTφ applied to every pair of gate and neighbor due to the crosstalk effect.

Since it is a coherent rotation, we can use the following property to our advantage:

Z2e
iφX1X2Z2 = e−iφX1X2 . (6.25)

If we want to apply an MS gate of angle φ, we subdivide the gate in two half

rotations U(φ2 ). Before and after applying the second half-MS gate, we apply a Z

rotation on each one of the neighboring ions. This changes the sign of all the unwanted

crosstalk rotations without altering the interaction between the two gate ions, and these

unwanted rotations will then cancel with the previous crosstalk rotation. We can see a

simplified sketch of this interaction in Fig. 6.9.

In the ideal case, this simple sequence cancels all the crosstalk interactions per-

fectly. Nevertheless, the experimental realization of this scheme involves the use of

gates that are intrinsically faulty. Therefore, we need to realize a closer analysis to ob-
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Figure 6.9: Graphical example of the behavior of the refocusing scheme. We
want to apply the rotation U12(φ), which for our case will be the MS gate. By subdividing
the gate in two half rotations U(φ2 ), and applying a Z3 rotation on the unwanted qubit 3,
we can cancel the rotations applied between qubit 3 and its neighbors. The end result is
our desired gate. Similar graph representations have been used previously in e.g. [360, 361].

tain the effective error channel for the implementation of a MS gate using the refocusing

sequence.

To estimate the remaining uncompensated errors in the refocusing scheme, we con-

sider a simple noise model, in which the single-qubit refocusing pulses suffer stochastic

amplitude or phase fluctuations. These fluctuations produce stochastic rotations in

any the three Pauli axes, which we can model using standard depolarising noise (see

Eq. 2.21). These dynamics of the imperfections in the π-pulses used for the refocusing

can be written as a master equation:

ρ̇ '
3∑
i=1

1
3

〈
ε2Z
〉(

σ(i)
n ρσ(i)

n

† − 1

2

{
σ(i)†

nσ
(i)
n , ρ

})
(6.26)

where εZ is a stochastic variable with probability distribution p(εZ), σ
(i)
n are the

Pauli matrices applied on qubit n, and ρ denotes the density operator of the system.

This can be associated with a single-qubit error rate p = 〈εZ〉2 = s2
Z , assuming that

the distribution of the errors in the single-qubit Z gates follows a Gaussian distribution

with standard deviation sZ , and there are no systematic errors

∫
dεZp(εZ)εZ = 0. (6.27)

The resulting map of each noisy Z gate is then

εZ(ρ) = (1− p)ZρZ + p1
3(XρX + Y ρY + 1ρ1). (6.28)

As for the crosstalk, we consider the following notation for the crosstalk unitary
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after one half MS gate and after a full MS gate to simplify the calculations:

UCT/2 = e−i
θ
2 εCTXGXN (6.29)

UCT = e−iθεCTXGXN (6.30)

To analyze the evolution of the system, we can then compute the Kraus decompo-

sition of the noise channel by integrating the dynamics of the system, and averaging

over the stochastic noise. We consider the state at different steps of the refocusing

procedure: 0) initial state, 1) state after the first half-MS gate, 2) state after the first

refocusing pulse, 3) state after the second half-MS gate, 4) final state after the last

refocusing pulse (see Fig. 6.10).

Figure 6.10: Schematic view of the refocusing pulse sequence. The time steps
one to four represent the different points used as reference during the calculations in the
main text for ρ1, ρ2, ρ3 and ρ4.

The state of the system at each point in the circuit can be described by applying

each noisy circuit element successively:

ρ1 = UCT/2ρ0U
†
CT/2 (6.31)

ρ2 = (1− p)Zρ1Z + p1
3(Xρ1X + Y ρ1Y + 1ρ11) (6.32)

ρ3 = UCT/2ρ2U
†
CT/2 (6.33)

ρ4 = (1− p)Zρ3Z + p1
3(Xρ3X + Y ρ3Y + 1ρ31). (6.34)

The final state ρ4 can be obtained as a function of the initial state ρ0 by solving

the system of equations. From that expression, we can obtain the Kraus operators that

represent the evolution of the noisy refocusing pulse sequence. Then, we can obtain

the leading order evolution of the system in terms of the single qubit error rate p:

98



6.4 Active suppression of crosstalk with refocusing pulse sequences

O(1) :√
(1− p)2ZUCT/2ZUCT/2 =

√
(1− p)21 (6.35)

O(p) :√
p(1− p)/3ZUCT/21UCT/2 =

√
p(1− p)/3ZUCT (6.36)√

p(1− p)/3ZUCT/2XUCT/2 =
√
p(1− p)/3 iY UCT (6.37)√

p(1− p)/3ZUCT/2Y UCT/2 =
√
p(1− p)/3 (−i)X (6.38)√

p(1− p)/31UCT/2ZUCT/2 =
√
p(1− p)/3Z (6.39)√

p(1− p)/3XUCT/2ZUCT/2 =
√
p(1− p)/3 (−i)Y (6.40)√

p(1− p)/3Y UCT/2ZUCT/2 =
√
p(1− p)/3 iX (6.41)

O(p2) :√
p2/91UCT/21UCT/2 =

√
p2/9UCT (6.42)√

p2/91UCT/2XUCT/2 =
√
p2/9XUCT (6.43)√

p2/91UCT/2Y UCT/2 =
√
p2/9Y UCT (6.44)√

p2/9XUCT/21UCT/2 =
√
p2/9XUCT (6.45)√

p2/9XUCT/2XUCT/2 =
√
p2/9UCT (6.46)√

p2/9XUCT/2Y UCT/2 =
√
p2/9Z (6.47)√

p2/9Y UCT/21UCT/2 =
√
p2/9Y UCT (6.48)√

p2/9Y UCT/2XUCT/2 =
√
p2/9ZUCT (6.49)√

p2/9Y UCT/2Y UCT/2 =
√
p2/91. (6.50)

We find that the resulting dynamics can be described by incoherent dynamics, for

which the order O(p) Kraus operators of the residual errors after the refocusing pulse
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sequence are

K0 =
√

1− 2p1n, K3 =

√
2
p

3
Xn, (6.51)

K1 =

√
p

3
ZnUCT , K4 =

√
p

3
Zn,

K2 =

√
p

3
YnUCT K5 =

√
p

3
Yn.

Here, the operators K3 to K5 correspond to standard depolarising error channel. The

operators K1 and K2 correspond to two-body jump operators describing residual in-

coherent crosstalk between gate and spectator ions. Crucially, the error rate of these

residual errors, presidualCT = p/3, is strongly suppressed by the single-qubit error rate p.

From this analysis, we can conclude that the application of the refocusing scheme is

expected to suppress the effects of the crosstalk noise by a factor that depends on the

single-qubit error rate. Thus, the application of the protocol provides a powerful tool

to reach crosstalk error rates with a negligible influence on the QEC performance of the

logical qubit when compared with other present noise sources. To support this claim, we

realize numerical simulations of the QEC protocol, implementing the refocusing pulse

sequence for every MS gate. The results of this analysis are shown in the following

section.

6.5 Numerical analysis of the performance of QEC with

active crosstalk suppression

In order to test the potential for crosstalk suppression provided by the refocusing scheme

in a practical setting, we implement the refocusing pulse sequence in every MS gate

realized during the flag-based, color code QEC protocol studied during this chapter,

proposed by [229], and described in the preceding sections (see Fig. 6.5).

As discussed in Sec. 6.2, we use an extensive error model that aims to describe

realistically all the error sources present in a near-term, static-string ion trap. For the

simulations shown in Fig. 6.11, we use state-vector simulations and we focus on the

coherent modeling of the entangling crosstalk error model. In the figure, we overlap

the results from the previous simulations of coherent, non-suppressed crosstalk errors

for several crosstalk rates from pc = 10−6 to pc = 10−2; and the logical error rate
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Figure 6.11: Pseudo-threshold for active suppression of crosstalk: Here we de-
termine the pseudo-threshold for the Steane code using parallel measurements of stabilizers
and introducing the refocusing scheme in the simulations. We overlap the results of the
previous simulations, where we do not apply any crosstalk suppression technique. From
the results on this plot, we see that at least four orders of magnitude reduction in the
effect of crosstalk. The additional noise sources modeled in the simulations use the same
parameters as described in Fig. 6.7. The error bars for the points are smaller than the size
of the marker.

obtained with active crosstalk suppression using the refocusing pulse sequence and a

crosstalk error rate of pc = 10−2. Our results show how the refocusing pulse sequence

can significantly suppress the damaging crosstalk effects, achieving a reduction of the

crosstalk effects by at least four orders of magnitude. This result is consistent with the

results from the analytical study shown in the previous section. With the use of the

refocusing sequence, crosstalk levels are suppressed down to a level at which we find

a clear window of beneficial QEC, with a significant margin for MS gate fidelities of

10−3, which are within reach of current ion trap experiments. Therefore, this analysis

shows a clear path towards the realization of a functional logical qubit in the regime of

beneficial QEC for the static-string ion-trap approach.

Notably, recent experiments posterior to the publication of this work have success-

fully shown the implementation of the Steane code in ion traps [169, 171]. In [171],

the authors show the successful realization of repeated rounds of QEC in a ten qubit

shuttling-based ion trap device. They implement the parallel flag-based readout studied

in this work [229], realizing the procedure repeatedly to maintain coherence. With the

current performance of their device, they nearly achieve the beneficial QEC regime.
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They support the experiment with numerical simulations, from which they estimate

that the pseudo-threshold can be within reach if the two-qubit gate error rate is reduced

by approximately a factor of 3, and the dephasing and leakage rates are substantially

reduced. On the other hand, in [169] the authors show the first FT implementation of

a universal sate of gates on encoded qubits. This includes the transversal application

of single and two-qubit gates (CNOT), but also the implementation of the non-Clifford

T gate, for which they implement a FT protocol for magic state preparation and in-

jection. In their experiment, they use the same static-string ion trap approach and

the parallel flag-based readout [229] studied in this chapter. Remarkably, the authors

report the success of the FT protocols, as they observe an improvement in performance

of the encoded qubits with FT protocols, despite the increase in gate-count and com-

plexity required to ensure fault tolerance. As in the previous study, they support their

work with numerical simulations, with which they estimate closely the performance

of their experimental results. Both of these studies highlight the utility of numerical

simulations as a tool to support the experimental efforts.

6.6 Summary and outlook

In this chapter of the thesis, we have presented the results of the feasibility study of

QEC in ion traps published in Ref. [1]. In this work, we analyze the performance of

a recently proposed flag-based stabilizer readout scheme [229], by simulating its appli-

cation on a near-term, single-string ion trap device equipped with a gate set including

recently demonstrated experimental capabilities [300, 301]. We use an exhaustive noise

model that aims to reproduce the realistic behavior of the quantum device, based on

microscopic modeling of the different error sources, that builds over previous works fo-

cused on a shuttling-based approach to ion traps [149, 178]. During this study, we put

a particular emphasis on the study of crosstalk noise, a notably damaging error source

that has been reported and studied by recent works (e.g. [101, 107, 139, 179, 306, 341–

344]) that has the potential to break the FT properties of quantum circuit construc-

tions. Beyond simulating its impact on the performance of QEC, we study the use of a

crosstalk-suppression protocol and prove, both analytically and numerically, its efficacy

as a tool to reduce crosstalk noise down to the level where its effects can be neglected

when compared with other error sources present in the device.
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The results from our study yield a very positive message, as they show that the use

of the refocusing scheme can allow near-term experimental devices to reach a beneficial

QEC regime with this flag-based QEC protocol. In fact, recent studies posterior to the

publication of our work have successfully implemented in ion traps the simultaneous

flag-based stabilizer readout proposed in [229]. In [169], they used the static-string ion

trap approach to realize the first demonstration of a FT implementation of a universal

set of gates on encoded qubits, including two-qubit operations between encoded qubits

and the FT implementation of a non-Clifford gate using magic state injection. Using

FT protocols (including the FT QEC readout scheme studied in this work), they show

an improved in performance of the encoded qubits with respect to a non-FT implemen-

tation. In [171], they implemented repeated rounds of FT QEC in a shuttling-based ion

trap device, with a performance close to the beneficial QEC regime. Both works rely

on numerical simulations to support their experimental results, which highlights the

relevance of simulations in the development of QEC, both to predict the behavior of a

protocol, and to estimate the best route to improve the performance of the experiments.

With regards to the Stark-shift crosstalk model (Sec. 6.3.3), we find that this error

source has a reduced impact on the performance of QEC. Our results indicate that a

pseudo-threshold can be found for the anticipated experimental values, even without

the use of further suppression techniques.

Looking forward, the realization of further feasibility studies is an active field of re-

search, that must attempt to stand always several steps beyond the current experimen-

tal capabilities, identifying potential problems and interesting targets for the physical

realization. Thus, it would be interesting to expand the study on several fronts: the

study of different codes and protocols (e.g. higher distance color codes and surface

codes, as well as different approaches to the FT implementation of quantum circuits),

alternative physical platforms (e.g. shuttling-based ion traps, superconducting qubits

or Rydberg atoms), more refined error models accounting for the particularities of each

platform, and the development of the numerical techniques utilized in the simulation

of quantum circuits.

The improvement of the numerical techniques, particularly the incoherent simula-

tions, can also be a relevant line of research to explore. Incoherent simulations are a

computational tool that allows the execution of quick estimations of the performance

of a circuit, with a computational cost being several orders of magnitude faster than
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the state vector simulations. Although not as general as the state vector simulations

(which are not restricted to Clifford operations), they can provide invaluable help in

the development of the field, as shown e.g. in [169]. As the number of qubits of the

experimental platforms increases, the use of incoherent simulations such as stabilizer

simulations or Pauli propagation [277] can become crucial in the development of quan-

tum computation and QEC. Furthermore, recent works are studying the possibility of

realizing stabilizer simulations of circuits with a few non-Clifford gates [182], which

could significantly improve the range of application of stabilizer simulations.
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Chapter 7

Union-find decoder for color

codes
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In this chapter, we explore an alternative decoding algorithm, based on the work

presented originally by Delfosse and Nickerson [193]. First, in section 7.1.1 we sum-

marize the main steps of the original algorithm on its application to the surface code.

Then, in section 7.2 we present our adaptation of the algorithm for color codes, and in

section 7.3 we analyze its performance.

On the work presented in this section, I developed the algorithm for the adapted

version of the decoder described in 7.2, as well as the numerical implementation of the

algorithm. I realized the numerical analysis to estimate the threshold of the algorithm,

as well as the analysis of the percolation of the clusters (Sec. 7.3). I also wrote the

code for my implementation of the original decoder, that I used to benchmark its

performance in Sec. 7.1.2.

7.1 Background

The union-find decoding algorithm was first presented in [193]. This algorithm ap-

peared as a highly efficient decoding algorithm valid both for surface codes and color

codes. With an almost-linear O(Nα(N)) complexity1 in the number of qubits N , this

algorithm stands out as one of the fastest decoders for topological codes, improving over

the polynomial order (between O(N2.5) and O(N7), depending on the implementation)

of the Minimum Weight Perfect Matching (MWPM) algorithm [185, 247–249].

The basis of the almost-linear efficiency of the union-find decoder’s algorithm lies

in the possibility of finding and merging disjoint sets in order O(Nα(N)) [362]. Since

the α(N), the inverse of Ackermann’s function, has a extremely slow growth in com-

putational complexity, the algorithm is usually labelled as almost-linear. The second

building block for the algorithm is the peeling decoder [194], which solves the reduced

problem of decoding the surface code for the erasure channel. The peeling decoder

assumes knowledge of the positions where an error might have happened, and produces

a maximum likelihood correction in linear time O(N).

The working principle of the union-find decoder relies on a property of the toric

surface code: for a given region of the lattice with an odd number of stabilizer exci-

tations, there exists at least one chain of errors that exits the region. The strategy of

1α(N) is the inverse of the Ackermann’s function, a very slowly growing function that is smaller
than 3 for all practical purposes [193, 362]
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the algorithm is to define regions of qubits with potential errors around each excitation

in the lattice, and iteratively expand these regions, also called clusters, by including

the neighboring qubits and stabilizers. This process eventually leads to clusters merg-

ing together. If the number of excitations of the resulting cluster is odd, we need to

keep expanding it, as we know that there is at least one chain of errors that exits the

cluster. If the number of excitations within a cluster is even, then we know that a

correction can be found wholly within the cluster, and we stop expanding it. Once the

number of excitations within all clusters is even, we can use the peeling decoder to find

a correction, as the clusters define the positions where errors might have happened.

This property of surface codes, however, does not apply to color codes. An error

in a single qubit generates three excitations, and chains of errors can generate complex

patterns of excitations in the color code (an example can be found in Fig. 3.7). The

solution proposed by the authors in [193] relies on projecting the color code into three

surface codes [192]. In this chapter, we present an alternative version of the union-find

decoder that relies on the particular properties of the 3-colored excitations of the color

code. Clusters grow around excitations until they reach an even parity in all three

colors, ensuring that it is possible to find a valid correction within the clusters.

The code capacity threshold (see Sec. 3.2) for the Union-find decoder on surface

codes is 9.9% [193]. This threshold proves slightly lower than the 10.3% achieved with

the standard MWPM algorithm. There is, therefore, a trade off between high threshold

and low computational complexity when comparing these algorithms. The same trend

remains true for phenomenological noise, as the Union-find decoder reaches 2.6%, as

opposed to the 2.9% found using MWPM.

On color codes, the threshold of the Union-find algorithm as described in [193]

is 8.4%, which is higher than the 7.8% obtained by [189] using the rescaling decoder

studied in chapter 8. However, in a more recent publication it has been shown that

a threshold of 10.2% can be achieved efficiently in color codes using the Restriction

decoder [196]. This algorithm decodes the color code by mapping it to two surface

codes (rather than the three copies required for the previous algorithms) and applying

MWPM on each of them. The bottleneck of the efficiency of the Restriction decoder

is the MWPM algorithm. This can be improved by substituting the MWPM step

with the Union Find algorithm, which gives the Restriction decoder the almost-linear

computational complexity, but reduces the threshold to 9.8%.
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In this chapter, we present an alternative decoder for color codes, based on the ideas

of the union-find decoder. Our decoder achieves a threshold of 6% for code capacity

noise. Furthermore, we analyze the behavior of cluster growth near the threshold

by studying the percolation of clusters through the lattice, which provides a deeper

understanding of the decoder.

7.1.1 Union find decoder for surface codes

In this section, we go through the details on the implementation of the Union Find

decoder, as described in [193]. We explain how each of the steps works and how they

are implemented to achieve the almost linear efficiency. Our variation of the decoder

builds on these main steps, and is explained in section 7.2. Although the original

algorithm was described for an error channel consisting on erasure and Pauli errors, we

focus only on Pauli errors and neglect erasure during the rest of the chapter.

In section 7.1.1.1 we explain the process of cluster growth and the details on how to

merge the clusters efficiently, with an almost-linear computational complexity. Then,

in section 7.1.1.2 we explain the peeling decoder algorithm, that finds a valid correction

within a cluster by creating a spanning tree and cutting the leaves of the tree.

7.1.1.1 Growing and merging clusters

In this algorithm, we consider a node to be either a stabilizer or a qubit. In the surface

codes, these are represented as vertices and edges of the square lattice, respectively (we

consider only the SX stabilizers). For simplicity, we consider only phase flip errors Z,

which trigger the SX stabilizers. The application of the algorithm for the SZ stabilizers,

located in the square faces, is analogous. The connection between a stabilizer and a

neighboring qubit is called a half edge (see Fig. 7.1).

A cluster is defined as a set of connected nodes, and its parity corresponds to the

binary sum of the parity of the stabilizers belonging to the cluster. The parity of a

cluster takes the values 0 or 1, which we refer to as even or odd, respectively. The

boundary of the cluster is the set of nodes that belong to the cluster, but that have at

least one incident half edge that connects to a node that does not belong to the cluster.

During a step of cluster growth, we add to the cluster the nodes that have a half edge

that connects to the boundary of the cluster. We also refer to this step as growing the

cluster by half an edge.
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After a step of cluster growth, two clusters Ci, Cj , can become connected, i.e. there

is at least one node that belongs to both clusters. When this happens, we define a

new cluster C̃ corresponding to the set of nodes that belong to any of the two clusters

or to both. This new cluster C̃ replaces the previous clusters Ci and Cj , which are

considered to be merged into C̃ (see Fig. 7.1).

The process of cluster growth is the main step of the Union-find decoder. The goal

of this step is to find a minimal set of qubits within which a correction can be found.

The algorithm finds this set of qubits by growing clusters around the excitations in the

syndrome. Clusters with odd parity will grow and merge with others until the parity

within each cluster is even. In the toric surface code, this condition ensures that a

valid correction can be found within the clusters, since stabilizer excitations are always

generated in pairs. This means that if a cluster has an odd number of excitations, there

exists a chain of errors leading outside the cluster. If a cluster has an even number of

excitations, it is possible to find a configuration of errors located on qubits belonging to

the cluster that generates the pattern of excitations found in the stabilizers belonging

to the cluster. Although the basic idea of this algorithm is simple, realizing the growth

and merging of the clusters in an efficient manner requires a well thought organization of

the data structures. In this section we explain the details of this organization, and other

important steps to maximize the performance of the decoder, as exposed originally in

[193].

The algorithm starts by creating a cluster on each excited stabilizer, each cluster

containing a single node, and storing all odd clusters in a queue. As all of them contain

exactly one excitation, all the clusters start with an odd parity. Then, the algorithm

will systematically grow and merge the odd clusters until all of them have an even

parity. In order to find if two clusters have merged after a step of cluster growth, we

define the fusion list, a list that contains the nodes that were added to the cluster

during the last step of cluster growth. We use the fusion list as an intermediate step,

first finding all the nodes that will be added to the cluster and adding them to this list,

and then checking if any of these nodes already belongs to a different cluster, in which

case both clusters will be merged. This process can be summarized in the following

steps, that are applied repeatedly until all clusters have an even parity:

1. Pick the odd-cluster C with the smallest boundary.
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Figure 7.1: Example of cluster growth in the surface code lattice. On each
cluster growth step, one cluster with odd parity will increase its size by half an edge
around the boundary. The cluster that grows on each step is underlined with a thicker
line. Clusters with even parity are marked with a green line. At step 0, we show the
original error configuration: phase errors Z on five qubits, that generate four stabilizer
excitations, marked in red.

2. Find the nodes that connect to the boundary of C and add them to the fusion

list.

3. For each node in the fusion list, we find if the node is shared with a different
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cluster, in which case we merge both clusters. Otherwise, we add the node to the

cluster, and update the boundary of C.

4. After updating the cluster C and its boundary, if the parity is still odd we update

the queue with odd clusters.

5. Stop if there are no remaining clusters with odd parity.

Every time we grow an odd-cluster of boundary size nb, there is typically only one

chain of errors going out of the cluster. This means that we are adding approximately

nb−1 incorrect links to the cluster. Thus, growing first the smallest clusters will reduce

the amount of incorrect links that we add to the cluster. To ensure that the algorithm

always picks the odd-cluster with the smallest boundary in an efficient way, the list of

odd clusters is stored as a priority queue [363]. A priority queue is a special type of

data structure in which each element is associated with a priority value (in this case,

the priority value is related to the size of the cluster). Elements stored in this special

”queue” can be recovered on the basis of their priority, so that higher priority elements

are obtained first. Depending on the implementation, inserting and removing elements

from a priority queue can be done in O(n) steps with the number of elements n in

the queue. With this data structure, we can efficiently find the next cluster to grow

without affecting the scaling of the algorithm’s computational complexity.

The key problem of growing the clusters is to find an efficient way to check if a

new node added to a cluster was already part of a different cluster. This problem

corresponds to the management of a disjoint-set data structure. An efficient solution

to this problem is to use an union-find data structure [362], from which this decoder

takes the name. The main working principle for this algorithm is to store the nodes and

clusters as a tree structure. A tree is a data structure that stores nodes in a hierarchy. It

consists of a central node or root, structural nodes or branches, and subnodes or leaves.

It can be defined recursively: a tree consists of a root, and zero or more subtrees,

such that there is an edge from the root of the tree to the root of each subtree. Nodes

different from the root with zero subtrees are called leaves, else they are called branches.

The key feature of this data structure is that each node in the tree stores a reference

to the root of its subtree, so that finding the root of the tree can be done by following

the connections from each subtree to its root (see Figs 7.2, 7.3.
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Every cluster is defined by a root node, and each cluster is a tree of nodes with

that root node as the root of the tree. Therefore, a cluster will be formed by a group

of nodes with a common root that identifies the cluster. Using this data structure, we

can merge two clusters by pointing the root of the smallest cluster to the root of the

largest, which only takes one operation and is therefore O(1) (Fig. 7.2). Finding the

cluster to which a node belongs can be done by following the tree to the root. For this

process to be fast, we need the trees to be shallow, and the nodes to be connected as

directly to the root as possible. As we merge clusters, the cluster tree becomes deeper,

as we do not update every branch of the tree in the merging step. However, each time

we follow the path from a node to the root of the cluster, we can update all of the

nodes in the path and link them directly to the root of the cluster, reducing the time

of future searches in the tree. We can see an example of this process in Fig. 7.3. The

analysis of the efficiency of this algorithm leads to the scaling O(Nα(N)), where α(N)

is a functional inverse of the Ackermann’s function [362].

Figure 7.2: Tree structure of the clusters: in the algorithm, clusters of nodes are
stored as trees, where each cluster is identified by a root node. To find the root of a given
node, it is sufficient to follow the tree. Typically, nodes will be directly linked to the root
of the cluster, and this process will be O(1) in complexity. To merge two clusters, it is
sufficient to change the root of the smaller cluster to the root of the larger cluster. a)
example of two clusters and the tree structure. For each node, we store its root. b) After
merging both clusters, the only change needed is to update the root of the smaller cluster.

Once all clusters have even parity, a solution can be found by placing corrections

only on qubits within the clusters. In the next section, we describe the last step of the

algorithm, the peeling decoder, that finds a correction for each cluster in O(N) time.

7.1.1.2 Peeling decoder

The peeling decoder was originally presented in [194] as a decoder for the erasure

channel. The decoder assumes that the possible positions of the errors are known,
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Figure 7.3: Find root algorithm. In this figure, we show an example of the search
of the root of a given node, and the update of the tree structure afterwards. Each node
is labeled with the distance to the root of the tree, which represents how many steps are
needed to find the root of the tree by following the root of each node. a) Original tree of
the cluster, where we try to find the root of the node in the bottom right. This process
requires 6 steps, following the path marked with the dashed blue line. b) After finding the
root, all nodes belonging to the path are updated. This reduces significantly the cost of
future searches on the tree.

and finds a correction within the set of erased qubits. This scenario is equivalent to

the state after the cluster growth. As described in the previous section, a solution for

the decoder problem can be found within the cluster sets. Therefore, we can apply the

peeling decoder considering the qubits within the clusters as erased qubits, thus finding

a correction for the decoding problem.

The algorithm of the peeling decoder consists of two main steps. First, we create

a spanning tree for each cluster (i.e. an alternative graph that includes all nodes but

without cycles, see Fig. 7.4). For the spanning tree, we consider the stabilizers as nodes,

and the qubits as edges. The leaves of the spanning tree are the stabilizers that are

connected to the tree by only one edge (qubit), which is also considered a part of the

leaf. Second, the leaves of the spanning tree are removed systematically until the tree

is empty. In this pruning process, we apply correction to the qubit-leaf if there is an

excitation in the stabilizer at the end of the leaf. This correction changes the parity of

the two stabilizers connected to that qubit, which effectively displaces the excitation

along the branch until it meets a different excitation, leaving a path of corrections
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Figure 7.4: Spanning tree. In this figure, we show an example of a spanning tree
(orange) for a given cluster (blue). The leaves of the tree (marked with squares) are the
starting point of the next step of the peeling decoder, where nodes of the cluster are being
removed by following the branches from the leaves to the root, adding corrections if the
end of the leaf has an excitation. In this process, the excitations are connected by chains
of corrections that follow the branches of the spanning tree.

connecting both of them.

The spanning tree of a graph can be found in linear time, and the pruning step only

requires one operation for each node in the tree. Thus, the complexity of the peeling

algorithm is O(N). The spanning tree can be found by running a search algorithm

on each cluster, including edges to the tree as the algorithm explores the cluster but

preventing the formation of cycles by avoiding edges to nodes already in the cluster.

In our implementation, we apply a BFS (breath first search) algorithm to explore the

tree and generate the spanning tree.

The solution found by the peeling decoder is not unique, and depends on the gen-

eration of the spanning tree. Nevertheless, all possible corrections are equivalent up

to stabilizers, provided that the original cluster was smaller than the lattice size and

cannot contain a logical operator entirely within the cluster. This means that the suc-

cess or failure of the union-find decoder depends mostly on its capability to find a set

of clusters that contain the correction without growing any cluster beyond the lattice

size. When this happens, the peeling decoder can easily introduce recovery operations

that lead to a logical error when combined with the error, as the result of the possible

corrections now can be equivalent up to stabilizers either to the application of a logical

operator or to the identity. This would depend on the generation of the spanning tree,
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which is a step that does not take into consideration the position of the excitations and

would thus lead to a high failure rate. In the following section, we study the percola-

tion threshold for the clusters depending on the physical error rate, and how it can be

related to the critical error probability for the threshold for QEC.

7.1.2 Results and analysis

In this section, we show the results from our implementation of the union-find algorithm

on the surface code. We evaluate the performance of the algorithm by estimating

numerically the code capacity threshold, using Monte Carlo simulations to estimate

the logical error rate as a function of the physical error rate and the size of the lattice.

Furthermore, we discuss the limiting factors of the performance of the decoder and

study the percolation threshold for the growing clusters in the algorithm.

We estimate the logical error probability plog for different lattice sizes of distance L

and physical error rates p. We obtain this estimate by generating multiple samples in

which we generate an error configuration {ei} by applying a phase error on each qubit

with probability p, we measure the syndrome with ideal measurements and we apply

the decoder to obtain a recovery operation {ri}. We then check if the combination

of the error and the recovery operation is equivalent up to a product of stabilizers to

the identity operation (success) or to the logical ZL operator of one of the encoded

qubits, which corresponds to a failure on that encoded qubit. Since there are two

encoded qubits, we consider the logical error rate of the code to be the average of their

logical error rate. We estimate the error for each point σp using the error of a binomial

distribution σp =

√
plog(1−plog)

N , where plog is our estimate for the logical error rate and

N is the number of samples for each point.

The threshold pc corresponds to the physical error rate such that, if p < pc, then

we can arbitrarily reduce the logical error rate by increasing the size of the lattice. We

can estimate this threshold as the crossing point of the logical error rate plog(p, L) as

a function of the physical error rate p for different lattice sizes L, i.e. plog(pc, LA) =

plog(pc, LB) ∀ (LA, LB) with LA 6= LB. To estimate this point from the results of the

simulations, we use a linear interpolation to estimate the logical error rate between our

samples, and we compute and estimate of the crossing point p̃c(LA, LB) for each pair

of lattice sizes LA and LB: plog(p̃c(LA, LB), LA) = plog(p̃c(LA, LB), LB). Finally, we

estimate the threshold pc as the average of all crossing points between all pairs of lattice
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sizes pc '
∑NL−1

i=1

∑NL
j=i p̃c(Li, Lj), where NL is the number of lattice sizes considered,

and Li is each of the lattice sizes we sampled.

Using our implementation of the union-find decoder and considering only phase

errors (as phase and bit flip errors can be corrected independently in the surface code),

we obtain a code capacity threshold of 10.0%. This result is slightly higher to the 9.9%

obtained in the original paper [193]. Although the difference is within the error bars

of our result, this small difference could be explained by potential differences in the

details of the implementation of the cluster growth algorithm, and the generation of

the spanning tree. The results of our simulations are shown on Fig. 7.5.

Figure 7.5: Percolation and logical error thresholds on the surface code with
the Union-find algorithm. On the left, we show the percentage of clusters that percolate
through the lattice (i.e. a logical operator can exist within the cluster) as a function of the
physical error rate p. On the right, we show the logical error rate after decoding as a
function of the physical error rate. Since there are two logical operators (vertical and
horizontal) on the toric lattice, we consider the presence of any logical operator as a logical
error. We find that the thresholds for percolation and logical failure are both ' 10.0%,
which might indicate a close relation between both properties of the decoder. Each point
was obtained using 2 · 104 Monte Carlo samples, and the error bars are smaller than the
marker size.

The union-find decoder consists on two main steps: the cluster growth and the

peeling decoder. As discussed in the previous section, the possible solutions given

by the peeling decoder are always equivalent up to stabilizers once the clusters are

fixed, as long as no cluster is larger than the size of the system. In other words,

the possible corrections after the cluster growth step are equivalent if no cluster can

percolate through the lattice, in which case a logical operator can be applied entirely

within a cluster. We say that a cluster can percolate through the lattice if it is possible
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to find a path of connected qubits that extends from one side of the lattice to the

opposite side, with all qubits in the path belonging to the same cluster. If the clusters

do not percolate and form isolated islands within the code, any correction will always

correspond to closed loops within the clusters. This means that the cluster growth

step is a critical part of the algorithm, and an over-growth of the clusters can lead to

a reduction in the threshold.

In order to check this hypothesis, we estimate numerically the percolation threshold

for the clusters grown by the union-find algorithm. We define the percolation threshold

ppercc as the physical error rate for which, if p < ppercc , then the probability that a

cluster will percolate pperc(p, L) through a lattice of distance L tends to zero as we

increase the size of the lattice limL→∞ p
perc(p < ppercc , L) = 0. Using Monte Carlo

simulations, we estimate the probability that a cluster percolates through the lattice as

a function of the physical error rate pperc(p, L). We consider that a cluster percolates

through the lattice if it is possible to find a path from one side of the lattice to the

opposite side contained entirely within the cluster. We apply a standard Depth First

Search algorithm to find the existence of such a percolating path [363]. For the toric

code, we can check if a cluster percolates both in the vertical and horizontal directions,

which leads to two estimates of the percolation probability. Due to the symmetry

of the lattice, both percolation rates should represent the same magnitude, and we

estimate the percolation rate of the lattice as the average of the percolation rate in the

horizontal and vertical directions. We estimate these percolation rates pperc(p, L) by

averaging over multiple error configurations. We estimate the errors on these estimates

as the error for a binomial distribution σperc =

√
pperc(1−pperc)

N , where N is the number

of samples.

To estimate the percolation threshold, we estimate the crossing point between the

pperc(p, L) curves for different lattice sizes, using the same method described for the

code capacity threshold, and considering a linear interpolation between the sampled

points. In our simulations, we find that the percolation threshold for the clusters

generated by the union-find algorithm is 10.0%. This is the same result that we obtained

for the code-capacity threshold, which supports our hypothesis that the presence of

percolating clusters is the limiting factor in the performance of the decoder. Once

the clusters percolate through the lattice, the peeling decoder is unable to distinguish

between different corrections, and the failure probability becomes increasingly high.
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In the MWPM algorithm this problem is avoided, as all possible connections between

the stabilizer excitations are always considered, at the price of a higher computational

complexity and therefore a slower performance.

We have studied the application of the union-find decoder on the surface code, and

we have seen how the percolation of the clusters can limit the performance of the al-

gorithm. In [193, 196], the authors propose two methods for applying the union-find

decoder on color codes by mapping the color code lattice into multiple surface-like codes

[192] and applying the union-find algorithm on those additional codes. These lattices,

also called the restricted lattices, are obtained from the color codes by removing the

stabilizers corresponding to one of the colors. Errors in the original lattice generate

pairs of excitations in the restricted lattices, which allows surface-code decoders to find

a matching for those excitations. The best results are obtained using the algorithm

described in [196], which, in a simplified explanation: i) generates two restricted lat-

tices that map the information from the color code syndrome, ii) applies the union-find

algorithm on each restricted lattice to obtain a correction and iii) combines the correc-

tions from both restricted lattices using a local rule to find the final recovery operation.

Using this approach, the authors obtained a threshold of 9.8%. In the next section, we

present an alternative adaptation of the union find algorithm for color codes that avoids

the need of the restricted lattices, working directly on the original color code lattice,

and study the difference in performance with respect to the algorithms presented in

[193, 196].

7.2 Extension to color codes

In this section, we present an efficient color code decoder based on the ideas from [193].

The computational complexity of the decoder is almost linear, and it is designed for

depolarizing noise in any of the three color code lattices. In particular, we present

the algorithm on the 6.6.6 (hexagonal) and 4.8.8 (square-octagon) lattices, but the

algorithm is easily extensible to the 4.6.12 lattice.

The decoder’s algorithm works by growing clusters of dangerous positions around

the stabilizer excitations. In this process, we limit the set of positions in which the

correction will be localised. Finally, with a peeling decoder, we can find a correction
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within each cluster. The working principle of the algorithm is analogous to the Union-

find decoder for surface codes. However, a new definition of parity and adaptations to

the cluster growth and the peeling decoder need to be made for the decoder to work in

color codes. As an alternative solution, in [193] and the more recent [196] the authors

apply the decoder to the color codes only by first mapping color codes into several

copies of surface codes [192].

The main steps of the algorithm are:

1. Initialize clusters around each excitation in the syndrome. Create a list with the

odd-clusters.

2. While there are odd-clusters remaining:

(a) Choose and grow the smallest odd cluster.

(b) Merge connected clusters and update the parity.

3. Apply the peeling decoder on all the remaining clusters:

(a) For each cluster, find a spanning tree within the set of qubits.

(b) Start peeling the tree by cutting qubits on the leaves of the tree. Apply a

correction if there is an excited stabilizer.

These main steps are the same as in the original decoder for the surface code.

However, some adjustments need to be done for the decoder to work on color codes.

In Sec. 7.2.1 we explain the details on the cluster growth in color codes, the condition

for an even parity and the merging of clusters. In Sec. 7.2.2 we explain how to apply a

modified peeling decoder for the clusters to find the final correction. Finally, in Sec. 7.3

we show the performance of the decoder and analyze the limiting factors that affect

the threshold. We also compare the performance with the alternative applications of

the union find decoder on color codes described in [193, 196].

7.2.1 Growing and merging clusters

The union find algorithm for color codes is a generalization of the decoder for surface

codes. The main working principle behind the algorithm is that, given a cluster on the

lattice, if the parity of the excitations within the cluster is odd, that means that at
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least one chain of errors ends outside of the cluster. Therefore, if we initialize a small

cluster around each excitation on the code, we can grow and merge the clusters. As

long as a cluster has an odd parity inside the cluster, there is a chain of errors that

ends outside of the cluster. Therefore, we should keep increasing its size until all the

remaining clusters have even parity. At the end, we know that the correction can be

within the clusters. In this section, we focus on the details and changes to the algorithm

necessary for the particularities of the color code lattice.

Parity:

First, the condition for a cluster to be considered even/odd needs to be changed,

as there are error patterns that generate an odd number of excitations. This means

that counting the number of excitations is not enough to determine if a correction can

be found within a cluster. Instead, we need a more precise definition for the parity

of a cluster. In the color code, stabilizers have a color assigned. This can be stored

as three binary numbers {R,G,B} for each cluster. The parity of each one of these

numbers corresponds to the number of excitations of each color, modulo 2. From these

three numbers, we can define a condition for a cluster to be considered even/odd. In

the color code, excitations are created either by pairs of the same color, or by triads of

red, blue and green. Therefore, we will consider a cluster to be even when its parity

is either {R,G,B} = {0, 0, 0} or {R,G,B} = {1, 1, 1}, since that will mean that it is

possible to find a correction that will satisfy the syndrome condition contained entirely

within the cluster.

Growing clusters:

The second change we need to include is on the algorithm to grow the half edges.

In the surface code, half edges were grown from every stabilizer in the cluster. Edges

that were already half grown, would be completed as a full edge in the next growing

step, including the next stabilizer in the cluster. This was possible since every qubit

is connected to only two stabilizers, and therefore forms an edge in the graph. In the

color code, the situation is different, as qubits are no longer edges, but triangles, since

qubits in the color code are connected to three different stabilizers, one of each color.

To grow the boundary of a cluster in the color code, we consider two types of

boundary: a stabilizer node and a qubit node. Instead of keeping a list of the edges
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and half edges of the cluster’s boundary, the boundary is defined as a collection of

stabilizers and qubits. In the growth step, the stabilizers in the boundary will grow

the cluster by including the neighboring qubits. In a similar way, the qubits in the

boundary will grow the cluster by including the neighboring stabilizers. Notice that

this growth scheme is equivalent to growing half an edge in the surface code, since the

connection between qubits and stabilizers in the surface code corresponds to half edges

in the lattice. On figure 7.6 we can see an example of the different steps of cluster

growth on the color code.

Figure 7.6: Example of cluster growth on color codes. In this figure, we can see
different steps of the cluster growth, from a single stabilizer growing to the neighboring
qubits (top, red), to growing the next step towards the neighboring stabilizers (right,
purple), to growing a step further to the next qubits (bottom, orange).

7.2.2 Peeling decoder on color codes

In this section, we present an alternative version of the peeling decoder on color codes,

adapted for the particular properties of the color code lattice. As we have seen in

the previous section, the resultant graph from growing the clusters in the color code

has some important differences with respect to the surface code. The most relevant

difference regarding the behavior of the peeling decoder stems from the fact that the

connectivity of the qubits in the color code is three. This change will affect the peeling

algorithm, as the process of cutting a leaf and applying a correction to a qubit will

change the parity of three stabilizers instead of simply displacing the excitation along
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the branch of the spanning tree.

Finding the spanning tree:

In the surface code, the spanning tree was formed by a set of stabilizers connected

by the qubit-edges. The leaves of the spanning tree are the qubit-edges with only one

connection to the rest of the tree. In the color code, the spanning tree is formed only

by qubits, and the stabilizers are not part of the tree. The edges of this tree correspond

to the edges of the stabilizers in the standard representation of a color code (with

stabilizers drawn as coloured plaquettes and qubits in the vertices of the stabilizers).

An alternative visualization for the connectivity of the qubits is to represent the code

in the reciprocal lattice, where qubits correspond to triangles and the stabilizers are

the vertices. In the reciprocal lattice, the spanning tree connects the centers of the

triangle-qubits that belong to the tree. The neighborhood of a qubit corresponds to

the qubits that share an edge. In Fig. 7.7 we show an example of the spanning tree of

a cluster on the 4.8.8 lattice.

Once we understand the connectivity of the qubits on the spanning tree, the gener-

ation of the spanning tree is analogous to the algorithm for the surface code. We run

a search algorithm (BFS) starting on any qubit belonging to the cluster. The search

algorithm explores the cluster and adds the qubits to the spanning tree. However, it

only adds an edge to the tree if the qubit was unexplored. This condition avoids the

formation of cycles and allows the algorithm to add all the qubits of the cluster to the

tree, generating a spanning tree for the cluster. In addition, it stores a list of the qubits

with only one connection to the tree. These qubits are the leaves of the tree, from

which the peeling decoder starts the decoding process. Since each qubit on the cluster

is only explored once, the algorithm runs in O(N) and does not increase the complexity

of the decoder.

Peeling the tree:

In the surface code, when peeling the tree we look at the stabilizer at the end of the

qubit-leaf. If it was excited, then we change the value of the stabilizer at the base and

apply a correction. In the color code, the spanning tree does not have any connection

to the stabilizers. In addition, a correction on a qubit affects the sign of three different

stabilizers.

The peeling process on the color code clusters is applied in the following steps:
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Figure 7.7: Spanning tree of qubits within a cluster. A spanning tree can be created
by linking all qubits in a cluster and avoiding loops. In the figure, the spanning tree is
defined by the thick black lines, and the thin blue lines represent the connectivity of qubits
and stabilizers from previous steps. The tree can be peeled by following the leaves, marked
with orange diamonds.

1. First, we pick a qubit (the leaf) connected to only one other qubit in the spanning

tree.

2. The leaf shares two stabilizers with the qubit of the spanning tree to which it is

connected. If the remaining stabilizer of the leaf has odd parity, a correction is

applied on the qubit-leaf. Notice that the parity of the other two stabilizers will

be addressed on future pruning steps.

3. The leaf is removed from the tree.

4. The first two steps are repeated until there is only one qubit remaining on the

tree.

5. There should be either 3 or 0 excitations remaining in the cluster. A correction

is applied on the last qubit of the tree if there are exactly 3 excitations around

the qubit, removing them and finishing the correction of the cluster.

7.2.3 Implementation details

Now that we discussed the main differences, we can proceed with a step-by-step expla-

nation of the decoder.
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1. First, we initialize the main data structures. That is, we create a cluster for each

excitation in the stabilizers, and we initialize the forest data structure. The forest

is an array that contains, for each stabilizer in the code, which node is the root of

the cluster it belongs to. It is a quick way to find if two nodes belong to the same

cluster or not, and the base for the union-find algorithm for disjoint sets [362].

For nodes that do not belong to any cluster, the initial value is set at -1. We

initialize a similar data structure for qubits. The last data structure to initialize

corresponds to the odd clusters. This list is a priority queue that contains both

the root of the clusters and the size of their boundary. The priority queue is

an efficient way to find the smallest cluster [363], which is necessary to start the

cluster growth process.

2. The next step is to start growing the clusters. In a while loop, we will be choosing

the smallest odd cluster in the queue and growing the boundary. We create an

empty fusion list. for each stabilizer in the boundary of the cluster, we add the

neighboring qubits; and for each qubit in the boundary, we add the neighboring

stabilizers, as explained in the previous section (Fig. 7.6). Before adding the new

qubits and stabilizers to the cluster, they are added to a fusion list. Once all

boundary nodes have been grown, we loop over the fusion list to check if the new

nodes are part of a different cluster, in which case we have to merge the clusters.

3. The process of merging the clusters is very simple. We simply combine the sets

containing the qubits, stabilizers and boundaries, and update the parity of the

cluster. The last step is to update the tree, where each node contains information

about its root cluster. Instead of updating the root of each node in the small

cluster to point at the new root, we only need to point the root of the small

cluster towards to new root.

4. After growing the cluster, and after the possible merging events, we check its

parity. If the parity is odd (which for the color code, as explained, means that

there is at least a chain of errors that leads outside of the cluster), then we add

this cluster back to the odd cluster queue, in which its priority to be grown again

will depend of the size of its boundary. If there are odd clusters remaining, we

will keep growing them until all of the clusters have even parity.
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5. Once all clusters have even parity, we know that a correction can be found entirely

within each cluster. The next step is to apply the peeling decoder, as described

in Sec. 7.2.2. Therefore, for each cluster, we need to find a spanning tree that

links all qubits in the cluster without any loops. We can do this by running a

simple search algorithm, like Breadth First Search (BFS). Starting in the root of

the tree, we grow a tree by expanding the network through neighboring qubits.

This allows us to find a spanning tree that will contain all qubits in the cluster.

In addition, this growth process will provide us with a list of the leaves of the

tree, from which we will start pruning in the next step. An example spanning

tree can be seen in Fig. 7.7.

6. Finally, the last step of the decoder is to peel the trees to find the correction. In

a similar spirit as the peeling decoder for the surface code, we look at the value

of the stabilizer at the end of the leaf. If the stabilizer has an odd parity, we add

a correction to the qubit and update the surrounding stabilizers before cutting

the qubit-leaf. By applying this iterative process we can find a correction for the

syndrome within the cluster. Although the parity of the stabilizers in the cluster

changes as we cut the tree and add corrections, the last update that we do on

each stabilizer is done by the last leaf that points at that stabilizer. This means

that corrections will be applied to ensure that the parity of the stabilizer will

end as even. After peeling all the clusters in the code, the decoding process is

complete.

An example of the full process can be seen in Fig. 7.8.

7.3 Performance of the decoder

In this section, we present the numerical results of the performance of the decoder on

color codes, using our variation of the original algorithm. We compute an estimation

of the threshold of the decoder using Monte Carlo simulations, as in Sec. 7.1.2. The

results for the color code lattices 4.8.8 and 6.6.6 are shown in Figures 7.9 and 7.10,

respectively. On the 4.8.8 lattice, we obtain a threshold around 5.6%, while for the

6.6.6 lattice our estimate is 7.0% for code capacity noise.
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Figure 7.8: Full execution of the Union Find decoder. a) Initial error (marked
with a red Z on the qubits) and syndrome (orange dots over the excited stabilizers). b)
Grown clusters around the excited stabilizers. The original root of the cluster is marked
in grey. Different clusters are drawn in different colors. c) Spanning trees of the clusters,
generated by running a BFS algorithm. This process removes the loops in the clusters from
the previous step. The leaves of the trees are marked with orange diamonds. d) Correction
from the peeling decoder. The qubits with a correction are marked with a blue C, and the
original errors with a red Z. In this case, the original error was corrected up to stabilizers.

The thresholds obtained with our variation of the algorithm proposed in [193] are

significantly lower than the threshold obtained using the original version. To under-

stand this discrepancy, it is useful to analyse the behavior that leads to the lower

threshold on our variation with respect to the approach presented in [193, 196]. In par-
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Figure 7.9: Percolation and logical error thresholds on the color code 4.8.8
lattice with the Union-find algorithm. On the left, we show the logical error rate
after decoding as a function of the physical error rate p. Since there are two logical
operators (vertical and horizontal) on the toric lattice, we consider the presence of any
logical operator as a logical error. On the right, we show the percentage of clusters that
percolate through the lattice (i.e. a logical operator can exist within the cluster) as a
function of the physical error rate. We find that the thresholds for percolation and logical
failure are both ' 5.6%, which might indicate a close relation between both properties of
the decoder. Each point was obtained using 2 · 104 Monte Carlo samples, and the error
bars are smaller than the marker size.

ticular, the under-performance of the decoder can be understood by the rapid growth

of the clusters. The high connectivity of the qubits and stabilizers in color codes leads

to a quick growth in the boundary of the clusters after very few growth-steps. This, in

turn, leads ultimately to the percolation of the cluster over the lattice, i.e. the cluster

grows larger than the side of the lattice, and it becomes possible to apply a logical

operator entirely within the cluster.

To support this hypothesis, we estimated the percolation threshold of the clusters

in the color code with our union-find algorithm. Using Monte Carlo simulations, we

estimated the percentage of percolating clusters as a function of the single qubit error

probability. We consider that a cluster percolates if it is possible to find a path from

one side of the lattice to the opposite one that lies entirely within the cluster. We find

that the percolation threshold coincides with the threshold for code capacity both in

the 6.6.6 lattice and in the 4.8.8 lattice.

In Fig. 7.11, we show the results of the computational time required for the decoder

for different lattice sizes L, averaged for the different error rates p sampled in Fig. 7.10.

Note that the number of qubits scales as L2 with the code distance in the toric code.
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Figure 7.10: Percolation and logical error thresholds on the color code 6.6.6
lattice with the Union-find algorithm. On the left, we show the logical error rate after
decoding as a function of the physical error rate p. Since there are two logical operators
(vertical and horizontal) on the toric lattice, we consider the presence of any logical operator
as a logical error. On the right, we show the percentage of clusters that percolate through
the lattice (i.e. a logical operator can exist within the cluster) as a function of the physical
error rate. We find that the thresholds for percolation and logical failure are both ' 7.0%,
which might indicate a close relation between both properties of the decoder. Each point
was obtained using 2 · 104 Monte Carlo samples, and the error bars are smaller than the
marker size.

We run these simulations on an Intel Core i7-8650U CPU processor with 1.90GHz. The

results are consistent with the predicted O(Nα(N)) scaling, comparable to the most

efficient non-parallelized decoders present in the literature [193, 196], which present the

same scaling.

The adaptation of the union-find decoder proposed in the original paper [193]

projects the color code onto three restricted lattices [192], and then applies the union-

find decoder on each of the resulting surface codes. Since the qubits and stabilizers on

the surface code have a much smaller connectivity, the percolation threshold is larger

and stops becoming the bottleneck of the decoder. Using this mapping, they obtain

a threshold of 8.4% on the 6.6.6 lattice. This decoder, however, failed to produce a

solution for all error cases, and the threshold is still below the one for surface codes.

Interestingly, in [196] the authors presented an improved adaptation of the decoder

for color codes. The main difference from the previous work lies in the use of the

restricted lattices. Instead of applying the decoder on the three restricted lattices, the

authors designed an algorithm that achieves a correction using only two of them, as

outlined in Sec. 7.1.2. Using this variation, the authors found a threshold of 9.8%,
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Figure 7.11: Scaling of the computing time. In the figure, we show the computational
time required by the decoder to produce a correction for different lattice sizes, averaged
over the sampled error rates in Fig. 7.10. The results show a nearly linear scaling, which is
consistent with the theoretical almost linear scaling O(Nα(N)). Each point was obtained
from 3 · 105 samples.

which can be improved to 10.2% by replacing the union-find step on the surface codes

with the standard MPWM decoder.

7.4 Summary and outlook

In this chapter, we have explained our work on the study of the union-find decoder.

We have presented an original, alternative adaptation of the algorithm that applies

the basic principles of the decoder on the particularities of the color code lattices. We

build on the work from [193] and extend it by an analysis of the percolation threshold

of the clusters grown in the algorithm. We found that the percolation threshold of

the clusters generated during the decoder process is related to the threshold obtained

from the decoder which, we hypothesize, explains the limits on the performance of the

algorithm.

The algorithm presented is highly efficient, with an almost-linear computational

complexity. Furthermore, the decoder could be adapted to include additional sources of

error, like qubit losses [364], thanks to the flexibility of the cluster growth. However, the

threshold of the decoder can prove a limiting factor, as it lies below the threshold found

in other competing decoders [193, 196]. In particular, the so called restriction decoder
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described on [196] stands as the best alternative, as it outperforms other competing

color code decoders both in threshold and efficiency. In addition, this decoder can

also potentially be adapted for phenomenological noise, erasure, and qubit losses. This

effort has already shown promising results in more recent works, e.g. [237].

From this work, we want to highlight the fact that the color code lattice still presents

some properties worth studying. The analysis of the failure cases of this decoder can

bring additional insight about the behavior of decoding algorithms and the limitations

of different decoding techniques.
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Chapter 8

Rescaling decoder
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In this chapter, we describe our work on the renormalization group (RG) decoder

for the 4.8.8, 2D color code lattice with periodic boundary conditions, which resulted

in the publication [2]. We develop a decoding algorithm based on the ideas of rescaling

decoders proposed in [187–189], and obtain a code capacity threshold of 6.0%.

We begin Sec. 8.1 by contextualizing briefly the project, explaining and clarifying

the fundamental concepts required to understand the decoding problem, as well as

the motivation behind the work and an intuition on the renormalization group (RG)

decoding paradigm. Then, in Sec. 8.2, we describe in detail the different steps and

subroutines involved in the decoding algorithm. In Sec. 8.3, we show the results of our

numerical simulations, from which we obtain the code capacity threshold of the decoder

using finite-size scaling analysis. The chapter concludes with a short summary and an

outlook for future extensions of the work.

All the work in this section stems from code that I personally wrote, including the

decoder algorithm, as well as the numerical simulations and analysis presented in this

chapter. I also derived the mathematical formulations required for the application of

the decoder to the 4.8.8 lattice, explained in sections 8.2.4 and 8.2.5.

8.1 Background

The work presented in this chapter is motivated by the long-term goals of FTQEC, and

the use of large-scale topological QEC codes that allow the detection and correction

of errors during storage and processing of quantum information [100, 109]. If we use

FT quantum circuit constructions [127, 130], the threshold theorem ensures that the

logical error rate can be arbitrarily suppressed by increasing the size of the code, as

long as the physical error rates fall below a given critical error threshold [127, 129, 130].

The three main factors that influence the value of this error threshold are the choice

of QEC code, the noise model, and the decoder algorithm used, which determines our

capability to correctly interpret the syndrome (i.e. the information obtained from the

parity checks realized during the QEC protocol) to infer a recovery operation with a

high success probability.

In this chapter, our focus lies on the development of an efficient decoder algorithm

for color codes, and the 4.8.8 color code lattice in particular. As seen in the background

(chapter 3), color codes are topological QEC codes that encode the logical information
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into topological properties of the system, and use parity checks that involve low-weight

local measurements on qubits located in neighboring locations on the lattice [113, 132].

To execute operations on the encoded logical qubits, the logical gates must operate fault

tolerantly, i.e. the circuits that implement the operations should act in such a way

that they cannot inadvertently spread errors beyond the scope of what the QEC code

is able to correct. The most straightforward way to avoid this spreading is by acting

separately on the data qubits within the code block, which is known as a transversal

implementation of a logical gate. However, the possibility of implementing logical gates

transversally is limited in first instance by the choice of QEC code, and ultimately by

the no-go theorem by Eastin and Knill [223], which dictates that it is impossible to

implement a universal gate set fault tolerantly. The non-transversal implementation

of logical gates in a fault tolerant manner is a resource intensive procedure, and it

is typically approached by the use of magic state distillation and injection [224–227,

237]. The 4.8.8 color code lattice is remarkable because it allows for the transversal

implementation of the entire Clifford group [113], which distinguishes it from surface

codes or color codes on hexagonal lattices. It is therefore optimal in the sense that

adding any other (non-Clifford) gate would render the gate set universal and hence

violate the no-go theorem.

To operate large distance codes, it is crucial to have an efficient decoding algorithm

with a high success rate of the recovery operations proposed by the decoder. This rate is

reflected on the threshold value, for which the upper bounds can be obtained (for some

error models) through mapping the QEC problem onto a classical statistical-mechanical

model [111, 218, 220]. This accuracy of decoding has to be balanced with the computa-

tional time required to run the decoding algorithm. Although for a quantum memory

it is potentially fine to keep a record of the measured error syndromes and compute the

recovery operation in a classical postprocessing stage, the situation is different once we

start to perform logical quantum computations. For this case, the intermediate state

of the computation depends on the decoder outcome, and the quantum computation

may have to wait for the decoding algorithm to finish, which slows down the quantum

computation and allows for new errors accumulate during that time.

The development of decoders for color codes is an active field of research, and

several decoding algorithms have been proposed for different noise models [189–197,

201, 250, 251]. In this work, we concern ourselves with code capacity noise, i.e. data
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Figure 8.1: Sketch of a rescaling step in the 4.8.8 color code lattice. Qubits are
represented by triangular faces, and the coloured vertices represent the stabilizers. The
initial lattice a) can be split into multiple cells b), which can be decoded locally. Each
triangular cell can then be mapped into a single effective qubit in a rescaled lattice c).
This process of rescaling can be repeated until the final lattice is small enough to apply a
brute force decoding. Corrections on the smaller lattices can then be backpropagated to
the original lattice, finding the final correction. d) In this work we consider a 4.8.8 color
code lattice, where each qubit is involved in one 4-qubit stabilizer associated to a square
plaquette and in two 8-qubit stabilizers on octagonal plaquettes, with periodic boundary
conditions. The lattices considered host codes with parameters [[n, k, d]] = [[8·9m, 4, 2·3m]],
where n is the number of qubits in the lattice, k the number of logical qubits, d is the
distance of the code, and the integer m denotes the number of rescaling steps. The blue
arrows represent the initial order of operations, in which the lattice is rescaled until the
smallest system size is reached. Green arrows represent the backpropagation process, from
the smallest rescaled lattice back to the original code.

qubit noise, for which the threshold’s upper bound is known to be 10.9% [218, 220].

Currently, the decoder with the best known performance for code capacity noise in

terms of the threshold is the restriction decoder, which achieves 10.2% when using

MWPM as a subroutine [196], and has the runtime complexity of MWPM (O(N4) for

a straightforward implementation of the original Blossom algorithm [185, 247], which

can be optimized to O(N2.5) using recent advancements [248, 249]). The restriction

decoder can also be used with a union find decoder as subroutine [193], which achieves
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an estimated 9.8% threshold [196] with a worst case complexity of decoding that scales

as O(Nα(N)). In chapter 7, we explore a variation of the union-find approach.

In this chapter, we consider a decoding paradigm based on local decoding and

iterative rescaling of the lattice known as renormalization-group (RG) decoding. This

paradigm was initially introduced in [188] for surface codes, and extended to hexagonal

color code lattice (6.6.6) in [189]. These algorithms have a runtime complexity of

O(N log(N)), as the rescaling of the lattice can be done in linear time O(N), since

it is based on local operations, and the number of iterations of the rescaling process

grows as O(log(N)). The local nature of the rescaling algorithm means it can be

parallelized, achieving an overall scaling of O(log(N)), which holds the potential for

drastic improvements in decoding runtime.

As introduced in Ch. 3, color codes are stabilizer codes [113, 132, 365] defined on

face-three-colorable trivalent graphs, (see e.g. Fig. 8.2 for the case of the 4.8.8 lattice

coloring, as well as some examples on different error cases). Qubits are identified

with the vertices and each face i of the graph defines two stabilizer generators S
(i)
X

and S
(i)
Z involving all vertices in the boundary of the respective face [113, 365]. In

this chapter, we consider as well an alternative representation of color codes using the

reciprocal lattice, in which qubits are represented by triangles, and stabilizer operators

are represented by the vertices (see Fig. 8.2). These stabilizers involve purely X or Z

Pauli operators, which makes color codes part of the Calderbank-Shor-Steane (CSS)

code family [213, 214]. Moreover, we consider periodic boundary conditions, which

implies that two independent qubits can be encoded in each of the two independent

non-trivial loops of the resulting torus (see Fig. 8.2), leading to a total of four logical

qubits. As a part of the CSS stabilizer codes, it is possible to detect and correct phase-

flip and bit-flip errors separately by using the syndrome from the X and Z stabilizers,

respectively. Throughout this work we focus on independent bit- and phase-flip noise.

One of the symmetries of the color code a self-duality under exchanging X and Z

stabilizers, which in particular implies that we can focus purely on bit-flip errors to

obtain the code capacity threshold.

8.1.1 Introduction to the rescaling decoding approach

In this section, we introduce a qualitative description of the decoder algorithm, with

the purpose of providing a general picture of the decoder and the basic underlying
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Figure 8.2: Representation of the color code 4.8.8 lattice. On the primal lattice
(left), qubits are represented by black vertices, and the stabilizers SZ and SX are repre-
sented by the colored plaquettes, which apply a parity check over the qubits on the vertices.
In the reciprocal lattice (right), the qubits are represented by triangles, and stabilizers are
represented by colored vertices, which apply a parity check over the qubits for which the
stabilizer is a vertex. The logical operators are strings of Pauli operators that extend over
the torus in a non-trivial way. On the color code lattice on a torus, we have two indepen-
dent logical operators for each non-trivial loop, i.e. four logical qubits. The support of the
logical operators X̂i and Ẑi is represented by the blue and green lines, which represent the
4 non-trivial loops on the toric color code lattice. To illustrate the effect of errors in the
lattice, we display an example of four physical bit-flip errors (qubits are marked with red
diamonds), and the corresponding stabilizer excitations (stabilizers are marked with red
circles).

principles. We study the details of each of the particular decoding steps in section 8.2.

The main step of the decoder is to split the code lattice into small cells. These cells

can be decoded locally and the result can then be combined into the global decoding

decision. A key problem to this decoding approach is that, when trying to divide

the lattice into cells, one has to necessarily cut through some stabilizers, which are

then shared between different cells. The proposed solution to that problem is to split

these stabilizers into two, which we refer to as half stabilizers from here onwards. This

splitting of the stabilizers opens the possibility to decode each cell individually by using

the local syndrome from the half stabilizers that apply to the cell (Fig. 8.3). Thus, the

way in which each stabilizer is split between the cells determines the correction applied

to the cells. After applying a local decoder on each cell, this cell can be treated as

136



8.1 Background

an individual effective qubit (two when using a square cell) of a now rescaled color

code, where we have rescaled the lattice to a smaller version of itself. This is possible

because the syndrome on the boundaries and the bulk of the cell have been addressed

(i.e. the combination of the error and the proposed correction would recover the even

parity of those stabilizers). The process of splitting and rescaling the lattice can then

be repeated, ultimately leading to a lattice small enough so that a brute force decoding

can be applied. This rescaling process is illustrated in Fig. 8.1(a)-(c) for the 2D color

code on the square-octagon lattice.

Figure 8.3: Example of the splitting of a stabilizer. a) The original stabilizer S,
represented by the blue vertex, realizes a parity check on the qubits 1 to 8, both in the
Z and the X basis. Qubits are represented by black dots inside the triangles. b) We can
split the stabilizer into the half stabilizers S1 and S2. Each half stabilizer represents the
parity of its set of qubits S1 = {1, 2, 3, 4}, S2 = {5, 6, 7, 8}. The binary sum ⊕ of the
parities of both half stabilizers thus fulfills the condition s = s1⊕ s2. We call the choice of
parity assignments of half stabilizers for a given stabilizer a splitting. For notation, we use
uppercase letters to refer to the stabilizer operators, and lowercase for their parity value,
which is represented as a 0 for even parity and 1 for odd parity.

8.1.2 Motivation and previous work

The study of the RG decoding approach presented in this work is motivated by a

prior study of the behavior of the algorithm in the hexagonal lattice, following the
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work by Sarvepalli and Raussendorf [189], where they achieved a threshold of 7.8% for

code capacity noise. We reproduced the decoder for the hexagonal code with our own

code, and tested the relevance of each of the decoding steps. We implemented some of

the variants of the decoding process proposed in [189], including the use of triangular

vs. square cells (see Fig. 8.4), and the two different variants that the authors present

for the splitting and rescaling algorithms, which affect how the decoder algorithm splits

the stabilizers that are shared between different cells.

The first variant finds a splitting configuration (i.e. a choice of how to split each

stabilizer in the boundaries between cells) through a hard decision process, in which the

choice for each splitting is updated to the one that leads to the most probable correction

given the current choice of the neighboring splittings. The second soft decision variant

computes an estimate of the probability of each possible splitting choice, and then uses

those probabilities to further refine the estimates. We obtained better results using this

second approach (which is explained in detail in the following section), both in terms

of the convergence of the splitting updates to a solution, and the resulting threshold

of the decoder. Additionally, we experimented with different methods to update the

splitting configuration: updating the splittings in parallel, sequentially, and randomly

selecting the next splitting to update. We found the best performance in the former,

and thus we implemented that method in the 4.8.8 decoder.

Although we did not realize an exhaustive study on the impact of the different

variations on the decoder due to time constraints, the insight obtained from the per-

formance of the decoder and the close examination of problematic error patterns was

invaluable for the development of the RG decoder for the 4.8.8 lattice.

8.2 The decoder algorithm for the 4.8.8 color code lattice

In this section, we present the decoding algorithm step by step, explaining the details

behind each of the different phases of the algorithm. The input of the decoding algo-

rithm is the measured syndrome and a prior estimate of the qubit error rate, while the

output is a recovery operation for each of the qubits in the lattice:

(1.) We estimate the error probability of the qubits using the information from

the syndrome (Fig. 8.5) in two steps. The first step consists on the application of a

belief propagation algorithm, through which stabilizers and qubits share information
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Figure 8.4: Sketch of a rescaling step in the 6.6.6 rescaling decoder. a) A
triangular cell of 4 qubits can be rescaled to an effective qubit. b) Two triangular cells can
be combined to form a square cell, which can be rescaled to two effective qubits. With each
rescaling step, the number of effective qubits is reduced by a factor of four. The square
cell in the lower left corner has been split into the initial triangular cell for visualization
purposes. The figure shows a cut of a larger color code lattice.

(see Sec. 8.2.2). After that, we use the parity of the stabilizers located in the corners

of the cells to update the estimates of the error probabilities of the qubits around them

(see Sec. 8.2.3).

(2.) We subdivide the code into cells. The stabilizers S between two adjacent cells

are split, while preserving the parity of the sum: sa ⊕ sb = s. There are two possible

ways of splitting a stabilizer, as seen in Fig. 8.6.

(3.) We find a configuration for the choices of splittings (Fig. 8.3) and assign a

probability for each splitting choice (details in Sec. 8.2.4):

(3.a) We compute the initial splitting probabilities using the probabilities of the

qubits involved.

(3.b) We update the probabilities of the different splitting choices (see Fig. 8.7) us-

ing local information from the neighboring cells, as described in Sec. 8.2.4. The update

is applied simultaneously on all splittings of the lattice. Several global update steps
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Algorithm 1: Rescaling decoder

Data: Measured syndrome
Result: Recovery operation
while Lattice larger than minimum size do

Estimate the error probability of each qubit (1.)
Split the code into cells (2.)
Split the stabilizer values between the cells (3.)
Apply a local decoder on each cell (4.)
Rescale the cells to effective qubits (5.)

end
Apply a brute force decoder on the final lattice (6.)
Back-propagate the errors to the original lattice (7.)

Figure 8.5: Example of updated qubit error probabilities after belief propa-
gation. We show a 72 qubit color code with periodic boundary conditions, where qubits
are represented by the coloured triangles, and stabilizers are represented by the coloured
circles in red, blue and green. The non-trivial stabilizers are represented with a yellow bor-
der, and the physical errors are represented by red diamonds. During belief propagation,
stabilizers and qubits share information locally, which leads to a refined estimate of the
qubit error probabilities. In this example, the qubit error probabilities are represented by
the color of the triangles(the qubits), ranging from white to red, as indicated in the color
bar. The thicker solid black line has been drawn as a guide to the eye when comparing the
figure with Fig. 8.6, after dividing the lattice into square cells.

are used until convergence is reached for the split choice.
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8.2 The decoder algorithm for the 4.8.8 color code lattice

Figure 8.6: Splitting of the lattice into cells. We show the same code as in Fig. 8.5
after splitting the lattice into 4 different cells. The stabilizers at the boundary between
cells need to be split into half stabilizers, as in Fig. 8.3. The parity of each half stabilizer
sa and sb is represented as a 0 for even parity and a 1 for odd parity, and the binary sum
⊕ of the parity of both half stabilizers needs to equal the parity s of the original stabilizer
S. For each stabilizer, there are two alternative splittings into half stabilizers. The black
solid line in the cells has been drawn to distinguish the two effective qubits that result from
the rescaling of the cells. The physical errors in this particular example have been marked
with red diamonds, and the excited stabilizers are marked with a yellow border.

(4.) After fixing the half stabilizers, each cell has a local syndrome. Using a lookup

table (a pre-computed list containing all possible errors compatible with the syndrome),

we can decode the cells and find a correction (Fig. 8.8). At this step, we ignore the syn-

drome of the corners, as their parity will become the syndrome of the rescaled lattice.

The parity of those stabilizers will thus be addressed in the decoding process applied

to the subsequent rescaled lattices.

(5.) The cells can now be rescaled to effective qubits (Fig. 8.9). We can compute the

error probability of the rescaled qubits as the probability of applying a logical operator

in the cell (see section 8.2.5).
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Figure 8.7: Sketch of the splitting of two stabilizers. A cell shares two stabilizers
with each of the neighboring cells. There are four different ways to split a pair of stabilizers
in half stabilizers. During the splitting updates, we compute an estimate of the probability
of each of the four splitting choices. The signs shown in the dark circles correspond to the
parity of the half stabilizers. The two cells shown in the figure are part of the lattice shown
in Fig. 8.5.

(6.) We create a new code by rescaling each cell on the lattice to effective qubits. If

the code is small enough, we can decode the lattice by finding the most probable error

with a lookup table (Sec. 8.2.6). Otherwise, we repeat steps 1-5 for the new code.

(7.) Once we have the corrections on the smallest lattices, we can back-propagate

them to the original lattice to obtain the final recovery operation.

After applying the recovery operation, we can check in our simulations if the com-

bination of the error and our correction corresponds to the application of a logical

operator on any of the four encoded qubits in the lattice, which would represent a

logical error. This can be done efficiently by checking the parity of the qubits along the

support of each of the four logical operators (see Fig. 8.2), i.e. for instance the parity

of the number of bit-flips along the qubits in the support of Ẑi determines if a logical

X̂i operator was applied.

It is important to notice that the smallest lattice size and the size of the unit cell
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8.2 The decoder algorithm for the 4.8.8 color code lattice

Figure 8.8: Local decoding of cells. A single cell can be decoded using the syndrome
from the half stabilizers in the boundary and the parity of the bulk stabilizers. To find the
correction, a brute force decoder is applied, which finds the most probable correction (the
qubits in this suggested correction are marked by blue diamonds) using the estimates of
the error probabilities of each qubit. The parity of the corner stabilizers is ignored during
the decoding of the cell, but the parity of these stabilizers is updated depending on the
corrections applied. In this particular example, the parity of the stabilizer in the upper left
corner would be changed by the proposed correction, which will be taken into account in
the rescaled lattice. The signs in the dark circles represent the parity of the half stabilizers
in this cell.

determine the code size (total number of qubits) for which the decoder can be applied.

In this work, we consider a minimum lattice size of 8 qubits. Thus, the lattice sizes

for which the decoder can be applied depend on the number of rescaling steps m as

[[n, k, d]] = [[8 · 9m, 4, 2 · 3m]], where n is the number of qubits in the lattice, k the

number of logical qubits and d is the distance of the code. The number of qubits in

the lattice begins with 8 qubits as the minimum lattice size (see Fig. 8.1), and each

rescaling step introduces a factor of 9 in the number of qubits (see Fig. 8.9). Similarly,

the code distance d of the smallest lattice size is 2, and each rescaling step increases

the logical distance by a factor of 3 (see logical operators in Fig. 8.2).

8.2.1 Minimal cell

In order to choose an appropriate cell, three conditions need to be fulfilled (cf. [189]):

1. A logical operator can be defined for the cell.

2. There exists a valid correction for every possible syndrome.

3. The cell can map the entire code to a smaller version of itself.
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A valid cell for which these conditions are fulfilled can be found by choosing a

triangular cell for which the three corners are of different colors.

The minimal cell that fulfills these conditions in the 4.8.8 lattice is the 9-qubit cell

represented in Fig. 8.9. The cell shares two split stabilizers with each neighboring cell,

and an additional stabilizer is contained entirely within the cell. The syndrome for

this cell contains seven stabilizer measurements (one red stabilizer inside the cell, and

six half stabilizers on the boundaries), and four different corrections are possible for

each possible syndrome due to the logical operator and the stabilizer contained within

the cell. The 4.8.8 lattice can be mapped to a smaller version of itself using this cell,

reducing the number of qubits by a factor of 9 with each step. In Fig. 8.1, we show a

single step of splitting the lattice and rescaling the cells.

To simplify some of the decoding steps, two triangular cells can be combined into a

square cell, consisting of two effective qubits (as shown in Fig. 8.8). This square cells

now shares a boundary with four neighboring cells, with a total of 8 half stabilizers

located in the boundaries and four stabilizers contained entirely within the cell. The

use of square cells reduces the number of stabilizer splittings needed in each decoding

step. This approach also leads to a better performance in the hexagonal lattice [189].

In this work, we study the decoder considering the use of square cells.

The use of square cells also opens the possibility to consider the error probabilities

of the two effective qubits corresponding to the cell as joint probabilities, preserving

any possible correlations between them, instead of considering both effective qubits

as completely independent. Although we compute these joint probabilities during the

rescaling step (see section 8.2.5), there is further potential to explore in this variation,

as we neglect these correlations during the BP propagation algorithm.

8.2.2 Belief propagation

Belief propagation (BP) is a general method used to compute or approximate marginal

probabilities from a multivariate probability distribution based on Bayesian inference,

also called the sum-product message passing algorithm [366–368]. In the context of

decoding, BP is typically formulated in terms of bipartite graphs, where the vertices on

one side represent the (qu)bits, and the vertices on the other side represent the parity

checks (see Fig. 8.10). In the classical setting, it can be used successfully to decode

some low-density parity check (LDPC) codes, provided that the number of loops in the
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Figure 8.9: Rescaling cells in the 4.8.8 lattice. a) Minimal cell for the rescaling
decoder in the 4.8.8 lattice. This 9-qubit cell can be mapped to a single effective qubit b)
during the rescaling of the lattice. c) A square cell can be used during the decoder process
to reduce the number of stabilizer splittings. This cell is mapped to two effective qubits,
as shown in d). An error on the rescaled qubit can be back-propagated (curved double-
arrow) to the original lattice by applying the effective logical operator of the cell: the qubits
marked in c) with white squares represent the logical operator of the effective qubit marked
in d). By applying this logical operator, the parity of the corner stabilizers corresponding
to the effective qubits is changed, while preserving the parity of the rest of the stabilizers
in the cell. e) For comparison, we show the minimal cell for the rescaling decoder in the
hexagonal lattice [189], with only four qubits. This cell can be rescaled to an effective
qubit f).

underlying graph is not too large [367]. However, BP is known to fail as a decoder for

topological QEC codes, for which the bipartite graph contains a high density of loops.

There are two main failure scenarios: either the BP decoder does not converge at all,

or the solution is inconclusive or wrong. This is attributed to the degenerate nature

of topological codes [369], where a syndrome can be corrected using many different but

equivalent recovery operations (e.g. by adding a product of stabilizer operators, which

do not affect the logical information encoded in the computational subspace).

In the context of the rescaling decoder, the BP algorithm is introduced as an inter-
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Figure 8.10: Sketch of a bipartite graph in the belief propagation algorithm.
In the left, we show a small fraction of a color code, with two qubits and four stabilizers.
In the right, we show the corresponding bipartite graph, where each qubit is connected to
the stabilizers that have support on that qubit. Even in this small graph, a loop can be
found by following the path 1, i, 3, j, which leads back to 1.

mediate step to address the limitations of the splitting algorithm. The goal of this step

is not to find a correction, but to compute a new estimate of the qubit error probabili-

ties using the information from the outcome of the surrounding stabilizer measurements

and the prior information about the error rates of the neighboring qubits. During the

algorithm, the error probability pi of each qubit is updated using the information from

the neighboring qubits and the parity of the surrounding stabilizers. This local update

is repeated over several rounds or iterations, that effectively spread the information of

each qubit and stabilizer (likelihood of having an error, and parity, respectively) over

the neighboring region of the lattice. After BP, the rescaling algorithm has access to

an improved estimate of the error probability of each qubit, which helps the following

steps of the decoder to distinguish between different error cases.

In the rescaling decoder, the problems with convergence of BP are avoided, as a

convergence of the algorithm is not required for BP to be useful. With each iteration of

BP, each qubit will gain information about an increasingly larger region of the lattice,

improving the estimate of the error rate. However, the number of rounds of BP is

restricted to 3 during the decoding process to prevent the negative effects of loops

in the graph. We found in our simulations that the performance of the decoder was

reduced when using a different number of rounds, but the study of the use and impact

of BP for the decoding process was outside of the scope of our work.

The BP algorithm is based on the exchange of information between qubits and

stabilizers. Qubits and stabilizers are called nodes and are arranged in a lattice, so that

qubits are only connected to the neighboring stabilizers and vice-versa (see Fig. 8.10).

The information is shared in packages called messages, that contain information about
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the likelihood of errors in different positions. The steps of the algorithm are shown in

Algorithm 2. The equations used for the messages are derived below.

Algorithm 2: Belief propagation

Data: Measured syndrome {sj} and initial error probabilities {pi}
Result: Updated error probabilities {pupdatedi }
Each qubit sends an initial message to the neighboring stabilizers M

(0)
q→s

(Eq. 8.9)
for Number of rounds (N = 3) do

Each stabilizer sends a message to the neighboring qubits Ms→q (Eq. 8.10)
Each qubit sends a message to the neighboring stabilizers Mq→s (Eq. 8.11)

end

Update the estimates of the qubit error probabilities {pupdatedi } (Eq. 8.12)

The main building block of belief propagation is Bayes theorem, which is applied to

update the probability of an error in a qubit with the information from the syndrome:

p(qi = 1|{s}) =
p(qi = 1)

p({s})
· p({s}|qi = 1) (8.1)

p(qi = 0|{s}) =
p(qi = 0)

p({s})
· p({s}|qi = 0) (8.2)

where p(qi = 1|{s}) is the probability of an error on qubit qi given the syndrome {s},
p(qi = 1) is the prior, or the previous information on the qubit error rate, p({s}|qi)
is the probability of the given syndrome assuming an error on qubit qi (usually called

the likelihood ratio) and p({s}) is the probability of the syndrome event. This last

term is effectively an unknown normalization factor, which would be hard to compute

in general. However, we can cancel that term if we compute the quotient of both

quantities. Thus, we can write:

p(qi = 0|{s})
p(qi = 1|{s})

=
p(qi = 0)

p(qi = 1)
· p({s}|qi = 0)

p({s}|qi = 1)
(8.3)

=
1− pi
pi

∏
j

p(sj |qi = 0)

p(sj |qi = 1)
,

where the product in j compiles information for all the parity sj of the stabilizers

affecting the qubit. This quotient will correspond to the information sent from each
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stabilizer j to the qubit, and can be written, depending on the parity of the stabilizer,

as

Ms=0→q =
p(s = 0|qi = 0)

p(s = 0|qi = 1)
=
p(even)

p(odd)
, (8.4)

Ms=1→q =
p(s = 1|qi = 0)

p(s = 1|qi = 1)
=

p(odd)

p(even)
. (8.5)

Here, p(even) and p(odd) correspond to the probability of an even/odd number of error

events happening on the remaining qubits involved in the parity check. Therefore,

we can compute the messages from the stabilizers by computing the probability of an

even/odd number of error events happening on the remaining qubits. This probability

can be written using a the following general formula to find the probability of an

even/odd number of error events, given the probabilities pi of each individual event:

p(even|{pi}) =
1

2
+

1

2

∏
i

(1− 2pi), (8.6)

p(odd|{pi}) =
1

2
− 1

2

∏
i

(1− 2pi). (8.7)

Then, the messages from the qubits to the stabilizers can be updated using the

information from the stabilizers. The messages to the stabilizers in the next cycle are:

Mq→si =
1− p
p

∏
j∈N(q)
j 6=i

Msj→q, (8.8)

where N(q) refers to the three stabilizers in the neighborhood of qubit q. In this way,

the information from the qubits and stabilizer spreads through the code, leading to an

improved estimation of the error probabilities for the qubits.

Nevertheless, in a practical numerical simulation, the direct use of Eqs. (8.4), (8.5)

and (8.8) can lead to numerical problems, when the values of the error probabilities

of the qubits are close to zero. In the RG decoder, this scenario can occur frequently.

For example, the rescaling of a region where no stabilizer excitations were detected

would lead to a much smaller error rate in the effective rescaled qubits, since applying

a correction in the rescaled qubit would imply a larger number of corrections being

applied in the former lattice.
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Due to this problem, it is useful to work instead with the log-likelihood ratio. With

that formulation, the initial message from qubits to stabilizers is

M (0)
q→s = log

1− pq
pq

. (8.9)

The equation for the messages from stabilizers to qubits can be written as:

Msi→qj = (1− 2 · si) 2 tanh−1

 ∏
k∈N(si)
k 6=j

tanh(Mqk→si/2)

 (8.10)

where si represents the parity of the stabilizer measurement. Similarly, the equation

for messages from qubits to stabilizers can be simplified as:

Mqi→sj =
∑

sk∈N(qi)
k 6=j

Msk→qi + log 1−pi
pi
. (8.11)

After the last iteration of message passing, we can obtain the updated estimate of

the error probability. The equation for the final estimate of the error probability can

be written as:

pupdatedi =

1 + exp

log 1−pi
pi

+
∑
j

Msj→qi

−1

. (8.12)

8.2.3 Corner updates

During the decoding process, the splitting updates and the cell decoder ignore the

syndrome of the stabilizers located in the corners of the cells. This can be problematic

for some error cases, as the decoder would not be able to distinguish cases that differ

only on the syndrome of the corner stabilizers. For this reason, it is beneficial to use the

information from the syndrome in the corners of the cells to modify the error probability

of the qubits near the corners. In the context of the decoder, this step is applied after

BP, using the resulting estimates of the qubit’s error probability.

Given the parity si of a given corner stabilizer, we need the parity of the qubits in

the cell plus the parity of the qubits outside to be equal to si. Thus, for a given qubit
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j in the cell with a prior estimate pj , we can compute the updated error probability of

an error on qubit j given the parity of the corner stabilizer p(j|si, pe) as:

p(j|si = 0) =
pj ·pe(odd)

pj ·pe(odd)+(1−pj)pe(even) , (8.13)

p(j|si = 1) =
pj ·pe(even)

pj ·pe(even)+(1−pj)pe(odd) , (8.14)

where pe corresponds to the probability of the qubits outside the cell to have a total

parity that is even/odd. We can use the Eqs. (8.6) and (8.7) to compute the probability

of n qubits having a total even or odd parity.

During our study of the algorithm in the hexagonal lattice, we found that the omis-

sion of this step had a significant negative impact in the performance of the decoder.

However, we only experimented briefly with the use of corner updates before the split-

ting updates. After this step, no direct communication is established between cells

localized diagonally opposite to a corner stabilizer. It would be interesting to study

how additional modified corner updates realized during the splitting algorithm affect

the overall decoder performance.

8.2.4 Splitting the stabilizers

The basic cells on the 4.8.8 lattice share two splittings with each neighboring cell (see

Fig. 8.9). This leads to a new phenomenon compared to the more straightforward case

of the 6.6.6 lattice, as the probability of splitting of each stabilizer now depends on the

splitting configuration of the other splitting shared with that cell. Therefore, we need

to consider the joint probabilities, which simultaneously consider the probability of a

splitting configuration of the two stabilizers s1 and s2 shared between the cells.

This complication in the way we store and compute the probabilities of splitting

configurations is one of the main challenges in the application of the RG decoder to the

4.8.8 lattice, and it affects most of the other steps of the algorithm, as splittings need

to be considered in pairs taking into account the joint probabilities:

1. The first estimate for the joint probabilities can be obtained from the probabilities

of the qubits involved in each stabilizer having an even/odd number of errors. This

does not consider the rest of the splittings in the cell, only the probabilities of

the qubits involved in the splitting.
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2. During the splitting updates, we update the joint probabilities for the splitting

configurations. Each step updates our estimate for the probabilities of each split-

ting using the information from the two cells that share the stabilizers.

3. In the rescaling step, the probability of error in the rescaled qubit involves the

probabilities of the different splitting configurations. This means that the error

probability of the rescaled qubit takes into account the uncertainty in the splitting

choice.

Next, let us study the mathematical details used to update the splitting proba-

bilities. The first equation to consider corresponds to the probability of a given error

configuration. Assuming our estimate of the error probabilities of each individual qubit,

we can compute the probability of an error configuration C = {e0, e1, ...enq−1} (where

ei = 0, 1 represents the absence or presence of an error on qubit i, and nq is the number

of qubits in a cell) by adding a factor of pi for each qubit with an error, and a factor

of 1− pi for each qubit without an error,

p(C) =

nq−1∏
i=0

peii (1− pi)1−ei , (8.15)

where we assumed no correlation between the error probability pi of each qubit. During

the rescaling process, the use of square cells with two qubits will give us access to the

joint probabilities of each qubit pair that belongs to the same cell. We can use this

additional information about the correlations between different qubits to modify this

equation as:

p(C) =

nq/2−1∏
i=0

p(ei, ei+1), (8.16)

where p(ei, ei+1) corresponds to the element of the joint probabilities corresponding to

our prior knowledge from the error probabilities of qubits i and i+ 1.

Using the probability of a given error configuration, we can compute the probability

of all error configurations that are compatible with a given syndrome as the sum of

p(C) over all configurations C compatible with the syndrome {s} = {s0, s1...snS−1}
(si = 0, 1 represents the even or odd parity of the stabilizer or half stabilizer i):

p(e|{s}) =
∑
C

p(C). (8.17)
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For the 18-qubit square cell that we use for the 4.8.8 color code, each syndrome includes

eight half stabilizers (two on each side of the square) and four additional stabilizer

measurements corresponding to the bulk stabilizers inside the cell. Here, as stated

earlier, the parity of the corners is ignored, as the parity of the corner stabilizers will

be solved in the following rescaling steps. On the square cell, there are two logical

operators that can be defined, one for each of the effective qubits to which the cell is

rescaled. This means 22 possible classes of configurations compatible with any syndrome

in the cell. In addition to that, all possible product combinations with the four bulk

stabilizers lead to equivalent error configurations, adding up to a total of 22+4 = 64

possible configurations (see example in Fig. 8.11) over which is to be summed according

to Eq. (8.17).

While using all 64 configurations would lead to more accurate estimations, this also

involves a high constant-factor overhead in the computational time required by the

decoder. Thus, to improve the performance of the algorithm with regard to computing

time, we approximate Eq. (8.17) by considering only one configuration, using the cell’s

lookup table (in the example of Fig. 8.11, that would mean the first configuration in the

figure). With this approximation, we effectively reduce the computational overhead by

a factor of 64 while keeping one of the terms of highest weight in Eq. (8.17). Although

this restriction ignores alternative error configurations which could be more probable

due to the uneven error probabilities of the qubits, in our simulations we found no

significant change in the correction performance when using system sizes larger than

72 qubits, while the computational time required by the decoder dropped by an order

of magnitude. Therefore, we used this approximation for the simulations shown in

Sec. 8.3.

Once we have seen how to compute the probability of all possible configurations

compatible with a given syndrome (or one of the most likely configurations if we use

only the choice from the lookup table), we can define the probability of a given half

splitting sli given a certain fixed syndrome on the rest of splittings (where the superscript

l corresponds to the cell on the left, see Fig. 8.12). This probability corresponds to the

fraction of possible configurations compatible with the splitting choice, compared with

the total probability of the possible configurations for all splitting choices,

p(sli|{s}) =
p(e|si, {s})

p(e|si = 0, {s}) + p(e|si = 1, {s})
. (8.18)

152



8.2 The decoder algorithm for the 4.8.8 color code lattice

Figure 8.11: Example of the different corrections compatible with a given syn-
drome in the square cell. The figure shows all the possible error configurations that
are compatible with the trivial syndrome in the square lattice. The configurations are
obtained by computing all the possible combinations of the two logical operators and the
four bulk stabilizers, for a total of 22+4 = 64 configurations. To facilitate the visualization,
we represent the qubits with a correction with a red C within a black circle. Since the
cell decoder does not take into account the parity of the stabilizers in the corners, we can
see how different corrections can affect the parity of the stabilizers in the corner. These
changes in the parity of the stabilizers in the corners are propagated to the rescaled lattice,
where it is taken into account.

Seeing that every cell shares two stabilizers with each of its neighbors, the splitting

choice for these two stabilizers is not independent. Therefore, we need to consider the

joint probabilities, where we consider each of the combined splitting choices for the two
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Figure 8.12: Notation of stabilizer splitting. Example of a pair of splittings between
two neighboring cells in the 4.8.8 lattice. The splittings 0 and 1 are being updated, and the
super index indicates if we refer to the left or right half stabilizer. The parity of the (half)
stabilizers on the left cell are represented as si, while the parity of the (half) stabilizers on
the right cell are notated with s′i.

splittings shared between two cells. Therefore, the probability of a splitting choice for

the stabilizers sl0 and sl1 given a fixed choice on the rest of splittings (which we write

as {s} for simplicity) can be written as

p(sl0, s
l
1|{s}) =

p(e|sl0, sl1, {s})∑1
i,j=0 p(e|i, j, {s})

. (8.19)

Note that this expression is equivalent for all splitting pairs, and we only wrote

it explicitly for the first two splittings to simplify the notation. Since the rest of the

splitting choices are not fixed, we can compute the estimate for the half splitting within

a cell by combining the information from all splitting choices. For this, we can use the

information of the joint probabilities p(sk, sk+1), which corresponds to our current

estimate of the probability of the half splitting sk, sk+1 (e.g. the probability of the

splitting choice could be p(s2 = 1, s3 = 1)). The estimate for the probability of a half

splitting configuration within the cell can then be computed as the sum of Eq. (8.19)

for each splitting configuration of the other splittings involved in the cell

p(sl0, s
l
1) =

∑
{s}k

p(sl0, s
l
1|{s}k)

3∏
k=1

p(s2k, s2k+1). (8.20)

Finally, we want to find the probability of a given splitting choice. This necessarily

involves the configurations in both the left and right cells, and the value of the parity
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vi of the stabilizers that we are measuring. Combining the information from both cells

and ensuring the consistency condition sli ⊕ sri = vi, we can obtain the next estimate

for the probability of a given splitting choice as

psplit(s
l
0, s

l
1) =

p(sl0, s
l
1)p′(sr0 = sl0 ⊕ v0, s

r
1 = sl1 ⊕ v1)∑1

i,j=0 p(i, j)p
′(i⊕ v0, j ⊕ v1)

, (8.21)

where ⊕ represents a binary sum, and v̄i = 1⊕vi. Using these equations, we can update

our estimate for each of the splitting choices.

During the splitting algorithm, we apply global updates to the probabilities of the

splitting choices by simultaneously updating the splitting probabilities of all splitting

pairs in the code. All of the updates for the estimates of the splitting probabilities

depend on the estimates from the previous step, which are not overwritten until all

new estimates have been computed. This also means that the splitting algorithm can

be easily parallelizable, since each splitting pair can be updated independently.

Although the number of global updates required for convergence can vary between

runs, we empirically find that the average number of updates does not scale significantly

with the lattice size, with less than 15 update rounds required. We test the convergence

by measuring the average number of changes in the splitting choice per splitting and

round. We find that this ratio does not increase with the system size (Fig. 8.13).

Furthermore, we estimate the fraction of cases that have converged after n split update

rounds. For a given error case, we define the number of rounds until convergence as

the last update round with less than 3m changes in the split choice (with m being

the number of rescaling steps required for that lattice size). Notice that this criterion

is particularly strict since the number of splittings grows exponentially with m as

Nsplittings = 8 · 9m−1, but the number of splittings that we allow to remain active only

grows linearly with m. Nevertheless, we found that, for the system sizes that we worked

with, the time required for the majority of the system to converge according to this

criteria grows slowly with m.

To study the impact of the convergence of the splitting updates on the performance

of the decoder we gathered statistics separately for the success and failure cases. How-

ever, we did not find evidence of a significant difference in the convergence speed with

the curves for success and failure, with both curves almost overlapping for system sizes

larger than m = 1. It remains to be studied how the number of splitting update rounds
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Figure 8.13: Convergence of the splitting updates. We show the statistics of the
performance of the splitting updates. In the main plot, we show the average fraction of
splittings that have changed the split choice on each split update round. In the inset plot,
we show the cumulative fraction of cases that have converged by each split update round.
We define a case to have converged at round r if that was the last round with more than
3m changes in the splitting choice. For both plots, the lines connecting numerical data
points have been drawn as a guide to the eye.

affects the performance of the decoder and whether the convergence of the splitting

updates leads or not to a better overall solution.

8.2.5 Rescaling of the cells

Once we choose a splitting configuration, a correction can be found within each of

the cells in the lattice. Using the syndrome from the half stabilizers in the boundary

and the parity of the stabilizers within the cell, as well as the estimates for the error

probabilities of the qubits, the most probable correction for a cell can be found with

the help of a lookup table. The next step in the decoder is to rescale the cells, mapping

each square cell to a pair of qubits. The error probability of each qubit on the rescaled

lattice also needs to undergo a rescaling process. In this section, we discuss the details

on how to compute the resulting error probability for the rescaled qubits.

The main idea to understand in the rescaling of the qubit error probability is the

fact that an error on a qubit in the rescaled lattice corresponds to the application of

a logical operator on the qubit of the original lattice (see figure 8.9). If the original

correction in the cell is C, we can write a first estimate of the error probability of the
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8.2 The decoder algorithm for the 4.8.8 color code lattice

rescaled qubit given the splitting choice σ as:

p(L|σ) =

∑
{Sb} p(C + L+ {Sb})∑

{Sb} p(C + {Sb}) + p(C + L+ {Sb})
, (8.22)

where the sum over {Sb} represents all possible combinations of the bulk stabilizers, L

is the logical operator and p(E) is the probability of a given error configuration E.

For this estimate, we assumed that the splitting choice from the previous step is

correct. However, from the previous splitting step, we know that we have an uncertainty

in the splitting choice. In addition, we have an estimate of the probability of each

splitting choice. Thus, we can include this information about the other splitting choices,

weighted by the probability of each splitting choice, in the equation for the probability

of an error in the rescaled qubit.

In order to include the information from alternative splitting configurations, we first

need to understand what the probability of an alternative splitting means, and how to

relate it to the correction C that we applied on the cell during the previous step. In

particular, we need to find p(L|σ̃k) for the alternative splittings σ̃k.

For the decoder of the 6.6.6 lattice [189], the key idea to find this expression is

that, by applying the stabilizer of a given splitting, we can effectively change the choice

of that splitting, as there is an odd number of qubits from that stabilizer on each

cell. By applying the half stabilizer corresponding to the splitting, we could relate the

different corrections that correspond to each splitting choice, thus finding an expression

for p(L|σ̃k).
In contrast, on the 4.8.8 lattice, the support of the half stabilizers on each cell has

an even number of qubits. This means that applying the stabilizer does not change the

value of the splitting choice for the splitting corresponding to that stabilizer. However,

for the 4.8.8 color code, splittings come in pairs, as each cell shares two stabilizers. By

applying the stabilizer of one of these two splittings, we can effectively change between

the two choices of the neighbor splitting, and thus relate the corrections corresponding

to both splitting choices. An example of this equivalence is shown in Fig. 8.14.

Following this rule, we can systematically find the probability p(L|σk) for each of

the 28 possible splitting configurations within a given cell with these steps:

1. Find the difference in splitting choice between the reference splitting σ0 (the one

with the maximum probability, chosen to find the correction) and the alternative
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splitting σk: ∆k = (σ0 − σk) mod 2.

2. For each splitting in ∆k, add the half stabilizer of its neighbor splitting. We call

this product of half stabilizers δk.

3. Compute the conditional probability p(L|σk) by adding to each configuration in

Eq. (8.22) the product of half stabilizers δk.

4. The final probability of error in the rescaled qubit can be computed as the sum of

each of the conditional probabilities, weighted by our estimate of the probability

of each splitting choice,

p(L) =
∑
k

p(L|σk) p(σk) (8.23)

=
∑
k

p(σk)
∑
{Sb} p(C + L+ {Sb}+ δk)∑

{Sb} p(C + {Sb}+ δk) + p(C + L+ {Sb}+ δk)
.

Here, the sum over k selects the different combinations of splitting choices, and

the sum over {Sb} runs over all possible combinations of products of the bulk

stabilizers.

Figure 8.14: Equivalence between applying a stabilizer and changing the split
choice. Each cell shares two stabilizers with each of the neighboring cells, which need to be
split. These two splittings form a pair of splittings. By applying the half stabilizer of one
of the stabilizers, the resulting correction corresponds to a change in the splitting choice of
the other splitting in the pair. In the figure, we can see one example in which, by applying
the half stabilizer of one of the splittings, we change the parity of the neighbor splitting
and obtain a valid correction for the new syndrome. The qubits affected by applying the
stabilizers are marked with orange diamonds, and the stabilizer for which the splitting
choice is changed are marked in yellow.

Finally, there is one more factor that we need to take into account in the rescaling of

the cells. Since each cell corresponds to two different qubits, the error probabilities of
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8.2 The decoder algorithm for the 4.8.8 color code lattice

the two qubits in the cell are not independent. Thus, we can compute the probabilities

of having an error (Li) on each of the two logical qubits on the cell, leading to the joint

probabilities for the four possible cases after the rescaling (error on the first qubit, error

on the second qubit, error on both or error on none):

C̃{Sb},k = C + {Sb}+ δk, (8.24)

p(10,11) =
∑
k

∑
{Sb} p(C̃{Sb},k)

Dk
p(σk), (8.25)

p(L0,11) =
∑
k

∑
{Sb} p(L0 + C̃{Sb},k)

Dk
p(σk), (8.26)

p(10, L1) =
∑
k

∑
{Sb} p(L1 + C̃{Sb},k)

Dk
p(σk), (8.27)

p(L0, L1) =
∑
k

∑
{Sb} p(L0 + L1 + C̃{Sb},k)

Dk
p(σk), (8.28)

Dk =
∑
{Sb}

1∑
l0,l1=0

p(Ll00 + Ll11 + C̃{Sb},k). (8.29)

Using these equations, we can compute the joint error probabilities for the rescaled

qubits in tuples. We can then use these probabilities directly, or obtain the error prob-

abilities of the individual qubits by marginalizing the second qubit from the probability

distribution. In our simulations, we keep the joint probabilities of the two qubits and

use them for the final decoding step, but we did not adapt the BP decoder to take into

account the correlations encoded in the joint probabilities of the qubits.

8.2.6 Decoding of the final lattice

After a sufficient number of rescaling steps, we can reach a lattice size that is small

enough to apply a brute force decoding. This means that, with the help of a lookup

table, we compute the probability of each error configuration compatible with the

syndrome, and choose the most probable error configuration as the recovery operation.

In our simulations, we consider a final lattice size of 8 qubits and distance d = 2,

as shown in Fig. 8.15. While, in normal conditions, a distance two code should only

be able to detect the presence of an error, our decoder has the advantage of having an
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estimate for the error rate of each qubit in the lattice, which can allow the brute force

decoder to distinguish between otherwise equivalent error patterns.

Figure 8.15: Smallest lattice size for a 4.8.8 color code with periodic boundary
conditions. After the last rescaling step, we obtain a lattice with 8 qubits, six independent
stabilizers (three X and three Z stabilizers) and distance d = 2. Although a code of this
distance should only be able to detect errors, we can use it to obtain a correction, since
the error rates of the different qubits involved are not homogeneous.

A larger lattice size can be chosen as the final lattice. However, the computational

complexity of the brute-force decoder scales exponentially with the system size. There-

fore, an alternative decoder could be advised when working with larger final lattices, a

combined approach that could be studied in further research.

8.3 Results

We estimate the code capacity threshold of the decoder using Monte Carlo simulations.

We generate random distributions of errors for different physical error rates and evaluate

the logical error rate after decoding on each of the four logical qubits. We consider

an error model with independent bit and phase flip errors, as detailed in Sec. 8.1.

The dependence of the logical error rate as a function of the bit-flip error rate is

presented in Fig. 8.16, showing the average of the error rate of the four logical qubits.

To obtain the error bar of each estimate, we use the error from the binomial distribution

err =
√
plog(1− plog)/n. The dependence of the error on the logical error rate plog

implies that a larger number of samples is required for the low plog regime. Additionally,

the computational cost of the simulations scales with the system size, which limits the

number of samples we could obtain with the available resources. Therefore, we use a

different number of samples for each point in the figure, ranging from 106 samples per

point for the smaller system size to 103 samples per point for the larger system size

m = 5.
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8.3 Results

For each system size, the point at which the logical error rate equals the physical

error rate is called the pseudo-threshold t(L) [370]. Using a simple linear interpolation

between the two closest points to the crossing with the pphysical = plogical line, we obtain

an estimate for the pseudothreshold for each system size.

The threshold of the decoder corresponds to the limit limL→∞ t(L) of the pseu-

dothresholds when we have an infinite size lattice. Using the estimates from the pseu-

dothresholds, we find the infinite size limit by fitting the pseudothresholds to the fol-

lowing ansatz [371]:

t(L) = aL−
1
ν + t∞, (8.30)

where t(L) is the pseudothreshold at system size of code distance L, and the unknown

parameters are: t∞, the threshold in the infinite limit; ν, the scaling exponent and the

coefficient a. Using a non-linear least squares fit 1 we obtain a threshold t∞ ' 6.0% and

a scaling exponent ν ' 1.6. The results from our simulations are shown in Fig. 8.17.
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Figure 8.16: Logical performance. We plot the average logical error rate vs. the phys-
ical bit-flip (phase-flip) error rate for increasing size of the code lattice. Below p = 6.0%,
the logical error rate decreases with increasing system size, see main text and Fig. 8.17.

Note that the results for system size m = 1 are particularly influenced by the finite-

size effects, and we neglected the contribution from the level-1 pseudothreshold from

1We use the subroutine provided by the scipy python package, with source code available at
https://github.com/scipy/scipy/blob/v1.7.1/scipy/optimize/minpack.py.
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Figure 8.17: Code capacity noise error threshold for the 4.8.8 color code de-
coder. By fitting the pseudothresholds to a finite-size scaling ansatz of Eq. (8.30), we
estimate the threshold of the decoder as 6.0% for code capacity noise (independent phase
and bit flips errors with ideal syndrome measurement).

m = 1 when computing the threshold.

8.4 Summary and outlook

This chapter of the thesis has presented the results that we achieved in [2], as well as

the analytical derivations that we used to develop the algorithm. In this work, we have

presented an efficient decoder based on the local decoding and rescaling of the lattice

that can be applied to the 4.8.8 color code lattice. This lattice is particularly interesting

for FTQC, as it allows the transversal application of the complete Clifford group.

The computational complexity of the decoder is O(N log(N)), and can be parallelized

straightforwardly to achieve a remarkable O(log(N)) scaling with the number of qubits

N . We obtained a code capacity threshold of 6.0%, which lies below the 9.9 − 10.3%

obtained by other recent decoders, like [193, 196].

Beyond the results and methods presented here, there are multiple open fronts for

further research. First, a detailed study of the impact of the different steps of the

decoder can lead to an improvement in the decoder performance. Of particular interest

would be the study of alternative methods to communicate between cells, combining

the splitting updates with message passing algorithms sharing information about the
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syndrome in the corners. An interesting extension could be to extend the decoder ideas

to work with open boundary conditions, which would make it easier to implement

for most physical quantum computing platforms. This should be possible by simply

adapting the rules for the local decoding around the boundaries, but further research

needs to be made in order to confirm this hypothesis. Additionally, replacing the final

brute-force decoding with another efficient decoder (e.g. the restriction decoder [196])

could reasonably provide new interesting results, and would allow additional flexibility

in the choice of lattice sizes.

However, perhaps the most interesting continuation would be to extend the decoder

for more realistic noise models, like phenomenological noise or even circuit noise. This

has been achieved in surface code RG decoders [187] by, in an oversimplified way, using

three-dimensional cells that extend over different QEC rounds. This approach could

be adapted as well for color codes, although we can foresee some challenges in the

implementation on the 4.8.8 lattice, as the minimal cell would likely be of sufficient

size to significantly increase the computational cost of decoding, introducing a large

constant overhead on the local decoding of cells, which would potentially require a

combination with neural network techniques. Alternatively, the ideas from the RG

surface code decoding from [187] could be combined with the algorithm presented in

[192, 196] to project the color code into several copies of surface codes, which could

then be decoded using the RG decoding algorithm for surface codes.

Once the step from code capacity noise to circuit-level noise has been achieved, the

capability of the decoder to handle the error rates of individual qubits could conceiv-

ably open the possibility of introducing complex noise patterns (e.g. models learned

directly from experimental observations [179]) capable of achieving higher prediction

capabilities.
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Chapter 9

Conclusions and outlook
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9. CONCLUSIONS AND OUTLOOK

Quantum technologies are reaching the point where experimental implementations

start to approach the theoretical requirements for practical applications. During the

writing of this thesis, some important landmarks have already been achieved. We have

seen the first demonstrations of quantum supremacy (or quantum advantage) [95–

97, 372], or the demonstration of FT protocols with encoded qubits [167, 169, 171].

The field of quantum computation and quantum information has attracted large in-

vestments from governments and privates, and we are experiencing a rising number of

research groups, from universities to big companies, as well as several new start-ups

[71, 86]. Multiple potential applications for quantum computation are being proposed,

e.g. [18, 19, 27, 54, 64–71], as well as a plethora of quantum algorithms [373–376]. Sig-

nificant progress has been achieved on the research of different platforms for quantum

technologies [18, 19, 88, 93, 94, 283, 377–380]. Industries are finding applications for

quantum processors to optimize their operations, in fields that cover from chemistry

and robotics, to finance and logistics [68–78] among many others. The success of recent

experiments (e.g. [89, 95–97, 169, 171, 306, 381]), as well as the promising theoretical

applications (e.g. [8, 14, 18, 19, 32, 79, 84, 85, 382–385]), have made quantum computing

a very exciting field to be working in, with plenty of opportunities for new applications

and research.

In the near term, we can expect multiple demonstrations of applications and im-

provements on NISQ devices [65, 125, 386], with growing numbers of qubits and im-

proved fidelity on the gates and coherence times. On these near term implementations,

the resolution of problems using quantum optimization (e.g. quantum adiabatic com-

puting, quantum annealing, etc.) [79, 80, 82–85, 292], hybrid algorithms [59–61, 64] or

quantum simulations of physical systems [14, 15, 21, 22, 25, 27, 28, 32, 36–38] stand out

as some of the most promising realizations that we can expect to see over the follow-

ing years [374–376]. Some experiments have already shown proof of principle demon-

strations of algorithms like Shor’s factorization [387], Grover’s search [388], quantum

annealing [389] or HHL algorithm to solve systems of linear equations [390, 391].

In the medium term, we can expect further demonstrations of fault tolerant quan-

tum computation, as the progress in different platforms gets them closer and closer

to meeting the requirements of FTQEC [88–93]. Important milestones have already

been achieved, with experiments showing gate fidelities near or within the thresh-

old of topological QEC, like ion trap [90–92, 140, 143, 392] or superconducting qubit
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[89, 89, 134, 393] experiments. Furthermore, many groups have also demonstrated

some of the building blocks of QEC, from FT state preparation and stabilizer readout

[147, 170], to repeated FT QEC cycles [171] as well as FT magic state preparation and

injection [169]. With these experiments, we were able to witness a hallmark feature

of FT circuit design: an improvement of the performance of encoded qubits, despite

the increased gate count and complexity of the underlying circuits required by the FT

implementations of encoding and manipulating logical qubits. The following impor-

tant steps to be achieved include the demonstration of repeated error correction and

FT gate operations for larger-distance logical qubits, and the increase in the number

of logical qubits, both of which require the challenging task of increasing the number

of qubits while maintaining the high fidelities of operations. In parallel to the ex-

perimental development, the theoretical research must contribute to developing better

FT protocols and techniques to reduce the effects of noise and optimize the use of

resources (e.g. [163, 227, 237]). This theoretical effort requires classical tools that can

help us predict and understand the behavior of the different approaches and identify

the bottlenecks that limit the progress.

In regard to the long term goals of quantum computation, the applications with

higher potential involve the implementation of FTQC, which can allow the use of

quantum algorithms that require deep circuits and a large number of logical qubits,

e.g. [100, 109, 131, 175, 394]. With an increase in the ratio of physical qubits per logi-

cal qubit, the fidelity on the logical gates can be significantly improved, exploiting the

potential of the threshold theorem to achieve long quantum computations with many

logical qubits [127, 129, 130]. Topological QEC codes such as the surface code [110–112]

and color codes [113, 132], encode the logical information into topological properties

of the system, and allow the realization of operations between encoded qubits. They

stand out as the QEC codes with some of the highest known thresholds [109, 131]. Cur-

rently, the best candidates for the realization of large scale FTQC are superconducting

qubits, trapped ions and photon-based QC [93, 302, 395–398]. The modular design

of superconducting qubits in 2D arrays makes them a natural platform for scaling to

a large number of qubits. Furthermore, they present some of the fastest gates, with

gate times in the order of nanoseconds. However, they face several challenges, like

the implementation of quick and reliable long distance interactions, and the difficulty

in the production of identical qubits [93, 378, 379, 395]. Trapped ions, on the other
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side, overcome this problem by using perfectly identical ions, with the highest gate

fidelities to date and long coherence times [90, 140, 149, 306, 399]. For ion traps, the

challenge lies on the scaling, as controlling an increasing number of qubits in the same

Paul trap can become difficult. Multiple approaches to the scalability of ion traps have

been proposed, e.g. long ion chains with all-to-all connectivity, 2D arrays of ion traps

with shuttling, communication between different traps, 2D Penning traps or the use

of trapped electrons [149, 283, 297, 299, 308, 321, 322, 326, 400–403, 405]. Photonic

devices use photons as information carriers, which are clean decoherence-free quantum

systems with high fidelity single qubit gates, and easily scalable. The main challenges

are photon losses, imperfect detection and generation of photons, and the development

of high fidelity, deterministic two-qubit gates [380]. This platform presents an outstand-

ing advantage in applications for quantum communication and quantum cryptography,

and experiments of quantum advantage have already been proven with photonic de-

vices [96, 97]. The research on the theoretical side can prove crucial in the road towards

large scale FTQC, having the potential to reduce the resources required for FTQEC.

The design of improved FT protocols for magic state distillation, which is one of the

most significant bottlenecks of FTQC [169, 175, 224–227, 237, 382], or even the design

of QEC codes and protocols that avoid the need for magic states (e.g. 3D color codes

or stacked codes [238–240]), are some examples of theoretical challenges that can push

forward the realization of large scale FTQC.

The research presented in this thesis contributes towards the existing challenges

in FTQEC, both on the near and long term challenges. The realization of feasibility

analysis plays a fundamental role in the development and evaluation of FT protocols

(e.g. [171]), characterizing the bottlenecks and potential improvements. Furthermore, it

can direct the experimental efforts towards the most damaging error sources, optimizing

the use of resources and improving our understanding of the problems and challenges.

With this purpose, in chapter 6 we present a feasibility study of the implementation of

FTQEC protocols on near term ion trap devices. In this project, we have shown the

existence of a beneficial regime for the application of QEC, and identified target values

for the fidelities required on the experimental devices. Additionally, we have studied

the impact of the different error sources that affect ion trap devices, using microscopic

models and a realistic description of the noise processes present in ion trap experiments.

168



This modelling allows us to present realistic expectations for near term ion trap exper-

iments. One aspect of particular relevance is the effect of crosstalk, a noise source that

stems from unwanted interactions between the target ions and the neighboring ions

during the application of quantum gates. The damaging effects of crosstalk have been

reported by recent research, with potential measures to suppress it being a relevant

topic within the field [101, 107, 139, 179, 306, 341–344]. In our work, we have shown

how using refocusing pulse sequences can be successfully used to reduce the effects of

crosstalk, placing the region of beneficial QEC within reach of near term experiments.

Furthermore, we combine different numerical simulation techniques to study the effects

of the coherent nature of crosstalk, showing the relevance of state vector simulations

vs stabilizer simulations, which are often overlooked in the literature due to the higher

computational cost. Overall, the work presents a comprehensive overview of the state

and capabilities of near term ion traps, contributing to the development of the field

and the implementation of FTQEC protocols.

Concerning future improvements, our techniques can be extended to account for

most of the relevant existing challenges in the development of quantum computing de-

vices and FT protocols. The noise models can be expanded to account for other sources

of noise, like correlated noise and non-markovian noise, and include error models for

other devices and platforms. For example, shuttling-based ion traps or superconducting

qubits could be very interesting candidates. Furthermore, replacing the noise models

with experimentally measured noise channels can lead to higher accuracy of the simu-

lations and an improved understanding of the sources of errors that affect the devices.

In another line, the simulations could be used to compare the efficacy of different FT

protocols for different platforms, allowing the development of tailored protocols that

address the particular characteristics of the noise on a given device. Finally, further

study can be done in evaluating the precision of the different simulation techniques. As

we have shown in our work, the approximations realized during stabilizer simulations

can underestimate dangerous coherent sources of noise. However, the more precise

state-vector simulations require a longer computational time, limiting the speed at

which different approaches can be tested. An intermediate solution could be the use of

an improved simulation algorithm, capable of estimating possible coherent amplifica-

tion and adjusting the simulation accordingly to allow stabilizer simulations to predict

more accurately the behavior of noise, while remaining a scalable method for a larger
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number of qubits. These techniques could notably speed up the pace of research, while

state vector simulations could be reserved to confirm the final results.

The second line of work presented in this thesis is motivated by the long term goals

of FTQEC. One of the challenges of scaling QEC codes lies in the capability of classical

processing to interpret the syndrome measurements, which encode information about

the location of the errors in the code. To operate on topological codes, particularly codes

of larger distance, it is crucial to have an efficient decoding algorithm that provides a

recovery operation with a high success rate. This rate is reflected in the threshold value,

and it can, for some noise models, be benchmarked against known upper bounds on

decoding performance obtained through mapping the quantum error correction problem

onto a classical statistical-mechanical model [111, 218, 220]. However, this accuracy

of the recovery operation needs to be balanced with the computational time required

by the decoding algorithm. While for a quantum memory it is potentially fine to keep

a backlog of measured error syndromes and compute the correction later during the

classical post-processing phase, this is not the case anymore once we start to perform

logical quantum computations. Here, the intermediate state of the computation will

depend on the decoder outcome, such that the quantum computation may have to wait

for the decoding algorithm to finish, time during which new errors can accumulate.

The development of decoders for color codes has been and still is an active field of

research [189–197, 201, 250, 251]. With this purpose, we study two efficient decoding

algorithms for color codes in chapters 7 and 8. Color codes are particularly relevant for

the future implementation of FTQC, as they present some of the highest qubit to code

distance ratios and, in the case of the 4.8.8 color code, the capability of transversal

application of the whole Clifford group [113]. Chapter 7 presents a Union-Find based

decoder, inspired by recent works [193], with a computational complexity that scales

almost linearly with the number of qubits N . This places the decoder among the most

efficient decoders in the literature. On the other hand, chapter 8 presents a decoder

based on rescaling for the square-octagon 4.8.8 color code lattice, with a computational

complexity of O(N log(N)), that can be parallelized to achieve an O(log(N)) scaling

with the number of qubits N . Previous works on rescaling decoders for topological

codes were focused on surface codes [187, 188] and the hexagonal color code lattice

[189]. Our work provides a valuable extension of this decoder’s approach to the more

relevant 4.8.8 color code lattice, capable of applying the complete set of Clifford gates
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transversally [113, 238]. The application of the rescaling decoder to this lattice involves

additional challenges due to the properties of the lattice, as shown in Chapter 8 and

the published work [2].

The work on the decoders offers multiple possibilities for further research. The

threshold found in our union-find decoder shown in chapter 7 reaches only 5.6% for

the 4.8.8 and 7.0% for the hexagonal color code lattice, while the original work in [193]

achieves a threshold around 8.6%. Our study on the percolation of the growing clusters

suggests that the limiting factor of the decoder lies on the quick growth of the clus-

ters, that can easily merge covering the entire lattice with a single cluster before the

algorithm converges. A possible next step would be modifying the growth algorithm

to expand the clusters preferentially in some directions, directing the growth towards

the most probable candidates and reducing the percolation probability, at the cost of

an increase in the computational complexity. An exciting extension of the ideas of the

decoder would be using a noise model including qubit loss. Recent research [364, 406]

proposed a method to modify the color code lattice and the stabilizers in the absence

of lost qubits, in which stabilizers are cut and extended over the losses to preserve the

logical operators and the color code properties. A union-find decoder could easily be

extended for this scenario, as the growth of the clusters can be adapted for the modified

shape of the stabilizers in non-regular lattices. Similarly, the decoder algorithm can

be extended for the more experimentally relevant phenomenological and circuit noise

models, introducing multiple rounds of stabilizer readout. However, addressing first the

problem of the excessive growth of the clusters might be advisable, since this approach

could also lead to a lower threshold than other existing decoders in the literature, like

the restriction decoder [196].

Regarding the work on the rescaling decoder, there are multiple open fronts for fur-

ther research. Modifying the decoder to account for open boundary conditions could

improve considerably the applicability of the decoder, since the experimental implemen-

tation of periodic boundary conditions can be challenging for most physical platforms.

As in the previous decoder, the extension to phenomenological noise and circuit noise

models would be arguably the most interesting target. Any realistic quantum device

is likely to experience faulty measurements and more complex noise patterns, making

circuit noise models the most relevant for future applications. This could be achieved

by using three-dimensional cells, an approach that was applied successfully in surface
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9. CONCLUSIONS AND OUTLOOK

codes [187]. In this aspect, this decoder has the additional potential to introduce in-

teresting noise models within the local cell decoder, where local parameters of the par-

ticular device (e.g. correlations between qubits) can be introduced into the algorithm,

modifying the probabilities of different error patterns accordingly. Recent works have

studied how these complex error models could be learned from experimental observa-

tions [179], which could then be used to model the cell decoder more accurately. Alter-

natively, the cell decoder could be replaced by a neural network, that could be trained

to introduce precise information from the particular experimental device. Adapting the

rescaling ideas to codes that allow the implementation of a universal set of transversal

gates, which can substantially reduce the resources required for FT [238–240], would

be an interesting extension. As for the computational complexity, the O(N log(N))

scaling of the decoding time with the number of qubits N can be potentially improved

to O(log(N)) with parallelization, which would significantly improve the maximum lat-

tice size to which the decoder could be applied and could lead to an advantage over

other decoders in the literature. One of the decoder’s challenges lies in the lack of

flexibility with respect to the system size, since the decoder is restricted to a number

of qubits that can be rescaled exactly to the expected minimum lattice size. This issue

can be overcome by replacing the brute force decoder applied to the smallest system

size (for which the computational complexity scales exponentially) with an alternative,

more efficient decoder (e.g. [196]). The information about the estimates of the error

probabilities of the effective qubits resulting from the rescaling steps can be used by

decoders based on MWPM, which can introduce these probabilities as weights for the

matching algorithm. The study of these combined approaches could lead to interesting

algorithms that could benefit from the particular advantages of the different decoders.

Finally, further research on the impact of each of the steps of the decoder could lead

to a better understanding of the overall algorithm. With our current research, we can

only speculate about the factors that limit the threshold below the results obtained

by alternative approaches found in the literature. An improved understanding of the

multiple algorithms used in this complex decoder could inspire the development of new

decoding algorithms and unveil interesting properties of the different color code lattices.
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T. Ohshima, J. Isoya, J. F. Du, P. Neumann, and et al., “Quantum error

189

http://dx.doi.org/10.1126/sciadv.aaw9918
http://dx.doi.org/10.1103/PhysRevLett.109.100503
http://dx.doi.org/10.1103/PhysRevLett.86.5811
http://dx.doi.org/10.1103/PhysRevLett.86.5811
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1103/PhysRevLett.117.210505
http://dx.doi.org/10.1103/PhysRevLett.117.210505
http://dx.doi.org/10.1038/nature18949
http://dx.doi.org/10.1038/nature18949
http://dx.doi.org/10.1038/s41567-020-0920-y
http://arxiv.org/abs/2112.10044


REFERENCES

correction in a solid-state hybrid spin register,” Nature 506 no. 7487, (2014)

204. 6, 25

[165] T. Unden, P. Balasubramanian, D. Louzon, Y. Vinkler, M. B. Plenio,

M. Markham, D. Twitchen, A. Stacey, I. Lovchinsky, A. O. Sushkov, M. D.

Lukin, A. Retzker, B. Naydenov, L. P. McGuinness, and F. Jelezko, “Quantum

Metrology Enhanced by Repetitive Quantum Error Correction,” Physical

Review Letters 116 (2016) 230502. 6, 25

[166] D. Castelvecchi, “Ibm’s quantum cloud computer goes commercial,” Nature

News 543 no. 7644, (2017) 159. 6

[167] K. J. Satzinger, Y.-J. Liu, A. Smith, C. Knapp, M. Newman, C. Jones, Z. Chen,

C. Quintana, X. Mi, A. Dunsworth, et al., “Realizing topologically ordered

states on a quantum processor,” Science 374 no. 6572, (2021) 1237. 6, 37, 166

[168] J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N. Muthusubramanian,

C. Zachariadis, F. Battistel, M. Beekman, N. Haider, W. Vlothuizen, A. Bruno,

B. M. Terhal, and L. DiCarlo, “Logical-qubit operations in an error-detecting

surface code,” Nat. Phys. (2021) . 6

[169] L. Postler, S. Heußen, I. Pogorelov, M. Rispler, T. Feldker, M. Meth, C. D.

Marciniak, R. Stricker, M. Ringbauer, R. Blatt, P. Schindler, M. Müller, and

T. Monz, “Demonstration of fault-tolerant universal quantum gate operations,”

(2021) , arXiv:2111.12654. 6, 8, 25, 36, 37, 50, 60, 73, 92, 101, 102, 103, 104,

166, 167, 168

[170] J. Hilder, D. Pijn, O. Onishchenko, A. Stahl, M. Orth, B. Lekitsch,

A. Rodriguez-Blanco, M. Müller, F. Schmidt-Kaler, and U. Poschinger,

“Fault-tolerant parity readout on a shuttling-based trapped-ion quantum

computer,” (2021) , arXiv:2107.06368. 6, 25, 167

[171] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler,

D. Francois, A. Chernoguzov, D. Lucchetti, et al., “Realization of real-time

fault-tolerant quantum error correction,” (2021) , arXiv:2107.07505. 6, 8, 25,

37, 50, 60, 62, 73, 88, 92, 93, 101, 103, 166, 167, 168

190

http://dx.doi.org/10.1038/nature12919
http://dx.doi.org/10.1038/nature12919
http://dx.doi.org/10.1103/PhysRevLett.116.230502
http://dx.doi.org/10.1103/PhysRevLett.116.230502
http://dx.doi.org/10.1038/nature.2017.21585
http://dx.doi.org/10.1038/nature.2017.21585
http://dx.doi.org/10.1126/science.abi8378
http://dx.doi.org/10.1038/s41567-021-01423-9
http://arxiv.org/abs/2111.12654
http://arxiv.org/abs/2107.06368
http://arxiv.org/abs/2107.07505


REFERENCES

[172] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux,

C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, et al., “Realizing repeated

quantum error correction in a distance-three surface code,” (2021) ,

arXiv:2112.03708.

[173] C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix, G. J. Norris,

M. Gabureac, C. Eichler, and A. Wallraff, “Repeated quantum error detection

in a surface code,” Nature Physics 16 no. 8, (2020) 875. 37

[174] G. Q. AI, “Exponential suppression of bit or phase errors with cyclic error

correction,” Nature 595 no. 7867, (2021) 383. 6, 29

[175] E. T. Campbell, B. M. Terhal, and C. Vuillot, “Roads towards fault-tolerant

universal quantum computation,” Nature 549 no. 7671, (2017) 172. 6, 167, 168

[176] C. J. Trout, M. Li, M. Gutiérrez, Y. Wu, S.-T. Wang, L. Duan, and K. R.

Brown, “Simulating the performance of a distance-3 surface code in a linear ion

trap,” New Journal of Physics 20 no. 4, (2018) 043038. 6, 73, 74

[177] M. Gutiérrez, M. Müller, and A. Bermúdez, “Transversality and lattice surgery:
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[281] D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: an open source software

framework for quantum computing,” Quantum 2 (2018) 49. 53, 74

[282] “List of QC simulators.”

https://www.quantiki.org/wiki/list-qc-simulators. Accessed:

2021-12-12. 50

[283] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion

quantum computing: Progress and challenges,” Applied Physics Reviews 6

(2019) 021314. 60, 63, 76, 166, 168

[284] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang,

S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich,

and R. Blatt, “A quantum information processor with trapped ions,” New

Journal of Physics 15 no. 12, (2013) 123012.

[285] R. Ozeri, “The trapped-ion qubit tool box,” Contemporary Physics 52 no. 6,

(2011) 531. 62

[286] H. Haffner, C. Roos, and R. Blatt, “Quantum computing with trapped ions,”

Physics Reports 469 no. 4, (2008) 155. 65

201

http://dx.doi.org/10.1145/3458817.3476169
http://dx.doi.org/10.1145/3458817.3476169
https://zenodo.org/record/2562111
https://github.com/PECOS-packages/PECOS
http://dx.doi.org/10.22331/q-2018-01-31-49
 https://www.quantiki.org/wiki/list-qc-simulators
http://dx.doi.org/10.1063/1.5088164
http://dx.doi.org/10.1063/1.5088164
http://dx.doi.org/10.1088/1367-2630/15/12/123012
http://dx.doi.org/10.1088/1367-2630/15/12/123012
http://dx.doi.org/10.1080/00107514.2011.603578
http://dx.doi.org/10.1080/00107514.2011.603578
http://dx.doi.org/10.1016/j.physrep.2008.09.003


REFERENCES

[287] D. J. Wineland, M. Barrett, J. Britton, J. Chiaverini, B. DeMarco, W. M.
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[387] E. Mart́ın-López, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L.

O’Brien, “Experimental realization of shor’s quantum factoring algorithm using

qubit recycling,” Nature Photonics 6 no. 11, (2012) 773. 166

[388] L. M. K. Vandersypen, M. Steffen, M. H. Sherwood, C. S. Yannoni, G. Breyta,

and I. L. Chuang, “Implementation of a three-quantum-bit search algorithm,”

Applied Physics Letters 76 no. 5, (2000) 646–648. 166

[389] J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch,

“Benchmarking a quantum annealing processor with the time-to-target metric,”

(2015) , arXiv:1508.05087. 166

[390] S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. Dakić, A. Aspuru-Guzik, and
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